ETH Price: $3,312.46 (-4.31%)

Token

ERC20 ***
 

Overview

Max Total Supply

2,596,148,430,276,049.819829637769215361 ERC20 ***

Holders

61

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
527.176166853391738031 ERC20 ***

Value
$0.00
0xce88686553686da562ce7cea497ce749da109f9f
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0x222bc81C...Dea42f163
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
ComposableStablePool

Compiler Version
v0.7.1+commit.f4a555be

Optimization Enabled:
Yes with 800 runs

Other Settings:
default evmVersion
File 1 of 52 : ComposableStablePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-interfaces/contracts/pool-stable/StablePoolUserData.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/standalone-utils/IProtocolFeePercentagesProvider.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IRateProvider.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IVersion.sol";

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ERC20Helpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";

import "@balancer-labs/v2-pool-utils/contracts/BaseGeneralPool.sol";
import "@balancer-labs/v2-pool-utils/contracts/rates/PriceRateCache.sol";

import "./ComposableStablePoolStorage.sol";
import "./ComposableStablePoolRates.sol";
import "./ComposableStablePoolStorage.sol";
import "./ComposableStablePoolRates.sol";
import "./ComposableStablePoolProtocolFees.sol";
import "./StablePoolAmplification.sol";
import "./StableMath.sol";

/**
 * @dev StablePool with preminted BPT and rate providers for each token, allowing for e.g. wrapped tokens with a known
 * price ratio, such as Compound's cTokens.
 *
 * BPT is preminted on Pool initialization and registered as one of the Pool's tokens, allowing for swaps to behave as
 * single-token joins or exits (by swapping a token for BPT). We also support regular joins and exits, which can mint
 * and burn BPT.
 *
 * Preminted BPT is deposited in the Vault as the initial balance of the Pool, and doesn't belong to any entity until
 * transferred out of the Pool. The Pool's arithmetic behaves as if it didn't exist, and the BPT total supply is not
 * a useful value: we rely on the 'virtual supply' (how much BPT is actually owned outside the Vault) instead.
 */
contract ComposableStablePool is
    IRateProvider,
    IVersion,
    BaseGeneralPool,
    StablePoolAmplification,
    ComposableStablePoolRates,
    ComposableStablePoolProtocolFees
{
    using FixedPoint for uint256;
    using PriceRateCache for bytes32;
    using StablePoolUserData for bytes;
    using BasePoolUserData for bytes;

    // The maximum imposed by the Vault, which stores balances in a packed format, is 2**(112) - 1.
    // We are preminting half of that value (rounded up).
    uint256 private constant _PREMINTED_TOKEN_BALANCE = 2**(111);

    string private _version;

    // The constructor arguments are received in a struct to work around stack-too-deep issues
    struct NewPoolParams {
        IVault vault;
        IProtocolFeePercentagesProvider protocolFeeProvider;
        string name;
        string symbol;
        IERC20[] tokens;
        IRateProvider[] rateProviders;
        uint256[] tokenRateCacheDurations;
        bool[] exemptFromYieldProtocolFeeFlags;
        uint256 amplificationParameter;
        uint256 swapFeePercentage;
        uint256 pauseWindowDuration;
        uint256 bufferPeriodDuration;
        address owner;
        string version;
    }

    constructor(NewPoolParams memory params)
        BasePool(
            params.vault,
            IVault.PoolSpecialization.GENERAL,
            params.name,
            params.symbol,
            _insertSorted(params.tokens, IERC20(this)),
            new address[](params.tokens.length + 1),
            params.swapFeePercentage,
            params.pauseWindowDuration,
            params.bufferPeriodDuration,
            params.owner
        )
        StablePoolAmplification(params.amplificationParameter)
        ComposableStablePoolStorage(_extractStorageParams(params))
        ComposableStablePoolRates(_extractRatesParams(params))
        ProtocolFeeCache(params.protocolFeeProvider, ProtocolFeeCache.DELEGATE_PROTOCOL_SWAP_FEES_SENTINEL)
    {
        _version = params.version;
    }

    // Translate parameters to avoid stack-too-deep issues in the constructor
    function _extractRatesParams(NewPoolParams memory params)
        private
        pure
        returns (ComposableStablePoolRates.RatesParams memory)
    {
        return
            ComposableStablePoolRates.RatesParams({
                tokens: params.tokens,
                rateProviders: params.rateProviders,
                tokenRateCacheDurations: params.tokenRateCacheDurations
            });
    }

    // Translate parameters to avoid stack-too-deep issues in the constructor
    function _extractStorageParams(NewPoolParams memory params)
        private
        view
        returns (ComposableStablePoolStorage.StorageParams memory)
    {
        return
            ComposableStablePoolStorage.StorageParams({
                registeredTokens: _insertSorted(params.tokens, IERC20(this)),
                tokenRateProviders: params.rateProviders,
                exemptFromYieldProtocolFeeFlags: params.exemptFromYieldProtocolFeeFlags
            });
    }

    function version() external view override returns (string memory) {
        return _version;
    }

    /**
     * @notice Return the minimum BPT balance, required to avoid minimum token balances.
     * @dev This amount is minted and immediately burned on pool initialization, so that the total supply
     * (and therefore post-exit token balances), can never be zero. This keeps the math well-behaved when
     * liquidity is low. (It also provides an easy way to check whether a pool has been initialized, to
     * ensure this is only done once.)
     */
    function getMinimumBpt() external pure returns (uint256) {
        return _getMinimumBpt();
    }

    // BasePool hook

    /**
     * @dev Override base pool hook invoked before any swap, join, or exit to ensure rates are updated before
     * the operation.
     */
    function _beforeSwapJoinExit() internal override {
        super._beforeSwapJoinExit();

        // Before the scaling factors are read, we must update the cached rates, as those will be used to compute the
        // scaling factors.
        // Note that this is not done in a recovery mode exit (since _beforeSwapjoinExit() is not called under those
        // conditions), but this is fine as recovery mode exits are unaffected by scaling factors anyway.
        _cacheTokenRatesIfNecessary();
    }

    // Swap Hooks

    /**
     * @dev Override this hook called by the base class `onSwap`, to check whether we are doing a regular swap,
     * or a swap involving BPT, which is equivalent to a single token join or exit. Since one of the Pool's
     * tokens is the preminted BPT, we need to handle swaps where BPT is involved separately.
     *
     * At this point, the balances are unscaled. The indices are coming from the Vault, so they are indices into
     * the array of registered tokens (including BPT).
     *
     * If this is a swap involving BPT, call `_swapWithBpt`, which computes the amountOut using the swapFeePercentage
     * and charges protocol fees, in the same manner as single token join/exits. Otherwise, perform the default
     * processing for a regular swap.
     */
    function _swapGivenIn(
        SwapRequest memory swapRequest,
        uint256[] memory registeredBalances,
        uint256 registeredIndexIn,
        uint256 registeredIndexOut,
        uint256[] memory scalingFactors
    ) internal virtual override returns (uint256) {
        return
            (swapRequest.tokenIn == IERC20(this) || swapRequest.tokenOut == IERC20(this))
                ? _swapWithBpt(swapRequest, registeredBalances, registeredIndexIn, registeredIndexOut, scalingFactors)
                : super._swapGivenIn(
                    swapRequest,
                    registeredBalances,
                    registeredIndexIn,
                    registeredIndexOut,
                    scalingFactors
                );
    }

    /**
     * @dev Override this hook called by the base class `onSwap`, to check whether we are doing a regular swap,
     * or a swap involving BPT, which is equivalent to a single token join or exit. Since one of the Pool's
     * tokens is the preminted BPT, we need to handle swaps where BPT is involved separately.
     *
     * At this point, the balances are unscaled. The indices and balances are coming from the Vault, so they
     * refer to the full set of registered tokens (including BPT).
     *
     * If this is a swap involving BPT, call `_swapWithBpt`, which computes the amountOut using the swapFeePercentage
     * and charges protocol fees, in the same manner as single token join/exits. Otherwise, perform the default
     * processing for a regular swap.
     */
    function _swapGivenOut(
        SwapRequest memory swapRequest,
        uint256[] memory registeredBalances,
        uint256 registeredIndexIn,
        uint256 registeredIndexOut,
        uint256[] memory scalingFactors
    ) internal virtual override returns (uint256) {
        return
            (swapRequest.tokenIn == IERC20(this) || swapRequest.tokenOut == IERC20(this))
                ? _swapWithBpt(swapRequest, registeredBalances, registeredIndexIn, registeredIndexOut, scalingFactors)
                : super._swapGivenOut(
                    swapRequest,
                    registeredBalances,
                    registeredIndexIn,
                    registeredIndexOut,
                    scalingFactors
                );
    }

    /**
     * @dev This is called from the base class `_swapGivenIn`, so at this point the amount has been adjusted
     * for swap fees, and balances have had scaling applied. This will only be called for regular (non-BPT) swaps,
     * so forward to `onRegularSwap`.
     */
    function _onSwapGivenIn(
        SwapRequest memory request,
        uint256[] memory registeredBalances,
        uint256 registeredIndexIn,
        uint256 registeredIndexOut
    ) internal virtual override returns (uint256) {
        return
            _onRegularSwap(
                true, // given in
                request.amount,
                registeredBalances,
                registeredIndexIn,
                registeredIndexOut
            );
    }

    /**
     * @dev This is called from the base class `_swapGivenOut`, so at this point the amount has been adjusted
     * for swap fees, and balances have had scaling applied. This will only be called for regular (non-BPT) swaps,
     * so forward to `onRegularSwap`.
     */
    function _onSwapGivenOut(
        SwapRequest memory request,
        uint256[] memory registeredBalances,
        uint256 registeredIndexIn,
        uint256 registeredIndexOut
    ) internal virtual override returns (uint256) {
        return
            _onRegularSwap(
                false, // given out
                request.amount,
                registeredBalances,
                registeredIndexIn,
                registeredIndexOut
            );
    }

    /**
     * @dev Perform a swap between non-BPT tokens. Scaling and fee adjustments have been performed upstream, so
     * all we need to do here is calculate the price quote, depending on the direction of the swap.
     */
    function _onRegularSwap(
        bool isGivenIn,
        uint256 amountGiven,
        uint256[] memory registeredBalances,
        uint256 registeredIndexIn,
        uint256 registeredIndexOut
    ) private view returns (uint256) {
        // Adjust indices and balances for BPT token
        uint256[] memory balances = _dropBptItem(registeredBalances);
        uint256 indexIn = _skipBptIndex(registeredIndexIn);
        uint256 indexOut = _skipBptIndex(registeredIndexOut);

        (uint256 currentAmp, ) = _getAmplificationParameter();
        uint256 invariant = StableMath._calculateInvariant(currentAmp, balances);

        if (isGivenIn) {
            return StableMath._calcOutGivenIn(currentAmp, balances, indexIn, indexOut, amountGiven, invariant);
        } else {
            return StableMath._calcInGivenOut(currentAmp, balances, indexIn, indexOut, amountGiven, invariant);
        }
    }

    /**
     * @dev Perform a swap involving the BPT token, equivalent to a single-token join or exit. As with the standard
     * joins and swaps, we first pay any protocol fees pending from swaps that occurred since the previous join or
     * exit, then perform the operation (joinSwap or exitSwap), and finally store the "post operation" invariant and
     * amp, which establishes the new basis for protocol fees.
     *
     * At this point, the scaling factors (including rates) have been computed by the base class, but not yet applied
     * to the balances.
     */
    function _swapWithBpt(
        SwapRequest memory swapRequest,
        uint256[] memory registeredBalances,
        uint256 registeredIndexIn,
        uint256 registeredIndexOut,
        uint256[] memory scalingFactors
    ) private returns (uint256) {
        bool isGivenIn = swapRequest.kind == IVault.SwapKind.GIVEN_IN;

        _upscaleArray(registeredBalances, scalingFactors);
        swapRequest.amount = _upscale(
            swapRequest.amount,
            scalingFactors[isGivenIn ? registeredIndexIn : registeredIndexOut]
        );

        (
            uint256 preJoinExitSupply,
            uint256[] memory balances,
            uint256 currentAmp,
            uint256 preJoinExitInvariant
        ) = _beforeJoinExit(registeredBalances);

        // These calls mutate `balances` so that it holds the post join-exit balances.
        (uint256 amountCalculated, uint256 postJoinExitSupply) = registeredIndexOut == getBptIndex()
            ? _doJoinSwap(
                isGivenIn,
                swapRequest.amount,
                balances,
                _skipBptIndex(registeredIndexIn),
                currentAmp,
                preJoinExitSupply,
                preJoinExitInvariant
            )
            : _doExitSwap(
                isGivenIn,
                swapRequest.amount,
                balances,
                _skipBptIndex(registeredIndexOut),
                currentAmp,
                preJoinExitSupply,
                preJoinExitInvariant
            );

        _updateInvariantAfterJoinExit(
            currentAmp,
            balances,
            preJoinExitInvariant,
            preJoinExitSupply,
            postJoinExitSupply
        );

        return
            isGivenIn
                ? _downscaleDown(amountCalculated, scalingFactors[registeredIndexOut]) // Amount out, round down
                : _downscaleUp(amountCalculated, scalingFactors[registeredIndexIn]); // Amount in, round up
    }

    /**
     * @dev This mutates `balances` so that they become the post-joinswap balances. The StableMath interfaces
     * are different depending on the swap direction, so we forward to the appropriate low-level join function.
     */
    function _doJoinSwap(
        bool isGivenIn,
        uint256 amount,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 currentAmp,
        uint256 actualSupply,
        uint256 preJoinExitInvariant
    ) internal view returns (uint256, uint256) {
        return
            isGivenIn
                ? _joinSwapExactTokenInForBptOut(
                    amount,
                    balances,
                    indexIn,
                    currentAmp,
                    actualSupply,
                    preJoinExitInvariant
                )
                : _joinSwapExactBptOutForTokenIn(
                    amount,
                    balances,
                    indexIn,
                    currentAmp,
                    actualSupply,
                    preJoinExitInvariant
                );
    }

    /**
     * @dev Since this is a join, we know the tokenOut is BPT. Since it is GivenIn, we know the tokenIn amount,
     * and must calculate the BPT amount out.
     * We are moving preminted BPT out of the Vault, which increases the virtual supply.
     */
    function _joinSwapExactTokenInForBptOut(
        uint256 amountIn,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 currentAmp,
        uint256 actualSupply,
        uint256 preJoinExitInvariant
    ) internal view returns (uint256, uint256) {
        // The StableMath function was created with joins in mind, so it expects a full amounts array. We create an
        // empty one and only set the amount for the token involved.
        uint256[] memory amountsIn = new uint256[](balances.length);
        amountsIn[indexIn] = amountIn;

        uint256 bptOut = StableMath._calcBptOutGivenExactTokensIn(
            currentAmp,
            balances,
            amountsIn,
            actualSupply,
            preJoinExitInvariant,
            getSwapFeePercentage()
        );

        balances[indexIn] = balances[indexIn].add(amountIn);
        uint256 postJoinExitSupply = actualSupply.add(bptOut);

        return (bptOut, postJoinExitSupply);
    }

    /**
     * @dev Since this is a join, we know the tokenOut is BPT. Since it is GivenOut, we know the BPT amount,
     * and must calculate the token amount in.
     * We are moving preminted BPT out of the Vault, which increases the virtual supply.
     */
    function _joinSwapExactBptOutForTokenIn(
        uint256 bptOut,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 currentAmp,
        uint256 actualSupply,
        uint256 preJoinExitInvariant
    ) internal view returns (uint256, uint256) {
        uint256 amountIn = StableMath._calcTokenInGivenExactBptOut(
            currentAmp,
            balances,
            indexIn,
            bptOut,
            actualSupply,
            preJoinExitInvariant,
            getSwapFeePercentage()
        );

        balances[indexIn] = balances[indexIn].add(amountIn);
        uint256 postJoinExitSupply = actualSupply.add(bptOut);

        return (amountIn, postJoinExitSupply);
    }

    /**
     * @dev This mutates balances so that they become the post-exitswap balances. The StableMath interfaces are
     * different depending on the swap direction, so we forward to the appropriate low-level exit function.
     */
    function _doExitSwap(
        bool isGivenIn,
        uint256 amount,
        uint256[] memory balances,
        uint256 indexOut,
        uint256 currentAmp,
        uint256 actualSupply,
        uint256 preJoinExitInvariant
    ) internal view returns (uint256, uint256) {
        return
            isGivenIn
                ? _exitSwapExactBptInForTokenOut(
                    amount,
                    balances,
                    indexOut,
                    currentAmp,
                    actualSupply,
                    preJoinExitInvariant
                )
                : _exitSwapExactTokenOutForBptIn(
                    amount,
                    balances,
                    indexOut,
                    currentAmp,
                    actualSupply,
                    preJoinExitInvariant
                );
    }

