ERC-20
Overview
Max Total Supply
10,000,000,000 BLOB
Holders
322
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
BlobToken
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 10 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /* ....... .-=+********##*=-. .=**++===----====+**#+- :*#*====-==-::========+*#*= :*#*===--::================+**- +#*+==-::::-==================*#+. :*#*==--:::::-====================**: -*#+==-::::::-======================+*: -##+=-:::::::-========================+#- :##+=-::::::-===========================+#: .*#+=-::::::-=============================+*. +#+=-::::::-===============*=======--*=====+* :#*=-::::::-===============*#*======-*#*=====+= **=-::::::::==-----------=* ##---===* ##======*. :#+=::::::::::------------=*###------*###-======+ +*=-::::::::::-------------"##-------"##------==*. *+--::::::::::---------------------------------=+- .#+--:::::::::----------------------------------=*. :*+=-----------------------------------------=**: :=*++=--------------------------------==+**=: .:=++*+++=====----------=====+++***+=:. ..:--==+++++++++++++==--:.. :BBBBBBBBBBBBBBBB:. :LLLLLL: ..:OOOOOOOO:.. :BBBBBBBBBBBBBBBB:. :BBBBBBBBBBBBBBBBBB:. :LLLLLL: .OOOOOOOOOOOOOOOO. :BBBBBBBBBBBBBBBBBB:. :BBBBBBBBBBBBBBBBBBBB. :LLLLLL: .OOOOOOOOOOOOOOOOOOOO. :BBBBBBBBBBBBBBBBBBBB. :BBBBBB: 'BBBBBBB: :LLLLLL: :OOOOOOOO" "OOOOOOOO: :BBBBBB: 'BBBBBBB: :BBBBBB: .BBBBBBB' :LLLLLL: :OOOOOOO" "OOOOOOO: :BBBBBB: .BBBBBBB' :BBBBBBBBBBBBBBBBBBB' :LLLLLL: OOOOOOO. .OOOOOOO :BBBBBBBBBBBBBBBBBBB' :BBBBBBBBBBBBBBBBBB. :LLLLLL: :OOOOOOO: :OOOOOOO: :BBBBBBBBBBBBBBBBBB. :BBBBBBBBBBBBBBBBBBB. :LLLLLL: 'OOOOOOO. .OOOOOOO' :BBBBBBBBBBBBBBBBBBB. :BBBBBB: 'BBBBBBB. :LLLLLL: OOOOOOOO. .OOOOOOOO :BBBBBB: 'BBBBBBB. :BBBBBB: .BBBBBBB: :LLLLLL: :OOOOOOOO:. .:OOOOOOOO: :BBBBBB: .BBBBBBB: :BBBBBBBBBBBBBBBBBBBB: :LLLLLLLLLLLLLL: 'OOOOOOOOOOOOOOOOOOOOOO' :BBBBBBBBBBBBBBBBBBBB: :BBBBBBBBBBBBBBBBBBBB :LLLLLLLLLLLLLL: "OOOOOOOOOOOOOOOOOO" :BBBBBBBBBBBBBBBBBBBB :BBBBBBBBBBBBBBBBBB" :LLLLLLLLLLLLLL: "":OOOOOOOO:"" :BBBBBBBBBBBBBBBBBB" */ import "./ERC20Mod.sol"; contract BlobToken is ERC20Mod { string private _name = "Blob"; string private constant _symbol = "BLOB"; uint private constant _numTokens = 10_000_000_000; constructor() ERC20Mod(_name, _symbol) { address deployer = 0xE2b4E7d91961280068019fCcF5b35DfF008f9732; _mint(deployer, _numTokens * 10 ** decimals()); transferOwnership(deployer); } function burn(uint256 amount) public { _burn(msg.sender, amount); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface AggregatorV3Interface { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); function getRoundData(uint80 _roundId) external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); function latestRoundData() external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and hte intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ // /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
pragma solidity >=0.6.2; interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut); function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); }
pragma solidity >=0.6.2; import './IUniswapV2Router01.sol'; interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IERC20Mod is IERC20 { function decimals() external returns (uint8); function getPrice() external returns (uint256); function calculateFeeAmount(address, address) external returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "./Taxable.sol"; import "../interfaces/IERC20Mod.sol"; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {intoUint256, ud} from "@prb/math/src/UD60x18.sol"; contract ERC20Mod is IERC20, IERC20Metadata, Taxable { mapping(address => bool) public presale; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; bool public deploymentSet = false; // make it true once all prerequisites are set constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } function name() public view virtual override returns (string memory) { return _name; } function symbol() public view virtual override returns (string memory) { return _symbol; } function decimals() public view virtual override returns (uint8) { return 18; } function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } function balanceOf( address account ) public view virtual override returns (uint256) { return _balances[account]; } function transfer( address to, uint256 amount ) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } function allowance( address owner, address spender ) public view virtual override returns (uint256) { return _allowances[owner][spender]; } function approve( address spender, uint256 amount ) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } function increaseAllowance( address spender, uint256 addedValue ) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } function decreaseAllowance( address spender, uint256 subtractedValue ) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require( currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero" ); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } function addPresaleAddress(address _user) external onlyOwner { require(_user != address(0), "Invalid address"); presale[_user] = true; } function removePresaleAddress(address _user) external onlyOwner { require(_user != address(0), "Invalid address"); presale[_user] = false; } function setDeploy(bool val) external onlyOwner { deploymentSet = val; } function distributeTax() external onlyOwner { _distributeTax(); } function _distributeTax() internal { require(_taxEqualsHundred(), "Total tax percentage should be 100"); _distribute(); } function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require( fromBalance >= amount, "ERC20: transfer amount exceeds balance" ); if ( (dexAddress[from] || dexAddress[to]) && from != owner() && !presale[from] && (!taxExempts[from] && !taxExempts[to]) ) { uint256 taxAmount = calculateTaxAmount(amount); uint256 transferAmount = calculateTransferAmount(amount, taxAmount); currentTaxAmount += taxAmount; _balances[address(this)] += currentTaxAmount; _balances[to] += transferAmount; } else { _balances[to] += amount; // make deploymentSet true once all prerequisites are set if (deploymentSet && currentTaxAmount > 0) { address[] memory path = new address[](2); path[0] = address(this); path[1] = USDC; uint[] memory amounts = IUniswapV2Router02(routerAddress) .getAmountsOut(currentTaxAmount, path); if (amounts[amounts.length - 1] >= threshold) _distributeTax(); } } _balances[from] = fromBalance - amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require( currentAllowance >= amount, "ERC20: insufficient allowance" ); unchecked { _approve(owner, spender, currentAllowance - amount); } } } function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import "../interfaces/IERC20Mod.