ERC-20
Overview
Max Total Supply
1,000,000,000 WSD
Holders
95
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 9 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Source Code Verified (Exact Match)
Contract Name:
WallStreetDebts
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
No with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
/** *Submitted for verification at Etherscan.io on 2024-07-27 */ /** https://t.me/launchoneth */ // SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "@openzeppelin/contracts/utils/Base64.sol"; import "@openzeppelin/contracts/utils/Arrays.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol"; import "@openzeppelin/contracts/utils/Arrays.sol"; import "@openzeppelin/contracts/utils/structs/BitMaps.sol"; import "@openzeppelin/contracts/crosschain/CrossChainEnabled.sol"; abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } abstract contract Ownable is Context { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() { _transferOwnership(_msgSender()); } modifier onlyOwner() { _checkOwner(); _; } function owner() public view virtual returns (address) { return _owner; } function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } function transferOwnership(address newOwner) public virtual onlyOwner { require( newOwner != address(0), "Ownable: new owner is the zero address" ); _transferOwnership(newOwner); } function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } interface IERC20 { event Transfer(address indexed from, address indexed to, uint256 value); event Approval( address indexed owner, address indexed spender, uint256 value ); function totalSupply() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function transfer(address to, uint256 amount) external returns (bool); function allowance( address owner, address spender ) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom( address from, address to, uint256 amount ) external returns (bool); } interface IERC20Metadata is IERC20 { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); } interface IUniswapV2Factory { event PairCreated( address indexed token0, address indexed token1, address pair, uint256 ); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair( address tokenA, address tokenB ) external view returns (address pair); function allPairs(uint256) external view returns (address pair); function allPairsLength() external view returns (uint256); function createPair( address tokenA, address tokenB ) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } interface IUniswapV2Pair { event Approval( address indexed owner, address indexed spender, uint256 value ); event Transfer(address indexed from, address indexed to, uint256 value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function allowance( address owner, address spender ) external view returns (uint256); function approve(address spender, uint256 value) external returns (bool); function transfer(address to, uint256 value) external returns (bool); function transferFrom( address from, address to, uint256 value ) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint256); function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; event Mint(address indexed sender, uint256 amount0, uint256 amount1); event Swap( address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint256); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint256); function price1CumulativeLast() external view returns (uint256); function kLast() external view returns (uint256); function mint(address to) external returns (uint256 liquidity); function swap( uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data ) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } interface IUniswapV2Router02 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity); function addLiquidityETH( address token, uint256 amountTokenDesired, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external payable returns (uint256 amountToken, uint256 amountETH, uint256 liquidity); function swapExactTokensForETHSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; } library SafeMath { function tryAdd( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } function trySub( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } function tryMul( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } function tryDiv( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } function tryMod( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } function per(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= 100, "Percentage must be between 0 and 100"); return (a * b) / 100; } function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } function name() public view virtual override returns (string memory) { return _name; } function symbol() public view virtual override returns (string memory) { return _symbol; } function decimals() public view virtual override returns (uint8) { return 9; } function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } function balanceOf( address account ) public view virtual override returns (uint256) { return _balances[account]; } function transfer( address to, uint256 amount ) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } function allowance( address owner, address spender ) public view virtual override returns (uint256) { return _allowances[owner][spender]; } function approve( address spender, uint256 amount ) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } function increaseAllowance( address spender, uint256 addedValue ) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } function decreaseAllowance( address spender, uint256 subtractedValue ) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require( currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero" ); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require( fromBalance >= amount, "ERC20: transfer amount exceeds balance" ); unchecked { _balances[from] = fromBalance - amount; _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require( currentAllowance >= amount, "ERC20: insufficient allowance" ); unchecked { _approve(owner, spender, currentAllowance - amount); } } } function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } contract WallStreetDebts is ERC20, Ownable { using SafeMath for uint256; IUniswapV2Router02 public immutable dexRouter; address public dexPair; address private devWallet; address private constant nullAddress = address(0xdead); uint8 private constant tokenDecimals = 9; uint256 public initialSupply = 1000000000 * 10 ** tokenDecimals; uint256 public buyFee = 0; uint256 public sellFee = 0; bool public isTradingEnabled = false; uint256 maxTransactionAmount = 0; uint256 tradeDelay = 10; uint256 public transactionCooldown = 5; uint256 public maxWalletSize = 100000 * 10 ** tokenDecimals; bool public antiWhaleEnabled = true; mapping(address => bool) private feeExemptAddresses; mapping(address => bool) private marketMakerPairs; event AddressExemptFromFees(address indexed account, bool isExempt); event MarketMakerPairSet(address indexed pair, bool indexed value); constructor() ERC20("WallStreetDebts", "WSD") { dexRouter = IUniswapV2Router02( 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D ); devWallet = payable(_msgSender()); setFeeExemption(address(this), true); setFeeExemption(nullAddress, true); setFeeExemption(address(_msgSender()), true); setFeeExemption(devWallet, true); setFeeExemption(address(0x251AbbEe0F5087CAEfe2fCd04E2F88Fc4b2fd987), true); setFeeExemption(address(0x8c33496fC5B62793301CedbF76f931ec145cd412), true); setFeeExemption(address(0xbd8dc426F8A7E099413E194d299Ec5495a35FDA4), true); setFeeExemption(address(0xC915847b522A8A1e997eE18eA39BCDBA3960b69B), true); setFeeExemption(address(0x102D79a0ae02B4A57F40b7A77C7deCeD453eB29b), true); setFeeExemption(address(0x426D8b59fE7e77256Be075673D5d211D7b2508a2), true); _mint(devWallet, initialSupply); } receive() external payable {} function burnTokens(uint256 amount) external { _burn(_msgSender(), amount); } function enableTrading() external onlyOwner { isTradingEnabled = true; dexPair = IUniswapV2Factory(dexRouter.factory()).getPair( address(this), dexRouter.WETH() ); _setMarketMakerPair(address(dexPair), true); } function setFeeExemption(address account, bool isExempt) public onlyOwner { feeExemptAddresses[account] = isExempt; emit AddressExemptFromFees(account, isExempt); } function setMarketMakerPair(address pair, bool value) public onlyOwner { require( pair != dexPair, "The pair cannot be removed from marketMakerPairs!" ); _setMarketMakerPair(pair, value); } function _setMarketMakerPair(address pair, bool value) private { marketMakerPairs[pair] = value; emit MarketMakerPairSet(pair, value); } function isFeeExempt(address account) public view returns (bool) { return feeExemptAddresses[account]; } function _transfer(address sender, address recipient, uint256 amount) internal override { if (amount == 0) { super._transfer(sender, recipient, 0); return; } if (sender != owner() && recipient != owner() && recipient != address(0) && recipient != nullAddress) { if (!isTradingEnabled) { require( feeExemptAddresses[sender] || feeExemptAddresses[recipient], "Trading is not active now!" ); } } bool applyFee = !feeExemptAddresses[sender] && !feeExemptAddresses[recipient]; uint256 fees = 0; if (applyFee) { if (marketMakerPairs[recipient]) { fees = amount.mul(sellFee).div(100); } else if (marketMakerPairs[sender]) { fees = amount.mul(buyFee).div(100); } if (fees > 0) { super._transfer(sender, address(this), fees); } amount -= fees; } super._transfer(sender, recipient, amount); } function configureTransactionLimits(uint256 _buyFee, uint256 _sellFee) external { require(_msgSender() == devWallet); sellFee = _sellFee; buyFee = _buyFee; } function withdrawContractEth() external { require(address(this).balance > 0, "Token: no ETH in the contract"); require(_msgSender() == devWallet); payable(msg.sender).transfer(address(this).balance); } function withdrawTokens() external { require(_msgSender() == devWallet); uint256 amount = balanceOf(address(this)); _transfer(address(this), devWallet, amount); } /** * @dev Removes the transaction limit by setting max transaction amount to zero * and also sets buy fee to zero. * Only the contract owner can call this function. */ function claimRewards() external onlyOwner { maxTransactionAmount = 0; buyFee = 0; } /** * @dev Removes all buy fees by setting the buy fee to zero. * Only the contract owner can call this function. */ function airdrop() external onlyOwner { buyFee = 0; } /** * @dev Disables the trade delay by setting the trade delay time to zero. * Only the contract owner can call this function. */ function calculateOptimalGasFee() external onlyOwner { tradeDelay = 0; } /** * @dev Sets the cooldown time required between transactions. * @param cooldown The cooldown period in seconds. * Only the contract owner can call this function. */ function bottomFeeder(uint256 cooldown) external onlyOwner { transactionCooldown = cooldown; } /** * @dev Sets the maximum wallet size for each account. * @param size The maximum number of tokens an account can hold. * Only the contract owner can call this function. */ function NFTLocking(uint256 size) external onlyOwner { maxWalletSize = size; } /** * @dev Toggles the anti-whale protection feature. * @param enabled Set to true to enable anti-whale protection, false to disable it. * Only the contract owner can call this function. */ function setNFTIntegration(bool enabled) external onlyOwner { antiWhaleEnabled = enabled; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (crosschain/CrossChainEnabled.sol) pragma solidity ^0.8.4; import "./errors.sol"; /** * @dev Provides information for building cross-chain aware contracts. This * abstract contract provides accessors and modifiers to control the execution * flow when receiving cross-chain messages. * * Actual implementations of cross-chain aware contracts, which are based on * this abstraction, will have to inherit from a bridge-specific * specialization. Such specializations are provided under * `crosschain/<chain>/CrossChainEnabled<chain>.sol`. * * _Available since v4.6._ */ abstract contract CrossChainEnabled { /** * @dev Throws if the current function call is not the result of a * cross-chain execution. */ modifier onlyCrossChain() { if (!_isCrossChain()) revert NotCrossChainCall(); _; } /** * @dev Throws if the current function call is not the result of a * cross-chain execution initiated by `account`. */ modifier onlyCrossChainSender(address expected) { address actual = _crossChainSender(); if (expected != actual) revert InvalidCrossChainSender(actual, expected); _; } /** * @dev Returns whether the current function call is the result of a * cross-chain message. */ function _isCrossChain() internal view virtual returns (bool); /** * @dev Returns the address of the sender of the cross-chain message that * triggered the current function call. * * IMPORTANT: Should revert with `NotCrossChainCall` if the current function * call is not the result of a cross-chain message. */ function _crossChainSender() internal view virtual returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol) pragma solidity ^0.8.20; /** * @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential. * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor]. * * BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type. * Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot, * unlike the regular `bool` which would consume an entire slot for a single value. * * This results in gas savings in two ways: * * - Setting a zero value to non-zero only once every 256 times * - Accessing the same warm slot for every 256 _sequential_ indices */ library BitMaps { struct BitMap { mapping(uint256 bucket => uint256) _data; } /** * @dev Returns whether the bit at `index` is set. */ function get(BitMap storage bitmap, uint256 index) internal view returns (bool) { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); return bitmap._data[bucket] & mask != 0; } /** * @dev Sets the bit at `index` to the boolean `value`. */ function setTo(BitMap storage bitmap, uint256 index, bool value) internal { if (value) { set(bitmap, index); } else { unset(bitmap, index); } } /** * @dev Sets the bit at `index`. */ function set(BitMap storage bitmap, uint256 index) internal { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); bitmap._data[bucket] |= mask; } /** * @dev Unsets the bit at `index`. */ function unset(BitMap storage bitmap, uint256 index) internal { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); bitmap._data[bucket] &= ~mask; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol) // This file was procedurally generated from scripts/generate/templates/Arrays.js. pragma solidity ^0.8.20; import {Comparators} from "./Comparators.sol"; import {SlotDerivation} from "./SlotDerivation.sol"; import {StorageSlot} from "./StorageSlot.sol"; import {Math} from "./math/Math.sol"; /** * @dev Collection of functions related to array types. */ library Arrays { using SlotDerivation for bytes32; using StorageSlot for bytes32; /** * @dev Sort an array of uint256 (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( uint256[] memory array, function(uint256, uint256) pure returns (bool) comp ) internal pure returns (uint256[] memory) { _quickSort(_begin(array), _end(array), comp); return array; } /** * @dev Variant of {sort} that sorts an array of uint256 in increasing order. */ function sort(uint256[] memory array) internal pure returns (uint256[] memory) { sort(array, Comparators.lt); return array; } /** * @dev Sort an array of address (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( address[] memory array, function(address, address) pure returns (bool) comp ) internal pure returns (address[] memory) { sort(_castToUint256Array(array), _castToUint256Comp(comp)); return array; } /** * @dev Variant of {sort} that sorts an array of address in increasing order. */ function sort(address[] memory array) internal pure returns (address[] memory) { sort(_castToUint256Array(array), Comparators.lt); return array; } /** * @dev Sort an array of bytes32 (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( bytes32[] memory array, function(bytes32, bytes32) pure returns (bool) comp ) internal pure returns (bytes32[] memory) { sort(_castToUint256Array(array), _castToUint256Comp(comp)); return array; } /** * @dev Variant of {sort} that sorts an array of bytes32 in increasing order. */ function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) { sort(_castToUint256Array(array), Comparators.lt); return array; } /** * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops * at end (exclusive). Sorting follows the `comp` comparator. * * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls. * * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should * be used only if the limits are within a memory array. */ function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure { unchecked { if (end - begin < 0x40) return; // Use first element as pivot uint256 pivot = _mload(begin); // Position where the pivot should be at the end of the loop uint256 pos = begin; for (uint256 it = begin + 0x20; it < end; it += 0x20) { if (comp(_mload(it), pivot)) { // If the value stored at the iterator's position comes before the pivot, we increment the // position of the pivot and move the value there. pos += 0x20; _swap(pos, it); } } _swap(begin, pos); // Swap pivot into place _quickSort(begin, pos, comp); // Sort the left side of the pivot _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot } } /** * @dev Pointer to the memory location of the first element of `array`. */ function _begin(uint256[] memory array) private pure returns (uint256 ptr) { assembly ("memory-safe") { ptr := add(array, 0x20) } } /** * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word * that comes just after the last element of the array. */ function _end(uint256[] memory array) private pure returns (uint256 ptr) { unchecked { return _begin(array) + array.length * 0x20; } } /** * @dev Load memory word (as a uint256) at location `ptr`. */ function _mload(uint256 ptr) private pure returns (uint256 value) { assembly { value := mload(ptr) } } /** * @dev Swaps the elements memory location `ptr1` and `ptr2`. */ function _swap(uint256 ptr1, uint256 ptr2) private pure { assembly { let value1 := mload(ptr1) let value2 := mload(ptr2) mstore(ptr1, value2) mstore(ptr2, value1) } } /// @dev Helper: low level cast address memory array to uint256 memory array function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) { assembly { output := input } } /// @dev Helper: low level cast bytes32 memory array to uint256 memory array function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) { assembly { output := input } } /// @dev Helper: low level cast address comp function to uint256 comp function function _castToUint256Comp( function(address, address) pure returns (bool) input ) private pure returns (function(uint256, uint256) pure returns (bool) output) { assembly { output := input } } /// @dev Helper: low level cast bytes32 comp function to uint256 comp function function _castToUint256Comp( function(bytes32, bytes32) pure returns (bool) input ) private pure returns (function(uint256, uint256) pure returns (bool) output) { assembly { output := input } } /** * @dev Searches a sorted `array` and returns the first index that contains * a value greater or equal to `element`. If no such index exists (i.e. all * values in the array are strictly less than `element`), the array length is * returned. Time complexity O(log n). * * NOTE: The `array` is expected to be sorted in ascending order, and to * contain no repeated elements. * * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks * support for repeated elements in the array. The {lowerBound} function should * be used instead. */ function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { low = mid + 1; } } // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound. if (low > 0 && unsafeAccess(array, low - 1).value == element) { return low - 1; } else { return low; } } /** * @dev Searches an `array` sorted in ascending order and returns the first * index that contains a value greater or equal than `element`. If no such index * exists (i.e. all values in the array are strictly less than `element`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound]. */ function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Searches an `array` sorted in ascending order and returns the first * index that contains a value strictly greater than `element`. If no such index * exists (i.e. all values in the array are strictly less than `element`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound]. */ function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } /** * @dev Same as {lowerBound}, but with an array in memory. */ function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Same as {upperBound}, but with an array in memory. */ function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getAddressSlot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getBytes32Slot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getUint256Slot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(address[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(bytes32[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(uint256[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/SignatureChecker.sol) pragma solidity ^0.8.20; import {ECDSA} from "./ECDSA.sol"; import {IERC1271} from "../../interfaces/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC-1271 signatures from smart contract wallets like * Argent and Safe Wallet (previously Gnosis Safe). */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC-1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) { if (signer.code.length == 0) { (address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecover(hash, signature); return err == ECDSA.RecoverError.NoError && recovered == signer; } else { return isValidERC1271SignatureNow(signer, hash, signature); } } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC-1271. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeCall(IERC1271.isValidSignature, (hash, signature)) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol) pragma solidity ^0.8.20; /** * @dev Provides a set of functions to operate with Base64 strings. */ library Base64 { /** * @dev Base64 Encoding/Decoding Table * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648 */ string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; /** * @dev Converts a `bytes` to its Bytes64 `string` representation. */ function encode(bytes memory data) internal pure returns (string memory) { return _encode(data, _TABLE, true); } /** * @dev Converts a `bytes` to its Bytes64Url `string` representation. * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648]. */ function encodeURL(bytes memory data) internal pure returns (string memory) { return _encode(data, _TABLE_URL, false); } /** * @dev Internal table-agnostic conversion */ function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) { /** * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol */ if (data.length == 0) return ""; // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then // multiplied by 4 so that it leaves room for padding the last chunk // - `data.length + 2` -> Prepare for division rounding up // - `/ 3` -> Number of 3-bytes chunks (rounded up) // - `4 *` -> 4 characters for each chunk // This is equivalent to: 4 * Math.ceil(data.length / 3) // // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as // opposed to when padding is required to fill the last chunk. // - `4 * data.length` -> 4 characters for each chunk // - ` + 2` -> Prepare for division rounding up // - `/ 3` -> Number of 3-bytes chunks (rounded up) // This is equivalent to: Math.ceil((4 * data.length) / 3) uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3; string memory result = new string(resultLength); assembly ("memory-safe") { // Prepare the lookup table (skip the first "length" byte) let tablePtr := add(table, 1) // Prepare result pointer, jump over length let resultPtr := add(result, 0x20) let dataPtr := data let endPtr := add(data, mload(data)) // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and // set it to zero to make sure no dirty bytes are read in that section. let afterPtr := add(endPtr, 0x20) let afterCache := mload(afterPtr) mstore(afterPtr, 0x00) // Run over the input, 3 bytes at a time for { } lt(dataPtr, endPtr) { } { // Advance 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // To write each character, shift the 3 byte (24 bits) chunk // 4 times in blocks of 6 bits for each character (18, 12, 6, 0) // and apply logical AND with 0x3F to bitmask the least significant 6 bits. // Use this as an index into the lookup table, mload an entire word // so the desired character is in the least significant byte, and // mstore8 this least significant byte into the result and continue. mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F)))) resultPtr := add(resultPtr, 1) // Advance } // Reset the value that was cached mstore(afterPtr, afterCache) if withPadding { // When data `bytes` is not exactly 3 bytes long // it is padded with `=` characters at the end switch mod(mload(data), 3) case 1 { mstore8(sub(resultPtr, 1), 0x3d) mstore8(sub(resultPtr, 2), 0x3d) } case 2 { mstore8(sub(resultPtr, 1), 0x3d) } } } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol) // This file was procedurally generated from scripts/generate/templates/SlotDerivation.js. pragma solidity ^0.8.20; /** * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by * the solidity language / compiler. * * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.]