ERC-20
Overview
Max Total Supply
836,178,500 Kid-DRIP
Holders
7
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Minimal Proxy Contract for 0x86f345f3036ad759da37bcb90f5c80c654360123
Contract Name:
ERC20DRIPoolByMetadrop
Compiler Version
v0.8.21+commit.d9974bed
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BUSL-1.1 // Metadrop Contracts (v2.1.0) pragma solidity 0.8.21; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import {IERC20ByMetadrop} from "../ERC20/IERC20ByMetadrop.sol"; import {IERC20DRIPoolByMetadrop} from "./IERC20DRIPoolByMetadrop.sol"; import {IUniswapV2Router02} from "../../ThirdParty/Uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol"; import {Revert} from "../../Global/Revert.sol"; import {SafeERC20, IERC20} from "../../Global/OZ/SafeERC20.sol"; import {SignatureChecker} from "@openzeppelin/contracts/utils/cryptography/SignatureChecker.sol"; /** * @dev Metadrop ERC-20 Decentralised Rationalised Incentive Pool (DRIP) * * @dev Implementation of the {IERC20DRIPoolByMetadrop} interface. */ contract ERC20DRIPoolByMetadrop is ERC20, IERC20DRIPoolByMetadrop, Revert { using SafeERC20 for IERC20ByMetadrop; using SafeERC20 for IERC20; // Multiplier constant: you receive 1,000,000 DRIP for every ETH contributed: uint256 private constant ETH_TO_DRIP_MULTIPLIER = 1000000; // DRIP are burned to the 0x...dEaD address (not address(0)) in order to maintain a constant total // supply value during claims and refunds: address private constant DEAD_ADDRESS = 0x000000000000000000000000000000000000dEaD; // Proportions are held in basis points, this is the basis point denominator: uint256 internal constant CONST_BP_DENOM = 10000; // The oracle signed message validity period: uint256 internal constant MSG_VALIDITY_SECONDS = 30 minutes; // The DP we use to truncate the fee amount. We truncate this many positions of WEI // from the fee. For example, is this is 10 ** 12 we are truncating to 6 DP of ETH, i.e. // we are setting the final 12 figures of the fee to zeros (ETH having 18 decimal places). uint256 internal constant FEE_DP_OF_ETH_FACTOR = 10 ** 12; // Address of the uniswap router on this chain: IUniswapV2Router02 public immutable uniswapRouter; // Metadrop Oracle Address: address public immutable metadropOracleAddress; // Slot 1: accessed when contributing to the pool // 96 // 80 // 64 // 16 // ------ // 256 // ------ // What is the max pooled ETH? Contributions that would exceed this amount will not // be accepted: If this is ZERO there is no no limits, won't give up the fight. uint96 public poolMaxETH; // What is the max contribution per address? If this is ZERO there is no no limits, // we'll reach for the sky uint80 public poolPerAddressMaxETH; // What is the minimum contribution per transaction?: uint64 public poolPerTransactionMinETH; // Contribution fee in basis points - how much is automatically deducted from contribution. Note // that this is applied irrespective of whether EXCESS ETH is refunded at a point in the future // (for example if the pool is oversubscribed and only a portion of the contributed ETH is // converted to token ownership). // However - if the pool falls below the minimum contributions are refunded 100% i.e. no fee. uint16 public poolContributionFeeBasisPoints; // Slot 2: accessed when contributing to the pool: // 32 // 32 // 96 // 96 // ------ // 256 // ------ // When does the pool phase start? Contributions to the DRIP will not be accepted // before this date: uint32 public poolStartDate; // When does the pool phase end? Contributions to the DRIP will not be accepted // after this date: uint32 public poolEndDate; // How many fees have accumulated: uint96 public accumulatedFees; // Store of the amount of ETH funded into LP / token buy: uint96 public totalETHFundedToLPAndTokenBuy; // Slot 3: accessed when claiming from the pool: // 8 // 16 // 16 // 120 // 96 // ------ // 256 // ------ // Pool type: DRIPoolType private _driPoolType; // If there is a vesting period for token claims this var will be that period in DAYS: uint32 public poolVestingInSeconds; // The supply of the pooled token in this pool (this is the token that pool participants // will claim, not the DRIP token): uint120 public supplyInThePool; // An accumulator for the total excess ETH refunded: uint96 public totalExcessETHRefunded; // Slot 4: accessed when claiming from the pool // 160 // 96 // ------ // 256 // ------ // This is the contract address of the metadrop ERC20 that is being placed in this // pool: IERC20ByMetadrop public createdERC20; // Minimum amount for the pool to proceed: uint96 public poolMinETH; // Slot 5: accessed as part of claims / refunds // 160 // 96 // ------ // 256 // ------ // The address that seeded the project ETH: address public projectSeedContributionAddress; // The amount of ETH seeded: uint96 public projectSeedContributionETH; // Slot 6: accessed as part of the supply funding / intitial buy process // 160 // 96 // ------ // 256 // ------ // Recipient of accumulated fees address public poolFeeRecipient; // Max initial buy size. ETH above this will be refunded on a pro-rata basis uint96 public maxInitialBuy; // Slot 7: accessed as part of the supply funding / intitial buy process (if this is // an intial funding type pool) // 96 // 8 // ------ // 104 // ------ // Max initial liquidity size. ETH above this will be refunded on a pro-rata basis uint96 public maxInitialLiquidity; // Bool that controls initialisation and only allows it to occur ONCE. This is // needed as this contract is clonable, threfore the constructor is not called // on cloned instances. We setup state of this contract through the initialise // function. bool public initialised; // Slot 8 to n: // ------ // 256 // ------ // The name of this DRIP token: string private _dripName; // The symbol of this DRIP token: string private _dripSymbol; // Store the details of every participant, being the ETH they have contributed // (less the fee, if any), and any refund they have already received. mapping(address => Participant) public participant; /** * @dev {constructor} * * The constructor is not called when the contract is cloned. * * In this we just set the router address and the template contract * itself to initialised. * * @param router_ The address of the uniswap router on this chain. */ constructor( address router_, address oracle_ ) ERC20("Metadrop DRI Pool Token", "DRIP") { initialised = true; if (router_ == address(0)) { _revert(RouterCannotBeZeroAddress.selector); } if (oracle_ == address(0)) { _revert(MetadropOracleCannotBeAddressZero.selector); } uniswapRouter = IUniswapV2Router02(router_); metadropOracleAddress = oracle_; } /** * @dev {onlyDuringPoolPhase} * * Throws if NOT during the pool phase */ modifier onlyDuringPoolPhase() { if (_poolPhaseStatus() != PhaseStatus.open) { _revert(PoolPhaseIsNotOpen.selector); } _; } /** * @dev {onlyAfterSuccessfulPoolPhase} * * Throws if NOT after the pool phase AND the phase succeeded */ modifier onlyAfterSuccessfulPoolPhase() { if (_poolPhaseStatus() != PhaseStatus.succeeded) { _revert(PoolPhaseIsNotSucceeded.selector); } _; } /** * @dev {onlyAfterFailedPoolPhase} * * Throws if NOT after the pool phase AND the phase failed */ modifier onlyAfterFailedPoolPhase() { if (_poolPhaseStatus() != PhaseStatus.failed) { _revert(PoolPhaseIsNotFailed.selector); } _; } /** * @dev {onlyWhenTokensVested} * * Throws if NOT after the token vesting date */ modifier onlyWhenTokensVested() { if (block.timestamp < vestingEndDate()) { _revert(PoolVestingNotYetComplete.selector); } _; } /** * @dev {onlyFeeRecipient} * * Throws if NOT called by the fee recipient */ modifier onlyFeeRecipient() { _checkFeeRecipient(); _; } /** * @dev Throws if the sender is not the manager. */ function _checkFeeRecipient() internal view virtual { if (poolFeeRecipient != _msgSender()) { _revert(CallerIsNotTheFeeRecipient.selector); } } /** * @dev {name} * * Returns the name of the token. */ function name() public view override returns (string memory) { return _dripName; } /** * @dev {symbol} * * Returns the symbol of the token, usually a shorter version of the name. */ function symbol() public view override returns (string memory) { return _dripSymbol; } /** * @dev {driType} * * Returns the type of this DRI pool */ function driType() external view returns (DRIPoolType) { return _driPoolType; } /** * @dev {initialiseDRIP} * * Initalise configuration on a new minimal proxy clone * * @param poolParams_ bytes parameter object that will be decoded into configuration items. * @param name_ the name of the associated ERC20 token * @param symbol_ the symbol of the associated ERC20 token */ function initialiseDRIP( bytes calldata poolParams_, string calldata name_, string calldata symbol_ ) external { _initialisationControl(); _setNameAndSymbol(name_, symbol_); _processPoolParams(poolParams_); emit DRIPoolCreatedAndInitialised(); } /** * @dev {_initialisationControl} * * Check and set the initialistion boolean */ function _initialisationControl() internal { if (initialised) { _revert(AlreadyInitialised.selector); } initialised = true; } /** * @dev {_setNameAndSymbol} * * Set the name and the symbol * * @param name_ The name of token * @param symbol_ The symbol token */ function _setNameAndSymbol( string calldata name_, string calldata symbol_ ) internal { _dripName = string.concat(name_, " - Metadrop Launch Pool Token"); _dripSymbol = _getDripSymbol(symbol_); } /** * @dev Get the drip symbol, being the first six chars of the token symbol + '-DRIP' * We get just the first six chars as metamask has a default limit of 11 chars per token * symbol. You can get around this by manually editing the symbol when adding the token, * but it seems prudent to avoid the user having to do this. * * @param erc20Symbol_ The symbol of the ERC20 * @return dripSymbol_ the symbol of our DRIP token */ function _getDripSymbol( string memory erc20Symbol_ ) internal pure returns (string memory dripSymbol_) { bytes memory erc20SymbolBytes = bytes(erc20Symbol_); if (erc20SymbolBytes.length < 6) { return string(abi.encodePacked(erc20SymbolBytes, "-DRIP")); } else { bytes memory result = new bytes(6); for (uint i = 0; i < 6; i++) { result[i] = erc20SymbolBytes[i]; } return string(abi.encodePacked(result, "-DRIP")); } } /** * @dev {_processPoolParams} * * Validate and set pool parameters * * @param poolParams_ bytes parameter object that will be decoded into configuration items. */ function _processPoolParams(bytes calldata poolParams_) internal { ERC20PoolParameters memory poolParams = _validatePoolParams(poolParams_); _setPoolParams(poolParams); } /** * @dev Decode and validate pool parameters * * @param poolParams_ Bytes parameters * @return poolParamsDecoded_ the decoded pool params */ function _validatePoolParams( bytes calldata poolParams_ ) internal pure returns (ERC20PoolParameters memory poolParamsDecoded_) { poolParamsDecoded_ = abi.decode(poolParams_, (ERC20PoolParameters)); if (poolParamsDecoded_.poolPerAddressMaxETH > type(uint80).max) { _revert(ParamTooLargePerAddressMax.selector); } if (poolParamsDecoded_.poolMaxETH > type(uint96).max) { _revert(ParamTooLargePoolMaxETH.selector); } if (poolParamsDecoded_.poolPerTransactionMinETH > type(uint64).max) { _revert(ParamTooLargePoolPerTxnMinETH.selector); } if (poolParamsDecoded_.poolStartDate > type(uint32).max) { _revert(ParamTooLargeStartDate.selector); } if (poolParamsDecoded_.poolEndDate > type(uint32).max) { _revert(ParamTooLargeEndDate.selector); } if (poolParamsDecoded_.poolType > 1) { _revert(UnrecognisedType.selector); } if (poolParamsDecoded_.poolContributionFeeBasisPoints > type(uint16).max) { _revert(ParamTooLargeContributionFee.selector); } if (poolParamsDecoded_.poolVestingInSeconds > type(uint32).max) { _revert(ParamTooLargeVestingDays.selector); } if (poolParamsDecoded_.poolSupply > type(uint120).max) { _revert(ParamTooLargePoolSupply.selector); } if (poolParamsDecoded_.poolMinETH > type(uint96).max) { _revert(ParamTooLargeMinETH.selector); } if (poolParamsDecoded_.poolMaxInitialBuy > type(uint96).max) { _revert(ParamTooLargeMaxInitialBuy.selector); } if (poolParamsDecoded_.poolMaxInitialLiquidity > type(uint96).max) { _revert(ParamTooLargeMaxInitialLiquidity.selector); } if ( poolParamsDecoded_.poolMaxInitialBuy != 0 && poolParamsDecoded_.poolMinETH > poolParamsDecoded_.poolMaxInitialBuy ) { _revert(MinETHCannotExceedMaxBuy.selector); } if ( poolParamsDecoded_.poolMaxInitialLiquidity != 0 && poolParamsDecoded_.poolMinETH > poolParamsDecoded_.poolMaxInitialLiquidity ) { _revert(MinETHCannotExceedMaxLiquidity.selector); } return (poolParamsDecoded_); } /** * @dev {_setPoolParams} * * Load the pool params to storage * * @param poolParamsDecoded_ the decoded pool params */ function _setPoolParams( ERC20PoolParameters memory poolParamsDecoded_ ) internal { _driPoolType = DRIPoolType(poolParamsDecoded_.poolType); poolStartDate = uint32(poolParamsDecoded_.poolStartDate); poolEndDate = uint32(poolParamsDecoded_.poolEndDate); poolMaxETH = uint96(poolParamsDecoded_.poolMaxETH); poolMinETH = uint96(poolParamsDecoded_.poolMinETH); poolPerAddressMaxETH = uint80(poolParamsDecoded_.poolPerAddressMaxETH); poolVestingInSeconds = uint32(poolParamsDecoded_.poolVestingInSeconds); supplyInThePool = uint120( poolParamsDecoded_.poolSupply * (10 ** decimals()) ); poolPerTransactionMinETH = uint64( poolParamsDecoded_.poolPerTransactionMinETH ); poolContributionFeeBasisPoints = uint16( poolParamsDecoded_.poolContributionFeeBasisPoints ); maxInitialBuy = uint96(poolParamsDecoded_.poolMaxInitialBuy); maxInitialLiquidity = uint96(poolParamsDecoded_.poolMaxInitialLiquidity); poolContributionFeeBasisPoints = uint16( poolParamsDecoded_.poolContributionFeeBasisPoints ); poolFeeRecipient = poolParamsDecoded_.poolFeeRecipient; } /** * @dev {supplyForLP} * * Convenience function to return the LP supply from the ERC-20 token contract. * * @return supplyForLP_ The total supply for LP creation. */ function supplyForLP() public view returns (uint256 supplyForLP_) { return (createdERC20.balanceOf(address(createdERC20))); } /** * @dev {poolPhaseStatus} * * Convenience function to return the pool status in string format. * * @return poolPhaseStatus_ The pool phase status as a string */ function poolPhaseStatus() external view returns (string memory poolPhaseStatus_) { // BEFORE the pool phase has started: if (_poolPhaseStatus() == PhaseStatus.before) { return ("before"); } // AFTER the pool phase has ended successfully: if (_poolPhaseStatus() == PhaseStatus.succeeded) { return ("succeeded"); } // AFTER the pool phase has ended but failed: if (_poolPhaseStatus() == PhaseStatus.failed) { return ("failed"); } // DURING the pool phase: return ("open"); } /** * @dev {_poolPhaseStatus} * * Internal function to return the pool phase status as an enum * * @return poolPhaseStatus_ The pool phase status as an enum */ function _poolPhaseStatus() internal view returns (PhaseStatus poolPhaseStatus_) { // BEFORE the pool phase has started: if (block.timestamp < poolStartDate) { return (PhaseStatus.before); } // AFTER the pool phase has ended: if (block.timestamp >= poolEndDate) { if (poolIsAboveMinimum()) { // Successful: return (PhaseStatus.succeeded); } else { // Failed: return (PhaseStatus.failed); } } // DURING the pool phase: return (PhaseStatus.open); } /** * @dev {vestingEndDate} * * The vesting end date, being the end of the pool phase plus number of days vesting, if any. * * @return vestingEndDate_ The vesting end date as a timestamp */ function vestingEndDate() public view returns (uint256 vestingEndDate_) { return poolEndDate + poolVestingInSeconds; } /** * @dev Return if the pool total has exceeded the minimum: * * @return poolIsAboveMinimum_ If the pool is above the minimum (or not) */ function poolIsAboveMinimum() public view returns (bool poolIsAboveMinimum_) { return totalETHContributed() >= poolMinETH; } /** * @dev Return if the pool is at the maximum. * * @return poolIsAtMaximum_ If the pool is at the maximum ETH. */ function poolIsAtMaximum() public view returns (bool poolIsAtMaximum_) { // A maximum of 0 signifies unlimited, therefore this can never be at the maximum: if (poolMaxETH == 0) { return false; } return totalETHContributed() == poolMaxETH; } /** * @dev Return the total ETH pooled (whether in the balance of this contract * or supplied as LP / token buy already). * * Note that this INCLUDES any seed ETH from the project on create. * * @return totalETHPooled_ the total ETH pooled in this contract */ function totalETHPooled() public view returns (uint256 totalETHPooled_) { // This metric has an interesting characteristic where there can be negative ETH contributed: // * The pool has failed // * Fees have accumulated (but won't be paid) // * All refunds have been made (or, at least, the vast majority have been made) // // We have a negative contributed amount because we deduct the fees still (we have to, in order // to see that the pool has failed). This then leaved the pooled amount lower than the deductions. // // We therefore have the concept that totalETHPooled must always be 0 or higher. uint256 positiveItems = address(this).balance + totalETHFundedToLPAndTokenBuy + totalExcessETHRefunded; if (positiveItems > accumulatedFees) { return positiveItems - accumulatedFees; } else { return (0); } } /** * @dev Return the total ETH contributed (whether in the balance of this contract * or supplied as LP already). * * Note that this EXCLUDES any seed ETH from the project on create. * * @return totalETHContributed_ the total ETH pooled in this contract */ function totalETHContributed() public view returns (uint256 totalETHContributed_) { // This metric has an interesting characteristic where there can be negative ETH contributed: // * The pool has failed // * There is seed ETH provided // * Fees have accumulated (but won't be paid) // * All normal refunds have been made (or, at least, the vast majority have been made) // leaving just the seed ETH (and maybe a small balance of normal refunds) // // We have a negative contributed amount because the deduct the fees still (we have to, in order // to see that the pool has failed). This then leaved the contribution amount lower than the seed // ETH amount. // // We therefore have the concept that totalETHContributed must always be 0 or higher. // if (projectSeedContributionETH < totalETHPooled()) { return totalETHPooled() - projectSeedContributionETH; } else { return (0); } } /** * @dev Return the total ETH pooled that is in excess of requirements * * @return totalExcessETHPooled_ the total ETH pooled in this contract * that is not needed for the initial lp / buy */ function totalExcessETHPooled() public view returns (uint256 totalExcessETHPooled_) { if (_driPoolType == DRIPoolType.fundingLP) { if (maxInitialLiquidityExceeded()) { totalExcessETHPooled_ = totalETHContributed() - maxInitialLiquidity; } else { totalExcessETHPooled_ = 0; } } else { if (maxInitialBuyExceeded()) { totalExcessETHPooled_ = totalETHContributed() - maxInitialBuy; } else { totalExcessETHPooled_ = 0; } } return totalExcessETHPooled_; } /** * @dev Return the ETH pooled for this recipient * * @return participantETHPooled_ the total ETH pooled for this address */ function participantETHPooled( address participant_ ) public view returns (uint256 participantETHPooled_) { return participant[participant_].contribution; } /** * @dev Return the excess ETH already refunded for this recipient * * @return participantExcessETHRefunded_ the total excess ETH refunded for this participant */ function participantExcessETHRefunded( address participant_ ) public view returns (uint256 participantExcessETHRefunded_) { return participant[participant_].excessRefunded; } /** * @dev Return the excess refund currently owing for the query address * * Note that this EXCLUDES any seed ETH from the project on create. * * @return participantExcessRefund_ the total ETH pooled in this contract */ function participantExcessRefundAvailable( address participant_ ) public view returns (uint256 participantExcessRefund_) { if (totalETHContributed() == 0) { return 0; } return ((totalExcessETHPooled() * participant[participant_].contribution) / totalETHContributed()) - participant[participant_].excessRefunded; } /** * @dev Return if the max initial buy has been exceeded * * @return maxInitialBuyExceeded_ */ function maxInitialBuyExceeded() public view returns (bool maxInitialBuyExceeded_) { return maxInitialBuy != 0 && maxInitialBuy < totalETHContributed(); } /** * @dev Return if the max initial lp funding has been exceeded * * @return maxInitialLiquidityExceeded_ */ function maxInitialLiquidityExceeded() public view returns (bool maxInitialLiquidityExceeded_) { return maxInitialLiquidity != 0 && maxInitialLiquidity < totalETHContributed(); } /** * @dev {loadERC20AddressAndSeedETH} * * Load the target ERC-20 address. This is called by the factory in the same transaction as the clone * is instantiated * * @param createdERC20_ The ERC-20 address * @param poolCreator_ The creator of this pool */ function loadERC20AddressAndSeedETH( address createdERC20_, address poolCreator_ ) external payable { if (address(createdERC20) != address(0)) { _revert(AddressAlreadySet.selector); } // If there is ETH on this call then it is the ETH amount that the project team // is seeding into the pool. This seed amount does NOT mint DRIP token to the team, // as will be the case with any contributions to an open pool. // // IN A FUNDING LP POOL: // // It will be included in the ETH paired with the token when the pool closes, // if it closes above the minimum contribution threshold. // // In the event that the pool closes below the minimum contribution threshold the project // team will be able to claim a refund of the seeded amount, in just the same way // that contributors can get a refund of ETH when the pool closes below the minimum. // // IN AN INITIAL BUY POOL: // // When the pool closes this contract will fund the liquidity using the ETH that the team // has provided for liquicity and them IMMEDIATELY make the intitial purchase // // Tokens for users to claim are then held on this contract in the same way as for a liquidity pool // If this is an initial buy pool then we must have some seed ETH from the project as this is what // we will use to load liquidity. The ETH contributed to this contract is used as an initial buy. if (_driPoolType == DRIPoolType.initialBuy && msg.value == 0) { _revert(PoolMustBeSeededWithETHForInitialLiquidity.selector); } if (msg.value > 0) { if (msg.value > type(uint96).max) { _revert(ValueExceedsMaximum.selector); } projectSeedContributionETH = uint96(msg.value); projectSeedContributionAddress = poolCreator_; } createdERC20 = IERC20ByMetadrop(createdERC20_); } /** * @dev {addToPool} * * A user calls this to contribute to the pool * * Note that we could have used the receive method for this, and processed any ETH send to the * contract as a contribution to the pool. We've opted for the clarity of a specific method, * with the recieve method reverting an unidentified ETH. * * @param signedMessage_ The signed message object */ function addToPool( SignedDropMessageDetails calldata signedMessage_ ) external payable onlyDuringPoolPhase { _verifyMessage(signedMessage_); uint256 poolFee; // Deduct the pool fee if the fee is set: if (poolContributionFeeBasisPoints != 0) { // Fee is truncated to a given dp of ETH: poolFee = (((msg.value * poolContributionFeeBasisPoints) / CONST_BP_DENOM) / FEE_DP_OF_ETH_FACTOR) * FEE_DP_OF_ETH_FACTOR; accumulatedFees += uint96(poolFee); } _checkLimits(msg.value); // Mint DRIP to the participant: _mint(_msgSender(), msg.value * ETH_TO_DRIP_MULTIPLIER); // Record their ETH contribution: participant[_msgSender()].contribution += uint128(msg.value - poolFee); if (poolIsAtMaximum()) { poolEndDate = uint32(block.timestamp); } // Emit the event: emit AddToPool(_msgSender(), msg.value, poolFee); } /** * @dev function {_verifyMessage} * * Check the signature and expiry of the passed message * * @param signedMessage_ The signed message object */ function _verifyMessage( SignedDropMessageDetails calldata signedMessage_ ) internal view { // Check that this signature is from the oracle signer: if ( !