    /**
     * @dev Since this is an exit, we know the tokenIn is BPT. Since it is GivenIn, we know the BPT amount,
     * and must calculate the token amount out.
     * We are moving BPT out of circulation and into the Vault, which decreases the virtual supply.
     */
    function _exitSwapExactBptInForTokenOut(
        uint256 bptAmount,
        uint256[] memory balances,
        uint256 indexOut,
        uint256 currentAmp,
        uint256 actualSupply,
        uint256 preJoinExitInvariant
    ) internal view returns (uint256, uint256) {
        uint256 amountOut = StableMath._calcTokenOutGivenExactBptIn(
            currentAmp,
            balances,
            indexOut,
            bptAmount,
            actualSupply,
            preJoinExitInvariant,
            getSwapFeePercentage()
        );

        balances[indexOut] = balances[indexOut].sub(amountOut);
        uint256 postJoinExitSupply = actualSupply.sub(bptAmount);

        return (amountOut, postJoinExitSupply);
    }

    /**
     * @dev Since this is an exit, we know the tokenIn is BPT. Since it is GivenOut, we know the token amount out,
     * and must calculate the BPT amount in.
     * We are moving BPT out of circulation and into the Vault, which decreases the virtual supply.
     */
    function _exitSwapExactTokenOutForBptIn(
        uint256 amountOut,
        uint256[] memory balances,
        uint256 indexOut,
        uint256 currentAmp,
        uint256 actualSupply,
        uint256 preJoinExitInvariant
    ) internal view returns (uint256, uint256) {
        // The StableMath function was created with exits in mind, so it expects a full amounts array. We create an
        // empty one and only set the amount for the token involved.
        uint256[] memory amountsOut = new uint256[](balances.length);
        amountsOut[indexOut] = amountOut;

        uint256 bptAmount = StableMath._calcBptInGivenExactTokensOut(
            currentAmp,
            balances,
            amountsOut,
            actualSupply,
            preJoinExitInvariant,
            getSwapFeePercentage()
        );

        balances[indexOut] = balances[indexOut].sub(amountOut);
        uint256 postJoinExitSupply = actualSupply.sub(bptAmount);

        return (bptAmount, postJoinExitSupply);
    }

    // Join Hooks

    /**
     * Since this Pool has preminted BPT which is stored in the Vault, it cannot simply be minted at construction.
     *
     * We take advantage of the fact that StablePools have an initialization step where BPT is minted to the first
     * account joining them, and perform both actions at once. By minting the entire BPT supply for the initial joiner
     * and then pulling all tokens except those due the joiner, we arrive at the desired state of the Pool holding all
     * BPT except the joiner's.
     */
    function _onInitializePool(
        bytes32,
        address sender,
        address,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal override returns (uint256, uint256[] memory) {
        StablePoolUserData.JoinKind kind = userData.joinKind();
        _require(kind == StablePoolUserData.JoinKind.INIT, Errors.UNINITIALIZED);

        // AmountsIn usually does not include the BPT token; initialization is the one time it has to.
        uint256[] memory amountsInIncludingBpt = userData.initialAmountsIn();
        InputHelpers.ensureInputLengthMatch(amountsInIncludingBpt.length, scalingFactors.length);
        _upscaleArray(amountsInIncludingBpt, scalingFactors);

        (uint256 amp, ) = _getAmplificationParameter();
        uint256[] memory amountsIn = _dropBptItem(amountsInIncludingBpt);
        uint256 invariantAfterJoin = StableMath._calculateInvariant(amp, amountsIn);

        // Set the initial BPT to the value of the invariant
        uint256 bptAmountOut = invariantAfterJoin;

        // BasePool will mint bptAmountOut for the sender: we then also mint the remaining BPT to make up the total
        // supply, and have the Vault pull those tokens from the sender as part of the join.
        // We are only minting half of the maximum value - already an amount many orders of magnitude greater than any
        // conceivable real liquidity - to allow for minting new BPT as a result of regular joins.
        //
        // Note that the sender need not approve BPT for the Vault as the Vault already has infinite BPT allowance for
        // all accounts.
        uint256 initialBpt = _PREMINTED_TOKEN_BALANCE.sub(bptAmountOut);

        _mintPoolTokens(sender, initialBpt);
        amountsInIncludingBpt[getBptIndex()] = initialBpt;

        // Initialization is still a join, so we need to do post-join work.
        _updatePostJoinExit(amp, invariantAfterJoin);

        return (bptAmountOut, amountsInIncludingBpt);
    }

    /**
     * @dev Base pool hook called from `onJoinPool`. Forward to `onJoinExitPool` with `isJoin` set to true.
     */
    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory registeredBalances,
        uint256,
        uint256,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal override returns (uint256, uint256[] memory) {
        return _onJoinExitPool(true, registeredBalances, scalingFactors, userData);
    }

    /**
     * @dev Base pool hook called from `onExitPool`. Forward to `onJoinExitPool` with `isJoin` set to false.
     * Note that recovery mode exits do not call `_onExitPool`.
     */
    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory registeredBalances,
        uint256,
        uint256,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal override returns (uint256, uint256[] memory) {
        return _onJoinExitPool(false, registeredBalances, scalingFactors, userData);
    }

    /**
     * @dev Pay protocol fees before the operation, and call `_updateInvariantAfterJoinExit` afterward, to establish
     * the new basis for protocol fees.
     */
    function _onJoinExitPool(
        bool isJoin,
        uint256[] memory registeredBalances,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal returns (uint256, uint256[] memory) {
        (
            uint256 preJoinExitSupply,
            uint256[] memory balances,
            uint256 currentAmp,
            uint256 preJoinExitInvariant
        ) = _beforeJoinExit(registeredBalances);


            function(uint256[] memory, uint256, uint256, uint256, uint256[] memory, bytes memory)
                internal
                view
                returns (uint256, uint256[] memory) _doJoinOrExit
         = (isJoin ? _doJoin : _doExit);

        (uint256 bptAmount, uint256[] memory amountsDelta) = _doJoinOrExit(
            balances,
            currentAmp,
            preJoinExitSupply,
            preJoinExitInvariant,
            scalingFactors,
            userData
        );

        // Unlike joinswaps, explicit joins do not mutate balances into the post join-exit balances so we must perform
        // this mutation here.
        function(uint256, uint256) internal pure returns (uint256) _addOrSub = isJoin ? FixedPoint.add : FixedPoint.sub;
        _mutateAmounts(balances, amountsDelta, _addOrSub);
        uint256 postJoinExitSupply = _addOrSub(preJoinExitSupply, bptAmount);

        // Pass in the post-join balances to reset the protocol fee basis.
        // We are minting bptAmount, increasing the total (and virtual) supply post-join
        _updateInvariantAfterJoinExit(
            currentAmp,
            balances,
            preJoinExitInvariant,
            preJoinExitSupply,
            postJoinExitSupply
        );

        // For clarity and simplicity, arrays used and computed in lower level functions do not include BPT.
        // But the amountsIn array passed back to the Vault must include BPT, so we add it back in here.
        return (bptAmount, _addBptItem(amountsDelta, 0));
    }

    /**
     * @dev Pay any due protocol fees and calculate values necessary for performing the join/exit.
     */
    function _beforeJoinExit(uint256[] memory registeredBalances)
        internal
        returns (
            uint256,
            uint256[] memory,
            uint256,
            uint256
        )
    {
        (uint256 lastJoinExitAmp, uint256 lastPostJoinExitInvariant) = getLastJoinExitData();
        (
            uint256 preJoinExitSupply,
            uint256[] memory balances,
            uint256 oldAmpPreJoinExitInvariant
        ) = _payProtocolFeesBeforeJoinExit(registeredBalances, lastJoinExitAmp, lastPostJoinExitInvariant);

        // If the amplification factor is the same as it was during the last join/exit then we can reuse the
        // value calculated using the "old" amplification factor. If not, then we have to calculate this now.
        (uint256 currentAmp, ) = _getAmplificationParameter();
        uint256 preJoinExitInvariant = currentAmp == lastJoinExitAmp
            ? oldAmpPreJoinExitInvariant
            : StableMath._calculateInvariant(currentAmp, balances);

        return (preJoinExitSupply, balances, currentAmp, preJoinExitInvariant);
    }

    /**
     * @dev Support single- and multi-token joins, plus explicit proportional joins.
     */
    function _doJoin(
        uint256[] memory balances,
        uint256 currentAmp,
        uint256 preJoinExitSupply,
        uint256 preJoinExitInvariant,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal view returns (uint256, uint256[] memory) {
        StablePoolUserData.JoinKind kind = userData.joinKind();
        if (kind == StablePoolUserData.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
            return
                _joinExactTokensInForBPTOut(
                    preJoinExitSupply,
                    preJoinExitInvariant,
                    currentAmp,
                    balances,
                    scalingFactors,
                    userData
                );
        } else if (kind == StablePoolUserData.JoinKind.ALL_TOKENS_IN_FOR_EXACT_BPT_OUT) {
            return _joinAllTokensInForExactBptOut(preJoinExitSupply, balances, userData);
        } else if (kind == StablePoolUserData.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
            return _joinTokenInForExactBPTOut(preJoinExitSupply, preJoinExitInvariant, currentAmp, balances, userData);
        } else {
            _revert(Errors.UNHANDLED_JOIN_KIND);
        }
    }

    /**
     * @dev Proportional join. Pays no swap fees.
     */
    function _joinAllTokensInForExactBptOut(
        uint256 actualSupply,
        uint256[] memory balances,
        bytes memory userData
    ) private pure returns (uint256, uint256[] memory) {
        uint256 bptAmountOut = userData.allTokensInForExactBptOut();
        uint256[] memory amountsIn = StableMath._computeProportionalAmountsIn(balances, bptAmountOut, actualSupply);

        return (bptAmountOut, amountsIn);
    }

    /**
     * @dev Multi-token join. Joins with proportional amounts will pay no protocol fees.
     */
    function _joinExactTokensInForBPTOut(
        uint256 actualSupply,
        uint256 preJoinExitInvariant,
        uint256 currentAmp,
        uint256[] memory balances,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
        InputHelpers.ensureInputLengthMatch(balances.length, amountsIn.length);

        // The user-provided amountsIn is unscaled, so we address that.
        _upscaleArray(amountsIn, _dropBptItem(scalingFactors));

        uint256 bptAmountOut = StableMath._calcBptOutGivenExactTokensIn(
            currentAmp,
            balances,
            amountsIn,
            actualSupply,
            preJoinExitInvariant,
            getSwapFeePercentage()
        );

        _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);

        return (bptAmountOut, amountsIn);
    }

    /**
     * @dev Single-token join, equivalent to swapping a pool token for BPT.
     */
    function _joinTokenInForExactBPTOut(
        uint256 actualSupply,
        uint256 preJoinExitInvariant,
        uint256 currentAmp,
        uint256[] memory balances,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        // Since this index is sent in from the user, we interpret it as NOT including the BPT token.
        (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
        // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.

        // Balances are passed through from the Vault hook, and include BPT
        _require(tokenIndex < balances.length, Errors.OUT_OF_BOUNDS);

        // We join with a single token, so initialize amountsIn with zeros.
        uint256[] memory amountsIn = new uint256[](balances.length);

        // And then assign the result to the selected token.
        amountsIn[tokenIndex] = StableMath._calcTokenInGivenExactBptOut(
            currentAmp,
            balances,
            tokenIndex,
            bptAmountOut,
            actualSupply,
            preJoinExitInvariant,
            getSwapFeePercentage()
        );

        return (bptAmountOut, amountsIn);
    }

    // Exit Hooks

    /**
     * @dev Support single- and multi-token exits, plus explicit proportional exits (in addition to the
     * recovery mode exit).
     */
    function _doExit(
        uint256[] memory balances,
        uint256 currentAmp,
        uint256 preJoinExitSupply,
        uint256 preJoinExitInvariant,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal view returns (uint256, uint256[] memory) {
        StablePoolUserData.ExitKind kind = userData.exitKind();
        if (kind == StablePoolUserData.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) {
            return
                _exitBPTInForExactTokensOut(
                    preJoinExitSupply,
                    preJoinExitInvariant,
                    currentAmp,
                    balances,
                    scalingFactors,
                    userData
                );
        } else if (kind == StablePoolUserData.ExitKind.EXACT_BPT_IN_FOR_ALL_TOKENS_OUT) {
            return _exitExactBPTInForTokensOut(preJoinExitSupply, balances, userData);
        } else if (kind == StablePoolUserData.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
            return _exitExactBPTInForTokenOut(preJoinExitSupply, preJoinExitInvariant, currentAmp, balances, userData);
        } else {
            _revert(Errors.UNHANDLED_EXIT_KIND);
        }
    }

    /**
     * @dev Proportional exit. Pays no swap fees. This is functionally equivalent to the recovery mode exit,
     * except this doesn't skip protocol fee collection, calling rate providers, etc., and doesn't require
     * recovery mode to be enabled.
     */
    function _exitExactBPTInForTokensOut(
        uint256 actualSupply,
        uint256[] memory balances,
        bytes memory userData
    ) private pure returns (uint256, uint256[] memory) {
        uint256 bptAmountIn = userData.exactBptInForTokensOut();
        uint256[] memory amountsOut = _computeProportionalAmountsOut(balances, actualSupply, bptAmountIn);

        return (bptAmountIn, amountsOut);
    }

    /**
     * @dev Multi-token exit. Proportional exits will pay no protocol fees.
     */
    function _exitBPTInForExactTokensOut(
        uint256 actualSupply,
        uint256 preJoinExitInvariant,
        uint256 currentAmp,
        uint256[] memory balances,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
        InputHelpers.ensureInputLengthMatch(amountsOut.length, balances.length);

        // The user-provided amountsIn is unscaled, so we address that.
        _upscaleArray(amountsOut, _dropBptItem(scalingFactors));

        uint256 bptAmountIn = StableMath._calcBptInGivenExactTokensOut(
            currentAmp,
            balances,
            amountsOut,
            actualSupply,
            preJoinExitInvariant,
            getSwapFeePercentage()
        );
        _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);

        return (bptAmountIn, amountsOut);
    }

    /**
     * @dev Single-token exit, equivalent to swapping BPT for a pool token.
     */
    function _exitExactBPTInForTokenOut(
        uint256 actualSupply,
        uint256 preJoinExitInvariant,
        uint256 currentAmp,
        uint256[] memory balances,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        // Since this index is sent in from the user, we interpret it as NOT including the BPT token
        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        _require(tokenIndex < balances.length, Errors.OUT_OF_BOUNDS);

        // We exit in a single token, so initialize amountsOut with zeros
        uint256[] memory amountsOut = new uint256[](balances.length);

        // And then assign the result to the selected token.
        amountsOut[tokenIndex] = StableMath._calcTokenOutGivenExactBptIn(
            currentAmp,
            balances,
            tokenIndex,
            bptAmountIn,
            actualSupply,
            preJoinExitInvariant,
            getSwapFeePercentage()
        );

        return (bptAmountIn, amountsOut);
    }

    /**
     * @dev We cannot use the default RecoveryMode implementation here, since we need to account for the BPT token.
     */
    function _doRecoveryModeExit(
        uint256[] memory registeredBalances,
        uint256,
        bytes memory userData
    ) internal virtual override returns (uint256, uint256[] memory) {
        // Since this Pool uses preminted BPT, we need to replace the total supply with the virtual total supply, and
        // adjust the balances array by removing BPT from it.
        // Note that we don't compute the actual supply, which would require a lot of complex calculations and
        // interactions with external components. This is fine because virtual and actual supply are the same while
        // recovery mode is enabled (since all protocol fees are forfeit and the fee percentages zeroed out).
        (uint256 virtualSupply, uint256[] memory balances) = _dropBptItemFromBalances(registeredBalances);

        (uint256 bptAmountIn, uint256[] memory amountsOut) = super._doRecoveryModeExit(
            balances,
            virtualSupply,
            userData
        );

        // The vault requires an array including BPT, so add it back in here.
        return (bptAmountIn, _addBptItem(amountsOut, 0));
    }

    // BPT rate

    /**
     * Many functions require accessing multiple internal values that might at first seem unrelated, but are actually
     * quite intertwined, and computed at the same time for optimal performance (since calculating some of them also
     * yields intermediate results useful for other queries). This helper function returns many of these values,
     * greatly reducing bytecode size.
     *
     * The return values are:
     *  @return balances - The current upscaled token balances (not including BPT)
     *  @return virtualSupply - The Pool's virtual supply
     *  @return protocolFeeAmount - The amount of unpaid protocol fees in BPT
     *  @return lastJoinExitAmp - The Pool's amplification factor at the last join or exit operation
     *  @return currentInvariantWithLastJoinExitAmp - The invariant of the current balances, calculated using the
     *  amplification factor at the last join or exit operation.
     */
    function _getSupplyAndFeesData()
        private
        view
        returns (
            uint256[] memory balances,
            uint256 virtualSupply,
            uint256 protocolFeeAmount,
            uint256 lastJoinExitAmp,
            uint256 currentInvariantWithLastJoinExitAmp
        )
    {
        // First we query the Vault for current registered balances (which includes preminted BPT), to then calculate
        // the current scaled balances and virtual supply.
        (, uint256[] memory registeredBalances, ) = getVault().getPoolTokens(getPoolId());
        _upscaleArray(registeredBalances, _scalingFactors());
        (virtualSupply, balances) = _dropBptItemFromBalances(registeredBalances);

