ETH Price: $2,954.01 (-5.34%)
Gas: 7 Gwei

Token

ShiddyPunks (SHIDDY)
 

Overview

Max Total Supply

9,995 SHIDDY

Holders

109

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
5 SHIDDY

Value
$0.00
0x4a03655de2e0394fe0bb59d6fdb66530d9f7069f
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
PairedToken

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion
File 1 of 20 : Paired.sol
pragma solidity ^0.8.20;

import {ERC20} from "./ERC20.sol";
import {TokenCollection} from "./TokenCollection.sol";
import {Escrow} from "./Escrow.sol";

contract PairedToken is ERC20 {

  error TokenNotLive();
  error RestrictedOperation();

  enum State { NEW, READY, LIVE }

  address internal $owner;
  PairedCollection internal $collection;
  State internal $state;

  constructor(string memory _name, string memory _symbol, uint256 _supply, uint8 _decimals, address owner)
  ERC20(_name, _symbol, _supply, _decimals) {
    $state = State.NEW;
    $owner = owner;
  }

  function initialize(address _collection) public {
    require($state == State.NEW, "Can only be called on new contract!");
    require(msg.sender == $owner, "Can only be called by owner!");
    require(PairedCollection(_collection).maxSupply() == maxSupply() / $erc20.unit, "Invalid Collection!");
    $collection = PairedCollection(_collection);
    $state = State.READY;
  }

  function launch() public {
    require(msg.sender == address($collection) && $state == State.READY, "Launch must be done by paired collection on ready contract!");
    $state = State.LIVE;
  }
  
  function pause() public {
    require($state == State.LIVE, "Can only be called on live contract!");
    require(msg.sender == address($collection), "Can only be called by owner!");
    $state = State.READY;
  }

  function renounce() public {
    require($state == State.LIVE, "Cannot renounce contract because its not live!");
    require(msg.sender == address($collection), "Can only be renounced by collection!");
    $owner = address(0);
  }

  function transferFrom(address from, address to, uint256 atoms) public override returns (bool) {
    if ($state != State.LIVE) {
      revert TokenNotLive();
    } else if (atoms > $erc20.users[from].balance) {
      revert ERC20InsufficientBalance(from, $erc20.users[from].balance, atoms);
    }
    uint256 loss = ($erc20.users[from].balance / $erc20.unit) - (($erc20.users[from].balance - atoms)  / $erc20.unit);
    uint256 gain = (($erc20.users[to].balance + atoms) / $erc20.unit) - ($erc20.users[to].balance / $erc20.unit);
    $collection._sudoTransferNext(from, to, loss > gain ? gain : loss);
    $collection._sudoTransferNext(address($collection), to, gain > loss ? 1 : 0);
    $collection._sudoTransferNext(from, address($collection), gain < loss ? 1 : 0);
    super.transferFrom(from, to, atoms);
    return true;
  }

  function _sudoTransferFrom(address from, address to, uint256 atoms) public returns (bool) {
    if (msg.sender != address($collection)) {
      revert RestrictedOperation();
    }
    return _sudoTransferERC20(from, to, atoms);
  }

}

contract PairedCollection is TokenCollection, Escrow {

  error TokenNotLive();
  error RestrictedOperation();
  error MintableMaxExceeded(uint256 limit);
  error MintableUnderfunded(uint256 cost);
  event Minted(address indexed recipient, uint256 amount);

  enum State { NEW, READY, LIVE }
  struct Mint {
    uint256 price;
    uint256 limit;
  }

  PairedToken internal $token;
  State internal $state;
  Mint internal $mint;
  address internal $owner;
  address internal $team;
  address internal $treasury;

  constructor(string memory _name, uint256 _supply, address owner, address team, address treasury)
  TokenCollection(_name, _supply, "") {
    $owner = owner;
    $team = team;
    $treasury = treasury;
    $state = State.NEW;
  }

  function symbol() public view returns (string memory) {
    return $token.symbol();
  }

  function initialize(address _token, uint256 teamGrant, uint256 treasuryGrant) public {
    require($state == State.NEW, "Can only be called on new contract!");
    require(msg.sender == $owner, "Can only be called by owner!");
    require(teamGrant < $collection.maxSupply, "Grant cannot exceed supply!");
    require(treasuryGrant < $collection.maxSupply, "Grant cannot exceed supply!");
    
    $token = PairedToken(_token);
    $state = State.READY;
    $token._sudoTransferFrom(_token, $team, teamGrant * $token.unit());
    $token._sudoTransferFrom(_token, $treasury, treasuryGrant * $token.unit());

    // NOTE: This is unsafe to call if any state has changed since construction!
    uint256 treasuryFullBlocks = treasuryGrant / 256;
    for (uint256 index; index < treasuryFullBlocks; index++) {
      $collection.users[address(this)].held[index] = uint256(0);
      $collection.users[$treasury].held[index] = type(uint256).max;
    }
    uint256 treasuryLastBlockMask = (1 << (treasuryGrant % 256)) - 1;
    $collection.users[$treasury].held[treasuryFullBlocks] = treasuryLastBlockMask;
    $collection.users[address(this)].held[treasuryFullBlocks] = ~treasuryLastBlockMask;
    $collection.users[$treasury].heldCount = treasuryGrant;
    $collection.users[address(this)].heldCount -= treasuryGrant;
    $collection.supply += treasuryGrant;

    // TODO: Dedup
    uint256 teamFullBlocks = teamGrant / 256;
    uint256 usedSlots = (treasuryGrant + 255) / 256;
    for (uint256 index = usedSlots; index < usedSlots + teamFullBlocks; index++) {
      $collection.users[address(this)].held[index] = uint256(0);
      $collection.users[$team].held[index] = type(uint256).max;
    }
    uint256 teamLastBlockMask = (1 << (teamGrant % 256)) - 1;
    $collection.users[$team].held[usedSlots + teamFullBlocks] = teamLastBlockMask;
    $collection.users[address(this)].held[usedSlots + teamFullBlocks] = ~teamLastBlockMask;
    $collection.users[$team].heldCount = teamGrant;
    $collection.users[address(this)].heldCount -= teamGrant;
    $collection.supply += teamGrant;
  }

  //function _transferBlock(address from, address to, 

  function launch(uint256 _mintCost, uint256 _mintLimit, string memory _uri) public {
    require($state == State.READY, "Can only be called on ready contract!");
    require(msg.sender == $owner, "Can only be called by owner!");
    $state = State.LIVE;
    $mint.price = _mintCost;
    $mint.limit = _mintLimit;
    _setURI(_uri);
    $token.launch();
  }
  
  function pause() public {
    require($state == State.LIVE, "Can only be called on live contract!");
    require(msg.sender == $owner, "Can only be called by owner!");
    $state = State.READY;
    $token.pause();
  }
  
  function price() public view returns (uint256) {
    return $mint.price;
  }

  function setMintLimit(uint256 _limit) public {
    require(msg.sender == $owner, "Can only be called by owner!");
    $mint.limit = _limit;
  }

  function setMintPrice(uint256 _price) public {
    require(msg.sender == $owner, "Can only be called by owner!");
    $mint.price = _price;
  }

  function renounce() public {
    require($state == State.LIVE, "Cannot renounce contract because its not live!");
    require(msg.sender == $owner, "Can only be renounced by owner!");
    $token.renounce();
    $owner = address(0);
  }

  function setURI(string memory _uri) public {
    require(msg.sender == $owner, "Can only be set by owner!");
    _setURI(_uri);
  }

  function mint(uint256 count) public payable {
    if ($state != State.LIVE) {
      revert TokenNotLive();
    }
    uint256 cost = count * $mint.price;
    if (count > $mint.limit) {
      revert MintableMaxExceeded($mint.limit);
    } else if (msg.value < cost) {
      revert MintableUnderfunded(count * $mint.price);
    } else {
      deposit($treasury, cost);
      deposit(msg.sender, msg.value - cost);
      _updateNext(address(this), msg.sender, count);
      $token._sudoTransferFrom(address($token), msg.sender, count * $token.unit());
    }
  }

  function _sudoTransferNext(address from, address to, uint256 count) public {
    if (msg.sender != address($token)) {
      revert RestrictedOperation();
    }
    _updateNext(from, to, count);
  }

  function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public override {
    if ($state != State.LIVE) {
      revert TokenNotLive();
    }
    super.safeTransferFrom(from, to, id, value, data);
    $token._sudoTransferFrom(from, to, $token.unit());
  }

  function safeBatchTransferFrom(address from, address to, uint256[] memory ids, uint256[] memory values, bytes memory data) public override {
    if ($state != State.LIVE) {
      revert TokenNotLive();
    }
    super.safeBatchTransferFrom(from, to, ids, values, data);
    $token._sudoTransferFrom(from, to, ids.length * $token.unit());
  }
}

