Overview
TokenID
18
Total Transfers
-
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract
Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
This contract contains unverified libraries: Time
Contract Source Code Verified (Exact Match)
Contract Name:
PresaleMinter
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
Yes with 200 runs
Other Settings:
shanghai EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
//SPDX License Identifier: MIT pragma solidity 0.8.28; import {ERC721A} from "@erc721a/ERC721A.sol"; import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; import {BlackBox} from "./BlackBox.sol"; contract PresaleMinter is ERC721A, Ownable { using Strings for uint256; BlackBox public blackBox; address public minting; string public baseURI; modifier onlyMinting() { _onlyMinting(); _; } event MinterChanged(address newMinter); event URIUpdated(); event MetadataUpdate(uint256 _fromTokenId, uint256 _toTokenId); error Address0(); error OnlyMinter(); error ZeroInput(); error RequestPendingOrFulfilled(); constructor(address _owner, string memory _baseURI) ERC721A("Presale Minter", "PM") Ownable(_owner) { if (bytes(_baseURI).length == 0) revert ZeroInput(); baseURI = _baseURI; } function mint(address receiver, uint128 amount) external onlyMinting { _mint(receiver, amount); } function tokenURI(uint256 tokenId) public view override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); return bytes(baseURI).length > 0 ? baseURI : ""; } function setBaseURI(string memory _uri) external onlyOwner { if (bytes(_uri).length == 0) revert ZeroInput(); baseURI = _uri; emit MetadataUpdate(1, type(uint256).max); } function setBlackBox(address _blackBox) external onlyOwner { blackBox = BlackBox(_blackBox); } function setMinting(address _minting) external onlyOwner { if(_minting == address(0)){ revert Address0(); } minting = _minting; emit MinterChanged(_minting); } /** * @notice Prevent transfers when request is pending, otherwise winners can be frontran for bonus. */ function _beforeTokenTransfers( address, address, uint256, uint256 ) internal view override { if(blackBox.isRequestPendingOrFulfilled()) { revert RequestPendingOrFulfilled(); } } function _startTokenId() internal view virtual override returns (uint256) { return 1; } function _onlyMinting() private view { require(msg.sender == minting, OnlyMinter()); } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.3.0 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721A.sol'; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721Receiver { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * The `_sequentialUpTo()` function can be overriden to enable spot mints * (i.e. non-consecutive mints) for `tokenId`s greater than `_sequentialUpTo()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721A is IERC721A { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 private _currentIndex; // The number of tokens burned. uint256 private _burnCounter; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) private _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) private _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => TokenApprovalRef) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; // The amount of tokens minted above `_sequentialUpTo()`. // We call these spot mints (i.e. non-sequential mints). uint256 private _spotMinted; // ============================================================= // CONSTRUCTOR // ============================================================= constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _currentIndex = _startTokenId(); if (_sequentialUpTo() < _startTokenId()) _revert(SequentialUpToTooSmall.selector); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID for sequential mints. * * Override this function to change the starting token ID for sequential mints. * * Note: The value returned must never change after any tokens have been minted. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the maximum token ID (inclusive) for sequential mints. * * Override this function to return a value less than 2**256 - 1, * but greater than `_startTokenId()`, to enable spot (non-sequential) mints. * * Note: The value returned must never change after any tokens have been minted. */ function _sequentialUpTo() internal view virtual returns (uint256) { return type(uint256).max; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return _currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256 result) { // Counter underflow is impossible as `_burnCounter` cannot be incremented // more than `_currentIndex + _spotMinted - _startTokenId()` times. unchecked { // With spot minting, the intermediate `result` can be temporarily negative, // and the computation must be unchecked. result = _currentIndex - _burnCounter - _startTokenId(); if (_sequentialUpTo() != type(uint256).max) result += _spotMinted; } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256 result) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { result = _currentIndex - _startTokenId(); if (_sequentialUpTo() != type(uint256).max) result += _spotMinted; } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return _burnCounter; } /** * @dev Returns the total number of tokens that are spot-minted. */ function _totalSpotMinted() internal view virtual returns (uint256) { return _spotMinted; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) _revert(BalanceQueryForZeroAddress.selector); return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(_packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = _packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); _packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) _revert(URIQueryForNonexistentToken.selector); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnerships[index]); } /** * @dev Returns whether the ownership slot at `index` is initialized. * An uninitialized slot does not necessarily mean that the slot has no owner. */ function _ownershipIsInitialized(uint256 index) internal view virtual returns (bool) { return _packedOwnerships[index] != 0; } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (_packedOwnerships[index] == 0) { _packedOwnerships[index] = _packedOwnershipOf(index); } } /** * @dev Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) { if (_startTokenId() <= tokenId) { packed = _packedOwnerships[tokenId]; if (tokenId > _sequentialUpTo()) { if (_packedOwnershipExists(packed)) return packed; _revert(OwnerQueryForNonexistentToken.selector); } // If the data at the starting slot does not exist, start the scan. if (packed == 0) { if (tokenId >= _currentIndex) _revert(OwnerQueryForNonexistentToken.selector); // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `tokenId` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. for (;;) { unchecked { packed = _packedOwnerships[--tokenId]; } if (packed == 0) continue; if (packed & _BITMASK_BURNED == 0) return packed; // Otherwise, the token is burned, and we must revert. // This handles the case of batch burned tokens, where only the burned bit // of the starting slot is set, and remaining slots are left uninitialized. _revert(OwnerQueryForNonexistentToken.selector); } } // Otherwise, the data exists and we can skip the scan. // This is possible because we have already achieved the target condition. // This saves 2143 gas on transfers of initialized tokens. // If the token is not burned, return `packed`. Otherwise, revert. if (packed & _BITMASK_BURNED == 0) return packed; } _revert(OwnerQueryForNonexistentToken.selector); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}. * * Requirements: * * - The caller must own the token or be an approved operator. */ function approve(address to, uint256 tokenId) public payable virtual override { _approve(to, tokenId, true); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) _revert(ApprovalQueryForNonexistentToken.selector); return _tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { _operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool result) { if (_startTokenId() <= tokenId) { if (tokenId > _sequentialUpTo()) return _packedOwnershipExists(_packedOwnerships[tokenId]); if (tokenId < _currentIndex) { uint256 packed; while ((packed = _packedOwnerships[tokenId]) == 0) --tokenId; result = packed & _BITMASK_BURNED == 0; } } } /** * @dev Returns whether `packed` represents a token that exists. */ function _packedOwnershipExists(uint256 packed) private pure returns (bool result) { assembly { // The following is equivalent to `owner != address(0) && burned == false`. // Symbolically tested. result := gt(and(packed, _BITMASK_ADDRESS), and(packed, _BITMASK_BURNED)) } } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); // Mask `from` to the lower 160 bits, in case the upper bits somehow aren't clean. from = address(uint160(uint256(uint160(from)) & _BITMASK_ADDRESS)); if (address(uint160(prevOwnershipPacked)) != from) _revert(TransferFromIncorrectOwner.selector); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --_packedAddressData[from]; // Updates: `balance -= 1`. ++_packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. from, // `from`. toMasked, // `to`. tokenId // `tokenId`. ) } if (toMasked == 0) _revert(TransferToZeroAddress.selector); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns ( bytes4 retval ) { return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { _revert(TransferToNonERC721ReceiverImplementer.selector); } assembly { revert(add(32, reason), mload(reason)) } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (quantity == 0) _revert(MintZeroQuantity.selector); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; if (toMasked == 0) _revert(MintToZeroAddress.selector); uint256 end = startTokenId + quantity; uint256 tokenId = startTokenId; if (end - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector); do { assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. tokenId // `tokenId`. ) } // The `!=` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. } while (++tokenId != end); _currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = _currentIndex; if (to == address(0)) _revert(MintToZeroAddress.selector); if (quantity == 0) _revert(MintZeroQuantity.selector); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) _revert(MintERC2309QuantityExceedsLimit.selector); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. _packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); if (startTokenId + quantity - 1 > _sequentialUpTo()) _revert(SequentialMintExceedsLimit.selector); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); _currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = _currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } } while (index < end); // This prevents reentrancy to `_safeMint`. // It does not prevent reentrancy to `_safeMintSpot`. if (_currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } /** * @dev Mints a single token at `tokenId`. * * Note: A spot-minted `tokenId` that has been burned can be re-minted again. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` must be greater than `_sequentialUpTo()`. * - `tokenId` must not exist. * * Emits a {Transfer} event for each mint. */ function _mintSpot(address to, uint256 tokenId) internal virtual { if (tokenId <= _sequentialUpTo()) _revert(SpotMintTokenIdTooSmall.selector); uint256 prevOwnershipPacked = _packedOwnerships[tokenId]; if (_packedOwnershipExists(prevOwnershipPacked)) _revert(TokenAlreadyExists.selector); _beforeTokenTransfers(address(0), to, tokenId, 1); // Overflows are incredibly unrealistic. // The `numberMinted` for `to` is incremented by 1, and has a max limit of 2**64 - 1. // `_spotMinted` is incremented by 1, and has a max limit of 2**256 - 1. unchecked { // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `true` (as `quantity == 1`). _packedOwnerships[tokenId] = _packOwnershipData( to, _nextInitializedFlag(1) | _nextExtraData(address(0), to, prevOwnershipPacked) ); // Updates: // - `balance += 1`. // - `numberMinted += 1`. // // We can directly add to the `balance` and `numberMinted`. _packedAddressData[to] += (1 << _BITPOS_NUMBER_MINTED) | 1; // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. uint256 toMasked = uint256(uint160(to)) & _BITMASK_ADDRESS; if (toMasked == 0) _revert(MintToZeroAddress.selector); assembly { // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. tokenId // `tokenId`. ) } ++_spotMinted; } _afterTokenTransfers(address(0), to, tokenId, 1); } /** * @dev Safely mints a single token at `tokenId`. * * Note: A spot-minted `tokenId` that has been burned can be re-minted again. * * Requirements: * * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}. * - `tokenId` must be greater than `_sequentialUpTo()`. * - `tokenId` must not exist. * * See {_mintSpot}. * * Emits a {Transfer} event. */ function _safeMintSpot( address to, uint256 tokenId, bytes memory _data ) internal virtual { _mintSpot(to, tokenId); unchecked { if (to.code.length != 0) { uint256 currentSpotMinted = _spotMinted; if (!_checkContractOnERC721Received(address(0), to, tokenId, _data)) { _revert(TransferToNonERC721ReceiverImplementer.selector); } // This prevents reentrancy to `_safeMintSpot`. // It does not prevent reentrancy to `_safeMint`. if (_spotMinted != currentSpotMinted) revert(); } } } /** * @dev Equivalent to `_safeMintSpot(to, tokenId, '')`. */ function _safeMintSpot(address to, uint256 tokenId) internal virtual { _safeMintSpot(to, tokenId, ''); } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Equivalent to `_approve(to, tokenId, false)`. */ function _approve(address to, uint256 tokenId) internal virtual { _approve(to, tokenId, false); } /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - `tokenId` must exist. * * Emits an {Approval} event. */ function _approve( address to, uint256 tokenId, bool approvalCheck ) internal virtual { address owner = ownerOf(tokenId); if (approvalCheck && _msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { _revert(ApprovalCallerNotOwnerNorApproved.selector); } _tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) _revert(TransferCallerNotOwnerNorApproved.selector); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. _packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (_packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != _currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. _packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as `_burnCounter` cannot be exceed `_currentIndex + _spotMinted` times. unchecked { _burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = _packedOwnerships[index]; if (packed == 0) _revert(OwnershipNotInitializedForExtraData.selector); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); _packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } /** * @dev For more efficient reverts. */ function _revert(bytes4 errorSelector) internal pure { assembly { mstore(0x00, errorSelector) revert(0x00, 0x04) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return tryParseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return tryParseInt(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = bytes1(_unsafeReadBytesOffset(buffer, begin)); bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return tryParseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guaratees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { // check that input is the correct length bool hasPrefix = bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); uint256 expectedLength = 40 + hasPrefix.toUint() * 2; if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = tryParseHexUint(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } }
//SPDX License Identifier: MIT pragma solidity 0.8.28; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import {VRFConsumerBaseV2Plus} from "@chainlink/contracts/src/v0.8/vrf/dev/VRFConsumerBaseV2Plus.sol"; import {VRFV2PlusClient} from "@chainlink/contracts/src/v0.8/vrf/dev/libraries/VRFV2PlusClient.sol"; import {IUniswapV2Router02} from "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol"; import {PresaleMinter} from "./PresaleMinter.sol"; import "./Constants.sol"; import {Time} from "./utils/Time.sol"; import {wmul} from "./utils/Math.sol"; contract BlackBox is VRFConsumerBaseV2Plus { enum RequestStatus { NONE, //NOTE added for participate and removeParticipant, to add participants for the first draw, when lastRequestId is 0 PENDING, FULFILLED, FINALIZED } struct LotteryRequest { uint256 rewardsAvailable; uint256[] randomWords; RequestStatus status; } struct Distribution { uint256 totalAllocationPercentage; uint256[] winnerPercentages; } struct Range { uint256 minBalance; uint256 maxBalance; uint256 distributionId; } using EnumerableSet for EnumerableSet.AddressSet; uint256 constant REWARD_INTERVAL_TIME = 30 days; IERC20 immutable x28; address immutable public minting; address immutable public feliX; PresaleMinter immutable public presaleMinterNFT; uint32 immutable startTimestamp; uint256 immutable subscriptionId; address public admin; bytes32 public keyHash; uint16 public requestConfirmations = 3; uint32 public callbackGasLimit = 1_250_000; uint128 public swapCap = type(uint128).max; uint64 public presaleMinterBoost = 0.2e18; uint32 public currentDistributionIndex = 0; uint256 public x28Reserved; mapping(uint32 currentDistributionIndex => uint256 winnersRewards) public x28ForEachDraw; uint256 lastRequestId; mapping(uint256 requestId => LotteryRequest) requests; mapping(address user => uint256 rewardsClaimable) public winnersReward; mapping(address user => bool isWhitelisted) public whitelistedUsers; EnumerableSet.AddressSet winners; Range[] public ranges; mapping(uint256 => Distribution) public distributions; uint256 private distributionCounter = 0; Distribution public currDistributionData; uint32 public lastIntervalCall; mapping(uint32 currentDistributionIndex => EnumerableSet.AddressSet participants) participants; modifier onlyFelix() { _onlyFelix(); _; } modifier onlyMinting() { _onlyMinting(); _; } modifier noPendingRandomness() { _noPendingRandomness(); _; } modifier onlyAdmin() { _onlyAdmin(); _; } modifier onlyAdminOrWhitelisted() { _onlyAdminOrWhitelisted(); _; } event LotteryDrawn(uint256 indexed winnersCount); event WinnerDrawn(address indexed winners, uint256 indexed AmountWon); event RangeAdded(uint256 indexed rangeId, uint256 minBalance, uint256 maxBalance, uint256 distributionId); event RangeUpdated(uint256 indexed rangeId, uint256 minBalance, uint256 maxBalance, uint256 distributionId); event DistributionAdded(uint256 indexed distributionId, uint256 totalAllocationPercentage, uint256[] winnerPercentages); event DistributionUpdated(uint256 indexed distributionId, uint256 totalAllocationPercentage, uint256[] winnerPercentages); event SwapCapUpdated(uint128 indexed newSwapCap); event WhitelistedUserSet(address[] users, bool indexed isWhitelisted); event WinningsClaimed(address indexed user, uint256 indexed winnings); error OnlyAllowed(); error EmptyTreasury(); error OnlyMonthly(); error NoParticipation(); error RandomnessAlreadyRequested(); error RandomnessNotFulfilled(); error OnlyAdmin(); error OnlyWinner(); error OnlyEOA(); error OnlyAdminOrWhitelisted(); constructor( address _minting, address _feliX, address _presaleMinterNFT, address _vrfCoordinator, uint256 _subscriptionId, bytes32 _keyHash, address _admin, uint32 _startTimestamp, uint256[][] memory _distributionPatterns ) VRFConsumerBaseV2Plus(_vrfCoordinator) { minting = _minting; feliX = _feliX; presaleMinterNFT = PresaleMinter(_presaleMinterNFT); startTimestamp = _startTimestamp; x28 = IERC20(X28); lastIntervalCall = _startTimestamp; keyHash = _keyHash; subscriptionId = _subscriptionId; admin = _admin; { addDistributionPattern(0.5e18, _distributionPatterns[0]); addDistributionPattern(0.45e18, _distributionPatterns[1]); addDistributionPattern(0.40e18, _distributionPatterns[2]); addDistributionPattern(0.35e18, _distributionPatterns[3]); addDistributionPattern(0.3e18, _distributionPatterns[4]); addDistributionPattern(0.28e18, _distributionPatterns[5]); addDistributionPattern(0.25e18, _distributionPatterns[6]); addDistributionPattern(0.2e18, _distributionPatterns[7]); addDistributionPattern(0.2e18, _distributionPatterns[8]); addDistributionPattern(0.2e18, _distributionPatterns[9]); addDistributionPattern(0.2e18, _distributionPatterns[10]); } { // Adding ranges with associated distribution patterns addRange(1_500_000_000e18, 3_000_000_000e18 - 1, 0); // Uses distributionId 0 addRange(3_000_000_000e18, 4_500_000_000e18 - 1, 1); // Uses distributionId 1 addRange(4_500_000_000e18, 6_000_000_000e18 - 1, 2); // Uses distributionId 2 addRange(6_000_000_000e18, 15_000_000_000e18 - 1, 3); // Uses distributionId 3 addRange(15_000_000_000e18, 30_000_000_000e18 - 1, 4); // Uses distributionId 4 addRange(30_000_000_000e18, 40_000_000_000e18 - 1, 5); // Uses distributionId 5 addRange(40_000_000_000e18, 50_000_000_000e18 - 1, 6); // Uses distributionId 6 addRange(50_000_000_000e18, 120_000_000_000e18 - 1, 7); // Uses distributionId 7 addRange(120_000_000_000e18, 900_000_000_000e18 - 1, 8); // Uses distributionId 8 addRange(900_000_000_000e18, 1_200_000_000_000e18 - 1, 9); // Uses distributionId 9 addRange(1_200_000_000_000e18, 12_000_000_000_000e18, 10); // Uses distributionId 10 } } /* == EXTERNAL == */ function pickWinners(uint256 amountX28Min, uint32 deadline) external noPendingRandomness returns (uint256 requestId) { swapFeliXForX28(amountX28Min, deadline); uint256 availableX28 = X28ForGrabs(); require(availableX28 != 0, EmptyTreasury()); require(lastIntervalCall + REWARD_INTERVAL_TIME <= Time.blockTs(), OnlyMonthly()); require(participants[currentDistributionIndex].length() != 0, NoParticipation()); currDistributionData = getDistribution(availableX28); uint32 winnersCount = participants[currentDistributionIndex].length() >= currDistributionData.winnerPercentages.length ? uint32(currDistributionData.winnerPercentages.length) : uint32(participants[currentDistributionIndex].length()); requestId = s_vrfCoordinator.requestRandomWords( VRFV2PlusClient.RandomWordsRequest({ keyHash: keyHash, subId: subscriptionId, requestConfirmations: requestConfirmations, callbackGasLimit: callbackGasLimit, numWords: winnersCount, extraArgs: VRFV2PlusClient._argsToBytes(VRFV2PlusClient.ExtraArgsV1({nativePayment: false})) }) ); lastRequestId = requestId; requests[requestId] = LotteryRequest({status: RequestStatus.PENDING, rewardsAvailable: wmul(availableX28, currDistributionData.totalAllocationPercentage), randomWords: new uint256[](winnersCount)}); } /** * @notice Intentionally not checking if request is pending, because we want this function not to revert in any cases, there is no way this function to be called without a pending request */ function fulfillRandomWords(uint256 requestId, uint256[] calldata randomWords) internal override { LotteryRequest storage _lotteryRequest = requests[requestId]; uint256 missedIntervals = (Time.blockTs() - lastIntervalCall) / REWARD_INTERVAL_TIME; lastIntervalCall = uint32(lastIntervalCall + (REWARD_INTERVAL_TIME * missedIntervals)); _lotteryRequest.randomWords = randomWords; _lotteryRequest.status = RequestStatus.FULFILLED; emit LotteryDrawn(randomWords.length); } /** * @notice Automated function, it's guaranteed that it's called by LotteryDrawn event listener, otherwise storage variables will be out of sync * @notice Single user can win multiple times * @notice Small chance all the winners to have PresaleMinterNFT, then we extend the reward, next draw will have slightly lower rewards, it's ok */ function finalizeRandomness() external onlyAdminOrWhitelisted { LotteryRequest storage _lotteryRequest = requests[lastRequestId]; require(_lotteryRequest.status == RequestStatus.FULFILLED, RandomnessNotFulfilled()); uint256 participantsInCurrentDistribution = participants[currentDistributionIndex].length(); uint256[] memory randomWords = _lotteryRequest.randomWords; uint256 amountX28PerWinner; uint256 sumOfWinnersReward; for(uint256 i; i < randomWords.length; i++) { uint256 randomness = randomWords[i]; address winner = participants[currentDistributionIndex].at(randomness % participantsInCurrentDistribution); amountX28PerWinner = wmul(_lotteryRequest.rewardsAvailable, currDistributionData.winnerPercentages[i]); if(presaleMinterNFT.balanceOf(winner) > 0) { uint256 bonus = wmul(amountX28PerWinner, PRESALE_MINTER_BONUS); amountX28PerWinner += bonus; } winnersReward[winner] += amountX28PerWinner; winners.add(winner); sumOfWinnersReward += amountX28PerWinner; emit WinnerDrawn(winner, amountX28PerWinner); } x28ForEachDraw[currentDistributionIndex] = sumOfWinnersReward; x28Reserved += sumOfWinnersReward; currentDistributionIndex += 1; requests[lastRequestId].status = RequestStatus.FINALIZED; } function claimWinnings() external { require(winnersReward[msg.sender] != 0, OnlyWinner()); uint256 winnings = winnersReward[msg.sender]; x28Reserved -= winnings; delete winnersReward[msg.sender]; x28.transfer(msg.sender, winnings); emit WinningsClaimed(msg.sender, winnings); } /* == ADMIN == */ function changeRequestConfirmations(uint16 _newRequestConfirmations) external onlyAdmin { require(_newRequestConfirmations != 0, "Cannot be zero"); requestConfirmations = _newRequestConfirmations; } function changePresaleMinterBoost(uint32 _presaleMinterBoost) external onlyAdmin { require(_presaleMinterBoost != 0 && _presaleMinterBoost <= 1e18, "Cannot be zero"); presaleMinterBoost = _presaleMinterBoost; } function changeCallbackGasLimit(uint32 _callbackGasLimit) external onlyAdmin { require(_callbackGasLimit != 0, "Cannot be zero"); callbackGasLimit = _callbackGasLimit; } function changeKeyHash(bytes32 _newKeyHash) external onlyAdmin { keyHash = _newKeyHash; } function changeAdmin(address _newAdmin) external onlyAdmin { require(_newAdmin != address(0), "Cannot be address zero"); admin = _newAdmin; } function unblockPendingRandomness() external onlyAdmin { requests[lastRequestId].status = RequestStatus.NONE; } function participate(address _participant) external onlyFelix { if(isRequestPendingOrFulfilled()) { return; } participants[currentDistributionIndex].add(_participant); } function removeParticipant(address _participant) external onlyFelix { if(isRequestPendingOrFulfilled()) { return; } participants[currentDistributionIndex].remove(_participant); } function setSwapCap(uint128 _swapCap) external onlyAdmin { swapCap = _swapCap; emit SwapCapUpdated(_swapCap); } function setWhitelistedUsers(address[] calldata _users, bool _isWhitelisted) external onlyAdmin { for (uint256 i = 0; i < _users.length; i++) { whitelistedUsers[_users[i]] = _isWhitelisted; } emit WhitelistedUserSet(_users, _isWhitelisted); } function isParticipant(address _user) external view returns (bool) { return participants[currentDistributionIndex].contains(_user); } function lotteryWinners() external view returns (address[] memory) { return winners.values(); } function getDistribution(uint256 balance) public view returns (Distribution memory) { uint256 rangesLength = ranges.length - 1; if (balance < ranges[0].minBalance) return distributions[ranges[0].distributionId]; // Case if balance is lower than the minimum of the 1st distribution case if (balance > ranges[rangesLength].maxBalance) return distributions[ranges[rangesLength].distributionId]; // Case if balance is higher than the maximum of the last distribution case for (uint256 i = 0; i < ranges.length; i++) { if (balance >= ranges[i].minBalance && balance <= ranges[i].maxBalance) { return distributions[ranges[i].distributionId]; } } } function addDistributionPattern(uint256 totalPercentage, uint256[] memory winnerPercentages) public onlyAdmin { distributions[distributionCounter] = Distribution({ totalAllocationPercentage: totalPercentage, winnerPercentages: winnerPercentages }); emit DistributionAdded(distributionCounter, totalPercentage, winnerPercentages); distributionCounter++; } function addRange(uint256 minBalance, uint256 maxBalance, uint256 distributionId) public onlyAdmin { require(distributionId < distributionCounter, "Invalid distributionId"); ranges.push(Range({ minBalance: minBalance, maxBalance: maxBalance, distributionId: distributionId })); emit RangeAdded(ranges.length - 1, minBalance, maxBalance, distributionId); } function updateRange(uint256 rangeId, uint256 minBalance, uint256 maxBalance, uint256 distributionId) public onlyAdmin { require(rangeId < ranges.length, "Invalid rangeId"); require(distributionId < distributionCounter, "Invalid distributionId"); ranges[rangeId] = Range({ minBalance: minBalance, maxBalance: maxBalance, distributionId: distributionId }); emit RangeUpdated(rangeId, minBalance, maxBalance, distributionId); } function updateDistribution(uint256 distributionId, uint256 totalPercentage, uint256[] memory winnerPercentages) public onlyAdmin { require(distributionId < distributionCounter, "Invalid distributionId"); distributions[distributionId] = Distribution({ totalAllocationPercentage: totalPercentage, winnerPercentages: winnerPercentages }); emit DistributionUpdated(distributionId, totalPercentage, winnerPercentages); } function isRequestPendingOrFulfilled() public view returns (bool) { return requests[lastRequestId].status == RequestStatus.PENDING || requests[lastRequestId].status == RequestStatus.FULFILLED; } /** * @notice Returns the free X28 that is available as lottery reward */ function X28ForGrabs() public view returns (uint256) { return x28.balanceOf(address(this)) - x28Reserved; } /** * @notice BuyAndBurn will fill the pool with X28 which we will use here to swap from FeliX * @notice Situations with insufficient liquidity are possible, so we must perform swap in try/catch * @dev Sandwich attacks are limited because of the swap cap and buy/sell taxes */ function swapFeliXForX28(uint256 amountX28Min, uint32 deadline) internal { require(msg.sender == tx.origin, OnlyEOA()); uint256 feliXbalanceToSwap = IERC20(feliX).balanceOf(address(this)); if(feliXbalanceToSwap != 0) { address[] memory path = new address[](2); path[0] = address(feliX); path[1] = address(x28); feliXbalanceToSwap = feliXbalanceToSwap > swapCap ? swapCap : feliXbalanceToSwap; IERC20(feliX).approve(UNISWAP_V2_ROUTER, feliXbalanceToSwap); try IUniswapV2Router02(UNISWAP_V2_ROUTER).swapExactTokensForTokensSupportingFeeOnTransferTokens( feliXbalanceToSwap, amountX28Min, path, address(this), deadline ) {} catch {} } } function _onlyFelix() private view { require(msg.sender == feliX, OnlyAllowed()); } function _onlyMinting() private view { require(msg.sender == minting, OnlyAllowed()); } function _noPendingRandomness() private view { LotteryRequest memory _lastReq = requests[lastRequestId]; require(lastRequestId == 0 || _lastReq.status != RequestStatus.PENDING, RandomnessAlreadyRequested()); } function _onlyAdmin() private view { require(msg.sender == admin, OnlyAdmin()); } function _onlyAdminOrWhitelisted() private view { require(msg.sender == admin || whitelistedUsers[msg.sender], OnlyAdminOrWhitelisted()); } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.3.0 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721A { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); /** * `_sequentialUpTo()` must be greater than `_startTokenId()`. */ error SequentialUpToTooSmall(); /** * The `tokenId` of a sequential mint exceeds `_sequentialUpTo()`. */ error SequentialMintExceedsLimit(); /** * Spot minting requires a `tokenId` greater than `_sequentialUpTo()`. */ error SpotMintTokenIdTooSmall(); /** * Cannot mint over a token that already exists. */ error TokenAlreadyExists(); /** * The feature is not compatible with spot mints. */ error NotCompatibleWithSpotMints(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 x) internal pure returns (uint256 r) { // If value has upper 128 bits set, log2 result is at least 128 r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7; // If upper 64 bits of 128-bit half set, add 64 to result r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6; // If upper 32 bits of 64-bit half set, add 32 to result r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5; // If upper 16 bits of 32-bit half set, add 16 to result r |= SafeCast.toUint((x >> r) > 0xffff) << 4; // If upper 8 bits of 16-bit half set, add 8 to result r |= SafeCast.toUint((x >> r) > 0xff) << 3; // If upper 4 bits of 8-bit half set, add 4 to result r |= SafeCast.toUint((x >> r) > 0xf) << 2; // Shifts value right by the current result and use it as an index into this lookup table: // // | x (4 bits) | index | table[index] = MSB position | // |------------|---------|-----------------------------| // | 0000 | 0 | table[0] = 0 | // | 0001 | 1 | table[1] = 0 | // | 0010 | 2 | table[2] = 1 | // | 0011 | 3 | table[3] = 1 | // | 0100 | 4 | table[4] = 2 | // | 0101 | 5 | table[5] = 2 | // | 0110 | 6 | table[6] = 