        // Now we need to calculate any BPT due in the form of protocol fees. This requires data from the last join or
        // exit operation. `lastJoinExitAmp` can be useful in the scenario in which the amplification factor has not
        // changed, meaning this old value is equal to the current value.
        uint256 lastPostJoinExitInvariant;
        (lastJoinExitAmp, lastPostJoinExitInvariant) = getLastJoinExitData();

        // Computing the protocol ownership percentage also yields the invariant using the old amplification factor. If
        // it has not changed, then this is also the current invariant.
        uint256 expectedProtocolOwnershipPercentage;
        (
            expectedProtocolOwnershipPercentage,
            currentInvariantWithLastJoinExitAmp
        ) = _getProtocolPoolOwnershipPercentage(balances, lastJoinExitAmp, lastPostJoinExitInvariant);

        protocolFeeAmount = ProtocolFees.bptForPoolOwnershipPercentage(
            virtualSupply,
            expectedProtocolOwnershipPercentage
        );
    }

    /**
     * @dev This function returns the appreciation of BPT relative to the underlying tokens, as an 18 decimal fixed
     * point number. It is simply the ratio of the invariant to the BPT supply.
     *
     * The total supply is initialized to equal the invariant, so this value starts at one. During Pool operation the
     * invariant always grows and shrinks either proportionally to the total supply (in scenarios with no price impact,
     * e.g. proportional joins), or grows faster and shrinks more slowly than it (whenever swap fees are collected or
     * the token rates increase). Therefore, the rate is a monotonically increasing function.
     *
     * WARNING: since this function reads balances directly from the Vault, it is potentially subject to manipulation
     * via reentrancy if called within a Vault context (i.e. in the middle of a join or an exit). It is up to the
     * caller to ensure that the function is safe to call.
     *
     * This may happen e.g. if one of the tokens in the Pool contains some form of callback behavior in the
     * `transferFrom` function (like ERC777 tokens do). These tokens are strictly incompatible with the
     * Vault and Pool design, and are not safe to be used.
     *
     * There are also other situations where calling this function is unsafe. See
     * https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
     *
     * To call this function safely, attempt to trigger the reentrancy guard in the Vault by calling a non-reentrant
     * function before calling `getRate`. That will make the transaction revert in an unsafe context.
     * (See `whenNotInVaultContext` in `ComposableStablePoolRates`).
     */
    function getRate() external view virtual override returns (uint256) {
        // We need to compute the current invariant and actual total supply. The latter includes protocol fees that have
        // accrued but are not yet minted: in calculating these we'll actually end up fetching most of the data we need
        // for the invariant.

        (
            uint256[] memory balances,
            uint256 virtualSupply,
            uint256 protocolFeeAmount,
            uint256 lastJoinExitAmp,
            uint256 currentInvariantWithLastJoinExitAmp
        ) = _getSupplyAndFeesData();

        // Due protocol fees will be minted at the next join or exit, so we can simply add them to the current virtual
        // supply to get the actual supply.
        uint256 actualTotalSupply = virtualSupply.add(protocolFeeAmount);

        // All that's missing now is the invariant. We have the balances required to calculate it already, but still
        // need the current amplification factor.
        (uint256 currentAmp, ) = _getAmplificationParameter();

        // It turns out that the process for due protocol fee calculation involves computing the current invariant,
        // except using the amplification factor at the last join or exit. This would typically not be terribly useful,
        // but since the amplification factor only changes rarely there is high probability of its current value being
        // the same as it was in the last join or exit. If that is the case, then we can skip the costly invariant
        // computation altogether.
        uint256 currentInvariant = (currentAmp == lastJoinExitAmp)
            ? currentInvariantWithLastJoinExitAmp
            : StableMath._calculateInvariant(currentAmp, balances);

        // With the current invariant and actual total supply, we can compute the rate as a fixed-point number.
        return currentInvariant.divDown(actualTotalSupply);
    }

    /**
     * @dev Returns the effective BPT supply.
     *
     * In other pools, this would be the same as `totalSupply`, but there are two key differences here:
     *  - this pool pre-mints BPT and holds it in the Vault as a token, and as such we need to subtract the Vault's
     *    balance to get the total "circulating supply". This is called the 'virtualSupply'.
     *  - the Pool owes debt to the Protocol in the form of unminted BPT, which will be minted immediately before the
     *    next join or exit. We need to take these into account since, even if they don't yet exist, they will
     *    effectively be included in any Pool operation that involves BPT.
     *
     * In the vast majority of cases, this function should be used instead of `totalSupply()`.
     *
     * **IMPORTANT NOTE**: calling this function within a Vault context (i.e. in the middle of a join or an exit) is
     * potentially unsafe, since the returned value is manipulable. It is up to the caller to ensure safety.
     *
     * This is because this function calculates the invariant, which requires the state of the pool to be in sync
     * with the state of the Vault. That condition may not be true in the middle of a join or an exit.
     *
     * To call this function safely, attempt to trigger the reentrancy guard in the Vault by calling a non-reentrant
     * function before calling `getActualSupply`. That will make the transaction revert in an unsafe context.
     * (See `whenNotInVaultContext` in `ComposableStablePoolRates`).
     *
     * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
     */
    function getActualSupply() external view returns (uint256) {
        (, uint256 virtualSupply, uint256 protocolFeeAmount, , ) = _getSupplyAndFeesData();
        return virtualSupply.add(protocolFeeAmount);
    }

    /**
     * @dev This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
     *
     * This function depends on the invariant value, which may be calculated incorrectly in the middle of a join or
     * an exit, because the state of the pool could be out of sync with the state of the Vault. The modifier
     * `whenNotInVaultContext` prevents calling this function (and in turn, the external
     * `updateProtocolFeePercentageCache`) in such a context.
     *
     * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
     */
    function _beforeProtocolFeeCacheUpdate() internal override whenNotInVaultContext {
        // The `getRate()` function depends on the actual supply, which in turn depends on the cached protocol fee
        // percentages. Changing these would therefore result in the rate changing, which is not acceptable as this is a
        // sensitive value.
        // Because of this, we pay any due protocol fees *before* updating the cache, making it so that the new
        // percentages only affect future operation of the Pool, and not past fees. As a result, `getRate()` is
        // unaffected by the cached protocol fee percentages changing.

        // Given that this operation is state-changing and relatively complex, we only allow it as long as the Pool is
        // not paused.
        _ensureNotPaused();

        // We need to calculate the amount of unminted BPT that represents protocol fees to then pay those. This yields
        // some auxiliary values that turn out to also be useful for the rest of the tasks we want to perform.
        (
            uint256[] memory balances,
            ,
            uint256 protocolFeeAmount,
            uint256 lastJoinExitAmp,
            uint256 currentInvariantWithLastJoinExitAmp
        ) = _getSupplyAndFeesData();

        if (protocolFeeAmount > 0) {
            _payProtocolFees(protocolFeeAmount);
        }

        // With the fees paid, we now need to calculate the current invariant so we can store it alongside the current
        // amplification factor, marking the Pool as free of protocol debt.
        (uint256 currentAmp, ) = _getAmplificationParameter();

        // It turns out that the process for due protocol fee calculation involves computing the current invariant,
        // except using the amplification factor at the last join or exit. This would typically not be terribly useful,
        // but since the amplification factor only changes rarely there is high probability of its current value being
        // the same as it was in the last join or exit. If that is the case, then we can skip the costly invariant
        // computation altogether.
        uint256 currentInvariant = (currentAmp == lastJoinExitAmp)
            ? currentInvariantWithLastJoinExitAmp
            : StableMath._calculateInvariant(currentAmp, balances);

        _updatePostJoinExit(currentAmp, currentInvariant);
    }

    /**
     * @dev This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
     *
     * This function depends on the invariant value, which may be calculated incorrectly in the middle of a join or
     * an exit, because the state of the pool could be out of sync with the state of the Vault.
     *
     * The modifier `whenNotInVaultContext` prevents calling this function (and in turn, the external
     * `disableRecoveryMode`) in such a context.
     *
     * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
     */
    function _onDisableRecoveryMode() internal override whenNotInVaultContext {
        // Enabling recovery mode short-circuits protocol fee computations, forcefully returning a zero percentage,
        // increasing the return value of `getRate()` and effectively forfeiting due protocol fees.

        // Therefore, when exiting recovery mode we store the current invariant and the amplification factor used to
        // compute it, marking the Pool as free of protocol debt. Otherwise it'd be possible for debt to be
        // retroactively accrued, which would be incorrect and could lead to the value of `getRate` decreasing.

        (, uint256[] memory registeredBalances, ) = getVault().getPoolTokens(getPoolId());
        _upscaleArray(registeredBalances, _scalingFactors());
        uint256[] memory balances = _dropBptItem(registeredBalances);

        (uint256 currentAmp, ) = _getAmplificationParameter();
        uint256 currentInvariant = StableMath._calculateInvariant(currentAmp, balances);

        _updatePostJoinExit(currentAmp, currentInvariant);
    }

    // Helpers

    /**
     * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
     *
     * Equivalent to `amounts = amounts.map(mutation)`.
     */
    function _mutateAmounts(
        uint256[] memory toMutate,
        uint256[] memory arguments,
        function(uint256, uint256) pure returns (uint256) mutation
    ) private pure {
        uint256 length = toMutate.length;
        InputHelpers.ensureInputLengthMatch(length, arguments.length);

        for (uint256 i = 0; i < length; ++i) {
            toMutate[i] = mutation(toMutate[i], arguments[i]);
        }
    }

    // Permissioned functions

    /**
     * @dev Inheritance rules still require us to override this in the most derived contract, even though
     * it only calls super.
     */
    function _isOwnerOnlyAction(bytes32 actionId)
        internal
        view
        virtual
        override(
            // Our inheritance pattern creates a small diamond that requires explicitly listing the parents here.
            // Each parent calls the `super` version, so linearization ensures all implementations are called.
            BasePool,
            ComposableStablePoolProtocolFees,
            StablePoolAmplification,
            ComposableStablePoolRates
        )
        returns (bool)
    {
        return super._isOwnerOnlyAction(actionId);
    }
}

File 2 of 52 : StablePoolUserData.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

library StablePoolUserData {
    enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT, ALL_TOKENS_IN_FOR_EXACT_BPT_OUT }
    enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT, EXACT_BPT_IN_FOR_ALL_TOKENS_OUT }

    function joinKind(bytes memory self) internal pure returns (JoinKind) {
        return abi.decode(self, (JoinKind));
    }

    function exitKind(bytes memory self) internal pure returns (ExitKind) {
        return abi.decode(self, (ExitKind));
    }

    // Joins

    function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) {
        (, amountsIn) = abi.decode(self, (JoinKind, uint256[]));
    }

    function exactTokensInForBptOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsIn, uint256 minBPTAmountOut)
    {
        (, amountsIn, minBPTAmountOut) = abi.decode(self, (JoinKind, uint256[], uint256));
    }

    function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) {
        (, bptAmountOut, tokenIndex) = abi.decode(self, (JoinKind, uint256, uint256));
    }

    function allTokensInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut) {
        (, bptAmountOut) = abi.decode(self, (JoinKind, uint256));
    }

    // Exits

    function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) {
        (, bptAmountIn, tokenIndex) = abi.decode(self, (ExitKind, uint256, uint256));
    }

    function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) {
        (, bptAmountIn) = abi.decode(self, (ExitKind, uint256));
    }

    function bptInForExactTokensOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn)
    {
        (, amountsOut, maxBPTAmountIn) = abi.decode(self, (ExitKind, uint256[], uint256));
    }
}

File 3 of 52 : BalancerErrors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// solhint-disable

/**
 * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
 * supported.
 * Uses the default 'BAL' prefix for the error code
 */
function _require(bool condition, uint256 errorCode) pure {
    if (!condition) _revert(errorCode);
}

/**
 * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
 * supported.
 */
function _require(bool condition, uint256 errorCode, bytes3 prefix) pure {
    if (!condition) _revert(errorCode, prefix);
}

/**
 * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
 * Uses the default 'BAL' prefix for the error code
 */
function _revert(uint256 errorCode) pure {
    _revert(errorCode, 0x42414c); // This is the raw byte representation of "BAL"
}

/**
 * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
 */
function _revert(uint256 errorCode, bytes3 prefix) pure {
    uint256 prefixUint = uint256(uint24(prefix));
    // We're going to dynamically create a revert string based on the error code, with the following format:
    // 'BAL#{errorCode}'
    // where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
    //
    // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
    // number (8 to 16 bits) than the individual string characters.
    //
    // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
    // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
    // safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
    assembly {
        // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
        // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
        // the '0' character.

        let units := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let tenths := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let hundreds := add(mod(errorCode, 10), 0x30)

        // With the individual characters, we can now construct the full string.
        // We first append the '#' character (0x23) to the prefix. In the case of 'BAL', it results in 0x42414c23 ('BAL#')
        // Then, we shift this by 24 (to provide space for the 3 bytes of the error code), and add the
        // characters to it, each shifted by a multiple of 8.
        // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
        // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
        // array).
        let formattedPrefix := shl(24, add(0x23, shl(8, prefixUint)))

        let revertReason := shl(200, add(formattedPrefix, add(add(units, shl(8, tenths)), shl(16, hundreds))))

        // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
        // message will have the following layout:
        // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]

        // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
        // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
        mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
        // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
        mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
        // The string length is fixed: 7 characters.
        mstore(0x24, 7)
        // Finally, the string itself is stored.
        mstore(0x44, revertReason)

        // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
        // the encoded message is therefore 4 + 32 + 32 + 32 = 100.
        revert(0, 100)
    }
}

library Errors {
    // Math
    uint256 internal constant ADD_OVERFLOW = 0;
    uint256 internal constant SUB_OVERFLOW = 1;
    uint256 internal constant SUB_UNDERFLOW = 2;
    uint256 internal constant MUL_OVERFLOW = 3;
    uint256 internal constant ZERO_DIVISION = 4;
    uint256 internal constant DIV_INTERNAL = 5;
    uint256 internal constant X_OUT_OF_BOUNDS = 6;
    uint256 internal constant Y_OUT_OF_BOUNDS = 7;
    uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
    uint256 internal constant INVALID_EXPONENT = 9;

    // Input
    uint256 internal constant OUT_OF_BOUNDS = 100;
    uint256 internal constant UNSORTED_ARRAY = 101;
    uint256 internal constant UNSORTED_TOKENS = 102;
    uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
    uint256 internal constant ZERO_TOKEN = 104;

    // Shared pools
    uint256 internal constant MIN_TOKENS = 200;
    uint256 internal constant MAX_TOKENS = 201;
    uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
    uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
    uint256 internal constant MINIMUM_BPT = 204;
    uint256 internal constant CALLER_NOT_VAULT = 205;
    uint256 internal constant UNINITIALIZED = 206;
    uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
    uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
    uint256 internal constant EXPIRED_PERMIT = 209;
    uint256 internal constant NOT_TWO_TOKENS = 210;
    uint256 internal constant DISABLED = 211;

    // Pools
    uint256 internal constant MIN_AMP = 300;
    uint256 internal constant MAX_AMP = 301;
    uint256 internal constant MIN_WEIGHT = 302;
    uint256 internal constant MAX_STABLE_TOKENS = 303;
    uint256 internal constant MAX_IN_RATIO = 304;
    uint256 internal constant MAX_OUT_RATIO = 305;
    uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
    uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
    uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
    uint256 internal constant INVALID_TOKEN = 309;
    uint256 internal constant UNHANDLED_JOIN_KIND = 310;
    uint256 internal constant ZERO_INVARIANT = 311;
    uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
    uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
    uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
    uint256 internal constant ORACLE_INVALID_INDEX = 315;
    uint256 internal constant ORACLE_BAD_SECS = 316;
    uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
    uint256 internal constant AMP_ONGOING_UPDATE = 318;
    uint256 internal constant AMP_RATE_TOO_HIGH = 319;
    uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
    uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
    uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
    uint256 internal constant RELAYER_NOT_CONTRACT = 323;
    uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
    uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
    uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
    uint256 internal constant SWAPS_DISABLED = 327;
    uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
    uint256 internal constant PRICE_RATE_OVERFLOW = 329;
    uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330;
    uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331;
    uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332;
    uint256 internal constant UPPER_TARGET_TOO_HIGH = 333;
    uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334;
    uint256 internal constant OUT_OF_TARGET_RANGE = 335;
    uint256 internal constant UNHANDLED_EXIT_KIND = 336;
    uint256 internal constant UNAUTHORIZED_EXIT = 337;
    uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338;
    uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339;
    uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340;
    uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341;
    uint256 internal constant INVALID_INITIALIZATION = 342;
    uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343;
    uint256 internal constant FEATURE_DISABLED = 344;
    uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345;
    uint256 internal constant SET_SWAP_FEE_DURING_FEE_CHANGE = 346;
    uint256 internal constant SET_SWAP_FEE_PENDING_FEE_CHANGE = 347;
    uint256 internal constant CHANGE_TOKENS_DURING_WEIGHT_CHANGE = 348;
    uint256 internal constant CHANGE_TOKENS_PENDING_WEIGHT_CHANGE = 349;
    uint256 internal constant MAX_WEIGHT = 350;
    uint256 internal constant UNAUTHORIZED_JOIN = 351;
    uint256 internal constant MAX_MANAGEMENT_AUM_FEE_PERCENTAGE = 352;
    uint256 internal constant FRACTIONAL_TARGET = 353;

