ETH Price: $3,196.50 (-0.63%)

Token

Morpheus (MORPH)
 

Overview

Max Total Supply

1,877,431,981,134.633152511575784607 MORPH

Holders

894

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
1,398,260,000 MORPH

Value
$0.00
0x76a196850aaec141d94adb1c6d95a5cdff6b5107
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
Morpheus

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 47 : Morpheus.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

/* === OZ === */
import {ERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {ERC20Burnable} from "../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC20Burnable.sol";

/* = SYSTEM */
import {MorpheusMinting} from "./MorpheusMinting.sol";
import {MorpheusBuyAndBurn} from "./MorpheusBuyAndBurn.sol";

/* = LIBS =  */
import {FullMath} from "../lib/v3-core/contracts/libraries/FullMath.sol";
import {Math} from "../lib/openzeppelin-contracts/contracts/utils/math/Math.sol";

/* = UNIV3 = */
import {IUniswapV3Pool} from "../lib/v3-core/contracts/interfaces/IUniswapV3Pool.sol";
import {INonfungiblePositionManager} from "../lib/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol";

import "./const/BuyAndBurnConst.sol";

/**
 * @title Morpheus
 * @author 0xkmmm
 * @dev ERC20 token contract for MORPHEUS tokens.
 * @notice It can be minted by MorpheusMinting during cycles
 * @notice It can be minted by MorpheusBuyAndBurn when forming an LP
 */
contract Morpheus is ERC20Burnable {
    using FullMath for uint256;

    /* ==== IMMUTABLES ==== */

    MorpheusMinting public immutable minting;
    MorpheusBuyAndBurn public immutable buyAndBurn;
    address public dragonXMorpheusPool;

    /* ==== ERRORS ==== */

    error OnlyMinting();
    error OnlyBuyAndBurn();
    error InvalidInput();

    /* ==== CONSTRUCTOR ==== */

    /**
     * @dev Sets the minting and buy and burn contract address.
     * @param _morpheusMintingStartTimestamp The start of the first mint cycle
     * @param _morpheusBuyAndBurnStartTimestamp The start of the buy and burn contract
     * @param _titanX The titanX token
     * @param _dragonX The dragonX token
     * @param _owner The owner of the buyAndBurn
     * @notice Constructor is payable to save gas
     */
    constructor(
        uint32 _morpheusMintingStartTimestamp,
        uint32 _morpheusBuyAndBurnStartTimestamp,
        address _dragonXTitanXPool,
        address _titanX,
        address _dragonX,
        address _owner
    ) payable ERC20("Morpheus", "MORPH") {
        buyAndBurn = new MorpheusBuyAndBurn(
            _morpheusBuyAndBurnStartTimestamp,
            _dragonXTitanXPool,
            _titanX,
            _dragonX,
            _owner
        );
        minting = new MorpheusMinting(
            address(buyAndBurn),
            _titanX,
            _morpheusMintingStartTimestamp
        );
    }

    /* == MODIFIERS == */

    /// @dev Modifier to ensure the function is called only by the minter contract.
    modifier onlyMinting() {
        _onlyMinting();
        _;
    }

    /// @dev Modifier to ensure the function is called only by the buy and burn contract.
    modifier onlyBuyAndBurn() {
        _onlyBuyAndBurn();
        _;
    }

    /* == EXTERNAL == */

    /**
     * @notice Mints MORPHEUS tokens to a specified address.
     * @notice This is only callable by the MorpheusMinting contract
     * @param _to The address to mint the tokens to.
     * @param _amount The amount of tokens to mint.
     */
    function mint(address _to, uint256 _amount) external onlyMinting {
        _mint(_to, _amount);
    }

    /// @notice Mints morpheus tokens for the initial LP creation
    function mintTokensForLP() external onlyBuyAndBurn {
        _mint(address(buyAndBurn), INITIAL_LP_MINT);
    }

    /* == INTERNAL == */

    /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
    ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
    function _onlyBuyAndBurn() internal view {
        if (msg.sender != address(buyAndBurn)) revert OnlyBuyAndBurn();
    }

    /// @dev Private method is used instead of inlining into modifier because modifiers are copied into each method,
    ///     and the use of immutable means the address bytes are copied in every place the modifier is used.
    function _onlyMinting() internal view {
        if (msg.sender != address(minting)) revert OnlyMinting();
    }

    ///@notice - Creates the DRAGONX/MORPHEUS Pool on uniswapV3
    ///@notice - Only called once when liquidity is added from BuyAndBurn
    function createDragonXMorpheusPool(
        address _dragonX,
        address _dragonXTitanXPool,
        uint256 _dragonxReceived
    ) external onlyBuyAndBurn returns (address _dragonXMorpheusPool) {
        address _morpheus = address(this);

        (uint160 sqrtPriceX96, , , , , , ) = IUniswapV3Pool(_dragonXTitanXPool)
            .slot0();
    
        (address token0, address token1) = _dragonX < _morpheus
            ? (_dragonX, _morpheus)
            : (_morpheus, _dragonX);

        uint256 dragonXAmount = _dragonxReceived;
        uint256 morpheusAmount = INITIAL_LP_MINT;

        (uint256 amount0, uint256 amount1) = token0 == _dragonX
            ? (dragonXAmount, morpheusAmount)
            : (morpheusAmount, dragonXAmount);

        sqrtPriceX96 = uint160(
            (Math.sqrt((amount1 * 1e18) / amount0) * 2 ** 96) / 1e9
        );

        INonfungiblePositionManager manager = INonfungiblePositionManager(
            UNISWAP_V3_POSITION_MANAGER
        );

        dragonXMorpheusPool = manager.createAndInitializePoolIfNecessary(
            token0,
            token1,
            POOL_FEE,
            sqrtPriceX96
        );

        _dragonXMorpheusPool = dragonXMorpheusPool;

        IUniswapV3Pool(dragonXMorpheusPool).increaseObservationCardinalityNext(uint16(100));
    }
}

File 2 of 47 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 3 of 47 : IERC721Enumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

File 4 of 47 : IERC721Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

File 5 of 47 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 6 of 47 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 7 of 47 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 8 of 47 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 9 of 47 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

File 10 of 47 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 11 of 47 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 12 of 47 : IUniswapV3SwapCallback.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
    /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
    /// @dev In the implementation you must pay the pool tokens owed for the swap.
    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
    /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
    /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
    /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
    function uniswapV3SwapCallback(
        int256 amount0Delta,
        int256 amount1Delta,
        bytes calldata data
    ) external;
}

File 13 of 47 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 14 of 47 : Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

File 15 of 47 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 16 of 47 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 17 of 47 : ERC20Burnable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

File 18 of 47 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 19 of 47 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 20 of 47 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 21 of 47 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 22 of 47 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 23 of 47 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 24 of 47 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 25 of 47 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 26 of 47 : IUniswapV3Pool.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import {IUniswapV3PoolImmutables} from './pool/IUniswapV3PoolImmutables.sol';
import {IUniswapV3PoolState} from './pool/IUniswapV3PoolState.sol';
import {IUniswapV3PoolDerivedState} from './pool/IUniswapV3PoolDerivedState.sol';
import {IUniswapV3PoolActions} from './pool/IUniswapV3PoolActions.sol';
import {IUniswapV3PoolOwnerActions} from './pool/IUniswapV3PoolOwnerActions.sol';
import {IUniswapV3PoolErrors} from './pool/IUniswapV3PoolErrors.sol';
import {IUniswapV3PoolEvents} from './pool/IUniswapV3PoolEvents.sol';

/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
    IUniswapV3PoolImmutables,
    IUniswapV3PoolState,
    IUniswapV3PoolDerivedState,
    IUniswapV3PoolActions,
    IUniswapV3PoolOwnerActions,
    IUniswapV3PoolErrors,
    IUniswapV3PoolEvents
{

}

File 27 of 47 : IUniswapV3PoolActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
    /// @notice Sets the initial price for the pool
    /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
    /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
    function initialize(uint160 sqrtPriceX96) external;

    /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
    /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
    /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
    /// on tickLower, tickUpper, the amount of liquidity, and the current price.
    /// @param recipient The address for which the liquidity will be created
    /// @param tickLower The lower tick of the position in which to add liquidity
    /// @param tickUpper The upper tick of the position in which to add liquidity
    /// @param amount The amount of liquidity to mint
    /// @param data Any data that should be passed through to the callback
    /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
    /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
    function mint(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount,
        bytes calldata data
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Collects tokens owed to a position
    /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
    /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
    /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
    /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
    /// @param recipient The address which should receive the fees collected
    /// @param tickLower The lower tick of the position for which to collect fees
    /// @param tickUpper The upper tick of the position for which to collect fees
    /// @param amount0Requested How much token0 should be withdrawn from the fees owed
    /// @param amount1Requested How much token1 should be withdrawn from the fees owed
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);

    /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
    /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
    /// @dev Fees must be collected separately via a call to #collect
    /// @param tickLower The lower tick of the position for which to burn liquidity
    /// @param tickUpper The upper tick of the position for which to burn liquidity
    /// @param amount How much liquidity to burn
    /// @return amount0 The amount of token0 sent to the recipient
    /// @return amount1 The amount of token1 sent to the recipient
    function burn(
        int24 tickLower,
        int24 tickUpper,
        uint128 amount
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Swap token0 for token1, or token1 for token0
    /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
    /// @param recipient The address to receive the output of the swap
    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
    /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
    /// @param data Any data to be passed through to the callback
    /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
    /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
    function swap(
        address recipient,
        bool zeroForOne,
        int256 amountSpecified,
        uint160 sqrtPriceLimitX96,
        bytes calldata data
    ) external returns (int256 amount0, int256 amount1);

    /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
    /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
    /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
    /// with 0 amount{0,1} and sending the donation amount(s) from the callback
    /// @param recipient The address which will receive the token0 and token1 amounts
    /// @param amount0 The amount of token0 to send
    /// @param amount1 The amount of token1 to send
    /// @param data Any data to be passed through to the callback
    function flash(
        address recipient,
        uint256 amount0,
        uint256 amount1,
        bytes calldata data
    ) external;

    /// @notice Increase the maximum number of price and liquidity observations that this pool will store
    /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
    /// the input observationCardinalityNext.
    /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
    function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}

File 28 of 47 : IUniswapV3PoolDerivedState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
    /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
    /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
    /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
    /// you must call it with secondsAgos = [3600, 0].
    /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
    /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
    /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
    /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
    /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
    /// timestamp
    function observe(uint32[] calldata secondsAgos)
        external
        view
        returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);

    /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
    /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
    /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
    /// snapshot is taken and the second snapshot is taken.
    /// @param tickLower The lower tick of the range
    /// @param tickUpper The upper tick of the range
    /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
    /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
    /// @return secondsInside The snapshot of seconds per liquidity for the range
    function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
        external
        view
        returns (
            int56 tickCumulativeInside,
            uint160 secondsPerLiquidityInsideX128,
            uint32 secondsInside
        );
}

File 29 of 47 : IUniswapV3PoolErrors.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Errors emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolErrors {
    error LOK();
    error TLU();
    error TLM();
    error TUM();
    error AI();
    error M0();
    error M1();
    error AS();
    error IIA();
    error L();
    error F0();
    error F1();
}

File 30 of 47 : IUniswapV3PoolEvents.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
    /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
    /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
    /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
    /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
    event Initialize(uint160 sqrtPriceX96, int24 tick);

    /// @notice Emitted when liquidity is minted for a given position
    /// @param sender The address that minted the liquidity
    /// @param owner The owner of the position and recipient of any minted liquidity
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity minted to the position range
    /// @param amount0 How much token0 was required for the minted liquidity
    /// @param amount1 How much token1 was required for the minted liquidity
    event Mint(
        address sender,
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted when fees are collected by the owner of a position
    /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
    /// @param owner The owner of the position for which fees are collected
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount0 The amount of token0 fees collected
    /// @param amount1 The amount of token1 fees collected
    event Collect(
        address indexed owner,
        address recipient,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount0,
        uint128 amount1
    );

    /// @notice Emitted when a position's liquidity is removed
    /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
    /// @param owner The owner of the position for which liquidity is removed
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity to remove
    /// @param amount0 The amount of token0 withdrawn
    /// @param amount1 The amount of token1 withdrawn
    event Burn(
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted by the pool for any swaps between token0 and token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the output of the swap
    /// @param amount0 The delta of the token0 balance of the pool
    /// @param amount1 The delta of the token1 balance of the pool
    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
    /// @param liquidity The liquidity of the pool after the swap
    /// @param tick The log base 1.0001 of price of the pool after the swap
    event Swap(
        address indexed sender,
        address indexed recipient,
        int256 amount0,
        int256 amount1,
        uint160 sqrtPriceX96,
        uint128 liquidity,
        int24 tick
    );

    /// @notice Emitted by the pool for any flashes of token0/token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the tokens from flash
    /// @param amount0 The amount of token0 that was flashed
    /// @param amount1 The amount of token1 that was flashed
    /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
    /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
    event Flash(
        address indexed sender,
        address indexed recipient,
        uint256 amount0,
        uint256 amount1,
        uint256 paid0,
        uint256 paid1
    );

    /// @notice Emitted by the pool for increases to the number of observations that can be stored
    /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
    /// just before a mint/swap/burn.
    /// @param observationCardinalityNextOld The previous value of the next observation cardinality
    /// @param observationCardinalityNextNew The updated value of the next observation cardinality
    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    /// @notice Emitted when the protocol fee is changed by the pool
    /// @param feeProtocol0Old The previous value of the token0 protocol fee
    /// @param feeProtocol1Old The previous value of the token1 protocol fee
    /// @param feeProtocol0New The updated value of the token0 protocol fee
    /// @param feeProtocol1New The updated value of the token1 protocol fee
    event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);

    /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
    /// @param sender The address that collects the protocol fees
    /// @param recipient The address that receives the collected protocol fees
    /// @param amount0 The amount of token0 protocol fees that is withdrawn
    /// @param amount0 The amount of token1 protocol fees that is withdrawn
    event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}

File 31 of 47 : IUniswapV3PoolImmutables.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
    /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
    /// @return The contract address
    function factory() external view returns (address);

    /// @notice The first of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token0() external view returns (address);

    /// @notice The second of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token1() external view returns (address);

    /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
    /// @return The fee
    function fee() external view returns (uint24);

    /// @notice The pool tick spacing
    /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
    /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
    /// This value is an int24 to avoid casting even though it is always positive.
    /// @return The tick spacing
    function tickSpacing() external view returns (int24);

    /// @notice The maximum amount of position liquidity that can use any tick in the range
    /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
    /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
    /// @return The max amount of liquidity per tick
    function maxLiquidityPerTick() external view returns (uint128);
}

File 32 of 47 : IUniswapV3PoolOwnerActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
    /// @notice Set the denominator of the protocol's % share of the fees
    /// @param feeProtocol0 new protocol fee for token0 of the pool
    /// @param feeProtocol1 new protocol fee for token1 of the pool
    function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;

    /// @notice Collect the protocol fee accrued to the pool
    /// @param recipient The address to which collected protocol fees should be sent
    /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
    /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
    /// @return amount0 The protocol fee collected in token0
    /// @return amount1 The protocol fee collected in token1
    function collectProtocol(
        address recipient,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);
}

File 33 of 47 : IUniswapV3PoolState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
    /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
    /// when accessed externally.
    /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
    /// @return tick The current tick of the pool, i.e. according to the last tick transition that was run.
    /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
    /// boundary.
    /// @return observationIndex The index of the last oracle observation that was written,
    /// @return observationCardinality The current maximum number of observations stored in the pool,
    /// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation.
    /// @return feeProtocol The protocol fee for both tokens of the pool.
    /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
    /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
    /// unlocked Whether the pool is currently locked to reentrancy
    function slot0()
        external
        view
        returns (
            uint160 sqrtPriceX96,
            int24 tick,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext,
            uint8 feeProtocol,
            bool unlocked
        );

    /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal0X128() external view returns (uint256);

    /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal1X128() external view returns (uint256);