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol"; import "@chainlink/contracts/src/v0.8/interfaces/AggregatorV3Interface.sol"; contract Taxable is Ownable { // ==================== STRUCTURE ==================== // uint256 public tax = 5 * 1e18; // 5% uint256 public threshold = 10000 * 1e6; address public priceFeed; uint256 private HUNDRED = 100 * 1e18; uint256 public currentTaxAmount = 0; mapping(address => bool) public taxExempts; mapping(address => uint256) public taxPercentages; address[] taxReceiverList; address public routerAddress; address public USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48; mapping(address => bool) public dexAddress; address[] dexAddressList; // ==================== EVENTS ==================== // event AddDEXAddress(address dex); event RemoveDEXAddress(address dex); event UpdateTax(uint256 oldPercentage, uint256 newPercentage); event UpdateReceiverTax( address receiver, uint256 oldPercentage, uint256 newPercentage ); event AddTaxReceiver(address receiver, uint256 percentage); event RemoveTaxReceiver(address receiver); // ==================== MODIFIERS ==================== // modifier isValidAddress(address account) { require(account != address(0), "Invalid address"); _; } // ==================== FUNCTIONS ==================== // function getAllDexAddresses() external view returns (address[] memory) { return dexAddressList; } function getAllTaxReceivers() external view returns (address[] memory) { return taxReceiverList; } function addDEXAddress(address _dex) external onlyOwner { require(_dex != address(0), "Invalid DEX address"); require(!dexAddress[_dex], "DEX already exists"); dexAddress[_dex] = true; dexAddressList.push(_dex); emit AddDEXAddress(_dex); } function removeDEXAddress(uint _index) external onlyOwner { require(_index < dexAddressList.length); emit RemoveDEXAddress(dexAddressList[_index]); dexAddress[dexAddressList[_index]] = false; dexAddressList[_index] = dexAddressList[dexAddressList.length - 1]; dexAddressList.pop(); } function addTaxReceiver( address _receiver, uint256 _percentage ) external onlyOwner { require(taxPercentages[_receiver] == 0, "Receiver already exists"); taxPercentages[_receiver] = _percentage; taxReceiverList.push(_receiver); emit AddTaxReceiver(_receiver, _percentage); } function updateReceiverTax( address _receiver, uint256 _percentage ) external onlyOwner { require(taxPercentages[_receiver] > 0); emit UpdateReceiverTax( _receiver, taxPercentages[_receiver], _percentage ); taxPercentages[_receiver] = _percentage; } function removeTaxReceiver(uint256 _index) external onlyOwner { require(_index < taxReceiverList.length); emit RemoveTaxReceiver(taxReceiverList[_index]); taxPercentages[taxReceiverList[_index]] = 0; taxReceiverList[_index] = taxReceiverList[taxReceiverList.length - 1]; taxReceiverList.pop(); } function updateThreshold(uint256 _threshold) external onlyOwner { require(_threshold > 0, "Value must be greater than 0"); threshold = _threshold; } function updateTax(uint256 _tax) external onlyOwner { require(_tax <= 10 * 1e18, "Tax should not be greater than 10 %"); emit UpdateTax(tax, _tax); tax = _tax; } function getPrice() public view returns (uint256) { (, int price, , , ) = AggregatorV3Interface(priceFeed) .latestRoundData(); require(price > 0, "Invalid price"); return uint256(price); } function calculateFeeAmount( uint256 _amount, uint256 _fee ) public view returns (uint256) { return (_amount * _fee) / HUNDRED; } function calculateTaxAmount(uint256 _amount) public view returns (uint256) { return calculateFeeAmount(_amount, tax); } function calculateTransferAmount( uint256 _amount, uint256 _tax ) public pure returns (uint256) { return _amount - _tax; } function setPriceFeed( address _priceFeedAddress ) public onlyOwner isValidAddress(_priceFeedAddress) { priceFeed = _priceFeedAddress; } function setRewardAddress( address _rewardAddress ) external onlyOwner isValidAddress(_rewardAddress) { USDC = _rewardAddress; } function setRouter( address _routerAddress ) external onlyOwner isValidAddress(_routerAddress) { routerAddress = _routerAddress; } function addTaxExempts( address _user ) external onlyOwner isValidAddress(_user) { taxExempts[_user] = true; } function removeTaxExempts( address _user ) external onlyOwner isValidAddress(_user) { taxExempts[_user] = false; } function _swap( address _tokenIn, address _tokenOut, uint256 _amountIn, address _to ) internal { IERC20(_tokenIn).approve(routerAddress, _amountIn); address[] memory path; if (_tokenIn != address(USDC) && _tokenOut != address(USDC)) { path = new address[](3); path[0] = _tokenIn; path[1] = USDC; path[2] = _tokenOut; } else { path = new address[](2); path[0] = _tokenIn; path[1] = _tokenOut; } // Make the swap IUniswapV2Router02(routerAddress) .swapExactTokensForTokensSupportingFeeOnTransferTokens( _amountIn, 0, path, _to, block.timestamp + 10 minutes ); } function _distribute() internal { for (uint256 i = 0; i < taxReceiverList.length; i++) { address account = taxReceiverList[i]; uint256 toSendAmount = calculateFeeAmount( currentTaxAmount, taxPercentages[account] ); _swap(address(this), USDC, toSendAmount, account); } currentTaxAmount = 0; } function _taxEqualsHundred() internal view returns (bool) { uint256 sum = 0; for (uint256 i = 0; i < taxReceiverList.length; i++) { address account = taxReceiverList[i]; sum += taxPercentages[account]; } return (sum == HUNDRED); } }
{ "metadata": { "bytecodeHash": "none" }, "optimizer": { "enabled": true, "runs": 10 