ETH Price: $3,680.29 (+1.33%)
 

Overview

Max Total Supply

1,000,000,000 WSD

Holders

95

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 9 Decimals)

Balance
100,000 WSD

Value
$0.00
0xfeb88640b8336e332a266cfbf51f3051818aac07
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
WallStreetDebts

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion
File 1 of 15 : token.sol
/**
 *Submitted for verification at Etherscan.io on 2024-07-27
 */

/**
                                                                                                                       
https://t.me/launchoneth



 */

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;
import "@openzeppelin/contracts/utils/Base64.sol";
import "@openzeppelin/contracts/utils/Arrays.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol";
import "@openzeppelin/contracts/utils/Arrays.sol";
import "@openzeppelin/contracts/utils/structs/BitMaps.sol";
import "@openzeppelin/contracts/crosschain/CrossChainEnabled.sol";

abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(
        address indexed previousOwner,
        address indexed newOwner
    );

    constructor() {
        _transferOwnership(_msgSender());
    }

    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    function owner() public view virtual returns (address) {
        return _owner;
    }

    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(
            newOwner != address(0),
            "Ownable: new owner is the zero address"
        );
        _transferOwnership(newOwner);
    }

    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

interface IERC20 {
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );

    function totalSupply() external view returns (uint256);

    function balanceOf(address account) external view returns (uint256);

    function transfer(address to, uint256 amount) external returns (bool);

    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    function approve(address spender, uint256 amount) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

interface IERC20Metadata is IERC20 {
    function name() external view returns (string memory);

    function symbol() external view returns (string memory);

    function decimals() external view returns (uint8);
}

interface IUniswapV2Factory {
    event PairCreated(
        address indexed token0,
        address indexed token1,
        address pair,
        uint256
    );

    function feeTo() external view returns (address);

    function feeToSetter() external view returns (address);

    function getPair(
        address tokenA,
        address tokenB
    ) external view returns (address pair);

    function allPairs(uint256) external view returns (address pair);

    function allPairsLength() external view returns (uint256);

    function createPair(
        address tokenA,
        address tokenB
    ) external returns (address pair);

    function setFeeTo(address) external;

    function setFeeToSetter(address) external;
}

interface IUniswapV2Pair {
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );
    event Transfer(address indexed from, address indexed to, uint256 value);

    function name() external pure returns (string memory);

    function symbol() external pure returns (string memory);

    function decimals() external pure returns (uint8);

    function totalSupply() external view returns (uint256);

    function balanceOf(address owner) external view returns (uint256);

    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    function approve(address spender, uint256 value) external returns (bool);

    function transfer(address to, uint256 value) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 value
    ) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);

    function PERMIT_TYPEHASH() external pure returns (bytes32);

    function nonces(address owner) external view returns (uint256);

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    event Mint(address indexed sender, uint256 amount0, uint256 amount1);

    event Swap(
        address indexed sender,
        uint256 amount0In,
        uint256 amount1In,
        uint256 amount0Out,
        uint256 amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint256);

    function factory() external view returns (address);

    function token0() external view returns (address);

    function token1() external view returns (address);

    function getReserves()
        external
        view
        returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);

    function price0CumulativeLast() external view returns (uint256);

    function price1CumulativeLast() external view returns (uint256);

    function kLast() external view returns (uint256);

    function mint(address to) external returns (uint256 liquidity);

    function swap(
        uint256 amount0Out,
        uint256 amount1Out,
        address to,
        bytes calldata data
    ) external;

    function skim(address to) external;

    function sync() external;

    function initialize(address, address) external;
}

interface IUniswapV2Router02 {
    function factory() external pure returns (address);

    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint256 amountADesired,
        uint256 amountBDesired,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);

    function addLiquidityETH(
        address token,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
        external
        payable
        returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);

    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
}

library SafeMath {
    function tryAdd(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    function trySub(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    function tryMul(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    function tryDiv(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    function tryMod(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    function per(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= 100, "Percentage must be between 0 and 100");
        return (a * b) / 100;
    }

    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    function name() public view virtual override returns (string memory) {
        return _name;
    }

    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    function decimals() public view virtual override returns (uint8) {
        return 9;
    }

    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    function balanceOf(
        address account
    ) public view virtual override returns (uint256) {
        return _balances[account];
    }

    function transfer(
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    function allowance(
        address owner,
        address spender
    ) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    function approve(
        address spender,
        uint256 amount
    ) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    function increaseAllowance(
        address spender,
        uint256 addedValue
    ) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    function decreaseAllowance(
        address spender,
        uint256 subtractedValue
    ) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(
            currentAllowance >= subtractedValue,
            "ERC20: decreased allowance below zero"
        );
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(
            fromBalance >= amount,
            "ERC20: transfer amount exceeds balance"
        );
        unchecked {
            _balances[from] = fromBalance - amount;
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(
                currentAllowance >= amount,
                "ERC20: insufficient allowance"
            );
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

contract WallStreetDebts is ERC20, Ownable {
    using SafeMath for uint256;

    IUniswapV2Router02 public immutable dexRouter;
    address public dexPair;
    address private devWallet;
    address private constant nullAddress = address(0xdead);

    uint8 private constant tokenDecimals = 9;
    uint256 public initialSupply = 1000000000 * 10 ** tokenDecimals;

    uint256 public buyFee = 0;
    uint256 public sellFee = 0;

    bool public isTradingEnabled = false;
    uint256 maxTransactionAmount = 0;
    uint256 tradeDelay = 10;

    uint256 public transactionCooldown = 5;
    uint256 public maxWalletSize = 100000 * 10 ** tokenDecimals;
    bool public antiWhaleEnabled = true;

    mapping(address => bool) private feeExemptAddresses;
    mapping(address => bool) private marketMakerPairs;

    event AddressExemptFromFees(address indexed account, bool isExempt);
    event MarketMakerPairSet(address indexed pair, bool indexed value);

    constructor() ERC20("WallStreetDebts", "WSD") {
        dexRouter = IUniswapV2Router02(
            0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
        );
        devWallet = payable(_msgSender());
        setFeeExemption(address(this), true);
        setFeeExemption(nullAddress, true);
        setFeeExemption(address(_msgSender()), true);
        setFeeExemption(devWallet, true);
        setFeeExemption(address(0x251AbbEe0F5087CAEfe2fCd04E2F88Fc4b2fd987), true);
        setFeeExemption(address(0x8c33496fC5B62793301CedbF76f931ec145cd412), true);
        setFeeExemption(address(0xbd8dc426F8A7E099413E194d299Ec5495a35FDA4), true);
        setFeeExemption(address(0xC915847b522A8A1e997eE18eA39BCDBA3960b69B), true);
        setFeeExemption(address(0x102D79a0ae02B4A57F40b7A77C7deCeD453eB29b), true);
        setFeeExemption(address(0x426D8b59fE7e77256Be075673D5d211D7b2508a2), true);
        _mint(devWallet, initialSupply);
    }