File 2 of 20 : ERC20.sol
// https://docs.openzeppelin.com/contracts/5.x/api/token/erc20#IERC20
pragma solidity ^0.8.20;

abstract contract ERC20 {

  event Transfer(address indexed from, address indexed to, uint256 value);
  event Approval(address indexed owner, address indexed spender, uint256 value);
  // event Approval(address owner, address spender, uint256 atoms);

  // Errors from https://eips.ethereum.org/EIPS/eip-6093
  error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);
  error ERC20InvalidSender(address sender);
  // error ERC20InvalidReceiver(address receiver);
  error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);
  // error ERC20InvalidApprover(address approver);
  // error ERC20InvalidSpender(address spender);

  struct ERC20User {
    uint256 balance;
    mapping(address delegate => uint256) allowances;
  }

  struct ERC20Info {
    string name;
    string symbol;
    uint8 decimals;
    uint256 unit;
    uint256 supply;
    uint256 maxSupply;
    mapping(address => ERC20User) users;
  }

  ERC20Info internal $erc20;

  // TODO: Switch to using precision instead of decimals
  constructor(string memory _name, string memory _symbol, uint256 _supply, uint8 _decimals) {
    $erc20.name = _name;
    $erc20.symbol = _symbol;
    $erc20.supply = 0;
    $erc20.maxSupply = _supply;
    $erc20.users[address(this)].balance = _supply;
    $erc20.decimals = _decimals;
    $erc20.unit = 10 ** _decimals;
  }

  function transferFrom(address from, address to, uint256 atoms) public virtual returns (bool) {
    _spendAllowance(from, msg.sender, atoms);
    _sudoTransferERC20(from, to, atoms);
    return true;
  }

  function transfer(address to, uint256 atoms) public returns (bool) {
    return transferFrom(msg.sender, to, atoms);
  }

  function _sudoTransferERC20(address from, address to, uint256 atoms) internal virtual returns (bool) {
    if (atoms > $erc20.users[from].balance) {
      revert ERC20InsufficientBalance(from, $erc20.users[from].balance, atoms);
    } else if (from == address(0)) {
      revert ERC20InvalidSender(from);
    }
    $erc20.users[from].balance -= atoms;
    $erc20.users[to].balance += atoms;
    if (to == address(0) || to == address(this)) {
      $erc20.supply -= atoms;
    }
    if (from == address(this)) {
      $erc20.supply += atoms;
    }
    emit Transfer(from, to, atoms);
    return true;
  }

  function approve(address delegate, uint256 atoms) public returns (bool) {
    return _sudoApproveERC20(msg.sender, delegate, atoms);
  }

  function _sudoApproveERC20(address principal, address delegate, uint256 atoms) internal returns (bool) {
    $erc20.users[principal].allowances[delegate] = atoms;
    return true;
  }

  function allowance(address principal, address delegate) public view virtual returns (uint256) {
    return principal == delegate ? type(uint256).max : $erc20.users[principal].allowances[delegate];
  }

  function _spendAllowance(address principal, address delegate, uint256 atoms) internal {
    uint256 currentAllowance = allowance(principal, delegate);
    if (currentAllowance != type(uint256).max) {
      if (currentAllowance < atoms) {
        revert ERC20InsufficientAllowance(delegate, currentAllowance, atoms);
      }
      unchecked {
        _sudoApproveERC20(principal, delegate, currentAllowance - atoms);
      }
    }
  }
  
  function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
    return interfaceId == 0x01ffc9a7 // ERC165
      || interfaceId == 0x36372b07 // ERC20
      || interfaceId == 0x06fdde03 // ERC20 name
      || interfaceId == 0x95d89b41 // ERC20 symbol
      || interfaceId == 0x313ce567; // ERC20 decimals
  }

  function balanceOf(address account) public view returns (uint256) {
    return $erc20.users[account].balance;
  }

  function totalSupply() public virtual view returns (uint256) {
    return $erc20.supply;
  }
  
  function maxSupply() public virtual view returns (uint256) {
    return $erc20.maxSupply;
  }

  function name() public virtual view returns (string memory) {
    return $erc20.name;
  }

  function symbol() public view returns (string memory) {
    return $erc20.symbol;
  }

  function decimals() public view returns (uint8) {
    return $erc20.decimals;
  }

  function unit() public view returns (uint256) {
    return $erc20.unit;
  }
}

File 3 of 20 : TokenCollection.sol
// https://docs.openzeppelin.com/contracts/5.x/api/token/erc20#IERC20
pragma solidity ^0.8.20;

import {ERC1155} from "@openzeppelin/contracts/token/ERC1155/ERC1155.sol";
import {ERC1155Utils} from "@openzeppelin/contracts/token/ERC1155/utils/ERC1155Utils.sol";
import {Arrays} from "@openzeppelin/contracts/utils/Arrays.sol";

abstract contract TokenCollection is ERC1155 {

  using Arrays for uint256[];
  using Arrays for address[];

  error CollectionInvalidID(uint256 id);

  struct CollectionUser {
    mapping(address delegate => bool) delegates;
    uint256[40] held;
    uint256 heldCount;
  }

  struct CollectionInfo {
    string name;
    uint256 supply;
    uint256 maxSupply;
    string uri;
    mapping(address => CollectionUser) users;
  }

  CollectionInfo internal $collection;

  constructor(string memory _name, uint256 _supply, string memory _uri) ERC1155(_uri) {
    require(_supply <= 10000, "Currently only supports 10k supply!");
    $collection.name = _name;
    $collection.supply = 0;
    $collection.maxSupply = _supply;
    $collection.uri = _uri;
    $collection.users[address(this)].heldCount = _supply;
    for (uint256 index; index < 40; index++) {
      $collection.users[address(this)].held[index] = type(uint256).max;
    }
  }

  function _changeHolder(address current, address next, uint256 id) internal {
    require(isHeldBy(id, current), "Incorrect holder!");
    _markHeld(id, current, false);
    _markHeld(id, next, true);
  }

  function name() public virtual view returns (string memory) {
    return $collection.name;
  }

  function _markHeld(uint256 id, address holder, bool held) internal {
    uint256 index = (id - 1) / 256;
    uint256 offset = (id - 1) % 256;
    bool previouslyHeld = isHeldBy(id, holder);
    if (previouslyHeld == held) {
      // Do nothing
    } else if (held) {
      $collection.users[holder].heldCount += 1;
      $collection.users[holder].held[index] = $collection.users[holder].held[index] | (1 << offset);
    } else {
      $collection.users[holder].heldCount -= 1;
      $collection.users[holder].held[index] = $collection.users[holder].held[index] & ~(1 << offset);
    }
  }

  function maxSupply() public virtual view returns (uint256) {
    return $collection.maxSupply;
  }

  function totalSupply() public virtual view returns (uint256) {
    return $collection.supply;
  }

  function isHeldBy(uint256 id, address holder) public view returns (bool) {
    require(id != 0 && id <= $collection.maxSupply, "Invalid ID!");
    uint256 index = (id - 1) / 256;
    uint256 offset = (id - 1) % 256;
    return ($collection.users[holder].held[index] & (1 << offset)) != 0;
  }

  function quantityHeldBy(address account) public view returns (uint256) {
    return $collection.users[account].heldCount;
  }

  function allHeldBy(address account) public view returns (uint256[] memory) {
    heldBy(account, $collection.maxSupply);
    return heldBy(account, $collection.maxSupply);
  }

  function heldBy(address account, uint256 max) public view returns (uint256[] memory) {
    uint256 available = quantityHeldBy(account); // Assuming this is optimized
    uint256[] memory ids = new uint256[](available > max ? max : available);
    uint256 found = 0;
    uint256 slots = $collection.users[account].held.length;