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"dex","type":"address"}],"name":"AddDEXAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"percentage","type":"uint256"}],"name":"AddTaxReceiver","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"dex","type":"address"}],"name":"RemoveDEXAddress","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"}],"name":"RemoveTaxReceiver","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"receiver","type":"address"},{"indexed":false,"internalType":"uint256","name":"oldPercentage","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newPercentage","type":"uint256"}],"name":"UpdateReceiverTax","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldPercentage","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newPercentage","type":"uint256"}],"name":"UpdateTax","type":"event"},{"inputs":[],"name":"USDC","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_dex","type":"address"}],"name":"addDEXAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"addPresaleAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"addTaxExempts","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_percentage","type":"uint256"}],"name":"addTaxReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_fee","type":"uint256"}],"name":"calculateFeeAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"calculateTaxAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_amount","type":"uint256"},{"internalType":"uint256","name":"_tax","type":"uint256"}],"name":"calculateTransferAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"currentTaxAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"deploymentSet","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"dexAddress","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"distributeTax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"getAllDexAddresses","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAllTaxReceivers","outputs":[{"internalType":"address[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"presale","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"priceFeed","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_index","type":"uint256"}],"name":"removeDEXAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"removePresaleAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_user","type":"address"}],"name":"removeTaxExempts","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_index","type":"uint256"}],"name":"removeTaxReceiver","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"routerAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"val","type":"bool"}],"name":"setDeploy","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_priceFeedAddress","type":"address"}],"name":"setPriceFeed","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_rewardAddress","type":"address"}],"name":"setRewardAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_routerAddress","type":"address"}],"name":"setRouter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tax","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"taxExempts","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"taxPercentages","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"threshold","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_percentage","type":"uint256"}],"name":"updateReceiverTax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_tax","type":"uint256"}],"name":"updateTax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_threshold","type":"uint256"}],"name":"updateThreshold","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
674563918244f400006001556402540be40060025568056bc75e2d6310000060049081556000600555600a80546001600160a01b03191673a0b86991c6218b36c1d19d4a2e9eb0ce3606eb481790556013805460ff1916905560c0604052608090815263213637b160e11b60a0526014906200007c90826200046b565b503480156200008a57600080fd5b50601480546200009a90620003dd565b80601f0160208091040260200160405190810160405280929190818152602001828054620000c890620003dd565b8015620001195780601f10620000ed5761010080835404028352916020019162000119565b820191906000526020600020905b815481529060010190602001808311620000fb57829003601f168201915b505050505060405180604001604052806004815260200163212627a160e11b815250620001556200014f620001c860201b60201c565b620001cc565b60116200016383826200046b565b5060126200017282826200046b565b5073e2b4e7d91961280068019fccf5b35dff008f97329150620001b69050816200019f6012600a6200064c565b620001b0906402540be40062000664565b6200021c565b620001c181620002e5565b5062000694565b3390565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b6001600160a01b038216620002785760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f20616464726573730060448201526064015b60405180910390fd5b80601060008282546200028c91906200067e565b90915550506001600160a01b0382166000818152600e60209081526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b620002ef62000369565b6001600160a01b038116620003565760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016200026f565b6200036181620001cc565b50565b505050565b6000546001600160a01b03163314620003c55760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016200026f565b565b634e487b7160e01b600052604160045260246000fd5b600181811c90821680620003f257607f821691505b6020821081036200041357634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200036457600081815260208120601f850160051c81016020861015620004425750805b601f850160051c820191505b8181101562000463578281556001016200044e565b505050505050565b81516001600160401b03811115620004875762000487620003c7565b6200049f81620004988454620003dd565b8462000419565b602080601f831160018114620004d75760008415620004be5750858301515b600019600386901b1c1916600185901b17855562000463565b600085815260208120601f198616915b828110156200050857888601518255948401946001909101908401620004e7565b5085821015620005275787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b634e487b7160e01b600052601160045260246000fd5b600181815b808511156200058e57816000190482111562000572576200057262000537565b808516156200058057918102915b93841c939080029062000552565b509250929050565b600082620005a75750600162000646565b81620005b65750600062000646565b8160018114620005cf5760028114620005da57620005fa565b600191505062000646565b60ff841115620005ee57620005ee62000537565b50506001821b62000646565b5060208310610133831016604e8410600b84101617156200061f575081810a62000646565b6200062b83836200054d565b806000190482111562000642576200064262000537565b0290505b92915050565b60006200065d60ff84168362000596565b9392505050565b808202811582820484141762000646576200064662000537565b8082018082111562000646576200064662000537565b6123c880620006a46000396000f3fe608060405234801561001057600080fd5b50600436106102305760003560e01c806306fdde03146102355780630826c24914610253578063095ea7b3146102745780630f2af89a146102975780630f3d9c9f146102a057806318160ddd146102aa5780631bb3de72146102b257806323b872dd146102c5578063240d9722146102d8578063242ffb60146102e5578063266398ef146102f8578063313ce5671461030d5780633268cc561461031c57806332b9b3ec1461033c578063395093511461035c5780633962acdc1461036f5780633cd221a21461038257806342966c681461039557806342cde4e8146103a85780635a0b8eaa146103b15780635b7f09bb146103c45780635e00e679146103d7578063627d4a64146103ea5780636c9fd1ab146103fd57806370a0823114610420578063715018a614610449578063724e78da14610451578063741bef1a14610464578063765304881461047757806378a877511461048a57806386cb707c1461049d57806389a30271146104b05780638da5cb5b146104c357806395d89b41146104cb5780639810ad19146104d357806398d5fdca146104e657806399c8d556146104ee578063a2964c76146104f7578063a457c2d71461050a578063a9059cbb1461051d578063c0d7865514610530578063c9d6d0f114610543578063cca0feb61461054b578063d7d7442f1461055e578063db4c15bb14610