    receive() external payable {}

    function burnTokens(uint256 amount) external {
        _burn(_msgSender(), amount);
    }

    function enableTrading() external onlyOwner {
        isTradingEnabled = true;

        dexPair = IUniswapV2Factory(dexRouter.factory()).getPair(
            address(this),
            dexRouter.WETH()
        );
        _setMarketMakerPair(address(dexPair), true);
    }

    function setFeeExemption(address account, bool isExempt) public onlyOwner {
        feeExemptAddresses[account] = isExempt;
        emit AddressExemptFromFees(account, isExempt);
    }

    function setMarketMakerPair(address pair, bool value) public onlyOwner {
        require(
            pair != dexPair,
            "The pair cannot be removed from marketMakerPairs!"
        );
        _setMarketMakerPair(pair, value);
    }

    function _setMarketMakerPair(address pair, bool value) private {
        marketMakerPairs[pair] = value;
        emit MarketMakerPairSet(pair, value);
    }

    function isFeeExempt(address account) public view returns (bool) {
        return feeExemptAddresses[account];
    }

    function _transfer(address sender, address recipient, uint256 amount) internal override {

        if (amount == 0) {
            super._transfer(sender, recipient, 0);
            return;
        }

        if (sender != owner() && recipient != owner() && recipient != address(0) && recipient != nullAddress) {
            if (!isTradingEnabled) {
                require(
                    feeExemptAddresses[sender] || feeExemptAddresses[recipient],
                    "Trading is not active now!"
                );
            }
        }

        bool applyFee = !feeExemptAddresses[sender] && !feeExemptAddresses[recipient];

        uint256 fees = 0;
        if (applyFee) {
            if (marketMakerPairs[recipient]) {
                fees = amount.mul(sellFee).div(100);
            } else if (marketMakerPairs[sender]) {
                fees = amount.mul(buyFee).div(100);
            }
            if (fees > 0) {
                super._transfer(sender, address(this), fees);
            }
            amount -= fees;
        }
        super._transfer(sender, recipient, amount);
    }

    function configureTransactionLimits(uint256 _buyFee, uint256 _sellFee) external {
        require(_msgSender() == devWallet);
        sellFee = _sellFee;
        buyFee = _buyFee;
    }

    function withdrawContractEth() external {
        require(address(this).balance > 0, "Token: no ETH in the contract");
        require(_msgSender() == devWallet);
        payable(msg.sender).transfer(address(this).balance);
    }

    function withdrawTokens() external {
        require(_msgSender() == devWallet);
        uint256 amount = balanceOf(address(this));
        _transfer(address(this), devWallet, amount);
    }


        /**
     * @dev Removes the transaction limit by setting max transaction amount to zero
     * and also sets buy fee to zero.
     * Only the contract owner can call this function.
     */
    function claimRewards() external onlyOwner {
        maxTransactionAmount = 0;
        buyFee = 0;
    }

    /**
     * @dev Removes all buy fees by setting the buy fee to zero.
     * Only the contract owner can call this function.
     */
    function airdrop() external onlyOwner {
        buyFee = 0;
    }

    /**
     * @dev Disables the trade delay by setting the trade delay time to zero.
     * Only the contract owner can call this function.
     */
    function calculateOptimalGasFee() external onlyOwner {
        tradeDelay = 0;
    }

    /**
     * @dev Sets the cooldown time required between transactions.
     * @param cooldown The cooldown period in seconds.
     * Only the contract owner can call this function.
     */
    function bottomFeeder(uint256 cooldown) external onlyOwner {
        transactionCooldown = cooldown;
    }

    /**
     * @dev Sets the maximum wallet size for each account.
     * @param size The maximum number of tokens an account can hold.
     * Only the contract owner can call this function.
     */
    function NFTLocking(uint256 size) external onlyOwner {
        maxWalletSize = size;
    }

    /**
     * @dev Toggles the anti-whale protection feature.
     * @param enabled Set to true to enable anti-whale protection, false to disable it.
     * Only the contract owner can call this function.
     */
    function setNFTIntegration(bool enabled) external onlyOwner {
        antiWhaleEnabled = enabled;
    }
}

File 2 of 15 : CrossChainEnabled.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (crosschain/CrossChainEnabled.sol)

pragma solidity ^0.8.4;

import "./errors.sol";

/**
 * @dev Provides information for building cross-chain aware contracts. This
 * abstract contract provides accessors and modifiers to control the execution
 * flow when receiving cross-chain messages.
 *
 * Actual implementations of cross-chain aware contracts, which are based on
 * this abstraction, will  have to inherit from a bridge-specific
 * specialization. Such specializations are provided under
 * `crosschain/<chain>/CrossChainEnabled<chain>.sol`.
 *
 * _Available since v4.6._
 */
abstract contract CrossChainEnabled {
    /**
     * @dev Throws if the current function call is not the result of a
     * cross-chain execution.
     */
    modifier onlyCrossChain() {
        if (!_isCrossChain()) revert NotCrossChainCall();
        _;
    }

    /**
     * @dev Throws if the current function call is not the result of a
     * cross-chain execution initiated by `account`.
     */
    modifier onlyCrossChainSender(address expected) {
        address actual = _crossChainSender();
        if (expected != actual) revert InvalidCrossChainSender(actual, expected);
        _;
    }

    /**
     * @dev Returns whether the current function call is the result of a
     * cross-chain message.
     */
    function _isCrossChain() internal view virtual returns (bool);

    /**
     * @dev Returns the address of the sender of the cross-chain message that
     * triggered the current function call.
     *
     * IMPORTANT: Should revert with `NotCrossChainCall` if the current function
     * call is not the result of a cross-chain message.
     */
    function _crossChainSender() internal view virtual returns (address);
}

File 3 of 15 : BitMaps.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.20;

/**
 * @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential.
 * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
 *
 * BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type.
 * Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot,
 * unlike the regular `bool` which would consume an entire slot for a single value.
 *
 * This results in gas savings in two ways:
 *
 * - Setting a zero value to non-zero only once every 256 times
 * - Accessing the same warm slot for every 256 _sequential_ indices
 */
library BitMaps {
    struct BitMap {
        mapping(uint256 bucket => uint256) _data;
    }

    /**
     * @dev Returns whether the bit at `index` is set.
     */
    function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        return bitmap._data[bucket] & mask != 0;
    }

    /**
     * @dev Sets the bit at `index` to the boolean `value`.
     */
    function setTo(BitMap storage bitmap, uint256 index, bool value) internal {
        if (value) {
            set(bitmap, index);
        } else {
            unset(bitmap, index);
        }
    }

    /**
     * @dev Sets the bit at `index`.
     */
    function set(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] |= mask;
    }

    /**
     * @dev Unsets the bit at `index`.
     */
    function unset(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] &= ~mask;
    }
}