    // Lib
    uint256 internal constant REENTRANCY = 400;
    uint256 internal constant SENDER_NOT_ALLOWED = 401;
    uint256 internal constant PAUSED = 402;
    uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
    uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
    uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
    uint256 internal constant INSUFFICIENT_BALANCE = 406;
    uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
    uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
    uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
    uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
    uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
    uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
    uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
    uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
    uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
    uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
    uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
    uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
    uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
    uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
    uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
    uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
    uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
    uint256 internal constant CALLER_IS_NOT_OWNER = 426;
    uint256 internal constant NEW_OWNER_IS_ZERO = 427;
    uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
    uint256 internal constant CALL_TO_NON_CONTRACT = 429;
    uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;
    uint256 internal constant NOT_PAUSED = 431;
    uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432;
    uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433;
    uint256 internal constant ERC20_BURN_EXCEEDS_BALANCE = 434;
    uint256 internal constant INVALID_OPERATION = 435;
    uint256 internal constant CODEC_OVERFLOW = 436;
    uint256 internal constant IN_RECOVERY_MODE = 437;
    uint256 internal constant NOT_IN_RECOVERY_MODE = 438;
    uint256 internal constant INDUCED_FAILURE = 439;
    uint256 internal constant EXPIRED_SIGNATURE = 440;
    uint256 internal constant MALFORMED_SIGNATURE = 441;
    uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_UINT64 = 442;
    uint256 internal constant UNHANDLED_FEE_TYPE = 443;

    // Vault
    uint256 internal constant INVALID_POOL_ID = 500;
    uint256 internal constant CALLER_NOT_POOL = 501;
    uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
    uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
    uint256 internal constant INVALID_SIGNATURE = 504;
    uint256 internal constant EXIT_BELOW_MIN = 505;
    uint256 internal constant JOIN_ABOVE_MAX = 506;
    uint256 internal constant SWAP_LIMIT = 507;
    uint256 internal constant SWAP_DEADLINE = 508;
    uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
    uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
    uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
    uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
    uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
    uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
    uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
    uint256 internal constant INSUFFICIENT_ETH = 516;
    uint256 internal constant UNALLOCATED_ETH = 517;
    uint256 internal constant ETH_TRANSFER = 518;
    uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
    uint256 internal constant TOKENS_MISMATCH = 520;
    uint256 internal constant TOKEN_NOT_REGISTERED = 521;
    uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
    uint256 internal constant TOKENS_ALREADY_SET = 523;
    uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
    uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
    uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
    uint256 internal constant POOL_NO_TOKENS = 527;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;

    // Fees
    uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
    uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
    uint256 internal constant AUM_FEE_PERCENTAGE_TOO_HIGH = 603;

    // Misc
    uint256 internal constant UNIMPLEMENTED = 998;
    uint256 internal constant SHOULD_NOT_HAPPEN = 999;
}

File 4 of 52 : IProtocolFeePercentagesProvider.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

/**
 * @dev Source of truth for all Protocol Fee percentages, that is, how much the protocol charges certain actions. Some
 * of these values may also be retrievable from other places (such as the swap fee percentage), but this is the
 * preferred source nonetheless.
 */
interface IProtocolFeePercentagesProvider {
    // All fee percentages are 18-decimal fixed point numbers, so e.g. 1e18 = 100% and 1e16 = 1%.

    // Emitted when a new fee type is registered.
    event ProtocolFeeTypeRegistered(uint256 indexed feeType, string name, uint256 maximumPercentage);

    // Emitted when the value of a fee type changes.
    // IMPORTANT: it is possible for a third party to modify the SWAP and FLASH_LOAN fee type values directly in the
    // ProtocolFeesCollector, which will result in this event not being emitted despite their value changing. Such usage
    // of the ProtocolFeesCollector is however discouraged: all state-changing interactions with it should originate in
    // this contract.
    event ProtocolFeePercentageChanged(uint256 indexed feeType, uint256 percentage);

    /**
     * @dev Registers a new fee type in the system, making it queryable via `getFeeTypePercentage` and `getFeeTypeName`,
     * as well as configurable via `setFeeTypePercentage`.
     *
     * `feeType` can be any arbitrary value (that is not in use).
     *
     * It is not possible to de-register fee types, nor change their name or maximum value.
     */
    function registerFeeType(
        uint256 feeType,
        string memory name,
        uint256 maximumValue,
        uint256 initialValue
    ) external;

    /**
     * @dev Returns true if `feeType` has been registered and can be queried.
     */
    function isValidFeeType(uint256 feeType) external view returns (bool);

    /**
     * @dev Returns true if `value` is a valid percentage value for `feeType`.
     */
    function isValidFeeTypePercentage(uint256 feeType, uint256 value) external view returns (bool);

    /**
     * @dev Sets the percentage value for `feeType` to `newValue`.
     *
     * IMPORTANT: it is possible for a third party to modify the SWAP and FLASH_LOAN fee type values directly in the
     * ProtocolFeesCollector, without invoking this function. This will result in the `ProtocolFeePercentageChanged`
     * event not being emitted despite their value changing. Such usage of the ProtocolFeesCollector is however
     * discouraged: only this contract should be granted permission to call `setSwapFeePercentage` and
     * `setFlashLoanFeePercentage`.
     */
    function setFeeTypePercentage(uint256 feeType, uint256 newValue) external;

    /**
     * @dev Returns the current percentage value for `feeType`. This is the preferred mechanism for querying these -
     * whenever possible, use this fucntion instead of e.g. querying the ProtocolFeesCollector.
     */
    function getFeeTypePercentage(uint256 feeType) external view returns (uint256);

    /**
     * @dev Returns `feeType`'s maximum value.
     */
    function getFeeTypeMaximumPercentage(uint256 feeType) external view returns (uint256);

    /**
     * @dev Returns `feeType`'s name.
     */
    function getFeeTypeName(uint256 feeType) external view returns (string memory);
}

library ProtocolFeeType {
    // This list is not exhaustive - more fee types can be added to the system. It is expected for this list to be
    // extended with new fee types as they are registered, to keep them all in one place and reduce
    // likelihood of user error.

    // solhint-disable private-vars-leading-underscore
    uint256 internal constant SWAP = 0;
    uint256 internal constant FLASH_LOAN = 1;
    uint256 internal constant YIELD = 2;
    uint256 internal constant AUM = 3;
    // solhint-enable private-vars-leading-underscore
}

File 5 of 52 : IRateProvider.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IRateProvider {
    /**
     * @dev Returns an 18 decimal fixed point number that is the exchange rate of the token to some other underlying
     * token. The meaning of this rate depends on the context.
     */
    function getRate() external view returns (uint256);
}

File 6 of 52 : IVersion.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity >=0.7.0 <0.9.0;

/**
 * @notice Simple interface to retrieve the version of a deployed contract.
 */
interface IVersion {
    /**
     * @dev Returns a JSON representation of the contract version containing name, version number and task ID.
     */
    function version() external view returns (string memory);
}

File 7 of 52 : FixedPoint.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";

import "./LogExpMath.sol";

/* solhint-disable private-vars-leading-underscore */

library FixedPoint {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    uint256 internal constant TWO = 2 * ONE;
    uint256 internal constant FOUR = 4 * ONE;
    uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)

    // Minimum base for the power function when the exponent is 'free' (larger than ONE).
    uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        return product / ONE;
    }

    function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        if (product == 0) {
            return 0;
        } else {
            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((product - 1) / ONE) + 1;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            return aInflated / b;
        }
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((aInflated - 1) / b) + 1;
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
     * the true value (that is, the error function expected - actual is always positive).
     */
    function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
        // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
        // and 80/20 Weighted Pools
        if (y == ONE) {
            return x;
        } else if (y == TWO) {
            return mulDown(x, x);
        } else if (y == FOUR) {
            uint256 square = mulDown(x, x);
            return mulDown(square, square);
        } else {
            uint256 raw = LogExpMath.pow(x, y);
            uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

            if (raw < maxError) {
                return 0;
            } else {
                return sub(raw, maxError);
            }
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
     * the true value (that is, the error function expected - actual is always negative).
     */
    function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
        // Optimize for when y equals 1.0, 2.0 or 4.0, as those are very simple to implement and occur often in 50/50
        // and 80/20 Weighted Pools
        if (y == ONE) {
            return x;
        } else if (y == TWO) {
            return mulUp(x, x);
        } else if (y == FOUR) {
            uint256 square = mulUp(x, x);
            return mulUp(square, square);
        } else {
            uint256 raw = LogExpMath.pow(x, y);
            uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

            return add(raw, maxError);
        }
    }

    /**
     * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
     *
     * Useful when computing the complement for values with some level of relative error, as it strips this error and
     * prevents intermediate negative values.
     */
    function complement(uint256 x) internal pure returns (uint256) {
        return (x < ONE) ? (ONE - x) : 0;
    }
}

File 8 of 52 : Math.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow checks.
 * Adapted from OpenZeppelin's SafeMath library.
 */
library Math {
    /**
     * @dev Returns the absolute value of a signed integer.
     */
    function abs(int256 a) internal pure returns (uint256) {
        return a > 0 ? uint256(a) : uint256(-a);
    }

    /**
     * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the addition of two signed integers, reverting on overflow.
     */
    function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    /**
     * @dev Returns the subtraction of two signed integers, reverting on overflow.
     */
    function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the largest of two numbers of 256 bits.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers of 256 bits.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a * b;
        _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW);
        return c;
    }

    function div(
        uint256 a,
        uint256 b,
        bool roundUp
    ) internal pure returns (uint256) {
        return roundUp ? divUp(a, b) : divDown(a, b);
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);
        return a / b;
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            return 1 + (a - 1) / b;
        }
    }
}

File 9 of 52 : ERC20Helpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IAsset.sol";

// solhint-disable

function _asIAsset(IERC20[] memory tokens) pure returns (IAsset[] memory assets) {
    // solhint-disable-next-line no-inline-assembly
    assembly {
        assets := tokens
    }
}

function _sortTokens(
    IERC20 tokenA,
    IERC20 tokenB,
    IERC20 tokenC
) pure returns (IERC20[] memory tokens) {
    (uint256 indexTokenA, uint256 indexTokenB, uint256 indexTokenC) = _getSortedTokenIndexes(tokenA, tokenB, tokenC);
    tokens = new IERC20[](3);
    tokens[indexTokenA] = tokenA;
    tokens[indexTokenB] = tokenB;
    tokens[indexTokenC] = tokenC;
}

function _insertSorted(IERC20[] memory tokens, IERC20 token) pure returns (IERC20[] memory sorted) {
    sorted = new IERC20[](tokens.length + 1);

    if (tokens.length == 0) {
        sorted[0] = token;
        return sorted;
    }

    uint256 i;
    for (i = tokens.length; i > 0 && tokens[i - 1] > token; i--) sorted[i] = tokens[i - 1];
    for (uint256 j = 0; j < i; j++) sorted[j] = tokens[j];
    sorted[i] = token;
}

function _appendToken(IERC20[] memory tokens, IERC20 newToken) pure returns (IERC20[] memory newTokens) {
    uint256 numTokens = tokens.length;
    newTokens = new IERC20[](numTokens + 1);

    for (uint256 i = 0; i < numTokens; ++i) newTokens[i] = tokens[i];
    newTokens[numTokens] = newToken;
}

function _findTokenIndex(IERC20[] memory tokens, IERC20 token) pure returns (uint256) {
    // Note that while we know tokens are initially sorted, we cannot assume this will hold throughout
    // the pool's lifetime, as pools with mutable tokens can append and remove tokens in any order.
    uint256 tokensLength = tokens.length;
    for (uint256 i = 0; i < tokensLength; i++) {
        if (tokens[i] == token) {
            return i;
        }
    }

    _revert(Errors.INVALID_TOKEN);
}

function _getSortedTokenIndexes(
    IERC20 tokenA,
    IERC20 tokenB,
    IERC20 tokenC
)
    pure
    returns (
        uint256 indexTokenA,
        uint256 indexTokenB,
        uint256 indexTokenC
    )
{
    if (tokenA < tokenB) {
        if (tokenB < tokenC) {
            // (tokenA, tokenB, tokenC)
            return (0, 1, 2);
        } else if (tokenA < tokenC) {
            // (tokenA, tokenC, tokenB)
            return (0, 2, 1);
        } else {
            // (tokenC, tokenA, tokenB)
            return (1, 2, 0);
        }
    } else {
        // tokenB < tokenA
        if (tokenC < tokenB) {
            // (tokenC, tokenB, tokenA)
            return (2, 1, 0);
        } else if (tokenC < tokenA) {
            // (tokenB, tokenC, tokenA)
            return (2, 0, 1);
        } else {
            // (tokenB, tokenA, tokenC)
            return (1, 0, 2);
        }
    }
}

File 10 of 52 : InputHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";

library InputHelpers {
    function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
        _require(a == b, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureInputLengthMatch(
        uint256 a,
        uint256 b,
        uint256 c
    ) internal pure {
        _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureArrayIsSorted(IERC20[] memory array) internal pure {
        address[] memory addressArray;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            addressArray := array
        }
        ensureArrayIsSorted(addressArray);
    }

    function ensureArrayIsSorted(address[] memory array) internal pure {
        if (array.length < 2) {
            return;
        }

        address previous = array[0];
        for (uint256 i = 1; i < array.length; ++i) {
            address current = array[i];
            _require(previous < current, Errors.UNSORTED_ARRAY);
            previous = current;
        }
    }
}

File 11 of 52 : BaseGeneralPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-interfaces/contracts/vault/IGeneralPool.sol";

import "./BasePool.sol";

/**
 * @dev Extension of `BasePool`, adding a handler for `IGeneralPool.onSwap`.
 *
 * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with
 * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the General
 * specialization setting.
 */
abstract contract BaseGeneralPool is IGeneralPool, BasePool {
    // Swap Hooks

    function onSwap(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) external override onlyVault(swapRequest.poolId) returns (uint256) {
        _beforeSwapJoinExit();

        _validateIndexes(indexIn, indexOut, _getTotalTokens());
        uint256[] memory scalingFactors = _scalingFactors();

        return
            swapRequest.kind == IVault.SwapKind.GIVEN_IN
                ? _swapGivenIn(swapRequest, balances, indexIn, indexOut, scalingFactors)
                : _swapGivenOut(swapRequest, balances, indexIn, indexOut, scalingFactors);
    }

    function _swapGivenIn(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut,
        uint256[] memory scalingFactors
    ) internal virtual returns (uint256) {
        // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
        swapRequest.amount = _subtractSwapFeeAmount(swapRequest.amount);

        _upscaleArray(balances, scalingFactors);
        swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexIn]);

        uint256 amountOut = _onSwapGivenIn(swapRequest, balances, indexIn, indexOut);

        // amountOut tokens are exiting the Pool, so we round down.
        return _downscaleDown(amountOut, scalingFactors[indexOut]);
    }

    function _swapGivenOut(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut,
        uint256[] memory scalingFactors
    ) internal virtual returns (uint256) {
        _upscaleArray(balances, scalingFactors);
        swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexOut]);

        uint256 amountIn = _onSwapGivenOut(swapRequest, balances, indexIn, indexOut);

        // amountIn tokens are entering the Pool, so we round up.
        amountIn = _downscaleUp(amountIn, scalingFactors[indexIn]);

        // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
        return _addSwapFeeAmount(amountIn);
    }

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known.
     *
     * Returns the amount of tokens that will be taken from the Pool in return.
     *
     * All amounts inside `swapRequest` and `balances` are upscaled. The swap fee has already been deducted from
     * `swapRequest.amount`.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the
     * Vault.
     */
    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) internal virtual returns (uint256);

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known.
     *
     * Returns the amount of tokens that will be granted to the Pool in return.
     *
     * All amounts inside `swapRequest` and `balances` are upscaled.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee
     * and returning it to the Vault.
     */
    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) internal virtual returns (uint256);

    function _validateIndexes(
        uint256 indexIn,
        uint256 indexOut,
        uint256 limit
    ) private pure {
        _require(indexIn < limit && indexOut < limit, Errors.OUT_OF_BOUNDS);
    }
}