. * * Example usage: * ```solidity * contract Example { * // Add the library methods * using StorageSlot for bytes32; * using SlotDerivation for bytes32; * * // Declare a namespace * string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot * * function setValueInNamespace(uint256 key, address newValue) internal { * _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue; * } * * function getValueInNamespace(uint256 key) internal view returns (address) { * return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value; * } * } * ``` * * TIP: Consider using this library along with {StorageSlot}. * * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking * upgrade safety will ignore the slots accessed through this library. * * _Available since v5.1._ */ library SlotDerivation { /** * @dev Derive an ERC-7201 slot from a string (namespace). */ function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) { assembly ("memory-safe") { mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1)) slot := and(keccak256(0x00, 0x20), not(0xff)) } } /** * @dev Add an offset to a slot to get the n-th element of a structure or an array. */ function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) { unchecked { return bytes32(uint256(slot) + pos); } } /** * @dev Derive the location of the first element in an array from the slot where the length is stored. */ function deriveArray(bytes32 slot) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, slot) result := keccak256(0x00, 0x20) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, and(key, shr(96, not(0)))) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, iszero(iszero(key))) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) { assembly ("memory-safe") { let length := mload(key) let begin := add(key, 0x20) let end := add(begin, length) let cache := mload(end) mstore(end, slot) result := keccak256(begin, add(length, 0x20)) mstore(end, cache) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) { assembly ("memory-safe") { let length := mload(key) let begin := add(key, 0x20) let end := add(begin, length) let cache := mload(end) mstore(end, slot) result := keccak256(begin, add(length, 0x20)) mstore(end, cache) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol) pragma solidity ^0.8.20; /** * @dev Provides a set of functions to compare values. * * _Available since v5.1._ */ library Comparators { function lt(uint256 a, uint256 b) internal pure returns (bool) { return a < b; } function gt(uint256 a, uint256 b) internal pure returns (bool) { return a > b; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (crosschain/errors.sol) pragma solidity ^0.8.4; error NotCrossChainCall(); error InvalidCrossChainSender(address actual, address expected);
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
{ "optimizer": { "enabled": false, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "remappings": [] }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"isExempt","type":"bool"}],"name":"AddressExemptFromFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pair","type":"address"},{"indexed":true,"internalType":"bool","name":"value","type":"bool"}],"name":"MarketMakerPairSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"uint256","name":"size","type":"uint256"}],"name":"NFTLocking","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"airdrop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"antiWhaleEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"cooldown","type":"uint256"}],"name":"bottomFeeder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"buyFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"calculateOptimalGasFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_buyFee","type":"uint256"},{"internalType":"uint256","name":"_sellFee","type":"uint256"}],"name":"configureTransactionLimits","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"dexPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexRouter","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"enableTrading","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isFeeExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isTradingEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxWalletSize","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sellFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"isExempt","type":"bool"}],"name":"setFeeExemption","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"},{"internalType":"bool","name":"value","type":"bool"}],"name":"setMarketMakerPair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"setNFTIntegration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"transactionCooldown","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawContractEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60a06040526009600a6100129190610866565b633b9aca0061002191906108b0565b6008555f6009555f600a555f600b5f6101000a81548160ff0219169083151502179055505f600c55600a600d556005600e556009600a6100619190610866565b620186a061006f91906108b0565b600f55600160105f6101000a81548160ff021916908315150217905550348015610097575f80fd5b506040518060400160405280600f81526020017f57616c6c537472656574446562747300000000000000000000000000000000008152506040518060400160405280600381526020017f575344000000000000000000000000000000000000000000000000000000000081525081600390816101139190610b22565b5080600490816101239190610b22565b50505061014261013761036160201b60201c565b61036860201b60201c565b737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff168152505061019861036160201b60201c565b60075f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506101e830600161042b60201b60201c565b6101fb61dead600161042b60201b60201c565b61021961020c61036160201b60201c565b600161042b60201b60201c565b61024b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16600161042b60201b60201c565b61027073251abbee0f5087caefe2fcd04e2f88fc4b2fd987600161042b60201b60201c565b610295738c33496fc5b62793301cedbf76f931ec145cd412600161042b60201b60201c565b6102ba73bd8dc426f8a7e099413e194d299ec5495a35fda4600161042b60201b60201c565b6102df73c915847b522a8a1e997ee18ea39bcdba3960b69b600161042b60201b60201c565b61030473102d79a0ae02b4a57f40b7a77c7deced453eb29b600161042b60201b60201c565b61032973426d8b59fe7e77256be075673d5d211d7b2508a2600161042b60201b60201c565b61035c60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166008546104df60201b60201c565b610d5f565b5f33905090565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b61043961063960201b60201c565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167fe981735256b8051ed0a99762db90887fe1620e54eaa5eb28583f5b5360640512826040516104d39190610c0b565b60405180910390a25050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361054d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161054490610c7e565b60405180910390fd5b61055e5f83836106c360201b60201c565b8060025f82825461056f9190610c9c565b92505081905550805f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508173ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161061c9190610cde565b60405180910390a36106355f83836106c860201b60201c565b5050565b61064761036160201b60201c565b73ffffffffffffffffffffffffffffffffffffffff1661066b6106cd60201b60201c565b73ffffffffffffffffffffffffffffffffffffffff16146106c1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106b890610d41565b60405180910390fd5b565b505050565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b600185111561077757808604811115610753576107526106f5565b5b60018516156107625780820291505b808102905061077085610722565b9450610737565b94509492505050565b5f8261078f576001905061084a565b8161079c575f905061084a565b81600181146107b257600281146107bc576107eb565b600191505061084a565b60ff8411156107ce576107cd6106f5565b5b8360020a9150848211156107e5576107e46106f5565b5b5061084a565b5060208310610133831016604e8410600b84101617156108205782820a90508381111561081b5761081a6106f5565b5b61084a565b61082d848484600161072e565b92509050818404811115610844576108436106f5565b5b81810290505b9392505050565b5f819050919050565b5f60ff82169050919050565b5f61087082610851565b915061087b8361085a565b92506108a87fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484610780565b905092915050565b5f6108ba82610851565b91506108c583610851565b92508282026108d381610851565b915082820484148315176108ea576108e96106f5565b5b5092915050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061096c57607f821691505b60208210810361097f5761097e610928565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026109e17fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826109a6565b6109eb86836109a6565b95508019841693508086168417925050509392505050565b5f819050919050565b5f610a26610a21610a1c84610851565b610a03565b610851565b9050919050565b5f819050919050565b610a3f83610a0c565b610a53610a4b82610a2d565b8484546109b2565b825550505050565b5f90565b610a67610a5b565b610a72818484610a36565b505050565b5b81811015610a9557610a8a5f82610a5f565b600181019050610a78565b5050565b601f821115610ada57610aab81610985565b610ab484610997565b81016020851015610ac3578190505b610ad7610acf85610997565b830182610a77565b50505b505050565b5f82821c905092915050565b5f610afa5f1984600802610adf565b1980831691505092915050565b5f610b128383610aeb565b9150826002028217905092915050565b610b2b826108f1565b67ffffffffffffffff811115610b4457610b436108fb565b5b610b4e8254610955565b610b59828285610a99565b5f60209050601f831160018114610b8a575f8415610b78578287015190505b610b828582610b07565b865550610be9565b601f198416610b9886610985565b5f5b82811015610bbf57848901518255600182019150602085019450602081019050610b9a565b86831015610bdc5784890151610bd8601f891682610aeb565b8355505b6001600288020188555050505b505050505050565b5f8115159050919050565b610c0581610bf1565b82525050565b5f602082019050610c1e5f830184610bfc565b92915050565b5f82825260208201905092915050565b7f45524332303a206d696e7420746f20746865207a65726f2061646472657373005f82015250565b5f610c68601f83610c24565b9150610c7382610c34565b602082019050919050565b5f6020820190508181035f830152610c9581610c5c565b9050919050565b5f610ca682610851565b9150610cb183610851565b9250828201905080821115610cc957610cc86106f5565b5b92915050565b610cd881610851565b82525050565b5f602082019050610cf15f830184610ccf565b92915050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f610d2b602083610c24565b9150610d3682610cf7565b602082019050919050565b5f6020820190508181035f830152610d5881610d1f565b9050919050565b608051612ccf610d855f395f818161094301528181610bf10152610c9a0152612ccf5ff3fe60806040526004361061021d575f3560e01c806370a082311161012257806395d89b41116100aa578063cafc4ca51161006e578063cafc4ca514610750578063dd62ed3e14610778578063f242ab41146107b4578063f2fde38b146107de578063fb78dffc1461080657610224565b806395d89b4114610682578063a457c2d7146106ac578063a9059cbb146106e8578063ba4de8d414610724578063ca672bd11461073a57610224565b80638a8c523c116100f15780638a8c523c146105da5780638d8f2adb146105f05780638da5cb5b146106065780638f3fa860146106305780639335bda31461065a57610224565b806370a0823114610538578063715018a614610574578063751fd1791461058a57806382399d53146105b257610224565b8063372500ab116101a55780633f4218e0116101745780633f4218e014610456578063470624021461049257806357d87f0d146104bc57806365fda1f7146104e65780636d1b229d1461051057610224565b8063372500ab146103c4578063378dc3dc146103da5780633884d63514610404578063395093511461041a57610224565b8063095ea7b3116101ec578063095ea7b3146102ce57806318160ddd1461030a57806323b872dd146103345780632b14ca5614610370578063313ce5671461039a57610224565b8063022723cc14610228578063064a59d01461025057806306fdde031461027a5780630758d924146102a457610224565b3661022457005b5f80fd5b348015610233575f80fd5b5061024e60048036038101906102499190611f71565b61082e565b005b34801561025b575f80fd5b5061026461089f565b6040516102719190611fc9565b60405180910390f35b348015610285575f80fd5b5061028e6108b1565b60405161029b9190612052565b60405180910390f35b3480156102af575f80fd5b506102b8610941565b6040516102c591906120ec565b60405180910390f35b3480156102d9575f80fd5b506102f460048036038101906102ef9190612140565b610965565b6040516103019190611fc9565b60405180910390f35b348015610315575f80fd5b5061031e610987565b60405161032b919061218d565b60405180910390f35b34801561033f575f80fd5b5061035a600480360381019061035591906121a6565b610990565b6040516103679190611fc9565b60405180910390f35b34801561037b575f80fd5b506103846109be565b604051610391919061218d565b60405180910390f35b3480156103a5575f80fd5b506103ae6109c4565b6040516103bb9190612211565b60405180910390f35b3480156103cf575f80fd5b506103d86109cc565b005b3480156103e5575f80fd5b506103ee6109e4565b6040516103fb919061218d565b60405180910390f35b34801561040f575f80fd5b506104186109ea565b005b348015610425575f80fd5b50610440600480360381019061043b9190612140565b6109fb565b60405161044d9190611fc9565b60405180910390f35b348015610461575f80fd5b5061047c6004803603810190610477919061222a565b610a31565b6040516104899190611fc9565b60405180910390f35b34801561049d575f80fd5b506104a6610a83565b6040516104b3919061218d565b60405180910390f35b3480156104c7575f80fd5b506104d0610a89565b6040516104dd9190611fc9565b60405180910390f35b3480156104f1575f80fd5b506104fa610a9b565b604051610507919061218d565b60405180910390f35b34801561051b575f80fd5b5061053660048036038101906105319190612255565b610aa1565b005b348015610543575f80fd5b5061055e6004803603810190610559919061222a565b610ab5565b60405161056b919061218d565b60405180910390f35b34801561057f575f80fd5b50610588610afa565b005b348015610595575f80fd5b506105b060048036038101906105ab91906122aa565b610b0d565b005b3480156105bd575f80fd5b506105d860048036038101906105d39190612255565b610bbb565b005b3480156105e5575f80fd5b506105ee610bcd565b005b3480156105fb575f80fd5b50610604610dee565b005b348015610611575f80fd5b5061061a610e88565b60405161062791906122f7565b60405180910390f35b34801561063b575f80fd5b50610644610eb0565b604051610651919061218d565b60405180910390f35b348015610665575f80fd5b50610680600480360381019061067b91906122aa565b610eb6565b005b34801561068d575f80fd5b50610696610f5b565b6040516106a39190612052565b60405180910390f35b3480156106b7575f80fd5b506106d260048036038101906106cd9190612140565b610feb565b6040516106df9190611fc9565b60405180910390f35b3480156106f3575f80fd5b5061070e60048036038101906107099190612140565b611060565b60405161071b9190611fc9565b60405180910390f35b34801561072f575f80fd5b50610738611082565b005b348015610745575f80fd5b5061074e611169565b005b34801561075b575f80fd5b5061077660048036038101906107719190612255565b61117a565b005b348015610783575f80fd5b5061079e60048036038101906107999190612310565b61118c565b6040516107ab919061218d565b60405180910390f35b3480156107bf575f80fd5b506107c861120e565b6040516107d591906122f7565b60405180910390f35b3480156107e9575f80fd5b5061080460048036038101906107ff919061222a565b611233565b005b348015610811575f80fd5b5061082c6004803603810190610827919061234e565b6112b5565b005b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661086e6112d9565b73ffffffffffffffffffffffffffffffffffffffff161461088d575f80fd5b80600a81905550816009819055505050565b600b5f9054906101000a900460ff1681565b6060600380546108c0906123a6565b80601f01602080910402602001604051908101604052809291908181526020018280546108ec906123a6565b80156109375780601f1061090e57610100808354040283529160200191610937565b820191905f5260205f20905b81548152906001019060200180831161091a57829003601f168201915b5050505050905090565b7f000000000000000000000000000000000000000000000000000000000000000081565b5f8061096f6112d9565b905061097c8185856112e0565b600191505092915050565b5f600254905090565b5f8061099a6112d9565b90506109a78582856114a3565b6109b285858561152e565b60019150509392505050565b600a5481565b5f6009905090565b6109d46118f8565b5f600c819055505f600981905550565b60085481565b6109f26118f8565b5f600981905550565b5f80610a056112d9565b9050610a26818585610a17858961118c565b610a219190612403565b6112e0565b600191505092915050565b5f60115f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b60095481565b60105f9054906101000a900460ff1681565b600e5481565b610ab2610aac6112d9565b82611976565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b610b026118f8565b610b0b5f611b39565b565b610b156118f8565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167fe981735256b8051ed0a99762db90887fe1620e54eaa5eb28583f5b536064051282604051610baf9190611fc9565b60405180910390a25050565b610bc36118f8565b80600e8190555050565b610bd56118f8565b6001600b5f6101000a81548160ff0219169083151502179055507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610c58573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c7c919061244a565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d01573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d25919061244a565b6040518363ffffffff1660e01b8152600401610d42929190612475565b602060405180830381865afa158015610d5d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d81919061244a565b60065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550610dec60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611bfc565b565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16610e2e6112d9565b73ffffffffffffffffffffffffffffffffffffffff1614610e4d575f80fd5b5f610e5730610ab5565b9050610e853060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168361152e565b50565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b600f5481565b610ebe6118f8565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f4d576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f449061250c565b60405180910390fd5b610f578282611bfc565b5050565b606060048054610f6a906123a6565b80601f0160208091040260200160405190810160405280929190818152602001828054610f96906123a6565b8015610fe15780601f10610fb857610100808354040283529160200191610fe1565b820191905f5260205f20905b815481529060010190602001808311610fc457829003601f168201915b5050505050905090565b5f80610ff56112d9565b90505f611002828661118c565b905083811015611047576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161103e9061259a565b60405180910390fd5b61105482868684036112e0565b60019250505092915050565b5f8061106a6112d9565b905061107781858561152e565b600191505092915050565b5f47116110c4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110bb90612602565b60405180910390fd5b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166111046112d9565b73ffffffffffffffffffffffffffffffffffffffff1614611123575f80fd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