ERC-721
NFT
Overview
Max Total Supply
5,000 MEGA
Holders
5,000
Market
Volume (24H)
N/A
Min Price (24H)
N/A
Max Price (24H)
N/A
Other Info
Token Contract
Balance
1 MEGALoading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Source Code Verified (Exact Match)
Contract Name:
MegaETH
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "@openzeppelin/contracts/token/ERC721/ERC721.sol"; import "@openzeppelin/contracts/access/Ownable2Step.sol"; import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; /// @title MegaETH NFT Collection /// @notice This contract implements a two-phase NFT minting system with whitelist and guaranteed mint functionality /// @dev Implements soulbound NFTs with phased minting, merkle proofs for whitelisting contract MegaETH is ERC721, Ownable2Step, ReentrancyGuard { using Strings for uint256; // Custom Errors error SoldOut(); error AlreadyMinted(); error MintingNotStarted(); error MintingEnded(); error InvalidProof(); error InsufficientPayment(); error PaymentNotRequired(); error Phase1SoldOut(); error Phase1NotCompleted(); error Phase2SoldOut(); error TokenIsSoulbound(); error TokenIdInvalid(); error TokenNotMintedYet(); error WithdrawalFailed(); error PhasesNotInitialized(); error ContractPaused(); error InvalidGuranteedStartTime(); error InvalidPhase2StartTime(); error InvalidPhaseEndTime(); error InvalidPaymentReceiver(); error NotAuthorized(); // Constants /// @notice Maximum number of NFTs that can be minted uint256 public constant MAX_SUPPLY = 10000; /// @notice Price per NFT in ETH uint256 public constant PRICE = 1 ether; /// @notice Maximum supply for phase 1 minting uint256 public constant PHASE1_SUPPLY = 5000; /// @notice Maximum supply for phase 2 minting uint256 public constant PHASE2_SUPPLY = 5000; /// @notice Address that receives payment for mints address public immutable PAYMENT_RECEIVER; // State variables uint256 public totalSupply; string public baseURI; bool public paused; // Phase timing variables uint256 public phase1GuaranteedStart; uint256 public phase1WhitelistStart; uint256 public phase1End; uint256 public phase2GuaranteedStart; uint256 public phase2WhitelistStart; uint256 public phase2End; // Merkle roots bytes32 public phase1GuaranteedRoot; bytes32 public phase1WhitelistRoot; bytes32 public phase1FreeMintRoot; bytes32 public phase2GuaranteedRoot; bytes32 public phase2WhitelistRoot; bytes32 public phase2FreeMintRoot; // Mapping to track minted status mapping(address => bool) public hasMinted; /// @notice Emitted when a new token is minted /// @param to Address receiving the NFT /// @param tokenId ID of the minted token /// @param phase Current minting phase (1 or 2) event Minted(address indexed to, uint256 tokenId, uint256 phase); /// @notice Emitted when contract pause state changes /// @param isPaused New pause state event ContractPausedEvent(bool isPaused); /// @notice Defines different types of minting methods available enum MintType { PHASE1_GUARANTEED, PHASE1_WHITELIST, PHASE1_FREE, PHASE2_GUARANTEED, PHASE2_WHITELIST, PHASE2_FREE } /// @notice Ensures caller is owner or payment receiver modifier onlyAdmin() { if (msg.sender != owner() && msg.sender != PAYMENT_RECEIVER) { revert NotAuthorized(); } _; } /// @notice Ensures contract is not paused modifier whenNotPaused() { if (paused) revert ContractPaused(); _; } /// @notice Ensures all phase timings are initialized modifier phaseInitialized() { if ( phase1GuaranteedStart == 0 || phase1WhitelistStart == 0 || phase1End == 0 || phase2GuaranteedStart == 0 || phase2WhitelistStart == 0 || phase2End == 0 ) revert PhasesNotInitialized(); _; } /// @notice Validates phase timing sequence modifier validPhaseTimings( uint256 guaranteedStart, uint256 whitelistStart, uint256 end ) { if (guaranteedStart >= end) revert InvalidPhaseEndTime(); if (whitelistStart >= end) revert InvalidPhaseEndTime(); if (guaranteedStart > whitelistStart) revert InvalidGuranteedStartTime(); _; } /// @notice Initializes the contract with payment receiver address /// @param _paymentReceiver Address to receive mint payments constructor( address _paymentReceiver ) ERC721("MegaETH NFT", "MEGA") Ownable(msg.sender) { if (_paymentReceiver == address(0)) revert InvalidPaymentReceiver(); PAYMENT_RECEIVER = _paymentReceiver; } /// @notice Mints an NFT based on specified mint type and proof /// @param mintType Type of mint to perform /// @param merkleProof Proof of whitelist inclusion /// @dev Handles different mint types with respective validations function mint( MintType mintType, bytes32[] calldata merkleProof ) external payable nonReentrant phaseInitialized whenNotPaused { if (totalSupply >= MAX_SUPPLY) revert SoldOut(); if (hasMinted[msg.sender]) revert AlreadyMinted(); bytes32 merkleRoot; uint256 startTime; uint256 endTime; bool requiresPayment; if (mintType == MintType.PHASE1_GUARANTEED) { merkleRoot = phase1GuaranteedRoot; startTime = phase1GuaranteedStart; endTime = phase1WhitelistStart; requiresPayment = true; if (totalSupply >= PHASE1_SUPPLY) revert Phase1SoldOut(); } else if (mintType == MintType.PHASE1_WHITELIST) { merkleRoot = phase1WhitelistRoot; startTime = phase1WhitelistStart; endTime = phase1End; requiresPayment = true; if (totalSupply >= PHASE1_SUPPLY) revert Phase1SoldOut(); } else if (mintType == MintType.PHASE1_FREE) { merkleRoot = phase1FreeMintRoot; startTime = phase1GuaranteedStart; endTime = phase1WhitelistStart; requiresPayment = false; if (totalSupply >= PHASE1_SUPPLY) revert Phase1SoldOut(); } else if (mintType == MintType.PHASE2_GUARANTEED) { merkleRoot = phase2GuaranteedRoot; startTime = phase2GuaranteedStart; endTime = phase2WhitelistStart; requiresPayment = true; if (block.timestamp <= phase1End) revert Phase1NotCompleted(); } else if (mintType == MintType.PHASE2_WHITELIST) { merkleRoot = phase2WhitelistRoot; startTime = phase2WhitelistStart; endTime = phase2End; requiresPayment = true; if (block.timestamp <= phase1End) revert Phase1NotCompleted(); } else if (mintType == MintType.PHASE2_FREE) { merkleRoot = phase2FreeMintRoot; startTime = phase2GuaranteedStart; endTime = phase2WhitelistStart; requiresPayment = false; if (block.timestamp <= phase1End) revert Phase1NotCompleted(); } if (block.timestamp < startTime) revert MintingNotStarted(); if (block.timestamp > endTime) revert MintingEnded(); if ( !MerkleProof.verify( merkleProof, merkleRoot, keccak256(abi.encodePacked(msg.sender)) ) ) { revert InvalidProof(); } if (requiresPayment) { if (msg.value != PRICE) revert InsufficientPayment(); (bool success, ) = PAYMENT_RECEIVER.call{value: msg.value}(""); if (!success) revert WithdrawalFailed(); } else { if (msg.value > 0) revert PaymentNotRequired(); } _mintInternal(msg.sender); } /// @notice Internal function to handle the NFT minting process /// @param to Address to receive the NFT /// @dev Handles the actual minting and updates relevant state function _mintInternal(address to) internal { uint256 tokenId = totalSupply; _safeMint(to, tokenId); totalSupply++; hasMinted[to] = true; emit Minted(to, tokenId, totalSupply <= PHASE1_SUPPLY ? 1 : 2); } /// @notice Override of _update to implement soulbound mechanism /// @dev Prevents transfers after initial mint function _update( address to, uint256 tokenId, address auth ) internal virtual override returns (address) { address from = _ownerOf(tokenId); // Allow minting, but prevent transfers if (from != address(0)) { revert TokenIsSoulbound(); } return super._update(to, tokenId, auth); } /// @notice Sets the contract's pause state /// @param _paused New pause state function setPaused(bool _paused) external onlyAdmin { paused = _paused; emit ContractPausedEvent(_paused); } /// @notice Sets the base URI for token metadata /// @param newBaseURI New base URI string function setBaseURI(string calldata newBaseURI) external onlyAdmin { baseURI = newBaseURI; } /// @notice Sets the timing parameters for phase 1 /// @param _guaranteedStart Start time for guaranteed mints /// @param _whitelistStart Start time for whitelist mints /// @param _end End time for phase 1 function setPhase1Times( uint256 _guaranteedStart, uint256 _whitelistStart, uint256 _end ) external onlyAdmin validPhaseTimings(_guaranteedStart, _whitelistStart, _end) { phase1GuaranteedStart = _guaranteedStart; phase1WhitelistStart = _whitelistStart; phase1End = _end; } /// @notice Sets the timing parameters for phase 2 /// @param _guaranteedStart Start time for guaranteed mints /// @param _whitelistStart Start time for whitelist mints /// @param _end End time for phase 2 function setPhase2Times( uint256 _guaranteedStart, uint256 _whitelistStart, uint256 _end ) external onlyAdmin validPhaseTimings(_guaranteedStart, _whitelistStart, _end) { if (_guaranteedStart < phase1End) revert InvalidPhase2StartTime(); phase2GuaranteedStart = _guaranteedStart; phase2WhitelistStart = _whitelistStart; phase2End = _end; } /// @notice Sets all merkle roots for whitelist verification /// @param _phase1GuaranteedRoot Root for phase 1 guaranteed list /// @param _phase1WhitelistRoot Root for phase 1 whitelist /// @param _phase1FreeMintRoot Root for phase 1 free mints /// @param _phase2GuaranteedRoot Root for phase 2 guaranteed list /// @param _phase2WhitelistRoot Root for phase 2 whitelist /// @param _phase2FreeMintRoot Root for phase 2 free mints function setMerkleRoots( bytes32 _phase1GuaranteedRoot, bytes32 _phase1WhitelistRoot, bytes32 _phase1FreeMintRoot, bytes32 _phase2GuaranteedRoot, bytes32 _phase2WhitelistRoot, bytes32 _phase2FreeMintRoot ) external onlyAdmin { phase1GuaranteedRoot = _phase1GuaranteedRoot; phase1WhitelistRoot = _phase1WhitelistRoot; phase1FreeMintRoot = _phase1FreeMintRoot; phase2GuaranteedRoot = _phase2GuaranteedRoot; phase2WhitelistRoot = _phase2WhitelistRoot; phase2FreeMintRoot = _phase2FreeMintRoot; } /// @notice Returns base URI for computing {tokenURI} /// @return Base URI string function _baseURI() internal view virtual override returns (string memory) { return baseURI; } /// @notice Returns the URI for a given token /// @param tokenId ID of the token to get URI for /// @return Token URI string function tokenURI( uint256 tokenId ) public view virtual override returns (string memory) { return string(abi.encodePacked(baseURI, tokenId.toString())); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/ERC721.sol) pragma solidity ^0.8.20; import {IERC721} from "./IERC721.sol"; import {IERC721Metadata} from "./extensions/IERC721Metadata.sol"; import {ERC721Utils} from "./utils/ERC721Utils.sol"; import {Context} from "../../utils/Context.sol"; import {Strings} from "../../utils/Strings.sol"; import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol"; import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC-721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors { using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; mapping(uint256 tokenId => address) private _owners; mapping(address owner => uint256) private _balances; mapping(uint256 tokenId => address) private _tokenApprovals; mapping(address owner => mapping(address operator => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual returns (uint256) { if (owner == address(0)) { revert ERC721InvalidOwner(address(0)); } return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual returns (address) { return _requireOwned(tokenId); } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual returns (string memory) { _requireOwned(tokenId); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual { _approve(to, tokenId, _msgSender()); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual returns (address) { _requireOwned(tokenId); return _getApproved(tokenId); } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom(address from, address to, uint256 tokenId) public virtual { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here. address previousOwner = _update(to, tokenId, _msgSender()); if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId) public { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual { transferFrom(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist * * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the * core ERC-721 logic MUST be matched with the use of {_increaseBalance} to keep balances * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`. */ function _ownerOf(uint256 tokenId) internal view virtual returns (address) { return _owners[tokenId]; } /** * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted. */ function _getApproved(uint256 tokenId) internal view virtual returns (address) { return _tokenApprovals[tokenId]; } /** * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in * particular (ignoring whether it is owned by `owner`). * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) { return spender != address(0) && (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender); } /** * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner. * Reverts if: * - `spender` does not have approval from `owner` for `tokenId`. * - `spender` does not have approval to manage all of `owner`'s assets. * * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this * assumption. */ function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual { if (!_isAuthorized(owner, spender, tokenId)) { if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } else { revert ERC721InsufficientApproval(spender, tokenId); } } } /** * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override. * * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that * a uint256 would ever overflow from increments when these increments are bounded to uint128 values. * * WARNING: Increasing an account's balance using this function tends to be paired with an override of the * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership * remain consistent with one another. */ function _increaseBalance(address account, uint128 value) internal virtual { unchecked { _balances[account] += value; } } /** * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update. * * The `auth` argument is optional. If the value passed is non 0, then this function will check that * `auth` is either the owner of the token, or approved to operate on the token (by the owner). * * Emits a {Transfer} event. * * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}. */ function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) { address from = _ownerOf(tokenId); // Perform (optional) operator check if (auth != address(0)) { _checkAuthorized(from, auth, tokenId); } // Execute the update if (from != address(0)) { // Clear approval. No need to re-authorize or emit the Approval event _approve(address(0), tokenId, address(0), false); unchecked { _balances[from] -= 1; } } if (to != address(0)) { unchecked { _balances[to] += 1; } } _owners[tokenId] = to; emit Transfer(from, to, tokenId); return from; } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner != address(0)) { revert ERC721InvalidSender(address(0)); } } /** * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual { _mint(to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), address(0), to, tokenId, data); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * This is an internal function that does not check if the sender is authorized to operate on the token. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal { address previousOwner = _update(address(0), tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer(address from, address to, uint256 tokenId) internal { if (to == address(0)) { revert ERC721InvalidReceiver(address(0)); } address previousOwner = _update(to, tokenId, address(0)); if (previousOwner == address(0)) { revert ERC721NonexistentToken(tokenId); } else if (previousOwner != from) { revert ERC721IncorrectOwner(from, tokenId, previousOwner); } } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients * are aware of the ERC-721 standard to prevent tokens from being forever locked. * * `data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is like {safeTransferFrom} in the sense that it invokes * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `tokenId` token must exist and be owned by `from`. * - `to` cannot be the zero address. * - `from` cannot be the zero address. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer(address from, address to, uint256 tokenId) internal { _safeTransfer(from, to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual { _transfer(from, to, tokenId); ERC721Utils.checkOnERC721Received(_msgSender(), from, to, tokenId, data); } /** * @dev Approve `to` to operate on `tokenId` * * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is * either the owner of the token, or approved to operate on all tokens held by this owner. * * Emits an {Approval} event. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address to, uint256 tokenId, address auth) internal { _approve(to, tokenId, auth, true); } /** * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not * emitted in the context of transfers. */ function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual { // Avoid reading the owner unless necessary if (emitEvent || auth != address(0)) { address owner = _requireOwned(tokenId); // We do not use _isAuthorized because single-token approvals should not be able to call approve if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) { revert ERC721InvalidApprover(auth); } if (emitEvent) { emit Approval(owner, to, tokenId); } } _tokenApprovals[tokenId] = to; } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Requirements: * - operator can't be the address zero. * * Emits an {ApprovalForAll} event. */ function _setApprovalForAll(address owner, address operator, bool approved) internal virtual { if (operator == address(0)) { revert ERC721InvalidOperator(operator); } _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned). * Returns the owner. * * Overrides to ownership logic should be done to {_ownerOf}. */ function _requireOwned(uint256 tokenId) internal view returns (address) { address owner = _ownerOf(tokenId); if (owner == address(0)) { revert ERC721NonexistentToken(tokenId); } return owner; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (access/Ownable2Step.sol) pragma solidity ^0.8.20; import {Ownable} from "./Ownable.sol"; /** * @dev Contract module which provides access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * This extension of the {Ownable} contract includes a two-step mechanism to transfer * ownership, where the new owner must call {acceptOwnership} in order to replace the * old one. This can help prevent common mistakes, such as transfers of ownership to * incorrect accounts, or to contracts that are unable to interact with the * permission system. * * The initial owner is specified at deployment time in the constructor for `Ownable`. This * can later be changed with {transferOwnership} and {acceptOwnership}. * * This module is used through inheritance. It will make available all functions * from parent (Ownable). */ abstract contract Ownable2Step is Ownable { address private _pendingOwner; event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner); /** * @dev Returns the address of the pending owner. */ function pendingOwner() public view virtual returns (address) { return _pendingOwner; } /** * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one. * Can only be called by the current owner. * * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer. */ function transferOwnership(address newOwner) public virtual override onlyOwner { _pendingOwner = newOwner; emit OwnershipTransferStarted(owner(), newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner. * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual override { delete _pendingOwner; super._transferOwnership(newOwner); } /** * @dev The new owner accepts the ownership transfer. */ function acceptOwnership() public virtual { address sender = _msgSender(); if (pendingOwner() != sender) { revert OwnableUnauthorizedAccount(sender); } _transferOwnership(sender); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MerkleProof.sol) // This file was procedurally generated from scripts/generate/templates/MerkleProof.js. pragma solidity ^0.8.20; import {Hashes} from "./Hashes.sol"; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the Merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates Merkle trees that are safe * against this attack out of the box. * * IMPORTANT: Consider memory side-effects when using custom hashing functions * that access memory in an unsafe way. * * NOTE: This library supports proof verification for merkle trees built using * custom _commutative_ hashing functions (i.e. `H(a, b) == H(b, a)`). Proving * leaf inclusion in trees built using non-commutative hashing functions requires * additional logic that is not supported by this library. */ library MerkleProof { /** *@dev The multiproof provided is not valid. */ error MerkleProofInvalidMultiproof(); /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in memory with the default hashing function. */ function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in memory with the default hashing function. */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in memory with a custom hashing function. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processProof(proof, leaf, hasher) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in memory with a custom hashing function. */ function processProof( bytes32[] memory proof, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = hasher(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in calldata with the default hashing function. */ function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in calldata with the default hashing function. */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = Hashes.commutativeKeccak256(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. * * This version handles proofs in calldata with a custom hashing function. */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processProofCalldata(proof, leaf, hasher) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leaves & pre-images are assumed to be sorted. * * This version handles proofs in calldata with a custom hashing function. */ function processProofCalldata( bytes32[] calldata proof, bytes32 leaf, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = hasher(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in memory with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProof}. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in memory with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = Hashes.commutativeKeccak256(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in memory with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProof}. */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processMultiProof(proof, proofFlags, leaves, hasher) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in memory with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = hasher(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in calldata with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProofCalldata}. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in calldata with the default hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = Hashes.commutativeKeccak256(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * This version handles multiproofs in calldata with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details. * * NOTE: Consider the case where `root == proof[0] && leaves.length == 0` as it will return `true`. * The `leaves` must be validated independently. See {processMultiProofCalldata}. */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves, hasher) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * This version handles multiproofs in calldata with a custom hashing function. * * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * NOTE: The _empty set_ (i.e. the case where `proof.length == 1 && leaves.length == 0`) is considered a no-op, * and therefore a valid multiproof (i.e. it returns `proof[0]`). Consider disallowing this case if you're not * validating the leaves elsewhere. */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves, function(bytes32, bytes32) view returns (bytes32) hasher ) internal view returns (bytes32 merkleRoot) { // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the Merkle tree. uint256 leavesLen = leaves.length; uint256 proofFlagsLen = proofFlags.length; // Check proof validity. if (leavesLen + proof.length != proofFlagsLen + 1) { revert MerkleProofInvalidMultiproof(); } // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](proofFlagsLen); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < proofFlagsLen; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]) : proof[proofPos++]; hashes[i] = hasher(a, b); } if (proofFlagsLen > 0) { if (proofPos != proof.length) { revert MerkleProofInvalidMultiproof(); } unchecked { return hashes[proofFlagsLen - 1]; } } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If EIP-1153 (transient storage) is available on the chain you're deploying at, * consider using {ReentrancyGuardTransient} instead. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC-721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC-721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or * {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon * a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom(address from, address to, uint256 tokenId) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 tokenId) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the address zero. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.20; import {IERC721} from "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/utils/ERC721Utils.sol) pragma solidity ^0.8.20; import {IERC721Receiver} from "../IERC721Receiver.sol"; import {IERC721Errors} from "../../../interfaces/draft-IERC6093.sol"; /** * @dev Library that provide common ERC-721 utility functions. * * See https://eips.ethereum.org/EIPS/eip-721[ERC-721]. * * _Available since v5.1._ */ library ERC721Utils { /** * @dev Performs an acceptance check for the provided `operator` by calling {IERC721-onERC721Received} * on the `to` address. The `operator` is generally the address that initiated the token transfer (i.e. `msg.sender`). * * The acceptance call is not executed and treated as a no-op if the target address doesn't contain code (i.e. an EOA). * Otherwise, the recipient must implement {IERC721Receiver-onERC721Received} and return the acceptance magic value to accept * the transfer. */ function checkOnERC721Received( address operator, address from, address to, uint256 tokenId, bytes memory data ) internal { if (to.code.length > 0) { try IERC721Receiver(to).onERC721Received(operator, from, tokenId, data) returns (bytes4 retval) { if (retval != IERC721Receiver.onERC721Received.selector) { // Token rejected revert IERC721Errors.ERC721InvalidReceiver(to); } } catch (bytes memory reason) { if (reason.length == 0) { // non-IERC721Receiver implementer revert IERC721Errors.ERC721InvalidReceiver(to); } else { assembly ("memory-safe") { revert(add(32, reason), mload(reason)) } } } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC-165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/Hashes.sol) pragma solidity ^0.8.20; /** * @dev Library of standard hash functions. * * _Available since v5.1._ */ library Hashes { /** * @dev Commutative Keccak256 hash of a sorted pair of bytes32. Frequently used when working with merkle proofs. * * NOTE: Equivalent to the `standardNodeHash` in our https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. */ function commutativeKeccak256(bytes32 a, bytes32 b) internal pure returns (bytes32) { return a < b ? _efficientKeccak256(a, b) : _efficientKeccak256(b, a); } /** * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory. */ function _efficientKeccak256(bytes32 a, bytes32 b) private pure returns (bytes32 value) { assembly ("memory-safe") { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.20; /** * @title ERC-721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC-721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
{ "remappings": [ "@openzeppelin/=lib/openzeppelin-contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_paymentReceiver","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyMinted","type":"error"},{"inputs":[],"name":"ContractPaused","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721IncorrectOwner","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721InsufficientApproval","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC721InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"ERC721InvalidOperator","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"ERC721InvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC721InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC721InvalidSender","type":"error"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ERC721NonexistentToken","type":"error"},{"inputs":[],"name":"InsufficientPayment","type":"error"},{"inputs":[],"name":"InvalidGuranteedStartTime","type":"error"},{"inputs":[],"name":"InvalidPaymentReceiver","type":"error"},{"inputs":[],"name":"InvalidPhase2StartTime","type":"error"},{"inputs":[],"name":"InvalidPhaseEndTime","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"MintingEnded","type":"error"},{"inputs":[],"name":"MintingNotStarted","type":"error"},{"inputs":[],"name":"NotAuthorized","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"PaymentNotRequired","type":"error"},{"inputs":[],"name":"Phase1NotCompleted","type":"error"},{"inputs":[],"name":"Phase1SoldOut","type":"error"},{"inputs":[],"name":"Phase2SoldOut","type":"error"},{"inputs":[],"name":"PhasesNotInitialized","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"SoldOut","type":"error"},{"inputs":[],"name":"TokenIdInvalid","type":"error"},{"inputs":[],"name":"TokenIsSoulbound","type":"error"},{"inputs":[],"name":"TokenNotMintedYet","type":"error"},{"inputs":[],"name":"WithdrawalFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"isPaused","type":"bool"}],"name":"ContractPausedEvent","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"phase","type":"uint256"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"MAX_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PAYMENT_RECEIVER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PHASE1_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PHASE2_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PRICE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"acceptOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"hasMinted","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum MegaETH.MintType","name":"mintType","type":"uint8"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1End","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1FreeMintRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1GuaranteedRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1GuaranteedStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1WhitelistRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase1WhitelistStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2End","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2FreeMintRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2GuaranteedRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2GuaranteedStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2WhitelistRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"phase2WhitelistStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newBaseURI","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_phase1GuaranteedRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase1WhitelistRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase1FreeMintRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase2GuaranteedRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase2WhitelistRoot","type":"bytes32"},{"internalType":"bytes32","name":"_phase2FreeMintRoot","type":"bytes32"}],"name":"setMerkleRoots","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"_paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_guaranteedStart","type":"uint256"},{"internalType":"uint256","name":"_whitelistStart","type":"uint256"},{"internalType":"uint256","name":"_end","type":"uint256"}],"name":"setPhase1Times","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_guaranteedStart","type":"uint256"},{"internalType":"uint256","name":"_whitelistStart","type":"uint256"},{"internalType":"uint256","name":"_end","type":"uint256"}],"name":"setPhase2Times","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60a060405234801561000f575f5ffd5b506040516125c33803806125c383398101604081905261002e9161016f565b336040518060400160405280600b81526020016a135959d85155120813919560aa1b815250604051806040016040528060048152602001634d45474160e01b815250815f908161007e9190610234565b50600161008b8282610234565b5050506001600160a01b0381166100bb57604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100c481610102565b5060016008556001600160a01b0381166100f1576040516301ed76a760e61b815260040160405180910390fd5b6001600160a01b03166080526102ee565b600780546001600160a01b031916905561011b8161011e565b50565b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f6020828403121561017f575f5ffd5b81516001600160a01b0381168114610195575f5ffd5b9392505050565b634e487b7160e01b5f52604160045260245ffd5b600181811c908216806101c457607f821691505b6020821081036101e257634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561022f57805f5260205f20601f840160051c8101602085101561020d5750805b601f840160051c820191505b8181101561022c575f8155600101610219565b50505b505050565b81516001600160401b0381111561024d5761024d61019c565b6102618161025b84546101b0565b846101e8565b6020601f821160018114610293575f831561027c5750848201515b5f19600385901b1c1916600184901b17845561022c565b5f84815260208120601f198516915b828110156102c257878501518255602094850194600190920191016102a2565b50848210156102df57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b6080516122936103305f395f81816103830152818161087f015281816109b601528181610acf01528181610b4801528181610bc7015261117901526122935ff3fe60806040526004361061