    /// @notice The amounts of token0 and token1 that are owed to the protocol
    /// @dev Protocol fees will never exceed uint128 max in either token
    function protocolFees() external view returns (uint128 token0, uint128 token1);

    /// @notice The currently in range liquidity available to the pool
    /// @dev This value has no relationship to the total liquidity across all ticks
    /// @return The liquidity at the current price of the pool
    function liquidity() external view returns (uint128);

    /// @notice Look up information about a specific tick in the pool
    /// @param tick The tick to look up
    /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
    /// tick upper
    /// @return liquidityNet how much liquidity changes when the pool price crosses the tick,
    /// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
    /// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
    /// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
    /// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
    /// @return secondsOutside the seconds spent on the other side of the tick from the current tick,
    /// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
    /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
    /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
    /// a specific position.
    function ticks(int24 tick)
        external
        view
        returns (
            uint128 liquidityGross,
            int128 liquidityNet,
            uint256 feeGrowthOutside0X128,
            uint256 feeGrowthOutside1X128,
            int56 tickCumulativeOutside,
            uint160 secondsPerLiquidityOutsideX128,
            uint32 secondsOutside,
            bool initialized
        );

    /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
    function tickBitmap(int16 wordPosition) external view returns (uint256);

    /// @notice Returns the information about a position by the position's key
    /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
    /// @return liquidity The amount of liquidity in the position,
    /// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
    /// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
    /// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
    /// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
    function positions(bytes32 key)
        external
        view
        returns (
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    /// @notice Returns data about a specific observation index
    /// @param index The element of the observations array to fetch
    /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
    /// ago, rather than at a specific index in the array.
    /// @return blockTimestamp The timestamp of the observation,
    /// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
    /// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
    /// @return initialized whether the observation has been initialized and the values are safe to use
    function observations(uint256 index)
        external
        view
        returns (
            uint32 blockTimestamp,
            int56 tickCumulative,
            uint160 secondsPerLiquidityCumulativeX128,
            bool initialized
        );
}

File 34 of 47 : FullMath.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
    /// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    /// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
    function mulDiv(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = a * b
            // Compute the product mod 2**256 and mod 2**256 - 1
            // then use the Chinese Remainder Theorem to reconstruct
            // the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2**256 + prod0
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(a, b, not(0))
                prod0 := mul(a, b)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division
            if (prod1 == 0) {
                require(denominator > 0);
                assembly {
                    result := div(prod0, denominator)
                }
                return result;
            }

            // Make sure the result is less than 2**256.
            // Also prevents denominator == 0
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0]
            // Compute remainder using mulmod
            uint256 remainder;
            assembly {
                remainder := mulmod(a, b, denominator)
            }
            // Subtract 256 bit number from 512 bit number
            assembly {
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator
            // Compute largest power of two divisor of denominator.
            // Always >= 1.
            uint256 twos = (0 - denominator) & denominator;
            // Divide denominator by power of two
            assembly {
                denominator := div(denominator, twos)
            }

            // Divide [prod1 prod0] by the factors of two
            assembly {
                prod0 := div(prod0, twos)
            }
            // Shift in bits from prod1 into prod0. For this we need
            // to flip `twos` such that it is 2**256 / twos.
            // If twos is zero, then it becomes one
            assembly {
                twos := add(div(sub(0, twos), twos), 1)
            }
            prod0 |= prod1 * twos;

            // Invert denominator mod 2**256
            // Now that denominator is an odd number, it has an inverse
            // modulo 2**256 such that denominator * inv = 1 mod 2**256.
            // Compute the inverse by starting with a seed that is correct
            // correct for four bits. That is, denominator * inv = 1 mod 2**4
            uint256 inv = (3 * denominator) ^ 2;
            // Now use Newton-Raphson iteration to improve the precision.
            // Thanks to Hensel's lifting lemma, this also works in modular
            // arithmetic, doubling the correct bits in each step.
            inv *= 2 - denominator * inv; // inverse mod 2**8
            inv *= 2 - denominator * inv; // inverse mod 2**16
            inv *= 2 - denominator * inv; // inverse mod 2**32
            inv *= 2 - denominator * inv; // inverse mod 2**64
            inv *= 2 - denominator * inv; // inverse mod 2**128
            inv *= 2 - denominator * inv; // inverse mod 2**256

            // Because the division is now exact we can divide by multiplying
            // with the modular inverse of denominator. This will give us the
            // correct result modulo 2**256. Since the precoditions guarantee
            // that the outcome is less than 2**256, this is the final result.
            // We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inv;
            return result;
        }
    }

    /// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
    /// @param a The multiplicand
    /// @param b The multiplier
    /// @param denominator The divisor
    /// @return result The 256-bit result
    function mulDivRoundingUp(
        uint256 a,
        uint256 b,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            result = mulDiv(a, b, denominator);
            if (mulmod(a, b, denominator) > 0) {
                require(result < type(uint256).max);
                result++;
            }
        }
    }
}

File 35 of 47 : TickMath.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
    error T();
    error R();

    /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
    int24 internal constant MIN_TICK = -887272;
    /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
    int24 internal constant MAX_TICK = -MIN_TICK;

    /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
    uint160 internal constant MIN_SQRT_RATIO = 4295128739;
    /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
    uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;

    /// @notice Calculates sqrt(1.0001^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
    /// at the given tick
    function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
        unchecked {
            uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
            if (absTick > uint256(int256(MAX_TICK))) revert T();

            uint256 ratio = absTick & 0x1 != 0
                ? 0xfffcb933bd6fad37aa2d162d1a594001
                : 0x100000000000000000000000000000000;
            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

            if (tick > 0) ratio = type(uint256).max / ratio;

            // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
            // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
            // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
            sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
        }
    }

    /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
    /// ever return.
    /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
    /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
    function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
        unchecked {
            // second inequality must be < because the price can never reach the price at the max tick
            if (!(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO)) revert R();
            uint256 ratio = uint256(sqrtPriceX96) << 32;

            uint256 r = ratio;
            uint256 msb = 0;

            assembly {
                let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(5, gt(r, 0xFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(4, gt(r, 0xFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(3, gt(r, 0xFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(2, gt(r, 0xF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(1, gt(r, 0x3))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := gt(r, 0x1)
                msb := or(msb, f)
            }

            if (msb >= 128) r = ratio >> (msb - 127);
            else r = ratio << (127 - msb);

            int256 log_2 = (int256(msb) - 128) << 64;

            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(63, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(62, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(61, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(60, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(59, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(58, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(57, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(56, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(55, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(54, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(53, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(52, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(51, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(50, f))
            }

            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

            tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        }
    }
}

File 36 of 47 : IERC721Permit.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;

import '@openzeppelin/contracts/token/ERC721/IERC721.sol';

/// @title ERC721 with permit
/// @notice Extension to ERC721 that includes a permit function for signature based approvals
interface IERC721Permit is IERC721 {
    /// @notice The permit typehash used in the permit signature
    /// @return The typehash for the permit
    function PERMIT_TYPEHASH() external pure returns (bytes32);

    /// @notice The domain separator used in the permit signature
    /// @return The domain seperator used in encoding of permit signature
    function DOMAIN_SEPARATOR() external view returns (bytes32);

    /// @notice Approve of a specific token ID for spending by spender via signature
    /// @param spender The account that is being approved
    /// @param tokenId The ID of the token that is being approved for spending
    /// @param deadline The deadline timestamp by which the call must be mined for the approve to work
    /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
    /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
    /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
    function permit(
        address spender,
        uint256 tokenId,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external payable;
}

File 37 of 47 : INonfungiblePositionManager.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol';
import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol';

import './IPoolInitializer.sol';
import './IERC721Permit.sol';
import './IPeripheryPayments.sol';
import './IPeripheryImmutableState.sol';
import '../libraries/PoolAddress.sol';

/// @title Non-fungible token for positions
/// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred
/// and authorized.
interface INonfungiblePositionManager is
    IPoolInitializer,
    IPeripheryPayments,
    IPeripheryImmutableState,
    IERC721Metadata,
    IERC721Enumerable,
    IERC721Permit
{
    /// @notice Emitted when liquidity is increased for a position NFT
    /// @dev Also emitted when a token is minted
    /// @param tokenId The ID of the token for which liquidity was increased
    /// @param liquidity The amount by which liquidity for the NFT position was increased
    /// @param amount0 The amount of token0 that was paid for the increase in liquidity
    /// @param amount1 The amount of token1 that was paid for the increase in liquidity
    event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
    /// @notice Emitted when liquidity is decreased for a position NFT
    /// @param tokenId The ID of the token for which liquidity was decreased
    /// @param liquidity The amount by which liquidity for the NFT position was decreased
    /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
    /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
    event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
    /// @notice Emitted when tokens are collected for a position NFT
    /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
    /// @param tokenId The ID of the token for which underlying tokens were collected
    /// @param recipient The address of the account that received the collected tokens
    /// @param amount0 The amount of token0 owed to the position that was collected
    /// @param amount1 The amount of token1 owed to the position that was collected
    event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);

    /// @notice Returns the position information associated with a given token ID.
    /// @dev Throws if the token ID is not valid.
    /// @param tokenId The ID of the token that represents the position
    /// @return nonce The nonce for permits
    /// @return operator The address that is approved for spending
    /// @return token0 The address of the token0 for a specific pool
    /// @return token1 The address of the token1 for a specific pool
    /// @return fee The fee associated with the pool
    /// @return tickLower The lower end of the tick range for the position
    /// @return tickUpper The higher end of the tick range for the position
    /// @return liquidity The liquidity of the position
    /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
    /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
    /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
    /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
    function positions(uint256 tokenId)
        external
        view
        returns (
            uint96 nonce,
            address operator,
            address token0,
            address token1,
            uint24 fee,
            int24 tickLower,
            int24 tickUpper,
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    struct MintParams {
        address token0;
        address token1;
        uint24 fee;
        int24 tickLower;
        int24 tickUpper;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        address recipient;
        uint256 deadline;
    }

    /// @notice Creates a new position wrapped in a NFT
    /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
    /// a method does not exist, i.e. the pool is assumed to be initialized.
    /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
    /// @return tokenId The ID of the token that represents the minted position
    /// @return liquidity The amount of liquidity for this position
    /// @return amount0 The amount of token0
    /// @return amount1 The amount of token1
    function mint(MintParams calldata params)
        external
        payable
        returns (
            uint256 tokenId,
            uint128 liquidity,
            uint256 amount0,
            uint256 amount1
        );

    struct IncreaseLiquidityParams {
        uint256 tokenId;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        uint256 deadline;
    }

    /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
    /// @param params tokenId The ID of the token for which liquidity is being increased,
    /// amount0Desired The desired amount of token0 to be spent,
    /// amount1Desired The desired amount of token1 to be spent,
    /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
    /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
    /// deadline The time by which the transaction must be included to effect the change
    /// @return liquidity The new liquidity amount as a result of the increase
    /// @return amount0 The amount of token0 to acheive resulting liquidity
    /// @return amount1 The amount of token1 to acheive resulting liquidity
    function increaseLiquidity(IncreaseLiquidityParams calldata params)
        external
        payable
        returns (
            uint128 liquidity,
            uint256 amount0,
            uint256 amount1
        );

    struct DecreaseLiquidityParams {
        uint256 tokenId;
        uint128 liquidity;
        uint256 amount0Min;
        uint256 amount1Min;
        uint256 deadline;
    }

    /// @notice Decreases the amount of liquidity in a position and accounts it to the position
    /// @param params tokenId The ID of the token for which liquidity is being decreased,
    /// amount The amount by which liquidity will be decreased,
    /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
    /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
    /// deadline The time by which the transaction must be included to effect the change
    /// @return amount0 The amount of token0 accounted to the position's tokens owed
    /// @return amount1 The amount of token1 accounted to the position's tokens owed
    function decreaseLiquidity(DecreaseLiquidityParams calldata params)
        external
        payable
        returns (uint256 amount0, uint256 amount1);

    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
    /// @param params tokenId The ID of the NFT for which tokens are being collected,
    /// recipient The account that should receive the tokens,
    /// amount0Max The maximum amount of token0 to collect,
    /// amount1Max The maximum amount of token1 to collect
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);

    /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
    /// must be collected first.
    /// @param tokenId The ID of the token that is being burned
    function burn(uint256 tokenId) external payable;
}

File 38 of 47 : IPeripheryImmutableState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
    /// @return Returns the address of the Uniswap V3 factory
    function factory() external view returns (address);

    /// @return Returns the address of WETH9
    function WETH9() external view returns (address);
}

File 39 of 47 : IPeripheryPayments.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;

/// @title Periphery Payments
/// @notice Functions to ease deposits and withdrawals of ETH
interface IPeripheryPayments {
    /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH.
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
    /// @param amountMinimum The minimum amount of WETH9 to unwrap
    /// @param recipient The address receiving ETH
    function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;

    /// @notice Refunds any ETH balance held by this contract to the `msg.sender`
    /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
    /// that use ether for the input amount
    function refundETH() external payable;

    /// @notice Transfers the full amount of a token held by this contract to recipient
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
    /// @param token The contract address of the token which will be transferred to `recipient`
    /// @param amountMinimum The minimum amount of token required for a transfer
    /// @param recipient The destination address of the token
    function sweepToken(
        address token,
        uint256 amountMinimum,
        address recipient
    ) external payable;
}

File 40 of 47 : IPoolInitializer.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

/// @title Creates and initializes V3 Pools
/// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that
/// require the pool to exist.
interface IPoolInitializer {
    /// @notice Creates a new pool if it does not exist, then initializes if not initialized
    /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool
    /// @param token0 The contract address of token0 of the pool
    /// @param token1 The contract address of token1 of the pool
    /// @param fee The fee amount of the v3 pool for the specified token pair
    /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value
    /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary
    function createAndInitializePoolIfNecessary(
        address token0,
        address token1,
        uint24 fee,
        uint160 sqrtPriceX96
    ) external payable returns (address pool);
}

File 41 of 47 : ISwapRouter.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';

/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Uniswap V3
interface ISwapRouter is IUniswapV3SwapCallback {
    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);

    struct ExactInputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);

    struct ExactOutputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);

    struct ExactOutputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
}

File 42 of 47 : PoolAddress.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
    bytes32 internal constant POOL_INIT_CODE_HASH = 0xa598dd2fba360510c5a8f02f44423a4468e902df5857dbce3ca162a43a3a31ff;

    /// @notice The identifying key of the pool
    struct PoolKey {
        address token0;
        address token1;
        uint24 fee;
    }

    /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
    /// @param tokenA The first token of a pool, unsorted
    /// @param tokenB The second token of a pool, unsorted
    /// @param fee The fee level of the pool
    /// @return Poolkey The pool details with ordered token0 and token1 assignments
    function getPoolKey(
        address tokenA,
        address tokenB,
        uint24 fee
    ) internal pure returns (PoolKey memory) {
        if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
        return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
    }

    /// @notice Deterministically computes the pool address given the factory and PoolKey
    /// @param factory The Uniswap V3 factory contract address
    /// @param key The PoolKey
    /// @return pool The contract address of the V3 pool
    function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
        require(key.token0 < key.token1);
        pool = address(
            uint160(
                uint256(
                    keccak256(
                        abi.encodePacked(
                            hex'ff',
                            factory,
                            keccak256(abi.encode(key.token0, key.token1, key.fee)),
                            POOL_INIT_CODE_HASH
                        )
                    )
                )
            )
        );
    }
}

File 43 of 47 : TransferHelper.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.6.0;

import '@openzeppelin/contracts/token/ERC20/IERC20.sol';

library TransferHelper {
    /// @notice Transfers tokens from the targeted address to the given destination
    /// @notice Errors with 'STF' if transfer fails
    /// @param token The contract address of the token to be transferred
    /// @param from The originating address from which the tokens will be transferred
    /// @param to The destination address of the transfer
    /// @param value The amount to be transferred
    function safeTransferFrom(
        address token,
        address from,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, value)
        );
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'STF');
    }

    /// @notice Transfers tokens from msg.sender to a recipient
    /// @dev Errors with ST if transfer fails
    /// @param token The contract address of the token which will be transferred
    /// @param to The recipient of the transfer
    /// @param value The value of the transfer
    function safeTransfer(
        address token,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.transfer.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'ST');
    }