File 12 of 52 : PriceRateCache.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";

import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

/**
 * Price rate caches are used to avoid querying the price rate for a token every time we need to work with it. It is
 * useful for slow changing rates, such as those that arise from interest-bearing tokens (e.g. waDAI into DAI).
 *
 * The cache data is packed into a single bytes32 value with the following structure:
 * [ 32 bits |  32 bits  |  96 bits  |    96 bits    ]
 * [ expires | duration  | old rate  | current rate  ]
 * |MSB                                           LSB|
 *
 * 'rate' is an 18 decimal fixed point number, supporting rates of up to ~3e10. 'expires' is a Unix timestamp, and
 * 'duration' is expressed in seconds.
 */
library PriceRateCache {
    using WordCodec for bytes32;

    uint256 private constant _CURRENT_PRICE_RATE_OFFSET = 0;
    uint256 private constant _OLD_PRICE_RATE_OFFSET = 96;
    uint256 private constant _PRICE_RATE_CACHE_DURATION_OFFSET = 192;
    uint256 private constant _PRICE_RATE_CACHE_EXPIRES_OFFSET = 224;

    uint256 private constant _RATE_BIT_LENGTH = 96;
    uint256 private constant _DURATION_BIT_LENGTH = 32;

    /**
     * @dev Returns the current rate in the price rate cache.
     */
    function getCurrentRate(bytes32 cache) internal pure returns (uint256) {
        return cache.decodeUint(_CURRENT_PRICE_RATE_OFFSET, _RATE_BIT_LENGTH);
    }

    /**
     * @dev Returns the old rate in the price rate cache.
     */
    function getOldRate(bytes32 cache) internal pure returns (uint256) {
        return cache.decodeUint(_OLD_PRICE_RATE_OFFSET, _RATE_BIT_LENGTH);
    }

    /**
     * @dev Copies the current rate to the old rate.
     */
    function updateOldRate(bytes32 cache) internal pure returns (bytes32) {
        return cache.insertUint(getCurrentRate(cache), _OLD_PRICE_RATE_OFFSET, _RATE_BIT_LENGTH);
    }

    /**
     * @dev Returns the duration of a price rate cache.
     */
    function getDuration(bytes32 cache) internal pure returns (uint256) {
        return cache.decodeUint(_PRICE_RATE_CACHE_DURATION_OFFSET, _DURATION_BIT_LENGTH);
    }

    /**
     * @dev Returns the duration and expiration time of a price rate cache.
     */
    function getTimestamps(bytes32 cache) internal pure returns (uint256 duration, uint256 expires) {
        duration = getDuration(cache);
        expires = cache.decodeUint(_PRICE_RATE_CACHE_EXPIRES_OFFSET, _DURATION_BIT_LENGTH);
    }

    /**
     * @dev Encodes rate and duration into a price rate cache. The expiration time is computed automatically, counting
     * from the current time.
     */
    function updateRateAndDuration(
        bytes32 cache,
        uint256 rate,
        uint256 duration
    ) internal view returns (bytes32) {
        _require(rate >> _RATE_BIT_LENGTH == 0, Errors.PRICE_RATE_OVERFLOW);

        // solhint-disable not-rely-on-time
        return
            cache
                .insertUint(rate, _CURRENT_PRICE_RATE_OFFSET, _RATE_BIT_LENGTH)
                .insertUint(duration, _PRICE_RATE_CACHE_DURATION_OFFSET, _DURATION_BIT_LENGTH)
                .insertUint(block.timestamp + duration, _PRICE_RATE_CACHE_EXPIRES_OFFSET, _DURATION_BIT_LENGTH);
    }

    /**
     * @dev Update the current rate in a price rate cache.
     */
    function updateCurrentRate(bytes32 cache, uint256 rate) internal pure returns (bytes32) {
        _require(rate >> _RATE_BIT_LENGTH == 0, Errors.PRICE_RATE_OVERFLOW);

        return cache.insertUint(rate, _CURRENT_PRICE_RATE_OFFSET, _RATE_BIT_LENGTH);
    }

    /**
     * @dev Update the duration (and expiration) in a price rate cache.
     */
    function updateDuration(bytes32 cache, uint256 duration) internal view returns (bytes32) {
        return
            cache.insertUint(duration, _PRICE_RATE_CACHE_DURATION_OFFSET, _DURATION_BIT_LENGTH).insertUint(
                block.timestamp + duration,
                _PRICE_RATE_CACHE_EXPIRES_OFFSET,
                _DURATION_BIT_LENGTH
            );
    }

    /**
     * @dev Returns rate, duration and expiration time of a price rate cache.
     */
    function decode(bytes32 cache)
        internal
        pure
        returns (
            uint256 rate,
            uint256 duration,
            uint256 expires
        )
    {
        rate = getCurrentRate(cache);
        (duration, expires) = getTimestamps(cache);
    }
}

File 13 of 52 : ComposableStablePoolStorage.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IRateProvider.sol";

import "@balancer-labs/v2-pool-utils/contracts/BasePool.sol";

import "./StableMath.sol";

abstract contract ComposableStablePoolStorage is BasePool {
    using FixedPoint for uint256;
    using WordCodec for bytes32;

    struct StorageParams {
        IERC20[] registeredTokens;
        IRateProvider[] tokenRateProviders;
        bool[] exemptFromYieldProtocolFeeFlags;
    }

    // This minimum refers not to the total tokens, but rather to the non-BPT tokens. The minimum value for _totalTokens
    // is therefore _MIN_NON_BPT_TOKENS + 1.
    uint256 private constant _MIN_NON_BPT_TOKENS = 2;

    // The Pool will register n+1 tokens, where n are the actual tokens in the Pool, and the other one is the BPT
    // itself.
    uint256 private immutable _totalTokens;

    // The index of BPT in the tokens and balances arrays, i.e. its index when calling IVault.registerTokens().
    uint256 private immutable _bptIndex;

    // These are the registered tokens: one of them will be the BPT.
    IERC20 private immutable _token0;
    IERC20 private immutable _token1;
    IERC20 private immutable _token2;
    IERC20 private immutable _token3;
    IERC20 private immutable _token4;
    IERC20 private immutable _token5;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.

    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;
    uint256 internal immutable _scalingFactor2;
    uint256 internal immutable _scalingFactor3;
    uint256 internal immutable _scalingFactor4;
    uint256 internal immutable _scalingFactor5;

    // Rate Providers accommodate tokens with a known price ratio, such as Compound's cTokens.

    IRateProvider internal immutable _rateProvider0;
    IRateProvider internal immutable _rateProvider1;
    IRateProvider internal immutable _rateProvider2;
    IRateProvider internal immutable _rateProvider3;
    IRateProvider internal immutable _rateProvider4;
    IRateProvider internal immutable _rateProvider5;

    // This is a bitmap which allows querying whether a token at a particular index:
    // - has a rate provider associated with it.
    // - is exempt from yield protocol fees.
    // This is required as the data stored in this bitmap is computed from values in immutable storage,
    // without this bitmap we would have to manually search through token by token to reach these values.
    // The data structure is as follows:
    //
    // [  unused  | rate provider flags | exemption flags ]
    // [ 244 bits |        6 bits       |     6 bits      ]
    bytes32 private immutable _rateProviderInfoBitmap;

    // We also keep two dedicated flags that indicate the special cases where none or all tokens are exempt, which allow
    // for some gas optimizations in these special scenarios.
    bool private immutable _noTokensExempt;
    bool private immutable _allTokensExempt;

    uint256 private constant _RATE_PROVIDER_FLAGS_OFFSET = 6;

    constructor(StorageParams memory params) {
        // BasePool checks that the Pool has at least two tokens, but since one of them is the BPT (this contract), we
        // need to check ourselves that there are at least creator-supplied tokens (i.e. the minimum number of total
        // tokens for this contract is actually three, including the BPT).
        uint256 totalTokens = params.registeredTokens.length;
        _require(totalTokens > _MIN_NON_BPT_TOKENS, Errors.MIN_TOKENS);
        InputHelpers.ensureInputLengthMatch(
            totalTokens - 1,
            params.tokenRateProviders.length,
            params.exemptFromYieldProtocolFeeFlags.length
        );

        _totalTokens = totalTokens;

        // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
        _token0 = params.registeredTokens[0];
        _token1 = params.registeredTokens[1];
        _token2 = params.registeredTokens[2];
        _token3 = totalTokens > 3 ? params.registeredTokens[3] : IERC20(0);
        _token4 = totalTokens > 4 ? params.registeredTokens[4] : IERC20(0);
        _token5 = totalTokens > 5 ? params.registeredTokens[5] : IERC20(0);

        _scalingFactor0 = _computeScalingFactor(params.registeredTokens[0]);
        _scalingFactor1 = _computeScalingFactor(params.registeredTokens[1]);
        _scalingFactor2 = _computeScalingFactor(params.registeredTokens[2]);
        _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(params.registeredTokens[3]) : 0;
        _scalingFactor4 = totalTokens > 4 ? _computeScalingFactor(params.registeredTokens[4]) : 0;
        _scalingFactor5 = totalTokens > 5 ? _computeScalingFactor(params.registeredTokens[5]) : 0;

        // The Vault keeps track of all Pool tokens in a specific order: we need to know what the index of BPT is in
        // this ordering to be able to identify it when balances arrays are received. Since the tokens array is sorted,
        // we need to find the correct BPT index in the array returned by `_insertSorted()`.
        // See `IVault.getPoolTokens()` for more information regarding token ordering.
        uint256 bptIndex;
        for (
            bptIndex = params.registeredTokens.length - 1;
            bptIndex > 0 && params.registeredTokens[bptIndex] > IERC20(this);
            bptIndex--
        ) {
            // solhint-disable-previous-line no-empty-blocks
        }
        _bptIndex = bptIndex;

        // The rate providers are stored as immutable state variables, and for simplicity when accessing those we'll
        // reference them by token index in the full base tokens plus BPT set (i.e. the tokens the Pool registers). Due
        // to immutable variables requiring an explicit assignment instead of defaulting to an empty value, it is
        // simpler to create a new memory array with the values we want to assign to the immutable state variables.
        IRateProvider[] memory rateProviders = new IRateProvider[](params.registeredTokens.length);

        bytes32 rateProviderInfoBitmap;

        bool anyExempt = false;
        bool anyNonExempt = false;

        // The exemptFromYieldFlag should never be set on a token without a rate provider.
        // This would cause division by zero errors downstream.
        for (uint256 i = 0; i < params.registeredTokens.length; ++i) {
            if (i < bptIndex) {
                rateProviders[i] = params.tokenRateProviders[i];
                // Store whether token has rate provider
                rateProviderInfoBitmap = rateProviderInfoBitmap.insertBool(
                    rateProviders[i] != IRateProvider(0),
                    _RATE_PROVIDER_FLAGS_OFFSET + i
                );
                // Store whether token is exempt from yield fees.
                if (params.exemptFromYieldProtocolFeeFlags[i]) {
                    _require(rateProviders[i] != IRateProvider(0), Errors.TOKEN_DOES_NOT_HAVE_RATE_PROVIDER);
                    rateProviderInfoBitmap = rateProviderInfoBitmap.insertBool(true, i);

                    anyExempt = true;
                } else {
                    anyNonExempt = true;
                }
            } else if (i != bptIndex) {
                rateProviders[i] = params.tokenRateProviders[i - 1];
                // Store whether token has rate provider
                rateProviderInfoBitmap = rateProviderInfoBitmap.insertBool(
                    rateProviders[i] != IRateProvider(0),
                    _RATE_PROVIDER_FLAGS_OFFSET + i
                );
                // Store whether token is exempt from yield fees.
                if (params.exemptFromYieldProtocolFeeFlags[i - 1]) {
                    _require(rateProviders[i] != IRateProvider(0), Errors.TOKEN_DOES_NOT_HAVE_RATE_PROVIDER);
                    rateProviderInfoBitmap = rateProviderInfoBitmap.insertBool(true, i);

                    anyExempt = true;
                } else {
                    anyNonExempt = true;
                }
            }
        }

        _noTokensExempt = !anyExempt;
        _allTokensExempt = !anyNonExempt;

        // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
        _rateProvider0 = rateProviders[0];
        _rateProvider1 = rateProviders[1];
        _rateProvider2 = rateProviders[2];
        _rateProvider3 = (rateProviders.length > 3) ? rateProviders[3] : IRateProvider(0);
        _rateProvider4 = (rateProviders.length > 4) ? rateProviders[4] : IRateProvider(0);
        _rateProvider5 = (rateProviders.length > 5) ? rateProviders[5] : IRateProvider(0);

        _rateProviderInfoBitmap = rateProviderInfoBitmap;
    }

    // Tokens

    function _getTotalTokens() internal view virtual override returns (uint256) {
        return _totalTokens;
    }

    function _getMaxTokens() internal pure override returns (uint256) {
        // The BPT will be one of the Pool tokens, but it is unaffected by the Stable 5 token limit.
        return StableMath._MAX_STABLE_TOKENS + 1;
    }

    function getBptIndex() public view returns (uint256) {
        return _bptIndex;
    }

    function _getTokenIndex(IERC20 token) internal view returns (uint256) {
        if (token == _token0) return 0;
        if (token == _token1) return 1;
        if (token == _token2) return 2;
        if (token == _token3) return 3;
        if (token == _token4) return 4;
        if (token == _token5) return 5;

        _revert(Errors.INVALID_TOKEN);
    }

    function _scalingFactor(IERC20) internal view virtual override returns (uint256) {
        // We never use a single token's scaling factor by itself, we always process the entire array at once.
        // Therefore we don't bother providing an implementation for this.
        _revert(Errors.UNIMPLEMENTED);
    }

    // Index helpers

    // Convert from an index into an array including BPT (the Vault's registered token list), to an index
    // into an array excluding BPT (usually from user input, such as amountsIn/Out).
    // `index` must not be the BPT token index itself.
    function _skipBptIndex(uint256 index) internal view returns (uint256) {
        // Currently this is never called with an index passed in from user input, so this check
        // should not be necessary. Included for completion (and future proofing).
        _require(index != getBptIndex(), Errors.OUT_OF_BOUNDS);

        return index < getBptIndex() ? index : index.sub(1);
    }

    /**
     * @dev Remove the item at `_bptIndex` from an arbitrary array (e.g., amountsIn).
     */
    function _dropBptItem(uint256[] memory amounts) internal view returns (uint256[] memory) {
        uint256[] memory amountsWithoutBpt = new uint256[](amounts.length - 1);
        for (uint256 i = 0; i < amountsWithoutBpt.length; i++) {
            amountsWithoutBpt[i] = amounts[i < getBptIndex() ? i : i + 1];
        }

        return amountsWithoutBpt;
    }

    /**
     * @dev Same as `_dropBptItem`, except the virtual supply is also returned, and `balances` is assumed to be the
     * current Pool balances (including BPT).
     */
    function _dropBptItemFromBalances(uint256[] memory registeredBalances)
        internal
        view
        returns (uint256, uint256[] memory)
    {
        return (_getVirtualSupply(registeredBalances[getBptIndex()]), _dropBptItem(registeredBalances));
    }

    // Convert from an index into an array excluding BPT (usually from user input, such as amountsIn/Out),
    // to an index into an array including BPT (the Vault's registered token list).
    // `index` must not be the BPT token index itself, if it is the last element, and the result must be
    // in the range of registered tokens.
    function _addBptIndex(uint256 index) internal view returns (uint256 registeredIndex) {
        // This can be called from an index passed in from user input.
        registeredIndex = index < getBptIndex() ? index : index.add(1);

        // TODO: `indexWithBpt != getBptIndex()` follows from above line and so can be removed.
        _require(registeredIndex < _totalTokens && registeredIndex != getBptIndex(), Errors.OUT_OF_BOUNDS);
    }

    /**
     * @dev Take an array of arbitrary values the size of the token set without BPT, and insert the given
     * bptAmount at the bptIndex location.
     *
     * The caller is responsible for ensuring the `amounts` input array is sized properly; this function
     * performs no checks.
     */
    function _addBptItem(uint256[] memory amounts, uint256 bptAmount)
        internal
        view
        returns (uint256[] memory registeredTokenAmounts)
    {
        registeredTokenAmounts = new uint256[](amounts.length + 1);
        for (uint256 i = 0; i < registeredTokenAmounts.length; i++) {
            registeredTokenAmounts[i] = i == getBptIndex() ? bptAmount : amounts[i < getBptIndex() ? i : i - 1];
        }
    }