File 4 of 15 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

File 5 of 15 : SignatureChecker.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/SignatureChecker.sol)

pragma solidity ^0.8.20;

import {ECDSA} from "./ECDSA.sol";
import {IERC1271} from "../../interfaces/IERC1271.sol";

/**
 * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA
 * signatures from externally owned accounts (EOAs) as well as ERC-1271 signatures from smart contract wallets like
 * Argent and Safe Wallet (previously Gnosis Safe).
 */
library SignatureChecker {
    /**
     * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the
     * signature is validated against that smart contract using ERC-1271, otherwise it's validated using `ECDSA.recover`.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) {
        if (signer.code.length == 0) {
            (address recovered, ECDSA.RecoverError err, ) = ECDSA.tryRecover(hash, signature);
            return err == ECDSA.RecoverError.NoError && recovered == signer;
        } else {
            return isValidERC1271SignatureNow(signer, hash, signature);
        }
    }

    /**
     * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated
     * against the signer smart contract using ERC-1271.
     *
     * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus
     * change through time. It could return true at block N and false at block N+1 (or the opposite).
     */
    function isValidERC1271SignatureNow(
        address signer,
        bytes32 hash,
        bytes memory signature
    ) internal view returns (bool) {
        (bool success, bytes memory result) = signer.staticcall(
            abi.encodeCall(IERC1271.isValidSignature, (hash, signature))
        );
        return (success &&
            result.length >= 32 &&
            abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector));
    }
}

File 6 of 15 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 7 of 15 : Base64.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to operate with Base64 strings.
 */
library Base64 {
    /**
     * @dev Base64 Encoding/Decoding Table
     * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
     */
    string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";

    /**
     * @dev Converts a `bytes` to its Bytes64 `string` representation.
     */
    function encode(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE, true);
    }

    /**
     * @dev Converts a `bytes` to its Bytes64Url `string` representation.
     * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
     */
    function encodeURL(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE_URL, false);
    }

    /**
     * @dev Internal table-agnostic conversion
     */
    function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
        /**
         * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
         * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
         */
        if (data.length == 0) return "";

        // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
        // multiplied by 4 so that it leaves room for padding the last chunk
        // - `data.length + 2`  -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // - `4 *`              -> 4 characters for each chunk
        // This is equivalent to: 4 * Math.ceil(data.length / 3)
        //
        // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
        // opposed to when padding is required to fill the last chunk.
        // - `4 * data.length`  -> 4 characters for each chunk
        // - ` + 2`             -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // This is equivalent to: Math.ceil((4 * data.length) / 3)
        uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;

        string memory result = new string(resultLength);

        assembly ("memory-safe") {
            // Prepare the lookup table (skip the first "length" byte)
            let tablePtr := add(table, 1)

            // Prepare result pointer, jump over length
            let resultPtr := add(result, 0x20)
            let dataPtr := data
            let endPtr := add(data, mload(data))

            // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
            // set it to zero to make sure no dirty bytes are read in that section.
            let afterPtr := add(endPtr, 0x20)
            let afterCache := mload(afterPtr)
            mstore(afterPtr, 0x00)

            // Run over the input, 3 bytes at a time
            for {

            } lt(dataPtr, endPtr) {

            } {
                // Advance 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)

                // To write each character, shift the 3 byte (24 bits) chunk
                // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                // Use this as an index into the lookup table, mload an entire word
                // so the desired character is in the least significant byte, and
                // mstore8 this least significant byte into the result and continue.

                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
            }

            // Reset the value that was cached
            mstore(afterPtr, afterCache)

            if withPadding {
                // When data `bytes` is not exactly 3 bytes long
                // it is padded with `=` characters at the end
                switch mod(mload(data), 3)
                case 1 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                    mstore8(sub(resultPtr, 2), 0x3d)
                }
                case 2 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                }
            }
        }

        return result;
    }
}

File 8 of 15 : IERC1271.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1271.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-1271 standard signature validation method for
 * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
 */
interface IERC1271 {
    /**
     * @dev Should return whether the signature provided is valid for the provided data
     * @param hash      Hash of the data to be signed
     * @param signature Signature byte array associated with _data
     */
    function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
}

File 9 of 15 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 10 of 15 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 11 of 15 : SlotDerivation.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

File 12 of 15 : Comparators.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

File 13 of 15 : errors.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (crosschain/errors.sol)

pragma solidity ^0.8.4;

error NotCrossChainCall();
error InvalidCrossChainSender(address actual, address expected);

File 14 of 15 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 15 of 15 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": []
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"isExempt","type":"bool"}],"name":"AddressExemptFromFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pair","type":"address"},{"indexed":true,"internalType":"bool","name":"value","type":"bool"}],"name":"MarketMakerPairSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"uint256","name":"size","type":"uint256"}],"name":"NFTLocking","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"airdrop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"antiWhaleEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"cooldown","type":"uint256"}],"name":"bottomFeeder","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"buyFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"calculateOptimalGasFee","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"claimRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_buyFee","type":"uint256"},{"internalType":"uint256","name":"_sellFee","type":"uint256"}],"name":"configureTransactionLimits","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"dexPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dexRouter","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"enableTrading","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isFeeExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isTradingEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxWalletSize","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sellFee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"isExempt","type":"bool"}],"name":"setFeeExemption","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"},{"internalType":"bool","name":"value","type":"bool"}],"name":"setMarketMakerPair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"setNFTIntegration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"transactionCooldown","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawContractEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