026a575f3560e01c80636c8702941161014a5780639b9bce2e116100be578063baa9ea8411610078578063baa9ea84146106a4578063c5441008146106b9578063c87b56dd146106ce578063e30c3978146106ed578063e985e9c51461070a578063f2fde38b14610729575f5ffd5b80639b9bce2e14610614578063a22cb46514610629578063aa22688e14610648578063b4f1053a1461065d578063b61c5e6914610672578063b88d4fde14610685575f5ffd5b80638d53486b1161010f5780638d53486b1461059e5780638d859f3e146105b35780638da5cb5b146105ce57806395c43d841461031b57806395d89b41146105eb57806397c29c06146105ff575f5ffd5b80636c8702941461052d57806370a0823114610542578063715018a61461056157806379ba5097146105755780637eff25e414610589575f5ffd5b80632a593a7c116101e157806355f804b3116101a657806355f804b3146104845780635c975abb146104a35780636352211e146104bc578063643841f7146104db5780636457c3e1146104fa5780636c0360eb14610519575f5ffd5b80632a593a7c146103ee57806332cb6b0c1461040357806338e21cce146104185780634223b04e1461044657806342842e0e14610465575f5ffd5b806316c38b3c1161023257806316c38b3c1461033e57806318160ddd1461035d5780631c064d61146103725780631e5fa577146103a557806323b872dd146103ba578063251dd64d146103d9575f5ffd5b806301ffc9a71461026e57806306fdde03146102a2578063081812fc146102c3578063095ea7b3146102fa57806310a03b221461031b575b5f5ffd5b348015610279575f5ffd5b5061028d610288366004611c2e565b610748565b60405190151581526020015b60405180910390f35b3480156102ad575f5ffd5b506102b6610799565b6040516102999190611c77565b3480156102ce575f5ffd5b506102e26102dd366004611c89565b610828565b6040516001600160a01b039091168152602001610299565b348015610305575f5ffd5b50610319610314366004611cbb565b61084f565b005b348015610326575f5ffd5b5061033061138881565b604051908152602001610299565b348015610349575f5ffd5b50610319610358366004611cf2565b61085e565b348015610368575f5ffd5b5061033060095481565b34801561037d575f5ffd5b506102e27f000000000000000000000000000000000000000000000000000000000000000081565b3480156103b0575f5ffd5b5061033060125481565b3480156103c5575f5ffd5b506103196103d4366004611d0b565b610907565b3480156103e4575f5ffd5b50610330600d5481565b3480156103f9575f5ffd5b5061033060175481565b34801561040e575f5ffd5b5061033061271081565b348015610423575f5ffd5b5061028d610432366004611d45565b60186020525f908152604090205460ff1681565b348015610451575f5ffd5b50610319610460366004611d5e565b610995565b348015610470575f5ffd5b5061031961047f366004611d0b565b610a8f565b34801561048f575f5ffd5b5061031961049e366004611d87565b610aae565b3480156104ae575f5ffd5b50600b5461028d9060ff1681565b3480156104c7575f5ffd5b506102e26104d6366004611c89565b610b1d565b3480156104e6575f5ffd5b506103196104f5366004611df5565b610b27565b348015610505575f5ffd5b50610319610514366004611d5e565b610ba6565b348015610524575f5ffd5b506102b6610c7d565b348015610538575f5ffd5b5061033060145481565b34801561054d575f5ffd5b5061033061055c366004611d45565b610d09565b34801561056c575f5ffd5b50610319610d4e565b348015610580575f5ffd5b50610319610d61565b348015610594575f5ffd5b50610330600e5481565b3480156105a9575f5ffd5b5061033060155481565b3480156105be575f5ffd5b50610330670de0b6b3a764000081565b3480156105d9575f5ffd5b506006546001600160a01b03166102e2565b3480156105f6575f5ffd5b506102b6610da5565b34801561060a575f5ffd5b5061033060115481565b34801561061f575f5ffd5b5061033060135481565b348015610634575f5ffd5b50610319610643366004611e34565b610db4565b348015610653575f5ffd5b5061033060165481565b348015610668575f5ffd5b50610330600f5481565b610319610680366004611e65565b610dbf565b348015610690575f5ffd5b5061031961069f366004611eff565b611242565b3480156106af575f5ffd5b50610330600c5481565b3480156106c4575f5ffd5b5061033060105481565b3480156106d9575f5ffd5b506102b66106e8366004611c89565b61125a565b3480156106f8575f5ffd5b506007546001600160a01b03166102e2565b348015610715575f5ffd5b5061028d610724366004611fdc565b61128e565b348015610734575f5ffd5b50610319610743366004611d45565b6112bb565b5f6001600160e01b031982166380ac58cd60e01b148061077857506001600160e01b03198216635b5e139f60e01b145b8061079357506301ffc9a760e01b6001600160e01b03198316145b92915050565b60605f80546107a790612004565b80601f01602080910402602001604051908101604052809291908181526020018280546107d390612004565b801561081e5780601f106107f55761010080835404028352916020019161081e565b820191905f5260205f20905b81548152906001019060200180831161080157829003601f168201915b5050505050905090565b5f6108328261132c565b505f828152600460205260409020546001600160a01b0316610793565b61085a828233611364565b5050565b6006546001600160a01b031633148015906108a25750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b156108c05760405163ea8e4eb560e01b815260040160405180910390fd5b600b805460ff19168215159081179091556040519081527f11cec829ff57d278cffee07757e9621bfa0ae0cd17b3d23a7b81cba95174b8a49060200160405180910390a150565b6001600160a01b03821661093557604051633250574960e11b81525f60048201526024015b60405180910390fd5b5f610941838333611371565b9050836001600160a01b0316816001600160a01b03161461098f576040516364283d7b60e01b81526001600160a01b038086166004830152602482018490528216604482015260640161092c565b50505050565b6006546001600160a01b031633148015906109d95750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b156109f75760405163ea8e4eb560e01b815260040160405180910390fd5b828282808310610a1a576040516335f3b02f60e11b815260040160405180910390fd5b808210610a3a576040516335f3b02f60e11b815260040160405180910390fd5b81831115610a5b576040516337fc019b60e11b815260040160405180910390fd5b600e54861015610a7e576040516361d1610f60e11b815260040160405180910390fd5b505050600f92909255601055601155565b610aa983838360405180602001604052805f815250611242565b505050565b6006546001600160a01b03163314801590610af25750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b15610b105760405163ea8e4eb560e01b815260040160405180910390fd5b600a610aa9828483612080565b5f6107938261132c565b6006546001600160a01b03163314801590610b6b5750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b15610b895760405163ea8e4eb560e01b815260040160405180910390fd5b601295909555601393909355601491909155601555601655601755565b6006546001600160a01b03163314801590610bea5750336001600160a01b037f00000000000000000000000000000000000000000000000000000000000000001614155b15610c085760405163ea8e4eb560e01b815260040160405180910390fd5b828282808310610c2b576040516335f3b02f60e11b815260040160405180910390fd5b808210610c4b576040516335f3b02f60e11b815260040160405180910390fd5b81831115610c6c576040516337fc019b60e11b815260040160405180910390fd5b505050600c92909255600d55600e55565b600a8054610c8a90612004565b80601f0160208091040260200160405190810160405280929190818152602001828054610cb690612004565b8015610d015780601f10610cd857610100808354040283529160200191610d01565b820191905f5260205f20905b815481529060010190602001808311610ce457829003601f168201915b505050505081565b5f6001600160a01b038216610d33576040516322718ad960e21b81525f600482015260240161092c565b506001600160a01b03165f9081526003602052604090205490565b610d566113bb565b610d5f5f6113e8565b565b60075433906001600160a01b03168114610d995760405163118cdaa760e01b81526001600160a01b038216600482015260240161092c565b610da2816113e8565b50565b6060600180546107a790612004565b61085a338383611401565b610dc761149f565b600c541580610dd65750600d54155b80610de15750600e54155b80610dec5750600f54155b80610df75750601054155b80610e025750601154155b15610e205760405163cb5b691760e01b815260040160405180910390fd5b600b5460ff1615610e445760405163ab35696f60e01b815260040160405180910390fd5b61271060095410610e68576040516352df9fe560e01b815260040160405180910390fd5b335f9081526018602052604090205460ff1615610e9857604051631bbdf5c560e31b815260040160405180910390fd5b5f80808080876005811115610eaf57610eaf61213a565b03610ef0576012549350600c549250600d5491506001905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b611078565b6001876005811115610f0457610f0461213a565b03610f40576013549350600d549250600e5491506001905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b6002876005811115610f5457610f5461213a565b03610f8f576014549350600c549250600d5491505f905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b6003876005811115610fa357610fa361213a565b03610fdd576015549350600f549250601054915060019050600e544211610eeb576040516318b1a81560e01b815260040160405180910390fd5b6004876005811115610ff157610ff161213a565b0361102b5760165493506010549250601154915060019050600e544211610eeb576040516318b1a81560e01b815260040160405180910390fd5b600587600581111561103f5761103f61213a565b03611078576017549350600f54925060105491505f9050600e544211611078576040516318b1a81560e01b815260040160405180910390fd5b82421015611099576040516369183ba160e11b815260040160405180910390fd5b814211156110ba57604051633d20ce7960e21b815260040160405180910390fd5b61112b8686808060200260200160405190810160405280939291908181526020018383602002808284375f92019190915250506040516bffffffffffffffffffffffff193360601b1660208201528892506034019050604051602081830303815290604052805190602001206