2 | // | 0111 | 7 | table[7] = 2 | // | 1000 | 8 | table[8] = 3 | // | 1001 | 9 | table[9] = 3 | // | 1010 | 10 | table[10] = 3 | // | 1011 | 11 | table[11] = 3 | // | 1100 | 12 | table[12] = 3 | // | 1101 | 13 | table[13] = 3 | // | 1110 | 14 | table[14] = 3 | // | 1111 | 15 | table[15] = 3 | // // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes. assembly ("memory-safe") { r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000)) } } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; assembly ("memory-safe") { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; assembly ("memory-safe") { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; assembly ("memory-safe") { result := store } return result; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {IVRFCoordinatorV2Plus} from "./interfaces/IVRFCoordinatorV2Plus.sol"; import {IVRFMigratableConsumerV2Plus} from "./interfaces/IVRFMigratableConsumerV2Plus.sol"; import {ConfirmedOwner} from "../../shared/access/ConfirmedOwner.sol"; /** **************************************************************************** * @notice Interface for contracts using VRF randomness * ***************************************************************************** * @dev PURPOSE * * @dev Reggie the Random Oracle (not his real job) wants to provide randomness * @dev to Vera the verifier in such a way that Vera can be sure he's not * @dev making his output up to suit himself. Reggie provides Vera a public key * @dev to which he knows the secret key. Each time Vera provides a seed to * @dev Reggie, he gives back a value which is computed completely * @dev deterministically from the seed and the secret key. * * @dev Reggie provides a proof by which Vera can verify that the output was * @dev correctly computed once Reggie tells it to her, but without that proof, * @dev the output is indistinguishable to her from a uniform random sample * @dev from the output space. * * @dev The purpose of this contract is to make it easy for unrelated contracts * @dev to talk to Vera the verifier about the work Reggie is doing, to provide * @dev simple access to a verifiable source of randomness. It ensures 2 things: * @dev 1. The fulfillment came from the VRFCoordinatorV2Plus. * @dev 2. The consumer contract implements fulfillRandomWords. * ***************************************************************************** * @dev USAGE * * @dev Calling contracts must inherit from VRFConsumerBaseV2Plus, and can * @dev initialize VRFConsumerBaseV2Plus's attributes in their constructor as * @dev shown: * * @dev contract VRFConsumerV2Plus is VRFConsumerBaseV2Plus { * @dev constructor(<other arguments>, address _vrfCoordinator, address _subOwner) * @dev VRFConsumerBaseV2Plus(_vrfCoordinator, _subOwner) public { * @dev <initialization with other arguments goes here> * @dev } * @dev } * * @dev The oracle will have given you an ID for the VRF keypair they have * @dev committed to (let's call it keyHash). Create a subscription, fund it * @dev and your consumer contract as a consumer of it (see VRFCoordinatorInterface * @dev subscription management functions). * @dev Call requestRandomWords(keyHash, subId, minimumRequestConfirmations, * @dev callbackGasLimit, numWords, extraArgs), * @dev see (IVRFCoordinatorV2Plus for a description of the arguments). * * @dev Once the VRFCoordinatorV2Plus has received and validated the oracle's response * @dev to your request, it will call your contract's fulfillRandomWords method. * * @dev The randomness argument to fulfillRandomWords is a set of random words * @dev generated from your requestId and the blockHash of the request. * * @dev If your contract could have concurrent requests open, you can use the * @dev requestId returned from requestRandomWords to track which response is associated * @dev with which randomness request. * @dev See "SECURITY CONSIDERATIONS" for principles to keep in mind, * @dev if your contract could have multiple requests in flight simultaneously. * * @dev Colliding `requestId`s are cryptographically impossible as long as seeds * @dev differ. * * ***************************************************************************** * @dev SECURITY CONSIDERATIONS * * @dev A method with the ability to call your fulfillRandomness method directly * @dev could spoof a VRF response with any random value, so it's critical that * @dev it cannot be directly called by anything other than this base contract * @dev (specifically, by the VRFConsumerBaseV2Plus.rawFulfillRandomness method). * * @dev For your users to trust that your contract's random behavior is free * @dev from malicious interference, it's best if you can write it so that all * @dev behaviors implied by a VRF response are executed *during* your * @dev fulfillRandomness method. If your contract must store the response (or * @dev anything derived from it) and use it later, you must ensure that any * @dev user-significant behavior which depends on that stored value cannot be * @dev manipulated by a subsequent VRF request. * * @dev Similarly, both miners and the VRF oracle itself have some influence * @dev over the order in which VRF responses appear on the blockchain, so if * @dev your contract could have multiple VRF requests in flight simultaneously, * @dev you must ensure that the order in which the VRF responses arrive cannot * @dev be used to manipulate your contract's user-significant behavior. * * @dev Since the block hash of the block which contains the requestRandomness * @dev call is mixed into the input to the VRF *last*, a sufficiently powerful * @dev miner could, in principle, fork the blockchain to evict the block * @dev containing the request, forcing the request to be included in a * @dev different block with a different hash, and therefore a different input * @dev to the VRF. However, such an attack would incur a substantial economic * @dev cost. This cost scales with the number of blocks the VRF oracle waits * @dev until it calls responds to a request. It is for this reason that * @dev that you can signal to an oracle you'd like them to wait longer before * @dev responding to the request (however this is not enforced in the contract * @dev and so remains effective only in the case of unmodified oracle software). */ abstract contract VRFConsumerBaseV2Plus is IVRFMigratableConsumerV2Plus, ConfirmedOwner { error OnlyCoordinatorCanFulfill(address have, address want); error OnlyOwnerOrCoordinator(address have, address owner, address coordinator); error ZeroAddress(); // s_vrfCoordinator should be used by consumers to make requests to vrfCoordinator // so that coordinator reference is updated after migration IVRFCoordinatorV2Plus public s_vrfCoordinator; /** * @param _vrfCoordinator address of VRFCoordinator contract */ constructor(address _vrfCoordinator) ConfirmedOwner(msg.sender) { if (_vrfCoordinator == address(0)) { revert ZeroAddress(); } s_vrfCoordinator = IVRFCoordinatorV2Plus(_vrfCoordinator); } /** * @notice fulfillRandomness handles the VRF response. Your contract must * @notice implement it. See "SECURITY CONSIDERATIONS" above for important * @notice principles to keep in mind when implementing your fulfillRandomness * @notice method. * * @dev VRFConsumerBaseV2Plus expects its subcontracts to have a method with this * @dev signature, and will call it once it has verified the proof * @dev associated with the randomness. (It is triggered via a call to * @dev rawFulfillRandomness, below.) * * @param requestId The Id initially returned by requestRandomness * @param randomWords the VRF output expanded to the requested number of words */ // solhint-disable-next-line chainlink-solidity/prefix-internal-functions-with-underscore function fulfillRandomWords(uint256 requestId, uint256[] calldata randomWords) internal virtual; // rawFulfillRandomness is called by VRFCoordinator when it receives a valid VRF // proof. rawFulfillRandomness then calls fulfillRandomness, after validating // the origin of the call function rawFulfillRandomWords(uint256 requestId, uint256[] calldata randomWords) external { if (msg.sender != address(s_vrfCoordinator)) { revert OnlyCoordinatorCanFulfill(msg.sender, address(s_vrfCoordinator)); } fulfillRandomWords(requestId, randomWords); } /** * @inheritdoc IVRFMigratableConsumerV2Plus */ function setCoordinator(address _vrfCoordinator) external override onlyOwnerOrCoordinator { if (_vrfCoordinator == address(0)) { revert ZeroAddress(); } s_vrfCoordinator = IVRFCoordinatorV2Plus(_vrfCoordinator); emit CoordinatorSet(_vrfCoordinator); } modifier onlyOwnerOrCoordinator() { if (msg.sender != owner() && msg.sender != address(s_vrfCoordinator)) { revert OnlyOwnerOrCoordinator(msg.sender, owner(), address(s_vrfCoordinator)); } _; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; // End consumer library. library VRFV2PlusClient { // extraArgs will evolve to support new features bytes4 public constant EXTRA_ARGS_V1_TAG = bytes4(keccak256("VRF ExtraArgsV1")); struct ExtraArgsV1 { bool nativePayment; } struct RandomWordsRequest { bytes32 keyHash; uint256 subId; uint16 requestConfirmations; uint32 callbackGasLimit; uint32 numWords; bytes extraArgs; } function _argsToBytes(ExtraArgsV1 memory extraArgs) internal pure returns (bytes memory bts) { return abi.encodeWithSelector(EXTRA_ARGS_V1_TAG, extraArgs); } }
pragma solidity >=0.6.2; import './IUniswapV2Router01.sol'; interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; import "./interface/IX28OnBurn.sol"; uint64 constant INCENTIVE = 0.03e18; uint32 constant INTERVAL_TIME = 8 minutes; uint8 constant INTERVALS_PER_DAY = uint8(24 hours / INTERVAL_TIME); // FeliX buy/sell allocation during presale uint64 constant BUY_SELL_TAX_PRESALE = 0.16e18; // 16% uint64 constant GENESIS_TAX_1_PRESALE = 0.008e18; // 0.8% uint64 constant GENESIS_TAX_2_PRESALE = 0.008e18; // 0.8% uint64 constant FELIX_BURN_TAX_PRESALE = 0.072e18; // 7.2% uint64 constant FELIX_LP_POOL_TAX_PRESALE = 0.008e18; // 0.8% DAOAccount uint64 constant BLACKBOX_TAX_PRESALE = 0.064e18; // 6.4% // FeliX buy/sell allocation uint64 constant BUY_SELL_TAX = 0.04e18; // 4% uint64 constant GENESIS_TAX_1 = 0.005e18; // 0.5% uint64 constant GENESIS_TAX_2 = 0.005e18; // 0.5% uint64 constant FELIX_BURN_TAX = 0.014e18; // 1% uint64 constant FELIX_LP_POOL_TAX = 0.002e18; // 0.2% DAOAccount uint64 constant BLACKBOX_TAX = 0.014e18; // 1.4% // FeliX mint allocation uint64 constant TO_BNB = 0.50e18; // 50% uint64 constant TO_X28_BURN = 0.10e18; // 10% uint64 constant TO_BLACKBOX = 0.3e18; //30% uint64 constant TO_LP = 0.02e18; //2% uint64 constant TO_GENESIS_1 = 0.04e18; // 4% uint64 constant TO_GENESIS_2 = 0.04e18; // 4% address constant GENESIS_1 = 0x32640bFB5AaB2E454aEfdc2591AB56B91C4D3D81; address constant GENESIS_2 = 0x87F05daEfa18d67149A6d8Ba133d8Cb279Cc92BD; address constant FELIX_LP = 0xAe934798623455eeBA9c3816A8844D605a8e6241; address constant WETH9 = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; address constant X28 = 0x5c47902c8C80779CB99235E42C354E53F38C3B0d; // ===================== Presale ================================================ uint256 constant PRESALE_LENGTH = 14 days; uint256 constant COOLDOWN_PERIOD = 48 hours; uint256 constant INITIAL_X28_FELIX_LP = 30_000_000_000e18; uint256 constant INITIAL_FELIX_LP = 15_000_000_000e18; uint256 constant PRESALE_MINTER_BONUS = 0.2e18; address constant UNISWAP_V2_FACTORY = 0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f; address constant UNISWAP_V2_ROUTER = 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D; uint24 constant POOL_FEE_1PERCENT = 10000; bytes4 constant INTERFACE_ID_ERC165 = 0x01ffc9a7; bytes4 constant INTERFACE_ID_ITITANONBURN = type(IX28OnBurn).interfaceId;