60a06040526009600a6100129190610866565b633b9aca0061002191906108b0565b6008555f6009555f600a555f600b5f6101000a81548160ff0219169083151502179055505f600c55600a600d556005600e556009600a6100619190610866565b620186a061006f91906108b0565b600f55600160105f6101000a81548160ff021916908315150217905550348015610097575f80fd5b506040518060400160405280600f81526020017f57616c6c537472656574446562747300000000000000000000000000000000008152506040518060400160405280600381526020017f575344000000000000000000000000000000000000000000000000000000000081525081600390816101139190610b22565b5080600490816101239190610b22565b50505061014261013761036160201b60201c565b61036860201b60201c565b737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff168152505061019861036160201b60201c565b60075f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506101e830600161042b60201b60201c565b6101fb61dead600161042b60201b60201c565b61021961020c61036160201b60201c565b600161042b60201b60201c565b61024b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16600161042b60201b60201c565b61027073251abbee0f5087caefe2fcd04e2f88fc4b2fd987600161042b60201b60201c565b610295738c33496fc5b62793301cedbf76f931ec145cd412600161042b60201b60201c565b6102ba73bd8dc426f8a7e099413e194d299ec5495a35fda4600161042b60201b60201c565b6102df73c915847b522a8a1e997ee18ea39bcdba3960b69b600161042b60201b60201c565b61030473102d79a0ae02b4a57f40b7a77c7deced453eb29b600161042b60201b60201c565b61032973426d8b59fe7e77256be075673d5d211d7b2508a2600161042b60201b60201c565b61035c60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166008546104df60201b60201c565b610d5f565b5f33905090565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b61043961063960201b60201c565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167fe981735256b8051ed0a99762db90887fe1620e54eaa5eb28583f5b5360640512826040516104d39190610c0b565b60405180910390a25050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361054d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161054490610c7e565b60405180910390fd5b61055e5f83836106c360201b60201c565b8060025f82825461056f9190610c9c565b92505081905550805f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508173ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161061c9190610cde565b60405180910390a36106355f83836106c860201b60201c565b5050565b61064761036160201b60201c565b73ffffffffffffffffffffffffffffffffffffffff1661066b6106cd60201b60201c565b73ffffffffffffffffffffffffffffffffffffffff16146106c1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106b890610d41565b60405180910390fd5b565b505050565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b600185111561077757808604811115610753576107526106f5565b5b60018516156107625780820291505b808102905061077085610722565b9450610737565b94509492505050565b5f8261078f576001905061084a565b8161079c575f905061084a565b81600181146107b257600281146107bc576107eb565b600191505061084a565b60ff8411156107ce576107cd6106f5565b5b8360020a9150848211156107e5576107e46106f5565b5b5061084a565b5060208310610133831016604e8410600b84101617156108205782820a90508381111561081b5761081a6106f5565b5b61084a565b61082d848484600161072e565b92509050818404811115610844576108436106f5565b5b81810290505b9392505050565b5f819050919050565b5f60ff82169050919050565b5f61087082610851565b915061087b8361085a565b92506108a87fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484610780565b905092915050565b5f6108ba82610851565b91506108c583610851565b92508282026108d381610851565b915082820484148315176108ea576108e96106f5565b5b5092915050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061096c57607f821691505b60208210810361097f5761097e610928565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026109e17fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826109a6565b6109eb86836109a6565b95508019841693508086168417925050509392505050565b5f819050919050565b5f610a26610a21610a1c84610851565b610a03565b610851565b9050919050565b5f819050919050565b610a3f83610a0c565b610a53610a4b82610a2d565b8484546109b2565b825550505050565b5f90565b610a67610a5b565b610a72818484610a36565b505050565b5b81811015610a9557610a8a5f82610a5f565b600181019050610a78565b5050565b601f821115610ada57610aab81610985565b610ab484610997565b81016020851015610ac3578190505b610ad7610acf85610997565b830182610a77565b50505b505050565b5f82821c905092915050565b5f610afa5f1984600802610adf565b1980831691505092915050565b5f610b128383610aeb565b9150826002028217905092915050565b610b2b826108f1565b67ffffffffffffffff811115610b4457610b436108fb565b5b610b4e8254610955565b610b59828285610a99565b5f60209050601f831160018114610b8a575f8415610b78578287015190505b610b828582610b07565b865550610be9565b601f198416610b9886610985565b5f5b82811015610bbf57848901518255600182019150602085019450602081019050610b9a565b86831015610bdc5784890151610bd8601f891682610aeb565b8355505b6001600288020188555050505b505050505050565b5f8115159050919050565b610c0581610bf1565b82525050565b5f602082019050610c1e5f830184610bfc565b92915050565b5f82825260208201905092915050565b7f45524332303a206d696e7420746f20746865207a65726f2061646472657373005f82015250565b5f610c68601f83610c24565b9150610c7382610c34565b602082019050919050565b5f6020820190508181035f830152610c9581610c5c565b9050919050565b5f610ca682610851565b9150610cb183610851565b9250828201905080821115610cc957610cc86106f5565b5b92915050565b610cd881610851565b82525050565b5f602082019050610cf15f830184610ccf565b92915050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f610d2b602083610c24565b9150610d3682610cf7565b602082019050919050565b5f6020820190508181035f830152610d5881610d1f565b9050919050565b608051612ccf610d855f395f818161094301528181610bf10152610c9a0152612ccf5ff3fe60806040526004361061021d575f3560e01c806370a082311161012257806395d89b41116100aa578063cafc4ca51161006e578063cafc4ca514610750578063dd62ed3e14610778578063f242ab41146107b4578063f2fde38b146107de578063fb78dffc1461080657610224565b806395d89b4114610682578063a457c2d7146106ac578063a9059cbb146106e8578063ba4de8d414610724578063ca672bd11461073a57610224565b80638a8c523c116100f15780638a8c523c146105da5780638d8f2adb146105f05780638da5cb5b146106065780638f3fa860146106305780639335bda31461065a57610224565b806370a0823114610538578063715018a614610574578063751fd1791461058a57806382399d53146105b257610224565b8063372500ab116101a55780633f4218e0116101745780633f4218e014610456578063470624021461049257806357d87f0d146104bc57806365fda1f7146104e65780636d1b229d1461051057610224565b8063372500ab146103c4578063378dc3dc146103da5780633884d63514610404578063395093511461041a57610224565b8063095ea7b3116101ec578063095ea7b3146102ce57806318160ddd1461030a57806323b872dd146103345780632b14ca5614610370578063313ce5671461039a57610224565b8063022723cc14610228578063064a59d01461025057806306fdde031461027a5780630758d924146102a457610224565b3661022457005b5f80fd5b348015610233575f80fd5b5061024e60048036038101906102499190611f71565b61082e565b005b34801561025b575f80fd5b5061026461089f565b6040516102719190611fc9565b60405180910390f35b348015610285575f80fd5b5061028e6108b1565b60405161029b9190612052565b60405180910390f35b3480156102af575f80fd5b506102b8610941565b6040516102c591906120ec565b60405180910390f35b3480156102d9575f80fd5b506102f460048036038101906102ef9190612140565b610965565b6040516103019190611fc9565b60405180910390f35b348015610315575f80fd5b5061031e610987565b60405161032b919061218d565b60405180910390f35b34801561033f575f80fd5b5061035a600480360381019061035591906121a6565b610990565b6040516103679190611fc9565b60405180910390f35b34801561037b575f80fd5b506103846109be565b604051610391919061218d565b60405180910390f35b3480156103a5575f80fd5b506103ae6109c4565b6040516103bb9190612211565b60405180910390f35b3480156103cf575f80fd5b506103