571578063dd62ed3e14610594578063e3bcccb4146105a7578063f2fde38b146105ca575b600080fd5b61023d6105dd565b60405161024a9190611ec0565b60405180910390f35b610266610261366004611f0e565b61066f565b60405190815260200161024a565b610287610282366004611f47565b610692565b604051901515815260200161024a565b61026660055481565b6102a86106aa565b005b601054610266565b6102666102c0366004611f0e565b6106bc565b6102876102d3366004611f71565b6106c8565b6013546102879060ff1681565b6102a86102f3366004611fad565b6106ec565b61030061085d565b60405161024a919061200a565b6040516012815260200161024a565b60095461032f906001600160a01b031681565b60405161024a919061201d565b61026661034a366004612031565b60076020526000908152604090205481565b61028761036a366004611f47565b6108be565b61026661037d366004611fad565b6108e0565b6102a8610390366004612031565b6108ee565b6102a86103a3366004611fad565b610949565b61026660025481565b6102a86103bf366004612031565b610956565b6102a86103d2366004611fad565b610aaa565b6102a86103e5366004612031565b610be7565b6102a86103f8366004612031565b610c39565b61028761040b366004612031565b60066020526000908152604090205460ff1681565b61026661042e366004612031565b6001600160a01b03166000908152600e602052604090205490565b6102a8610c8d565b6102a861045f366004612031565b610c9f565b60035461032f906001600160a01b031681565b6102a8610485366004611f47565b610cf1565b6102a8610498366004611f47565b610d8f565b6102a86104ab366004612031565b610e91565b600a5461032f906001600160a01b031681565b61032f610ee2565b61023d610ef1565b6102a86104e136600461205a565b610f00565b610266610f1b565b61026660015481565b6102a8610505366004612031565b610fe0565b610287610518366004611f47565b61102f565b61028761052b366004611f47565b6110aa565b6102a861053e366004612031565b6110b8565b61030061110a565b6102a8610559366004611fad565b61116a565b6102a861056c366004611fad565b611217565b61028761057f366004612031565b600d6020526000908152604090205460ff1681565b6102666105a236600461207e565b611273565b6102876105b5366004612031565b600b6020526000908152604090205460ff1681565b6102a86105d8366004612031565b61129e565b6060601180546105ec906120b1565b80601f0160208091040260200160405190810160405280929190818152602001828054610618906120b1565b80156106655780601f1061063a57610100808354040283529160200191610665565b820191906000526020600020905b81548152906001019060200180831161064857829003601f168201915b5050505050905090565b60045460009061067f8385612101565b6106899190612118565b90505b92915050565b6000336106a0818585611314565b5060019392505050565b6106b2611439565b6106ba611498565b565b6000610689828461213a565b6000336106d68582856114ff565b6106e1858585611579565b506001949350505050565b6106f4611439565b600c54811061070257600080fd5b7f75266578664bd6a65bef16e754f4cf0afc254421ed1c3a9dc00b1d030a861828600c82815481106107365761073661214d565b600091825260209091200154604051610758916001600160a01b03169061201d565b60405180910390a16000600b6000600c84815481106107795761077961214d565b6000918252602080832091909101546001600160a01b031683528201929092526040019020805460ff1916911515919091179055600c80546107bd9060019061213a565b815481106107cd576107cd61214d565b600091825260209091200154600c80546001600160a01b0390921691839081106107f9576107f961214d565b9060005260206000200160006101000a8154816001600160a01b0302191690836001600160a01b03160217905550600c80548061083857610838612163565b600082815260209020810160001990810180546001600160a01b031916905501905550565b6060600c80548060200260200160405190810160405280929190818152602001828054801561066557602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610897575050505050905090565b6000336106a08185856108d18383611273565b6108db9190612179565b611314565b600061068c8260015461066f565b6108f6611439565b6001600160a01b0381166109255760405162461bcd60e51b815260040161091c9061218c565b60405180910390fd5b6001600160a01b03166000908152600d60205260409020805460ff19166001179055565b61095333826119e1565b50565b61095e611439565b6001600160a01b0381166109aa5760405162461bcd60e51b8152602060048201526013602482015272496e76616c696420444558206164647265737360681b604482015260640161091c565b6001600160a01b0381166000908152600b602052604090205460ff1615610a085760405162461bcd60e51b815260206004820152601260248201527144455820616c72656164792065786973747360701b604482015260640161091c565b6001600160a01b0381166000818152600b6020526040808220805460ff19166001908117909155600c805491820181559092527fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c790910180546001600160a01b031916909217909155517fc2f45456bde29959c861a365c64021f2f972b9921cb9919d471d41f0d623dd1e90610a9f90839061201d565b60405180910390a150565b610ab2611439565b6008548110610ac057600080fd5b7f610adac715a89717fe003da3b979cb3f5850ebb2cc4f74690f55312c41ea047860088281548110610af457610af461214d565b600091825260209091200154604051610b16916001600160a01b03169061201d565b60405180910390a160006007600060088481548110610b3757610b3761214d565b60009182526020808320909101546001600160a01b0316835282019290925260400190205560088054610b6c9060019061213a565b81548110610b7c57610b7c61214d565b600091825260209091200154600880546001600160a01b039092169183908110610ba857610ba861214d565b9060005260206000200160006101000a8154816001600160a01b0302191690836001600160a01b03160217905550600880548061083857610838612163565b610bef611439565b806001600160a01b038116610c165760405162461bcd60e51b815260040161091c9061218c565b50600a80546001600160a01b0319166001600160a01b0392909216919091179055565b610c41611439565b806001600160a01b038116610c685760405162461bcd60e51b815260040161091c9061218c565b506001600160a01b03166000908152600660205260409020805460ff19166001179055565b610c95611439565b6106ba6000611afb565b610ca7611439565b806001600160a01b038116610cce5760405162461bcd60e51b815260040161091c9061218c565b50600380546001600160a01b0319166001600160a01b0392909216919091179055565b610cf9611439565b6001600160a01b038216600090815260076020526040902054610d1b57600080fd5b6001600160a01b0382166000818152600760209081526040918290205482519384529083015281018290527f936d185c5ac456512843ccdffabb612cf93b3903b5af2bb756b801e26e1173949060600160405180910390a16001600160a01b03909116600090815260076020526040902055565b610d97611439565b6001600160a01b03821660009081526007602052604090205415610df75760405162461bcd60e51b8152602060048201526017602482015276526563656976657220616c72656164792065786973747360481b604482015260640161091c565b6001600160a01b0382166000818152600760205260408082208490556008805460018101825592527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee390910180546001600160a01b031916909217909155517faddc9d8968f66f007936ddf6497c514d4e244d74ccdb4504ea358d4e67ae03d390610e8590849084906121b5565b60405180910390a15050565b610e99611439565b806001600160a01b038116610ec05760405162461bcd60e51b815260040161091c9061218c565b506001600160a01b03166000908152600660205260409020805460ff19169055565b6000546001600160a01b031690565b6060601280546105ec906120b1565b610f08611439565b6013805460ff1916911515919091179055565