114c9565b611148576040516309bde33960e01b815260040160405180910390fd5b801561120c57670de0b6b3a764000034146111765760405163cd1c886760e01b815260040160405180910390fd5b5f7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316346040515f6040518083038185875af1925050503d805f81146111df576040519150601f19603f3d011682016040523d82523d5f602084013e6111e4565b606091505b5050905080611206576040516327fcd9d160e01b815260040160405180910390fd5b5061122b565b341561122b57604051630ad2561560e21b815260040160405180910390fd5b611234336114de565b50505050610aa96001600855565b61124d848484610907565b61098f3385858585611579565b6060600a611267836116a1565b60405160200161127892919061214e565b6040516020818303038152906040529050919050565b6001600160a01b039182165f90815260056020908152604080832093909416825291909152205460ff1690565b6112c36113bb565b600780546001600160a01b0383166001600160a01b031990911681179091556112f46006546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f818152600260205260408120546001600160a01b03168061079357604051637e27328960e01b81526004810184905260240161092c565b610aa98383836001611731565b5f828152600260205260408120546001600160a01b031680156113a7576040516358b2164f60e11b815260040160405180910390fd5b6113b2858585611835565b95945050505050565b6006546001600160a01b03163314610d5f5760405163118cdaa760e01b815233600482015260240161092c565b600780546001600160a01b0319169055610da281611927565b6001600160a01b03821661143357604051630b61174360e31b81526001600160a01b038316600482015260240161092c565b6001600160a01b038381165f81815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6002600854036114c257604051633ee5aeb560e01b815260040160405180910390fd5b6002600855565b5f826114d58584611978565b14949350505050565b6009546114eb82826119ba565b60098054905f6114fa836121ce565b90915550506001600160a01b0382165f818152601860205260409020805460ff191660011790556009547f25b428dfde728ccfaddad7e29e4ac23c24ed7fd1a6e3e3f91894a9a073f5dfff908390611388101561155857600261155b565b60015b6040805192835260ff90911660208301520160405180910390a25050565b6001600160a01b0383163b1561169a57604051630a85bd0160e11b81526001600160a01b0384169063150b7a02906115bb9088908890879087906004016121f2565b6020604051808303815f875af19250505080156115f5575060408051601f3d908101601f191682019092526115f29181019061222e565b60015b61165c573d808015611622576040519150601f19603f3d011682016040523d82523d5f602084013e611627565b606091505b5080515f0361165457604051633250574960e11b81526001600160a01b038516600482015260240161092c565b805181602001fd5b6001600160e01b03198116630a85bd0160e11b1461169857604051633250574960e11b81526001600160a01b038516600482015260240161092c565b505b5050505050565b60605f6116ad836119d3565b60010190505f8167ffffffffffffffff8111156116cc576116cc611eeb565b6040519080825280601f01601f1916602001820160405280156116f6576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461170057509392505050565b808061174557506001600160a01b03821615155b15611806575f6117548461132c565b90506001600160a01b038316158015906117805750826001600160a01b0316816001600160a01b031614155b80156117935750611791818461128e565b155b156117bc5760405163a9fbf51f60e01b81526001600160a01b038416600482015260240161092c565b81156118045783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b50505f90815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b5f828152600260205260408120546001600160a01b039081169083161561186157611861818486611aaa565b6001600160a01b0381161561189b5761187c5f855f5f611731565b6001600160a01b0381165f90815260036020526040902080545f190190555b6001600160a01b038516156118c9576001600160a01b0385165f908152600360205260409020805460010190555b5f8481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f81815b84518110156119b2576119a88286838151811061199b5761199b612249565b6020026020010151611b0e565b915060010161197c565b509392505050565b61085a828260405180602001604052805f815250611b3d565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310611a115772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611a3d576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310611a5b57662386f26fc10000830492506010015b6305f5e1008310611a73576305f5e100830492506008015b6127108310611a8757612710830492506004015b60648310611a99576064830492506002015b600a83106107935760010192915050565b611ab5838383611b54565b610aa9576001600160a01b038316611ae357604051637e27328960e01b81526004810182905260240161092c565b60405163177e802f60e01b81526001600160a01b03831660048201526024810182905260440161092c565b5f818310611b28575f828152602084905260409020611b36565b5f8381526020839052604090205b9392505050565b611b478383611bb8565b610aa9335f858585611579565b5f6001600160a01b03831615801590611bb05750826001600160a01b0316846001600160a01b03161480611b8d5750611b8d848461128e565b80611bb057505f828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b038216611be157604051633250574960e11b81525f600482015260240161092c565b5f611bed83835f611371565b90506001600160a01b03811615610aa9576040516339e3563760e11b81525f600482015260240161092c565b6001600160e01b031981168114610da2575f5ffd5b5f60208284031215611c3e575f5ffd5b8135611b3681611c19565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f611b366020830184611c49565b5f60208284031215611c99575f5ffd5b5035919050565b80356001600160a01b0381168114611cb6575f5ffd5b919050565b5f5f60408385031215611ccc575f5ffd5b611cd583611ca0565b946020939093013593505050565b80358015158114611cb6575f5ffd5b5f60208284031215611d02575f5ffd5b611b3682611ce3565b5f5f5f60608486031215611d1d575f5ffd5b611d2684611ca0565b9250611d3460208501611ca0565b929592945050506040919091013590565b5f60208284031215611d55575f5ffd5b611b3682611ca0565b5f5f5f60608486031215611d70575f5ffd5b505081359360208301359350604090920135919050565b5f5f60208385031215611d98575f5ffd5b823567ffffffffffffffff811115611dae575f5ffd5b8301601f81018513611dbe575f5ffd5b803567ffffffffffffffff811115611dd4575f5ffd5b856020828401011115611de5575f5ffd5b6020919091019590945092505050565b5f5f5f5f5f5f60c08789031215611e0a575f5ffd5b505084359660208601359650604086013595606081013595506080810135945060a0013592509050565b5f5f60408385031215611e45575f5ffd5b611e4e83611ca0565b9150611e5c60208401611ce3565b90509250929050565b5f5f5f60408486031215611e77575f5ffd5b833560068110611e85575f5ffd5b9250602084013567ffffffffffffffff811115611ea0575f5ffd5b8401601f81018613611eb0575f5ffd5b803567ffffffffffffffff811115611ec6575f5ffd5b8660208260051b8401011115611eda575f5ffd5b939660209190910195509293505050565b634e487b7160e01b5f52604160045260245ffd5b5f5f5f5f60808587031215611f12575f5ffd5b611f1b85611ca0565b9350611f2960208601611ca0565b925060408501359150606085013567ffffffffffffffff811115611f4b575f5ffd5b8501601f81018713611f5b575f5ffd5b803567ffffffffffffffff811115611f7557611f75611eeb565b604051601f8201601f19908116603f0116810167ffffffffffffffff81118282101715611fa457611fa4611eeb565b604052818152828201602001891015611fbb575f5ffd5b816020840160208301375f6020838301015280935050505092959194509250565b5f5f60408385031215611fed575f5ffd5b611ff683611ca0565b9150611e5c60208401611ca0565b600181811c9082168061201857607f821691505b60208210810361203657634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115610aa957805f5260205f20601f840160051c810160208510156120615750805b601f840160051c820191505b8181101561169a575f815560010161206d565b67ffffffffffffffff83111561209857612098611eeb565b6120ac836120a68354612004565b8361203c565b5f601f8411600181146120dd575f85156120c65750838201355b5f19600387901b1c1916600186901b17835561169a565b5f83815260208120601f198716915b8281101561210c57868501358255602094850194600190920191016120ec565b5086821015612128575f1960f88860031b161c19848701351681555b505060018560011b0183555050505050565b634e487b7160e01b5f52602160045260245ffd5b5f5f845461215b81612004565b6001821680156121725760018114612187576121b4565b60ff19831686528115158202860193506121b4565b875f5260205f205f5b838110156121ac57815488820152600190910190602001612190565b505081860193505b50505083518060208601835e5f9101908152949350505050565b5f600182016121eb57634e487b7160e01b5f52601160045260245ffd5b5060010190565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f9061222490830184611c49565b9695505050505050565b5f6020828403121561223e575f5ffd5b8151611b3681611c19565b634e487b7160e01b5f52603260045260245ffdfea264697066735822122053f7cda580483b9a4018d120b405b0acbcb693f9347d0a298e389a5868b136fd64736f6c634300081c0033000000000000000000000000ce92c82ec42d55b50c839b915652e44c18356050
Deployed Bytecode