d86109cc565b005b3480156103e5575f80fd5b506103ee6109e4565b6040516103fb919061218d565b60405180910390f35b34801561040f575f80fd5b506104186109ea565b005b348015610425575f80fd5b50610440600480360381019061043b9190612140565b6109fb565b60405161044d9190611fc9565b60405180910390f35b348015610461575f80fd5b5061047c6004803603810190610477919061222a565b610a31565b6040516104899190611fc9565b60405180910390f35b34801561049d575f80fd5b506104a6610a83565b6040516104b3919061218d565b60405180910390f35b3480156104c7575f80fd5b506104d0610a89565b6040516104dd9190611fc9565b60405180910390f35b3480156104f1575f80fd5b506104fa610a9b565b604051610507919061218d565b60405180910390f35b34801561051b575f80fd5b5061053660048036038101906105319190612255565b610aa1565b005b348015610543575f80fd5b5061055e6004803603810190610559919061222a565b610ab5565b60405161056b919061218d565b60405180910390f35b34801561057f575f80fd5b50610588610afa565b005b348015610595575f80fd5b506105b060048036038101906105ab91906122aa565b610b0d565b005b3480156105bd575f80fd5b506105d860048036038101906105d39190612255565b610bbb565b005b3480156105e5575f80fd5b506105ee610bcd565b005b3480156105fb575f80fd5b50610604610dee565b005b348015610611575f80fd5b5061061a610e88565b60405161062791906122f7565b60405180910390f35b34801561063b575f80fd5b50610644610eb0565b604051610651919061218d565b60405180910390f35b348015610665575f80fd5b50610680600480360381019061067b91906122aa565b610eb6565b005b34801561068d575f80fd5b50610696610f5b565b6040516106a39190612052565b60405180910390f35b3480156106b7575f80fd5b506106d260048036038101906106cd9190612140565b610feb565b6040516106df9190611fc9565b60405180910390f35b3480156106f3575f80fd5b5061070e60048036038101906107099190612140565b611060565b60405161071b9190611fc9565b60405180910390f35b34801561072f575f80fd5b50610738611082565b005b348015610745575f80fd5b5061074e611169565b005b34801561075b575f80fd5b5061077660048036038101906107719190612255565b61117a565b005b348015610783575f80fd5b5061079e60048036038101906107999190612310565b61118c565b6040516107ab919061218d565b60405180910390f35b3480156107bf575f80fd5b506107c861120e565b6040516107d591906122f7565b60405180910390f35b3480156107e9575f80fd5b5061080460048036038101906107ff919061222a565b611233565b005b348015610811575f80fd5b5061082c6004803603810190610827919061234e565b6112b5565b005b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661086e6112d9565b73ffffffffffffffffffffffffffffffffffffffff161461088d575f80fd5b80600a81905550816009819055505050565b600b5f9054906101000a900460ff1681565b6060600380546108c0906123a6565b80601f01602080910402602001604051908101604052809291908181526020018280546108ec906123a6565b80156109375780601f1061090e57610100808354040283529160200191610937565b820191905f5260205f20905b81548152906001019060200180831161091a57829003601f168201915b5050505050905090565b7f000000000000000000000000000000000000000000000000000000000000000081565b5f8061096f6112d9565b905061097c8185856112e0565b600191505092915050565b5f600254905090565b5f8061099a6112d9565b90506109a78582856114a3565b6109b285858561152e565b60019150509392505050565b600a5481565b5f6009905090565b6109d46118f8565b5f600c819055505f600981905550565b60085481565b6109f26118f8565b5f600981905550565b5f80610a056112d9565b9050610a26818585610a17858961118c565b610a219190612403565b6112e0565b600191505092915050565b5f60115f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b60095481565b60105f9054906101000a900460ff1681565b600e5481565b610ab2610aac6112d9565b82611976565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b610b026118f8565b610b0b5f611b39565b565b610b156118f8565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167fe981735256b8051ed0a99762db90887fe1620e54eaa5eb28583f5b536064051282604051610baf9190611fc9565b60405180910390a25050565b610bc36118f8565b80600e8190555050565b610bd56118f8565b6001600b5f6101000a81548160ff0219169083151502179055507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610c58573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c7c919061244a565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d01573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d25919061244a565b6040518363ffffffff1660e01b8152600401610d42929190612475565b602060405180830381865afa158015610d5d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d81919061244a565b60065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550610dec60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611bfc565b565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16610e2e6112d9565b73ffffffffffffffffffffffffffffffffffffffff1614610e4d575f80fd5b5f610e5730610ab5565b9050610e853060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168361152e565b50565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b600f5481565b610ebe6118f8565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f4d576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f449061250c565b60405180910390fd5b610f578282611bfc565b5050565b606060048054610f6a906123a6565b80601f0160208091040260200160405190810160405280929190818152602001828054610f96906123a6565b8015610fe15780601f10610fb857610100808354040283529160200191610fe1565b820191905f5260205f20905b815481529060010190602001808311610fc457829003601f168201915b5050505050905090565b5f80610ff56112d9565b90505f611002828661118c565b905083811015611047576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161103e9061259a565b60405180910390fd5b61105482868684036112e0565b60019250505092915050565b5f8061106a6112d9565b905061107781858561152e565b600191505092915050565b5f47116110c4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110bb90612602565b60405180910390fd5b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166111046112d9565b73ffffffffffffffffffffffffffffffffffffffff1614611123575f80fd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f19350505050158015611166573d5f803e3d5ffd5b50565b6111716118f8565b5f600d81905550565b6111826118f8565b80600f8190555050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61123b6118f8565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036112a9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016112a090612690565b60405180910390fd5b6112b281611b39565b50565b6112bd6118f8565b8060105f6101000a81548160ff02191690831515021790555050565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff160361134e576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113459061271e565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036113bc576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113b3906127ac565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051611496919061218d565b60405180910390a3505050565b5f6114ae848461118c565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114611528578181101561151a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161151190612814565b60405180910390fd5b61152784848484036112e0565b5b50505050565b5f81036115455761154083835f611c9a565b6118f3565b61154d610e88565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156115bb575061158b610e88565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b80156115f357505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561162d575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b1561172157600b5f9054906101000a900460ff166117205760115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806116e0575060115f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b61171f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117169061287c565b60405180910390fd5b5b5b5f60115f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156117c0575060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f81156118e55760125f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