b600080600360009054906101000a90046001600160a01b03166001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa158015610f71573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f9591906121e5565b50505091505060008113610fdb5760405162461bcd60e51b815260206004820152600d60248201526c496e76616c696420707269636560981b604482015260640161091c565b919050565b610fe8611439565b6001600160a01b03811661100e5760405162461bcd60e51b815260040161091c9061218c565b6001600160a01b03166000908152600d60205260409020805460ff19169055565b6000338161103d8286611273565b90508381101561109d5760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b606482015260840161091c565b6106e18286868403611314565b6000336106a0818585611579565b6110c0611439565b806001600160a01b0381166110e75760405162461bcd60e51b815260040161091c9061218c565b50600980546001600160a01b0319166001600160a01b0392909216919091179055565b60606008805480602002602001604051908101604052809291908181526020018280548015610665576020028201919060005260206000209081546001600160a01b03168152600190910190602001808311610897575050505050905090565b611172611439565b678ac7230489e800008111156111d65760405162461bcd60e51b815260206004820152602360248201527f5461782073686f756c64206e6f742062652067726561746572207468616e203160448201526230202560e81b606482015260840161091c565b60015460408051918252602082018390527f7240b53819d9ad591da2c6d5cc4317bfb99daeaa5deb5d86e5266b4ddda730f4910160405180910390a1600155565b61121f611439565b6000811161126e5760405162461bcd60e51b815260206004820152601c60248201527b056616c7565206d7573742062652067726561746572207468616e20360241b604482015260640161091c565b600255565b6001600160a01b039182166000908152600f6020908152604080832093909416825291909152205490565b6112a6611439565b6001600160a01b03811661130b5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161091c565b61095381611afb565b6001600160a01b0383166113765760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b606482015260840161091c565b6001600160a01b0382166113d75760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b606482015260840161091c565b6001600160a01b038381166000818152600f602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b33611442610ee2565b6001600160a01b0316146106ba5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015260640161091c565b6114a0611b4b565b6114f75760405162461bcd60e51b815260206004820152602260248201527f546f74616c207461782070657263656e746167652073686f756c642062652031604482015261030360f41b606482015260840161091c565b6106ba611bc1565b600061150b8484611273565b9050600019811461157357818110156115665760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e6365000000604482015260640161091c565b6115738484848403611314565b50505050565b6001600160a01b0383166115dd5760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b606482015260840161091c565b6001600160a01b03821661163f5760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b606482015260840161091c565b6001600160a01b0383166000908152600e6020526040902054818110156116b75760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b606482015260840161091c565b6001600160a01b0384166000908152600b602052604090205460ff16806116f657506001600160a01b0383166000908152600b602052604090205460ff165b801561171b5750611705610ee2565b6001600160a01b0316846001600160a01b031614155b801561174057506001600160a01b0384166000908152600d602052604090205460ff16155b801561178957506001600160a01b03841660009081526006602052604090205460ff1615801561178957506001600160a01b03831660009081526006602052604090205460ff16155b1561181c576000611799836108e0565b905060006117a784836106bc565b905081600560008282546117bb9190612179565b9091555050600554306000908152600e6020526040812080549091906117e2908490612179565b90915550506001600160a01b0385166000908152600e60205260408120805483929061180f908490612179565b9091555061198e92505050565b6001600160a01b0383166000908152600e602052604081208054849290611844908490612179565b909155505060135460ff16801561185d57506000600554115b1561198e5760408051600280825260608201835260009260208301908036833701905050905030816000815181106118975761189761214d565b6001600160a01b039283166020918202929092010152600a548251911690829060019081106118c8576118c861214d565b6001600160a01b03928316602091820292909201015260095460055460405163d06ca61f60e01b8152600093929092169163d06ca61f9161190d91869060040161224b565b600060405180830381865afa15801561192a573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611952919081019061226c565b90506002548160018351611966919061213a565b815181106119765761197661214d565b60200260200101511061198b5761198b611498565b50505b611998828261213a565b6001600160a01b038581166000818152600e6020908152604091829020949094555185815291861692909160008051602061239c833981519152910160405180910390a3611573565b6001600160a01b038216611a415760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b606482015260840161091c565b6001600160a01b0382166000908152600e602052604090205481811015611ab55760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b606482015260840161091c565b6001600160a01b0383166000818152600e6020908152604080832086860390556010805487900390555185815291929160008051602061239c833981519152910161142c565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600080805b600854811015611bb757600060088281548110611b6f57611b6f61214d565b60009182526020808320909101546001600160a01b03168083526007909152604090912054909150611ba19084612179565b9250508080611baf90612329565b915050611b50565b5060045414919050565b60005b600854811015611c4957600060088281548110611be357611be361214d565b60009182526020808320909101546005546001600160a01b0390911680845260079092526040832054919350611c189161066f565b600a54909150611c349030906001600160a01b03168385611c51565b50508080611c4190612329565b915050611bc4565b506000600555565b60095460405163095ea7b360e01b81526001600160a01b038681169263095ea7b392611c85929091169086906004016121b5565b6020604051808303816000875af1158015611ca4573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611cc89190612342565b50600a546060906001600160a01b03868116911614801590611cf85750600a546001600160a01b03858116911614155b15611dbc576040805160038082526080820190925290602082016060803683370190505090508481600081518110611d3257611d3261214d565b6001600160a01b039283166020918202929092010152600a54825191169082906001908110611d6357611d6361214d565b60200260200101906001600160a01b031690816001600160a01b0316815250508381600281518110611d9757611d9761214d565b60200260200101906001600160a01b031690816001600160a01b031681525050611e45565b60408051600280825260608201835290916020830190803683370190505090508481600081518110611df057611df061214d565b60200260200101906001600160a01b031690816001600160a01b0316815250508381600181518110611e2457611e2461214d565b60200260200101906001600160a01b031690816001600160a01b0316815250505b6009546001600160a01b0316635c11d7958460008486611e6742610258612179565b6040518663ffffffff1660e01b8152600