_validSignature( signedMessage_.messageHash, signedMessage_.messageSignature ) ) { _revert(InvalidOracleSignature.selector); } // Check that the signature has not expired: unchecked { if ( (signedMessage_.messageTimeStamp + MSG_VALIDITY_SECONDS) < block.timestamp ) { _revert(OracleSignatureHasExpired.selector); } } // Check that the message is from this sender and for this amount: if ( createMessageHash(_msgSender(), msg.value) != signedMessage_.messageHash ) { _revert(PassedConfigDoesNotMatchApproved.selector); } } /** * @dev function {_validSignature} * * Checks the the signature on the signed message is from the metadrop oracle * * @param messageHash_ The message hash signed by the trusted oracle signer. This will be the * keccack256 hash of received data about this token. * @param messageSignature_ The signed message from the backend oracle signer for validation. * @return messageIsValid_ If the message is valid (or not) */ function _validSignature( bytes32 messageHash_, bytes memory messageSignature_ ) internal view returns (bool messageIsValid_) { bytes32 ethSignedMessageHash = keccak256( abi.encodePacked("\x19Ethereum Signed Message:\n32", messageHash_) ); // Check the signature is valid: return ( SignatureChecker.isValidSignatureNow( metadropOracleAddress, ethSignedMessageHash, messageSignature_ ) ); } /** * @dev function {createMessageHash} * * Create the message hash * * @param sender_ The sender of the transcation * @param value_ The value of the transaction * @return messageHash_ The hash for the signed message */ function createMessageHash( address sender_, uint256 value_ ) public pure returns (bytes32 messageHash_) { return (keccak256(abi.encodePacked(sender_, value_))); } /** * @dev {_checkLimits} * * Check limits that apply to additions to the pool. * * @param ethValue_ The value of the ETH being contributed. */ function _checkLimits(uint256 ethValue_) internal view { // Check the overall pool limit: if (poolMaxETH > 0 && (totalETHContributed() > poolMaxETH)) { _revert(AdditionToPoolWouldExceedPoolCap.selector); } // Check the per address limit: if ( poolPerAddressMaxETH > 0 && (balanceOf(_msgSender()) + (ethValue_ * ETH_TO_DRIP_MULTIPLIER) > (poolPerAddressMaxETH * ETH_TO_DRIP_MULTIPLIER)) ) { _revert(AdditionToPoolWouldExceedPerAddressCap.selector); } // Check the contribution meets the minimium contribution size: if (ethValue_ < poolPerTransactionMinETH) { _revert(AdditionToPoolIsBelowPerTransactionMinimum.selector); } } /** * @dev {claimFromPool} * * A user calls this to burn their DRIP and claim their ERC-20 tokens * */ function claimFromPool() external onlyAfterSuccessfulPoolPhase onlyWhenTokensVested { if (_driPoolType == DRIPoolType.initialBuy && supplyInThePool <= 0) { _revert(InitialLiquidityNotYetAdded.selector); } uint256 holdersDRIP = balanceOf(_msgSender()); // Calculate the holders share of the pooled token: uint256 holdersClaim = ((supplyInThePool * holdersDRIP) / totalSupply()); // If they are getting no tokens, there is nothing to do here: if (holdersClaim == 0) { _revert(NothingToClaim.selector); } // Burn the holders DRIP to the dead address. We do this so that the totalSupply() // figure remains constant allowing us to calculate subsequent shares of the total // ERC20 pool _burnToDead(_msgSender(), holdersDRIP); // Send them their createdERC20 token: createdERC20.safeTransfer(_msgSender(), holdersClaim); uint256 ethToRefundClaimer = _processExcessRefund(_msgSender()); // Emit the event: emit ClaimFromPool( _msgSender(), holdersDRIP, holdersClaim, ethToRefundClaimer ); } /** * @dev {refundExcess} * * Can be called at any time by a participant to claim and ETH refund of any * ETH that will not be used to either fund the pool or for an initial buy * */ function refundExcess() external { uint256 ethToRefundClaimer = _processExcessRefund(_msgSender()); if (ethToRefundClaimer == 0) { _revert(NothingToClaim.selector); } // Emit the event: emit ExcessRefunded(_msgSender(), ethToRefundClaimer); } /** * @dev {_processExcessRefund} * * Unified processing of excess refund * * @param participant_ The address being refunded. * @return ethToRefundParticipant_ The amount of ETH refunded. */ function _processExcessRefund( address participant_ ) internal returns (uint256 ethToRefundParticipant_) { if (totalExcessETHPooled() > 0) { ethToRefundParticipant_ = participantExcessRefundAvailable(participant_); if (ethToRefundParticipant_ > 0) { // Send them their ETH refund participant[participant_].excessRefunded += uint128( ethToRefundParticipant_ ); totalExcessETHRefunded += uint96(ethToRefundParticipant_); (bool success, ) = participant_.call{value: ethToRefundParticipant_}( "" ); if (!success) { _revert(TransferFailed.selector); } } return (ethToRefundParticipant_); } } /** * @dev {_burnToDead} * * Burn DRIP token to the DEAD address. * * @param caller_ The address burning the token. * @param callersDRIP_ The amount of DRIP being burned. */ function _burnToDead(address caller_, uint256 callersDRIP_) internal { _transfer(caller_, DEAD_ADDRESS, callersDRIP_); } /** * @dev {refundFromFailedPool} * * A user calls this to burn their DRIP and claim an ETH refund where the * minimum ETH pooled amount was not exceeded. * */ function refundFromFailedPool() external onlyAfterFailedPoolPhase { // This looks for standard contributions based on balance of DRIP: uint256 holdersDRIP = balanceOf(_msgSender()); // Calculate the holders share of the pooled ETH. uint256 refundAmount = holdersDRIP / ETH_TO_DRIP_MULTIPLIER; // Add on the project seed ETH amount if relevant: if (_msgSender() == projectSeedContributionAddress) { // This was a project seed contribution. We include the project seed ETH in any // refund to this address. We combine this with any refund they are owed // for a DRIP balance as it is possible (although unlikely) that the seed // contributor also made a standard contribution to the launch pool and minted // DRIP. // Add the seed ETH contribution to the refund amount: refundAmount += projectSeedContributionETH; // Zero out the contribution as this is being refunded: projectSeedContributionETH = 0; } // If they are getting no ETH, there is nothing to do here: if (refundAmount == 0) { _revert(NothingToClaim.selector); } // Burn tokens if the holder's DRIP is greater than 0. We need this check for zero // here as this could be a seed ETH refund: if (holdersDRIP > 0) { // Burn the holders DRIP to the dead address. We do this so that the totalSupply() // figure remains constant allowing us to calculate subsequent shares of the total // ERC20 pool _burnToDead(_msgSender(), holdersDRIP); } // Send them their ETH refund (bool success, ) = _msgSender().call{value: refundAmount}(""); if (!success) { _revert(TransferFailed.selector); } // Emit the event: emit RefundFromFailedPool(_msgSender(), holdersDRIP, refundAmount); } /** * @dev {supplyLiquidity} * * When the pool phase is over this can be called to supply the pooled ETH to * the token contract. There it will be forwarded along with the LP supply of * tokens to uniswap to create the funded pair * * Note that this function can be called by anyone. While clearly it is likely * that this will be the project team, having this method open to anyone ensures that * liquidity will not be trapped in this contract if the team as unable to perform * this action. * * This method behaves differently depending on the pool type: * * IN A FUNDING LP POOL: * * All of the ETH held on this contract is provided to fund the LP * * IN AN INITIAL BUY POOL: * * ONLY the project supplied ETH is used to fund the liquidity. The remaining ETH * on this contract will fall into two possible categories: * * 1) ETH used to perform an initial token purchase immediately after the funding of * the LP. This will be the total remaining ETH on this contract IF that amount is * below the maximum initial buy amount. Otherwise it will be the max initial buy amount and the * remaining ETH will remain for refunds. * * 2) If the ETH on this contract is above the max initial buy amount there will be a * proportion of ETH remaining on this contract for refunds. * * @param lockerFee_ The ETH fee required to lock LP tokens * */ function supplyLiquidity( uint256 lockerFee_ ) external payable onlyAfterSuccessfulPoolPhase { // The caller can elect to send the locker fee with this call, or the locker // fee will automatically taken from the supplied ETH. In either scenario the only // acceptable values that can be passed to this method are a) 0 or b) the locker fee if (msg.value > 0 && msg.value != lockerFee_) { _revert(IncorrectPayment.selector); } uint256 ethForLiquidity; if (_driPoolType == DRIPoolType.fundingLP) { // If the locker fee was passed in it is in the balance of this contract, BUT is // not contributed ETH. Deduct this from the stored total: uint256 ethAvailableForLiquidity = totalETHPooled() - msg.value; if ( maxInitialLiquidity != 0 && maxInitialLiquidity < ethAvailableForLiquidity ) { ethForLiquidity = maxInitialLiquidity; } else { ethForLiquidity = ethAvailableForLiquidity; } } else { // For an initial buy pool this is the ETH that the project has contributed for the // liquidity pool setup ethForLiquidity = projectSeedContributionETH; } totalETHFundedToLPAndTokenBuy += uint96(ethForLiquidity); createdERC20.addInitialLiquidity{value: ethForLiquidity + msg.value}( lockerFee_, 0, false ); // If this is a initial buy pool we now perform the intial buy: if (_driPoolType == DRIPoolType.initialBuy) { uint256 ethAvailableForBuy = totalETHContributed(); // We don't proceed with the initial buy if there is ZERO ETH in this pool. // In this instance we can't know the intention of the team, as they may // very well want to proceed with this token even if the pool has not // resulted in any pooled ETH. Note that we CANNOT reach this point in the code // if the team has specified a minimum ETH amount for the pool, i.e. we know that // the minimum ETH amount must have been ZERO to reach this position with zero // ETH in the pool. This is equivalent to saying that they token should proceed // to a funded state regardless of the performance of this pool. Therefore we // supply liquidity in this transation (earlier in the call stack), but do not // try and make an initial buy with 0 ETH as that would fail and revert. if (ethAvailableForBuy > 0) { uint256 ethForBuy; // If the total ETH in this contract exceeds the max initial buy, the buy we make // will be the max initial buy, with all excess ETH available to DRIP holders // as a refund on a pro-rata basis: if (maxInitialBuyExceeded()) { ethForBuy = maxInitialBuy; } else { ethForBuy = uint128(ethAvailableForBuy); } // Buy from DEX: address[] memory path = new address[](2); path[0] = address(uniswapRouter.WETH()); path[1] = address(createdERC20); uniswapRouter.swapExactETHForTokensSupportingFeeOnTransferTokens{ value: ethForBuy }(0, path, address(this), block.timestamp + 600); // We need to update the var supplyInThePool to the balance held at this // contract: supplyInThePool = uint120(createdERC20.balanceOf(address(this))); // We also need to record the ETH used in the buy: totalETHFundedToLPAndTokenBuy += uint96(ethForBuy); // Emit the event: emit InitialBuyMade(ethForBuy); } } // Emit the total pooled and the accumulated fees: emit PoolClosedSuccessfully(totalETHPooled(), accumulatedFees); // Disburse fees (if any) if (accumulatedFees > 0) { uint256 feesToDisburse = accumulatedFees; accumulatedFees = 0; (bool success, ) = poolFeeRecipient.call{value: feesToDisburse}(""); if (!success) { _revert(TransferFailed.selector); } } } /** * @dev function {rescueETH} * * A withdraw function to allow ETH to be rescued. * * Fallback safety method, only callable by the fee recipient. * * @param amount_ The amount to withdraw */ function rescueETH(uint256 amount_) external onlyFeeRecipient { (bool success, ) = poolFeeRecipient.call{value: amount_}(""); if (!success) { _revert(TransferFailed.selector); } } /** * @dev function {rescueERC20} * * A withdraw function to allow ERC20s to be rescued. * * Fallback safety method, only callable by the fee recipient. * * @param token_ The ERC20 contract * @param amount_ The amount to withdraw */ function rescueERC20( address token_, uint256 amount_ ) external onlyFeeRecipient { IERC20(token_).safeTransfer(poolFeeRecipient, amount_); } /** * @dev {receive} * * Revert any unidentified ETH * */ receive() external payable { revert(); } /** * @dev {fallback} * * No fallback allowed * */ fallback() external payable { revert(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC1271 standard signature validation method for * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271]. * * _Available since v4.1._ */ interface IERC1271 { /** * @dev Should return whether the signature provided is valid for the provided data * @param hash Hash of the data to be signed * @param signature Signature byte array associated with _data */ function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * * Furthermore, `isContract` will also return true if the target contract within * the same transaction is already scheduled for destruction by `SELFDESTRUCT`, * which only has an effect at the end of a transaction. * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV // Deprecated in v4.8 } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) { // 32 is the length in bytes of hash, // enforced by the type signature above /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") mstore(0x1c, hash) message := keccak256(0x00, 0x3c) } } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, "\x19\x01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) data := keccak256(ptr, 0x42) } } /** * @dev Returns an Ethereum Signed Data with intended validator, created from a * `validator` and `data` according to the version 0 of EIP-191. * * See {recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x00", validator, data)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/SignatureChecker.sol) pragma solidity ^0.8.0; import "./ECDSA.sol"; import "../../interfaces/IERC1271.sol"; /** * @dev Signature verification helper that can be used instead of `ECDSA.recover` to seamlessly support both ECDSA * signatures from externally owned accounts (EOAs) as well as ERC1271 signatures from smart contract wallets like * Argent and Gnosis Safe. * * _Available since v4.1._ */ library SignatureChecker { /** * @dev Checks if a signature is valid for a given signer and data hash. If the signer is a smart contract, the * signature is validated against that smart contract using ERC1271, otherwise it's validated using `ECDSA.recover`. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidSignatureNow(address signer, bytes32 hash, bytes memory signature) internal view returns (bool) { (address recovered, ECDSA.RecoverError error) = ECDSA.tryRecover(hash, signature); return (error == ECDSA.RecoverError.NoError && recovered == signer) || isValidERC1271SignatureNow(signer, hash, signature); } /** * @dev Checks if a signature is valid for a given signer and data hash. The signature is validated * against the signer smart contract using ERC1271. * * NOTE: Unlike ECDSA signatures, contract signatures are revocable, and the outcome of this function can thus * change through time. It could return true at block N and false at block N+1 (or the opposite). */ function isValidERC1271SignatureNow( address signer, bytes32 hash, bytes memory signature ) internal view returns (bool) { (bool success, bytes memory result) = signer.staticcall( abi.encodeWithSelector(IERC1271.isValidSignature.selector, hash, signature) ); return (success && result.length >= 32 && abi.decode(result, (bytes32)) == bytes32(IERC1271.isValidSignature.selector)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // Metadrop Contracts (v2.1.0) pragma solidity 0.8.21; import {IConfigStructures} from "../../Global/IConfigStructures.sol"; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IERC20ConfigByMetadrop} from "./IERC20ConfigByMetadrop.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; /** * @dev Metadrop core ERC-20 contract, interface */ interface IERC20ByMetadrop is IConfigStructures, IERC20, IERC20ConfigByMetadrop, IERC20Metadata { event AutoSwapThresholdUpdated(uint256 oldThreshold, uint256 newThreshold); event ExternalCallError(uint256 identifier); event InitialLiquidityAdded(uint256 tokenA, uint256 tokenB, uint256 lpToken); event LimitsUpdated( uint256 oldMaxTokensPerTransaction, uint256 newMaxTokensPerTransaction, uint256 oldMaxTokensPerWallet, uint256 newMaxTokensPerWallet ); event LiquidityLocked(uint256 lpTokens, uint256 lpLockupInDays); event LiquidityBurned(uint256 lpTokens); event LiquidityPoolCreated(address addedPool); event LiquidityPoolAdded(address addedPool); event LiquidityPoolRemoved(address removedPool); event MetadropTaxBasisPointsChanged( uint256 oldBuyBasisPoints, uint256 newBuyBasisPoints, uint256 oldSellBasisPoints, uint256 newSellBasisPoints ); event ProjectTaxBasisPointsChanged( uint256 oldBuyBasisPoints, uint256 newBuyBasisPoints, uint256 oldSellBasisPoints, uint256 newSellBasisPoints ); event RevenueAutoSwap(); event ProjectTaxRecipientUpdated(address treasury); event UnlimitedAddressAdded(address addedUnlimted); event UnlimitedAddressRemoved(address removedUnlimted); event ValidCallerAdded(bytes32 addedValidCaller); event ValidCallerRemoved(bytes32 removedValidCaller); /** * @dev function {addInitialLiquidity} * * Add initial liquidity to the uniswap pair * * @param vaultFee_ The vault fee in wei. This must match the required fee from the external vault contract. * @param lpLockupInDaysOverride_ The number of days to lock liquidity NOTE you can pass 0 to use the stored value. * This value is an override, and will override a stored value which is LOWER that it. If the value you are passing is * LOWER than the stored value the stored value will not be reduced. * * Example usage 1: When creating the coin the lpLockupInDays is set to 0. This means that on this call the * user can set the lockup to any value they like, as all integer values greater than zero will be used to override * that set in storage. * * Example usage 2: When using a DRI Pool the lockup period is set on this contract and the pool need not know anything * about this setting. The pool can pass back a 0 on this call and know that the existing value stored on this contract * will be used. * @param burnLPTokensOverride_ If the LP tokens should be burned (otherwise they are locked). This is an override field * that can ONLY be used to override a held value of FALSE with a new value of TRUE. * * Example usage 1: When creating the coin the user didn't add liquidity, or specify that the LP tokens were to be burned. * So burnLPTokens is held as FALSE. When they add liquidity they want to lock tokens, so they pass this in as FALSE again, * and it remains FALSE. * * Example usage 2: As above, but when later adding liquidity the user wants to burn the LP. So the stored value is FALSE * and the user passes TRUE into this method. The TRUE overrides the held value of FALSE and the tokens are burned. * * Example uusage 3: The user is using a DRI pool and they have specified on the coin creation that the LP tokens are to * be burned. This contract therefore holds TRUE for burnLPTokens. The DRI pool does not need to know what the user has * selected. It can safely pass back FALSE to this method call and the stored value of TRUE will remain, resulting in the * LP tokens being burned. */ function addInitialLiquidity( uint256 vaultFee_, uint256 lpLockupInDaysOverride_, bool burnLPTokensOverride_ ) external payable; /** * @dev function {isLiquidityPool} * * Return if an address is a liquidity pool * * @param queryAddress_ The address being queried * @return bool The address is / isn't a liquidity pool */ function isLiquidityPool(address queryAddress_) external view returns (bool); /** * @dev function {liquidityPools} * * Returns a list of all liquidity pools * * @return liquidityPools_ a list of all liquidity pools */ function liquidityPools() external view returns (address[] memory liquidityPools_); /** * @dev function {addLiquidityPool} onlyOwner * * Allows the manager to add a liquidity pool to the pool enumerable set * * @param newLiquidityPool_ The address of the new liquidity pool */ function addLiquidityPool(address newLiquidityPool_) external; /** * @dev function {removeLiquidityPool} onlyOwner * * Allows the manager to remove a liquidity pool * * @param removedLiquidityPool_ The address of the old removed liquidity pool */ function removeLiquidityPool(address removedLiquidityPool_) external; /** * @dev function {isUnlimited} * * Return if an address is unlimited (is not subject to per txn and per wallet limits) * * @param queryAddress_ The address being queried * @return bool The address is / isn't unlimited */ function isUnlimited(address queryAddress_) external view returns (bool); /** * @dev function {unlimitedAddresses} * * Returns a list of all unlimited addresses * * @return unlimitedAddresses_ a list of all unlimited addresses */ function unlimitedAddresses() external view returns (address[] memory unlimitedAddresses_); /** * @dev function {addUnlimited} onlyOwner * * Allows the manager to add an unlimited address * * @param newUnlimited_ The address of the new unlimited address */ function addUnlimited(address newUnlimited_) external; /** * @dev function {removeUnlimited} onlyOwner * * Allows the manager to remove an unlimited address * * @param removedUnlimited_ The address of the old removed unlimited address */ function removeUnlimited(address removedUnlimited_) external; /** * @dev function {isValidCaller} * * Return if an address is a valid caller * * @param queryHash_ The code hash being queried * @return bool The address is / isn't a valid caller */ function isValidCaller(bytes32 queryHash_) external view returns (bool); /** * @dev function {validCallers} * * Returns a list of all valid caller code hashes * * @return validCallerHashes_ a list of all valid caller code hashes */ function validCallers() external view returns (bytes32[] memory validCallerHashes_); /** * @dev function {addValidCaller} onlyOwner * * Allows the owner to add the hash of a valid caller * * @param newValidCallerHash_ The hash of the new valid caller */ function addValidCaller(bytes32 newValidCallerHash_) external; /** * @dev function {removeValidCaller} onlyOwner * * Allows the owner to remove a valid caller * * @param removedValidCallerHash_ The hash of the old removed valid caller */ function removeValidCaller(bytes32 removedValidCallerHash_) external; /** * @dev function {setProjectTaxRecipient} onlyOwner * * Allows the manager to set the project tax recipient address * * @param projectTaxRecipient_ New recipient address */ function setProjectTaxRecipient(address projectTaxRecipient_) external; /** * @dev function {setSwapThresholdBasisPoints} onlyOwner * * Allows the manager to set the autoswap threshold * * @param swapThresholdBasisPoints_ New swap threshold in basis points */ function setSwapThresholdBasisPoints( uint16 swapThresholdBasisPoints_ ) external; /** * @dev function {setProjectTaxRates} onlyOwner * * Change the tax rates, subject to only ever decreasing * * @param newProjectBuyTaxBasisPoints_ The new buy tax rate * @param newProjectSellTaxBasisPoints_ The new sell tax rate */ function setProjectTaxRates( uint16 newProjectBuyTaxBasisPoints_, uint16 newProjectSellTaxBasisPoints_ ) external; /** * @dev function {setLimits} onlyOwner * * Change the limits on transactions and holdings * * @param newMaxTokensPerTransaction_ The new per txn limit * @param newMaxTokensPerWallet_ The new tokens per wallet limit */ function setLimits( uint256 newMaxTokensPerTransaction_, uint256 newMaxTokensPerWallet_ ) external; /** * @dev function {limitsEnforced} * * Return if limits are enforced on this contract * * @return bool : they are / aren't */ function limitsEnforced() external view returns (bool); /** * @dev getMetadropBuyTaxBasisPoints * * Return the metadrop buy tax basis points given the timed expiry */ function getMetadropBuyTaxBasisPoints() external view returns (uint256); /** * @dev getMetadropSellTaxBasisPoints * * Return the metadrop sell tax basis points given the timed expiry */ function getMetadropSellTaxBasisPoints() external view returns (uint256); /** * @dev totalBuyTaxBasisPoints * * Provide easy to view tax total: */ function totalBuyTaxBasisPoints() external view returns (uint256); /** * @dev totalSellTaxBasisPoints * * Provide easy to view tax total: */ function totalSellTaxBasisPoints() external view returns (uint256); /** * @dev distributeTaxTokens * * Allows the distribution of tax tokens to the designated recipient(s) * * As part of standard processing the tax token balance being above the threshold * will trigger an autoswap to ETH and distribution of this ETH to the designated * recipients. This is automatic and there is no need for user involvement. * * As part of this swap there are a number of calculations performed, particularly * if the tax balance is above MAX_SWAP_THRESHOLD_MULTIPLE. * * Testing indicates that these calculations are safe. But given the data / code * interactions it remains possible that some edge case set of scenarios may cause * an issue with these calculations. * * This method is therefore provided as a 'fallback' option to safely distribute * accumulated taxes from the contract, with a direct transfer of the ERC20 tokens * themselves. */ function distributeTaxTokens() external; /** * @dev function {rescueETH} onlyOwner * * A withdraw function to allow ETH to be rescued. * * This contract should never hold ETH. The only envisaged scenario where * it might hold ETH is a failed autoswap where the uniswap swap has completed, * the recipient of ETH reverts, the contract then wraps to WETH and the * wrap to WETH fails. * * This feels unlikely. But, for safety, we include this method. * * @param amount_ The amount to withdraw */ function rescueETH(uint256 amount_) external; /** * @dev function {rescueERC20} * * A withdraw function to allow ERC20s (except address(this)) to be rescued. * * This contract should never hold ERC20s other than tax tokens. The only envisaged * scenario where it might hold an ERC20 is a failed autoswap where the uniswap swap * has completed, the recipient of ETH reverts, the contract then wraps to WETH, the * wrap to WETH succeeds, BUT then the transfer of WETH fails. * * This feels even less likely than the scenario where ETH is held on the contract. * But, for safety, we include this method. * * @param token_ The ERC20 contract * @param amount_ The amount to withdraw */ function rescueERC20(address token_, uint256 amount_) external; /** * @dev function {rescueExcessToken} * * A withdraw function to allow ERC20s from this address that are above * the accrued tax balance to be rescued. */ function rescueExcessToken(uint256 amount_) external; /** * @dev Destroys a `value` amount of tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 value) external; /** * @dev Destroys a `value` amount of tokens from `account`, deducting from * the caller's allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `value`. */ function burnFrom(address account, uint256 value) external; }