615611847576118406064611832600a5486611f0690919063ffffffff16565b611f1b90919063ffffffff16565b90506118c2565b60125f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156118c1576118be60646118b060095486611f0690919063ffffffff16565b611f1b90919063ffffffff16565b90505b5b5f8111156118d6576118d5853083611c9a565b5b80836118e2919061289a565b92505b6118f0858585611c9a565b50505b505050565b6119006112d9565b73ffffffffffffffffffffffffffffffffffffffff1661191e610e88565b73ffffffffffffffffffffffffffffffffffffffff1614611974576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161196b90612917565b60405180910390fd5b565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036119e4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016119db906129a5565b60405180910390fd5b6119ef825f83611f30565b5f805f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611a72576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611a6990612a33565b60405180910390fd5b8181035f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611b21919061218d565b60405180910390a3611b34835f84611f35565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b8060125f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167f25a41403c141dc2ac11b3fc5fabb9235b83cfea44246a8befc5d3e34f612651760405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611d08576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611cff90612ac1565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611d76576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611d6d90612b4f565b60405180910390fd5b611d81838383611f30565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611e04576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611dfb90612bdd565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611eed919061218d565b60405180910390a3611f00848484611f35565b50505050565b5f8183611f139190612bfb565b905092915050565b5f8183611f289190612c69565b905092915050565b505050565b505050565b5f80fd5b5f819050919050565b611f5081611f3e565b8114611f5a575f80fd5b50565b5f81359050611f6b81611f47565b92915050565b5f8060408385031215611f8757611f86611f3a565b5b5f611f9485828601611f5d565b9250506020611fa585828601611f5d565b9150509250929050565b5f8115159050919050565b611fc381611faf565b82525050565b5f602082019050611fdc5f830184611fba565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61202482611fe2565b61202e8185611fec565b935061203e818560208601611ffc565b6120478161200a565b840191505092915050565b5f6020820190508181035f83015261206a818461201a565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f819050919050565b5f6120b46120af6120aa84612072565b612091565b612072565b9050919050565b5f6120c58261209a565b9050919050565b5f6120d6826120bb565b9050919050565b6120e6816120cc565b82525050565b5f6020820190506120ff5f8301846120dd565b92915050565b5f61210f82612072565b9050919050565b61211f81612105565b8114612129575f80fd5b50565b5f8135905061213a81612116565b92915050565b5f806040838503121561215657612155611f3a565b5b5f6121638582860161212c565b925050602061217485828601611f5d565b9150509250929050565b61218781611f3e565b82525050565b5f6020820190506121a05f83018461217e565b92915050565b5f805f606084860312156121bd576121bc611f3a565b5b5f6121ca8682870161212c565b93505060206121db8682870161212c565b92505060406121ec86828701611f5d565b9150509250925092565b5f60ff82169050919050565b61220b816121f6565b82525050565b5f6020820190506122245f830184612202565b92915050565b5f6020828403121561223f5761223e611f3a565b5b5f61224c8482850161212c565b91505092915050565b5f6020828403121561226a57612269611f3a565b5b5f61227784828501611f5d565b91505092915050565b61228981611faf565b8114612293575f80fd5b50565b5f813590506122a481612280565b92915050565b5f80604083850312156122c0576122bf611f3a565b5b5f6122cd8582860161212c565b92505060206122de85828601612296565b9150509250929050565b6122f181612105565b82525050565b5f60208201905061230a5f8301846122e8565b92915050565b5f806040838503121561232657612325611f3a565b5b5f6123338582860161212c565b92505060206123448582860161212c565b9150509250929050565b5f6020828403121561236357612362611f3a565b5b5f61237084828501612296565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806123bd57607f821691505b6020821081036123d0576123cf612379565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61240d82611f3e565b915061241883611f3e565b92508282019050808211156124305761242f6123d6565b5b92915050565b5f8151905061244481612116565b92915050565b5f6020828403121561245f5761245e611f3a565b5b5f61246c84828501612436565b91505092915050565b5f6040820190506124885f8301856122e8565b61249560208301846122e8565b9392505050565b7f54686520706169722063616e6e6f742062652072656d6f7665642066726f6d205f8201527f6d61726b65744d616b6572506169727321000000000000000000000000000000602082015250565b5f6124f6603183611fec565b91506125018261249c565b604082019050919050565b5f6020820190508181035f830152612523816124ea565b9050919050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f612584602583611fec565b915061258f8261252a565b604082019050919050565b5f6020820190508181035f8301526125b181612578565b9050919050565b7f546f6b656e3a206e6f2045544820696e2074686520636f6e74726163740000005f82015250565b5f6125ec601d83611fec565b91506125f7826125b8565b602082019050919050565b5f6020820190508181035f830152612619816125e0565b9050919050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f61267a602683611fec565b915061268582612620565b604082019050919050565b5f6020820190508181035f8301526126a78161266e565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612708602483611fec565b9150612713826126ae565b604082019050919050565b5f6020820190508181035f830152612735816126fc565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612796602283611fec565b91506127a18261273c565b604082019050919050565b5f6020820190508181035f8301526127c38161278a565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f6127fe601d83611fec565b9150612809826127ca565b602082019050919050565b5f6020820190508181035f83015261282b816127f2565b9050919050565b7f54726164696e67206973206e6f7420616374697665206e6f77210000000000005f82015250565b5f612866601a83611fec565b915061287182612832565b602082019050919050565b5f6020820190508181035f8301526128938161285a565b9050919050565b5f6128a482611f3e565b91506128af83611f3e565b92508282039050818111156128c7576128c66123d6565b5b92915050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f612901602083611fec565b915061290c826128cd565b602082019050919050565b5f6020820190508181035f83015261292e816128f5565b9050919050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f61298f602183611fec565b915061299a82612935565b604082019050919050565b5f6020820190508181035f8301526129bc81612983565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612a1d602283611fec565b9150612a28826129c3565b604082019050919050565b5f6020820190508181035f830152612a4a81612a11565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612aab602583611fec565b9150612ab682612a51565b604082019050919050565b5f6020820190508181035f830152612ad881612a9f565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612b39602383611fec565b9150612b4482612adf565b604082019050919050565b5f6020820190508181035f830152612b6681612b2d565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612bc7602683611fec565b9150612bd282612b6d565b604082019050919050565b5f6020820190508181035f830152612bf481612bbb565b9050919050565b5f612c0582611f3e565b9150612c1083611f3e565b9250828202612c1e81611f3e565b91508282048414831517612c3557612c346123d6565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612c7382611f3e565b9150612c7e83611f3e565b925082612c8e57612c8d612c3c565b5b82820490509291505056fea2646970667358221220022798f3de75ff3c8a58ca50b0ea85885f5bafcb2d7283c03ddf2c3c36fc5bb564736f6c634300081a0033