401611e8795949392919061235f565b600060405180830381600087803b158015611ea157600080fd5b505af1158015611eb5573d6000803e3d6000fd5b505050505050505050565b600060208083528351808285015260005b81811015611eed57858101830151858201604001528201611ed1565b506000604082860101526040601f19601f8301168501019250505092915050565b60008060408385031215611f2157600080fd5b50508035926020909101359150565b80356001600160a01b0381168114610fdb57600080fd5b60008060408385031215611f5a57600080fd5b611f6383611f30565b946020939093013593505050565b600080600060608486031215611f8657600080fd5b611f8f84611f30565b9250611f9d60208501611f30565b9150604084013590509250925092565b600060208284031215611fbf57600080fd5b5035919050565b600081518084526020808501945080840160005b83811015611fff5781516001600160a01b031687529582019590820190600101611fda565b509495945050505050565b6020815260006106896020830184611fc6565b6001600160a01b0391909116815260200190565b60006020828403121561204357600080fd5b61068982611f30565b801515811461095357600080fd5b60006020828403121561206c57600080fd5b81356120778161204c565b9392505050565b6000806040838503121561209157600080fd5b61209a83611f30565b91506120a860208401611f30565b90509250929050565b600181811c908216806120c557607f821691505b6020821081036120e557634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052601160045260246000fd5b808202811582820484141761068c5761068c6120eb565b60008261213557634e487b7160e01b600052601260045260246000fd5b500490565b8181038181111561068c5761068c6120eb565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052603160045260246000fd5b8082018082111561068c5761068c6120eb565b6020808252600f908201526e496e76616c6964206164647265737360881b604082015260600190565b6001600160a01b03929092168252602082015260400190565b80516001600160501b0381168114610fdb57600080fd5b600080600080600060a086880312156121fd57600080fd5b612206866121ce565b9450602086015193506040860151925060608601519150612229608087016121ce565b90509295509295909350565b634e487b7160e01b600052604160045260246000fd5b8281526040602082015260006122646040830184611fc6565b949350505050565b6000602080838503121561227f57600080fd5b82516001600160401b038082111561229657600080fd5b818501915085601f8301126122aa57600080fd5b8151818111156122bc576122bc612235565b8060051b604051601f19603f830116810181811085821117156122e1576122e1612235565b6040529182528482019250838101850191888311156122ff57600080fd5b938501935b8285101561231d57845184529385019392850192612304565b98975050505050505050565b60006001820161233b5761233b6120eb565b5060010190565b60006020828403121561235457600080fd5b81516120778161204c565b85815284602082015260a06040820152600061237e60a0830186611fc6565b6001600160a01b039490941660608301525060800152939250505056feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa164736f6c6343000813000a
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102305760003560e01c806306fdde03146102355780630826c24914610253578063095ea7b3146102745780630f2af89a146102975780630f3d9c9f146102a057806318160ddd146102aa5780631bb3de72146102b257806323b872dd146102c5578063240d9722146102d8578063242ffb60146102e5578063266398ef146102f8578063313ce5671461030d5780633268cc561461031c57806332b9b3ec1461033c578063395093511461035c5780633962acdc1461036f5780633cd221a21461038257806342966c681461039557806342cde4e8146103a85780635a0b8eaa146103b15780635b7f09bb146103c45780635e00e679146103d7578063627d4a64146103ea5780636c9fd1ab146103fd57806370a0823114610420578063715018a614610449578063724e78da14610451578063741bef1a14610464578063765304881461047757806378a877511461048a57806386cb707c1461049d57806389a30271146104b05780638da5cb5b146104c357806395d89b41146104cb5780639810ad19146104d357806398d5fdca146104e657806399c8d556146104ee578063a2964c76146104f7578063a457c2d71461050a578063a9059cbb1461051d578063c0d7865514610530578063c9d6d0f114610543578063cca0feb61461054b578063d7d7442f1461055e578063db4c15bb14610571578063dd62ed3e14610594578063e3bcccb4146105a7578063f2fde38b146105ca575b600080fd5b61023d6105dd565b60405161024a9190611ec0565b60405180910390f35b610266610261366004611f0e565b61066f565b60405190815260200161024a565b610287610282366004611f47565b610692565b604051901515815260200161024a565b61026660055481565b6102a86106aa565b005b601054610266565b6102666102c0366004611f0e565b6106bc565b6102876102d3366004611f71565b6106c8565b6013546102879060ff1681565b6102a86102f3366004611fad565b6106ec565b61030061085d565b60405161024a919061200a565b6040516012815260200161024a565b60095461032f906001600160a01b031681565b60405161024a919061201d565b61026661034a366004612031565b60076020526000908152604090205481565b61028761036a366004611f47565b6108be565b61026661037d366004611fad565b6108e0565b6102a8610390366004612031565b6108ee565b6102a86103a3366004611fad565b610949565b61026660025481565b6102a86103bf366004612031565b610956565b6102a86103d2366004611fad565b610aaa565b6102a86103e5366004612031565b610be7565b6102a86103f8366004612031565b610c39565b61028761040b366004612031565b60066020526000908152604090205460ff1681565b61026661042e366004612031565b6001600160a01b03166000908152600e602052604090205490565b6102a8610c8d565b6102a861045f366004612031565b610c9f565b60035461032f906001600160a01b031681565b6102a8610485366004611f47565b610cf1565b6102a8610498366004611f47565b610d8f565b6102a86104ab366004612031565b610e91565b600a5461032f906001600160a01b031681565b61032f610ee2565b61023d610ef1565b6102a86104e136600461205a565b610f00565b610266610f1b565b61026660015481565b6102a8610505366004612031565b610fe0565b610287610518366004611f47565b61102f565b61028761052b366004611f47565b6110aa565b6102a861053e366004612031565b6110b8565b61030061110a565b6102a8610559366004611fad565b61116a565b6102a861056c366004611fad565b611217565b61028761057f366004612031565b600d6020526000908152604090205460ff1681565b6102666105a236600461207e565b611273565b6102876105b5366004612031565b600b6020526000908152604090205460ff1681565b6102a86105d8366004612031565b61129e565b6060601180546105ec906120b1565b80601f0160208091040260200160405190810160405280929190818152602001828054610618906120b1565b80156106655780601f1061063a57610100808354040283529160200191610665565b820191906000526020600020905b81548152906001019060200180831161064857829003601f168201915b5050505050905090565b60045460009061067f8385612101565b6106899190612118565b90505b92915050565b6000336106a0818585611314565b5060019392505050565b6106b2611439565b6106ba611498565b565b6000610689828461213a565b6000336106d68582856114ff565b6106e1858585611579565b506001949350505050565b6106f4611439565b600c54811061070257600080fd5b7f75266578664bd6a65bef16e754f4cf0afc254421ed1c3a9dc00b1d030a861828600c82815481106107365761073661214d565b600091825260209091200154604051610758916001600160a01b03169061201d565b60405180910390a16000600b6000600c84815481106107795761077961214d565b6000918252602080832091909101546001600160a01b031683528201929092526040019020805460ff1916911515919091179055600c80546107bd9060