// SPDX-License-Identifier: MIT // Metadrop Contracts (v2.1.0) /** * * @title IERC20ByMetadrop.sol. Interface for metadrop ERC20 standard * * @author metadrop https://metadrop.com/ * */ pragma solidity 0.8.21; interface IERC20ConfigByMetadrop { enum DRIPoolType { fundingLP, initialBuy } enum VaultType { unicrypt, metavault } struct ERC20Config { bytes baseParameters; bytes supplyParameters; bytes taxParameters; bytes poolParameters; } struct ERC20BaseParameters { string name; string symbol; bool addLiquidityOnCreate; bool usesDRIPool; } struct ERC20SupplyParameters { uint256 maxSupply; uint256 lpSupply; uint256 projectSupply; uint256 maxTokensPerWallet; uint256 maxTokensPerTxn; uint256 lpLockupInDays; uint256 botProtectionDurationInSeconds; address projectSupplyRecipient; address projectLPOwner; bool burnLPTokens; } struct ERC20TaxParameters { uint256 projectBuyTaxBasisPoints; uint256 projectSellTaxBasisPoints; uint256 taxSwapThresholdBasisPoints; uint256 metadropBuyTaxBasisPoints; uint256 metadropSellTaxBasisPoints; uint256 metadropTaxPeriodInDays; address projectTaxRecipient; address metadropTaxRecipient; uint256 metadropMinBuyTaxBasisPoints; uint256 metadropMinSellTaxBasisPoints; uint256 metadropBuyTaxProportionBasisPoints; uint256 metadropSellTaxProportionBasisPoints; uint256 autoBurnDurationInBlocks; uint256 autoBurnBasisPoints; } struct ERC20PoolParameters { uint256 poolType; uint256 poolSupply; uint256 poolStartDate; uint256 poolEndDate; uint256 poolVestingInSeconds; uint256 poolMaxETH; uint256 poolPerAddressMaxETH; uint256 poolMinETH; uint256 poolPerTransactionMinETH; uint256 poolContributionFeeBasisPoints; uint256 poolMaxInitialBuy; uint256 poolMaxInitialLiquidity; address poolFeeRecipient; } }
// SPDX-License-Identifier: BUSL-1.1 // Metadrop Contracts (v2.1.0) pragma solidity 0.8.21; import {IConfigStructures} from "../../Global/IConfigStructures.sol"; import {IERC20ConfigByMetadrop} from "../ERC20/IERC20ConfigByMetadrop.sol"; import {IErrors} from "../../Global/IErrors.sol"; interface IERC20DRIPoolByMetadrop is IConfigStructures, IERC20ConfigByMetadrop, IErrors { enum PhaseStatus { before, open, succeeded, failed } struct Participant { uint128 contribution; uint128 excessRefunded; } event DRIPoolCreatedAndInitialised(); event AddToPool(address dripHolder, uint256 ethPooled, uint256 ethFee); event ClaimFromPool( address participant, uint256 dripTokenBurned, uint256 pooledTokenClaimed, uint256 ethRefunded ); event ExcessRefunded(address participant, uint256 ethRefunded); event RefundFromFailedPool( address participant, uint256 dripTokenBurned, uint256 ethRefunded ); event InitialBuyMade(uint256 ethBuy); event UnexpectedTotalETHPooled( uint256 totalETHPooled, uint256 contractBalance, uint256 totalETHFundedToLPAndTokenBuy, uint256 totalExcessETHRefunded, uint256 projectSeedContributionETH, uint256 accumulatedFees ); event PoolClosedSuccessfully(uint256 totalETHPooled, uint256 totalETHFee); /** * @dev {driType} * * Returns the type of this DRI pool */ function driType() external view returns (DRIPoolType); /** * @dev {initialiseDRIP} * * Initalise configuration on a new minimal proxy clone * * @param poolParams_ bytes parameter object that will be decoded into configuration items. * @param name_ the name of the associated ERC20 token * @param symbol_ the symbol of the associated ERC20 token */ function initialiseDRIP( bytes calldata poolParams_, string calldata name_, string calldata symbol_ ) external; /** * @dev {supplyForLP} * * Convenience function to return the LP supply from the ERC-20 token contract. * * @return supplyForLP_ The total supply for LP creation. */ function supplyForLP() external view returns (uint256 supplyForLP_); /** * @dev {poolPhaseStatus} * * Convenience function to return the pool status in string format. * * @return poolPhaseStatus_ The pool phase status as a string */ function poolPhaseStatus() external view returns (string memory poolPhaseStatus_); /** * @dev {vestingEndDate} * * The vesting end date, being the end of the pool phase plus number of days vesting, if any. * * @return vestingEndDate_ The vesting end date as a timestamp */ function vestingEndDate() external view returns (uint256 vestingEndDate_); /** * @dev Return if the pool total has exceeded the minimum: * * @return poolIsAboveMinimum_ If the pool is above the minimum (or not) */ function poolIsAboveMinimum() external view returns (bool poolIsAboveMinimum_); /** * @dev Return if the pool is at the maximum. * * @return poolIsAtMaximum_ If the pool is at the maximum ETH. */ function poolIsAtMaximum() external view returns (bool poolIsAtMaximum_); /** * @dev Return the total ETH pooled (whether in the balance of this contract * or supplied as LP / token buy already). * * Note that this INCLUDES any seed ETH from the project on create. * * @return totalETHPooled_ the total ETH pooled in this contract */ function totalETHPooled() external view returns (uint256 totalETHPooled_); /** * @dev Return the total ETH contributed (whether in the balance of this contract * or supplied as LP already). * * Note that this EXCLUDES any seed ETH from the project on create. * * @return totalETHContributed_ the total ETH pooled in this contract */ function totalETHContributed() external view returns (uint256 totalETHContributed_); /** * @dev Return the total ETH pooled that is in excess of requirements * * @return totalExcessETHPooled_ the total ETH pooled in this contract * that is not needed for the initial lp / buy */ function totalExcessETHPooled() external view returns (uint256 totalExcessETHPooled_); /** * @dev Return the ETH pooled for this recipient * * @return participantETHPooled_ the total ETH pooled for this address */ function participantETHPooled( address participant_ ) external view returns (uint256 participantETHPooled_); /** * @dev Return the excess ETH already refunded for this recipient * * @return participantExcessETHRefunded_ the total excess ETH refunded for this participant */ function participantExcessETHRefunded( address participant_ ) external view returns (uint256 participantExcessETHRefunded_); /** * @dev Return the excess refund currently owing for the query address * * Note that this EXCLUDES any seed ETH from the project on create. * * @return participantExcessRefund_ the total ETH pooled in this contract */ function participantExcessRefundAvailable( address participant_ ) external view returns (uint256 participantExcessRefund_); /** * @dev Return if the max initial buy has been exceeded * * @return maxInitialBuyExceeded_ */ function maxInitialBuyExceeded() external view returns (bool maxInitialBuyExceeded_); /** * @dev Return if the max initial lp funding has been exceeded * * @return maxInitialLiquidityExceeded_ */ function maxInitialLiquidityExceeded() external view returns (bool maxInitialLiquidityExceeded_); /** * @dev {loadERC20AddressAndSeedETH} * * Load the target ERC-20 address. This is called by the factory in the same transaction as the clone * is instantiated * * @param createdERC20_ The ERC-20 address * @param poolCreator_ The creator of this pool */ function loadERC20AddressAndSeedETH( address createdERC20_, address poolCreator_ ) external payable; /** * @dev {addToPool} * * A user calls this to contribute to the pool * * Note that we could have used the receive method for this, and processed any ETH send to the * contract as a contribution to the pool. We've opted for the clarity of a specific method, * with the recieve method reverting an unidentified ETH. * * @param signedMessage_ The signed message object */ function addToPool( SignedDropMessageDetails calldata signedMessage_ ) external payable; /** * @dev function {createMessageHash} * * Create the message hash * * @param sender_ The sender of the transcation * @param value_ The value of the transaction * @return messageHash_ The hash for the signed message */ function createMessageHash( address sender_, uint256 value_ ) external pure returns (bytes32 messageHash_); /** * @dev {claimFromPool} * * A user calls this to burn their DRIP and claim their ERC-20 tokens * */ function claimFromPool() external; /** * @dev {refundExcess} * * Can be called at any time by a participant to claim and ETH refund of any * ETH that will not be used to either fund the pool or for an initial buy * */ function refundExcess() external; /** * @dev {refundFromFailedPool} * * A user calls this to burn their DRIP and claim an ETH refund where the * minimum ETH pooled amount was not exceeded. * */ function refundFromFailedPool() external; /** * @dev {supplyLiquidity} * * When the pool phase is over this can be called to supply the pooled ETH to * the token contract. There it will be forwarded along with the LP supply of * tokens to uniswap to create the funded pair * * Note that this function can be called by anyone. While clearly it is likely * that this will be the project team, having this method open to anyone ensures that * liquidity will not be trapped in this contract if the team as unable to perform * this action. * * This method behaves differently depending on the pool type: * * IN A FUNDING LP POOL: * * All of the ETH held on this contract is provided to fund the LP * * IN AN INITIAL BUY POOL: * * ONLY the project supplied ETH is used to fund the liquidity. The remaining ETH * on this contract will fall into two possible categories: * * 1) ETH used to perform an initial token purchase immediately after the funding of * the LP. This will be the total remaining ETH on this contract IF that amount is * below the maximum initial buy amount. Otherwise it will be the max initial buy amount and the * remaining ETH will remain for refunds. * * 2) If the ETH on this contract is above the max initial buy amount there will be a * proportion of ETH remaining on this contract for refunds. * * @param lockerFee_ The ETH fee required to lock LP tokens * */ function supplyLiquidity(uint256 lockerFee_) external payable; /** * @dev function {rescueETH} * * A withdraw function to allow ETH to be rescued. * * Fallback safety method, only callable by the fee recipient. * * @param amount_ The amount to withdraw */ function rescueETH(uint256 amount_) external; /** * @dev function {rescueERC20} * * A withdraw function to allow ERC20s to be rescued. * * Fallback safety method, only callable by the fee recipient. * * @param token_ The ERC20 contract * @param amount_ The amount to withdraw */ function rescueERC20(address token_, uint256 amount_) external; }
// SPDX-License-Identifier: MIT // Metadrop Contracts (v2.1.0) /** * * @title IConfigStructures.sol. Interface for common config structures used accross the platform * * @author metadrop https://metadrop.com/ * */ pragma solidity 0.8.21; interface IConfigStructures { enum DropStatus { approved, deployed, cancelled } enum TemplateStatus { live, terminated } // The current status of the mint: // - notEnabled: This type of mint is not part of this drop // - notYetOpen: This type of mint is part of the drop, but it hasn't started yet // - open: it's ready for ya, get in there. // - finished: been and gone. // - unknown: theoretically impossible. enum MintStatus { notEnabled, notYetOpen, open, finished, unknown } struct SubListConfig { uint256 start; uint256 end; uint256 phaseMaxSupply; } struct PrimarySaleModuleInstance { address instanceAddress; string instanceDescription; } struct NFTModuleConfig { uint256 templateId; bytes configData; bytes vestingData; } struct PrimarySaleModuleConfig { uint256 templateId; bytes configData; } struct ProjectBeneficiary { address payable payeeAddress; uint256 payeeShares; } struct VestingConfig { uint256 start; uint256 projectUpFrontShare; uint256 projectVestedShare; uint256 vestingPeriodInDays; uint256 vestingCliff; ProjectBeneficiary[] projectPayees; } struct RoyaltySplitterModuleConfig { uint256 templateId; bytes configData; } struct InLifeModuleConfig { uint256 templateId; bytes configData; } struct InLifeModules { InLifeModuleConfig[] modules; } struct NFTConfig { uint256 supply; string name; string symbol; bytes32 positionProof; bool includePriorPhasesInMintTracking; bool singleMetadataCollection; uint256 reservedAllocation; uint256 assistanceRequestWindowInSeconds; } struct Template { TemplateStatus status; uint16 templateNumber; uint32 loadedDate; address payable templateAddress; string templateDescription; } struct RoyaltyDetails { address newRoyaltyPaymentSplitterInstance; uint96 royaltyFromSalesInBasisPoints; } struct SignedDropMessageDetails { uint256 messageTimeStamp; bytes32 messageHash; bytes messageSignature; } }