    /// @notice Approves the stipulated contract to spend the given allowance in the given token
    /// @dev Errors with 'SA' if transfer fails
    /// @param token The contract address of the token to be approved
    /// @param to The target of the approval
    /// @param value The amount of the given token the target will be allowed to spend
    function safeApprove(
        address token,
        address to,
        uint256 value
    ) internal {
        (bool success, bytes memory data) = token.call(abi.encodeWithSelector(IERC20.approve.selector, to, value));
        require(success && (data.length == 0 || abi.decode(data, (bool))), 'SA');
    }

    /// @notice Transfers ETH to the recipient address
    /// @dev Fails with `STE`
    /// @param to The destination of the transfer
    /// @param value The value to be transferred
    function safeTransferETH(address to, uint256 value) internal {
        (bool success, ) = to.call{value: value}(new bytes(0));
        require(success, 'STE');
    }
}

File 44 of 47 : BuyAndBurnConst.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

uint256 constant INCENTIVE_FEE = 150;

address constant TITAN_X_ADDRESS = 0xF19308F923582A6f7c465e5CE7a9Dc1BEC6665B1;
address constant DRAGON_X_ADDRESS = 0x96a5399D07896f757Bd4c6eF56461F58DB951862;

address constant GENESIS_WALLET = 0xEe30c3d642ea92aAb46c81AB5367E3EF048b6E5E;
address constant PRIZE_WALLET = 0x8D81a541CeB500A25ad15De5b692B5D0201DfAa0;

address constant DRAGONX_BURN_ADDRESS = 0x1d59429571d8Fde785F45bf593E94F2Da6072Edb;

uint256 constant GENESIS_BPS = 800;
uint256 constant PRIZE_BPS = 1000; // Amount of titanX that gets sent to prize wallet
uint256 constant DRAGON_X_VAULT_BPS = 1000; // Amount of titanX that gets sent to the DragonX Vault
uint256 constant DRAGON_X_BURN_BPS = 2000; // Amount of dragonX that gets burned
uint256 constant BPS_DENOM = 10_000;

/// @dev 48 * 30 = 24 hours
uint256 constant INTERVALS_PER_DAY = 48;
uint32 constant INTERVAL_TIME = 30 minutes;

///@dev  The initial dragonX amount needed to create liquidity pool
uint256 constant INITIAL_TITAN_X_FOR_LIQ = 50_000_000_000e18;

///@dev The intial Morpheus that pairs with the dragonX received from the swap
uint256 constant INITIAL_LP_MINT = 50_000_000_000e18;

/* === UNIV3 === */
address constant UNISWAP_V3_ROUTER = 0xE592427A0AEce92De3Edee1F18E0157C05861564;
address constant UNISWAP_V3_POSITION_MANAGER = 0xC36442b4a4522E871399CD717aBDD847Ab11FE88;
address constant UNISWAP_V3_DRAGON_X_TITAN_X_POOL = 0x25215d9ba4403b3DA77ce50606b54577a71b7895;

uint24 constant POOL_FEE = 10_000; //1%

int24 constant TICK_SPACING = 200; // Uniswap's tick spacing for 1% pools is 200

File 45 of 47 : OracleLibrary.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.26;

// Uniswap
import {IUniswapV3Pool} from "../../lib/v3-core/contracts/interfaces/IUniswapV3Pool.sol";

// OpenZeppelin
import {Math} from "../../lib/openzeppelin-contracts/contracts/utils/math/Math.sol";

/**
 * @notice Adapted Uniswap V3 OracleLibrary computation to be compliant with Solidity 0.8.x and later.
 *
 * Documentation for Auditors:
 *
 * Solidity Version: Updated the Solidity version pragma to ^0.8.0. This change ensures compatibility
 * with Solidity version 0.8.x.
 *
 * Safe Arithmetic Operations: Solidity 0.8.x automatically checks for arithmetic overflows/underflows.
 * Therefore, the code no longer needs to use SafeMath library (or similar) for basic arithmetic operations.
 * This change simplifies the code and reduces the potential for errors related to manual overflow/underflow checking.
 *
 * Overflow/Underflow: With the introduction of automatic overflow/underflow checks in Solidity 0.8.x, the code is inherently
 * safer and less prone to certain types of arithmetic errors.
 *
 * Removal of SafeMath Library: Since Solidity 0.8.x handles arithmetic operations safely, the use of SafeMath library
 * is omitted in this update.
 *
 * Git-style diff for the `consult` function:
 *
 * ```diff
 * function consult(address pool, uint32 secondsAgo)
 *     internal
 *     view
 *     returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
 * {
 *     require(secondsAgo != 0, 'BP');
 *
 *     uint32[] memory secondsAgos = new uint32[](2);
 *     secondsAgos[0] = secondsAgo;
 *     secondsAgos[1] = 0;
 *
 *     (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) =
 *         IUniswapV3Pool(pool).observe(secondsAgos);
 *
 *     int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
 *     uint160 secondsPerLiquidityCumulativesDelta =
 *         secondsPerLiquidityCumulativeX128s[1] - secondsPerLiquidityCumulativeX128s[0];
 *
 * -   arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgo);
 * +   int56 secondsAgoInt56 = int56(uint56(secondsAgo));
 * +   arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56);
 *     // Always round to negative infinity
 * -   if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgo != 0)) arithmeticMeanTick--;
 * +   if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgoInt56 != 0)) arithmeticMeanTick--;
 *
 * -   uint192 secondsAgoX160 = uint192(secondsAgo) * type(uint160).max;
 * +   uint192 secondsAgoUint192 = uint192(secondsAgo);
 * +   uint192 secondsAgoX160 = secondsAgoUint192 * type(uint160).max;
 *     harmonicMeanLiquidity = uint128(secondsAgoX160 / (uint192(secondsPerLiquidityCumulativesDelta) << 32));
 * }
 * ```
 */

/// @title Oracle library
/// @notice Provides functions to integrate with V3 pool oracle
library OracleLibrary {
    /// @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool
    /// @param pool Address of the pool that we want to observe
    /// @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means
    /// @return arithmeticMeanTick The arithmetic mean tick from (block.timestamp - secondsAgo) to block.timestamp
    /// @return harmonicMeanLiquidity The harmonic mean liquidity from (block.timestamp - secondsAgo) to block.timestamp
    function consult(
        address pool,
        uint32 secondsAgo
    )
        internal
        view
        returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
    {
        require(secondsAgo != 0, "BP");

        uint32[] memory secondsAgos = new uint32[](2);
        secondsAgos[0] = secondsAgo;
        secondsAgos[1] = 0;

        (
            int56[] memory tickCumulatives,
            uint160[] memory secondsPerLiquidityCumulativeX128s
        ) = IUniswapV3Pool(pool).observe(secondsAgos);

        int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
        uint160 secondsPerLiquidityCumulativesDelta = secondsPerLiquidityCumulativeX128s[
                1
            ] - secondsPerLiquidityCumulativeX128s[0];

        // Safe casting of secondsAgo to int56 for division
        int56 secondsAgoInt56 = int56(uint56(secondsAgo));
        arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56);
        // Always round to negative infinity
        if (
            tickCumulativesDelta < 0 &&
            (tickCumulativesDelta % secondsAgoInt56 != 0)
        ) arithmeticMeanTick--;

        // Safe casting of secondsAgo to uint192 for multiplication
        uint192 secondsAgoUint192 = uint192(secondsAgo);
        harmonicMeanLiquidity = uint128(
            (secondsAgoUint192 * uint192(type(uint160).max)) /
                (uint192(secondsPerLiquidityCumulativesDelta) << 32)
        );
    }

    /// @notice Given a pool, it returns the number of seconds ago of the oldest stored observation
    /// @param pool Address of Uniswap V3 pool that we want to observe
    /// @return secondsAgo The number of seconds ago of the oldest observation stored for the pool
    function getOldestObservationSecondsAgo(
        address pool
    ) internal view returns (uint32 secondsAgo) {
        (
            ,
            ,
            uint16 observationIndex,
            uint16 observationCardinality,
            ,
            ,

        ) = IUniswapV3Pool(pool).slot0();
        require(observationCardinality > 0, "NI");

        (uint32 observationTimestamp, , , bool initialized) = IUniswapV3Pool(
            pool
        ).observations((observationIndex + 1) % observationCardinality);

        // The next index might not be initialized if the cardinality is in the process of increasing
        // In this case the oldest observation is always in index 0
        if (!initialized) {
            (observationTimestamp, , , ) = IUniswapV3Pool(pool).observations(0);
        }

        secondsAgo = uint32(block.timestamp) - observationTimestamp;
    }

    /// @notice Given a tick and a token amount, calculates the amount of token received in exchange
    /// a slightly modified version of the UniSwap library getQuoteAtTick to accept a sqrtRatioX96 as input parameter
    /// @param sqrtRatioX96 The sqrt ration
    /// @param baseAmount Amount of token to be converted
    /// @param baseToken Address of an ERC20 token contract used as the baseAmount denomination
    /// @param quoteToken Address of an ERC20 token contract used as the quoteAmount denomination
    /// @return quoteAmount Amount of quoteToken received for baseAmount of baseToken
    function getQuoteForSqrtRatioX96(
        uint160 sqrtRatioX96,
        uint256 baseAmount,
        address baseToken,
        address quoteToken
    ) internal pure returns (uint256 quoteAmount) {
        // Calculate quoteAmount with better precision if it doesn't overflow when multiplied by itself
        if (sqrtRatioX96 <= type(uint128).max) {
            uint256 ratioX192 = uint256(sqrtRatioX96) * sqrtRatioX96;
            quoteAmount = baseToken < quoteToken
                ? Math.mulDiv(ratioX192, baseAmount, 1 << 192)
                : Math.mulDiv(1 << 192, baseAmount, ratioX192);
        } else {
            uint256 ratioX128 = Math.mulDiv(
                sqrtRatioX96,
                sqrtRatioX96,
                1 << 64
            );
            quoteAmount = baseToken < quoteToken
                ? Math.mulDiv(ratioX128, baseAmount, 1 << 128)
                : Math.mulDiv(1 << 128, baseAmount, ratioX128);
        }
    }
}

File 46 of 47 : MorpheusBuyAndBurn.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.26;

/* === UNIV3 === */
import {IUniswapV3Pool} from "../lib/v3-core/contracts/interfaces/IUniswapV3Pool.sol";
import {TransferHelper} from "../lib/v3-periphery/contracts/libraries/TransferHelper.sol";
import {INonfungiblePositionManager} from "../lib/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol";
import {TickMath} from "../lib/v3-core/contracts/libraries/TickMath.sol";
import {OracleLibrary} from "./library/OracleLibrary.sol";
import {ISwapRouter} from "../lib/v3-periphery/contracts/interfaces/ISwapRouter.sol";

/* === OZ === */
import {ReentrancyGuard} from "../lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol";
import {Math} from "../lib/openzeppelin-contracts/contracts/utils/math/Math.sol";
import {Ownable2Step, Ownable} from "../lib/openzeppelin-contracts/contracts/access/Ownable2Step.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {ERC20Burnable} from "../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/ERC20Burnable.sol";

/* === CONST === */
import "./const/BuyAndBurnConst.sol";

/* === SYSTEM === */
import {Morpheus} from "./Morpheus.sol";
import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";

/**
 * @title MorpheusBuyAndBurn
 * @author 0xkmmm
 * @notice This contract handles the buying and burning of Morpheus tokens using Uniswap V2 and V3 pools.
 */
contract MorpheusBuyAndBurn is ReentrancyGuard, Ownable2Step {
    using TransferHelper for IERC20;
    using Math for uint256;
    using Strings for uint256;
    /* == STRUCTS == */

    /// @notice Struct to represent intervals for burning
    struct Interval {
        uint128 amountAllocated;
        uint128 amountBurned;
    }

    struct LP {
        uint248 tokenId;
        bool isDragonxToken0;
    }

    /* == CONTSTANTS == */

    /// @notice Uniswap V3 position manager
    INonfungiblePositionManager public constant POSITION_MANAGER =
        INonfungiblePositionManager(UNISWAP_V3_POSITION_MANAGER);

    /* == IMMUTABLE == */

    /// @notice Uniswap V3 pool for Dragonx/TitanX tokens
    IUniswapV3Pool private immutable dragonXTitanXPool;

    /// @notice DragonX token contract
    ERC20Burnable private immutable dragonX;

    /// @notice TitanX token contract
    IERC20 private immutable titanX;

    /// @notice Morpheus token contract
    Morpheus public immutable morpheusToken;

    ///@notice The startTimestamp
    uint32 public immutable startTimeStamp;

    /* == STATE == */

    ///@notice The liquidity position after creating the Morpheus/Dragonx Pool
    LP lp;

    /// @notice Indicates if liquidity has been added to the pool
    bool public liquidityAdded;

    /// @notice Timestamp of the last burn call
    uint32 public lastBurnedIntervalStartTimestamp;

    /// @notice Total amount of Morpheus tokens burnt
    uint256 public totalMorpheusBurnt;

    /// @notice Total amount of Dragonx tokens burnt
    uint256 public totalDragonxBurnt;

    /// @notice Mapping from interval number to Interval struct
    mapping(uint32 interval => Interval) public intervals;

    /// @notice Last interval number
    uint32 public lastIntervalNumber;

    /// @notice Total TitanX tokens distributed
    uint256 public totalTitanXForBurn;

    ///@notice The slippage for the second swap in the buy and burn in %
    uint8 dragonxToMorpheusSlippage = 90;
    uint8 titanxToDragonxSlippage = 90;

    ///@notice The daily percentage of titanX used in buy and burn
    uint256 public DAILY_ALLOCATION = 100;

    /* == EVENTS == */

    /// @notice Event emitted when tokens are bought and burnt
    event BuyAndBurn(
        uint256 indexed titanXAmount,
        uint256 indexed morpheusBurnt,
        uint256 dragonXBurnAmount,
        address indexed caller
    );

    /* == ERRORS == */

    /// @notice Error when the contract has not started yet
    error NotStartedYet();

    /// @notice Error when minter is not msg.msg.sender
    error OnlyMinting();

    /// @notice Error when some user input is considered invalid
    error InvalidInput();

    /// @notice Error when we try to create liquidity pool with less than the intial amount
    error NotEnoughTitanXForLiquidity();

    /// @notice Error when liquidity has already been added
    error LiquidityAlreadyAdded();

    /// @notice Error when interval has already been burned
    error IntervalAlreadyBurned();

    /* == CONSTRUCTOR == */

    /// @notice Constructor initializes the contract
    /// @notice Constructor is payable to save gas
    constructor(
        uint32 startTimestamp,
        address _dragonXTitanXPool,
        address _titanX,
        address _dragonX,
        address _owner
    ) payable Ownable(_owner) {
        startTimeStamp = startTimestamp;
        titanX = IERC20(_titanX);
        morpheusToken = Morpheus(msg.sender);
        dragonX = ERC20Burnable(_dragonX);
        dragonXTitanXPool = IUniswapV3Pool(_dragonXTitanXPool);
    }

    /* === MODIFIERS === */

    /// @notice Updates the contract state for intervals
    modifier intervalUpdate() {
        _intervalUpdate();
        _;
    }

    /* == PUBLIC/EXTERNAL == */

    /**
     * @notice Swaps TitanX for Morpheus and burns the Morpheus tokens
     * @param _deadline The deadline for which the passes should pass
     */
    function swapTitanXForDragonXAndMorpheusAndBurn(
        uint32 _deadline
    ) external nonReentrant intervalUpdate {
        if (!liquidityAdded) revert NotStartedYet();
        Interval storage currInterval = intervals[lastIntervalNumber];
        if (currInterval.amountBurned != 0) revert IntervalAlreadyBurned();

        currInterval.amountBurned = currInterval.amountAllocated;

        uint256 incentive = (currInterval.amountAllocated * INCENTIVE_FEE) /
            BPS_DENOM;

        uint256 titanXToSwapAndBurn = currInterval.amountAllocated - incentive;

        uint256 dragonxAmount = _swapTitanxForDragonx(
            titanXToSwapAndBurn,
            _deadline
        );
        uint256 dragonxBurnAmount = dragonxAmount.mulDiv(
            DRAGON_X_BURN_BPS,
            BPS_DENOM,
            Math.Rounding.Ceil
        );
        uint256 morpheusAmount = _swapDragonxForMorpheus(
            dragonxAmount - dragonxBurnAmount,
            _deadline
        );

        burnMorpheus();