019061213a565b815481106107cd576107cd61214d565b600091825260209091200154600c80546001600160a01b0390921691839081106107f9576107f961214d565b9060005260206000200160006101000a8154816001600160a01b0302191690836001600160a01b03160217905550600c80548061083857610838612163565b600082815260209020810160001990810180546001600160a01b031916905501905550565b6060600c80548060200260200160405190810160405280929190818152602001828054801561066557602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311610897575050505050905090565b6000336106a08185856108d18383611273565b6108db9190612179565b611314565b600061068c8260015461066f565b6108f6611439565b6001600160a01b0381166109255760405162461bcd60e51b815260040161091c9061218c565b60405180910390fd5b6001600160a01b03166000908152600d60205260409020805460ff19166001179055565b61095333826119e1565b50565b61095e611439565b6001600160a01b0381166109aa5760405162461bcd60e51b8152602060048201526013602482015272496e76616c696420444558206164647265737360681b604482015260640161091c565b6001600160a01b0381166000908152600b602052604090205460ff1615610a085760405162461bcd60e51b815260206004820152601260248201527144455820616c72656164792065786973747360701b604482015260640161091c565b6001600160a01b0381166000818152600b6020526040808220805460ff19166001908117909155600c805491820181559092527fdf6966c971051c3d54ec59162606531493a51404a002842f56009d7e5cf4a8c790910180546001600160a01b031916909217909155517fc2f45456bde29959c861a365c64021f2f972b9921cb9919d471d41f0d623dd1e90610a9f90839061201d565b60405180910390a150565b610ab2611439565b6008548110610ac057600080fd5b7f610adac715a89717fe003da3b979cb3f5850ebb2cc4f74690f55312c41ea047860088281548110610af457610af461214d565b600091825260209091200154604051610b16916001600160a01b03169061201d565b60405180910390a160006007600060088481548110610b3757610b3761214d565b60009182526020808320909101546001600160a01b0316835282019290925260400190205560088054610b6c9060019061213a565b81548110610b7c57610b7c61214d565b600091825260209091200154600880546001600160a01b039092169183908110610ba857610ba861214d565b9060005260206000200160006101000a8154816001600160a01b0302191690836001600160a01b03160217905550600880548061083857610838612163565b610bef611439565b806001600160a01b038116610c165760405162461bcd60e51b815260040161091c9061218c565b50600a80546001600160a01b0319166001600160a01b0392909216919091179055565b610c41611439565b806001600160a01b038116610c685760405162461bcd60e51b815260040161091c9061218c565b506001600160a01b03166000908152600660205260409020805460ff19166001179055565b610c95611439565b6106ba6000611afb565b610ca7611439565b806001600160a01b038116610cce5760405162461bcd60e51b815260040161091c9061218c565b50600380546001600160a01b0319166001600160a01b0392909216919091179055565b610cf9611439565b6001600160a01b038216600090815260076020526040902054610d1b57600080fd5b6001600160a01b0382166000818152600760209081526040918290205482519384529083015281018290527f936d185c5ac456512843ccdffabb612cf93b3903b5af2bb756b801e26e1173949060600160405180910390a16001600160a01b03909116600090815260076020526040902055565b610d97611439565b6001600160a01b03821660009081526007602052604090205415610df75760405162461bcd60e51b8152602060048201526017602482015276526563656976657220616c72656164792065786973747360481b604482015260640161091c565b6001600160a01b0382166000818152600760205260408082208490556008805460018101825592527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee390910180546001600160a01b031916909217909155517faddc9d8968f66f007936ddf6497c514d4e244d74ccdb4504ea358d4e67ae03d390610e8590849084906121b5565b60405180910390a15050565b610e99611439565b806001600160a01b038116610ec05760405162461bcd60e51b815260040161091c9061218c565b506001600160a01b03166000908152600660205260409020805460ff19169055565b6000546001600160a01b031690565b6060601280546105ec906120b1565b610f08611439565b6013805460ff1916911515919091179055565b600080600360009054906101000a90046001600160a01b03166001600160a01b031663feaf968c6040518163ffffffff1660e01b815260040160a060405180830381865afa158015610f71573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610f9591906121e5565b50505091505060008113610fdb5760405162461bcd60e51b815260206004820152600d60248201526c496e76616c696420707269636560981b604482015260640161091c565b919050565b610fe8611439565b6001600160a01b03811661100e5760405162461bcd60e51b815260040161091c9061218c565b6001600160a01b03166000908152600d60205260409020805460ff19169055565b6000338161103d8286611273565b90508381101561109d5760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b606482015260840161091c565b6106e18286868403611314565b6000336106a0818585611579565b6110c0611439565b806001600160a01b0381166110e75760405162461bcd60e51b815260040161091c9061218c565b50600980546001600160a01b0319166001600160a01b0392909216919091179055565b60606008805480602002602001604051908101604052809291908181526020018280548015610665576020028201919060005260206000209081546001600160a01b03168152600190910190602001808311610897575050505050905090565b611172611439565b678ac7230489e800008111156111d65760405162461bcd60e51b815260206004820152602360248201527f5461782073686f756c64206e6f742062652067726561746572207468616e203160448201526230202560e81b606482015260840161091c565b60015460408051918252602082018390527f7240b53819d9ad591da2c6d5cc4317bfb99daeaa5deb5d86e5266b4ddda730f4910160405180910390a1600155565b61121f611439565b6000811161126e5760405162461bcd60e51b815260206004820152601c60248201527b056616c7565206d7573742062652067726561746572207468616e20360241b604482015260640161091c565b600255565b6001600160a01b039182166000908152600f6020908152604080832093909416825291909152205490565b6112a6611439565b6001600160a01b03811661130b5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161091c565b61095381611afb565b6001600160a01b0383166113765760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b606482015260840161091c565b6001600160a01b0382166113d75760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b606482015260840161091c565b6001600160a01b038381166000818152600f602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b33611442610ee2565b6001600160a01b0316146106ba5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604482015260640161091c565b6114a0611b4b565b6114f75760405162461bcd60e51b815260206004820152602260248201527f546f74616c207461782070657263656e746167652073686f756c642062652031604482015261030360f41b606482015260840161091c565b6106ba611bc1565b600061150b8484611273565b9050600019811461157357818110156115665760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e6365000000604482015260640161091c565b6115738484848403611314565b50505050565b6001600160a01b0383166115dd5760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b606482015260840161091c565b6001600160a01b03821661163f5760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b606482015260840161091c565b6001600160a01b