// SPDX-License-Identifier: MIT // Metadrop Contracts (v2.1.0) /** * * @title IErrors.sol. Interface for error definitions used across the platform * * @author metadrop https://metadrop.com/ * */ pragma solidity 0.8.21; interface IErrors { enum BondingCurveErrorType { OK, // No error INVALID_NUMITEMS, // The numItem value is 0 SPOT_PRICE_OVERFLOW // The updated spot price doesn't fit into 128 bits } error AdapterParamsMustBeEmpty(); // The adapter parameters on this LZ call must be empty. error AdditionToPoolIsBelowPerTransactionMinimum(); // The contribution amount is less than the minimum. error AdditionToPoolWouldExceedPoolCap(); // This addition to the pool would exceed the pool cap. error AdditionToPoolWouldExceedPerAddressCap(); // This addition to the pool would exceed the per address cap. error AddressAlreadySet(); // The address being set can only be set once, and is already non-0. error AllowanceDecreasedBelowZero(); // You cannot decrease the allowance below zero. error AlreadyInitialised(); // The contract is already initialised: it cannot be initialised twice! error AmountExceedsAvailable(); // You are requesting more token than is available. error ApprovalCallerNotOwnerNorApproved(); // The caller must own the token or be an approved operator. error ApproveFromTheZeroAddress(); // Approval cannot be called from the zero address (indeed, how have you??). error ApproveToTheZeroAddress(); // Approval cannot be given to the zero address. error ApprovalQueryForNonexistentToken(); // The token does not exist. error AuctionStatusIsNotEnded(); // Throw if the action required the auction to be closed, and it isn't. error AuctionStatusIsNotOpen(); // Throw if the action requires the auction to be open, and it isn't. error AuxCallFailed( address[] modules, uint256 value, bytes data, uint256 txGas ); // An auxilliary call from the drop factory failed. error BalanceMismatch(); // An error when comparing balance amounts. error BalanceQueryForZeroAddress(); // Cannot query the balance for the zero address. error BidMustBeBelowTheFloorWhenReducingQuantity(); // Only bids that are below the floor can reduce the quantity of the bid. error BidMustBeBelowTheFloorForRefundDuringAuction(); // Only bids that are below the floor can be refunded during the auction. error BondingCurveError(BondingCurveErrorType error); // An error of the type specified has occured in bonding curve processing. error botProtectionDurationInSecondsMustFitUint128(); // botProtectionDurationInSeconds cannot be too large. error BurnExceedsBalance(); // The amount you have selected to burn exceeds the addresses balance. error BurnFromTheZeroAddress(); // Tokens cannot be burned from the zero address. (Also, how have you called this!?!) error CallerIsNotDepositBoxOwner(); // The caller is not the owner of the deposit box. error CallerIsNotFactory(); // The caller of this function must match the factory address in storage. error CallerIsNotFactoryOrProjectOwner(); // The caller of this function must match the factory address OR project owner address. error CallerIsNotFactoryProjectOwnerOrPool(); // The caller of this function must match the factory address, project owner or pool address. error CallerIsNotTheFeeRecipient(); // The caller is not the fee recipient. error CallerIsNotTheOwner(); // The caller is not the owner of this contract. error CallerIsNotTheManager(); // The caller is not the manager of this contract. error CallerMustBeLzApp(); // The caller must be an LZ application. error CallerIsNotPlatformAdmin(address caller); // The caller of this function must be part of the platformAdmin group. error CallerIsNotSuperAdmin(address caller); // The caller of this function must match the superAdmin address in storage. error CannotAddLiquidityOnCreateAndUseDRIPool(); // Cannot use both liquidity added on create and a DRIPool in the same token. error CannotManuallyFundLPWhenUsingADRIPool(); // Cannot add liquidity manually when using a DRI pool. error CannotPerformDuringAutoswap(); // Cannot call this function during an autoswap. error CannotSetNewOwnerToTheZeroAddress(); // You can't set the owner of this contract to the zero address (address(0)). error CannotSetToZeroAddress(); // The corresponding address cannot be set to the zero address (address(0)). error CannotSetNewManagerToTheZeroAddress(); // Cannot transfer the manager to the zero address (address(0)). error CannotWithdrawThisToken(); // Cannot withdraw the specified token. error CanOnlyReduce(); // The given operation can only reduce the value specified. error CollectionAlreadyRevealed(); // The collection is already revealed; you cannot call reveal again. error ContractIsDecommissioned(); // This contract is decommissioned! error ContractIsPaused(); // The call requires the contract to be unpaused, and it is paused. error ContractIsNotPaused(); // The call required the contract to be paused, and it is NOT paused. error DecreasedAllowanceBelowZero(); // The request would decrease the allowance below zero, and that is not allowed. error DestinationIsNotTrustedSource(); // The destination that is being called through LZ has not been set as trusted. error DeductionsOnBuyExceedOrEqualOneHundredPercent(); // The total of all buy deductions cannot equal or exceed 100%. error DeployerOnly(); // This method can only be called by the deployer address. error DeploymentError(); // Error on deployment. error DepositBoxIsNotOpen(); // This action cannot complete as the deposit box is not open. error DriPoolAddressCannotBeAddressZero(); // The Dri Pool address cannot be the zero address. error GasLimitIsTooLow(); // The gas limit for the LayerZero call is too low. error IncorrectConfirmationValue(); // You need to enter the right confirmation value to call this funtion (usually 69420). error IncorrectPayment(); // The function call did not include passing the correct payment. error InitialLiquidityAlreadyAdded(); // Initial liquidity has already been added. You can't do it again. error InitialLiquidityNotYetAdded(); // Initial liquidity needs to have been added for this to succedd. error InsufficientAllowance(); // There is not a high enough allowance for this operation. error InvalidAdapterParams(); // The current adapter params for LayerZero on this contract won't work :(. error InvalidAddress(); // An address being processed in the function is not valid. error InvalidEndpointCaller(); // The calling address is not a valid LZ endpoint. The LZ endpoint was set at contract creation // and cannot be altered after. Check the address LZ endpoint address on the contract. error InvalidHash(); // The passed hash does not meet requirements. error InvalidMinGas(); // The minimum gas setting for LZ in invalid. error InvalidOracleSignature(); // The signature provided with the contract call is not valid, either in format or signer. error InvalidPayload(); // The LZ payload is invalid error InvalidReceiver(); // The address used as a target for funds is not valid. error InvalidSourceSendingContract(); // The LZ message is being related from a source contract on another chain that is NOT trusted. error InvalidTotalShares(); // Total shares must equal 100 percent in basis points. error LimitsCanOnlyBeRaised(); // Limits are UP ONLY. error LimitTooHigh(); // The limit has been set too high. error ListLengthMismatch(); // Two or more lists were compared and they did not match length. error LiquidityPoolMustBeAContractAddress(); // Cannot add a non-contract as a liquidity pool. error LiquidityPoolCannotBeAddressZero(); // Cannot add a liquidity pool from the zero address. error LPLockUpMustFitUint88(); // LP lockup is held in a uint88, so must fit. error NoTrustedPathRecord(); // LZ needs a trusted path record for this to work. What's that, you ask? error MachineAddressCannotBeAddressZero(); // Cannot set the machine address to the zero address. error ManagerUnauthorizedAccount(); // The caller is not the pending manager. error MaxBidQuantityIs255(); // Validation: as we use a uint8 array to track bid positions the max bid quantity is 255. error MaxBuysPerBlockExceeded(); // You have exceeded the max buys per block. error MaxPublicMintAllowanceExceeded( uint256 requested, uint256 alreadyMinted, uint256 maxAllowance ); // The calling address has requested a quantity that would exceed the max allowance. error MaxSupplyTooHigh(); // Max supply must fit in a uint128. error MaxTokensPerWalletExceeded(); // The transfer would exceed the max tokens per wallet limit. error MaxTokensPerTxnExceeded(); // The transfer would exceed the max tokens per transaction limit. error MetadataIsLocked(); // The metadata on this contract is locked; it cannot be altered! error MetadropFactoryOnlyOncePerReveal(); // This function can only be called (a) by the factory and, (b) just one time! error MetadropModulesOnly(); // Can only be called from a metadrop contract. error MetadropOracleCannotBeAddressZero(); // The metadrop Oracle cannot be the zero address (address(0)). error MinETHCannotExceedMaxBuy(); // The min ETH amount cannot exceed the max buy amount. error MinETHCannotExceedMaxLiquidity(); // The min ETH amount cannot exceed the max liquidity amount. error MinGasLimitNotSet(); // The minimum gas limit for LayerZero has not been set. error MintERC2309QuantityExceedsLimit(); // The `quantity` minted with ERC2309 exceeds the safety limit. error MintingIsClosedForever(); // Minting is, as the error suggests, so over (and locked forever). error MintToZeroAddress(); // Cannot mint to the zero address. error MintZeroQuantity(); // The quantity of tokens minted must be more than zero. error NewBuyTaxBasisPointsExceedsMaximum(); // Project owner trying to set the tax rate too high. error NewSellTaxBasisPointsExceedsMaximum(); // Project owner trying to set the tax rate too high. error NoETHForLiquidityPair(); // No ETH has been provided for the liquidity pair. error TaxPeriodStillInForce(); // The minimum tax period has not yet expired. error NoPaymentDue(); // No payment is due for this address. error NoRefundForCaller(); // Error thrown when the calling address has no refund owed. error NoStoredMessage(); // There is no stored message matching the passed parameters. error NothingToClaim(); // The calling address has nothing to claim. error NoTokenForLiquidityPair(); // There is no token to add to the LP. error OperationDidNotSucceed(); // The operation failed (vague much?). error OracleSignatureHasExpired(); // A signature has been provided but it is too old. error OwnableUnauthorizedAccount(); // The caller is not the pending owner. error OwnershipNotInitializedForExtraData(); // The `extraData` cannot be set on an uninitialized ownership slot. error OwnerQueryForNonexistentToken(); // The token does not exist. error ParametersDoNotMatchSignedMessage(); // The parameters passed with the signed message do not match the message itself. error ParamTooLargeStartDate(); // The passed parameter exceeds the var type max. error ParamTooLargeEndDate(); // The passed parameter exceeds the var type max. error ParamTooLargeMinETH(); // The passed parameter exceeds the var type max. error ParamTooLargePerAddressMax(); // The passed parameter exceeds the var type max. error ParamTooLargeVestingDays(); // The passed parameter exceeds the var type max. error ParamTooLargePoolSupply(); // The passed parameter exceeds the var type max. error ParamTooLargePoolMaxETH(); // The passed parameter exceeds the var type max. error ParamTooLargePoolPerTxnMinETH(); // The passed parameter exceeds the var type max. error ParamTooLargeContributionFee(); // The passed parameter exceeds the var type max. error ParamTooLargeMaxInitialBuy(); // The passed parameter exceeds the var type max. error ParamTooLargeMaxInitialLiquidity(); // The passed parameter exceeds the var type max. error PassedConfigDoesNotMatchApproved(); // The config provided on the call does not match the approved config. error PauseCutOffHasPassed(); // The