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; library Time { ///@notice The cut-off time in seconds from the start of the day for a day turnover, equivalent to 14 hours (50,400 seconds). uint32 constant TURN_OVER_TIME = 50400; ///@notice The total number of seconds in a day. uint32 constant SECONDS_PER_DAY = 86400; /** * @notice Returns the current block timestamp. * @dev This function retrieves the timestamp using assembly for gas efficiency. * @return ts The current block timestamp. */ function blockTs() internal view returns (uint32 ts) { assembly { ts := timestamp() } } /** * @notice Calculates the number of full days between two timestamps. * @dev Subtracts the start time from the end time and divides by the seconds per day. * @param start The starting timestamp. * @param end The ending timestamp. * @return daysPassed The number of full days between the two timestamps. */ function dayGap(uint32 start, uint256 end) public pure returns (uint32 daysPassed) { assembly { daysPassed := div(sub(end, start), SECONDS_PER_DAY) } } /** * @notice Calculates the end of the day at 2 PM UTC based on a given timestamp. * @dev Adjusts the provided timestamp by subtracting the turnover time, calculates the next day's timestamp at 2 PM UTC. * @param t The starting timestamp. * @return nextDayStartAt2PM The timestamp for the next day ending at 2 PM UTC. */ function getDayEnd(uint32 t) public pure returns (uint32 nextDayStartAt2PM) { // Adjust the timestamp to the cutoff time (2 PM UTC) uint32 adjustedTime = t - 14 hours; // Calculate the number of days since Unix epoch uint32 daysSinceEpoch = adjustedTime / 86400; // Calculate the start of the next day at 2 PM UTC nextDayStartAt2PM = (daysSinceEpoch + 1) * 86400 + 14 hours; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.28; /* solhint-disable func-visibility, no-inline-assembly */ error Math__toInt256_overflow(); error Math__toUint64_overflow(); error Math__add_overflow_signed(); error Math__sub_overflow_signed(); error Math__mul_overflow_signed(); error Math__mul_overflow(); error Math__div_overflow(); uint256 constant WAD = 1e18; /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L367 function toInt256(uint256 x) pure returns (int256) { if (x >= 1 << 255) revert Math__toInt256_overflow(); return int256(x); } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L53 function toUint64(uint256 x) pure returns (uint64) { if (x >= 1 << 64) revert Math__toUint64_overflow(); return uint64(x); } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L602 function abs(int256 x) pure returns (uint256 z) { assembly ("memory-safe") { let mask := sub(0, shr(255, x)) z := xor(mask, add(mask, x)) } } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L620 function min(uint256 x, uint256 y) pure returns (uint256 z) { assembly ("memory-safe") { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L628 function min(int256 x, int256 y) pure returns (int256 z) { assembly ("memory-safe") { z := xor(x, mul(xor(x, y), slt(y, x))) } } /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L636 function max(uint256 x, uint256 y) pure returns (uint256 z) { assembly ("memory-safe") { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L74 function add(uint256 x, int256 y) pure returns (uint256 z) { assembly ("memory-safe") { z := add(x, y) } if ((y > 0 && z < x) || (y < 0 && z > x)) { revert Math__add_overflow_signed(); } } /// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L79 function sub(uint256 x, uint256 y) pure returns (uint256 z) { assembly ("memory-safe") { z := sub(x, y) } if ((y > 0 && z > x) || (y < 0 && z < x)) { revert Math__sub_overflow_signed(); } } /// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L84 function mul(uint256 x, int256 y) pure returns (int256 z) { unchecked { z = int256(x) * y; if (int256(x) < 0 || (y != 0 && z / y != int256(x))) { revert Math__mul_overflow_signed(); } } } /// @dev Equivalent to `(x * y) / WAD` rounded down. /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L54 function wmul(uint256 x, uint256 y) pure returns (uint256 z) { assembly ("memory-safe") { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { // Store the function selector of `Math__mul_overflow()`. mstore(0x00, 0xc4c5d7f5) // Revert with (offset, size). revert(0x1c, 0x04) } z := div(mul(x, y), WAD) } } function wmul(uint256 x, int256 y) pure returns (int256 z) { unchecked { z = mul(x, y) / int256(WAD); } } /// @dev Equivalent to `(x * y) / WAD` rounded up. /// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L69C22-L69C22 function wmulUp(uint256 x, uint256 y) pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { // Store the function selector of `Math__mul_overflow()`. mstore(0x00, 0xc4c5d7f5) // Revert with (offset, size). revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. /// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L84 function wdiv(uint256 x, uint256 y) pure returns (uint256 z) { assembly ("memory-safe") { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { // Store the function selector of `Math__div_overflow()`. mstore(0x00, 0xbcbede65) // Revert with (offset, size). revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. /// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L99 function wdivUp(uint256 x, uint256 y) pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { // Store the function selector of `Math__div_overflow()`. mstore(0x00, 0xbcbede65) // Revert with (offset, size). revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/jug.sol#L62 function wpow(uint256 x, uint256 n, uint256 b) pure returns (uint256 z) { unchecked { assembly ("memory-safe") { switch n case 0 { z := b } default { switch x case 0 { z := 0 } default { switch mod(n, 2) case 0 { z := b } default { z := x } let half := div(b, 2) // for rounding. for { n := div(n, 2) } n { n := div(n, 2) } { let xx := mul(x, x) if shr(128, x) { revert(0, 0) } let xxRound := add(xx, half) if lt(xxRound, xx) { revert(0, 0) } x := div(xxRound, b) if mod(n, 2) { let zx := mul(z, x) if and(iszero(iszero(x)), iszero(eq(div(zx, x), z))) { revert(0, 0) } let zxRound := add(zx, half) if lt(zxRound, zx) { revert(0, 0) } z := div(zxRound, b) } } } } } } } /// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L110 /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. function wpow(int256 x, int256 y) pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return wexp((wln(x) * y) / int256(WAD)); } /// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L116 /// @dev Returns `exp(x)`, denominated in `WAD`. function wexp(int256 x) pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return r; /// @solidity memory-safe-assembly assembly { // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if iszero(slt(x, 135305999368893231589)) { mstore(0x00, 0xa37bfec9) // `ExpOverflow()`. revert(0x1c, 0x04) } } // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } /// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L184 /// @dev Returns `ln(x)`, denominated in `WAD`. function wln(int256 x) pure returns (int256 r) { unchecked { /// @solidity memory-safe-assembly assembly { if iszero(sgt(x, 0)) { mstore(0x00, 0x1615e638) // `LnWadUndefined()`. revert(0x1c, 0x04) } } // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Compute k = log2(x) - 96, t = 159 - k = 255 - log2(x) = 255 ^ log2(x). int256 t; /// @solidity memory-safe-assembly assembly { t := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) t := or(t, shl(6, lt(0xffffffffffffffff, shr(t, x)))) t := or(t, shl(5, lt(0xffffffff, shr(t, x)))) t := or(t, shl(4, lt(0xffff, shr(t, x)))) t := or(t, shl(3, lt(0xff, shr(t, x)))) // forgefmt: disable-next-item t := xor( t, byte( and( 0x1f, shr(shr(t, x), 0x8421084210842108cc6318c6db6d54be) ), 0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff ) ) } // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x = int256(uint256(x << uint256(t)) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * (159 - t); // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /// @dev Returns the square root of `x`, rounded down. function sqrt(uint256 x) pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. We check `y >= 2**(k + 8)` // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division z := sub(z, lt(div(x, z), z)) } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {VRFV2PlusClient} from "../libraries/VRFV2PlusClient.sol"; import {IVRFSubscriptionV2Plus} from "./IVRFSubscriptionV2Plus.sol"; // Interface that enables consumers of VRFCoordinatorV2Plus to be future-proof for upgrades // This interface is supported by subsequent versions of VRFCoordinatorV2Plus interface IVRFCoordinatorV2Plus is IVRFSubscriptionV2Plus { /** * @notice Request a set of random words. * @param req - a struct containing following fields for randomness request: * keyHash - Corresponds to a particular oracle job which uses * that key for generating the VRF proof. Different keyHash's have different gas price * ceilings, so you can select a specific one to bound your maximum per request cost. * subId - The ID of the VRF subscription. Must be funded * with the minimum subscription balance required for the selected keyHash. * requestConfirmations - How many blocks you'd like the * oracle to wait before responding to the request. See SECURITY CONSIDERATIONS * for why you may want to request more. The acceptable range is * [minimumRequestBlockConfirmations, 200]. * callbackGasLimit - How much gas you'd like to receive in your * fulfillRandomWords callback. Note that gasleft() inside fulfillRandomWords * may be slightly less than this amount because of gas used calling the function * (argument decoding etc.), so you may need to request slightly more than you expect * to have inside fulfillRandomWords. The acceptable range is * [0, maxGasLimit] * numWords - The number of uint256 random values you'd like to receive * in your fulfillRandomWords callback. Note these numbers are expanded in a * secure way by the VRFCoordinator from a single random value supplied by the oracle. * extraArgs - abi-encoded extra args * @return requestId - A unique identifier of the request. Can be used to match * a request to a response in fulfillRandomWords. */ function requestRandomWords(VRFV2PlusClient.RandomWordsRequest calldata req) external returns (uint256 requestId); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice The IVRFMigratableConsumerV2Plus interface defines the /// @notice method required to be implemented by all V2Plus consumers. /// @dev This interface is designed to be used in VRFConsumerBaseV2Plus. interface IVRFMigratableConsumerV2Plus { event CoordinatorSet(address vrfCoordinator); /// @notice Sets the VRF Coordinator address /// @notice This method should only be callable by the coordinator or contract owner function setCoordinator(address vrfCoordinator) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {ConfirmedOwnerWithProposal} from "./ConfirmedOwnerWithProposal.sol"; /// @title The ConfirmedOwner contract /// @notice A contract with helpers for basic contract ownership. contract ConfirmedOwner is ConfirmedOwnerWithProposal { constructor(address newOwner) ConfirmedOwnerWithProposal(newOwner, address(0)) {} }