0383166000908152600e6020526040902054818110156116b75760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b606482015260840161091c565b6001600160a01b0384166000908152600b602052604090205460ff16806116f657506001600160a01b0383166000908152600b602052604090205460ff165b801561171b5750611705610ee2565b6001600160a01b0316846001600160a01b031614155b801561174057506001600160a01b0384166000908152600d602052604090205460ff16155b801561178957506001600160a01b03841660009081526006602052604090205460ff1615801561178957506001600160a01b03831660009081526006602052604090205460ff16155b1561181c576000611799836108e0565b905060006117a784836106bc565b905081600560008282546117bb9190612179565b9091555050600554306000908152600e6020526040812080549091906117e2908490612179565b90915550506001600160a01b0385166000908152600e60205260408120805483929061180f908490612179565b9091555061198e92505050565b6001600160a01b0383166000908152600e602052604081208054849290611844908490612179565b909155505060135460ff16801561185d57506000600554115b1561198e5760408051600280825260608201835260009260208301908036833701905050905030816000815181106118975761189761214d565b6001600160a01b039283166020918202929092010152600a548251911690829060019081106118c8576118c861214d565b6001600160a01b03928316602091820292909201015260095460055460405163d06ca61f60e01b8152600093929092169163d06ca61f9161190d91869060040161224b565b600060405180830381865afa15801561192a573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052611952919081019061226c565b90506002548160018351611966919061213a565b815181106119765761197661214d565b60200260200101511061198b5761198b611498565b50505b611998828261213a565b6001600160a01b038581166000818152600e6020908152604091829020949094555185815291861692909160008051602061239c833981519152910160405180910390a3611573565b6001600160a01b038216611a415760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b606482015260840161091c565b6001600160a01b0382166000908152600e602052604090205481811015611ab55760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b606482015260840161091c565b6001600160a01b0383166000818152600e6020908152604080832086860390556010805487900390555185815291929160008051602061239c833981519152910161142c565b600080546001600160a01b038381166001600160a01b0319831681178455604051919092169283917f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e09190a35050565b600080805b600854811015611bb757600060088281548110611b6f57611b6f61214d565b60009182526020808320909101546001600160a01b03168083526007909152604090912054909150611ba19084612179565b9250508080611baf90612329565b915050611b50565b5060045414919050565b60005b600854811015611c4957600060088281548110611be357611be361214d565b60009182526020808320909101546005546001600160a01b0390911680845260079092526040832054919350611c189161066f565b600a54909150611c349030906001600160a01b03168385611c51565b50508080611c4190612329565b915050611bc4565b506000600555565b60095460405163095ea7b360e01b81526001600160a01b038681169263095ea7b392611c85929091169086906004016121b5565b6020604051808303816000875af1158015611ca4573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611cc89190612342565b50600a546060906001600160a01b03868116911614801590611cf85750600a546001600160a01b03858116911614155b15611dbc576040805160038082526080820190925290602082016060803683370190505090508481600081518110611d3257611d3261214d565b6001600160a01b039283166020918202929092010152600a54825191169082906001908110611d6357611d6361214d565b60200260200101906001600160a01b031690816001600160a01b0316815250508381600281518110611d9757611d9761214d565b60200260200101906001600160a01b031690816001600160a01b031681525050611e45565b60408051600280825260608201835290916020830190803683370190505090508481600081518110611df057611df061214d565b60200260200101906001600160a01b031690816001600160a01b0316815250508381600181518110611e2457611e2461214d565b60200260200101906001600160a01b031690816001600160a01b0316815250505b6009546001600160a01b0316635c11d7958460008486611e6742610258612179565b6040518663ffffffff1660e01b8152600401611e8795949392919061235f565b600060405180830381600087803b158015611ea157600080fd5b505af1158015611eb5573d6000803e3d6000fd5b505050505050505050565b600060208083528351808285015260005b81811015611eed57858101830151858201604001528201611ed1565b506000604082860101526040601f19601f8301168501019250505092915050565b60008060408385031215611f2157600080fd5b50508035926020909101359150565b80356001600160a01b0381168114610fdb57600080fd5b60008060408385031215611f5a57600080fd5b611f6383611f30565b946020939093013593505050565b600080600060608486031215611f8657600080fd5b611f8f84611f30565b9250611f9d60208501611f30565b9150604084013590509250925092565b600060208284031215611fbf57600080fd5b5035919050565b600081518084526020808501945080840160005b83811015611fff5781516001600160a01b031687529582019590820190600101611fda565b509495945050505050565b6020815260006106896020830184611fc6565b6001600160a01b0391909116815260200190565b60006020828403121561204357600080fd5b61068982611f30565b801515811461095357600080fd5b60006020828403121561206c57600080fd5b81356120778161204c565b9392505050565b6000806040838503121561209157600080fd5b61209a83611f30565b91506120a860208401611f30565b90509250929050565b600181811c908216806120c557607f821691505b6020821081036120e557634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052601160045260246000fd5b808202811582820484141761068c5761068c6120eb565b60008261213557634e487b7160e01b600052601260045260246000fd5b500490565b8181038181111561068c5761068c6120eb565b634e487b7160e01b600052603260045260246000fd5b634e487b7160e01b600052603160045260246000fd5b8082018082111561068c5761068c6120eb565b6020808252600f908201526e496e76616c6964206164647265737360881b604082015260600190565b6001600160a01b03929092168252602082015260400190565b80516001600160501b0381168114610fdb57600080fd5b600080600080600060a086880312156121fd57600080fd5b612206866121ce565b9450602086015193506040860151925060608601519150612229608087016121ce565b90509295509295909350565b634e487b7160e01b600052604160045260246000fd5b8281526040602082015260006122646040830184611fc6565b949350505050565b6000602080838503121561227f57600080fd5b82516001600160401b038082111561229657600080fd5b818501915085601f8301126122aa57600080fd5b8151818111156122bc576122bc612235565b8060051b604051601f19603f830116810181811085821117156122e1576122e1612235565b6040529182528482019250838101850191888311156122ff57600080fd5b938501935b8285101561231d57845184529385019392850192612304565b98975050505050505050565b60006001820161233b5761233b6120eb565b5060010190565b60006020828403121561235457600080fd5b81516120778161204c565b85815284602082015260a06040820152600061237e60a0830186611fc6565b6001600160a01b039490941660608301525060800152939250505056feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa164736f6c6343000813000a
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.