    // Rate Providers

    function _getScalingFactor(uint256 index) internal view returns (uint256) {
        if (index == 0) return _scalingFactor0;
        if (index == 1) return _scalingFactor1;
        if (index == 2) return _scalingFactor2;
        if (index == 3) return _scalingFactor3;
        if (index == 4) return _scalingFactor4;
        if (index == 5) return _scalingFactor5;
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    /**
     * @dev Returns the rate providers configured for each token (in the same order as registered).
     */
    function getRateProviders() external view returns (IRateProvider[] memory) {
        uint256 totalTokens = _getTotalTokens();
        IRateProvider[] memory providers = new IRateProvider[](totalTokens);

        for (uint256 i = 0; i < totalTokens; ++i) {
            providers[i] = _getRateProvider(i);
        }

        return providers;
    }

    function _getRateProvider(uint256 index) internal view returns (IRateProvider) {
        if (index == 0) return _rateProvider0;
        if (index == 1) return _rateProvider1;
        if (index == 2) return _rateProvider2;
        if (index == 3) return _rateProvider3;
        if (index == 4) return _rateProvider4;
        if (index == 5) return _rateProvider5;
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    /**
     * @notice Return true if the token at this index has a rate provider
     */
    function _hasRateProvider(uint256 tokenIndex) internal view returns (bool) {
        return _rateProviderInfoBitmap.decodeBool(_RATE_PROVIDER_FLAGS_OFFSET + tokenIndex);
    }

    /**
     * @notice Return true if all tokens are exempt from yield fees.
     */
    function _areAllTokensExempt() internal view returns (bool) {
        return _allTokensExempt;
    }

    /**
     * @notice Return true if no tokens are exempt from yield fees.
     */
    function _areNoTokensExempt() internal view returns (bool) {
        return _noTokensExempt;
    }

    // Exempt flags

    /**
     * @dev Returns whether the token is exempt from protocol fees on the yield.
     * If the BPT token is passed in (which doesn't make much sense, but shouldn't fail,
     * since it is a valid pool token), the corresponding flag will be false.
     */
    function isTokenExemptFromYieldProtocolFee(IERC20 token) external view returns (bool) {
        return _isTokenExemptFromYieldProtocolFee(_getTokenIndex(token));
    }

    // This assumes the tokenIndex is valid. If it's not, it will just return false.
    function _isTokenExemptFromYieldProtocolFee(uint256 registeredTokenIndex) internal view returns (bool) {
        return _rateProviderInfoBitmap.decodeBool(registeredTokenIndex);
    }

    // Virtual Supply

    /**
     * @dev Returns the number of tokens in circulation.
     *
     * WARNING: in the vast majority of cases this is not a useful value, since it does not include the debt the Pool
     * accrued in the form of unminted BPT for the ProtocolFeesCollector. Look into `getActualSupply()` and how that's
     * different.
     *
     * In other pools, this would be the same as `totalSupply`, but since this pool pre-mints BPT and holds it in the
     * Vault as a token, we need to subtract the Vault's balance to get the total "circulating supply". Both the
     * totalSupply and Vault balance can change. If users join or exit using swaps, some of the preminted BPT are
     * exchanged, so the Vault's balance increases after joins and decreases after exits. If users call the regular
     * joins/exit functions, the totalSupply can change as BPT are minted for joins or burned for exits.
     */
    function _getVirtualSupply(uint256 bptBalance) internal view returns (uint256) {
        // The initial amount of BPT pre-minted is _PREMINTED_TOKEN_BALANCE, and it goes entirely to the pool balance in
        // the vault. So the virtualSupply (the amount of BPT supply in circulation) is defined as:
        // virtualSupply = totalSupply() - _balances[_bptIndex]
        return totalSupply().sub(bptBalance);
    }
}

File 14 of 52 : ComposableStablePoolRates.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IRateProvider.sol";

import "@balancer-labs/v2-solidity-utils/contracts/helpers/ERC20Helpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-pool-utils/contracts/rates/PriceRateCache.sol";

import "./ComposableStablePoolStorage.sol";

abstract contract ComposableStablePoolRates is ComposableStablePoolStorage {
    using PriceRateCache for bytes32;
    using FixedPoint for uint256;

    struct RatesParams {
        IERC20[] tokens;
        IRateProvider[] rateProviders;
        uint256[] tokenRateCacheDurations;
    }

    // Token rate caches are used to avoid querying the price rate for a token every time we need to work with it.
    // The "old rate" field is used for precise protocol fee calculation, to ensure that token yield is only
    // "taxed" once. The data structure is as follows:
    //
    // [ expires | duration | old rate | current rate ]
    // [ uint32  |  uint32  |  uint96  |   uint96     ]

    // Since we never need just one cache but all of them at once, instead of making the mapping go from token address
    // to cache, we go from token index (including BPT), i.e. an array. We use a mapping however instead of a native
    // array to skip the extra read associated with the out-of-bounds check, as we have cheaper ways to guarantee the
    // indices are valid.
    mapping(uint256 => bytes32) internal _tokenRateCaches;

    event TokenRateCacheUpdated(uint256 indexed tokenIndex, uint256 rate);
    event TokenRateProviderSet(uint256 indexed tokenIndex, IRateProvider indexed provider, uint256 cacheDuration);

    constructor(RatesParams memory rateParams) {
        InputHelpers.ensureInputLengthMatch(
            rateParams.tokens.length,
            rateParams.rateProviders.length,
            rateParams.tokenRateCacheDurations.length
        );

        IERC20[] memory registeredTokens = _insertSorted(rateParams.tokens, IERC20(this));
        uint256 bptIndex;
        for (
            bptIndex = registeredTokens.length - 1;
            bptIndex > 0 && registeredTokens[bptIndex] > IERC20(this);
            bptIndex--
        ) {
            // solhint-disable-previous-line no-empty-blocks
        }

        uint256 skipBpt = 0;
        for (uint256 i = 0; i < rateParams.tokens.length; i++) {
            if (i == bptIndex) {
                skipBpt = 1;
            }

            uint256 k = i + skipBpt;
            if (rateParams.rateProviders[i] != IRateProvider(0)) {
                _updateTokenRateCache(k, rateParams.rateProviders[i], rateParams.tokenRateCacheDurations[i]);

                emit TokenRateProviderSet(k, rateParams.rateProviders[i], rateParams.tokenRateCacheDurations[i]);

                // Initialize the old rates as well, in case they are referenced before the first join.
                _updateOldRate(k);
            }
        }
    }

    /**
     * @dev Ensure we are not in a Vault context when this function is called, by attempting a no-op internal
     * balance operation. If we are already in a Vault transaction (e.g., a swap, join, or exit), the Vault's
     * reentrancy protection will cause this function to revert.
     *
     * The exact function call doesn't really matter: we're just trying to trigger the Vault reentrancy check
     * (and not hurt anything in case it works). An empty operation array with no specific operation at all works
     * for that purpose, and is also the least expensive in terms of gas and bytecode size.
     *
     * Use this modifier with any function that can cause a state change in a pool and is either public itself,
     * or called by a public function *outside* a Vault operation (e.g., join, exit, or swap).
     * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
     */
    modifier whenNotInVaultContext() {
        _ensureNotInVaultContext();
        _;
    }

    /**
     * @dev Reverts if called in the middle of a Vault operation; has no effect otherwise.
     */
    function _ensureNotInVaultContext() private {
        IVault.UserBalanceOp[] memory noop = new IVault.UserBalanceOp[](0);
        getVault().manageUserBalance(noop);
    }

    /**
     * @dev Updates the old rate for the token at `index` (including BPT). Assumes `index` is valid.
     */
    function _updateOldRate(uint256 index) internal {
        bytes32 cache = _tokenRateCaches[index];
        _tokenRateCaches[index] = cache.updateOldRate();
    }

    /**
     * @dev Returns the rate for a given token. All token rates are fixed-point values with 18 decimals.
     * If there is no rate provider for the provided token, it returns FixedPoint.ONE.
     */
    function getTokenRate(IERC20 token) external view returns (uint256) {
        return _getTokenRate(_getTokenIndex(token));
    }

    function _getTokenRate(uint256 index) internal view virtual returns (uint256) {
        // We optimize for the scenario where all tokens have rate providers, except the BPT (which never has a rate
        // provider). Therefore, we return early if `token` is the BPT, and otherwise optimistically read the cache
        // expecting that it will not be empty (instead of e.g. fetching the provider to avoid a cache read, since
        // we don't need the provider at all).

        if (index == getBptIndex()) {
            return FixedPoint.ONE;
        }

        bytes32 tokenRateCache = _tokenRateCaches[index];
        return tokenRateCache == bytes32(0) ? FixedPoint.ONE : tokenRateCache.getCurrentRate();
    }

    /**
     * @dev Returns the cached value for token's rate. Reverts if the token doesn't belong to the pool or has no rate
     * provider.
     */
    function getTokenRateCache(IERC20 token)
        external
        view
        returns (
            uint256 rate,
            uint256 oldRate,
            uint256 duration,
            uint256 expires
        )
    {
        bytes32 cache = _tokenRateCaches[_getTokenIndex(token)];

        // A zero cache indicates that the token doesn't have a rate provider associated with it.
        _require(cache != bytes32(0), Errors.TOKEN_DOES_NOT_HAVE_RATE_PROVIDER);

        rate = cache.getCurrentRate();
        oldRate = cache.getOldRate();
        (duration, expires) = cache.getTimestamps();
    }

    /**
     * @dev Sets a new duration for a token rate cache.
     * Note this function also updates the current cached value.
     *
     * This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
     *
     * This function depends on `getRate` via the rate provider, which may be calculated incorrectly in the middle of a
     * join or an exit because the state of the pool could be out of sync with the state of the Vault.
     *
     * It will also revert if there was no rate provider set initially.
     *
     * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
     *
     * @param duration Number of seconds until the current token rate is fetched again.
     */
    function setTokenRateCacheDuration(IERC20 token, uint256 duration) external authenticate whenNotInVaultContext {
        uint256 index = _getTokenIndex(token);
        IRateProvider provider = _getRateProvider(index);
        _require(address(provider) != address(0), Errors.TOKEN_DOES_NOT_HAVE_RATE_PROVIDER);
        _updateTokenRateCache(index, provider, duration);
        emit TokenRateProviderSet(index, provider, duration);
    }

    /**
     * @dev Forces a rate cache hit for a token.
     *
     * This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
     *
     * This function depends on `getRate` via the rate provider, which may be calculated incorrectly in the middle of a
     * join or an exit because the state of the pool could be out of sync with the state of the Vault.
     *
     * It will also revert if the requested token does not have an associated rate provider.
     *
     * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
     */
    function updateTokenRateCache(IERC20 token) external whenNotInVaultContext {
        uint256 index = _getTokenIndex(token);

        IRateProvider provider = _getRateProvider(index);
        _require(address(provider) != address(0), Errors.TOKEN_DOES_NOT_HAVE_RATE_PROVIDER);
        uint256 duration = _tokenRateCaches[index].getDuration();
        _updateTokenRateCache(index, provider, duration);
    }

    /**
     * @dev Internal function to update a token rate cache for a known provider and duration.
     * It trusts the given values, and does not perform any checks.
     */
    function _updateTokenRateCache(
        uint256 index,
        IRateProvider provider,
        uint256 duration
    ) internal virtual {
        uint256 rate = provider.getRate();
        bytes32 cache = _tokenRateCaches[index];

        _tokenRateCaches[index] = cache.updateRateAndDuration(rate, duration);

        emit TokenRateCacheUpdated(index, rate);
    }

    /**
     * @dev Caches the rates of all tokens if necessary
     */
    function _cacheTokenRatesIfNecessary() internal {
        uint256 totalTokens = _getTotalTokens();
        for (uint256 i = 0; i < totalTokens; ++i) {
            _cacheTokenRateIfNecessary(i);
        }
    }

    /**
     * @dev Caches the rate for a token if necessary. It ignores the call if there is no provider set.
     */
    function _cacheTokenRateIfNecessary(uint256 index) internal {
        // We optimize for the scenario where all tokens have rate providers, except the BPT (which never has a rate
        // provider). Therefore, we return early if token is BPT, and otherwise optimistically read the cache expecting
        // that it will not be empty (instead of e.g. fetching the provider to avoid a cache read in situations where
        // we might not need the provider if the cache is still valid).

        if (index == getBptIndex()) return;

        bytes32 cache = _tokenRateCaches[index];
        if (cache != bytes32(0)) {
            (uint256 duration, uint256 expires) = cache.getTimestamps();
            if (block.timestamp > expires) {
                // solhint-disable-previous-line not-rely-on-time
                _updateTokenRateCache(index, _getRateProvider(index), duration);
            }
        }
    }

    // To compute the yield protocol fees, we need the oldRate for all tokens, even if the exempt flag is not set.
    // We do need to ensure the token has a rate provider before updating; otherwise it will not be in the cache.
    function _updateOldRates() internal {
        uint256 totalTokens = _getTotalTokens();
        for (uint256 i = 0; i < totalTokens; ++i) {
            if (_hasRateProvider(i)) _updateOldRate(i);
        }
    }

    /**
     * @dev Apply the token ratios to a set of balances, optionally adjusting for exempt yield tokens.
     * The `balances` array is assumed to not include BPT to ensure that token indices align.
     */
    function _getAdjustedBalances(uint256[] memory balances, bool ignoreExemptFlags)
        internal
        view
        returns (uint256[] memory)
    {
        uint256 totalTokensWithoutBpt = balances.length;
        uint256[] memory adjustedBalances = new uint256[](totalTokensWithoutBpt);

        for (uint256 i = 0; i < totalTokensWithoutBpt; ++i) {
            uint256 skipBptIndex = i >= getBptIndex() ? i + 1 : i;
            adjustedBalances[i] = _isTokenExemptFromYieldProtocolFee(skipBptIndex) ||
                (ignoreExemptFlags && _hasRateProvider(skipBptIndex))
                ? _adjustedBalance(balances[i], _tokenRateCaches[skipBptIndex])
                : balances[i];
        }

        return adjustedBalances;
    }

    // Compute balance * oldRate/currentRate, doing division last to minimize rounding error.
    function _adjustedBalance(uint256 balance, bytes32 cache) private pure returns (uint256) {
        return Math.divDown(Math.mul(balance, cache.getOldRate()), cache.getCurrentRate());
    }

    // Scaling Factors

    /**
     * @dev Overrides scaling factor getter to compute the tokens' rates.
     */
    function _scalingFactors() internal view virtual override returns (uint256[] memory) {
        // There is no need to check the arrays length since both are based on `_getTotalTokens`
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory scalingFactors = new uint256[](totalTokens);

        for (uint256 i = 0; i < totalTokens; ++i) {
            scalingFactors[i] = _getScalingFactor(i).mulDown(_getTokenRate(i));
        }

        return scalingFactors;
    }

    /**
     * @dev Overrides only owner action to allow setting the cache duration for the token rates
     */
    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return (actionId == getActionId(this.setTokenRateCacheDuration.selector)) || super._isOwnerOnlyAction(actionId);
    }
}

File 15 of 52 : ComposableStablePoolProtocolFees.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-pool-utils/contracts/protocol-fees/ProtocolFeeCache.sol";
import "@balancer-labs/v2-pool-utils/contracts/protocol-fees/InvariantGrowthProtocolSwapFees.sol";

import "./ComposableStablePoolStorage.sol";
import "./ComposableStablePoolRates.sol";
import "./StableMath.sol";

abstract contract ComposableStablePoolProtocolFees is
    ComposableStablePoolStorage,
    ComposableStablePoolRates,
    ProtocolFeeCache
{
    using FixedPoint for uint256;
    using WordCodec for bytes32;

    // To track protocol fees, we measure and store the value of the invariant after every join and exit.
    // All invariant growth that happens between join and exit events is due to swap fees and yield.
    // For selected tokens, we exclude the yield portion from the computation.
    // Because the invariant depends on the amplification parameter, and this value may change over time, we should only
    // compare invariants that were computed using the same value. We therefore store both values together.
    //
    // These values reside in the same storage slot. The amplification factor is bound by _MAX_AMP * _AMP_PRECISION, or
    // 5e6, which fits in 23 bits. We use all remaining bits for the invariant: this is more than enough, as the
    // invariant is proportional to the total supply, which is capped at 112 bits.
    // The data structure is as follows:
    //
    // [ last join-exit amplification  | last post join-exit invariant ]
    // [           23 bits             |            233 bits           ]
    bytes32 private _lastJoinExitData;

    uint256 private constant _LAST_POST_JOIN_EXIT_INVARIANT_OFFSET = 0;
    uint256 private constant _LAST_POST_JOIN_EXIT_INVARIANT_SIZE = 233;
    uint256 private constant _LAST_JOIN_EXIT_AMPLIFICATION_OFFSET = _LAST_POST_JOIN_EXIT_INVARIANT_OFFSET +
        _LAST_POST_JOIN_EXIT_INVARIANT_SIZE;

    uint256 private constant _LAST_JOIN_EXIT_AMPLIFICATION_SIZE = 23;