        TransferHelper.safeTransfer(address(dragonX), DRAGONX_BURN_ADDRESS, dragonxBurnAmount);
        TransferHelper.safeTransfer(address(titanX), msg.sender, incentive);

        totalDragonxBurnt += dragonxBurnAmount;
        totalTitanXForBurn = titanX.balanceOf(address(this));

        emit BuyAndBurn(titanXToSwapAndBurn, morpheusAmount, dragonxBurnAmount, msg.sender);
    }

    /**
     * @notice Creates a Uniswap V3 pool and adds liquidity
     * @param _deadline The deadline for the liquidity addition
     */
    function addLiquidityToMorpheusDragonxPool(
        uint32 _deadline
    ) external {
        if (liquidityAdded) revert LiquidityAlreadyAdded();
        if (titanX.balanceOf(address(this)) < INITIAL_TITAN_X_FOR_LIQ)
            revert NotEnoughTitanXForLiquidity();
        if (msg.sender != address(morpheusToken.minting()))
            revert OnlyMinting();

        liquidityAdded = true;

        uint256 dragonxReceived = _swapTitanxForDragonx(
            INITIAL_TITAN_X_FOR_LIQ,
            _deadline
        );

        morpheusToken.createDragonXMorpheusPool(DRAGON_X_ADDRESS, UNISWAP_V3_DRAGON_X_TITAN_X_POOL, dragonxReceived);

        morpheusToken.mintTokensForLP();

        (
            uint256 amount0,
            uint256 amount1,
            uint256 amount0Min,
            uint256 amount1Min,
            address token0,
            address token1
        ) = _sortAmounts(dragonxReceived, INITIAL_LP_MINT);

        TransferHelper.safeApprove(token0, address(POSITION_MANAGER), amount0);
        TransferHelper.safeApprove(token1, address(POSITION_MANAGER), amount1);

        // wake-disable-next-line
        INonfungiblePositionManager.MintParams
            memory params = INonfungiblePositionManager.MintParams({
                token0: token0,
                token1: token1,
                fee: POOL_FEE,
                tickLower: (TickMath.MIN_TICK / TICK_SPACING) * TICK_SPACING,
                tickUpper: (TickMath.MAX_TICK / TICK_SPACING) * TICK_SPACING,
                amount0Desired: amount0,
                amount1Desired: amount1,
                amount0Min: amount0Min,
                amount1Min: amount1Min,
                recipient: address(this),
                deadline: _deadline
            });

        // wake-disable-next-line
        (uint256 tokenId, , , ) = POSITION_MANAGER.mint(params);

        lp = LP({
            tokenId: uint248(tokenId),
            isDragonxToken0: token0 == address(dragonX)
        });

        totalTitanXForBurn = titanX.balanceOf(address(this));
    }

    /**
     * @notice Allows owner to update daily allocation
     * @param _newDailyAllocation The new daily allocation
     */
    function setDailyAllocation(uint256 _newDailyAllocation) public onlyOwner {
        DAILY_ALLOCATION = _newDailyAllocation;
        require(DAILY_ALLOCATION >= 100 && DAILY_ALLOCATION <= 1000, "Min 1 percent, max 10 percent.");
        _intervalUpdate();
    }

    /// @notice Burns Morpheus tokens held by the contract
    function burnMorpheus() public {
        uint256 morpheusToBurn = morpheusToken.balanceOf(address(this));

        totalMorpheusBurnt = totalMorpheusBurnt + morpheusToBurn;
        morpheusToken.burn(morpheusToBurn);
    }

    function setSlippageForDragonxToMorpheus(
        uint8 _newSlippage
    ) external onlyOwner {
        if (_newSlippage > 100 || _newSlippage < 2) revert InvalidInput();

        dragonxToMorpheusSlippage = _newSlippage;
    }

    function setSlippageForTitanxToDragonx(
        uint8 _newSlippage
    ) external onlyOwner {
        if (_newSlippage > 100 || _newSlippage < 2) revert InvalidInput();

        titanxToDragonxSlippage = _newSlippage;
    }

    /**
     * @notice Distributes TitanX tokens for burning
     * @param _amount The amount of TitanX tokens
     */
    function distributeTitanXForBurning(uint256 _amount) external {
        if (_amount == 0) revert InvalidInput();
        if (msg.sender != address(morpheusToken.minting()))
            revert OnlyMinting();

        ///@dev - If there are some missed intervals update the accumulated allocation before depositing new titanX
        if (
            block.timestamp > startTimeStamp &&
            block.timestamp - lastBurnedIntervalStartTimestamp > INTERVAL_TIME
        ) {
            _intervalUpdate();
        }

        TransferHelper.safeTransferFrom(
            address(titanX),
            msg.sender,
            address(this),
            _amount
        );

        totalTitanXForBurn = titanX.balanceOf(address(this));
    }

    /**
     * @notice Burns the fees collected from the Uniswap V3 position
     *
     * @return amount0 The amount of token0 collected
     * @return amount1 The amount of token1 collected
     */
    function burnFees() external returns (uint256 amount0, uint256 amount1) {
        LP memory _lp = lp;

        INonfungiblePositionManager.CollectParams
            memory params = INonfungiblePositionManager.CollectParams({
                tokenId: _lp.tokenId,
                recipient: address(this),
                amount0Max: type(uint128).max,
                amount1Max: type(uint128).max
            });

        (amount0, amount1) = POSITION_MANAGER.collect(params);

        (uint256 dragonxAmount, ) = _lp.isDragonxToken0
            ? (amount0, amount1)
            : (amount1, amount0);

        dragonX.transfer(GENESIS_WALLET, dragonxAmount);
        burnMorpheus();
    }

    /* == PUBLIC-GETTERS == */

    ///@notice Gets the current week day (0=Sunday, 1=Monday etc etc) wtih a cut-off hour at 2pm UTC
    function currWeekDay() public view returns (uint8 weekDay) {
        weekDay = weekDayByT(uint32(block.timestamp));
    }

    /**
     * @notice Gets the current week day (0=Sunday, 1=Monday etc etc) wtih a cut-off hour at 2pm UTC
     * @param t The timestamp from which to get the weekDay
     */
    function weekDayByT(uint32 t) public pure returns (uint8) {
        return uint8((((t - 14 hours) / 86400) + 4) % 7);
    }

    /**
     * @notice Get the day count for a timestamp
     * @param t The timestamp from which to get the timestamp
     */
    function dayCountByT(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cut-off time (2 PM UTC)
        uint32 adjustedTime = t - 14 hours;

        // Calculate the number of days since Unix epoch
        return adjustedTime / 86400;
    }

    /**
     * @notice Gets the end of the day with a cut-off hour of 2 pm UTC
     * @param t The time from where to get the day end
     */
    function getDayEnd(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cutoff time (2 PM UTC)
        uint32 adjustedTime = t - 14 hours;

        // Calculate the number of days since Unix epoch
        uint32 daysSinceEpoch = adjustedTime / 86400;

        // Calculate the start of the next day at 2 PM UTC
        uint32 nextDayStartAt2PM = (daysSinceEpoch + 1) * 86400 + 14 hours;

        // Return the timestamp for 14:00:00 PM UTC of the given day
        return nextDayStartAt2PM;
    }

    /**
     * @notice Gets the daily TitanX allocation
     * @return dailyBPSAllocation The daily allocation in basis points
     */
    function getDailyTitanXAllocation() public view returns (uint32 dailyBPSAllocation) {
        dailyBPSAllocation = uint32(DAILY_ALLOCATION);
    }
    
    /**
     * @notice Gets a quote for Morpheus tokens in exchange for Dragonx tokens
     * @param baseAmount The amount of Dragonx tokens
     * @return quote The amount of Morpheus tokens received
     */
    function getDragonxQuoteForTitanX(
        uint256 baseAmount
    ) public view returns (uint256 quote) {
        address poolAddress = UNISWAP_V3_DRAGON_X_TITAN_X_POOL;
        uint32 secondsAgo = 15 * 60;
        uint32 oldestObservation = OracleLibrary.getOldestObservationSecondsAgo(
            poolAddress
        );

        if (oldestObservation < secondsAgo) secondsAgo = oldestObservation;

        (int24 arithmeticMeanTick, ) = OracleLibrary.consult(
            poolAddress,
            secondsAgo
        );

        uint160 sqrtPriceX96 = TickMath.getSqrtRatioAtTick(arithmeticMeanTick);

        quote = OracleLibrary.getQuoteForSqrtRatioX96(
            sqrtPriceX96,
            baseAmount,
            address(titanX),
            address(dragonX)
        );
    }

    /**
     * @notice Gets a quote for Morpheus tokens in exchange for Dragonx tokens
     * @param baseAmount The amount of Dragonx tokens
     * @return quote The amount of Morpheus tokens received
     */
    function getMorpheusQuoteForDragonx(
        uint256 baseAmount
    ) public view returns (uint256 quote) {
        address poolAddress = morpheusToken.dragonXMorpheusPool();
        uint32 secondsAgo = 15 * 60;
        uint32 oldestObservation = OracleLibrary.getOldestObservationSecondsAgo(
            poolAddress
        );

        if (oldestObservation < secondsAgo) secondsAgo = oldestObservation;

        (int24 arithmeticMeanTick, ) = OracleLibrary.consult(
            poolAddress,
            secondsAgo
        );

        uint160 sqrtPriceX96 = TickMath.getSqrtRatioAtTick(arithmeticMeanTick);

        quote = OracleLibrary.getQuoteForSqrtRatioX96(
            sqrtPriceX96,
            baseAmount,
            address(dragonX),
            address(morpheusToken)
        );
    }

    /* == INTERNAL/PRIVATE == */

    /**
     * @notice Swaps Dragonx tokens for Morpheus tokens
     * @param amountTitanx The amount of Dragonx tokens
     * @param _deadline The deadline for when the swap must be executed
     * @return _dragonXAmount The amount of Morpheus tokens received
     */
    function _swapTitanxForDragonx(
        uint256 amountTitanx,
        uint256 _deadline
    ) private returns (uint256 _dragonXAmount) {
        // wake-disable-next-line
        titanX.approve(UNISWAP_V3_ROUTER, amountTitanx);
        // Setup the swap-path, swapp
        bytes memory path = abi.encodePacked(
            address(titanX),
            POOL_FEE,
            address(dragonX)
        );

        uint256 expectedDragonxAmount = getDragonxQuoteForTitanX(
            amountTitanx
        );

        // Adjust for slippage (applied uniformly across both hops)
        uint256 adjustedDragonxAmount = (expectedDragonxAmount *
            (100 - titanxToDragonxSlippage)) / 100;

        // Swap parameters
        ISwapRouter.ExactInputParams memory params = ISwapRouter
            .ExactInputParams({
                path: path,
                recipient: address(this),
                deadline: _deadline,
                amountIn: amountTitanx,
                amountOutMinimum: adjustedDragonxAmount
            });

        // Execute the swap
        return ISwapRouter(UNISWAP_V3_ROUTER).exactInput(params);
    }

    /**
     * @notice Swaps Dragonx tokens for Morpheus tokens
     * @param amountDragonx The amount of Dragonx tokens
     * @param _deadline The deadline for when the swap must be executed
     * @return _morpheusAmount The amount of Morpheus tokens received
     */
    function _swapDragonxForMorpheus(
        uint256 amountDragonx,
        uint256 _deadline
    ) private returns (uint256 _morpheusAmount) {
        // wake-disable-next-line
        dragonX.approve(UNISWAP_V3_ROUTER, amountDragonx);
        // Setup the swap-path, swapp
        bytes memory path = abi.encodePacked(
            address(dragonX),
            POOL_FEE,
            address(morpheusToken)
        );

        uint256 expectedMorpheusAmount = getMorpheusQuoteForDragonx(
            amountDragonx
        );

        // Adjust for slippage (applied uniformly across both hops)
        uint256 adjustedMorpheusAmount = (expectedMorpheusAmount *
            (100 - dragonxToMorpheusSlippage)) / 100;

        // Swap parameters
        ISwapRouter.ExactInputParams memory params = ISwapRouter
            .ExactInputParams({
                path: path,
                recipient: address(this),
                deadline: _deadline,
                amountIn: amountDragonx,
                amountOutMinimum: adjustedMorpheusAmount
            });

        // Execute the swap
        return ISwapRouter(UNISWAP_V3_ROUTER).exactInput(params);
    }

    function _calculateIntervals(
        uint256 timeElapsedSince
    )
        internal
        view
        returns (
            uint32 _lastIntervalNumber,
            uint128 _totalAmountForInterval,
            uint16 missedIntervals
        )
    {
        missedIntervals = _calculateMissedIntervals(timeElapsedSince);

        _lastIntervalNumber = lastIntervalNumber + missedIntervals + 1;

        uint256 dailyAllcation = (totalTitanXForBurn *
                DAILY_ALLOCATION) / BPS_DENOM;

        uint128 _amountPerInterval = uint128(
                dailyAllcation / INTERVALS_PER_DAY
            );

        uint128 additionalAmount = _amountPerInterval * missedIntervals;

        _totalAmountForInterval = _amountPerInterval + additionalAmount;

        if (_totalAmountForInterval > totalTitanXForBurn) {
            _totalAmountForInterval = uint128(totalTitanXForBurn);
        }
    }

    function _calculateMissedIntervals(
        uint256 timeElapsedSince
    ) internal view returns (uint16 _missedIntervals) {
        if (lastBurnedIntervalStartTimestamp == 0) {
            /// @dev - If there is no burned interval, we do no deduct 1 since no intervals is yet claimed
            _missedIntervals = timeElapsedSince <= INTERVAL_TIME
                ? 0
                : uint16(timeElapsedSince / INTERVAL_TIME);
        } else {
            /// @dev - If we already have, a burned interval we remove 1, since the previus interval is already burned
            _missedIntervals = timeElapsedSince <= INTERVAL_TIME
                ? 0
                : uint16(timeElapsedSince / INTERVAL_TIME) - 1;
        }
    }

    /// @notice Updates the contract state for intervals
    function _intervalUpdate() private {
        if (block.timestamp < startTimeStamp) revert NotStartedYet();

        uint32 timeElapseSinceLastBurn = uint32(
            lastBurnedIntervalStartTimestamp == 0
                ? block.timestamp - startTimeStamp
                : block.timestamp - lastBurnedIntervalStartTimestamp
        );

        uint32 _lastInterval;
        uint128 _amountAllocated;
        uint16 _missedIntervals;
        uint32 _lastIntervalStartTimestamp;

        bool updated;

        ///@dev -> If this is the first time burning, Calculate if any intervals were missed and update update the allocated amount
        if (lastBurnedIntervalStartTimestamp == 0) {
            (
                _lastInterval,
                _amountAllocated,
                _missedIntervals
            ) = _calculateIntervals(timeElapseSinceLastBurn);

            _lastIntervalStartTimestamp = startTimeStamp;

            updated = true;

            ///@dev -> If the lastBurnTimeExceeds, calculate how much intervals were skipped (if any) and calculate the amount accordingly
        } else if (timeElapseSinceLastBurn > INTERVAL_TIME) {
            (
                _lastInterval,
                _amountAllocated,
                _missedIntervals
            ) = _calculateIntervals(timeElapseSinceLastBurn);

            _lastIntervalStartTimestamp = lastBurnedIntervalStartTimestamp;

            updated = true;

            _missedIntervals++;
        }

        if (updated) {
            lastBurnedIntervalStartTimestamp =
                _lastIntervalStartTimestamp +
                (_missedIntervals * INTERVAL_TIME);
            intervals[_lastInterval] = Interval({
                amountAllocated: _amountAllocated,
                amountBurned: 0
            });
            lastIntervalNumber = _lastInterval;
        }
    }