pragma solidity >=0.6.2; interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut); function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.21; interface IX28OnBurn { function onBurn(address user, uint256 amount) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /// @notice The IVRFSubscriptionV2Plus interface defines the subscription /// @notice related methods implemented by the V2Plus coordinator. interface IVRFSubscriptionV2Plus { /** * @notice Add a consumer to a VRF subscription. * @param subId - ID of the subscription * @param consumer - New consumer which can use the subscription */ function addConsumer(uint256 subId, address consumer) external; /** * @notice Remove a consumer from a VRF subscription. * @param subId - ID of the subscription * @param consumer - Consumer to remove from the subscription */ function removeConsumer(uint256 subId, address consumer) external; /** * @notice Cancel a subscription * @param subId - ID of the subscription * @param to - Where to send the remaining LINK to */ function cancelSubscription(uint256 subId, address to) external; /** * @notice Accept subscription owner transfer. * @param subId - ID of the subscription * @dev will revert if original owner of subId has * not requested that msg.sender become the new owner. */ function acceptSubscriptionOwnerTransfer(uint256 subId) external; /** * @notice Request subscription owner transfer. * @param subId - ID of the subscription * @param newOwner - proposed new owner of the subscription */ function requestSubscriptionOwnerTransfer(uint256 subId, address newOwner) external; /** * @notice Create a VRF subscription. * @return subId - A unique subscription id. * @dev You can manage the consumer set dynamically with addConsumer/removeConsumer. * @dev Note to fund the subscription with LINK, use transferAndCall. For example * @dev LINKTOKEN.transferAndCall( * @dev address(COORDINATOR), * @dev amount, * @dev abi.encode(subId)); * @dev Note to fund the subscription with Native, use fundSubscriptionWithNative. Be sure * @dev to send Native with the call, for example: * @dev COORDINATOR.fundSubscriptionWithNative{value: amount}(subId); */ function createSubscription() external returns (uint256 subId); /** * @notice Get a VRF subscription. * @param subId - ID of the subscription * @return balance - LINK balance of the subscription in juels. * @return nativeBalance - native balance of the subscription in wei. * @return reqCount - Requests count of subscription. * @return owner - owner of the subscription. * @return consumers - list of consumer address which are able to use this subscription. */ function getSubscription( uint256 subId ) external view returns (uint96 balance, uint96 nativeBalance, uint64 reqCount, address owner, address[] memory consumers); /* * @notice Check to see if there exists a request commitment consumers * for all consumers and keyhashes for a given sub. * @param subId - ID of the subscription * @return true if there exists at least one unfulfilled request for the subscription, false * otherwise. */ function pendingRequestExists(uint256 subId) external view returns (bool); /** * @notice Paginate through all active VRF subscriptions. * @param startIndex index of the subscription to start from * @param maxCount maximum number of subscriptions to return, 0 to return all * @dev the order of IDs in the list is **not guaranteed**, therefore, if making successive calls, one * @dev should consider keeping the blockheight constant to ensure a holistic picture of the contract state */ function getActiveSubscriptionIds(uint256 startIndex, uint256 maxCount) external view returns (uint256[] memory); /** * @notice Fund a subscription with native. * @param subId - ID of the subscription * @notice This method expects msg.value to be greater than or equal to 0. */ function fundSubscriptionWithNative(uint256 subId) external payable; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IOwnable} from "../interfaces/IOwnable.sol"; /// @title The ConfirmedOwner contract /// @notice A contract with helpers for basic contract ownership. contract ConfirmedOwnerWithProposal is IOwnable { address private s_owner; address private s_pendingOwner; event OwnershipTransferRequested(address indexed from, address indexed to); event OwnershipTransferred(address indexed from, address indexed to); constructor(address newOwner, address pendingOwner) { // solhint-disable-next-line gas-custom-errors require(newOwner != address(0), "Cannot set owner to zero"); s_owner = newOwner; if (pendingOwner != address(0)) { _transferOwnership(pendingOwner); } } /// @notice Allows an owner to begin transferring ownership to a new address. function transferOwnership(address to) public override onlyOwner { _transferOwnership(to); } /// @notice Allows an ownership transfer to be completed by the recipient. function acceptOwnership() external override { // solhint-disable-next-line gas-custom-errors require(msg.sender == s_pendingOwner, "Must be proposed owner"); address oldOwner = s_owner; s_owner = msg.sender; s_pendingOwner = address(0); emit OwnershipTransferred(oldOwner, msg.sender); } /// @notice Get the current owner function owner() public view override returns (address) { return s_owner; } /// @notice validate, transfer ownership, and emit relevant events function _transferOwnership(address to) private { // solhint-disable-next-line gas-custom-errors require(to != msg.sender, "Cannot transfer to self"); s_pendingOwner = to; emit OwnershipTransferRequested(s_owner, to); } /// @notice validate access function _validateOwnership() internal view { // solhint-disable-next-line gas-custom-errors require(msg.sender == s_owner, "Only callable by owner"); } /// @notice Reverts if called by anyone other than the contract owner. modifier onlyOwner() { _validateOwnership(); _; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IOwnable { function owner() external returns (address); function transferOwnership(address recipient) external; function acceptOwnership() external; }
{ "remappings": [ "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@uniswap/v3-core/=lib/v3-core/", "@uniswap/v3-periphery/=lib/v3-periphery/", "@uniswap/v2-periphery/=lib/v2-periphery/", "@uniswap/v2-core/=lib/v2-core/", "@utils/=src/utils/", "@chainlink/=lib/chainlink/", "@erc721a/=lib/erc721a/contracts/", "chainlink/=lib/chainlink/", "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/", "erc721a/=lib/erc721a/contracts/", "forge-std/=lib/forge-std/src/", "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "v2-core/=lib/v2-core/contracts/", "v2-periphery/=lib/v2-periphery/contracts/", "v3-core/=lib/v3-core/", "v3-periphery/=lib/v3-periphery/contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "shanghai", "viaIR": true, "libraries": { "src/utils/Time.sol": { "Time": "0xD33478F21399c48F5E2a6c2De150F7d50d2BF0A4" } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"internalType":"string","name":"_baseURI","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"Address0","type":"error"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"NotCompatibleWithSpotMints","type":"error"},{"inputs":[],"name":"OnlyMinter","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"RequestPendingOrFulfilled","type":"error"},{"inputs":[],"name":"SequentialMintExceedsLimit","type":"error"},{"inputs":[],"name":"SequentialUpToTooSmall","type":"error"},{"inputs":[],"name":"SpotMintTokenIdTooSmall","type":"error"},{"inputs":[],"name":"TokenAlreadyExists","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"ZeroInput","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"_fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"_toTokenId","type":"uint256"}],"name":"MetadataUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newMinter","type":"address"}],"name":"MinterChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[],"name":"URIUpdated","type":"event"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"blackBox","outputs":[{"internalType":"contract BlackBox","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint128","name":"amount","type":"uint128"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"minting","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_uri","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_blackBox","type":"address"}],"name":"setBlackBox","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_minting","type":"address"}],"name":"setMinting","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6080604052346100be5761192e80380380610019816100d6565b92833981016040828203126100be578151916001600160a01b03831683036100be576020810151906001600160401b0382116100be57019181601f840112156100be5782519261007061006b85610100565b6100d6565b92848452602085830101116100be575f5b8481106100a95750505f602061009a94840101526103b0565b6040516113b990816105758239f35b80602080928401015182828701015201610081565b5f80fd5b634e487b7160e01b5f52604160045260245ffd5b6040519190601f01601f191682016001600160401b038111838210176100fb57604052565b6100c2565b6001600160401b0381116100fb57601f01601f191660200190565b90600182811c92168015610149575b602083101461013557565b634e487b7160e01b5f52602260045260245ffd5b91607f169161012a565b601f811161015f575050565b60025f5260205f20906020601f840160051c83019310610199575b601f0160051c01905b81811061018e575050565b5f8155600101610183565b909150819061017a565b601f82116101b057505050565b5f5260205f20906020601f840160051c830193106101e8575b601f0160051c01905b8181106101dd575050565b5f81556001016101d2565b90915081906101c9565b80519091906001600160401b0381116100fb5761021b8161021460035461011b565b60036101a3565b602092601f821160011461025b5761024b929382915f92610250575b50508160011b915f199060031b1c19161790565b600355565b015190505f80610237565b60035f52601f198216937fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b915f5b8681106102bf57508360019596106102a7575b505050811b01600355565b01515f1960f88460031b161c191690555f808061029c565b91926020600181928685015181550194019201610289565b80519