time period in which we can pause has passed; this contract can no longer be paused. error PaymentMustCoverPerMintFee(); // The payment passed must at least cover the per mint fee for the quantity requested. error PermitDidNotSucceed(); // The safeERC20 permit failed. error PlatformAdminCannotBeAddressZero(); // We cannot use the zero address (address(0)) as a platformAdmin. error PlatformTreasuryCannotBeAddressZero(); // The treasury address cannot be set to the zero address. error PoolIsAboveMinimum(); // You required the pool to be below the minimum, and it is not error PoolIsBelowMinimum(); // You required the pool to be above the minimum, and it is not error PoolMustBeSeededWithETHForInitialLiquidity(); // You must pass ETH for liquidity with this type of pool. error PoolPhaseIsNotOpen(); // The block.timestamp is either before the pool is open or after it is closed. error PoolPhaseIsNotFailed(); // The pool status must be failed. error PoolPhaseIsNotSucceeded(); // The pool status must be succeeded. error PoolVestingNotYetComplete(); // Tokens in the pool are not yet vested. error ProjectOwnerCannotBeAddressZero(); // The project owner has to be a non zero address. error ProofInvalid(); // The provided proof is not valid with the provided arguments. error QuantityExceedsRemainingCollectionSupply(); // The requested quantity would breach the collection supply. error QuantityExceedsRemainingPhaseSupply(); // The requested quantity would breach the phase supply. error QuantityExceedsMaxPossibleCollectionSupply(); // The requested quantity would breach the maximum trackable supply error ReferralIdAlreadyUsed(); // This referral ID has already been used; they are one use only. error RequestingMoreThanAvailableBalance(); // The request exceeds the available balance. error RequestingMoreThanRemainingAllocation( uint256 previouslyMinted, uint256 requested, uint256 remainingAllocation ); // Number of tokens requested for this mint exceeds the remaining allocation (taking the // original allocation from the list and deducting minted tokens). error RouterCannotBeZeroAddress(); // The router address cannot be Zero. error RoyaltyFeeWillExceedSalePrice(); // The ERC2981 royalty specified will exceed the sale price. error ShareTotalCannotBeZero(); // The total of all the shares cannot be nothing. error SliceOutOfBounds(); // The bytes slice operation was out of bounds. error SliceOverflow(); // The bytes slice operation overlowed. error SuperAdminCannotBeAddressZero(); // The superAdmin cannot be the sero address (address(0)). error SupplyTotalMismatch(); // The sum of the team supply and lp supply does not match. error SupportWindowIsNotOpen(); // The project owner has not requested support within the support request expiry window. error SwapThresholdTooLow(); // The select swap threshold is below the minimum. error TaxFreeAddressCannotBeAddressZero(); // A tax free address cannot be address(0) error TemplateCannotBeAddressZero(); // The address for a template cannot be address zero (address(0)). error TemplateNotFound(); // There is no template that matches the passed template Id. error ThisMintIsClosed(); // It's over (well, this mint is, anyway). error TotalSharesMustMatchDenominator(); // The total of all shares must equal the denominator value. error TransferAmountExceedsBalance(); // The transfer amount exceeds the accounts available balance. error TransferCallerNotOwnerNorApproved(); // The caller must own the token or be an approved operator. error TransferFailed(); // The transfer has failed. error TransferFromIncorrectOwner(); // The token must be owned by `from`. error TransferToNonERC721ReceiverImplementer(); // Cannot safely transfer to a contract that does not implement the ERC721Receiver interface. error TransferFromZeroAddress(); // Cannot transfer from the zero address. Indeed, this surely is impossible, and likely a waste to check?? error TransferToZeroAddress(); // Cannot transfer to the zero address. error UnrecognisedVRFMode(); // Currently supported VRF modes are 0: chainlink and 1: arrng error UnrecognisedType(); // Pool type not found. error URIQueryForNonexistentToken(); // The token does not exist. error ValueExceedsMaximum(); // The value sent exceeds the maximum allowed (super useful explanation huh?). error VRFCoordinatorCannotBeAddressZero(); // The VRF coordinator cannot be the zero address (address(0)). }
// SPDX-License-Identifier: MIT // Metadrop Contracts (v2.1.0) // Metadrop based on OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity 0.8.21; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol"; import {Address} from "@openzeppelin/contracts/utils/Address.sol"; import {IErrors} from "../IErrors.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeCall(token.transferFrom, (from, to, value)) ); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); if (oldAllowance < value) { revert IErrors.DecreasedAllowanceBelowZero(); } forceApprove(token, spender, oldAllowance - value); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Compatible with tokens that require the approval to be set to * 0 before setting it to a non-zero value. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`. * Revert on invalid signature. */ function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); if (nonceAfter != (nonceBefore + 1)) { revert IErrors.PermitDidNotSucceed(); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "call fail"); if ((returndata.length != 0) && !abi.decode(returndata, (bool))) { revert IErrors.OperationDidNotSucceed(); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool( IERC20 token, bytes memory data ) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: MIT // Metadrop Contracts (v2.1.0) /** * * @title Revert.sol. For efficient reverts * * @author metadrop https://metadrop.com/ * */ pragma solidity 0.8.21; abstract contract Revert { /** * @dev For more efficient reverts. */ function _revert(bytes4 errorSelector) internal pure { assembly { mstore(0x00, errorSelector) revert(0x00, 0x04) } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.2; interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable returns (uint[] memory amounts); function swapTokensForExactETH( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactTokensForETH( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapETHForExactTokens( uint amountOut, address[] calldata path, address to, uint deadline ) external payable returns (uint[] memory amounts); function quote( uint amountA, uint reserveA, uint reserveB ) external pure returns (uint amountB); function getAmountOut( uint amountIn, uint reserveIn, uint reserveOut ) external pure returns (uint amountOut); function getAmountIn( uint amountOut, uint reserveIn, uint reserveOut ) external pure returns (uint amountIn); function getAmountsOut( uint amountIn, address[] calldata path ) external view returns (uint[] memory amounts); function getAmountsIn( uint amountOut, address[] calldata path ) external view returns (uint[] memory amounts); }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.2; import "./IUniswapV2Router01.sol"; interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract ABI
API[{"inputs":[{"internalType":"address","name":"router_","type":"address"},{"internalType":"address","name":"oracle_","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AdapterParamsMustBeEmpty","type":"error"},{"inputs":[],"name":"AdditionToPoolIsBelowPerTransactionMinimum","type":"error"},{"inputs":[],"name":"AdditionToPoolWouldExceedPerAddressCap","type":"error"},{"inputs":[],"name":"AdditionToPoolWouldExceedPoolCap","type":"error"},{"inputs":[],"name":"AddressAlreadySet","type":"error"},{"inputs":[],"name":"AllowanceDecreasedBelowZero","type":"error"},{"inputs":[],"name":"AlreadyInitialised","type":"error"},{"inputs":[],"name":"AmountExceedsAvailable","type":"error"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"ApproveFromTheZeroAddress","type":"error"},{"inputs":[],"name":"ApproveToTheZeroAddress","type":"error"},{"inputs":[],"name":"AuctionStatusIsNotEnded","type":"error"},{"inputs":[],"name":"AuctionStatusIsNotOpen","type":"error"},{"inputs":[{"internalType":"address[]","name":"modules","type":"address[]"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"},{"internalType":"uint256","name":"txGas","type":"uint256"}],"name":"AuxCallFailed","type":"error"},{"inputs":[],"name":"BalanceMismatch","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"BidMustBeBelowTheFloorForRefundDuringAuction","type":"error"},{"inputs":[],"name":"BidMustBeBelowTheFloorWhenReducingQuantity","type":"error"},{"inputs":[{"internalType":"enum IErrors.BondingCurveErrorType","name":"error","type":"uint8"}],"name":"BondingCurveError","type":"error"},{"inputs":[],"name":"BurnExceedsBalance","type":"error"},{"inputs":[],"name":"BurnFromTheZeroAddress","type":"error"},{"inputs":[],"name":"CallerIsNotDepositBoxOwner","type":"error"},{"inputs":[],"name":"CallerIsNotFactory","type":"error"},{"inputs":[],"name":"CallerIsNotFactoryOrProjectOwner","type":"error"},{"inputs":[],"name":"CallerIsNotFactoryProjectOwnerOrPool","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotPlatformAdmin","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"CallerIsNotSuperAdmin","type":"error"},{"inputs":[],"name":"CallerIsNotTheFeeRecipient","type":"error"},{"inputs":[],"name":"CallerIsNotTheManager","type":"error"},{"inputs":[],"name":"CallerIsNotTheOwner","type":"error"},{"inputs":[],"name":"CallerMustBeLzApp","type":"error"},{"inputs":[],"name":"CanOnlyReduce","type":"error"},{"inputs":[],"name":"CannotAddLiquidityOnCreateAndUseDRIPool","type":"error"},{"inputs":[],"name":"CannotManuallyFundLPWhenUsingADRIPool","type":"error"},{"inputs":[],"name":"CannotPerformDuringAutoswap","type":"error"},{"inputs":[],"name":"CannotSetNewManagerToTheZeroAddress","type":"error"},{"inputs":[],"name":"CannotSetNewOwnerToTheZeroAddress","type":"error"},{"inputs":[],"name":"CannotSetToZeroAddress","type":"error"},{"inputs":[],"name":"CannotWithdrawThisToken","type":"error"},{"inputs":[],"name":"CollectionAlreadyRevealed","type":"error"},{"inputs":[],"name":"ContractIsDecommissioned","type":"error"},{"inputs":[],"name":"ContractIsNotPaused","type":"error"},{"inputs":[],"name":"ContractIsPaused","type":"error"},{"inputs":[],"name":"DecreasedAllowanceBelowZero","type":"error"},{"inputs":[],"name":"DeductionsOnBuyExceedOrEqualOneHundredPercent","type":"error"},{"inputs":[],"name":"DeployerOnly","type":"error"},{"inputs":[],"name":"DeploymentError","type":"error"},{"inputs":[],"name":"DepositBoxIsNotOpen","type":"error"},{"inputs":[],"name":"DestinationIsNotTrustedSource","type":"error"},{"inputs":[],"name":"DriPoolAddressCannotBeAddressZero","type":"error"},{"inputs":[],"name":"GasLimitIsTooLow","type":"error"},{"inputs":[],"name":"IncorrectConfirmationValue","type":"error"},{"inputs":[],"name":"IncorrectPayment","type":"error"},{"inputs":[],"name":"InitialLiquidityAlreadyAdded","type":"error"},{"inputs":[],"name":"InitialLiquidityNotYetAdded","type":"error"},{"inputs":[],"name":"InsufficientAllowance","type":"error"},{"inputs":[],"name":"InvalidAdapterParams","type":"error"},{"inputs":[],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"InvalidEndpointCaller","type":"error"},{"inputs":[],"name":"InvalidHash","type":"error"},{"inputs":[],"name":"InvalidMinGas","type":"error"},{"inputs":[],"name":"InvalidOracleSignature","type":"error"},{"inputs":[],"name":"InvalidPayload","type":"error"},{"inputs":[],"name":"InvalidReceiver","type":"error"},{"inputs":[],"name":"InvalidSourceSendingContract","type":"error"},{"inputs":[],"name":"InvalidTotalShares","type":"error"},{"inputs":[],"name":"LPLockUpMustFitUint88","type":"error"},{"inputs":[],"name":"LimitTooHigh","type":"error"},{"inputs":[],"name":"LimitsCanOnlyBeRaised","type":"error"},{"inputs":[],"name":"LiquidityPoolCannotBeAddressZero","type":"error"},{"inputs":[],"name":"LiquidityPoolMustBeAContractAddress","type":"error"},{"inputs":[],"name":"ListLengthMismatch","type":"error"},{"inputs":[],"name":"MachineAddressCannotBeAddressZero","type":"error"},{"inputs":[],"name":"ManagerUnauthorizedAccount","type":"error"},{"inputs":[],"name":"MaxBidQuantityIs255","type":"error"},{"inputs":[],"name":"MaxBuysPerBlockExceeded","type":"error"},{"inputs":[{"internalType":"uint256","name":"requested","type":"uint256"},{"internalType":"uint256","name":"alreadyMinted","type":"uint256"},{"internalType":"uint256","name":"maxAllowance","type":"uint256"}],"name":"MaxPublicMintAllowanceExceeded","type":"error"},{"inputs":[],"name":"MaxSupplyTooHigh","type":"error"},{"inputs":[],"name":"MaxTokensPerTxnExceeded","type