0x60806040526004361061026a575f3560e01c80636c8702941161014a5780639b9bce2e116100be578063baa9ea8411610078578063baa9ea84146106a4578063c5441008146106b9578063c87b56dd146106ce578063e30c3978146106ed578063e985e9c51461070a578063f2fde38b14610729575f5ffd5b80639b9bce2e14610614578063a22cb46514610629578063aa22688e14610648578063b4f1053a1461065d578063b61c5e6914610672578063b88d4fde14610685575f5ffd5b80638d53486b1161010f5780638d53486b1461059e5780638d859f3e146105b35780638da5cb5b146105ce57806395c43d841461031b57806395d89b41146105eb57806397c29c06146105ff575f5ffd5b80636c8702941461052d57806370a0823114610542578063715018a61461056157806379ba5097146105755780637eff25e414610589575f5ffd5b80632a593a7c116101e157806355f804b3116101a657806355f804b3146104845780635c975abb146104a35780636352211e146104bc578063643841f7146104db5780636457c3e1146104fa5780636c0360eb14610519575f5ffd5b80632a593a7c146103ee57806332cb6b0c1461040357806338e21cce146104185780634223b04e1461044657806342842e0e14610465575f5ffd5b806316c38b3c1161023257806316c38b3c1461033e57806318160ddd1461035d5780631c064d61146103725780631e5fa577146103a557806323b872dd146103ba578063251dd64d146103d9575f5ffd5b806301ffc9a71461026e57806306fdde03146102a2578063081812fc146102c3578063095ea7b3146102fa57806310a03b221461031b575b5f5ffd5b348015610279575f5ffd5b5061028d610288366004611c2e565b610748565b60405190151581526020015b60405180910390f35b3480156102ad575f5ffd5b506102b6610799565b6040516102999190611c77565b3480156102ce575f5ffd5b506102e26102dd366004611c89565b610828565b6040516001600160a01b039091168152602001610299565b348015610305575f5ffd5b50610319610314366004611cbb565b61084f565b005b348015610326575f5ffd5b5061033061138881565b604051908152602001610299565b348015610349575f5ffd5b50610319610358366004611cf2565b61085e565b348015610368575f5ffd5b5061033060095481565b34801561037d575f5ffd5b506102e27f000000000000000000000000ce92c82ec42d55b50c839b915652e44c1835605081565b3480156103b0575f5ffd5b5061033060125481565b3480156103c5575f5ffd5b506103196103d4366004611d0b565b610907565b3480156103e4575f5ffd5b50610330600d5481565b3480156103f9575f5ffd5b5061033060175481565b34801561040e575f5ffd5b5061033061271081565b348015610423575f5ffd5b5061028d610432366004611d45565b60186020525f908152604090205460ff1681565b348015610451575f5ffd5b50610319610460366004611d5e565b610995565b348015610470575f5ffd5b5061031961047f366004611d0b565b610a8f565b34801561048f575f5ffd5b5061031961049e366004611d87565b610aae565b3480156104ae575f5ffd5b50600b5461028d9060ff1681565b3480156104c7575f5ffd5b506102e26104d6366004611c89565b610b1d565b3480156104e6575f5ffd5b506103196104f5366004611df5565b610b27565b348015610505575f5ffd5b50610319610514366004611d5e565b610ba6565b348015610524575f5ffd5b506102b6610c7d565b348015610538575f5ffd5b5061033060145481565b34801561054d575f5ffd5b5061033061055c366004611d45565b610d09565b34801561056c575f5ffd5b50610319610d4e565b348015610580575f5ffd5b50610319610d61565b348015610594575f5ffd5b50610330600e5481565b3480156105a9575f5ffd5b5061033060155481565b3480156105be575f5ffd5b50610330670de0b6b3a764000081565b3480156105d9575f5ffd5b506006546001600160a01b03166102e2565b3480156105f6575f5ffd5b506102b6610da5565b34801561060a575f5ffd5b5061033060115481565b34801561061f575f5ffd5b5061033060135481565b348015610634575f5ffd5b50610319610643366004611e34565b610db4565b348015610653575f5ffd5b5061033060165481565b348015610668575f5ffd5b50610330600f5481565b610319610680366004611e65565b610dbf565b348015610690575f5ffd5b5061031961069f366004611eff565b611242565b3480156106af575f5ffd5b50610330600c5481565b3480156106c4575f5ffd5b5061033060105481565b3480156106d9575f5ffd5b506102b66106e8366004611c89565b61125a565b3480156106f8575f5ffd5b506007546001600160a01b03166102e2565b348015610715575f5ffd5b5061028d610724366004611fdc565b61128e565b348015610734575f5ffd5b50610319610743366004611d45565b6112bb565b5f6001600160e01b031982166380ac58cd60e01b148061077857506001600160e01b03198216635b5e139f60e01b145b8061079357506301ffc9a760e01b6001600160e01b03198316145b92915050565b60605f80546107a790612004565b80601f01602080910402602001604051908101604052809291908181526020018280546107d390612004565b801561081e5780601f106107f55761010080835404028352916020019161081e565b820191905f5260205f20905b81548152906001019060200180831161080157829003601f168201915b5050505050905090565b5f6108328261132c565b505f828152600460205260409020546001600160a01b0316610793565b61085a828233611364565b5050565b6006546001600160a01b031633148015906108a25750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b156108c05760405163ea8e4eb560e01b815260040160405180910390fd5b600b805460ff19168215159081179091556040519081527f11cec829ff57d278cffee07757e9621bfa0ae0cd17b3d23a7b81cba95174b8a49060200160405180910390a150565b6001600160a01b03821661093557604051633250574960e11b81525f60048201526024015b60405180910390fd5b5f610941838333611371565b9050836001600160a01b0316816001600160a01b03161461098f576040516364283d7b60e01b81526001600160a01b038086166004830152602482018490528216604482015260640161092c565b50505050565b6006546001600160a01b031633148015906109d95750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b156109f75760405163ea8e4eb560e01b815260040160405180910390fd5b828282808310610a1a576040516335f3b02f60e11b815260040160405180910390fd5b808210610a3a576040516335f3b02f60e11b815260040160405180910390fd5b81831115610a5b576040516337fc019b60e11b815260040160405180910390fd5b600e54861015610a7e576040516361d1610f60e11b815260040160405180910390fd5b505050600f92909255601055601155565b610aa983838360405180602001604052805f815250611242565b505050565b6006546001600160a01b03163314801590610af25750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b15610b105760405163ea8e4eb560e01b815260040160405180910390fd5b600a610aa9828483612080565b5f6107938261132c565b6006546001600160a01b03163314801590610b6b5750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b15610b895760405163ea8e4eb560e01b815260040160405180910390fd5b601295909555601393909355601491909155601555601655601755565b6006546001600160a01b03163314801590610bea5750336001600160a01b037f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560501614155b15610c085760405163ea8e4eb560e01b815260040160405180910390fd5b828282808310610c2b576040516335f3b02f60e11b815260040160405180910390fd5b808210610c4b576040516335f3b02f60e11b815260040160405180910390fd5b81831115610c6c576040516337fc019b60e11b815260040160405180910390fd5b505050600c92909255600d55600e55565b600a8054610c8a90612004565b80601f0160208091040260200160405190810160405280929190818152602001828054610cb690612004565b8015610d015780601f10610cd857610100808354040283529160200191610d01565b820191905f5260205f20905b815481529060010190602001808311610ce457829003601f168201915b505050505081565b5f6001600160a01b038216610d33576040516322718ad960e21b81525f600482015260240161092c565b506001600160a01b03165f9081526003602052604090205490565b610d566113bb565b610d5f5f6113e8565b565b60075433906001600160a01b03168114610d995760405163118cdaa760e01b81526001600160a01b038216600482015260240161092c565b610da2816113e8565b50565b6060600180546107a790612004565b61085a338383611401565b610dc761149f565b600c541580610dd65750600d54155b80610de15750600e54155b80610dec5750600f54155b80610df75750601054155b80610e025750601154155b15610e205760405163cb5b691760e01b815260040160405180910390fd5b600b5460ff1615610e445760405163ab35696f60e01b815260040160405180910390fd5b61271060095410610e68576040516352df9fe560e01b815260040160405180910390fd5b335f9081526018602052604090205460ff1615610e9857604051631bbdf5c560e31b815260040160405180910390fd5b5f80808080876005811115610eaf57610eaf61213a565b03610ef0576012549350600c549250600d5491506001905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b611078565b6001876005811115610f0457610f0461213a565b03610f40576013549350600d549250600e5491506001905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b6002876005811115610f5457610f5461213a565b03610f8f576014549350600c549250600d5491505f905061138860095410610eeb57604051630c11336d60e01b815260040160405180910390fd5b6003876005811115610fa357610fa361213a565b03610fdd576015549350600f549250601054915060019050600e544211610eeb576040516318b1a81560e01b815260040160405180910390fd5b6004876005811115610ff157610ff161213a565b0361102b5760165493506010549250601154915060019050600e544211610eeb576040516318b1a81560e01b815260040160405180910390fd5b600587600581111561103f5761103f61213a565b03611078576017549350600f54925060105491505f9050600e544211611078576040516318b1a81560e01b815260040160405180910390fd5b82421015611099576040516369183ba160e11b815260040160405180910390fd5b814211156110ba57604051633d20ce7960e21b815260040160405180910390fd5b61112b8686808060200260200160405190810160405280939291908181526020018383602002808284375f92019190915250506040516bffffffffffffffffffffffff193360601b1660208201528892506034019050604051602081830303815290604052805190602001206114c9565b611148576040516309bde33960e01b815260040160405180910390fd5b801561120c57670de0b6b3a764000034146111765760405163cd1c886760e01b815260040160405180910390fd5b5f7f000000000000000000000000ce92c82ec42d55b50c839b915652e44c183560506001600160a01b0316346040515f6040518083038185875af1925050503d805f81146111df576040519150601f19603f3d011682016040523d82523d5f602084013e6111e4565b606091505