    for (uint256 index = 0; (index < slots) && (found < ids.length); index++) {

      uint256 slot = $collection.users[account].held[index];
      if (slot == 0) continue; // Skip if no IDs in this slot are owned

      for (uint256 offset = 0; (offset < 256) && (found < ids.length); offset++) {
        uint256 id = index * 256 + offset + 1;
        if (id > $collection.maxSupply) break;

        if ((slot & (1 << offset)) != 0) {

          ids[found] = id;
          found += 1;
          if (found == max) break;
        }
      }
    }
    require(found == available || found == max, "Inconsistent internal state!");
    return ids;
  }

  function uri(uint256 /* id */) public view override returns (string memory) {
    return $collection.uri;
  }

  function _setURI(string memory _uri) internal override {
    $collection.uri = _uri;
  }

  function balanceOf(address account, uint256 id) public view override returns (uint256) {
    if (id == 0 || id > $collection.maxSupply) {
      revert CollectionInvalidID(id);
    }
    return isHeldBy(id, account) ? 1 : 0;
  }


  function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual override {
    address sender = _msgSender();
    if (from != sender && !isApprovedForAll(from, sender)) {
      revert ERC1155MissingApprovalForAll(sender, from);
    }
    (uint256[] memory ids, uint256[] memory values) = _asSingleElementArrays(id, value);
    _updateWithAcceptanceCheck(from, to, ids, values, data);
  }

  function safeBatchTransferFrom(address from, address to, uint256[] memory ids, uint256[] memory values, bytes memory data) public virtual override {
    address sender = _msgSender();
    if (from != sender && !isApprovedForAll(from, sender)) {
      revert ERC1155MissingApprovalForAll(sender, from);
    }
    _updateWithAcceptanceCheck(from, to, ids, values, data);
  }

  // Copied from ERC1155 implementation, because it's private there
  function _asSingleElementArrays(uint256 element1, uint256 element2) internal pure returns (uint256[] memory array1, uint256[] memory array2) {
    /// @solidity memory-safe-assembly
    assembly {
      // Load the free memory pointer
      array1 := mload(0x40)
      // Set array length to 1
      mstore(array1, 1)
      // Store the single element at the next word after the length (where content starts)
      mstore(add(array1, 0x20), element1)

      // Repeat for next array locating it right after the first array
      array2 := add(array1, 0x40)
      mstore(array2, 1)
      mstore(add(array2, 0x20), element2)

      // Update the free memory pointer by pointing after the second array
      mstore(0x40, add(array2, 0x40))
    }
  }

  function setApprovalForAll(address delegate, bool approved) public override {
    $collection.users[msg.sender].delegates[delegate] = approved;
    emit ApprovalForAll(msg.sender, delegate, approved);
  }

  function isApprovedForAll(address principal, address operator) public view virtual override returns (bool) {
    return $collection.users[principal].delegates[operator];
  }

  function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual override {
    require(from != address(0), "ERC1155: transfer from the zero address");
    require(ids.length == values.length, "ERC1155: ids and values length mismatch");

    uint256[] memory transferredIds = new uint256[](ids.length);
    uint256[] memory transferredValues = new uint256[](ids.length);
    uint256 transferredCount = 0;

    for (uint256 i = 0; i < ids.length; i++) {
      if (values[i] != 1) {
        revert("ERC1155: invalid value, can only transfer 1 of each ID");
      }

      if (isHeldBy(ids[i], from)) {
        _changeHolder(from, to, ids[i]);

        transferredIds[transferredCount] = ids[i];
        transferredValues[transferredCount] = values[i];
        transferredCount++;
      } else {
        revert("ERC1155: attempting to transfer an ID not held by the sender");
      }
    }

    if (transferredCount > 0) {
      uint256[] memory actualTransferredIds = new uint256[](transferredCount);
      uint256[] memory actualTransferredValues = new uint256[](transferredCount);
      for (uint256 i = 0; i < transferredCount; i++) {
        actualTransferredIds[i] = transferredIds[i];
        actualTransferredValues[i] = transferredValues[i];
      }
      emit TransferBatch(msg.sender, from, to, actualTransferredIds, actualTransferredValues);
    }

    if (from == address(this)) {
      $collection.supply += transferredCount;
    }

    if (to == address(0) || to == address(this)) {
      $collection.supply -= transferredCount;
    }
  }

  function _updateNext(address from, address to, uint256 count) internal {
    uint256 transferred = 0;
    uint256[] memory ids = new uint256[](count);
    uint256[] memory values = new uint256[](count); // Assuming each transfer is of quantity 1

    for (uint256 index = 0; index < $collection.users[from].held.length && transferred < count; index++) {
      uint256 fromSlot = $collection.users[from].held[index];
      if (fromSlot == 0) continue; // Skip if no owned IDs in this slot

      for (uint256 offset = 0; offset < 256 && transferred < count; offset++) {
        uint256 bitMask = (1 << offset);
        if (fromSlot & bitMask != 0) {
          uint256 id = 256 * index + offset + 1;
          ids[transferred] = id;
          values[transferred] = 1;

          $collection.users[from].held[index] &= ~bitMask;
          $collection.users[to].held[index] |= bitMask;

          transferred++;
        }
      }
    }

    require(transferred == count, "Not enough elements owned by sender to transfer");

    // Update the held counts for both parties
    $collection.users[from].heldCount -= transferred;
    $collection.users[to].heldCount += transferred;
    
    if (from == address(this)) {
      $collection.supply += transferred;
    }

    if (to == address(0) || to == address(this)) {
      $collection.supply -= transferred;
    }


    if (transferred == 1) {
      emit TransferSingle(msg.sender, from, to, ids[0], 1);
    } else if (transferred > 1) {
      emit TransferBatch(msg.sender, from, to, ids, values);
    }
  }


  function _createOnesArray(uint256 length) internal pure returns (uint256[] memory) {
    uint[] memory onesArray = new uint[](length);
    for (uint256 index; index < length; index++) {
      onesArray[index] = 1;
    }
    return onesArray;
  }

  function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
    return interfaceId == 0x01ffc9a7 // ERC165
      || interfaceId == 0xd9b67a26 // ERC1155
        || interfaceId == 0x0e89341c; // ERC1155MetadataURI
  }

  function _updateWithAcceptanceCheck(address from, address to, uint256[] memory ids, uint256[] memory values, bytes memory /*data*/) internal virtual override {
    _update(from, to, ids, values);
  }

  function onERC1155Received(address /*operator*/, address /*from*/, uint256 /*id*/, uint256 /*value*/, bytes calldata /*data*/) external pure returns (bytes4) {
    return 0xf23a6e61;
  }

  function onERC1155BatchReceived(address /*operator*/, address /*from*/, uint256[] calldata /*ids*/, uint256[] calldata /*values*/, bytes calldata /*data*/) external pure returns (bytes4) {
    return 0xbc197c81;
  }

}

File 4 of 20 : Escrow.sol
pragma solidity ^0.8.20;

import {Owned} from "./Owned.sol";

contract Escrow {

    error EscrowDepositUnderfunded();
    error EscrowWithdrawalFailed();
    event Deposit(address sender, uint256 amount);
    event Withdrawal(address receiver, uint256 amount);

    mapping(address => uint256) internal $escrow;

    function escrowed(address beneficiary) public view returns (uint256) {
      return $escrow[beneficiary];
    }

    function deposit(address beneficiary, uint256 amount) public payable {
      if (amount > msg.value) {
        revert EscrowDepositUnderfunded();
      }
      $escrow[beneficiary] += amount;
    }

    function withdraw(address payable beneficiary) public {
      uint256 payment = $escrow[beneficiary];
      $escrow[beneficiary] = 0;
      (bool success,) = payable(beneficiary).call{value: payment}("");
      if (success != true) {
        revert EscrowWithdrawalFailed();
      }
    }
    
    function withdraw(address payable beneficiary, uint256 amount) public {
      uint256 max = $escrow[beneficiary];
      require(amount <= max, "Can't withdraw more than maximum amount!");
      $escrow[beneficiary] = max - amount;
      (bool success,) = payable(beneficiary).call{value: amount}("");
      if (success != true) {
        revert EscrowWithdrawalFailed();
      }
    }
}