f19350505050158015611166573d5f803e3d5ffd5b50565b6111716118f8565b5f600d81905550565b6111826118f8565b80600f8190555050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61123b6118f8565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036112a9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016112a090612690565b60405180910390fd5b6112b281611b39565b50565b6112bd6118f8565b8060105f6101000a81548160ff02191690831515021790555050565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff160361134e576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113459061271e565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036113bc576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113b3906127ac565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051611496919061218d565b60405180910390a3505050565b5f6114ae848461118c565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114611528578181101561151a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161151190612814565b60405180910390fd5b61152784848484036112e0565b5b50505050565b5f81036115455761154083835f611c9a565b6118f3565b61154d610e88565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156115bb575061158b610e88565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b80156115f357505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561162d575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b1561172157600b5f9054906101000a900460ff166117205760115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806116e0575060115f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b61171f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117169061287c565b60405180910390fd5b5b5b5f60115f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156117c0575060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f81156118e55760125f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615611847576118406064611832600a5486611f0690919063ffffffff16565b611f1b90919063ffffffff16565b90506118c2565b60125f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156118c1576118be60646118b060095486611f0690919063ffffffff16565b611f1b90919063ffffffff16565b90505b5b5f8111156118d6576118d5853083611c9a565b5b80836118e2919061289a565b92505b6118f0858585611c9a565b50505b505050565b6119006112d9565b73ffffffffffffffffffffffffffffffffffffffff1661191e610e88565b73ffffffffffffffffffffffffffffffffffffffff1614611974576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161196b90612917565b60405180910390fd5b565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036119e4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016119db906129a5565b60405180910390fd5b6119ef825f83611f30565b5f805f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611a72576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611a6990612a33565b60405180910390fd5b8181035f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611b21919061218d565b60405180910390a3611b34835f84611f35565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b8060125f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167f25a41403c141dc2ac11b3fc5fabb9235b83cfea44246a8befc5d3e34f612651760405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611d08576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611cff90612ac1565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611d76576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611d6d90612b4f565b60405180910390fd5b611d81838383611f30565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611e04576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611dfb90612bdd565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611eed919061218d565b60405180910390a3611f00848484611f35565b50505050565b5f8183611f139190612bfb565b905092915050565b5f8183611f289190612c69565b905092915050565b505050565b505050565b5f80fd5b5f819050919050565b611f5081611f3e565b8114611f5a575f80fd5b50565b5f81359050611f6b81611f47565b92915050565b5f8060408385031215611f8757611f86611f3a565b5b5f611f9485828601611f5d565b9250506020611fa585828601611f5d565b9150509250929050565b5f8115159050919050565b611fc381611faf565b82525050565b5f602082019050611fdc5f830184611fba565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61202482611fe2565b61202e8185611fec565b935061203e818560208601611ffc565b6120478161200a565b840191505092915050565b5f6020820190508181035f83015261206a818461201a565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f819050919050565b5f6120b46120af6120aa84612072565b612091565b612072565b9050919050565b5f6120c58261209a565b9050919050565b5f6120d6826120bb565b9050919050565b6120e6816120cc565b82525050565b5f6020820190506120ff5f8301846120dd565b92915050565b5f61210f82612072565b9050919050565b61211f81612105565b8114612129575f80fd5b50565b5f8135905061213a81612116565b92915050565b5f806040838503121561215657612155611f3a565b5b5f6121638582860161212c565b925050602061217485828601611f5d565b9150509250929050565b61218781611f3e565b82525050565b5f6020820190506121a05f83018461217e565b92915050565b5f805f606084860312156121bd576121bc611f3a565b5b5f6121ca8682870161212c565b93505060206121db8682870161212c565b92505060406121ec86828701611f5d565b9150509250925092565b5f60ff82169050919050565b61220b816121f6565b82525050565b5f6020820190506122245f830184612202565b92915050565b5f6020828403121561223f5761223e611f3a565b5b5f61224c8482850161212c565b91505092915050565b5f6020828403121561226a57612269611f3a565b5b5f61227784828501611f5d565b91505092915050565b61228981611faf565b8114612293575f80fd5b50565b5f813590506122a481612280565b92915050565b5f80604083850312156122c0576122bf611f3a565b5b5f6122cd8582860161212c565b92505060206122de85828601612296565b9150509250929050565b6122f181612105565b82525050565b5f60208201905061230a5f8301846122e8565b92915050565b5f806040838503121561232657612325611f3a565b5b5f6123338582860161212c565b92505060206123448582860161212c565b9150509250929050565b5f6020828403121561236357612362611f3a565b5b5f61237084828501612296565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806123bd57607f821691505b6020821081036123d0576123cf612379565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61240d82611f3e565b915061241883611f3e565b92508282019050808211156124305761242f6123d6565b5b92915050565b5f8151905061244481612116565b92915050565b5f6020828403121561245f5761245e611f3a565b5b5f61246c84828501612436565b91505092915050565b5f6040820190506124885f8301856122e8565b61249560208301846122e8565b9392505050565b7f54686520706169722063616e6e6f742062652072656d6f7665642066726f6d205f8201527f6d61726b65744d616b6572506169727321000000000000000000000000000000602082015250565b5f6124f6603183611fec565b91506125018261249c565b604082019050919050565b5f6020820190508181035f830152612523816124ea565b9050919050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f612584602583611fec565b915061258f8261252a565b604082019050919050565b5f6020820190508181035f8301526125b181612578565b9050919050565b7f546f6b656e3a206e6f2045544820696e2074686520636f6e74726163740000005f82015250565b5f6125ec601d83611fec565b91506125f7826125b8565b602082019050919050565b5f6020820190508181035f830152612619816125e0565b9050919050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f61267a602683611fec565b915061268582612620565b604082019050919050565b5f6020820190508181035f8301526126a78161266e565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612708602483611fec565b9150612713826126ae565b604082019050919050565b5f6020820190508181035f830152612735816126fc565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612796602283611fec565b91506127a18261273c565b604082019050919050565b5f6020820190508181035f8301526127c38161278a565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f6127fe601d83611fec565b9150612809826127ca565b602082019050919050565b5f6020820190508181035f83015261282b816127f2565b9050919050565b7f54726164696e67206973206e6f7420616374697665206e6f77210000000000005f82015250565b5f612866601a83611fec565b915061287182612832565b602082019050919050565b5f6020820190508181035f8301526128938161285a565b9050919050565b5f6128a482611f3e565b91506128af83611f3e565b92508282039050818111156128c7576128c66123d6565b5b92915050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f612901602083611fec565b915061290c826128cd565b602082019050919050565b5f6020820190508181035f83015261292e816128f5565b9050919050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f61298f602183611fec565b915061299a82612935565b604082019050919050565b5f6020820190508181035f8301526129bc81612983565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612a1d602283611fec565b9150612a28826129c3565b604082019050919050565b5f6020820190508181035f830152612a4a81612a11565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612aab602583611fec565b9150612ab682612a51565b604082019050919050565b5f6020820190508181035f830152612ad881612a9f565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612b39602383611fec565b9150612b4482612adf565b604082019050919050565b5f6020820190508181035f830152612b6681612b2d565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612bc7602683611fec565b9150612bd282612b6d565b604082019050919050565b5f6020820190508181035f830152612bf481612bbb565b9050919050565b5f612c0582611f3e565b9150612c1083611f3e565b9250828202612c1e81611f3e565b91508282048414831517612c3557612c346123d6565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612c7382611f3e565b9150612c7e83611f3e565b925082612c8e57612c8d612c3c565b5b82820490509291505056fea2646970667358221220022798f3de75ff3c8a58ca50b0ea85885f5bafcb2d7283c03ddf2c3c36fc5bb564736f6c634300081a0033