b5050905080611206576040516327fcd9d160e01b815260040160405180910390fd5b5061122b565b341561122b57604051630ad2561560e21b815260040160405180910390fd5b611234336114de565b50505050610aa96001600855565b61124d848484610907565b61098f3385858585611579565b6060600a611267836116a1565b60405160200161127892919061214e565b6040516020818303038152906040529050919050565b6001600160a01b039182165f90815260056020908152604080832093909416825291909152205460ff1690565b6112c36113bb565b600780546001600160a01b0383166001600160a01b031990911681179091556112f46006546001600160a01b031690565b6001600160a01b03167f38d16b8cac22d99fc7c124b9cd0de2d3fa1faef420bfe791d8c362d765e2270060405160405180910390a350565b5f818152600260205260408120546001600160a01b03168061079357604051637e27328960e01b81526004810184905260240161092c565b610aa98383836001611731565b5f828152600260205260408120546001600160a01b031680156113a7576040516358b2164f60e11b815260040160405180910390fd5b6113b2858585611835565b95945050505050565b6006546001600160a01b03163314610d5f5760405163118cdaa760e01b815233600482015260240161092c565b600780546001600160a01b0319169055610da281611927565b6001600160a01b03821661143357604051630b61174360e31b81526001600160a01b038316600482015260240161092c565b6001600160a01b038381165f81815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b6002600854036114c257604051633ee5aeb560e01b815260040160405180910390fd5b6002600855565b5f826114d58584611978565b14949350505050565b6009546114eb82826119ba565b60098054905f6114fa836121ce565b90915550506001600160a01b0382165f818152601860205260409020805460ff191660011790556009547f25b428dfde728ccfaddad7e29e4ac23c24ed7fd1a6e3e3f91894a9a073f5dfff908390611388101561155857600261155b565b60015b6040805192835260ff90911660208301520160405180910390a25050565b6001600160a01b0383163b1561169a57604051630a85bd0160e11b81526001600160a01b0384169063150b7a02906115bb9088908890879087906004016121f2565b6020604051808303815f875af19250505080156115f5575060408051601f3d908101601f191682019092526115f29181019061222e565b60015b61165c573d808015611622576040519150601f19603f3d011682016040523d82523d5f602084013e611627565b606091505b5080515f0361165457604051633250574960e11b81526001600160a01b038516600482015260240161092c565b805181602001fd5b6001600160e01b03198116630a85bd0160e11b1461169857604051633250574960e11b81526001600160a01b038516600482015260240161092c565b505b5050505050565b60605f6116ad836119d3565b60010190505f8167ffffffffffffffff8111156116cc576116cc611eeb565b6040519080825280601f01601f1916602001820160405280156116f6576020820181803683370190505b5090508181016020015b5f19016f181899199a1a9b1b9c1cb0b131b232b360811b600a86061a8153600a850494508461170057509392505050565b808061174557506001600160a01b03821615155b15611806575f6117548461132c565b90506001600160a01b038316158015906117805750826001600160a01b0316816001600160a01b031614155b80156117935750611791818461128e565b155b156117bc5760405163a9fbf51f60e01b81526001600160a01b038416600482015260240161092c565b81156118045783856001600160a01b0316826001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45b505b50505f90815260046020526040902080546001600160a01b0319166001600160a01b0392909216919091179055565b5f828152600260205260408120546001600160a01b039081169083161561186157611861818486611aaa565b6001600160a01b0381161561189b5761187c5f855f5f611731565b6001600160a01b0381165f90815260036020526040902080545f190190555b6001600160a01b038516156118c9576001600160a01b0385165f908152600360205260409020805460010190555b5f8481526002602052604080822080546001600160a01b0319166001600160a01b0389811691821790925591518793918516917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91a4949350505050565b600680546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f81815b84518110156119b2576119a88286838151811061199b5761199b612249565b6020026020010151611b0e565b915060010161197c565b509392505050565b61085a828260405180602001604052805f815250611b3d565b5f8072184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b8310611a115772184f03e93ff9f4daa797ed6e38ed64bf6a1f0160401b830492506040015b6d04ee2d6d415b85acef81000000008310611a3d576d04ee2d6d415b85acef8100000000830492506020015b662386f26fc100008310611a5b57662386f26fc10000830492506010015b6305f5e1008310611a73576305f5e100830492506008015b6127108310611a8757612710830492506004015b60648310611a99576064830492506002015b600a83106107935760010192915050565b611ab5838383611b54565b610aa9576001600160a01b038316611ae357604051637e27328960e01b81526004810182905260240161092c565b60405163177e802f60e01b81526001600160a01b03831660048201526024810182905260440161092c565b5f818310611b28575f828152602084905260409020611b36565b5f8381526020839052604090205b9392505050565b611b478383611bb8565b610aa9335f858585611579565b5f6001600160a01b03831615801590611bb05750826001600160a01b0316846001600160a01b03161480611b8d5750611b8d848461128e565b80611bb057505f828152600460205260409020546001600160a01b038481169116145b949350505050565b6001600160a01b038216611be157604051633250574960e11b81525f600482015260240161092c565b5f611bed83835f611371565b90506001600160a01b03811615610aa9576040516339e3563760e11b81525f600482015260240161092c565b6001600160e01b031981168114610da2575f5ffd5b5f60208284031215611c3e575f5ffd5b8135611b3681611c19565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f611b366020830184611c49565b5f60208284031215611c99575f5ffd5b5035919050565b80356001600160a01b0381168114611cb6575f5ffd5b919050565b5f5f60408385031215611ccc575f5ffd5b611cd583611ca0565b946020939093013593505050565b80358015158114611cb6575f5ffd5b5f60208284031215611d02575f5ffd5b611b3682611ce3565b5f5f5f60608486031215611d1d575f5ffd5b611d2684611ca0565b9250611d3460208501611ca0565b929592945050506040919091013590565b5f60208284031215611d55575f5ffd5b611b3682611ca0565b5f5f5f60608486031215611d70575f5ffd5b505081359360208301359350604090920135919050565b5f5f60208385031215611d98575f5ffd5b823567ffffffffffffffff811115611dae575f5ffd5b8301601f81018513611dbe575f5ffd5b803567ffffffffffffffff811115611dd4575f5ffd5b856020828401011115611de5575f5ffd5b6020919091019590945092505050565b5f5f5f5f5f5f60c08789031215611e0a575f5ffd5b505084359660208601359650604086013595606081013595506080810135945060a0013592509050565b5f5f60408385031215611e45575f5ffd5b611e4e83611ca0565b9150611e5c60208401611ce3565b90509250929050565b5f5f5f60408486031215611e77575f5ffd5b833560068110611e85575f5ffd5b9250602084013567ffffffffffffffff811115611ea0575f5ffd5b8401601f81018613611eb0575f5ffd5b803567ffffffffffffffff811115611ec6575f5ffd5b8660208260051b8401011115611eda575f5ffd5b939660209190910195509293505050565b634e487b7160e01b5f52604160045260245ffd5b5f5f5f5f60808587031215611f12575f5ffd5b611f1b85611ca0565b9350611f2960208601611ca0565b925060408501359150606085013567ffffffffffffffff811115611f4b575f5ffd5b8501601f81018713611f5b575f5ffd5b803567ffffffffffffffff811115611f7557611f75611eeb565b604051601f8201601f19908116603f0116810167ffffffffffffffff81118282101715611fa457611fa4611eeb565b604052818152828201602001891015611fbb575f5ffd5b816020840160208301375f6020838301015280935050505092959194509250565b5f5f60408385031215611fed575f5ffd5b611ff683611ca0565b9150611e5c60208401611ca0565b600181811c9082168061201857607f821691505b60208210810361203657634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115610aa957805f5260205f20601f840160051c810160208510156120615750805b601f840160051c820191505b8181101561169a575f815560010161206d565b67ffffffffffffffff83111561209857612098611eeb565b6120ac836120a68354612004565b8361203c565b5f601f8411600181146120dd575f85156120c65750838201355b5f19600387901b1c1916600186901b17835561169a565b5f83815260208120601f198716915b8281101561210c57868501358255602094850194600190920191016120ec565b5086821015612128575f1960f88860031b161c19848701351681555b505060018560011b0183555050505050565b634e487b7160e01b5f52602160045260245ffd5b5f5f845461215b81612004565b6001821680156121725760018114612187576121b4565b60ff19831686528115158202860193506121b4565b875f5260205f205f5b838110156121ac57815488820152600190910190602001612190565b505081860193505b50505083518060208601835e5f9101908152949350505050565b5f600182016121eb57634e487b7160e01b5f52601160045260245ffd5b5060010190565b6001600160a01b03858116825284166020820152604081018390526080606082018190525f9061222490830184611c49565b9695505050505050565b5f6020828403121561223e575f5ffd5b8151611b3681611c19565b634e487b7160e01b5f52603260045260245ffdfea264697066735822122053f7cda580483b9a4018d120b405b0acbcb693f9347d0a298e389a5868b136fd64736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000ce92c82ec42d55b50c839b915652e44c18356050
-----Decoded View---------------
Arg [0] : _paymentReceiver (address): 0xcE92C82eC42d55b50c839b915652E44c18356050
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000ce92c82ec42d55b50c839b915652e44c18356050
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.