File 5 of 20 : ERC1155.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/ERC1155.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "./IERC1155.sol";
import {IERC1155MetadataURI} from "./extensions/IERC1155MetadataURI.sol";
import {ERC1155Utils} from "./utils/ERC1155Utils.sol";
import {Context} from "../../utils/Context.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {Arrays} from "../../utils/Arrays.sol";
import {IERC1155Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the basic standard multi-token.
 * See https://eips.ethereum.org/EIPS/eip-1155
 * Originally based on code by Enjin: https://github.com/enjin/erc-1155
 */
abstract contract ERC1155 is Context, ERC165, IERC1155, IERC1155MetadataURI, IERC1155Errors {
    using Arrays for uint256[];
    using Arrays for address[];

    mapping(uint256 id => mapping(address account => uint256)) private _balances;

    mapping(address account => mapping(address operator => bool)) private _operatorApprovals;

    // Used as the URI for all token types by relying on ID substitution, e.g. https://token-cdn-domain/{id}.json
    string private _uri;

    /**
     * @dev See {_setURI}.
     */
    constructor(string memory uri_) {
        _setURI(uri_);
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC1155).interfaceId ||
            interfaceId == type(IERC1155MetadataURI).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC1155MetadataURI-uri}.
     *
     * This implementation returns the same URI for *all* token types. It relies
     * on the token type ID substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * Clients calling this function must replace the `\{id\}` substring with the
     * actual token type ID.
     */
    function uri(uint256 /* id */) public view virtual returns (string memory) {
        return _uri;
    }

    /**
     * @dev See {IERC1155-balanceOf}.
     */
    function balanceOf(address account, uint256 id) public view virtual returns (uint256) {
        return _balances[id][account];
    }

    /**
     * @dev See {IERC1155-balanceOfBatch}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] memory accounts,
        uint256[] memory ids
    ) public view virtual returns (uint256[] memory) {
        if (accounts.length != ids.length) {
            revert ERC1155InvalidArrayLength(ids.length, accounts.length);
        }

        uint256[] memory batchBalances = new uint256[](accounts.length);

        for (uint256 i = 0; i < accounts.length; ++i) {
            batchBalances[i] = balanceOf(accounts.unsafeMemoryAccess(i), ids.unsafeMemoryAccess(i));
        }

        return batchBalances;
    }

    /**
     * @dev See {IERC1155-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC1155-isApprovedForAll}.
     */
    function isApprovedForAll(address account, address operator) public view virtual returns (bool) {
        return _operatorApprovals[account][operator];
    }

    /**
     * @dev See {IERC1155-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeTransferFrom(from, to, id, value, data);
    }

    /**
     * @dev See {IERC1155-safeBatchTransferFrom}.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) public virtual {
        address sender = _msgSender();
        if (from != sender && !isApprovedForAll(from, sender)) {
            revert ERC1155MissingApprovalForAll(sender, from);
        }
        _safeBatchTransferFrom(from, to, ids, values, data);
    }

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`. Will mint (or burn) if `from`
     * (or `to`) is the zero address.
     *
     * Emits a {TransferSingle} event if the arrays contain one element, and {TransferBatch} otherwise.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement either {IERC1155Receiver-onERC1155Received}
     *   or {IERC1155Receiver-onERC1155BatchReceived} and return the acceptance magic value.
     * - `ids` and `values` must have the same length.
     *
     * NOTE: The ERC-1155 acceptance check is not performed in this function. See {_updateWithAcceptanceCheck} instead.
     */
    function _update(address from, address to, uint256[] memory ids, uint256[] memory values) internal virtual {
        if (ids.length != values.length) {
            revert ERC1155InvalidArrayLength(ids.length, values.length);
        }

        address operator = _msgSender();

        for (uint256 i = 0; i < ids.length; ++i) {
            uint256 id = ids.unsafeMemoryAccess(i);
            uint256 value = values.unsafeMemoryAccess(i);

            if (from != address(0)) {
                uint256 fromBalance = _balances[id][from];
                if (fromBalance < value) {
                    revert ERC1155InsufficientBalance(from, fromBalance, value, id);
                }
                unchecked {
                    // Overflow not possible: value <= fromBalance
                    _balances[id][from] = fromBalance - value;
                }
            }

            if (to != address(0)) {
                _balances[id][to] += value;
            }
        }

        if (ids.length == 1) {
            uint256 id = ids.unsafeMemoryAccess(0);
            uint256 value = values.unsafeMemoryAccess(0);
            emit TransferSingle(operator, from, to, id, value);
        } else {
            emit TransferBatch(operator, from, to, ids, values);
        }
    }

    /**
     * @dev Version of {_update} that performs the token acceptance check by calling
     * {IERC1155Receiver-onERC1155Received} or {IERC1155Receiver-onERC1155BatchReceived} on the receiver address if it
     * contains code (eg. is a smart contract at the moment of execution).
     *
     * IMPORTANT: Overriding this function is discouraged because it poses a reentrancy risk from the receiver. So any
     * update to the contract state after this function would break the check-effect-interaction pattern. Consider
     * overriding {_update} instead.
     */
    function _updateWithAcceptanceCheck(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal virtual {
        _update(from, to, ids, values);
        if (to != address(0)) {
            address operator = _msgSender();
            if (ids.length == 1) {
                uint256 id = ids.unsafeMemoryAccess(0);
                uint256 value = values.unsafeMemoryAccess(0);
                ERC1155Utils.checkOnERC1155Received(operator, from, to, id, value, data);
            } else {
                ERC1155Utils.checkOnERC1155BatchReceived(operator, from, to, ids, values, data);
            }
        }
    }

    /**
     * @dev Transfers a `value` tokens of token type `id` from `from` to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_safeTransferFrom}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     * - `ids` and `values` must have the same length.
     */
    function _safeBatchTransferFrom(
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, to, ids, values, data);
    }

    /**
     * @dev Sets a new URI for all token types, by relying on the token type ID
     * substitution mechanism
     * https://eips.ethereum.org/EIPS/eip-1155#metadata[defined in the ERC].
     *
     * By this mechanism, any occurrence of the `\{id\}` substring in either the
     * URI or any of the values in the JSON file at said URI will be replaced by
     * clients with the token type ID.
     *
     * For example, the `https://token-cdn-domain/\{id\}.json` URI would be
     * interpreted by clients as
     * `https://token-cdn-domain/000000000000000000000000000000000000000000000000000000000004cce0.json`
     * for token type ID 0x4cce0.
     *
     * See {uri}.
     *
     * Because these URIs cannot be meaningfully represented by the {URI} event,
     * this function emits no events.
     */
    function _setURI(string memory newuri) internal virtual {
        _uri = newuri;
    }

    /**
     * @dev Creates a `value` amount of tokens of type `id`, and assigns them to `to`.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function _mint(address to, uint256 id, uint256 value, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_mint}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - `to` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function _mintBatch(address to, uint256[] memory ids, uint256[] memory values, bytes memory data) internal {
        if (to == address(0)) {
            revert ERC1155InvalidReceiver(address(0));
        }
        _updateWithAcceptanceCheck(address(0), to, ids, values, data);
    }

    /**
     * @dev Destroys a `value` amount of tokens of type `id` from `from`
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     */
    function _burn(address from, uint256 id, uint256 value) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        (uint256[] memory ids, uint256[] memory values) = _asSingletonArrays(id, value);
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {_burn}.
     *
     * Emits a {TransferBatch} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `from` must have at least `value` amount of tokens of type `id`.
     * - `ids` and `values` must have the same length.
     */
    function _burnBatch(address from, uint256[] memory ids, uint256[] memory values) internal {
        if (from == address(0)) {
            revert ERC1155InvalidSender(address(0));
        }
        _updateWithAcceptanceCheck(from, address(0), ids, values, "");
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC1155InvalidOperator(address(0));
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Creates an array in memory with only one value for each of the elements provided.
     */
    function _asSingletonArrays(
        uint256 element1,
        uint256 element2
    ) private pure returns (uint256[] memory array1, uint256[] memory array2) {
        /// @solidity memory-safe-assembly
        assembly {
            // Load the free memory pointer
            array1 := mload(0x40)
            // Set array length to 1
            mstore(array1, 1)
            // Store the single element at the next word after the length (where content starts)
            mstore(add(array1, 0x20), element1)