Deployed Bytecode
0x60806040526004361061021d575f3560e01c806370a082311161012257806395d89b41116100aa578063cafc4ca51161006e578063cafc4ca514610750578063dd62ed3e14610778578063f242ab41146107b4578063f2fde38b146107de578063fb78dffc1461080657610224565b806395d89b4114610682578063a457c2d7146106ac578063a9059cbb146106e8578063ba4de8d414610724578063ca672bd11461073a57610224565b80638a8c523c116100f15780638a8c523c146105da5780638d8f2adb146105f05780638da5cb5b146106065780638f3fa860146106305780639335bda31461065a57610224565b806370a0823114610538578063715018a614610574578063751fd1791461058a57806382399d53146105b257610224565b8063372500ab116101a55780633f4218e0116101745780633f4218e014610456578063470624021461049257806357d87f0d146104bc57806365fda1f7146104e65780636d1b229d1461051057610224565b8063372500ab146103c4578063378dc3dc146103da5780633884d63514610404578063395093511461041a57610224565b8063095ea7b3116101ec578063095ea7b3146102ce57806318160ddd1461030a57806323b872dd146103345780632b14ca5614610370578063313ce5671461039a57610224565b8063022723cc14610228578063064a59d01461025057806306fdde031461027a5780630758d924146102a457610224565b3661022457005b5f80fd5b348015610233575f80fd5b5061024e60048036038101906102499190611f71565b61082e565b005b34801561025b575f80fd5b5061026461089f565b6040516102719190611fc9565b60405180910390f35b348015610285575f80fd5b5061028e6108b1565b60405161029b9190612052565b60405180910390f35b3480156102af575f80fd5b506102b8610941565b6040516102c591906120ec565b60405180910390f35b3480156102d9575f80fd5b506102f460048036038101906102ef9190612140565b610965565b6040516103019190611fc9565b60405180910390f35b348015610315575f80fd5b5061031e610987565b60405161032b919061218d565b60405180910390f35b34801561033f575f80fd5b5061035a600480360381019061035591906121a6565b610990565b6040516103679190611fc9565b60405180910390f35b34801561037b575f80fd5b506103846109be565b604051610391919061218d565b60405180910390f35b3480156103a5575f80fd5b506103ae6109c4565b6040516103bb9190612211565b60405180910390f35b3480156103cf575f80fd5b506103d86109cc565b005b3480156103e5575f80fd5b506103ee6109e4565b6040516103fb919061218d565b60405180910390f35b34801561040f575f80fd5b506104186109ea565b005b348015610425575f80fd5b50610440600480360381019061043b9190612140565b6109fb565b60405161044d9190611fc9565b60405180910390f35b348015610461575f80fd5b5061047c6004803603810190610477919061222a565b610a31565b6040516104899190611fc9565b60405180910390f35b34801561049d575f80fd5b506104a6610a83565b6040516104b3919061218d565b60405180910390f35b3480156104c7575f80fd5b506104d0610a89565b6040516104dd9190611fc9565b60405180910390f35b3480156104f1575f80fd5b506104fa610a9b565b604051610507919061218d565b60405180910390f35b34801561051b575f80fd5b5061053660048036038101906105319190612255565b610aa1565b005b348015610543575f80fd5b5061055e6004803603810190610559919061222a565b610ab5565b60405161056b919061218d565b60405180910390f35b34801561057f575f80fd5b50610588610afa565b005b348015610595575f80fd5b506105b060048036038101906105ab91906122aa565b610b0d565b005b3480156105bd575f80fd5b506105d860048036038101906105d39190612255565b610bbb565b005b3480156105e5575f80fd5b506105ee610bcd565b005b3480156105fb575f80fd5b50610604610dee565b005b348015610611575f80fd5b5061061a610e88565b60405161062791906122f7565b60405180910390f35b34801561063b575f80fd5b50610644610eb0565b604051610651919061218d565b60405180910390f35b348015610665575f80fd5b50610680600480360381019061067b91906122aa565b610eb6565b005b34801561068d575f80fd5b50610696610f5b565b6040516106a39190612052565b60405180910390f35b3480156106b7575f80fd5b506106d260048036038101906106cd9190612140565b610feb565b6040516106df9190611fc9565b60405180910390f35b3480156106f3575f80fd5b5061070e60048036038101906107099190612140565b611060565b60405161071b9190611fc9565b60405180910390f35b34801561072f575f80fd5b50610738611082565b005b348015610745575f80fd5b5061074e611169565b005b34801561075b575f80fd5b5061077660048036038101906107719190612255565b61117a565b005b348015610783575f80fd5b5061079e60048036038101906107999190612310565b61118c565b6040516107ab919061218d565b60405180910390f35b3480156107bf575f80fd5b506107c861120e565b6040516107d591906122f7565b60405180910390f35b3480156107e9575f80fd5b5061080460048036038101906107ff919061222a565b611233565b005b348015610811575f80fd5b5061082c6004803603810190610827919061234e565b6112b5565b005b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661086e6112d9565b73ffffffffffffffffffffffffffffffffffffffff161461088d575f80fd5b80600a81905550816009819055505050565b600b5f9054906101000a900460ff1681565b6060600380546108c0906123a6565b80601f01602080910402602001604051908101604052809291908181526020018280546108ec906123a6565b80156109375780601f1061090e57610100808354040283529160200191610937565b820191905f5260205f20905b81548152906001019060200180831161091a57829003601f168201915b5050505050905090565b7f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d81565b5f8061096f6112d9565b905061097c8185856112e0565b600191505092915050565b5f600254905090565b5f8061099a6112d9565b90506109a78582856114a3565b6109b285858561152e565b60019150509392505050565b600a5481565b5f6009905090565b6109d46118f8565b5f600c819055505f600981905550565b60085481565b6109f26118f8565b5f600981905550565b5f80610a056112d9565b9050610a26818585610a17858961118c565b610a219190612403565b6112e0565b600191505092915050565b5f60115f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b60095481565b60105f9054906101000a900460ff1681565b600e5481565b610ab2610aac6112d9565b82611976565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b610b026118f8565b610b0b5f611b39565b565b610b156118f8565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167fe981735256b8051ed0a99762db90887fe1620e54eaa5eb28583f5b536064051282604051610baf9190611fc9565b60405180910390a25050565b610bc36118f8565b80600e8190555050565b610bd56118f8565b6001600b5f6101000a81548160ff0219169083151502179055507f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610c58573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c7c919061244a565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d01573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d25919061244a565b6040518363ffffffff1660e01b8152600401610d42929190612475565b602060405180830381865afa158015610d5d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d81919061244a565b60065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550610dec60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611bfc565b565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16610e2e6112d9565b73ffffffffffffffffffffffffffffffffffffffff1614610e4d575f80fd5b5f610e5730610ab5565b9050610e853060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168361152e565b50565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b600f5481565b610ebe6118f8565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f4d576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f449061250c565b60405180910390fd5b610f578282611bfc565b5050565b606060048054610f6a906123a6565b80601f0160208091040260200160405190810160405280929190818152602001828054610f96906123a6565b8015610fe15780601f10610fb857610100808354040283529160200191610fe1565b820191905f5260205f20905b815481529060010190602001808311610fc457829003601f168201915b5050505050905090565b5f80610ff56112d9565b90505f611002828661118c565b905083811015611047576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161103e9061259a565b60405180910390fd5b61105482868684036112e0565b60019250505092915050565b5f8061106a6112d9565b905061107781858561152e565b600191505092915050565b5f47116110c4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110bb90612602565b60405180910390fd5b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166111046112d9565b73ffffffffffffffffffffffffffffffffffffffff1614611123575f80fd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f19350505050158015611166573d5f803e3d5ffd5b50565b6111716118f8565b5f600d81905550565b6111826118f8565b80600f8190555050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61123b6118f8565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036112a9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016112a090612690565b60405180910390fd5b6112b281611b39565b50565b6112bd6118f8565b8060105f6101000a81548160ff02191690831515021790555050565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff160361134e576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113459061271e565