    /**
     * @dev Calculates due protocol fees originating from accumulated swap fees and yield of non-exempt tokens, pays
     * them by minting BPT, and returns the actual supply and current balances.
     *
     * We also return the current invariant computed using the amplification factor at the last join or exit, which can
     * be useful to skip computations in scenarios where the amplification factor is not changing.
     */
    function _payProtocolFeesBeforeJoinExit(
        uint256[] memory registeredBalances,
        uint256 lastJoinExitAmp,
        uint256 lastPostJoinExitInvariant
    )
        internal
        returns (
            uint256,
            uint256[] memory,
            uint256
        )
    {
        (uint256 virtualSupply, uint256[] memory balances) = _dropBptItemFromBalances(registeredBalances);

        // First, we'll compute what percentage of the Pool the protocol should own due to charging protocol fees on
        // swap fees and yield.
        (
            uint256 expectedProtocolOwnershipPercentage,
            uint256 currentInvariantWithLastJoinExitAmp
        ) = _getProtocolPoolOwnershipPercentage(balances, lastJoinExitAmp, lastPostJoinExitInvariant);

        // Now that we know what percentage of the Pool's current value the protocol should own, we can compute how
        // much BPT we need to mint to get to this state. Since we're going to mint BPT for the protocol, the value
        // of each BPT is going to be reduced as all LPs get diluted.
        uint256 protocolFeeAmount = ProtocolFees.bptForPoolOwnershipPercentage(
            virtualSupply,
            expectedProtocolOwnershipPercentage
        );

        if (protocolFeeAmount > 0) {
            _payProtocolFees(protocolFeeAmount);
        }

        // We pay fees before a join or exit to ensure the pool is debt-free. This increases the virtual supply (making
        // it match the actual supply).
        //
        // For this addition to overflow, `totalSupply` would also have already overflowed.
        return (virtualSupply + protocolFeeAmount, balances, currentInvariantWithLastJoinExitAmp);
    }

    function _getProtocolPoolOwnershipPercentage(
        uint256[] memory balances,
        uint256 lastJoinExitAmp,
        uint256 lastPostJoinExitInvariant
    ) internal view returns (uint256, uint256) {
        // We compute three invariants, adjusting the balances of tokens that have rate providers by undoing the current
        // rate adjustment and then applying the old rate. This is equivalent to multiplying by old rate / current rate.
        //
        // In all cases we compute invariants with the last join-exit amplification factor, so that changes to the
        // amplification are not translated into changes to the invariant. Since amplification factor changes are both
        // infrequent and slow, they should have little effect on the pool balances, making this a very good
        // approximation.
        //
        // With this technique we obtain an invariant that does not include yield at all, meaning any growth will be due
        // exclusively to swap fees. We call this the 'swap fee growth invariant'.
        // A second invariant will exclude the yield of exempt tokens, and therefore include both swap fees and
        // non-exempt yield. This is called the 'non exempt growth invariant'.
        // Finally, a third invariant includes the yield of all tokens by using only the current rates. We call this the
        // 'total growth invariant', since it includes both swap fee growth, non-exempt yield growth and exempt yield
        // growth. If the last join-exit amplification equals the current one, this invariant equals the current
        // invariant.

        (
            uint256 swapFeeGrowthInvariant,
            uint256 totalNonExemptGrowthInvariant,
            uint256 totalGrowthInvariant
        ) = _getGrowthInvariants(balances, lastJoinExitAmp);

        // By comparing the invariant increase attributable to each source of growth to the total growth invariant,
        // we can calculate how much of the current Pool value originates from that source, and then apply the
        // corresponding protocol fee percentage to that amount.

        // We have two sources of growth: swap fees, and non-exempt yield. As we illustrate graphically below:
        //
        // growth due to swap fees        = (swap fee growth invariant - last post join-exit invariant)
        // growth due to non-exempt yield = (non-exempt growth invariant - swap fee growth invariant)
        //
        // These can be converted to additive percentages by normalizing against the total growth invariant value:
        // growth due to swap fees / total growth invariant = % pool ownership due from swap fees
        // growth due to non-exempt yield / total growth invariant = % pool ownership due from non-exempt yield
        //
        //   ┌───────────────────────┐ ──┐
        //   │  exempt yield         │   │  total growth invariant
        //   ├───────────────────────┤   │ ──┐
        //   │  non-exempt yield     │   │   │  non-exempt growth invariant
        //   ├───────────────────────┤   │   │ ──┐
        //   │  swap fees            │   │   │   │  swap fee growth invariant
        //   ├───────────────────────┤   │   │   │ ──┐
        //   │   original value      │   │   │   │   │  last post join-exit invariant
        //   └───────────────────────┘ ──┘ ──┘ ──┘ ──┘
        //
        // Each invariant should be larger than its precedessor. In case any rounding error results in them being
        // smaller, we adjust the subtraction to equal 0.

        // Note: in the unexpected scenario where the rates of the tokens shrink over time instead of growing (i.e. if
        // the yield is negative), the non-exempt growth invariant might actually be *smaller* than the swap fee growth
        // invariant, and the total growth invariant might be *smaller* than the non-exempt growth invariant. Depending
        // on the order in which swaps, joins/exits and rate changes happen, as well as their relative magnitudes, it is
        // possible for the Pool to either pay more or less protocol fees than it should.
        // Due to the complexity that handling all of these cases would introduce, this behavior is considered out of
        // scope, and is expected to be handled on a case-by-case basis if the token rates were to ever decrease (which
        // would also mean that the Pool value has dropped).

        uint256 swapFeeGrowthInvariantDelta = (swapFeeGrowthInvariant > lastPostJoinExitInvariant)
            ? swapFeeGrowthInvariant - lastPostJoinExitInvariant
            : 0;
        uint256 nonExemptYieldGrowthInvariantDelta = (totalNonExemptGrowthInvariant > swapFeeGrowthInvariant)
            ? totalNonExemptGrowthInvariant - swapFeeGrowthInvariant
            : 0;

        // We can now derive what percentage of the Pool's total value each invariant delta represents by dividing by
        // the total growth invariant. These values, multiplied by the protocol fee percentage for each growth type,
        // represent the percentage of Pool ownership the protocol should have due to each source.

        uint256 protocolSwapFeePercentage = swapFeeGrowthInvariantDelta.divDown(totalGrowthInvariant).mulDown(
            getProtocolFeePercentageCache(ProtocolFeeType.SWAP)
        );

        uint256 protocolYieldPercentage = nonExemptYieldGrowthInvariantDelta.divDown(totalGrowthInvariant).mulDown(
            getProtocolFeePercentageCache(ProtocolFeeType.YIELD)
        );

        // These percentages can then be simply added to compute the total protocol Pool ownership percentage.
        // This is naturally bounded above by FixedPoint.ONE so this addition cannot overflow.
        return (protocolSwapFeePercentage + protocolYieldPercentage, totalGrowthInvariant);
    }

    function _getGrowthInvariants(uint256[] memory balances, uint256 lastJoinExitAmp)
        internal
        view
        returns (
            uint256 swapFeeGrowthInvariant,
            uint256 totalNonExemptGrowthInvariant,
            uint256 totalGrowthInvariant
        )
    {
        // We always calculate the swap fee growth invariant, since we cannot easily know whether swap fees have
        // accumulated or not.

        swapFeeGrowthInvariant = StableMath._calculateInvariant(
            lastJoinExitAmp,
            _getAdjustedBalances(balances, true) // Adjust all balances
        );

        // For the other invariants, we can potentially skip some work. In the edge cases where none or all of the
        // tokens are exempt from yield, there's one fewer invariant to compute.

        if (_areNoTokensExempt()) {
            // If there are no tokens with fee-exempt yield, then the total non-exempt growth will equal the total
            // growth: all yield growth is non-exempt. There's also no point in adjusting balances, since we
            // already know none are exempt.

            totalNonExemptGrowthInvariant = StableMath._calculateInvariant(lastJoinExitAmp, balances);
            totalGrowthInvariant = totalNonExemptGrowthInvariant;
        } else if (_areAllTokensExempt()) {
            // If no tokens are charged fees on yield, then the non-exempt growth is equal to the swap fee growth - no
            // yield fees will be collected.

            totalNonExemptGrowthInvariant = swapFeeGrowthInvariant;
            totalGrowthInvariant = StableMath._calculateInvariant(lastJoinExitAmp, balances);
        } else {
            // In the general case, we need to calculate two invariants: one with some adjusted balances, and one with
            // the current balances.

            totalNonExemptGrowthInvariant = StableMath._calculateInvariant(
                lastJoinExitAmp,
                _getAdjustedBalances(balances, false) // Only adjust non-exempt balances
            );

            totalGrowthInvariant = StableMath._calculateInvariant(lastJoinExitAmp, balances);
        }
    }

    /**
     * @dev Store the latest invariant based on the adjusted balances after the join or exit, using current rates.
     * Also cache the amp factor, so that the invariant is not affected by amp updates between joins and exits.
     *
     * Pay protocol fees due on any current join or exit swap.
     */
    function _updateInvariantAfterJoinExit(
        uint256 currentAmp,
        uint256[] memory balances,
        uint256 preJoinExitInvariant,
        uint256 preJoinExitSupply,
        uint256 postJoinExitSupply
    ) internal {
        // `_payProtocolFeesBeforeJoinExit` paid protocol fees accumulated between the previous and current
        // join or exit, while this code pays any protocol fees due on the current join or exit.
        // The amp and rates are constant during a single transaction, so it doesn't matter if there
        // is an ongoing amp change, and we can ignore yield.

        // Compute the growth ratio between the pre- and post-join/exit balances.
        // Note that the pre-join/exit invariant is *not* the invariant from the last join,
        // but computed from the balances before this particular join/exit.

        uint256 postJoinExitInvariant = StableMath._calculateInvariant(currentAmp, balances);

        // Compute the portion of the invariant increase due to fees
        uint256 supplyGrowthRatio = postJoinExitSupply.divDown(preJoinExitSupply);
        uint256 feelessInvariant = preJoinExitInvariant.mulDown(supplyGrowthRatio);

        // The postJoinExitInvariant should always be greater than the feelessInvariant (since the invariant and total
        // supply move proportionally outside of fees, which the postJoinInvariant includes and the feelessInvariant
        // does not). However, in the unexpected case in which due to rounding errors this is not true, we simply skip
        // further computation of protocol fees.
        if (postJoinExitInvariant > feelessInvariant) {
            uint256 invariantDeltaFromFees = postJoinExitInvariant - feelessInvariant;

            // To convert to a percentage of pool ownership, multiply by the rate,
            // then normalize against the final invariant
            uint256 protocolOwnershipPercentage = Math.divDown(
                Math.mul(invariantDeltaFromFees, getProtocolFeePercentageCache(ProtocolFeeType.SWAP)),
                postJoinExitInvariant
            );

            if (protocolOwnershipPercentage > 0) {
                uint256 protocolFeeAmount = ProtocolFees.bptForPoolOwnershipPercentage(
                    postJoinExitSupply,
                    protocolOwnershipPercentage
                );

                _payProtocolFees(protocolFeeAmount);
            }
        }

        _updatePostJoinExit(currentAmp, postJoinExitInvariant);
    }

    /**
     * @dev Update the stored values of the amp and final post-join/exit invariant, to reset the basis for protocol
     * swap fees. Also copy the current rates to the old rates, to establish the new protocol yield basis for protocol
     * yield fees.
     */
    function _updatePostJoinExit(uint256 currentAmp, uint256 postJoinExitInvariant) internal {
        _lastJoinExitData =
            WordCodec.encodeUint(currentAmp, _LAST_JOIN_EXIT_AMPLIFICATION_OFFSET, _LAST_JOIN_EXIT_AMPLIFICATION_SIZE) |
            WordCodec.encodeUint(
                postJoinExitInvariant,
                _LAST_POST_JOIN_EXIT_INVARIANT_OFFSET,
                _LAST_POST_JOIN_EXIT_INVARIANT_SIZE
            );

        _updateOldRates();
    }

    /**
     * @notice Return the amplification factor and invariant as of the most recent join or exit (including BPT swaps)
     */
    function getLastJoinExitData()
        public
        view
        returns (uint256 lastJoinExitAmplification, uint256 lastPostJoinExitInvariant)
    {
        bytes32 rawData = _lastJoinExitData;

        lastJoinExitAmplification = rawData.decodeUint(
            _LAST_JOIN_EXIT_AMPLIFICATION_OFFSET,
            _LAST_JOIN_EXIT_AMPLIFICATION_SIZE
        );

        lastPostJoinExitInvariant = rawData.decodeUint(
            _LAST_POST_JOIN_EXIT_INVARIANT_OFFSET,
            _LAST_POST_JOIN_EXIT_INVARIANT_SIZE
        );
    }

    /**
     * @dev Inheritance rules still require us to override this in the most derived contract, even though
     * it only calls super.
     */
    function _isOwnerOnlyAction(bytes32 actionId)
        internal
        view
        virtual
        override(
            // Our inheritance pattern creates a small diamond that requires explicitly listing the parents here.
            // Each parent calls the `super` version, so linearization ensures all implementations are called.
            BasePool,
            BasePoolAuthorization,
            ComposableStablePoolRates
        )
        returns (bool)
    {
        return super._isOwnerOnlyAction(actionId);
    }
}

File 16 of 52 : StablePoolAmplification.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-pool-utils/contracts/BasePoolAuthorization.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

import "./StableMath.sol";

abstract contract StablePoolAmplification is BasePoolAuthorization {
    using WordCodec for bytes32;

    // This contract uses timestamps to slowly update its Amplification parameter over time. These changes must occur
    // over a minimum time period much larger than the blocktime, making timestamp manipulation a non-issue.
    // solhint-disable not-rely-on-time

    // Amplification factor changes must happen over a minimum period of one day, and can at most divide or multiply the
    // current value by 2 every day.
    // WARNING: this only limits *a single* amplification change to have a maximum rate of change of twice the original
    // value daily. It is possible to perform multiple amplification changes in sequence to increase this value more
    // rapidly: for example, by doubling the value every day it can increase by a factor of 8 over three days (2^3).
    uint256 private constant _MIN_UPDATE_TIME = 1 days;
    uint256 private constant _MAX_AMP_UPDATE_DAILY_RATE = 2;

    // The amplification data structure is as follows:
    // [  64 bits |   64 bits  |  64 bits  |   64 bits   ]
    // [ end time | start time | end value | start value ]
    // |MSB                                           LSB|

    uint256 private constant _AMP_START_VALUE_OFFSET = 0;
    uint256 private constant _AMP_END_VALUE_OFFSET = 64;
    uint256 private constant _AMP_START_TIME_OFFSET = 128;
    uint256 private constant _AMP_END_TIME_OFFSET = 192;

    uint256 private constant _AMP_VALUE_BIT_LENGTH = 64;
    uint256 private constant _AMP_TIMESTAMP_BIT_LENGTH = 64;

    bytes32 private _packedAmplificationData;

    event AmpUpdateStarted(uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime);
    event AmpUpdateStopped(uint256 currentValue);

    constructor(uint256 amplificationParameter) {
        _require(amplificationParameter >= StableMath._MIN_AMP, Errors.MIN_AMP);
        _require(amplificationParameter <= StableMath._MAX_AMP, Errors.MAX_AMP);

        uint256 initialAmp = Math.mul(amplificationParameter, StableMath._AMP_PRECISION);
        _setAmplificationData(initialAmp);
    }

    function getAmplificationParameter()
        external
        view
        returns (
            uint256 value,
            bool isUpdating,
            uint256 precision
        )
    {
        (value, isUpdating) = _getAmplificationParameter();
        precision = StableMath._AMP_PRECISION;
    }

    // Return the current amp value, which will be an interpolation if there is an ongoing amp update.
    // Also return a flag indicating whether there is an ongoing update.
    function _getAmplificationParameter() internal view returns (uint256 value, bool isUpdating) {
        (uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime) = _getAmplificationData();

        // Note that block.timestamp >= startTime, since startTime is set to the current time when an update starts

        if (block.timestamp < endTime) {
            isUpdating = true;

            // We can skip checked arithmetic as:
            //  - block.timestamp is always larger or equal to startTime
            //  - endTime is always larger than startTime
            //  - the value delta is bounded by the largest amplification parameter, which never causes the
            //    multiplication to overflow.
            // This also means that the following computation will never revert nor yield invalid results.
            if (endValue > startValue) {
                value = startValue + ((endValue - startValue) * (block.timestamp - startTime)) / (endTime - startTime);
            } else {
                value = startValue - ((startValue - endValue) * (block.timestamp - startTime)) / (endTime - startTime);
            }
        } else {
            isUpdating = false;
            value = endValue;
        }
    }

    // Unpack and return all amplification-related parameters.
    function _getAmplificationData()
        private
        view
        returns (
            uint256 startValue,
            uint256 endValue,
            uint256 startTime,
            uint256 endTime
        )
    {
        startValue = _packedAmplificationData.decodeUint(_AMP_START_VALUE_OFFSET, _AMP_VALUE_BIT_LENGTH);
        endValue = _packedAmplificationData.decodeUint(_AMP_END_VALUE_OFFSET, _AMP_VALUE_BIT_LENGTH);
        startTime = _packedAmplificationData.decodeUint(_AMP_START_TIME_OFFSET, _AMP_TIMESTAMP_BIT_LENGTH);
        endTime = _packedAmplificationData.decodeUint(_AMP_END_TIME_OFFSET, _AMP_TIMESTAMP_BIT_LENGTH);
    }