Deployed Bytecode

0x60806040526004361061021d575f3560e01c806370a082311161012257806395d89b41116100aa578063cafc4ca51161006e578063cafc4ca514610750578063dd62ed3e14610778578063f242ab41146107b4578063f2fde38b146107de578063fb78dffc1461080657610224565b806395d89b4114610682578063a457c2d7146106ac578063a9059cbb146106e8578063ba4de8d414610724578063ca672bd11461073a57610224565b80638a8c523c116100f15780638a8c523c146105da5780638d8f2adb146105f05780638da5cb5b146106065780638f3fa860146106305780639335bda31461065a57610224565b806370a0823114610538578063715018a614610574578063751fd1791461058a57806382399d53146105b257610224565b8063372500ab116101a55780633f4218e0116101745780633f4218e014610456578063470624021461049257806357d87f0d146104bc57806365fda1f7146104e65780636d1b229d1461051057610224565b8063372500ab146103c4578063378dc3dc146103da5780633884d63514610404578063395093511461041a57610224565b8063095ea7b3116101ec578063095ea7b3146102ce57806318160ddd1461030a57806323b872dd146103345780632b14ca5614610370578063313ce5671461039a57610224565b8063022723cc14610228578063064a59d01461025057806306fdde031461027a5780630758d924146102a457610224565b3661022457005b5f80fd5b348015610233575f80fd5b5061024e60048036038101906102499190611f71565b61082e565b005b34801561025b575f80fd5b5061026461089f565b6040516102719190611fc9565b60405180910390f35b348015610285575f80fd5b5061028e6108b1565b60405161029b9190612052565b60405180910390f35b3480156102af575f80fd5b506102b8610941565b6040516102c591906120ec565b60405180910390f35b3480156102d9575f80fd5b506102f460048036038101906102ef9190612140565b610965565b6040516103019190611fc9565b60405180910390f35b348015610315575f80fd5b5061031e610987565b60405161032b919061218d565b60405180910390f35b34801561033f575f80fd5b5061035a600480360381019061035591906121a6565b610990565b6040516103679190611fc9565b60405180910390f35b34801561037b575f80fd5b506103846109be565b604051610391919061218d565b60405180910390f35b3480156103a5575f80fd5b506103ae6109c4565b6040516103bb9190612211565b60405180910390f35b3480156103cf575f80fd5b506103d86109cc565b005b3480156103e5575f80fd5b506103ee6109e4565b6040516103fb919061218d565b60405180910390f35b34801561040f575f80fd5b506104186109ea565b005b348015610425575f80fd5b50610440600480360381019061043b9190612140565b6109fb565b60405161044d9190611fc9565b60405180910390f35b348015610461575f80fd5b5061047c6004803603810190610477919061222a565b610a31565b6040516104899190611fc9565b60405180910390f35b34801561049d575f80fd5b506104a6610a83565b6040516104b3919061218d565b60405180910390f35b3480156104c7575f80fd5b506104d0610a89565b6040516104dd9190611fc9565b60405180910390f35b3480156104f1575f80fd5b506104fa610a9b565b604051610507919061218d565b60405180910390f35b34801561051b575f80fd5b5061053660048036038101906105319190612255565b610aa1565b005b348015610543575f80fd5b5061055e6004803603810190610559919061222a565b610ab5565b60405161056b919061218d565b60405180910390f35b34801561057f575f80fd5b50610588610afa565b005b348015610595575f80fd5b506105b060048036038101906105ab91906122aa565b610b0d565b005b3480156105bd575f80fd5b506105d860048036038101906105d39190612255565b610bbb565b005b3480156105e5575f80fd5b506105ee610bcd565b005b3480156105fb575f80fd5b50610604610dee565b005b348015610611575f80fd5b5061061a610e88565b60405161062791906122f7565b60405180910390f35b34801561063b575f80fd5b50610644610eb0565b604051610651919061218d565b60405180910390f35b348015610665575f80fd5b50610680600480360381019061067b91906122aa565b610eb6565b005b34801561068d575f80fd5b50610696610f5b565b6040516106a39190612052565b60405180910390f35b3480156106b7575f80fd5b506106d260048036038101906106cd9190612140565b610feb565b6040516106df9190611fc9565b60405180910390f35b3480156106f3575f80fd5b5061070e60048036038101906107099190612140565b611060565b60405161071b9190611fc9565b60405180910390f35b34801561072f575f80fd5b50610738611082565b005b348015610745575f80fd5b5061074e611169565b005b34801561075b575f80fd5b5061077660048036038101906107719190612255565b61117a565b005b348015610783575f80fd5b5061079e60048036038101906107999190612310565b61118c565b6040516107ab919061218d565b60405180910390f35b3480156107bf575f80fd5b506107c861120e565b6040516107d591906122f7565b60405180910390f35b3480156107e9575f80fd5b5061080460048036038101906107ff919061222a565b611233565b005b348015610811575f80fd5b5061082c6004803603810190610827919061234e565b6112b5565b005b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661086e6112d9565b73ffffffffffffffffffffffffffffffffffffffff161461088d575f80fd5b80600a81905550816009819055505050565b600b5f9054906101000a900460ff1681565b6060600380546108c0906123a6565b80601f01602080910402602001604051908101604052809291908181526020018280546108ec906123a6565b80156109375780601f1061090e57610100808354040283529160200191610937565b820191905f5260205f20905b81548152906001019060200180831161091a57829003601f168201915b5050505050905090565b7f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d81565b5f8061096f6112d9565b905061097c8185856112e0565b600191505092915050565b5f600254905090565b5f8061099a6112d9565b90506109a78582856114a3565b6109b285858561152e565b60019150509392505050565b600a5481565b5f6009905090565b6109d46118f8565b5f600c819055505f600981905550565b60085481565b6109f26118f8565b5f600981905550565b5f80610a056112d9565b9050610a26818585610a17858961118c565b610a219190612403565b6112e0565b600191505092915050565b5f60115f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b60095481565b60105f9054906101000a900460ff1681565b600e5481565b610ab2610aac6112d9565b82611976565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b610b026118f8565b610b0b5f611b39565b565b610b156118f8565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167fe981735256b8051ed0a99762db90887fe1620e54eaa5eb28583f5b536064051282604051610baf9190611fc9565b60405180910390a25050565b610bc36118f8565b80600e8190555050565b610bd56118f8565b6001600b5f6101000a81548160ff0219169083151502179055507f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610c58573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c7c919061244a565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d01573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d25919061244a565b6040518363ffffffff1660e01b8152600401610d42929190612475565b602060405180830381865afa158015610d5d573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d81919061244a565b60065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550610dec60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611bfc565b565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16610e2e6112d9565b73ffffffffffffffffffffffffffffffffffffffff1614610e4d575f80fd5b5f610e5730610ab5565b9050610e853060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff168361152e565b50565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b600f5481565b610ebe6118f8565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f4d576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f449061250c565b60405180910390fd5b610f578282611bfc565b5050565b606060048054610f6a906123a6565b80601f0160208091040260200160405190810160405280929190818152602001828054610f96906123a6565b8015610fe15780601f10610fb857610100808354040283529160200191610fe1565b820191905f5260205f20905b815481529060010190602001808311610fc457829003601f168201915b5050505050905090565b5f80610ff56112d9565b90505f611002828661118c565b905083811015611047576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161103e9061259a565b60405180910390fd5b61105482868684036112e0565b60019250505092915050565b5f8061106a6112d9565b905061107781858561152e565b600191505092915050565b5f47116110c4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110bb90612602565b60405180910390fd5b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff166111046112d9565b73ffffffffffffffffffffffffffffffffffffffff1614611123575f80fd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f19350505050158015611166573d5f803e3d5ffd5b50565b6111716118f8565b5f600d81905550565b6111826118f8565b80600f8190555050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b61123b6118f8565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036112a9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016112a090612690565b60405180910390fd5b6112b281611b39565b50565b6112bd6118f8565b8060105f6101000a81548160ff02191690831515021790555050565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff160361134e576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113459061271e565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036113bc576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113b3906127ac565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051611496919061218d565b60405180910390a3505050565b5f6114ae848461118c565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