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036113bc576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113b3906127ac565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051611496919061218d565b60405180910390a3505050565b5f6114ae848461118c565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114611528578181101561151a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161151190612814565b60405180910390fd5b61152784848484036112e0565b5b50505050565b5f81036115455761154083835f611c9a565b6118f3565b61154d610e88565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156115bb575061158b610e88565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b80156115f357505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561162d575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b1561172157600b5f9054906101000a900460ff166117205760115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806116e0575060115f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b61171f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117169061287c565b60405180910390fd5b5b5b5f60115f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156117c0575060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f81156118e55760125f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615611847576118406064611832600a5486611f0690919063ffffffff16565b611f1b90919063ffffffff16565b90506118c2565b60125f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156118c1576118be60646118b060095486611f0690919063ffffffff16565b611f1b90919063ffffffff16565b90505b5b5f8111156118d6576118d5853083611c9a565b5b80836118e2919061289a565b92505b6118f0858585611c9a565b50505b505050565b6119006112d9565b73ffffffffffffffffffffffffffffffffffffffff1661191e610e88565b73ffffffffffffffffffffffffffffffffffffffff1614611974576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161196b90612917565b60405180910390fd5b565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036119e4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016119db906129a5565b60405180910390fd5b6119ef825f83611f30565b5f805f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611a72576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611a6990612a33565b60405180910390fd5b8181035f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611b21919061218d565b60405180910390a3611b34835f84611f35565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b8060125f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167f25a41403c141dc2ac11b3fc5fabb9235b83cfea44246a8befc5d3e34f612651760405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611d08576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611cff90612ac1565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611d76576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611d6d90612b4f565b60405180910390fd5b611d81838383611f30565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611e04576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611dfb90612bdd565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611eed919061218d565b60405180910390a3611f00848484611f35565b50505050565b5f8183611f139190612bfb565b905092915050565b5f8183611f289190612c69565b905092915050565b505050565b505050565b5f80fd5b5f819050919050565b611f5081611f3e565b8114611f5a575f80fd5b50565b5f81359050611f6b81611f47565b92915050565b5f8060408385031215611f8757611f86611f3a565b5b5f611f9485828601611f5d565b9250506020611fa585828601611f5d565b9150509250929050565b5f8115159050919050565b611fc381611faf565b82525050565b5f602082019050611fdc5f830184611fba565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61202482611fe2565b61202e8185611fec565b935061203e818560208601611ffc565b6120478161200a565b840191505092915050565b5f6020820190508181035f83015261206a818461201a565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f819050919050565b5f6120b46120af6120aa84612072565b612091565b612072565b9050919050565b5f6120c58261209a565b9050919050565b5f6120d6826120bb565b9050919050565b6120e6816120cc565b82525050565b5f6020820190506120ff5f8301846120dd565b92915050565b5f61210f82612072565b9050919050565b61211f81612105565b8114612129575f80fd5b50565b5f8135905061213a81612116565b92915050565b5f806040838503121561215657612155611f3a565b5b5f6121638582860161212c565b925050602061217485828601611f5d565b9150509250929050565b61218781611f3e565b82525050565b5f6020820190506121a05f83018461217e565b92915050565b5f805f606084860312156121bd576121bc611f3a565b5b5f6121ca8682870161212c565b93505060206121db8682870161212c565b92505060406121ec86828701611f5d565b9150509250925092565b5f60ff82169050919050565b61220b816121f6565b82525050565b5f6020820190506122245f830184612202565b92915050565b5f6020828403121561223f5761223e611f3a565b5b5f61224c8482850161212c565b91505092915050565b5f6020828403121561226a57612269611f3a565b5b5f61227784828501611f5d565b91505092915050565b61228981611faf565b8114612293575f80fd5b50565b5f813590506122a481612280565b92915050565b5f80604083850312156122c0576122bf611f3a565b5b5f6122cd8582860161212c565b92505060206122de85828601612296565b9150509250929050565b6122f181612105565b82525050565b5f60208201905061230a5f8301846122e8565b92915050565b5f806040838503121561232657612325611f3a565b5b5f6123338582860161212c565b92505060206123448582860161212c565b9150509250929050565b5f6020828403121561236357612362611f3a565b5b5f61237084828501612296565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806123bd57607f821691505b6020821081036123d0576123cf612379565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61240d82611f3e565b915061241883611f3e565b92508282019050808211156124305761242f6123d6565b5b92915050565b5f8151905061244481612116565b92915050565b5f6020828403121561245f5761245e611f3a565b5b5f61246c84828501612436565b91505092915050565b5f6040820190506124885f8301856122e8565b61249560208301846122e8565b9392505050565b7f54686520706169722063616e6e6f742062652072656d6f7665642066726f6d205f8201527f6d61726b65744d616b6572506169727321000000000000000000000000000000602082015250565b5f6124f6603183611fec565b91506125018261249c565b604082019050919050565b5f6020820190508181035f830152612523816124ea565b9050919050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f612584602583611fec565b915061258f8261252a565b604082019050919050565b5f6020820190508181035f8301526125b181612578565b9050919050565b7f546f6b656e3a206e6f2045544820696e2074686520636f6e74726163740000005f82015250565b5f6125ec601d83611fec565b91506125f7826125b8565b602082019050919050565b5f6020820190508181035f830152612619816125e0565b9050919050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f61267a602683611fec565b915061268582612620565b604082019050919050565b5f6020820190508181035f8301526126a78161266e565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612708602483611fec565b9150612713826126ae565b604082019050919050565b5f6020820190508181035f830152612735816126fc565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612796602283611fec565b91506127a18261273c565b604082019050919050565b5f6020820190508181035f8301526127c38161278a565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f6127fe601d83611fec565b9150612809826127ca565b602082019050919050565b5f6020820190508181035f83015261282b816127f2565b9050919050565b7f54726164696e67206973206e6f7420616374697665206e6f77210000000000005f82015250565b5f612866601a83611fec565b915061287182612832565b602082019050919050565b5f6020820190508181035f8301526128938161285a565b9050919050565b5f6128a482611f3e565b91506128af83611f3e565b92508282039050818111156128c7576128c66123d6565b5b92915050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f612901602083611fec565b915061290c826128cd565b602082019050919050565b5f6020820190508181035f83015261292e816128f5565b9050919050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f61298f602183611fec565b915061299a82612935565b604082019050919050565b5f6020820190508181035f8301526129bc81612983565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612a1d602283611fec565b9150612a28826129c3565b604082019050919050565b5f6020820190508181035f830152612a4a81612a11565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612aab602583611fec565b9150612ab682612a51565b604082019050919050565b5f6020820190508181035f830152612ad881612a9f565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612b39602383611fec565b9150612b4482612adf565b604082019050919050565b5f6020820190508181035f830152612b6681612b2d565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612bc7602683611fec565b9150612bd282612b6d565b604082019050919050565b5f6020820190508181035f830152612bf481612bbb565b9050919050565b5f612c0582611f3e565b9150612c1083611f3e565b9250828202612c1e81611f3e565b91508282048414831517612c3557612c346123d6565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612c7382611f3e565b9150612c7e83611f3e565b925082612c8e57612c8d612c3c565b5b82820490509291505056fea2646970667358221220022798f3de75ff3c8a58ca50b0ea85885f5bafcb2d7283c03ddf2c3c36fc5bb564736f6c634300081a0033
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.