091906001600160401b0381116100fb57610300816102f9600c5461011b565b600c6101a3565b602092601f82116001146103345761032f929382915f926102505750508160011b915f199060031b1c19161790565b600c55565b600c5f52601f198216937fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c7915f5b8681106103985750836001959610610380575b505050811b01600c55565b01515f1960f88460031b161c191690555f8080610375565b91926020600181928685015181550194019201610362565b6103ba60406100d6565b600e81526d283932b9b0b6329026b4b73a32b960911b60208201526103df60406100d6565b6002815261504d60f01b6020820152815190916001600160401b0382116100fb576104148261040f60025461011b565b610153565b602090601f83116001146104a55791806104479261044f95945f926102505750508160011b915f199060031b1c19161790565b6002556101f2565b61045860015f55565b6001600160a01b03811615610491576104709061052c565b80511561048257610480906102d7565b565b63af458c0760e01b5f5260045ffd5b631e4fbdf760e01b5f90815260045260245ffd5b60025f52601f19831691907f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace925f5b818110610514575091600193918561044f979694106104fc575b505050811b016002556101f2565b01515f1960f88460031b161c191690555f80806104ee565b929360206001819287860151815501950193016104d4565b600980546001600160a01b039283166001600160a01b0319821681179092559091167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a356fe60806040526004361015610011575f80fd5b5f3560e01c8063019d0b371461019457806301ffc9a71461018f57806306fdde031461018a578063081812fc14610185578063095ea7b31461018057806318160ddd1461017b57806323b872dd1461017657806342842e0e1461017157806355f804b31461016c578063600b1ff2146101675780636352211e146101625780636c0360eb1461015d57806370a0823114610158578063715018a6146101535780637dc2268c1461014e5780638da5cb5b1461014957806395d89b4114610144578063a22cb4651461013f578063b88d4fde1461013a578063bd1723e514610135578063be29184f14610130578063c87b56dd1461012b578063e985e9c5146101265763f2fde38b14610121575f80fd5b610dcf565b610d73565b610d0f565b610bfd565b610bd5565b610b7a565b610aea565b610a3b565b610a13565b6109eb565b610990565b610939565b61090a565b6107ec565b6107a9565b610634565b610583565b61056f565b610511565b61044a565b6103fb565b610321565b610260565b6101c9565b600435906001600160a01b03821682036101af57565b5f80fd5b602435906001600160a01b03821682036101af57565b346101af5760203660031901126101af576101e2610199565b6101ea611090565b6001600160a01b0316801561023f576020817fb6b8f1859c5c352e5ffad07d0f77e384ac725512c015bd3a3ffc885831c8a425926bffffffffffffffffffffffff60a01b600b541617600b55604051908152a1005b6359c662df60e11b5f5260045ffd5b6001600160e01b03198116036101af57565b346101af5760203660031901126101af57602060043561027f8161024e565b63ffffffff60e01b166301ffc9a760e01b81149081156102bd575b81156102ac575b506040519015158152f35b635b5e139f60e01b1490505f6102a1565b6380ac58cd60e01b8114915061029a565b91908251928382525f5b8481106102f8575050825f602080949584010152601f8019910116010190565b806020809284010151828286010152016102d8565b90602061031e9281815201906102ce565b90565b346101af575f3660031901126101af576040515f6002546103418161081b565b80845290600181169081156103d75750600114610379575b61037583610369818503826105bb565b6040519182918261030d565b0390f35b60025f9081527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace939250905b8082106103bd57509091508101602001610369610359565b9192600181602092548385880101520191019092916103a5565b60ff191660208086019190915291151560051b840190910191506103699050610359565b346101af5760203660031901126101af57600435610418816110b7565b1561043b575f526006602052602060018060a01b0360405f205416604051908152f35b6333d1c03960e21b5f5260045ffd5b60403660031901126101af5761045e610199565b602435906001600160a01b036104738361116e565b16908133036104e2575b6104b281610493855f52600660205260405f2090565b80546001600160a01b0319166001600160a01b03909216919091179055565b6001600160a01b0316907f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9255f80a4005b5f82815260076020908152604080832033845290915290205460ff1661047d576367d9dca160e11b5f5260045ffd5b346101af575f3660031901126101af575f5460015460405191035f19018152602090f35b60609060031901126101af576004356001600160a01b03811681036101af57906024356001600160a01b03811681036101af579060443590565b61058161057b36610535565b91610e55565b005b61058161058f36610535565b906040519261059f6020856105bb565b5f845261104f565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff8211176105dd57604052565b6105a7565b67ffffffffffffffff81116105dd57601f01601f191660200190565b92919261060a826105e2565b9161061860405193846105bb565b8294818452818301116101af578281602093845f960137010152565b346101af5760203660031901126101af5760043567ffffffffffffffff81116101af57366023820112156101af576106769036906024816004013591016105fe565b61067e611090565b80511561079a57805167ffffffffffffffff81116105dd576106aa816106a5600c5461081b565b610fff565b602091601f821160011461071c576106d8925f9183610711575b50508160011b915f199060031b1c19161790565b600c555b60408051600181525f1960208201527f92c31a5c95468a6243e81bdba06e7556e962c9942e2898c4ee102c91ce025d659190a1005b015190505f806106c4565b600c5f52601f198216927fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c7915f5b8581106107825750836001951061076a575b505050811b01600c556106dc565b01515f1960f88460031b161c191690555f808061075c565b9192602060018192868501518155019401920161074a565b63af458c0760e01b5f5260045ffd5b346101af5760203660031901126101af576107c2610199565b6107ca611090565b600a80546001600160a01b0319166001600160a01b0392909216919091179055005b346101af5760203660031901126101af5760206001600160a01b0361081260043561116e565b16604051908152f35b90600182811c92168015610849575b602083101461083557565b634e487b7160e01b5f52602260045260245ffd5b91607f169161082a565b604051905f82600c54916108668361081b565b80835292600181169081156108eb575060011461088c575b61088a925003836105bb565b565b50600c5f90815290917fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c75b8183106108cf57505090602061088a9282010161087e565b60209193508060019154838589010152019101909184926108b7565b6020925061088a94915060ff191682840152151560051b82010161087e565b346101af575f3660031901126101af57610375610925610853565b6040519182916020835260208301906102ce565b346101af5760203660031901126101af576001600160a01b0361095a610199565b168015610981575f526005602052602067ffffffffffffffff60405f205416604051908152f35b6323d3ad8160e21b5f5260045ffd5b346101af575f3660031901126101af576109a8611090565b600980546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346101af575f3660031901126101af57600b546040516001600160a01b039091168152602090f35b346101af575f3660031901126101af576009546040516001600160a01b039091168152602090f35b346101af575f3660031901126101af576040515f600354610a5b8161081b565b80845290600181169081156103d75750600114610a825761037583610369818503826105bb565b60035f9081527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b939250905b808210610ac657509091508101602001610369610359565b919260018160209254838588010152019101909291610aae565b801515036101af57565b346101af5760403660031901126101af57610b03610199565b60243590610b1082610ae0565b335f9081526007602090815260408083206001600160a01b038516845290915290209115159160ff1981541660ff841617905560405191825260018060a01b0316907f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b60803660031901126101af57610b8e610199565b610b966101b3565b906044356064359267ffffffffffffffff84116101af57366023850112156101af57610bcf6105819436906024816004013591016105fe565b9261104f565b346101af575f3660031901126101af57600a546040516001600160a01b039091168152602090f35b346101af5760403660031901126101af57610c16610199565b6024356fffffffffffffffffffffffffffffffff81168091036101af57600b546001600160a01b03163303610d00575f54918115610cfb57610c566111d9565b6001600160a01b0381164260a01b6001841460e11b1717610c7f845f52600460205260405f2090565b556001600160a01b03165f8181526005602052604090208054680100000000000000018402019055908115610cf657820160015b15610ce6575b5f83835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8180a4610cb3565b9160010191808303610cb9575f55005b611125565b611116565b639cdc2ed560e01b5f5260045ffd5b346101af5760203660031901126101af57610d2b6004356110b7565b15610d6457610d3b600c5461081b565b15610d4b57610375610925610853565b610375604051610d5c6020826105bb565b5f8152610925565b630a14c4b560e41b5f5260045ffd5b346101af5760403660031901126101af57602060ff610dc3610d93610199565b610d9b6101b3565b6001600160a01b039182165f9081526007865260408082209290931681526020919091522090565b54166040519015158152f35b346101af5760203660031901126101af57610de8610199565b610df0611090565b6001600160a01b03168015610e4257600980546001600160a01b0319811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b631e4fbdf760e01b5f525f60045260245ffd5b9190610e608261116e565b6001600160a01b03938416938116849003610ffa575f8381526006602052604090208054610ea16001600160a01b03871633908114908314171590565b1590565b610fb0575b610eae6111d9565b610fa7575b506001600160a01b0384165f90815260056020526040902080545f190190556001600160a01b0382165f908152600560205260409020805460010190556001600160a01b0382164260a01b17600160e11b17610f17845f52600460205260405f2090565b55600160e11b811615610f62575b506001600160a01b03169182907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a415610f5d57565b611150565b60018301610f78815f52600460205260405f2090565b5415610f85575b50610f25565b5f548114610f7f57610f9f905f52600460205260405f2090565b555f80610f7f565b5f90555f610eb3565b610ff0610e9d610fe933610fd48a60018060a01b03165f52600760205260405f2090565b9060018060a01b03165f5260205260405f2090565b5460ff1690565b15610ea657611141565b611133565b601f811161100b575050565b600c5f5260205f20906020601f840160051c83019310611045575b601f0160051c01905b81811061103a575050565b5f815560010161102f565b9091508190611026565b92919061105d828286610e55565b803b61106a575b50505050565b611073936112de565b15611081575f808080611064565b6368d2bf6b60e11b5f5260045ffd5b6009546001600160a01b031633036110a457565b63118cdaa760e01b5f523360045260245ffd5b905f9180600111156110c65750565b5f5481106110d15750565b9091505b805f52600460205260405f20548061110a575080156110f6575f19016110d5565b634e487b7160e01b5f52601160045260245ffd5b600160e01b1615919050565b63b562e8dd60e01b5f5260045ffd5b622e076360e81b5f5260045ffd5b62a1148160e81b5f5260045ffd5b632ce44b5f60e11b5f5260045ffd5b633a954ecd60e21b5f5260045ffd5b636f96cda160e11b5f5260045ffd5b8060011161115f57611188815f52600460205260405f2090565b5490811561119f5750600160e01b811661115f5790565b90505f5481101561115f575b5f19015f818152600460205260409020549081156111d25750600160e01b811661115f5790565b90506111ab565b600a5460405163d40f2f1760e01b815290602090829060049082906001600160a01b03165afa90811561125e575f91611223575b5061121457565b639280403560e01b5f5260045ffd5b90506020813d602011611256575b8161123e602093836105bb565b810103126101af575161125081610ae0565b5f61120d565b3d9150611231565b6040513d5f823e3d90fd5b908160209103126101af575161031e8161024e565b6001600160a01b03918216815291166020820152604081019190915260806060820181905261031e929101906102ce565b3d156112d9573d906112c0826105e2565b916112ce60405193846105bb565b82523d5f602084013e565b606090565b906020925f611306959360405196879586948593630a85bd0160e11b8552336004860161127e565b03926001600160a01b03165af15f9181611352575b5061133c576113286112af565b80511561133757805190602001fd5b611081565b6001600160e01b031916630a85bd0160e11b1490565b61137591925060203d60201161