            // Repeat for next array locating it right after the first array
            array2 := add(array1, 0x40)
            mstore(array2, 1)
            mstore(add(array2, 0x20), element2)

            // Update the free memory pointer by pointing after the second array
            mstore(0x40, add(array2, 0x40))
        }
    }
}

File 6 of 20 : ERC1155Utils.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import {IERC1155Receiver} from "../IERC1155Receiver.sol";
import {IERC1155Errors} from "../../../interfaces/draft-IERC6093.sol";

/**
 * @dev Library that provide common ERC-1155 utility functions.
 *
 * See https://eips.ethereum.org/EIPS/eip-1155[ERC-1155].
 */
library ERC1155Utils {
    /**
     * @dev Performs an acceptance check for the provided `operator` by calling {IERC1155-onERC1155Received}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address is doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155Received(
        address operator,
        address from,
        address to,
        uint256 id,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155Received(operator, from, id, value, data) returns (bytes4 response) {
                if (response != IERC1155Receiver.onERC1155Received.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }

    /**
     * @dev Performs a batch acceptance check for the provided `operator` by calling {IERC1155-onERC1155BatchReceived}
     * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`).
     *
     * The acceptance call is not executed and treated as a no-op if the target address is doesn't contain code (i.e. an EOA).
     * Otherwise, the recipient must implement {IERC1155Receiver-onERC1155Received} and return the acceptance magic value to accept
     * the transfer.
     */
    function checkOnERC1155BatchReceived(
        address operator,
        address from,
        address to,
        uint256[] memory ids,
        uint256[] memory values,
        bytes memory data
    ) internal {
        if (to.code.length > 0) {
            try IERC1155Receiver(to).onERC1155BatchReceived(operator, from, ids, values, data) returns (
                bytes4 response
            ) {
                if (response != IERC1155Receiver.onERC1155BatchReceived.selector) {
                    // Tokens rejected
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    // non-IERC1155Receiver implementer
                    revert IERC1155Errors.ERC1155InvalidReceiver(to);
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

File 7 of 20 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Arrays.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array (in memory) in increasing order.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        _quickSort(array, 0, array.length);
        return array;
    }

    /**
     * @dev Performs a quick sort on an array in memory. The array is sorted in increasing order.
     *
     * Invariant: `i <= j <= array.length`. This is the case when initially called by {sort} and is preserved in
     * subcalls.
     */
    function _quickSort(uint256[] memory array, uint256 i, uint256 j) private pure {
        unchecked {
            // Can't overflow given `i <= j`
            if (j - i < 2) return;

            // Use first element as pivot
            uint256 pivot = unsafeMemoryAccess(array, i);
            // Position where the pivot should be at the end of the loop
            uint256 index = i;

            for (uint256 k = i + 1; k < j; ++k) {
                // Unsafe access is safe given `k < j <= array.length`.
                if (unsafeMemoryAccess(array, k) < pivot) {
                    // If array[k] is smaller than the pivot, we increment the index and move array[k] there.
                    _swap(array, ++index, k);
                }
            }

            // Swap pivot into place
            _swap(array, i, index);

            _quickSort(array, i, index); // Sort the left side of the pivot
            _quickSort(array, index + 1, j); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Swaps the elements at positions `i` and `j` in the `arr` array.
     */
    function _swap(uint256[] memory arr, uint256 i, uint256 j) private pure {
        assembly {
            let start := add(arr, 0x20) // Pointer to the first element of the array
            let pos_i := add(start, mul(i, 0x20))
            let pos_j := add(start, mul(j, 0x20))
            let val_i := mload(pos_i)
            let val_j := mload(pos_j)
            mstore(pos_i, val_j)
            mstore(pos_j, val_i)
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
        // following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.

        /// @solidity memory-safe-assembly
        assembly {
            mstore(0, arr.slot)
            slot := add(keccak256(0, 0x20), pos)
        }
        return slot.getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
        // following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.

        /// @solidity memory-safe-assembly
        assembly {
            mstore(0, arr.slot)
            slot := add(keccak256(0, 0x20), pos)
        }
        return slot.getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        // We use assembly to calculate the storage slot of the element at index `pos` of the dynamic array `arr`
        // following https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays.

        /// @solidity memory-safe-assembly
        assembly {
            mstore(0, arr.slot)
            slot := add(keccak256(0, 0x20), pos)
        }
        return slot.getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }
}

File 8 of 20 : Owned.sol
pragma solidity ^0.8.20;

abstract contract Owned {

    error OwnableUnauthorizedAccount(address account);
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    function transferOwnership(address newOwner) public virtual onlyOwner {
        _transferOwnership(newOwner);
    }

    function _checkOwner() internal view virtual {
        if (owner() != msg.sender) {
            revert OwnableUnauthorizedAccount(msg.sender);
        }
    }

    function owner() public view virtual returns (address);
    function _transferOwnership(address newOwner) internal virtual;
}

File 9 of 20 : IERC1155.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (token/ERC1155/IERC1155.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-1155 compliant contract, as defined in the
 * https://eips.ethereum.org/EIPS/eip-1155[ERC].
 */
interface IERC1155 is IERC165 {
    /**
     * @dev Emitted when `value` amount of tokens of type `id` are transferred from `from` to `to` by `operator`.
     */
    event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);

    /**
     * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
     * transfers.
     */
    event TransferBatch(
        address indexed operator,
        address indexed from,
        address indexed to,
        uint256[] ids,
        uint256[] values
    );

    /**
     * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
     * `approved`.
     */
    event ApprovalForAll(address indexed account, address indexed operator, bool approved);

    /**
     * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
     *
     * If an {URI} event was emitted for `id`, the standard
     * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
     * returned by {IERC1155MetadataURI-uri}.
     */
    event URI(string value, uint256 indexed id);

    /**
     * @dev Returns the value of tokens of token type `id` owned by `account`.
     */
    function balanceOf(address account, uint256 id) external view returns (uint256);

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
     *
     * Requirements:
     *
     * - `accounts` and `ids` must have the same length.
     */
    function balanceOfBatch(
        address[] calldata accounts,
        uint256[] calldata ids
    ) external view returns (uint256[] memory);

    /**
     * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
     *
     * Emits an {ApprovalForAll} event.
     *
     * Requirements:
     *
     * - `operator` cannot be the zero address.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address account, address operator) external view returns (bool);

    /**
     * @dev Transfers a `value` amount of tokens of type `id` from `from` to `to`.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155Received} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits a {TransferSingle} event.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
     * - `from` must have a balance of tokens of type `id` of at least `value` amount.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
     * acceptance magic value.
     */
    function safeTransferFrom(address from, address to, uint256 id, uint256 value, bytes calldata data) external;

    /**
     * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
     *
     * WARNING: This function can potentially allow a reentrancy attack when transferring tokens
     * to an untrusted contract, when invoking {onERC1155BatchReceived} on the receiver.
     * Ensure to follow the checks-effects-interactions pattern and consider employing
     * reentrancy guards when interacting with untrusted contracts.
     *
     * Emits either a {TransferSingle} or a {TransferBatch} event, depending on the length of the array arguments.
     *
     * Requirements:
     *
     * - `ids` and `values` must have the same length.
     * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
     * acceptance magic value.
     */
    function safeBatchTransferFrom(
        address from,
        address to,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external;
}

File 10 of 20 : IERC1155MetadataURI.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/extensions/IERC1155MetadataURI.sol)

pragma solidity ^0.8.20;

import {IERC1155} from "../IERC1155.sol";

/**
 * @dev Interface of the optional ERC1155MetadataExtension interface, as defined
 * in the https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[ERC].
 */
interface IERC1155MetadataURI is IERC1155 {
    /**
     * @dev Returns the URI for token type `id`.
     *
     * If the `\{id\}` substring is present in the URI, it must be replaced by
     * clients with the actual token type ID.
     */
    function uri(uint256 id) external view returns (string memory);
}