    /**
     * @notice Creates a Uniswap V3 pool and returns the parameters
     * @return amount0 The amount of token0
     * @return amount1 The amount of token1
     * @return amount0Min Minimum amount of token0
     * @return amount1Min Minimum amount of token1
     * @return token0 Address of token0
     * @return token1 Address of token1
     */
    function _sortAmounts(
        uint256 dragonxAmount,
        uint256 morpheusAmount
    )
        internal
        view
        returns (
            uint256 amount0,
            uint256 amount1,
            uint256 amount0Min,
            uint256 amount1Min,
            address token0,
            address token1
        )
    {
        address _dragonx = address(dragonX);
        address _morpheus = address(morpheusToken);

        (token0, token1) = _dragonx < _morpheus
            ? (_dragonx, _morpheus)
            : (_morpheus, _dragonx);
        (amount0, amount1) = token0 == _dragonx
            ? (dragonxAmount, morpheusAmount)
            : (morpheusAmount, dragonxAmount);
        (amount0Min, amount1Min) = (
            _minus10Perc(amount0),
            _minus10Perc(amount1)
        );
    }

    ///@notice Helper to remove 10% of an amount
    function _minus10Perc(
        uint256 _amount
    ) internal pure returns (uint256 amount) {
        amount = (_amount * 9000) / BPS_DENOM;
    }
}

File 47 of 47 : MorpheusMinting.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

/* === OZ === */
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {Math} from "../lib/openzeppelin-contracts/contracts/utils/math/Math.sol";

/* === SYSTEM === */
import {MorpheusBuyAndBurn} from "./MorpheusBuyAndBurn.sol";
import {Morpheus} from "./Morpheus.sol";

/* === CONST === */
import "./const/BuyAndBurnConst.sol";

/**
 * @title MorpheusMinting
 * @author 0xkmmm
 * @dev This contract allows users to mint Morpheus tokens by depositing TITANX tokens during specific minting cycles.
 */
contract MorpheusMinting {
    using SafeERC20 for IERC20;
    using Math for uint256;

    /* == CONSTANTS ==  */

    ///@notice  The duration of 1 mint cycle
    uint32 public constant MINT_CYCLE_DURATION = 24 hours;

    ///@notice The starting ratio of the first mint cycle
    uint256 constant STARTING_RATIO = 1e18;

    ///@notice The gap between mint cycles
    uint32 public constant GAP_BETWEEN_CYCLE = 1 days;

    ///@notice  The final mint cycle
    uint8 public constant MAX_MINT_CYCLE = 14;

    /* == IMMUTABLES == */

    ///@notice The titanX token
    IERC20 public immutable titanX;

    uint256 public totalTitanXDeposited;
    uint256 public totalMorpheusClaimed;
    uint256 public totalMorpheusMinted;

    ///@notice The buy and burn contract
    MorpheusBuyAndBurn public immutable buyAndBurn;

    uint32 public immutable startTimestamp;

    /* == STATE == */

    ///@notice  Morpheus token
    Morpheus public morpheus;

    ///@notice The start of the first minting cycle

    ///@notice Mapping of the users amount to claim in a mint cycle
    mapping(address user => mapping(uint32 cycleId => uint256 amount))
        public amountToClaim;

    /* == ERRORS == */

    error InvalidInput();
    error CycleStillOngoing();
    error NotStartedYet();
    error CycleIsOver();
    error NoMorpheusToClaim();
    error InvalidStartTime();

    /* == EVENTS === */

    ///@notice Emits when user mints for a cycle
    event MintExecuted(
        address indexed user,
        uint256 morpheusAmount,
        uint32 indexed mintCycleId
    );

    ///@notice Emits when user claims for a cycle
    event ClaimExecuted(
        address indexed user,
        uint256 morpheusAmount,
        uint8 indexed mintCycleId
    );

    /* == CONSTRUCTOR == */

    /**
     * @dev Sets the addresses for the TITANX and Morpheus tokens.
     * @param _buyAndBurn Address of the buy and burn contract
     * @param _titanX Adress of the TitanX token
     * @param _startTimestamp The time stamp of the first minting cycle
     * @notice Constructor is payable to save gas
     */
    constructor(
        address _buyAndBurn,
        address _titanX,
        uint32 _startTimestamp
    ) payable {
        if (_buyAndBurn == address(0)) revert InvalidInput();
        
        startTimestamp = _startTimestamp;
        morpheus = Morpheus(msg.sender);
        titanX = IERC20(_titanX);
        buyAndBurn = MorpheusBuyAndBurn(_buyAndBurn);
    }

    /* == EXTERNAL == */

    function getRatioForCycle(
        uint32 cycleId
    ) public pure returns (uint256 ratio) {
        unchecked {
            uint256 adjustedRatioDiscount = cycleId == 1
                ? 0
                : uint256(cycleId - 1) * 4e16;
            ratio = STARTING_RATIO - adjustedRatioDiscount;
        }
    }

    /**
     * @notice Mints Morpheus tokens by depositing TITANX tokens during an ongoing mint cycle.
     * @param _amount The amount of TITANX tokens to deposit.
     */
    function mint(uint256 _amount) external {
        if (_amount == 0) revert InvalidInput();
        titanX.safeTransferFrom(msg.sender, address(this), _amount);

        if (block.timestamp < startTimestamp) revert NotStartedYet();

        (uint32 currentCycle, , uint32 endsAt) = getCurrentMintCycle();

        if (block.timestamp > endsAt) revert CycleIsOver();

        uint256 adjustedAmount = _vaultAndSendToGenesisAndPrize(_amount);
        uint256 morpheusAmount = (_amount * getRatioForCycle(currentCycle)) /
            1e18;

        amountToClaim[msg.sender][currentCycle] += morpheusAmount;

        emit MintExecuted(msg.sender, morpheusAmount, currentCycle);

        totalMorpheusMinted = totalMorpheusMinted + morpheusAmount;
        totalTitanXDeposited = totalTitanXDeposited + _amount;

        titanX.approve(address(buyAndBurn), _amount);
        buyAndBurn.distributeTitanXForBurning(adjustedAmount);

        if (!buyAndBurn.liquidityAdded() && titanX.balanceOf(address(buyAndBurn)) >= INITIAL_TITAN_X_FOR_LIQ) {
            buyAndBurn.addLiquidityToMorpheusDragonxPool(uint32(block.timestamp));
        }
    }

    /**
     * @notice Claims the minted Morpheus tokens after the end of the specified mint cycle.
     * @param _cycleId The ID of the mint cycle to claim tokens from.
     */
    function claim(uint8 _cycleId) external {
        if (_getCycleEndTime(_cycleId) > block.timestamp)
            revert CycleStillOngoing();

        uint256 toClaim = amountToClaim[msg.sender][_cycleId];

        if (toClaim == 0) revert NoMorpheusToClaim();

        delete amountToClaim[msg.sender][_cycleId];

        emit ClaimExecuted(msg.sender, toClaim, _cycleId);

        totalMorpheusClaimed = totalMorpheusClaimed + toClaim;

        morpheus.mint(msg.sender, toClaim);
    }

    /* == INTERNAL/PRIVATE == */

    function _vaultAndSendToGenesisAndPrize(
        uint256 _amount
    ) internal returns (uint256 newAmount) {

        unchecked {
            uint256 titanXForPrize = _amount.mulDiv(
                PRIZE_BPS,
                BPS_DENOM,
                Math.Rounding.Ceil
            );
            uint256 titanXForGenesis = _amount.mulDiv(
                GENESIS_BPS,
                BPS_DENOM,
                Math.Rounding.Ceil
            );
            uint256 titanXToVault = _amount.mulDiv(
                DRAGON_X_VAULT_BPS,
                BPS_DENOM,
                Math.Rounding.Ceil
            );

            newAmount = _amount - titanXForGenesis - titanXToVault - titanXForPrize;
            titanX.safeTransfer(
                PRIZE_WALLET,
                titanXForPrize
            );
            titanX.safeTransfer(
                DRAGON_X_ADDRESS,
                titanXToVault
            );
            titanX.safeTransfer(
                GENESIS_WALLET,
                titanXForGenesis
            );
        }
    }

    function getCurrentMintCycle()
        public
        view
        returns (uint32 currentCycle, uint32 startsAt, uint32 endsAt)
    {
        uint32 timeElapsedSince = uint32(block.timestamp - startTimestamp);

        currentCycle = uint8(timeElapsedSince / GAP_BETWEEN_CYCLE) + 1;

        if (currentCycle > MAX_MINT_CYCLE) currentCycle = MAX_MINT_CYCLE;

        startsAt = startTimestamp + ((currentCycle - 1) * GAP_BETWEEN_CYCLE);

        endsAt = startsAt + MINT_CYCLE_DURATION;
    }

    function _getCycleEndTime(
        uint8 cycleNumber
    ) internal view returns (uint32 endsAt) {
        uint32 cycleStartTime = startTimestamp +
            ((cycleNumber - 1) * GAP_BETWEEN_CYCLE);

        endsAt = cycleStartTime + MINT_CYCLE_DURATION;
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint32","name":"_morpheusMintingStartTimestamp","type":"uint32"},{"internalType":"uint32","name":"_morpheusBuyAndBurnStartTimestamp","type":"uint32"},{"internalType":"address","name":"_dragonXTitanXPool","type":"address"},{"internalType":"address","name":"_titanX","type":"address"},{"internalType":"address","name":"_dragonX","type":"address"},{"internalType":"address","name":"_owner","type":"address"}],"stateMutability":"payable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"InvalidInput","type":"error"},{"inputs":[],"name":"OnlyBuyAndBurn","type":"error"},{"inputs":[],"name":"OnlyMinting","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"buyAndBurn","outputs":[{"internalType":"contract MorpheusBuyAndBurn","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_dragonX","type":"address"},{"internalType":"address","name":"_dragonXTitanXPool","type":"address"},{"internalType":"uint256","name":"_dragonxReceived","type":"uint256"}],"name":"createDragonXMorpheusPool","outputs":[{"internalType":"address","name":"_dragonXMorpheusPool","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dragonXMorpheusPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"mintTokensForLP","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"minting","outputs":[{"internalType":"contract MorpheusMinting","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