137c575b61136d81836105bb565b810190611269565b905f61131b565b503d61136356fea2646970667358221220b54fb70a2ace5ef42bf4e72c0876ad3049d495988ecf643db50004c266693c9364736f6c634300081c0033000000000000000000000000bdde464d40aff18ee85d7204a899d6f6eedf464a000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000013100000000000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x60806040526004361015610011575f80fd5b5f3560e01c8063019d0b371461019457806301ffc9a71461018f57806306fdde031461018a578063081812fc14610185578063095ea7b31461018057806318160ddd1461017b57806323b872dd1461017657806342842e0e1461017157806355f804b31461016c578063600b1ff2146101675780636352211e146101625780636c0360eb1461015d57806370a0823114610158578063715018a6146101535780637dc2268c1461014e5780638da5cb5b1461014957806395d89b4114610144578063a22cb4651461013f578063b88d4fde1461013a578063bd1723e514610135578063be29184f14610130578063c87b56dd1461012b578063e985e9c5146101265763f2fde38b14610121575f80fd5b610dcf565b610d73565b610d0f565b610bfd565b610bd5565b610b7a565b610aea565b610a3b565b610a13565b6109eb565b610990565b610939565b61090a565b6107ec565b6107a9565b610634565b610583565b61056f565b610511565b61044a565b6103fb565b610321565b610260565b6101c9565b600435906001600160a01b03821682036101af57565b5f80fd5b602435906001600160a01b03821682036101af57565b346101af5760203660031901126101af576101e2610199565b6101ea611090565b6001600160a01b0316801561023f576020817fb6b8f1859c5c352e5ffad07d0f77e384ac725512c015bd3a3ffc885831c8a425926bffffffffffffffffffffffff60a01b600b541617600b55604051908152a1005b6359c662df60e11b5f5260045ffd5b6001600160e01b03198116036101af57565b346101af5760203660031901126101af57602060043561027f8161024e565b63ffffffff60e01b166301ffc9a760e01b81149081156102bd575b81156102ac575b506040519015158152f35b635b5e139f60e01b1490505f6102a1565b6380ac58cd60e01b8114915061029a565b91908251928382525f5b8481106102f8575050825f602080949584010152601f8019910116010190565b806020809284010151828286010152016102d8565b90602061031e9281815201906102ce565b90565b346101af575f3660031901126101af576040515f6002546103418161081b565b80845290600181169081156103d75750600114610379575b61037583610369818503826105bb565b6040519182918261030d565b0390f35b60025f9081527f405787fa12a823e0f2b7631cc41b3ba8828b3321ca811111fa75cd3aa3bb5ace939250905b8082106103bd57509091508101602001610369610359565b9192600181602092548385880101520191019092916103a5565b60ff191660208086019190915291151560051b840190910191506103699050610359565b346101af5760203660031901126101af57600435610418816110b7565b1561043b575f526006602052602060018060a01b0360405f205416604051908152f35b6333d1c03960e21b5f5260045ffd5b60403660031901126101af5761045e610199565b602435906001600160a01b036104738361116e565b16908133036104e2575b6104b281610493855f52600660205260405f2090565b80546001600160a01b0319166001600160a01b03909216919091179055565b6001600160a01b0316907f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9255f80a4005b5f82815260076020908152604080832033845290915290205460ff1661047d576367d9dca160e11b5f5260045ffd5b346101af575f3660031901126101af575f5460015460405191035f19018152602090f35b60609060031901126101af576004356001600160a01b03811681036101af57906024356001600160a01b03811681036101af579060443590565b61058161057b36610535565b91610e55565b005b61058161058f36610535565b906040519261059f6020856105bb565b5f845261104f565b634e487b7160e01b5f52604160045260245ffd5b90601f8019910116810190811067ffffffffffffffff8211176105dd57604052565b6105a7565b67ffffffffffffffff81116105dd57601f01601f191660200190565b92919261060a826105e2565b9161061860405193846105bb565b8294818452818301116101af578281602093845f960137010152565b346101af5760203660031901126101af5760043567ffffffffffffffff81116101af57366023820112156101af576106769036906024816004013591016105fe565b61067e611090565b80511561079a57805167ffffffffffffffff81116105dd576106aa816106a5600c5461081b565b610fff565b602091601f821160011461071c576106d8925f9183610711575b50508160011b915f199060031b1c19161790565b600c555b60408051600181525f1960208201527f92c31a5c95468a6243e81bdba06e7556e962c9942e2898c4ee102c91ce025d659190a1005b015190505f806106c4565b600c5f52601f198216927fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c7915f5b8581106107825750836001951061076a575b505050811b01600c556106dc565b01515f1960f88460031b161c191690555f808061075c565b9192602060018192868501518155019401920161074a565b63af458c0760e01b5f5260045ffd5b346101af5760203660031901126101af576107c2610199565b6107ca611090565b600a80546001600160a01b0319166001600160a01b0392909216919091179055005b346101af5760203660031901126101af5760206001600160a01b0361081260043561116e565b16604051908152f35b90600182811c92168015610849575b602083101461083557565b634e487b7160e01b5f52602260045260245ffd5b91607f169161082a565b604051905f82600c54916108668361081b565b80835292600181169081156108eb575060011461088c575b61088a925003836105bb565b565b50600c5f90815290917fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c75b8183106108cf57505090602061088a9282010161087e565b60209193508060019154838589010152019101909184926108b7565b6020925061088a94915060ff191682840152151560051b82010161087e565b346101af575f3660031901126101af57610375610925610853565b6040519182916020835260208301906102ce565b346101af5760203660031901126101af576001600160a01b0361095a610199565b168015610981575f526005602052602067ffffffffffffffff60405f205416604051908152f35b6323d3ad8160e21b5f5260045ffd5b346101af575f3660031901126101af576109a8611090565b600980546001600160a01b031981169091555f906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a3005b346101af575f3660031901126101af57600b546040516001600160a01b039091168152602090f35b346101af575f3660031901126101af576009546040516001600160a01b039091168152602090f35b346101af575f3660031901126101af576040515f600354610a5b8161081b565b80845290600181169081156103d75750600114610a825761037583610369818503826105bb565b60035f9081527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b939250905b808210610ac657509091508101602001610369610359565b919260018160209254838588010152019101909291610aae565b801515036101af57565b346101af5760403660031901126101af57610b03610199565b60243590610b1082610ae0565b335f9081526007602090815260408083206001600160a01b038516845290915290209115159160ff1981541660ff841617905560405191825260018060a01b0316907f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c3160203392a3005b60803660031901126101af57610b8e610199565b610b966101b3565b906044356064359267ffffffffffffffff84116101af57366023850112156101af57610bcf6105819436906024816004013591016105fe565b9261104f565b346101af575f3660031901126101af57600a546040516001600160a01b039091168152602090f35b346101af5760403660031901126101af57610c16610199565b6024356fffffffffffffffffffffffffffffffff81168091036101af57600b546001600160a01b03163303610d00575f54918115610cfb57610c566111d9565b6001600160a01b0381164260a01b6001841460e11b1717610c7f845f52600460205260405f2090565b556001600160a01b03165f8181526005602052604090208054680100000000000000018402019055908115610cf657820160015b15610ce6575b5f83835f7fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8180a4610cb3565b9160010191808303610cb9575f55005b611125565b611116565b639cdc2ed560e01b5f5260045ffd5b346101af5760203660031901126101af57610d2b6004356110b7565b15610d6457610d3b600c5461081b565b15610d4b57610375610925610853565b610375604051610d5c6020826105bb565b5f8152610925565b630a14c4b560e41b5f5260045ffd5b346101af5760403660031901126101af57602060ff610dc3610d93610199565b610d9b6101b3565b6001600160a01b039182165f9081526007865260408082209290931681526020919091522090565b54166040519015158152f35b346101af5760203660031901126101af57610de8610199565b610df0611090565b6001600160a01b03168015610e4257600980546001600160a01b0319811683179091556001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e05f80a3005b631e4fbdf760e01b5f525f60045260245ffd5b9190610e608261116e565b6001600160a01b03938416938116849003610ffa575f8381526006602052604090208054610ea16001600160a01b03871633908114908314171590565b1590565b610fb0575b610eae6111d9565b610fa7575b506001600160a01b0384165f90815260056020526040902080545f190190556001600160a01b0382165f908152600560205260409020805460010190556001600160a01b0382164260a01b17600160e11b17610f17845f52600460205260405f2090565b55600160e11b811615610f62575b506001600160a01b03169182907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef5f80a415610f5d57565b611150565b60018301610f78815f52600460205260405f2090565b5415610f85575b50610f25565b5f548114610f7f57610f9f905f52600460205260405f2090565b555f80610f7f565b5f90555f610eb3565b610ff0610e9d610fe933610fd48a60018060a01b03165f52600760205260405f2090565b9060018060a01b03165f5260205260405f2090565b5460ff1690565b15610ea657611141565b611133565b601f811161100b575050565b600c5f5260205f20906020601f840160051c83019310611045575b601f0160051c01905b81811061103a575050565b5f815560010161102f565b9091508190611026565b92919061105d828286610e55565b803b61106a575b50505050565b611073936112de565b15611081575f808080611064565b6368d2bf6b60e11b5f5260045ffd5b6009546001600160a01b031633036110a457565b63118cdaa760e01b5f523360045260245ffd5b905f9180600111156110c65750565b5f5481106110d15750565b9091505b805f52600460205260405f20548061110a575080156110f6575f19016110d5565b634e487b7160e01b5f52601160045260245ffd5b600160e01b1615919050565b63b562e8dd60e01b5f5260045ffd5b622e076360e81b5f5260045ffd5b62a1148160e81b5f5260045ffd5b632ce44b5f60e11b5f5260045ffd5b633a954ecd60e21b5f5260045ffd5b636f96cda160e11b5f5260045ffd5b8060011161115f57611188815f52600460205260405f2090565b5490811561119f5750600160e01b811661115f5790565b90505f5481101561115f575b5f19015f818152600460205260409020549081156111d25750600160e01b811661115f5790565b90506111ab565b600a5460405163d40f2f1760e01b815290602090829060049082906001600160a01b03165afa90811561125e575f91611223575b5061121457565b639280403560e01b5f5260045ffd5b90506020813d602011611256575b8161123e602093836105bb565b810103126101af575161125081610ae0565b5f61120d565b3d9150611231565b6040513d5f823e3d90fd5b908160209103126101af575161031e8161024e565b6001600160a01b03918216815291166020820152604081019190915260806060820181905261031e929101906102ce565b3d156112d9573d906112c0826105e2565b916112ce60405193846105bb565b82523d5f602084013e565b606090565b906020925f611306959360405196879586948593630a85bd0160e11b8552336004860161127e565b03926001600160a01b03165af15f9181611352575b5061133c576113286112af565b80511561133757805190602001fd5b611081565b6001600160e01b031916630a85bd0160e11b1490565b61137591925060203d60201161137c575b61136d81836105bb565b810190611269565b905f61131b565b503d61136356fea2646970667358221220b54fb70a2ace5ef42bf4e72c0876ad3049d495988ecf643db50004c266693c9364736f6c634300081c0033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000bdde464d40aff18ee85d7204a899d6f6eedf464a000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000013100000000000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _owner (address): 0xbdDE464d40AFf18ee85D7204A899d6F6eEDf464a
Arg [1] : _baseURI (string): 1
-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 000000000000000000000000bdde464d40aff18ee85d7204a899d6f6eedf464a
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000040
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [3] : 3100000000000000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.