114611528578181101561151a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161151190612814565b60405180910390fd5b61152784848484036112e0565b5b50505050565b5f81036115455761154083835f611c9a565b6118f3565b61154d610e88565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156115bb575061158b610e88565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b80156115f357505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561162d575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b1561172157600b5f9054906101000a900460ff166117205760115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806116e0575060115f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b61171f576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117169061287c565b60405180910390fd5b5b5b5f60115f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156117c0575060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f81156118e55760125f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615611847576118406064611832600a5486611f0690919063ffffffff16565b611f1b90919063ffffffff16565b90506118c2565b60125f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156118c1576118be60646118b060095486611f0690919063ffffffff16565b611f1b90919063ffffffff16565b90505b5b5f8111156118d6576118d5853083611c9a565b5b80836118e2919061289a565b92505b6118f0858585611c9a565b50505b505050565b6119006112d9565b73ffffffffffffffffffffffffffffffffffffffff1661191e610e88565b73ffffffffffffffffffffffffffffffffffffffff1614611974576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161196b90612917565b60405180910390fd5b565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036119e4576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016119db906129a5565b60405180910390fd5b6119ef825f83611f30565b5f805f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611a72576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611a6990612a33565b60405180910390fd5b8181035f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611b21919061218d565b60405180910390a3611b34835f84611f35565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b8060125f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167f25a41403c141dc2ac11b3fc5fabb9235b83cfea44246a8befc5d3e34f612651760405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611d08576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611cff90612ac1565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611d76576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611d6d90612b4f565b60405180910390fd5b611d81838383611f30565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611e04576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611dfb90612bdd565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611eed919061218d565b60405180910390a3611f00848484611f35565b50505050565b5f8183611f139190612bfb565b905092915050565b5f8183611f289190612c69565b905092915050565b505050565b505050565b5f80fd5b5f819050919050565b611f5081611f3e565b8114611f5a575f80fd5b50565b5f81359050611f6b81611f47565b92915050565b5f8060408385031215611f8757611f86611f3a565b5b5f611f9485828601611f5d565b9250506020611fa585828601611f5d565b9150509250929050565b5f8115159050919050565b611fc381611faf565b82525050565b5f602082019050611fdc5f830184611fba565b92915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61202482611fe2565b61202e8185611fec565b935061203e818560208601611ffc565b6120478161200a565b840191505092915050565b5f6020820190508181035f83015261206a818461201a565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f819050919050565b5f6120b46120af6120aa84612072565b612091565b612072565b9050919050565b5f6120c58261209a565b9050919050565b5f6120d6826120bb565b9050919050565b6120e6816120cc565b82525050565b5f6020820190506120ff5f8301846120dd565b92915050565b5f61210f82612072565b9050919050565b61211f81612105565b8114612129575f80fd5b50565b5f8135905061213a81612116565b92915050565b5f806040838503121561215657612155611f3a565b5b5f6121638582860161212c565b925050602061217485828601611f5d565b9150509250929050565b61218781611f3e565b82525050565b5f6020820190506121a05f83018461217e565b92915050565b5f805f606084860312156121bd576121bc611f3a565b5b5f6121ca8682870161212c565b93505060206121db8682870161212c565b92505060406121ec86828701611f5d565b9150509250925092565b5f60ff82169050919050565b61220b816121f6565b82525050565b5f6020820190506122245f830184612202565b92915050565b5f6020828403121561223f5761223e611f3a565b5b5f61224c8482850161212c565b91505092915050565b5f6020828403121561226a57612269611f3a565b5b5f61227784828501611f5d565b91505092915050565b61228981611faf565b8114612293575f80fd5b50565b5f813590506122a481612280565b92915050565b5f80604083850312156122c0576122bf611f3a565b5b5f6122cd8582860161212c565b92505060206122de85828601612296565b9150509250929050565b6122f181612105565b82525050565b5f60208201905061230a5f8301846122e8565b92915050565b5f806040838503121561232657612325611f3a565b5b5f6123338582860161212c565b92505060206123448582860161212c565b9150509250929050565b5f6020828403121561236357612362611f3a565b5b5f61237084828501612296565b91505092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806123bd57607f821691505b6020821081036123d0576123cf612379565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61240d82611f3e565b915061241883611f3e565b92508282019050808211156124305761242f6123d6565b5b92915050565b5f8151905061244481612116565b92915050565b5f6020828403121561245f5761245e611f3a565b5b5f61246c84828501612436565b91505092915050565b5f6040820190506124885f8301856122e8565b61249560208301846122e8565b9392505050565b7f54686520706169722063616e6e6f742062652072656d6f7665642066726f6d205f8201527f6d61726b65744d616b6572506169727321000000000000000000000000000000602082015250565b5f6124f6603183611fec565b91506125018261249c565b604082019050919050565b5f6020820190508181035f830152612523816124ea565b9050919050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f612584602583611fec565b915061258f8261252a565b604082019050919050565b5f6020820190508181035f8301526125b181612578565b9050919050565b7f546f6b656e3a206e6f2045544820696e2074686520636f6e74726163740000005f82015250565b5f6125ec601d83611fec565b91506125f7826125b8565b602082019050919050565b5f6020820190508181035f830152612619816125e0565b9050919050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f61267a602683611fec565b915061268582612620565b604082019050919050565b5f6020820190508181035f8301526126a78161266e565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612708602483611fec565b9150612713826126ae565b604082019050919050565b5f6020820190508181035f830152612735816126fc565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612796602283611fec565b91506127a18261273c565b604082019050919050565b5f6020820190508181035f8301526127c38161278a565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f6127fe601d83611fec565b9150612809826127ca565b602082019050919050565b5f6020820190508181035f83015261282b816127f2565b9050919050565b7f54726164696e67206973206e6f7420616374697665206e6f77210000000000005f82015250565b5f612866601a83611fec565b915061287182612832565b602082019050919050565b5f6020820190508181035f8301526128938161285a565b9050919050565b5f6128a482611f3e565b91506128af83611f3e565b92508282039050818111156128c7576128c66123d6565b5b92915050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f612901602083611fec565b915061290c826128cd565b602082019050919050565b5f6020820190508181035f83015261292e816128f5565b9050919050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f61298f602183611fec565b915061299a82612935565b604082019050919050565b5f6020820190508181035f8301526129bc81612983565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612a1d602283611fec565b9150612a28826129c3565b604082019050919050565b5f6020820190508181035f830152612a4a81612a11565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612aab602583611fec565b9150612ab682612a51565b604082019050919050565b5f6020820190508181035f830152612ad881612a9f565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612b39602383611fec565b9150612b4482612adf565b604082019050919050565b5f6020820190508181035f830152612b6681612b2d565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612bc7602683611fec565b9150612bd282612b6d565b604082019050919050565b5f6020820190508181035f830152612bf481612bbb565b9050919050565b5f612c0582611f3e565b9150612c1083611f3e565b9250828202612c1e81611f3e565b91508282048414831517612c3557612c346123d6565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612c7382611f3e565b9150612c7e83611f3e565b925082612c8e57612c8d612c3c565b5b82820490509291505056fea2646970667358221220022798f3de75ff3c8a58ca50b0ea85885f5bafcb2d7283c03ddf2c3c36fc5bb564736f6c634300081a0033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.