60c06040526040516159fe3803806159fe83398101604081905261002291610199565b604051806040016040528060088152602001674d6f72706865757360c01b8152506040518060400160405280600581526020016409a9ea4a0960db1b815250816003908161007091906102a1565b50600461007d82826102a1565b505050848484848460405161009190610151565b63ffffffff90951685526001600160a01b03938416602086015291831660408501528216606084015216608082015260a001604051809103905ff0801580156100dc573d5f803e3d5ffd5b506001600160a01b031660a0819052604051849088906100fb9061015e565b6001600160a01b03938416815292909116602083015263ffffffff166040820152606001604051809103905ff080158015610138573d5f803e3d5ffd5b506001600160a01b03166080525061035b945050505050565b61359f8061121e83390190565b611241806147bd83390190565b805163ffffffff8116811461017e575f80fd5b919050565b80516001600160a01b038116811461017e575f80fd5b5f805f805f8060c087890312156101ae575f80fd5b6101b78761016b565b95506101c56020880161016b565b94506101d360408801610183565b93506101e160608801610183565b92506101ef60808801610183565b91506101fd60a08801610183565b90509295509295509295565b634e487b7160e01b5f52604160045260245ffd5b600181811c9082168061023157607f821691505b60208210810361024f57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561029c57805f5260205f20601f840160051c8101602085101561027a5750805b601f840160051c820191505b81811015610299575f8155600101610286565b50505b505050565b81516001600160401b038111156102ba576102ba610209565b6102ce816102c8845461021d565b84610255565b6020601f821160018114610300575f83156102e95750848201515b5f19600385901b1c1916600184901b178455610299565b5f84815260208120601f198516915b8281101561032f578785015182556020948501946001909201910161030f565b508482101561034c57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b60805160a051610e8d6103915f395f818161025c0152818161061301526107fe01525f8181610212015261074d0152610e8d5ff3fe608060405234801561000f575f80fd5b5060043610610106575f3560e01c806370a082311161009e5780639bed7b6c1161006e5780639bed7b6c1461023c578063a9059cbb14610244578063aa6df29914610257578063dd62ed3e1461027e578063e80c20e0146102b6575f80fd5b806370a08231146101d257806379cc6790146101fa5780637dc2268c1461020d57806395d89b4114610234575f80fd5b8063313ce567116100d9578063313ce5671461017057806340c10f191461017f57806342966c68146101945780636b8f2eae146101a7575f80fd5b806306fdde031461010a578063095ea7b31461012857806318160ddd1461014b57806323b872dd1461015d575b5f80fd5b6101126102c9565b60405161011f9190610bc7565b60405180910390f35b61013b610136366004610c10565b610359565b604051901515815260200161011f565b6002545b60405190815260200161011f565b61013b61016b366004610c3a565b610372565b6040516012815260200161011f565b61019261018d366004610c10565b610395565b005b6101926101a2366004610c78565b6103ab565b6101ba6101b5366004610c3a565b6103b8565b6040516001600160a01b03909116815260200161011f565b61014f6101e0366004610c8f565b6001600160a01b03165f9081526020819052604090205490565b610192610208366004610c10565b6105e2565b6101ba7f000000000000000000000000000000000000000000000000000000000000000081565b6101126105f7565b610192610606565b61013b610252366004610c10565b610646565b6101ba7f000000000000000000000000000000000000000000000000000000000000000081565b61014f61028c366004610caa565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b6005546101ba906001600160a01b031681565b6060600380546102d890610ce1565b80601f016020809104026020016040519081016040528092919081815260200182805461030490610ce1565b801561034f5780601f106103265761010080835404028352916020019161034f565b820191905f5260205f20905b81548152906001019060200180831161033257829003601f168201915b5050505050905090565b5f33610366818585610653565b60019150505b92915050565b5f3361037f858285610665565b61038a8585856106e5565b506001949350505050565b61039d610742565b6103a7828261078b565b5050565b6103b533826107bf565b50565b5f6103c16107f3565b5f3090505f846001600160a01b0316633850c7bd6040518163ffffffff1660e01b815260040160e060405180830381865afa158015610402573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104269190610d2f565b50505050505090505f80836001600160a01b0316886001600160a01b031610610450578388610453565b87845b9092509050856ba18f07d736b90be5500000005f806001600160a01b03808716908d1614610482578284610485565b83835b9092509050633b9aca006104b4836104a584670de0b6b3a7640000610ddf565b6104af9190610e0a565b61083c565b6104c290600160601b610ddf565b6104cc9190610e0a565b6040516309f56ab160e11b81526001600160a01b038089166004830152808816602483015261271060448301528216606482015290975073c36442b4a4522e871399cd717abdd847ab11fe889081906313ead562906084016020604051808303815f875af1158015610540573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105649190610e29565b600580546001600160a01b0319166001600160a01b039290921691821790556040516332148f6760e01b815260646004820152909a508a906332148f67906024015f604051808303815f87803b1580156105bc575f80fd5b505af11580156105ce573d5f803e3d5ffd5b505050505050505050505050509392505050565b6105ed823383610665565b6103a782826107bf565b6060600480546102d890610ce1565b61060e6107f3565b6106447f00000000000000000000000000000000000000000000000000000000000000006ba18f07d736b90be55000000061078b565b565b5f336103668185856106e5565b6106608383836001610927565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f1981146106df57818110156106d157604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064015b60405180910390fd5b6106df84848484035f610927565b50505050565b6001600160a01b03831661070e57604051634b637e8f60e11b81525f60048201526024016106c8565b6001600160a01b0382166107375760405163ec442f0560e01b81525f60048201526024016106c8565b6106608383836109f9565b336001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016146106445760405163c004a90b60e01b815260040160405180910390fd5b6001600160a01b0382166107b45760405163ec442f0560e01b81525f60048201526024016106c8565b6103a75f83836109f9565b6001600160a01b0382166107e857604051634b637e8f60e11b81525f60048201526024016106c8565b6103a7825f836109f9565b336001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161461064457604051633579266f60e11b815260040160405180910390fd5b5f815f0361084b57505f919050565b5f600161085784610b1f565b901c6001901b9050600181848161087057610870610df6565b048201901c9050600181848161088857610888610df6565b048201901c905060018184816108a0576108a0610df6565b048201901c905060018184816108b8576108b8610df6565b048201901c905060018184816108d0576108d0610df6565b048201901c905060018184816108e8576108e8610df6565b048201901c9050600181848161090057610900610df6565b048201901c90506109208182858161091a5761091a610df6565b04610bb2565b9392505050565b6001600160a01b0384166109505760405163e602df0560e01b81525f60048201526024016106c8565b6001600160a01b03831661097957604051634a1406b160e11b81525f60048201526024016106c8565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156106df57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516109eb91815260200190565b60405180910390a350505050565b6001600160a01b038316610a23578060025f828254610a189190610e44565b90915550610a939050565b6001600160a01b0383165f9081526020819052604090205481811015610a755760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016106c8565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216610aaf57600280548290039055610acd565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610b1291815260200190565b60405180910390a3505050565b5f80608083901c15610b3357608092831c92015b604083901c15610b4557604092831c92015b602083901c15610b5757602092831c92015b601083901c15610b6957601092831c92015b600883901c15610b7b57600892831c92015b600483901c15610b8d57600492831c92015b600283901c15610b9f57600292831c92015b600183901c1561036c5760010192915050565b5f818310610bc05781610920565b5090919050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b6001600160a01b03811681146103b5575f80fd5b5f8060408385031215610c21575f80fd5b8235610c2c81610bfc565b946020939093013593505050565b5f805f60608486031215610c4c575f80fd5b8335610c5781610bfc565b92506020840135610c6781610bfc565b929592945050506040919091013590565b5f60208284031215610c88575f80fd5b5035919050565b5f60208284031215610c9f575f80fd5b813561092081610bfc565b5f8060408385031215610cbb575f80fd5b8235610cc681610bfc565b91506020830135610cd681610bfc565b809150509250929050565b600181811c90821680610cf557607f821691505b602082108103610d1357634e487b7160e01b5f52602260045260245ffd5b50919050565b805161ffff81168114610d2a575f80fd5b919050565b5f805f805f805f60e0888a031215610d45575f80fd5b8751610d5081610bfc565b8097505060208801518060020b8114610d67575f80fd5b9550610d7560408901610d19565b9450610d8360608901610d19565b9350610d9160808901610d19565b925060a088015160ff81168114610da6575f80fd5b60c08901519092508015158114610dbb575f80fd5b8091505092959891949750929550565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761036c5761036c610dcb565b634e487b7160e01b5f52601260045260245ffd5b5f82610e2457634e487b7160e01b5f52601260045260245ffd5b500490565b5f60208284031215610e39575f80fd5b815161092081610bfc565b8082018082111561036c5761036c610dcb56fea2646970667358221220fd4b45fd8beb215f1da8991db0f25c9bb1f1b99e93b175f02960addb062b082164736f6c634300081a00336101206040819052600a805461ffff1916615a5a1790556064600b5561359f3881900390819083398101604081905261003791610129565b60015f55806001600160a01b03811661006957604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b610072816100a1565b505063ffffffff909316610100526001600160a01b0390811660c0523360e05291821660a05216608052610194565b600280546001600160a01b03191690556100ba816100bd565b50565b600180546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b80516001600160a01b0381168114610124575f80fd5b919050565b5f805f805f60a0868803121561013d575f80fd5b855163ffffffff81168114610150575f80fd5b945061015e6020870161010e565b935061016c6040870161010e565b925061017a6060870161010e565b91506101886080870161010e565b90509295509295909350565b60805160a05160c05160e051610100516132ff6102a05f395f818161046c01528181610ee101528181611950015281816119d10152611a3501525f81816102fe0152818161057a015281816106a00152818161071501528181610cee01528181610d8801528181610e30015281816112d9015281816113c2015281816117aa0152611c5d01525f81816104e80152818161099501528181610b6a01528181610bbb01528181610f3f01528181610f7b0152818161144f015281816115c6015261163c01525f818161094801528181610b2b01528181611133015281816113a101528181611470015281816116600152818161178901528181611bc30152611c3901525f50506132ff5ff3fe608060405234801561000f575f80fd5b50600436106101dc575f3560e01c8063775f9b6f11610109578063c2dd37e21161009e578063e30c39781161006e578063e30c397814610443578063f2fde38b14610454578063f38d00f014610467578063f82d8f561461048e575f80fd5b8063c2dd37e214610401578063d88287151461040a578063d944392314610413578063df49d31514610430575f80fd5b8063aba05870116100d9578063aba0587014610380578063ad1b63f414610393578063b7827ec3146103e6578063c1b309ec146103ee575f80fd5b8063775f9b6f14610344578063782ee1701461035757806379ba5097146103675780638da5cb5b1461036f575f80fd5b806327ab48eb1161017f57806348cd53151161014f57806348cd5315146102f95780635410021e146103205780635dee31a714610329578063715018a61461033c575f80fd5b806327ab48eb146102ae5780632ec9c3b4146102b657806330dc71ac146102c957806340f6ac31146102dc575f80fd5b8063158a3b12116101ba578063158a3b121461023757806315e941fa1461024a5780631bea83fe14610261578063225a469914610294575f80fd5b806304bb7100146101e057806308fcb6e1146101f5578063090f8ad414610208575b5f80fd5b6101f36101ee366004612936565b6104a1565b005b6101f3610203366004612936565b610a0e565b60045461021d90610100900463ffffffff1681565b60405163ffffffff90911681526020015b60405180910390f35b61021d610245366004612936565b610c7a565b61025360065481565b60405190815260200161022e565b61027c73c36442b4a4522e871399cd717abdd847ab11fe8881565b6040516001600160a01b03909116815260200161022e565b61029c610cc8565b60405160ff909116815260200161022e565b6101f3610cd7565b61021d6102c4366004612936565b610dea565b6101f36102d7366004612951565b610e0e565b6102e4610ff2565b6040805192835260208301919091520161022e565b61027c7f000000000000000000000000000000000000000000000000000000000000000081565b61025360095481565b6101f3610337366004612976565b6111b5565b6101f3611206565b6101f3610352366004612951565b611219565b60085461021d9063ffffffff1681565b6101f3611294565b6001546001600160a01b031661027c565b61025361038e366004612951565b6112d5565b6103c66103a1366004612936565b60076020525f90815260409020546001600160801b0380821691600160801b90041682565b604080516001600160801b0393841681529290911660208301520161022e565b600b5461021d565b6102536103fc366004612951565b6113f1565b61025360055481565b610253600b5481565b6004546104209060ff1681565b604051901515815260200161022e565b61029c61043e366004612936565b611494565b6002546001600160a01b031661027c565b6101f36104623660046129a5565b6114cc565b61021d7f000000000000000000000000000000000000000000000000000000000000000081565b6101f361049c366004612976565b61153d565b60045460ff16156104c557604051630fd02b6d60e41b815260040160405180910390fd5b6040516370a0823160e01b81523060048201526ba18f07d736b90be550000000907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610535573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061055991906129c0565b101561057857604051631bbc2d7d60e21b815260040160405180910390fd5b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316637dc2268c6040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105d4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105f891906129d7565b6001600160a01b0316336001600160a01b0316146106295760405163c004a90b60e01b815260040160405180910390fd5b6004805460ff191660011790555f6106536ba18f07d736b90be55000000063ffffffff8416611594565b6040516335c7975760e11b81527396a5399d07896f757bd4c6ef56461f58db95186260048201527325215d9ba4403b3da77ce50606b54577a71b78956024820152604481018290529091507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031690636b8f2eae906064016020604051808303815f875af11580156106ee573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061071291906129d7565b507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316639bed7b6c6040518163ffffffff1660e01b81526004015f604051808303815f87803b15801561076b575f80fd5b505af115801561077d573d5f803e3d5ffd5b505050505f805f805f8061079d876ba18f07d736b90be550000000611781565b9550955095509550955095506107c88273c36442b4a4522e871399cd717abdd847ab11fe8888611832565b6107e78173c36442b4a4522e871399cd717abdd847ab11fe8887611832565b5f604051806101600160405280846001600160a01b03168152602001836001600160a01b0316815260200161271062ffffff16815260200160c880620d89e7196108319190612a1a565b61083b9190612a52565b60020b815260200160c880610853620d89e719612a78565b61085d9190612a1a565b6108679190612a52565b60020b8152602001888152602001878152602001868152602001858152602001306001600160a01b031681526020018a63ffffffff1681525090505f73c36442b4a4522e871399cd717abdd847ab11fe886001600160a01b03166388316456836040518263ffffffff1660e01b81526004016108e39190612a98565b6080604051808303815f875af11580156108ff573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109239190612b5c565b50506040805180820182526001600160f81b0384168082526001600160a01b038981167f00000000000000000000000000000000000000000000000000000000000000008216146020909301839052600160f81b9092021760035590516370a0823160e01b81523060048201529293507f000000000000000000000000000000000000000000000000000000000000000016916370a082319150602401602060405180830381865afa1580156109db573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906109ff91906129c0565b60095550505050505050505050565b610a16611926565b610a1e61194e565b60045460ff16610a4157604051631864d7ab60e21b815260040160405180910390fd5b60085463ffffffff165f9081526007602052604090208054600160801b90046001600160801b031615610a87576040516331bbcb2160e11b815260040160405180910390fd5b80546001600160801b03908116600160801b810280821784555f9261271092610ab4926096921617612ba3565b610abe9190612bba565b82549091505f90610ad99083906001600160801b0316612bcd565b90505f610aec828663ffffffff16611594565b90505f610b00826107d06127106001611b40565b90505f610b1c610b108385612bcd565b8863ffffffff16611b91565b9050610b26610cd7565b610b657f0000000000000000000000000000000000000000000000000000000000000000731d59429571d8fde785f45bf593e94f2da6072edb84611cc1565b610b907f00000000000000000000000000000000000000000000000000000000000000003387611cc1565b8160065f828254610ba19190612be0565b90915550506040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610c08573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610c2c91906129c0565b6009556040518281523390829086907fec283c32bba1c9c4cc89935f07153bd56d321e23bfa00d19044574f426007e699060200160405180910390a4505050505050610c7760015f55565b50565b5f80610c8861c4e084612bf3565b90505f610c986201518083612c0f565b90505f610ca6826001612c36565b610cb39062015180612c52565b610cbf9061c4e0612c36565b95945050505050565b5f610cd242611494565b905090565b6040516370a0823160e01b81523060048201525f907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610d3b573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610d5f91906129c0565b905080600554610d6f9190612be0565b600555604051630852cd8d60e31b8152600481018290527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906342966c68906024015f604051808303815f87803b158015610dd1575f80fd5b505af1158015610de3573d5f803e3d5ffd5b5050505050565b5f80610df861c4e084612bf3565b9050610e076201518082612c0f565b9392505050565b805f03610e2e5760405163b4fa3fb360e01b815260040160405180910390fd5b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316637dc2268c6040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e8a573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610eae91906129d7565b6001600160a01b0316336001600160a01b031614610edf5760405163c004a90b60e01b815260040160405180910390fd5b7f000000000000000000000000000000000000000000000000000000000000000063ffffffff1642118015610f2d575060045461070890610f2b90610100900463ffffffff1642612bcd565b115b15610f3a57610f3a61194e565b610f667f0000000000000000000000000000000000000000000000000000000000000000333084611db5565b6040516370a0823160e01b81523060048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906370a0823190602401602060405180830381865afa158015610fc8573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610fec91906129c0565b60095550565b6040805180820182526003546001600160f81b038082168352600160f81b90910460ff161515602080840191909152835160808101855283519092168252309082019081526001600160801b0382850181815260608401828152955163fc6f786560e01b81528451600482015292516001600160a01b031660248401525181166044830152935190931660648401525f928392919073c36442b4a4522e871399cd717abdd847ab11fe889063fc6f78659060840160408051808303815f875af11580156110c1573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906110e59190612c71565b602084015191955093505f906110fc5783856110ff565b84845b5060405163a9059cbb60e01b815273ee30c3d642ea92aab46c81ab5367e3ef048b6e5e6004820152602481018290529091507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063a9059cbb906044016020604051808303815f875af1158015611181573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906111a59190612ca2565b506111ae610cd7565b5050509091565b6111bd611eb2565b60648160ff1611806111d2575060028160ff16105b156111f05760405163b4fa3fb360e01b815260040160405180910390fd5b600a805460ff191660ff92909216919091179055565b61120e611eb2565b6112175f611edf565b565b611221611eb2565b600b8190556064811080159061123b57506103e8600b5411155b61128c5760405162461bcd60e51b815260206004820152601e60248201527f4d696e20312070657263656e742c206d61782031302070657263656e742e000060448201526064015b60405180910390fd5b610c7761194e565b60025433906001600160a01b031681146112cc5760405163118cdaa760e01b81526001600160a01b0382166004820152602401611283565b610c7781611edf565b5f807f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663e80c20e06040518163ffffffff1660e01b8152600401602060405180830381865afa158015611333573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061135791906129d7565b90506103845f61136683611ef8565b90508163ffffffff168163ffffffff161015611380578091505b5f61138b84846120b0565b5090505f611398826122e5565b90506113e681887f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000612600565b979650505050505050565b5f7325215d9ba4403b3da77ce50606b54577a71b78956103848261141483611ef8565b90508163ffffffff168163ffffffff16101561142e578091505b5f61143984846120b0565b5090505f611446826122e5565b90506113e681887f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000612600565b5f6007620151806114a761c4e085612bf3565b6114b19190612c0f565b6114bc906004612c36565b6114c69190612cbb565b92915050565b6114d4611eb2565b600280546001600160a01b0383166001600160a01b031990911681179091556115056001546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b611545611eb2565b60648160ff16118061155a575060028160ff16105b156115785760405163b4fa3fb360e01b815260040160405180910390fd5b600a805460ff9092166101000261ff0019909216919091179055565b60405163095ea7b360e01b815273e592427a0aece92de3edee1f18e0157c058615646004820152602481018390525f907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063095ea7b3906044016020604051808303815f875af1158015611614573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116389190612ca2565b505f7f00000000000000000000000000000000000000000000000000000000000000006127107f000000000000000000000000000000000000000000000000000000000000000060405160200161169193929190612ce2565b60405160208183030381529060405290505f6116ac856113f1565b600a549091505f906064906116c990610100900460ff1682612d1d565b6116d69060ff1684612ba3565b6116e09190612bba565b6040805160a0810182528581523060208201528082018890526060810189905260808101839052905163c04b8d5960e01b81529192509073e592427a0aece92de3edee1f18e0157c058615649063c04b8d5990611741908490600401612d36565b6020604051808303815f875af115801561175d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906113e691906129c0565b5f80808080807f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03808216908316106117e35780826117e6565b81815b90945092506001600160a01b038085169083161461180557888a611808565b89895b9098509650611816886126ce565b61181f886126ce565b989b979a50985092959194509092505050565b604080516001600160a01b038481166024830152604480830185905283518084039091018152606490920183526020820180516001600160e01b031663095ea7b360e01b17905291515f9283929087169161188d9190612da5565b5f604051808303815f865af19150503d805f81146118c6576040519150601f19603f3d011682016040523d82523d5f602084013e6118cb565b606091505b50915091508180156118f55750805115806118f55750808060200190518101906118f59190612ca2565b610de35760405162461bcd60e51b8152602060048201526002602482015261534160f01b6044820152606401611283565b60025f540361194857604051633ee5aeb560e01b815260040160405180910390fd5b60025f55565b7f000000000000000000000000000000000000000000000000000000000000000063ffffffff1642101561199557604051631864d7ab60e21b815260040160405180910390fd5b6004545f90610100