File 11 of 20 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 12 of 20 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 13 of 20 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 14 of 20 : IERC1155Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Interface that must be implemented by smart contracts in order to receive
 * ERC-1155 token transfers.
 */
interface IERC1155Receiver is IERC165 {
    /**
     * @dev Handles the receipt of a single ERC-1155 token type. This function is
     * called at the end of a `safeTransferFrom` after the balance has been updated.
     *
     * NOTE: To accept the transfer, this must return
     * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
     * (i.e. 0xf23a6e61, or its own function selector).
     *
     * @param operator The address which initiated the transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param id The ID of the token being transferred
     * @param value The amount of tokens being transferred
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
     */
    function onERC1155Received(
        address operator,
        address from,
        uint256 id,
        uint256 value,
        bytes calldata data
    ) external returns (bytes4);

    /**
     * @dev Handles the receipt of a multiple ERC-1155 token types. This function
     * is called at the end of a `safeBatchTransferFrom` after the balances have
     * been updated.
     *
     * NOTE: To accept the transfer(s), this must return
     * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
     * (i.e. 0xbc197c81, or its own function selector).
     *
     * @param operator The address which initiated the batch transfer (i.e. msg.sender)
     * @param from The address which previously owned the token
     * @param ids An array containing ids of each token being transferred (order and length must match values array)
     * @param values An array containing amounts of each token being transferred (order and length must match ids array)
     * @param data Additional data with no specified format
     * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
     */
    function onERC1155BatchReceived(
        address operator,
        address from,
        uint256[] calldata ids,
        uint256[] calldata values,
        bytes calldata data
    ) external returns (bytes4);
}

File 15 of 20 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 16 of 20 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Address} from "../Address.sol";
import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW);
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            if (m == 0) {
                Panic.panic(Panic.DIVISION_BY_ZERO);
            } else {
                revert Address.FailedInnerCall();
            }
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 17 of 20 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 18 of 20 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 19 of 20 : Panic.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, shl(0xe0, 0x4e487b71))
            mstore(0x04, code)
            revert(0x00, 0x24)
        }
    }
}

File 20 of 20 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        /// @solidity memory-safe-assembly
        assembly {
            u := iszero(iszero(b))
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "ERC404/=lib/ERC404/src/",
    "ds-test/=lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solidity-linked-list/=lib/solidity-linked-list/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"},{"internalType":"uint256","name":"_supply","type":"uint256"},{"internalType":"uint8","name":"_decimals","type":"uint8"},{"internalType":"address","name":"owner","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[],"name":"RestrictedOperation","type":"error"},{"inputs":[],"name":"TokenNotLive","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"atoms","type":"uint256"}],"name":"_sudoTransferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"principal","type":"address"},{"internalType":"address","name":"delegate","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"delegate","type":"address"},{"internalType":"uint256","name":"atoms","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_collection","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"launch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounce","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"atoms","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"atoms","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]