":"error"},{"inputs":[],"name":"MaxTokensPerWalletExceeded","type":"error"},{"inputs":[],"name":"MetadataIsLocked","type":"error"},{"inputs":[],"name":"MetadropFactoryOnlyOncePerReveal","type":"error"},{"inputs":[],"name":"MetadropModulesOnly","type":"error"},{"inputs":[],"name":"MetadropOracleCannotBeAddressZero","type":"error"},{"inputs":[],"name":"MinETHCannotExceedMaxBuy","type":"error"},{"inputs":[],"name":"MinETHCannotExceedMaxLiquidity","type":"error"},{"inputs":[],"name":"MinGasLimitNotSet","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"MintingIsClosedForever","type":"error"},{"inputs":[],"name":"NewBuyTaxBasisPointsExceedsMaximum","type":"error"},{"inputs":[],"name":"NewSellTaxBasisPointsExceedsMaximum","type":"error"},{"inputs":[],"name":"NoETHForLiquidityPair","type":"error"},{"inputs":[],"name":"NoPaymentDue","type":"error"},{"inputs":[],"name":"NoRefundForCaller","type":"error"},{"inputs":[],"name":"NoStoredMessage","type":"error"},{"inputs":[],"name":"NoTokenForLiquidityPair","type":"error"},{"inputs":[],"name":"NoTrustedPathRecord","type":"error"},{"inputs":[],"name":"NothingToClaim","type":"error"},{"inputs":[],"name":"OperationDidNotSucceed","type":"error"},{"inputs":[],"name":"OracleSignatureHasExpired","type":"error"},{"inputs":[],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"ParamTooLargeContributionFee","type":"error"},{"inputs":[],"name":"ParamTooLargeEndDate","type":"error"},{"inputs":[],"name":"ParamTooLargeMaxInitialBuy","type":"error"},{"inputs":[],"name":"ParamTooLargeMaxInitialLiquidity","type":"error"},{"inputs":[],"name":"ParamTooLargeMinETH","type":"error"},{"inputs":[],"name":"ParamTooLargePerAddressMax","type":"error"},{"inputs":[],"name":"ParamTooLargePoolMaxETH","type":"error"},{"inputs":[],"name":"ParamTooLargePoolPerTxnMinETH","type":"error"},{"inputs":[],"name":"ParamTooLargePoolSupply","type":"error"},{"inputs":[],"name":"ParamTooLargeStartDate","type":"error"},{"inputs":[],"name":"ParamTooLargeVestingDays","type":"error"},{"inputs":[],"name":"ParametersDoNotMatchSignedMessage","type":"error"},{"inputs":[],"name":"PassedConfigDoesNotMatchApproved","type":"error"},{"inputs":[],"name":"PauseCutOffHasPassed","type":"error"},{"inputs":[],"name":"PaymentMustCoverPerMintFee","type":"error"},{"inputs":[],"name":"PermitDidNotSucceed","type":"error"},{"inputs":[],"name":"PlatformAdminCannotBeAddressZero","type":"error"},{"inputs":[],"name":"PlatformTreasuryCannotBeAddressZero","type":"error"},{"inputs":[],"name":"PoolIsAboveMinimum","type":"error"},{"inputs":[],"name":"PoolIsBelowMinimum","type":"error"},{"inputs":[],"name":"PoolMustBeSeededWithETHForInitialLiquidity","type":"error"},{"inputs":[],"name":"PoolPhaseIsNotFailed","type":"error"},{"inputs":[],"name":"PoolPhaseIsNotOpen","type":"error"},{"inputs":[],"name":"PoolPhaseIsNotSucceeded","type":"error"},{"inputs":[],"name":"PoolVestingNotYetComplete","type":"error"},{"inputs":[],"name":"ProjectOwnerCannotBeAddressZero","type":"error"},{"inputs":[],"name":"ProofInvalid","type":"error"},{"inputs":[],"name":"QuantityExceedsMaxPossibleCollectionSupply","type":"error"},{"inputs":[],"name":"QuantityExceedsRemainingCollectionSupply","type":"error"},{"inputs":[],"name":"QuantityExceedsRemainingPhaseSupply","type":"error"},{"inputs":[],"name":"ReferralIdAlreadyUsed","type":"error"},{"inputs":[],"name":"RequestingMoreThanAvailableBalance","type":"error"},{"inputs":[{"internalType":"uint256","name":"previouslyMinted","type":"uint256"},{"internalType":"uint256","name":"requested","type":"uint256"},{"internalType":"uint256","name":"remainingAllocation","type":"uint256"}],"name":"RequestingMoreThanRemainingAllocation","type":"error"},{"inputs":[],"name":"RouterCannotBeZeroAddress","type":"error"},{"inputs":[],"name":"RoyaltyFeeWillExceedSalePrice","type":"error"},{"inputs":[],"name":"ShareTotalCannotBeZero","type":"error"},{"inputs":[],"name":"SliceOutOfBounds","type":"error"},{"inputs":[],"name":"SliceOverflow","type":"error"},{"inputs":[],"name":"SuperAdminCannotBeAddressZero","type":"error"},{"inputs":[],"name":"SupplyTotalMismatch","type":"error"},{"inputs":[],"name":"SupportWindowIsNotOpen","type":"error"},{"inputs":[],"name":"SwapThresholdTooLow","type":"error"},{"inputs":[],"name":"TaxFreeAddressCannotBeAddressZero","type":"error"},{"inputs":[],"name":"TaxPeriodStillInForce","type":"error"},{"inputs":[],"name":"TemplateCannotBeAddressZero","type":"error"},{"inputs":[],"name":"TemplateNotFound","type":"error"},{"inputs":[],"name":"ThisMintIsClosed","type":"error"},{"inputs":[],"name":"TotalSharesMustMatchDenominator","type":"error"},{"inputs":[],"name":"TransferAmountExceedsBalance","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFailed","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferFromZeroAddress","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"UnrecognisedType","type":"error"},{"inputs":[],"name":"UnrecognisedVRFMode","type":"error"},{"inputs":[],"name":"VRFCoordinatorCannotBeAddressZero","type":"error"},{"inputs":[],"name":"ValueExceedsMaximum","type":"error"},{"inputs":[],"name":"botProtectionDurationInSecondsMustFitUint128","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"dripHolder","type":"address"},{"indexed":false,"internalType":"uint256","name":"ethPooled","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ethFee","type":"uint256"}],"name":"AddToPool","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"participant","type":"address"},{"indexed":false,"internalType":"uint256","name":"dripTokenBurned","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"pooledTokenClaimed","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ethRefunded","type":"uint256"}],"name":"ClaimFromPool","type":"event"},{"anonymous":false,"inputs":[],"name":"DRIPoolCreatedAndInitialised","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"participant","type":"address"},{"indexed":false,"internalType":"uint256","name":"ethRefunded","type":"uint256"}],"name":"ExcessRefunded","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"ethBuy","type":"uint256"}],"name":"InitialBuyMade","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"totalETHPooled","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalETHFee","type":"uint256"}],"name":"PoolClosedSuccessfully","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"participant","type":"address"},{"indexed":false,"internalType":"uint256","name":"dripTokenBurned","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"ethRefunded","type":"uint256"}],"name":"RefundFromFailedPool","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"totalETHPooled","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"contractBalance","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalETHFundedToLPAndTokenBuy","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"totalExcessETHRefunded","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"projectSeedContributionETH","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"accumulatedFees","type":"uint256"}],"name":"UnexpectedTotalETHPooled","type":"event"},{"stateMutability":"payable","type":"fallback"},{"inputs":[],"name":"accumulatedFees","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256","name":"messageTimeStamp","type":"uint256"},{"internalType":"bytes32","name":"messageHash","type":"bytes32"},{"internalType":"bytes","name":"messageSignature","type":"bytes"}],"internalType":"struct IConfigStructures.SignedDropMessageDetails","name":"signedMessage_","type":"tuple"}],"name":"addToPool","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimFromPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender_","type":"address"},{"internalType":"uint256","name":"value_","type":"uint256"}],"name":"createMessageHash","outputs":[{"internalType":"bytes32","name":"messageHash_","type":"bytes32"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"createdERC20","outputs":[{"internalType":"contract IERC20ByMetadrop","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"driType","outputs":[{"internalType":"enum IERC20ConfigByMetadrop.DRIPoolType","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes","name":"poolParams_","type":"bytes"},{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"}],"name":"initialiseDRIP","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialised","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"createdERC20_","type":"address"},{"internalType":"address","name":"poolCreator_","type":"address"}],"name":"loadERC20AddressAndSeedETH","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"maxInitialBuy","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxInitialBuyExceeded","outputs":[{"internalType":"bool","name":"maxInitialBuyExceeded_","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxInitialLiquidity","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxInitialLiquidityExceeded","outputs":[{"internalType":"bool","name":"maxInitialLiquidityExceeded_","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadropOracleAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"participant","outputs":[{"internalType":"uint128","name":"contribution","type":"uint128"},{"internalType":"uint128","name":"excessRefunded","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"participant_","type":"address"}],"name":"participantETHPooled","outputs":[{"internalType":"uint256","name":"participantETHPooled_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"participant_","type":"address"}],"name":"participantExcessETHRefunded","outputs":[{"internalType":"uint256","name":"participantExcessETHRefunded_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"participant_","type":"address"}],"name":"participantExcessRefundAvailable","outputs":[{"internalType":"uint256","name":"participantExcessRefund_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolContributionFeeBasisPoints","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolEndDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolFeeRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolIsAboveMinimum","outputs":[{"internalType":"bool","name":"poolIsAboveMinimum_","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolIsAtMaximum","outputs":[{"internalType":"bool","name":"poolIsAtMaximum_","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolMaxETH","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolMinETH","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolPerAddressMaxETH","outputs":[{"internalType":"uint80","name":"","type":"uint80"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolPerTransactionMinETH","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolPhaseStatus","outputs":[{"internalType":"string","name":"poolPhaseStatus_","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolStartDate","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"poolVestingInSeconds","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"projectSeedContributionAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"projectSeedContributionETH","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"refundExcess","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"refundFromFailedPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"token_","type":"address"},{"internalType":"uint256","name":"amount_","type":"uint256"}],"name":"rescueERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount_","type":"uint256"}],"name":"rescueETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"supplyForLP","outputs":[{"internalType":"uint256","name":"supplyForLP_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"supplyInThePool","outputs":[{"internalType":"uint120","name":"","type":"uint120"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"lockerFee_","type":"uint256"}],"name":"supplyLiquidity","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalETHContributed","outputs":[{"internalType":"uint256","name":"totalETHContributed_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalETHFundedToLPAndTokenBuy","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalETHPooled","outputs":[{"internalType":"uint256","name":"totalETHPooled_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalExcessETHPooled","outputs":[{"internalType":"uint256","name":"totalExcessETHPooled_","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalExcessETHRefunded","outputs":[{"internalType":"uint96","name":"","type":"uint96"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswapRouter","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vestingEndDate","outputs":[{"internalType":"uint256","name":"vestingEndDate_","type":"uint256"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.