900463ffffffff16156119c7576004546119c290610100900463ffffffff1642612bcd565b6119f7565b6119f763ffffffff7f00000000000000000000000000000000000000000000000000000000000000001642612bcd565b90505f805f805f600460019054906101000a900463ffffffff1663ffffffff165f03611a5f57611a2c8663ffffffff166126e8565b919650945092507f0000000000000000000000000000000000000000000000000000000000000000915060019050611aa8565b61070863ffffffff87161115611aa857611a7e8663ffffffff166126e8565b6004549297509095509350610100900463ffffffff1691506001905082611aa481612dbb565b9350505b8015611b3857611abe61070861ffff8516612c52565b611ac89083612c36565b6004805463ffffffff9283166101000264ffffffff00199091161790556040805180820182526001600160801b0380881682525f6020808401828152958b168083526007909152939020915193518116600160801b029316929092179091556008805463ffffffff191690911790555b505050505050565b5f80611b4d86868661278a565b9050611b5883612849565b8015611b7357505f8480611b6e57611b6e6129f2565b868809115b15611b8657611b83600182612be0565b90505b90505b949350505050565b60405163095ea7b360e01b815273e592427a0aece92de3edee1f18e0157c058615646004820152602481018390525f907f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03169063095ea7b3906044016020604051808303815f875af1158015611c11573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611c359190612ca2565b505f7f00000000000000000000000000000000000000000000000000000000000000006127107f0000000000000000000000000000000000000000000000000000000000000000604051602001611c8e93929190612ce2565b60405160208183030381529060405290505f611ca9856112d5565b600a549091505f906064906116c99060ff1682612d1d565b604080516001600160a01b038481166024830152604480830185905283518084039091018152606490920183526020820180516001600160e01b031663a9059cbb60e01b17905291515f92839290871691611d1c9190612da5565b5f604051808303815f865af19150503d805f8114611d55576040519150601f19603f3d011682016040523d82523d5f602084013e611d5a565b606091505b5091509150818015611d84575080511580611d84575080806020019051810190611d849190612ca2565b610de35760405162461bcd60e51b815260206004820152600260248201526114d560f21b6044820152606401611283565b604080516001600160a01b0385811660248301528481166044830152606480830185905283518084039091018152608490920183526020820180516001600160e01b03166323b872dd60e01b17905291515f92839290881691611e189190612da5565b5f604051808303815f865af19150503d805f8114611e51576040519150601f19603f3d011682016040523d82523d5f602084013e611e56565b606091505b5091509150818015611e80575080511580611e80575080806020019051810190611e809190612ca2565b611b385760405162461bcd60e51b815260206004820152600360248201526229aa2360e91b6044820152606401611283565b6001546001600160a01b031633146112175760405163118cdaa760e01b8152336004820152602401611283565b600280546001600160a01b0319169055610c7781612875565b5f805f836001600160a01b0316633850c7bd6040518163ffffffff1660e01b815260040160e060405180830381865afa158015611f37573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190611f5b9190612dec565b5050509350935050505f8161ffff1611611f9c5760405162461bcd60e51b81526020600482015260026024820152614e4960f01b6044820152606401611283565b5f806001600160a01b03861663252c09d784611fb9876001612e7a565b611fc39190612e94565b6040516001600160e01b031960e084901b16815261ffff9091166004820152602401608060405180830381865afa158015612000573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120249190612ec8565b9350505091508061209c5760405163252c09d760e01b81525f60048201526001600160a01b0387169063252c09d790602401608060405180830381865afa158015612071573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906120959190612ec8565b5091935050505b6120a68242612bf3565b9695505050505050565b5f808263ffffffff165f036120ec5760405162461bcd60e51b8152602060048201526002602482015261042560f41b6044820152606401611283565b6040805160028082526060820183525f9260208301908036833701905050905083815f8151811061211f5761211f612f31565b602002602001019063ffffffff16908163ffffffff16815250505f8160018151811061214d5761214d612f31565b602002602001019063ffffffff16908163ffffffff16815250505f80866001600160a01b031663883bdbfd846040518263ffffffff1660e01b81526004016121959190612f45565b5f60405180830381865afa1580156121af573d5f803e3d5ffd5b505050506040513d5f823e601f3d908101601f191682016040526121d69190810190613054565b915091505f825f815181106121ed576121ed612f31565b60200260200101518360018151811061220857612208612f31565b602002602001015161221a9190613119565b90505f825f8151811061222f5761222f612f31565b60200260200101518360018151811061224a5761224a612f31565b602002602001015161225c9190613146565b905063ffffffff881661226f8184613165565b97505f8360060b12801561228e57506122888184613198565b60060b15155b156122a1578761229d816131b9565b9850505b63ffffffff8916640100000000600160c01b03602084901b166122cb6001600160a01b03836131da565b6122d5919061320b565b9750505050505050509250929050565b5f805f8360020b126122fa578260020b612301565b8260020b5f035b9050620d89e8811115612327576040516315e4079d60e11b815260040160405180910390fd5b5f816001165f0361233c57600160801b61234e565b6ffffcb933bd6fad37aa2d162d1a5940015b70ffffffffffffffffffffffffffffffffff1690506002821615612382576ffff97272373d413259a46990580e213a0260801c5b60048216156123a1576ffff2e50f5f656932ef12357cf3c7fdcc0260801c5b60088216156123c0576fffe5caca7e10e4e61c3624eaa0941cd00260801c5b60108216156123df576fffcb9843d60f6159c9db58835c9266440260801c5b60208216156123fe576fff973b41fa98c081472e6896dfb254c00260801c5b604082161561241d576fff2ea16466c96a3843ec78b326b528610260801c5b608082161561243c576ffe5dee046a99a2a811c461f1969c30530260801c5b61010082161561245c576ffcbe86c7900a88aedcffc83b479aa3a40260801c5b61020082161561247c576ff987a7253ac413176f2b074cf7815e540260801c5b61040082161561249c576ff3392b0822b70005940c7a398e4b70f30260801c5b6108008216156124bc576fe7159475a2c29b7443b29c7fa6e889d90260801c5b6110008216156124dc576fd097f3bdfd2022b8845ad8f792aa58250260801c5b6120008216156124fc576fa9f746462d870fdf8a65dc1f90e061e50260801c5b61400082161561251c576f70d869a156d2a1b890bb3df62baf32f70260801c5b61800082161561253c576f31be135f97d08fd981231505542fcfa60260801c5b6201000082161561255d576f09aa508b5b7a84e1c677de54f3e99bc90260801c5b6202000082161561257d576e5d6af8dedb81196699c329225ee6040260801c5b6204000082161561259c576d2216e584f5fa1ea926041bedfe980260801c5b620800008216156125b9576b048a170391f7dc42444e8fa20260801c5b5f8460020b13156125d857805f19816125d4576125d46129f2565b0490505b6401000000008106156125ec5760016125ee565b5f5b60ff16602082901c0192505050919050565b5f6001600160801b036001600160a01b03861611612672575f61262c6001600160a01b03871680612ba3565b9050826001600160a01b0316846001600160a01b03161061265b57612656600160c01b868361278a565b61266a565b61266a8186600160c01b61278a565b915050611b89565b5f6126906001600160a01b038716806801000000000000000061278a565b9050826001600160a01b0316846001600160a01b0316106126bf576126ba600160801b868361278a565b6120a6565b6120a68186600160801b61278a565b5f6127106126de83612328612ba3565b6114c69190612bba565b5f805f6126f4846128c6565b60085490915061270f9061ffff83169063ffffffff16612c36565b61271a906001612c36565b92505f612710600b546009546127309190612ba3565b61273a9190612bba565b90505f612748603083612bba565b90505f61275961ffff851683613239565b9050612765818361325b565b9450600954856001600160801b031611156127805760095494505b5050509193909250565b5f838302815f1985870982811083820303915050805f036127be578382816127b4576127b46129f2565b0492505050610e07565b8084116127de5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f600282600381111561285e5761285e61327a565b612868919061328e565b60ff166001149050919050565b600180546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6004545f90610100900463ffffffff1681036128fe576107088211156128f7576128f261070883612bba565b6114c6565b5f92915050565b6107088211156128f757600161291661070884612bba565b6128f291906132af565b919050565b63ffffffff81168114610c77575f80fd5b5f60208284031215612946575f80fd5b8135610e0781612925565b5f60208284031215612961575f80fd5b5035919050565b60ff81168114610c77575f80fd5b5f60208284031215612986575f80fd5b8135610e0781612968565b6001600160a01b0381168114610c77575f80fd5b5f602082840312156129b5575f80fd5b8135610e0781612991565b5f602082840312156129d0575f80fd5b5051919050565b5f602082840312156129e7575f80fd5b8151610e0781612991565b634e487b7160e01b5f52601260045260245ffd5b634e487b7160e01b5f52601160045260245ffd5b5f8160020b8360020b80612a3057612a306129f2565b627fffff1982145f1982141615612a4957612a49612a06565b90059392505050565b5f8260020b8260020b028060020b9150808214612a7157612a71612a06565b5092915050565b5f8160020b627fffff198103612a9057612a90612a06565b5f0392915050565b81516001600160a01b0316815261016081016020830151612ac460208401826001600160a01b03169052565b506040830151612adb604084018262ffffff169052565b506060830151612af0606084018260020b9052565b506080830151612b05608084018260020b9052565b5060a083015160a083015260c083015160c083015260e083015160e0830152610100830151610100830152610120830151612b4c6101208401826001600160a01b03169052565b5061014092830151919092015290565b5f805f8060808587031215612b6f575f80fd5b845160208601519094506001600160801b0381168114612b8d575f80fd5b6040860151606090960151949790965092505050565b80820281158282048414176114c6576114c6612a06565b5f82612bc857612bc86129f2565b500490565b818103818111156114c6576114c6612a06565b808201808211156114c6576114c6612a06565b63ffffffff82811682821603908111156114c6576114c6612a06565b5f63ffffffff831680612c2457612c246129f2565b8063ffffffff84160491505092915050565b63ffffffff81811683821601908111156114c6576114c6612a06565b63ffffffff8181168382160290811690818114612a7157612a71612a06565b5f8060408385031215612c82575f80fd5b505080516020909101519092909150565b80518015158114612920575f80fd5b5f60208284031215612cb2575f80fd5b610e0782612c93565b5f63ffffffff831680612cd057612cd06129f2565b8063ffffffff84160691505092915050565b606093841b6bffffffffffffffffffffffff19908116825260e89390931b6001600160e81b0319166014820152921b166017820152602b0190565b60ff82811682821603908111156114c6576114c6612a06565b602081525f825160a0602084015280518060c0850152806020830160e086015e5f60e0828601015260018060a01b0360208601511660408501526040850151606085015260608501516080850152608085015160a085015260e0601f19601f8301168501019250505092915050565b5f82518060208501845e5f920191825250919050565b5f61ffff821661ffff8103612dd257612dd2612a06565b60010192915050565b805161ffff81168114612920575f80fd5b5f805f805f805f60e0888a031215612e02575f80fd5b8751612e0d81612991565b8097505060208801518060020b8114612e24575f80fd5b9550612e3260408901612ddb565b9450612e4060608901612ddb565b9350612e4e60808901612ddb565b925060a0880151612e5e81612968565b9150612e6c60c08901612c93565b905092959891949750929550565b61ffff81811683821601908111156114c6576114c6612a06565b5f61ffff831680612ea757612ea76129f2565b8061ffff84160691505092915050565b8051600681900b8114612920575f80fd5b5f805f8060808587031215612edb575f80fd5b8451612ee681612925565b9350612ef460208601612eb7565b92506040850151612f0481612991565b9150612f1260608601612c93565b905092959194509250565b634e487b7160e01b5f52604160045260245ffd5b634e487b7160e01b5f52603260045260245ffd5b602080825282518282018190525f918401906040840190835b81811015612f8257835163ffffffff16835260209384019390920191600101612f5e565b509095945050505050565b604051601f8201601f1916810167ffffffffffffffff81118282101715612fb657612fb6612f1d565b604052919050565b5f67ffffffffffffffff821115612fd757612fd7612f1d565b5060051b60200190565b5f82601f830112612ff0575f80fd5b8151613003612ffe82612fbe565b612f8d565b8082825260208201915060208360051b860101925085831115613024575f80fd5b602085015b8381101561304a57805161303c81612991565b835260209283019201613029565b5095945050505050565b5f8060408385031215613065575f80fd5b825167ffffffffffffffff81111561307b575f80fd5b8301601f8101851361308b575f80fd5b8051613099612ffe82612fbe565b8082825260208201915060208360051b8501019250878311156130ba575f80fd5b6020840193505b828410156130e3576130d284612eb7565b8252602093840193909101906130c1565b80955050505050602083015167ffffffffffffffff811115613103575f80fd5b61310f85828601612fe1565b9150509250929050565b600682810b9082900b03667fffffffffffff198112667fffffffffffff821317156114c6576114c6612a06565b6001600160a01b0382811682821603908111156114c6576114c6612a06565b5f8160060b8360060b8061317b5761317b6129f2565b667fffffffffffff1982145f1982141615612a4957612a49612a06565b5f8260060b806131aa576131aa6129f2565b808360060b0791505092915050565b5f8160020b627fffff1981036131d1576131d1612a06565b5f190192915050565b6001600160c01b0381811683821681810290921691818304811482151761320357613203612a06565b505092915050565b5f6001600160c01b03831680613223576132236129f2565b6001600160c01b03929092169190910492915050565b6001600160801b038181168382160290811690818114612a7157612a71612a06565b6001600160801b0381811683821601908111156114c6576114c6612a06565b634e487b7160e01b5f52602160045260245ffd5b5f60ff8316806132a0576132a06129f2565b8060ff84160691505092915050565b61ffff82811682821603908111156114c6576114c6612a0656fea264697066735822122092d63e90c6ee3e373b5ec127e62b0d9644177780152c2e0888a4c90cd85a24e164736f6c634300081a003360e060405260405161124138038061124183398101604081905261002291610096565b6001600160a01b0383166100495760405163b4fa3fb360e01b815260040160405180910390fd5b63ffffffff1660c052600380546001600160a01b031916331790556001600160a01b039081166080521660a0526100e2565b80516001600160a01b0381168114610091575f80fd5b919050565b5f805f606084860312156100a8575f80fd5b6100b18461007b565b92506100bf6020850161007b565b9150604084015163ffffffff811681146100d7575f80fd5b809150509250925092565b60805160a05160c0516110cc6101755f395f8181610232015281816102d70152818161034901528181610510015261096701525f81816101af0152818161066b0152818161071b0152818161077c0152818161081901526108dc01525f8181610259015281816104e60152818161069a0152818161084f01528181610a6301528181610aab0152610af301526110cc5ff3fe608060405234801561000f575f80fd5b50600436106100f0575f3560e01c806395d4063f11610093578063d09d197711610063578063d09d197714610203578063e6fd48bc1461022d578063f9119bbd14610254578063ff4773081461027b575f80fd5b806395d4063f14610182578063a0712d6814610197578063aa6df299146101aa578063c8581e2a146101e9575f80fd5b806377c18c73116100ce57806377c18c731461012c5780638041950b146101345780638d50a3d9146101345780638d9f981014610153575f80fd5b8063182b74e6146100f45780632551d91714610110578063488fc77514610119575b5f80fd5b6100fd60025481565b6040519081526020015b60405180910390f35b6100fd60015481565b6100fd610127366004610e58565b61028e565b6100fd5f5481565b61013e6201518081565b60405163ffffffff9091168152602001610107565b61015b6102c9565b6040805163ffffffff94851681529284166020840152921691810191909152606001610107565b610195610190366004610e71565b610384565b005b6101956101a5366004610e91565b6104b9565b6101d17f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610107565b6101f1600e81565b60405160ff9091168152602001610107565b6100fd610211366004610ea8565b600460209081525f928352604080842090915290825290205481565b61013e7f000000000000000000000000000000000000000000000000000000000000000081565b6101d17f000000000000000000000000000000000000000000000000000000000000000081565b6003546101d1906001600160a01b031681565b5f808263ffffffff166001146102b6576001830363ffffffff16668e1bc9bf040000026102b8565b5f5b670de0b6b3a7640000039392505050565b5f8080806102fd63ffffffff7f00000000000000000000000000000000000000000000000000000000000000001642610efa565b905061030c6201518082610f21565b610317906001610f48565b60ff169350600e84111561032a57600e93505b62015180610339600186610f61565b6103439190610f7d565b61036d907f0000000000000000000000000000000000000000000000000000000000000000610fa3565b925061037c6201518084610fa3565b915050909192565b4261038e82610943565b63ffffffff1611156103b357604051632db8551b60e11b815260040160405180910390fd5b335f90815260046020908152604080832060ff85168452909152812054908190036103f157604051634cfe5d0f60e11b815260040160405180910390fd5b335f81815260046020908152604080832060ff871680855290835281842093909355518481529192917fb3df9980c12f4f6cbd2921f5dbaa79e0cbd522a59e93a57baab92fd3a4ecc33f910160405180910390a3806001546104539190610fbf565b6001556003546040516340c10f1960e01b8152336004820152602481018390526001600160a01b03909116906340c10f19906044015f604051808303815f87803b15801561049f575f80fd5b505af11580156104b1573d5f803e3d5ffd5b505050505050565b805f036104d95760405163b4fa3fb360e01b815260040160405180910390fd5b61050e6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163330846109a1565b7f000000000000000000000000000000000000000000000000000000000000000063ffffffff1642101561055557604051631864d7ab60e21b815260040160405180910390fd5b5f8061055f6102c9565b92505091508063ffffffff1642111561058b576040516354913e1960e01b815260040160405180910390fd5b5f61059584610a0e565b90505f670de0b6b3a76400006105aa8561028e565b6105b49087610fd2565b6105be9190610fe9565b335f90815260046020908152604080832063ffffffff891684529091528120805492935083929091906105f2908490610fbf565b909155505060405181815263ffffffff85169033907f35e338cd1c45f4d09abab571f5559403d556df8920b83a5e2710f6f6657d44019060200160405180910390a3806002546106429190610fbf565b6002555f54610652908690610fbf565b5f5560405163095ea7b360e01b81526001600160a01b037f000000000000000000000000000000000000000000000000000000000000000081166004830152602482018790527f0000000000000000000000000000000000000000000000000000000000000000169063095ea7b3906044016020604051808303815f875af11580156106e0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107049190610ffc565b50604051630c371c6b60e21b8152600481018390527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906330dc71ac906024015f604051808303815f87803b158015610764575f80fd5b505af1158015610776573d5f803e3d5ffd5b505050507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663d94439236040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107d6573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906107fa9190610ffc565b1580156108bd57506040516370a0823160e01b81526001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000811660048301526ba18f07d736b90be550000000917f0000000000000000000000000000000000000000000000000000000000000000909116906370a0823190602401602060405180830381865afa158015610896573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108ba919061101b565b10155b1561093c576040516204bb7160e81b815263ffffffff421660048201527f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316906304bb7100906024015f604051808303815f87803b158015610925575f80fd5b505af1158015610937573d5f803e3d5ffd5b505050505b5050505050565b5f8062015180610954600185611032565b60ff166109619190610f7d565b61098b907f0000000000000000000000000000000000000000000000000000000000000000610fa3565b905061099a6201518082610fa3565b9392505050565b6040516001600160a01b038481166024830152838116604483015260648201839052610a089186918216906323b872dd906084015b604051602081830303815290604052915060e01b6020820180516001600160e01b038381831617835250505050610b36565b50505050565b5f80610a21836103e86127106001610ba1565b90505f610a35846103206127106001610ba1565b90505f610a49856103e86127106001610ba1565b82860381900384900394509050610a9e6001600160a01b037f000000000000000000000000000000000000000000000000000000000000000016738d81a541ceb500a25ad15de5b692b5d0201dfaa085610bf0565b610ae66001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000167396a5399d07896f757bd4c6ef56461f58db95186283610bf0565b610b2e6001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001673ee30c3d642ea92aab46c81ab5367e3ef048b6e5e84610bf0565b505050919050565b5f610b4a6001600160a01b03841683610c21565b905080515f14158015610b6e575080806020019051810190610b6c9190610ffc565b155b15610b9c57604051635274afe760e01b81526001600160a01b03841660048201526024015b60405180910390fd5b505050565b5f80610bae868686610c37565b9050610bb983610cf6565b8015610bd457505f8480610bcf57610bcf610f0d565b868809115b15610be757610be4600182610fbf565b90505b95945050505050565b6040516001600160a01b03838116602483015260448201839052610b9c91859182169063a9059cbb906064016109d6565b6060610c2e83835f610d22565b90505b92915050565b5f838302815f1985870982811083820303915050805f03610c6b57838281610c6157610c61610f0d565b049250505061099a565b808411610c8b5760405163227bc15360e01b815260040160405180910390fd5b5f848688095f868103871696879004966002600389028118808a02820302808a02820302808a02820302808a02820302808a02820302808a02909103029181900381900460010186841190950394909402919094039290920491909117919091029150509392505050565b5f6002826003811115610d0b57610d0b61104b565b610d15919061105f565b60ff166001149050919050565b606081471015610d475760405163cd78605960e01b8152306004820152602401610b93565b5f80856001600160a01b03168486604051610d629190611080565b5f6040518083038185875af1925050503d805f8114610d9c576040519150601f19603f3d011682016040523d82523d5f602084013e610da1565b606091505b5091509150610db1868383610dbb565b9695505050505050565b606082610dd057610dcb82610e17565b61099a565b8151158015610de757506001600160a01b0384163b155b15610e1057604051639996b31560e01b81526001600160a01b0385166004820152602401610b93565b508061099a565b805115610e275780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b803563ffffffff81168114610e53575f80fd5b919050565b5f60208284031215610e68575f80fd5b610c2e82610e40565b5f60208284031215610e81575f80fd5b813560ff8116811461099a575f80fd5b5f60208284031215610ea1575f80fd5b5035919050565b5f8060408385031215610eb9575f80fd5b82356001600160a01b0381168114610ecf575f80fd5b9150610edd60208401610e40565b90509250929050565b634e487b7160e01b5f52601160045260245ffd5b81810381811115610c3157610c31610ee6565b634e487b7160e01b5f52601260045260245ffd5b5f63ffffffff831680610f3657610f36610f0d565b8063ffffffff84160491505092915050565b60ff8181168382160190811115610c3157610c31610ee6565b63ffffffff8281168282160390811115610c3157610c31610ee6565b63ffffffff8181168382160290811690818114610f9c57610f9c610ee6565b5092915050565b63ffffffff8181168382160190811115610c3157610c31610ee6565b80820180821115610c3157610c31610ee6565b8082028115828204841417610c3157610c31610ee6565b5f82610ff757610ff7610f0d565b500490565b5f6020828403121561100c575f80fd5b8151801515811461099a575f80fd5b5f6020828403121561102b575f80fd5b5051919050565b60ff8281168282160390811115610c3157610c31610ee6565b634e487b7160e01b5f52602160045260245ffd5b5f60ff83168061107157611071610f0d565b8060ff84160691505092915050565b5f82518060208501845e5f92019182525091905056fea26469706673582212205681b21cf9a1e3f4bf05e49364d7fd6ad061ee58b70e8ef308ef2dcb2b04450a64736f6c634300081a003300000000000000000000000000000000000000000000000000000000671fcd9c00000000000000000000000000000000000000000000000000000000671fcd9c00000000000000000000000025215d9ba4403b3da77ce50606b54577a71b7895000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b100000000000000000000000096a5399d07896f757bd4c6ef56461f58db951862000000000000000000000000ee30c3d642ea92aab46c81ab5367e3ef048b6e5e