60806040523480156200001157600080fd5b506040516200155638038062001556833981016040819052620000349162000194565b848484846000620000468582620002d5565b506001620000558482620002d5565b506000600481905560058390553081526006602052604090208290556002805460ff191660ff83161790556200008d81600a620004b6565b60035550506008805460ff60a01b191690555050600780546001600160a01b0319166001600160a01b039290921691909117905550620004ce92505050565b634e487b7160e01b600052604160045260246000fd5b600082601f830112620000f457600080fd5b81516001600160401b0380821115620001115762000111620000cc565b604051601f8301601f19908116603f011681019082821181831017156200013c576200013c620000cc565b81604052838152602092508660208588010111156200015a57600080fd5b600091505b838210156200017e57858201830151818301840152908201906200015f565b6000602085830101528094505050505092915050565b600080600080600060a08688031215620001ad57600080fd5b85516001600160401b0380821115620001c557600080fd5b620001d389838a01620000e2565b96506020880151915080821115620001ea57600080fd5b50620001f988828901620000e2565b94505060408601519250606086015160ff811681146200021857600080fd5b60808701519092506001600160a01b03811681146200023657600080fd5b809150509295509295909350565b600181811c908216806200025957607f821691505b6020821081036200027a57634e487b7160e01b600052602260045260246000fd5b50919050565b601f821115620002d0576000816000526020600020601f850160051c81016020861015620002ab5750805b601f850160051c820191505b81811015620002cc57828155600101620002b7565b5050505b505050565b81516001600160401b03811115620002f157620002f1620000cc565b620003098162000302845462000244565b8462000280565b602080601f831160018114620003415760008415620003285750858301515b600019600386901b1c1916600185901b178555620002cc565b600085815260208120601f198616915b82811015620003725788860151825594840194600190910190840162000351565b5085821015620003915787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b634e487b7160e01b600052601160045260246000fd5b600181815b80851115620003f8578160001904821115620003dc57620003dc620003a1565b80851615620003ea57918102915b93841c9390800290620003bc565b509250929050565b6000826200041157506001620004b0565b816200042057506000620004b0565b8160018114620004395760028114620004445762000464565b6001915050620004b0565b60ff841115620004585762000458620003a1565b50506001821b620004b0565b5060208310610133831016604e8410600b841016171562000489575081810a620004b0565b620004958383620003b7565b8060001904821115620004ac57620004ac620003a1565b0290505b92915050565b6000620004c760ff84168362000400565b9392505050565b61107880620004de6000396000f3fe608060405234801561001057600080fd5b506004361061010b5760003560e01c80638456cb59116100a2578063b15be2f511610071578063b15be2f5146101f8578063b81bf8fc14610200578063c4d66de814610213578063d5abeb0114610226578063dd62ed3e1461022e57600080fd5b80638456cb59146101cd578063907af6c0146101d557806395d89b41146101dd578063a9059cbb146101e557600080fd5b806318160ddd116100de57806318160ddd1461016a57806323b872dd1461017c578063313ce5671461018f57806370a08231146101a457600080fd5b806301339c211461011057806301ffc9a71461011a57806306fdde0314610142578063095ea7b314610157575b600080fd5b610118610241565b005b61012d610128366004610e32565b61030c565b60405190151581526020015b60405180910390f35b61014a610394565b6040516101399190610e5c565b61012d610165366004610ec7565b610428565b6004545b604051908152602001610139565b61012d61018a366004610ef1565b61045b565b60025460405160ff9091168152602001610139565b61016e6101b2366004610f2d565b6001600160a01b031660009081526006602052604090205490565b61011861078b565b60035461016e565b61014a610878565b61012d6101f3366004610ec7565b61088a565b610118610897565b61012d61020e366004610ef1565b610993565b610118610221366004610f2d565b6109d4565b60055461016e565b61016e61023c366004610f48565b610b86565b6008546001600160a01b03163314801561027857506001600854600160a01b900460ff16600281111561027657610276610f7b565b145b6102ef5760405162461bcd60e51b815260206004820152603b60248201527f4c61756e6368206d75737420626520646f6e652062792070616972656420636f60448201527f6c6c656374696f6e206f6e20726561647920636f6e747261637421000000000060648201526084015b60405180910390fd5b600880546002919060ff60a01b1916600160a01b835b0217905550565b60006301ffc9a760e01b6001600160e01b03198316148061033d57506336372b0760e01b6001600160e01b03198316145b8061035857506306fdde0360e01b6001600160e01b03198316145b8061037357506395d89b4160e01b6001600160e01b03198316145b8061038e575063313ce56760e01b6001600160e01b03198316145b92915050565b60606000800180546103a590610f91565b80601f01602080910402602001604051908101604052809291908181526020018280546103d190610f91565b801561041e5780601f106103f35761010080835404028352916020019161041e565b820191906000526020600020905b81548152906001019060200180831161040157829003601f168201915b5050505050905090565b3360009081526006602090815260408083206001600160a01b0386168452600190810190925282208390555b9392505050565b60006002600854600160a01b900460ff16600281111561047d5761047d610f7b565b1461049b5760405163c0d2241560e01b815260040160405180910390fd5b6001600160a01b0384166000908152600660205260409020548211156104fe576001600160a01b0384166000818152600660205260409081902054905163391434e360e21b815260048101929092526024820152604481018390526064016102e6565b6003546001600160a01b038516600090815260066020526040812054909190610528908590610fe1565b6105329190610ff4565b6003546001600160a01b0387166000908152600660205260409020546105589190610ff4565b6105629190610fe1565b6003546001600160a01b0386166000908152600660205260408120549293509161058c9190610ff4565b6003546001600160a01b0387166000908152600660205260409020546105b3908790611016565b6105bd9190610ff4565b6105c79190610fe1565b6008549091506001600160a01b031663f0a57e7187878486116105ea57856105ec565b845b6040516001600160e01b031960e086901b1681526001600160a01b0393841660048201529290911660248301526044820152606401600060405180830381600087803b15801561063b57600080fd5b505af115801561064f573d6000803e3d6000fd5b50506008546001600160a01b0316915063f0a57e7190508187858511610676576000610679565b60015b6040516001600160e01b031960e086901b1681526001600160a01b03938416600482015292909116602483015260ff166044820152606401600060405180830381600087803b1580156106cb57600080fd5b505af11580156106df573d6000803e3d6000fd5b50506008546001600160a01b0316915063f0a57e7190508782858510610706576000610709565b60015b6040516001600160e01b031960e086901b1681526001600160a01b03938416600482015292909116602483015260ff166044820152606401600060405180830381600087803b15801561075b57600080fd5b505af115801561076f573d6000803e3d6000fd5b5050505061077e868686610bda565b5060019695505050505050565b6002600854600160a01b900460ff1660028111156107ab576107ab610f7b565b146108045760405162461bcd60e51b8152602060048201526024808201527f43616e206f6e6c792062652063616c6c6564206f6e206c69766520636f6e74726044820152636163742160e01b60648201526084016102e6565b6008546001600160a01b0316331461085e5760405162461bcd60e51b815260206004820152601c60248201527f43616e206f6e6c792062652063616c6c6564206279206f776e6572210000000060448201526064016102e6565b600880546001919060ff60a01b1916600160a01b83610305565b6060600060010180546103a590610f91565b600061045433848461045b565b6002600854600160a01b900460ff1660028111156108b7576108b7610f7b565b1461091b5760405162461bcd60e51b815260206004820152602e60248201527f43616e6e6f742072656e6f756e636520636f6e7472616374206265636175736560448201526d20697473206e6f74206c6976652160901b60648201526084016102e6565b6008546001600160a01b031633146109815760405162461bcd60e51b8152602060048201526024808201527f43616e206f6e6c792062652072656e6f756e63656420627920636f6c6c656374604482015263696f6e2160e01b60648201526084016102e6565b600780546001600160a01b0319169055565b6008546000906001600160a01b031633146109c1576040516309e7447960e11b815260040160405180910390fd5b6109cc848484610bfd565b949350505050565b6000600854600160a01b900460ff1660028111156109f4576109f4610f7b565b14610a4d5760405162461bcd60e51b815260206004820152602360248201527f43616e206f6e6c792062652063616c6c6564206f6e206e657720636f6e74726160448201526263742160e81b60648201526084016102e6565b6007546001600160a01b03163314610aa75760405162461bcd60e51b815260206004820152601c60248201527f43616e206f6e6c792062652063616c6c6564206279206f776e6572210000000060448201526064016102e6565b600354600554610ab79190610ff4565b816001600160a01b031663d5abeb016040518163ffffffff1660e01b8152600401602060405180830381865afa158015610af5573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b199190611029565b14610b5c5760405162461bcd60e51b8152602060048201526013602482015272496e76616c696420436f6c6c656374696f6e2160681b60448201526064016102e6565b600880546001600160a01b03929092166001600160a81b031990921691909117600160a01b179055565b6000816001600160a01b0316836001600160a01b031614610bd0576001600160a01b0380841660009081526006602090815260408083209386168352600190930190522054610454565b5060001992915050565b6000610be7843384610dac565b610bf2848484610bfd565b506001949350505050565b6001600160a01b038316600090815260066020526040812054821115610c60576001600160a01b0384166000818152600660205260409081902054905163391434e360e21b815260048101929092526024820152604481018390526064016102e6565b6001600160a01b038416610c9257604051634b637e8f60e11b81526001600160a01b03851660048201526024016102e6565b6001600160a01b03841660009081526006602052604081208054849290610cba908490610fe1565b90915550506001600160a01b03831660009081526006602052604081208054849290610ce7908490611016565b90915550506001600160a01b0383161580610d0a57506001600160a01b03831630145b15610d2a578160006004016000828254610d249190610fe1565b90915550505b306001600160a01b03851603610d55578160006004016000828254610d4f9190611016565b90915550505b826001600160a01b0316846001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051610d9a91815260200190565b60405180910390a35060019392505050565b6000610db88484610b86565b90506000198114610e2c5781811015610dfd57604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016102e6565b6001600160a01b0384811660009081526006602090815260408083209387168352600190930190522082820390555b50505050565b600060208284031215610e4457600080fd5b81356001600160e01b03198116811461045457600080fd5b60006020808352835180602085015260005b81811015610e8a57858101830151858201604001528201610e6e565b506000604082860101526040601f19601f8301168501019250505092915050565b80356001600160a01b0381168114610ec257600080fd5b919050565b60008060408385031215610eda57600080fd5b610ee383610eab565b946020939093013593505050565b600080600060608486031215610f0657600080fd5b610f0f84610eab565b9250610f1d60208501610eab565b9150604084013590509250925092565b600060208284031215610f3f57600080fd5b61045482610eab565b60008060408385031215610f5b57600080fd5b610f6483610eab565b9150610f7260208401610eab565b90509250929050565b634e487b7160e01b600052602160045260246000fd5b600181811c90821680610fa557607f821691505b602082108103610fc557634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052601160045260246000fd5b8181038181111561038e5761038e610fcb565