Deployed Bytecode

0x608060405234801561000f575f80fd5b5060043610610106575f3560e01c806370a082311161009e5780639bed7b6c1161006e5780639bed7b6c1461023c578063a9059cbb14610244578063aa6df29914610257578063dd62ed3e1461027e578063e80c20e0146102b6575f80fd5b806370a08231146101d257806379cc6790146101fa5780637dc2268c1461020d57806395d89b4114610234575f80fd5b8063313ce567116100d9578063313ce5671461017057806340c10f191461017f57806342966c68146101945780636b8f2eae146101a7575f80fd5b806306fdde031461010a578063095ea7b31461012857806318160ddd1461014b57806323b872dd1461015d575b5f80fd5b6101126102c9565b60405161011f9190610bc7565b60405180910390f35b61013b610136366004610c10565b610359565b604051901515815260200161011f565b6002545b60405190815260200161011f565b61013b61016b366004610c3a565b610372565b6040516012815260200161011f565b61019261018d366004610c10565b610395565b005b6101926101a2366004610c78565b6103ab565b6101ba6101b5366004610c3a565b6103b8565b6040516001600160a01b03909116815260200161011f565b61014f6101e0366004610c8f565b6001600160a01b03165f9081526020819052604090205490565b610192610208366004610c10565b6105e2565b6101ba7f000000000000000000000000f8c4b0e8322ebec10580e34667210386007c439881565b6101126105f7565b610192610606565b61013b610252366004610c10565b610646565b6101ba7f00000000000000000000000014f485d6480d76fe31e9332ed4b87e704601b55281565b61014f61028c366004610caa565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b6005546101ba906001600160a01b031681565b6060600380546102d890610ce1565b80601f016020809104026020016040519081016040528092919081815260200182805461030490610ce1565b801561034f5780601f106103265761010080835404028352916020019161034f565b820191905f5260205f20905b81548152906001019060200180831161033257829003601f168201915b5050505050905090565b5f33610366818585610653565b60019150505b92915050565b5f3361037f858285610665565b61038a8585856106e5565b506001949350505050565b61039d610742565b6103a7828261078b565b5050565b6103b533826107bf565b50565b5f6103c16107f3565b5f3090505f846001600160a01b0316633850c7bd6040518163ffffffff1660e01b815260040160e060405180830381865afa158015610402573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104269190610d2f565b50505050505090505f80836001600160a01b0316886001600160a01b031610610450578388610453565b87845b9092509050856ba18f07d736b90be5500000005f806001600160a01b03808716908d1614610482578284610485565b83835b9092509050633b9aca006104b4836104a584670de0b6b3a7640000610ddf565b6104af9190610e0a565b61083c565b6104c290600160601b610ddf565b6104cc9190610e0a565b6040516309f56ab160e11b81526001600160a01b038089166004830152808816602483015261271060448301528216606482015290975073c36442b4a4522e871399cd717abdd847ab11fe889081906313ead562906084016020604051808303815f875af1158015610540573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105649190610e29565b600580546001600160a01b0319166001600160a01b039290921691821790556040516332148f6760e01b815260646004820152909a508a906332148f67906024015f604051808303815f87803b1580156105bc575f80fd5b505af11580156105ce573d5f803e3d5ffd5b505050505050505050505050509392505050565b6105ed823383610665565b6103a782826107bf565b6060600480546102d890610ce1565b61060e6107f3565b6106447f00000000000000000000000014f485d6480d76fe31e9332ed4b87e704601b5526ba18f07d736b90be55000000061078b565b565b5f336103668185856106e5565b6106608383836001610927565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f1981146106df57818110156106d157604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064015b60405180910390fd5b6106df84848484035f610927565b50505050565b6001600160a01b03831661070e57604051634b637e8f60e11b81525f60048201526024016106c8565b6001600160a01b0382166107375760405163ec442f0560e01b81525f60048201526024016106c8565b6106608383836109f9565b336001600160a01b037f000000000000000000000000f8c4b0e8322ebec10580e34667210386007c439816146106445760405163c004a90b60e01b815260040160405180910390fd5b6001600160a01b0382166107b45760405163ec442f0560e01b81525f60048201526024016106c8565b6103a75f83836109f9565b6001600160a01b0382166107e857604051634b637e8f60e11b81525f60048201526024016106c8565b6103a7825f836109f9565b336001600160a01b037f00000000000000000000000014f485d6480d76fe31e9332ed4b87e704601b552161461064457604051633579266f60e11b815260040160405180910390fd5b5f815f0361084b57505f919050565b5f600161085784610b1f565b901c6001901b9050600181848161087057610870610df6565b048201901c9050600181848161088857610888610df6565b048201901c905060018184816108a0576108a0610df6565b048201901c905060018184816108b8576108b8610df6565b048201901c905060018184816108d0576108d0610df6565b048201901c905060018184816108e8576108e8610df6565b048201901c9050600181848161090057610900610df6565b048201901c90506109208182858161091a5761091a610df6565b04610bb2565b9392505050565b6001600160a01b0384166109505760405163e602df0560e01b81525f60048201526024016106c8565b6001600160a01b03831661097957604051634a1406b160e11b81525f60048201526024016106c8565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156106df57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516109eb91815260200190565b60405180910390a350505050565b6001600160a01b038316610a23578060025f828254610a189190610e44565b90915550610a939050565b6001600160a01b0383165f9081526020819052604090205481811015610a755760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016106c8565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216610aaf57600280548290039055610acd565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610b1291815260200190565b60405180910390a3505050565b5f80608083901c15610b3357608092831c92015b604083901c15610b4557604092831c92015b602083901c15610b5757602092831c92015b601083901c15610b6957601092831c92015b600883901c15610b7b57600892831c92015b600483901c15610b8d57600492831c92015b600283901c15610b9f57600292831c92015b600183901c1561036c5760010192915050565b5f818310610bc05781610920565b5090919050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b6001600160a01b03811681146103b5575f80fd5b5f8060408385031215610c21575f80fd5b8235610c2c81610bfc565b946020939093013593505050565b5f805f60608486031215610c4c575f80fd5b8335610c5781610bfc565b92506020840135610c6781610bfc565b929592945050506040919091013590565b5f60208284031215610c88575f80fd5b5035919050565b5f60208284031215610c9f575f80fd5b813561092081610bfc565b5f8060408385031215610cbb575f80fd5b8235610cc681610bfc565b91506020830135610cd681610bfc565b809150509250929050565b600181811c90821680610cf557607f821691505b602082108103610d1357634e487b7160e01b5f52602260045260245ffd5b50919050565b805161ffff81168114610d2a575f80fd5b919050565b5f805f805f805f60e0888a031215610d45575f80fd5b8751610d5081610bfc565b8097505060208801518060020b8114610d67575f80fd5b9550610d7560408901610d19565b9450610d8360608901610d19565b9350610d9160808901610d19565b925060a088015160ff81168114610da6575f80fd5b60c08901519092508015158114610dbb575f80fd5b8091505092959891949750929550565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761036c5761036c610dcb565b634e487b7160e01b5f52601260045260245ffd5b5f82610e2457634e487b7160e01b5f52601260045260245ffd5b500490565b5f60208284031215610e39575f80fd5b815161092081610bfc565b8082018082111561036c5761036c610dcb56fea2646970667358221220fd4b45fd8beb215f1da8991db0f25c9bb1f1b99e93b175f02960addb062b082164736f6c634300081a0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000671fcd9c00000000000000000000000000000000000000000000000000000000671fcd9c00000000000000000000000025215d9ba4403b3da77ce50606b54577a71b7895000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b100000000000000000000000096a5399d07896f757bd4c6ef56461f58db951862000000000000000000000000ee30c3d642ea92aab46c81ab5367e3ef048b6e5e

-----Decoded View---------------
Arg [0] : _morpheusMintingStartTimestamp (uint32): 1730137500
Arg [1] : _morpheusBuyAndBurnStartTimestamp (uint32): 1730137500
Arg [2] : _dragonXTitanXPool (address): 0x25215d9ba4403b3DA77ce50606b54577a71b7895
Arg [3] : _titanX (address): 0xF19308F923582A6f7c465e5CE7a9Dc1BEC6665B1
Arg [4] : _dragonX (address): 0x96a5399D07896f757Bd4c6eF56461F58DB951862
Arg [5] : _owner (address): 0xEe30c3d642ea92aAb46c81AB5367E3EF048b6E5E

-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000000000000000000000000000000671fcd9c
Arg [1] : 00000000000000000000000000000000000000000000000000000000671fcd9c
Arg [2] : 00000000000000000000000025215d9ba4403b3da77ce50606b54577a71b7895
Arg [3] : 000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b1
Arg [4] : 00000000000000000000000096a5399d07896f757bd4c6ef56461f58db951862
Arg [5] : 000000000000000000000000ee30c3d642ea92aab46c81ab5367e3ef048b6e5e


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.