b60008261101157634e487b7160e01b600052601260045260246000fd5b500490565b8082018082111561038e5761038e610fcb565b60006020828403121561103b57600080fd5b505191905056fea26469706673582212207eb576d0ef7e28dbd4eb2fb53d69d36cc67daa22093bf64a923f4fe3824cc4e464736f6c6343000818003300000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000e000000000000000000000000000000000000000000000021e19e0c9bab240000000000000000000000000000000000000000000000000000000000000000000120000000000000000000000005976f7859f93901c5b1227ef5cded8efb1927fa2000000000000000000000000000000000000000000000000000000000000000b53686964647950756e6b7300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000065348494444590000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561001057600080fd5b506004361061010b5760003560e01c80638456cb59116100a2578063b15be2f511610071578063b15be2f5146101f8578063b81bf8fc14610200578063c4d66de814610213578063d5abeb0114610226578063dd62ed3e1461022e57600080fd5b80638456cb59146101cd578063907af6c0146101d557806395d89b41146101dd578063a9059cbb146101e557600080fd5b806318160ddd116100de57806318160ddd1461016a57806323b872dd1461017c578063313ce5671461018f57806370a08231146101a457600080fd5b806301339c211461011057806301ffc9a71461011a57806306fdde0314610142578063095ea7b314610157575b600080fd5b610118610241565b005b61012d610128366004610e32565b61030c565b60405190151581526020015b60405180910390f35b61014a610394565b6040516101399190610e5c565b61012d610165366004610ec7565b610428565b6004545b604051908152602001610139565b61012d61018a366004610ef1565b61045b565b60025460405160ff9091168152602001610139565b61016e6101b2366004610f2d565b6001600160a01b031660009081526006602052604090205490565b61011861078b565b60035461016e565b61014a610878565b61012d6101f3366004610ec7565b61088a565b610118610897565b61012d61020e366004610ef1565b610993565b610118610221366004610f2d565b6109d4565b60055461016e565b61016e61023c366004610f48565b610b86565b6008546001600160a01b03163314801561027857506001600854600160a01b900460ff16600281111561027657610276610f7b565b145b6102ef5760405162461bcd60e51b815260206004820152603b60248201527f4c61756e6368206d75737420626520646f6e652062792070616972656420636f60448201527f6c6c656374696f6e206f6e20726561647920636f6e747261637421000000000060648201526084015b60405180910390fd5b600880546002919060ff60a01b1916600160a01b835b0217905550565b60006301ffc9a760e01b6001600160e01b03198316148061033d57506336372b0760e01b6001600160e01b03198316145b8061035857506306fdde0360e01b6001600160e01b03198316145b8061037357506395d89b4160e01b6001600160e01b03198316145b8061038e575063313ce56760e01b6001600160e01b03198316145b92915050565b60606000800180546103a590610f91565b80601f01602080910402602001604051908101604052809291908181526020018280546103d190610f91565b801561041e5780601f106103f35761010080835404028352916020019161041e565b820191906000526020600020905b81548152906001019060200180831161040157829003601f168201915b5050505050905090565b3360009081526006602090815260408083206001600160a01b0386168452600190810190925282208390555b9392505050565b60006002600854600160a01b900460ff16600281111561047d5761047d610f7b565b1461049b5760405163c0d2241560e01b815260040160405180910390fd5b6001600160a01b0384166000908152600660205260409020548211156104fe576001600160a01b0384166000818152600660205260409081902054905163391434e360e21b815260048101929092526024820152604481018390526064016102e6565b6003546001600160a01b038516600090815260066020526040812054909190610528908590610fe1565b6105329190610ff4565b6003546001600160a01b0387166000908152600660205260409020546105589190610ff4565b6105629190610fe1565b6003546001600160a01b0386166000908152600660205260408120549293509161058c9190610ff4565b6003546001600160a01b0387166000908152600660205260409020546105b3908790611016565b6105bd9190610ff4565b6105c79190610fe1565b6008549091506001600160a01b031663f0a57e7187878486116105ea57856105ec565b845b6040516001600160e01b031960e086901b1681526001600160a01b0393841660048201529290911660248301526044820152606401600060405180830381600087803b15801561063b57600080fd5b505af115801561064f573d6000803e3d6000fd5b50506008546001600160a01b0316915063f0a57e7190508187858511610676576000610679565b60015b6040516001600160e01b031960e086901b1681526001600160a01b03938416600482015292909116602483015260ff166044820152606401600060405180830381600087803b1580156106cb57600080fd5b505af11580156106df573d6000803e3d6000fd5b50506008546001600160a01b0316915063f0a57e7190508782858510610706576000610709565b60015b6040516001600160e01b031960e086901b1681526001600160a01b03938416600482015292909116602483015260ff166044820152606401600060405180830381600087803b15801561075b57600080fd5b505af115801561076f573d6000803e3d6000fd5b5050505061077e868686610bda565b5060019695505050505050565b6002600854600160a01b900460ff1660028111156107ab576107ab610f7b565b146108045760405162461bcd60e51b8152602060048201526024808201527f43616e206f6e6c792062652063616c6c6564206f6e206c69766520636f6e74726044820152636163742160e01b60648201526084016102e6565b6008546001600160a01b0316331461085e5760405162461bcd60e51b815260206004820152601c60248201527f43616e206f6e6c792062652063616c6c6564206279206f776e6572210000000060448201526064016102e6565b600880546001919060ff60a01b1916600160a01b83610305565b6060600060010180546103a590610f91565b600061045433848461045b565b6002600854600160a01b900460ff1660028111156108b7576108b7610f7b565b1461091b5760405162461bcd60e51b815260206004820152602e60248201527f43616e6e6f742072656e6f756e636520636f6e7472616374206265636175736560448201526d20697473206e6f74206c6976652160901b60648201526084016102e6565b6008546001600160a01b031633146109815760405162461bcd60e51b8152602060048201526024808201527f43616e206f6e6c792062652072656e6f756e63656420627920636f6c6c656374604482015263696f6e2160e01b60648201526084016102e6565b600780546001600160a01b0319169055565b6008546000906001600160a01b031633146109c1576040516309e7447960e11b815260040160405180910390fd5b6109cc848484610bfd565b949350505050565b6000600854600160a01b900460ff1660028111156109f4576109f4610f7b565b14610a4d5760405162461bcd60e51b815260206004820152602360248201527f43616e206f6e6c792062652063616c6c6564206f6e206e657720636f6e74726160448201526263742160e81b60648201526084016102e6565b6007546001600160a01b03163314610aa75760405162461bcd60e51b815260206004820152601c60248201527f43616e206f6e6c792062652063616c6c6564206279206f776e6572210000000060448201526064016102e6565b600354600554610ab79190610ff4565b816001600160a01b031663d5abeb016040518163ffffffff1660e01b8152600401602060405180830381865afa158015610af5573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b199190611029565b14610b5c5760405162461bcd60e51b8152602060048201526013602482015272496e76616c696420436f6c6c656374696f6e2160681b60448201526064016102e6565b600880546001600160a01b03929092166001600160a81b031990921691909117600160a01b179055565b6000816001600160a01b0316836001600160a01b031614610bd0576001600160a01b0380841660009081526006602090815260408083209386168352600190930190522054610454565b5060001992915050565b6000610be7843384610dac565b610bf2848484610bfd565b506001949350505050565b6001600160a01b038316600090815260066020526040812054821115610c60576001600160a01b0384166000818152600660205260409081902054905163391434e360e21b815260048101929092526024820152604481018390526064016102e6565b6001600160a01b038416610c9257604051634b637e8f60e11b81526001600160a01b03851660048201526024016102e6565b6001600160a01b03841660009081526006602052604081208054849290610cba908490610fe1565b90915550506001600160a01b03831660009081526006602052604081208054849290610ce7908490611016565b90915550506001600160a01b0383161580610d0a57506001600160a01b03831630145b15610d2a578160006004016000828254610d249190610fe1565b90915550505b306001600160a01b03851603610d55578160006004016000828254610d4f9190611016565b90915550505b826001600160a01b0316846001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051610d9a91815260200190565b60405180910390a35060019392505050565b6000610db88484610b86565b90506000198114610e2c5781811015610dfd57604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016102e6565b6001600160a01b0384811660009081526006602090815260408083209387168352600190930190522082820390555b50505050565b600060208284031215610e4457600080fd5b81356001600160e01b03198116811461045457600080fd5b60006020808352835180602085015260005b81811015610e8a57858101830151858201604001528201610e6e565b506000604082860101526040601f19601f8301168501019250505092915050565b80356001600160a01b0381168114610ec257600080fd5b919050565b60008060408385031215610eda57600080fd5b610ee383610eab565b946020939093013593505050565b600080600060608486031215610f0657600080fd5b610f0f84610eab565b9250610f1d60208501610eab565b9150604084013590509250925092565b600060208284031215610f3f57600080fd5b61045482610eab565b60008060408385031215610f5b57600080fd5b610f6483610eab565b9150610f7260208401610eab565b90509250929050565b634e487b7160e01b600052602160045260246000fd5b600181811c90821680610fa557607f821691505b602082108103610fc557634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052601160045260246000fd5b8181038181111561038e5761038e610fcb565b60008261101157634e487b7160e01b600052601260045260246000fd5b500490565b8082018082111561038e5761038e610fcb565b60006020828403121561103b57600080fd5b505191905056fea26469706673582212207eb576d0ef7e28dbd4eb2fb53d69d36cc67daa22093bf64a923f4fe3824cc4e464736f6c63430008180033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000000a000000000000000000000000000000000000000000000000000000000000000e000000000000000000000000000000000000000000000021e19e0c9bab240000000000000000000000000000000000000000000000000000000000000000000120000000000000000000000005976f7859f93901c5b1227ef5cded8efb1927fa2000000000000000000000000000000000000000000000000000000000000000b53686964647950756e6b7300000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000065348494444590000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _name (string): ShiddyPunks
Arg [1] : _symbol (string): SHIDDY
Arg [2] : _supply (uint256): 10000000000000000000000
Arg [3] : _decimals (uint8): 18
Arg [4] : owner (address): 0x5976f7859f93901C5B1227EF5cDED8efB1927Fa2

-----Encoded View---------------
9 Constructor Arguments found :
Arg [0] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [1] : 00000000000000000000000000000000000000000000000000000000000000e0
Arg [2] : 00000000000000000000000000000000000000000000021e19e0c9bab2400000
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000012
Arg [4] : 0000000000000000000000005976f7859f93901c5b1227ef5cded8efb1927fa2
Arg [5] : 000000000000000000000000000000000000000000000000000000000000000b
Arg [6] : 53686964647950756e6b73000000000000000000000000000000000000000000
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [8] : 5348494444590000000000000000000000000000000000000000000000000000


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.