    /**
     * @dev Begin changing the amplification parameter to `rawEndValue` over time. The value will change linearly until
     * `endTime` is reached, when it will be `rawEndValue`.
     *
     * NOTE: Internally, the amplification parameter is represented using higher precision. The values returned by
     * `getAmplificationParameter` have to be corrected to account for this when comparing to `rawEndValue`.
     */
    function startAmplificationParameterUpdate(uint256 rawEndValue, uint256 endTime) external authenticate {
        _require(rawEndValue >= StableMath._MIN_AMP, Errors.MIN_AMP);
        _require(rawEndValue <= StableMath._MAX_AMP, Errors.MAX_AMP);

        uint256 duration = Math.sub(endTime, block.timestamp);
        _require(duration >= _MIN_UPDATE_TIME, Errors.AMP_END_TIME_TOO_CLOSE);

        (uint256 currentValue, bool isUpdating) = _getAmplificationParameter();
        _require(!isUpdating, Errors.AMP_ONGOING_UPDATE);

        uint256 endValue = Math.mul(rawEndValue, StableMath._AMP_PRECISION);

        // daily rate = (endValue / currentValue) / duration * 1 day
        // We perform all multiplications first to not reduce precision, and round the division up as we want to avoid
        // large rates. Note that these are regular integer multiplications and divisions, not fixed point.
        uint256 dailyRate = endValue > currentValue
            ? Math.divUp(Math.mul(1 days, endValue), Math.mul(currentValue, duration))
            : Math.divUp(Math.mul(1 days, currentValue), Math.mul(endValue, duration));
        _require(dailyRate <= _MAX_AMP_UPDATE_DAILY_RATE, Errors.AMP_RATE_TOO_HIGH);

        _setAmplificationData(currentValue, endValue, block.timestamp, endTime);
    }

    /**
     * @dev Stops the amplification parameter change process, keeping the current value.
     */
    function stopAmplificationParameterUpdate() external authenticate {
        (uint256 currentValue, bool isUpdating) = _getAmplificationParameter();
        _require(isUpdating, Errors.AMP_NO_ONGOING_UPDATE);

        _setAmplificationData(currentValue);
    }

    function _setAmplificationData(uint256 value) private {
        _storeAmplificationData(value, value, block.timestamp, block.timestamp);
        emit AmpUpdateStopped(value);
    }

    function _setAmplificationData(
        uint256 startValue,
        uint256 endValue,
        uint256 startTime,
        uint256 endTime
    ) private {
        _storeAmplificationData(startValue, endValue, startTime, endTime);
        emit AmpUpdateStarted(startValue, endValue, startTime, endTime);
    }

    function _storeAmplificationData(
        uint256 startValue,
        uint256 endValue,
        uint256 startTime,
        uint256 endTime
    ) private {
        _packedAmplificationData =
            WordCodec.encodeUint(startValue, _AMP_START_VALUE_OFFSET, _AMP_VALUE_BIT_LENGTH) |
            WordCodec.encodeUint(endValue, _AMP_END_VALUE_OFFSET, _AMP_VALUE_BIT_LENGTH) |
            WordCodec.encodeUint(startTime, _AMP_START_TIME_OFFSET, _AMP_TIMESTAMP_BIT_LENGTH) |
            WordCodec.encodeUint(endTime, _AMP_END_TIME_OFFSET, _AMP_TIMESTAMP_BIT_LENGTH);
    }

    // Permissioned functions

    /**
     * @dev Overrides only owner action to allow setting the cache duration for the token rates
     */
    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return
            (actionId == getActionId(this.startAmplificationParameterUpdate.selector)) ||
            (actionId == getActionId(this.stopAmplificationParameterUpdate.selector)) ||
            super._isOwnerOnlyAction(actionId);
    }
}

File 17 of 52 : StableMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";

// These functions start with an underscore, as if they were part of a contract and not a library. At some point this
// should be fixed. Additionally, some variables have non mixed case names (e.g. P_D) that relate to the mathematical
// derivations.
// solhint-disable private-vars-leading-underscore, var-name-mixedcase

library StableMath {
    using FixedPoint for uint256;

    uint256 internal constant _MIN_AMP = 1;
    uint256 internal constant _MAX_AMP = 5000;
    uint256 internal constant _AMP_PRECISION = 1e3;

    uint256 internal constant _MAX_STABLE_TOKENS = 5;

    // Note on unchecked arithmetic:
    // This contract performs a large number of additions, subtractions, multiplications and divisions, often inside
    // loops. Since many of these operations are gas-sensitive (as they happen e.g. during a swap), it is important to
    // not make any unnecessary checks. We rely on a set of invariants to avoid having to use checked arithmetic (the
    // Math library), including:
    //  - the number of tokens is bounded by _MAX_STABLE_TOKENS
    //  - the amplification parameter is bounded by _MAX_AMP * _AMP_PRECISION, which fits in 23 bits
    //  - the token balances are bounded by 2^112 (guaranteed by the Vault) times 1e18 (the maximum scaling factor),
    //    which fits in 172 bits
    //
    // This means e.g. we can safely multiply a balance by the amplification parameter without worrying about overflow.

    // About swap fees on joins and exits:
    // Any join or exit that is not perfectly balanced (e.g. all single token joins or exits) is mathematically
    // equivalent to a perfectly balanced join or  exit followed by a series of swaps. Since these swaps would charge
    // swap fees, it follows that (some) joins and exits should as well.
    // On these operations, we split the token amounts in 'taxable' and 'non-taxable' portions, where the 'taxable' part
    // is the one to which swap fees are applied.

    // Computes the invariant given the current balances, using the Newton-Raphson approximation.
    // The amplification parameter equals: A n^(n-1)
    // See: https://github.com/curvefi/curve-contract/blob/b0bbf77f8f93c9c5f4e415bce9cd71f0cdee960e/contracts/pool-templates/base/SwapTemplateBase.vy#L206
    // solhint-disable-previous-line max-line-length
    function _calculateInvariant(uint256 amplificationParameter, uint256[] memory balances)
        internal
        pure
        returns (uint256)
    {
        /**********************************************************************************************
        // invariant                                                                                 //
        // D = invariant                                                  D^(n+1)                    //
        // A = amplification coefficient      A  n^n S + D = A D n^n + -----------                   //
        // S = sum of balances                                             n^n P                     //
        // P = product of balances                                                                   //
        // n = number of tokens                                                                      //
        **********************************************************************************************/

        // Always round down, to match Vyper's arithmetic (which always truncates).

        uint256 sum = 0; // S in the Curve version
        uint256 numTokens = balances.length;
        for (uint256 i = 0; i < numTokens; i++) {
            sum = sum.add(balances[i]);
        }
        if (sum == 0) {
            return 0;
        }

        uint256 prevInvariant; // Dprev in the Curve version
        uint256 invariant = sum; // D in the Curve version
        uint256 ampTimesTotal = amplificationParameter * numTokens; // Ann in the Curve version

        for (uint256 i = 0; i < 255; i++) {
            uint256 D_P = invariant;

            for (uint256 j = 0; j < numTokens; j++) {
                // (D_P * invariant) / (balances[j] * numTokens)
                D_P = Math.divDown(Math.mul(D_P, invariant), Math.mul(balances[j], numTokens));
            }

            prevInvariant = invariant;

            invariant = Math.divDown(
                Math.mul(
                    // (ampTimesTotal * sum) / AMP_PRECISION + D_P * numTokens
                    (Math.divDown(Math.mul(ampTimesTotal, sum), _AMP_PRECISION).add(Math.mul(D_P, numTokens))),
                    invariant
                ),
                // ((ampTimesTotal - _AMP_PRECISION) * invariant) / _AMP_PRECISION + (numTokens + 1) * D_P
                (
                    Math.divDown(Math.mul((ampTimesTotal - _AMP_PRECISION), invariant), _AMP_PRECISION).add(
                        Math.mul((numTokens + 1), D_P)
                    )
                )
            );

            if (invariant > prevInvariant) {
                if (invariant - prevInvariant <= 1) {
                    return invariant;
                }
            } else if (prevInvariant - invariant <= 1) {
                return invariant;
            }
        }

        _revert(Errors.STABLE_INVARIANT_DIDNT_CONVERGE);
    }

    // Computes how many tokens can be taken out of a pool if `tokenAmountIn` are sent, given the current balances.
    // The amplification parameter equals: A n^(n-1)
    function _calcOutGivenIn(
        uint256 amplificationParameter,
        uint256[] memory balances,
        uint256 tokenIndexIn,
        uint256 tokenIndexOut,
        uint256 tokenAmountIn,
        uint256 invariant
    ) internal pure returns (uint256) {
        /**************************************************************************************************************
        // outGivenIn token x for y - polynomial equation to solve                                                   //
        // ay = amount out to calculate                                                                              //
        // by = balance token out                                                                                    //
        // y = by - ay (finalBalanceOut)                                                                             //
        // D = invariant                                               D                     D^(n+1)                 //
        // A = amplification coefficient               y^2 + ( S - ----------  - D) * y -  ------------- = 0         //
        // n = number of tokens                                    (A * n^n)               A * n^2n * P              //
        // S = sum of final balances but y                                                                           //
        // P = product of final balances but y                                                                       //
        **************************************************************************************************************/

        // Amount out, so we round down overall.
        balances[tokenIndexIn] = balances[tokenIndexIn].add(tokenAmountIn);

        uint256 finalBalanceOut = _getTokenBalanceGivenInvariantAndAllOtherBalances(
            amplificationParameter,
            balances,
            invariant,
            tokenIndexOut
        );

        // No need to use checked arithmetic since `tokenAmountIn` was actually added to the same balance right before
        // calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array.
        balances[tokenIndexIn] = balances[tokenIndexIn] - tokenAmountIn;

        return balances[tokenIndexOut].sub(finalBalanceOut).sub(1);
    }

    // Computes how many tokens must be sent to a pool if `tokenAmountOut` are sent given the
    // current balances, using the Newton-Raphson approximation.
    // The amplification parameter equals: A n^(n-1)
    function _calcInGivenOut(
        uint256 amplificationParameter,
        uint256[] memory balances,
        uint256 tokenIndexIn,
        uint256 tokenIndexOut,
        uint256 tokenAmountOut,
        uint256 invariant
    ) internal pure returns (uint256) {
        /**************************************************************************************************************
        // inGivenOut token x for y - polynomial equation to solve                                                   //
        // ax = amount in to calculate                                                                               //
        // bx = balance token in                                                                                     //
        // x = bx + ax (finalBalanceIn)                                                                              //
        // D = invariant                                                D                     D^(n+1)                //
        // A = amplification coefficient               x^2 + ( S - ----------  - D) * x -  ------------- = 0         //
        // n = number of tokens                                     (A * n^n)               A * n^2n * P             //
        // S = sum of final balances but x                                                                           //
        // P = product of final balances but x                                                                       //
        **************************************************************************************************************/

        // Amount in, so we round up overall.
        balances[tokenIndexOut] = balances[tokenIndexOut].sub(tokenAmountOut);

        uint256 finalBalanceIn = _getTokenBalanceGivenInvariantAndAllOtherBalances(
            amplificationParameter,
            balances,
            invariant,
            tokenIndexIn
        );

        // No need to use checked arithmetic since `tokenAmountOut` was actually subtracted from the same balance right
        // before calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array.
        balances[tokenIndexOut] = balances[tokenIndexOut] + tokenAmountOut;

        return finalBalanceIn.sub(balances[tokenIndexIn]).add(1);
    }

    function _calcBptOutGivenExactTokensIn(
        uint256 amp,
        uint256[] memory balances,
        uint256[] memory amountsIn,
        uint256 bptTotalSupply,
        uint256 currentInvariant,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        // BPT out, so we round down overall.

        // First loop calculates the sum of all token balances, which will be used to calculate
        // the current weights of each token, relative to this sum
        uint256 sumBalances = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            sumBalances = sumBalances.add(balances[i]);
        }

        // Calculate the weighted balance ratio without considering fees
        uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length);
        // The weighted sum of token balance ratios with fee
        uint256 invariantRatioWithFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            uint256 currentWeight = balances[i].divDown(sumBalances);
            balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]);
            invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(currentWeight));
        }

        // Second loop calculates new amounts in, taking into account the fee on the percentage excess
        uint256[] memory newBalances = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            uint256 amountInWithoutFee;

            // Check if the balance ratio is greater than the ideal ratio to charge fees or not
            if (balanceRatiosWithFee[i] > invariantRatioWithFees) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE));
                uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount);
                // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
                amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage));
            } else {
                amountInWithoutFee = amountsIn[i];
            }

            newBalances[i] = balances[i].add(amountInWithoutFee);
        }

        uint256 newInvariant = _calculateInvariant(amp, newBalances);
        uint256 invariantRatio = newInvariant.divDown(currentInvariant);

        // If the invariant didn't increase for any reason, we simply don't mint BPT
        if (invariantRatio > FixedPoint.ONE) {
            return bptTotalSupply.mulDown(invariantRatio - FixedPoint.ONE);
        } else {
            return 0;
        }
    }

    function _calcTokenInGivenExactBptOut(
        uint256 amp,
        uint256[] memory balances,
        uint256 tokenIndex,
        uint256 bptAmountOut,
        uint256 bptTotalSupply,
        uint256 currentInvariant,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        // Token in, so we round up overall.

        uint256 newInvariant = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply).mulUp(currentInvariant);

        // Calculate amount in without fee.
        uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances(
            amp,
            balances,
            newInvariant,
            tokenIndex
        );
        uint256 amountInWithoutFee = newBalanceTokenIndex.sub(balances[tokenIndex]);

        // First calculate the sum of all token balances, which will be used to calculate
        // the current weight of each token
        uint256 sumBalances = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            sumBalances = sumBalances.add(balances[i]);
        }

        // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees
        // accordingly.
        uint256 currentWeight = balances[tokenIndex].divDown(sumBalances);
        uint256 taxablePercentage = currentWeight.complement();
        uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount);

        // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
        return nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage));
    }

    /*
    Flow of calculations:
    amountsTokenOut -> amountsOutProportional ->
    amountOutPercentageExcess -> amountOutBeforeFee -> newInvariant -> amountBPTIn
    */
    function _calcBptInGivenExactTokensOut(
        uint256 amp,
        uint256[] memory balances,
        uint256[] memory amountsOut,
        uint256 bptTotalSupply,
        uint256 currentInvariant,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        // BPT in, so we round up overall.

        // First loop calculates the sum of all token balances, which will be used to calculate
        // the current weights of each token relative to this sum
        uint256 sumBalances = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            sumBalances = sumBalances.add(balances[i]);
        }

        // Calculate the weighted balance ratio without considering fees
        uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length);
        uint256 invariantRatioWithoutFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            uint256 currentWeight = balances[i].divUp(sumBalances);
            balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]);
            invariantRatioWithoutFees = invariantRatioWithoutFees.add(balanceRatiosWithoutFee[i].mulUp(currentWeight));
        }

        // Second loop calculates new amounts in, taking into account the fee on the percentage excess
        uint256[] memory newBalances = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to
            // 'token out'. This results in slightly larger price impact.

            uint256 amountOutWithFee;
            if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement());
                uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount);
                // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
                amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage));
            } else {
                amountOutWithFee = amountsOut[i];
            }

            newBalances[i] = balances[i].sub(amountOutWithFee);
        }

        uint256 newInvariant = _calculateInvariant(amp, newBalances);
        uint256 invariantRatio = newInvariant.divDown(currentInvariant);

        // return amountBPTIn
        return bptTotalSupply.mulUp(invariantRatio.complement());
    }

    function _calcTokenOutGivenExactBptIn(
        uint256 amp,
        uint256[] memory balances,
        uint256 tokenIndex,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 currentInvariant,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        // Token out, so we round down overall.

        uint256 newInvariant = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply).mulUp(currentInvariant);

        // Calculate amount out without fee
        uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances(
            amp,
            balances,
            newInvariant,
            tokenIndex
        );
        uint256 amountOutWithoutFee = balances[tokenIndex].sub(newBalanceTokenIndex);

        // First calculate the sum of all token balances, which will be used to calculate
        // the current weight of each token
        uint256 sumBalances = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            sumBalances = sumBalances.add(balances[i]);
        }

        // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result
        // in swap fees.
        uint256 currentWeight = balances[tokenIndex].divDown(sumBalances);
        uint256 taxablePercentage = currentWeight.complement();

        // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it
        // to 'token out'. This results in slightly larger price impact. Fees are rounded up.
        uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount);

        // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
        return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage));
    }

    // This function calculates the balance of a given token (tokenIndex)
    // given all the other balances and the invariant
    function _getTokenBalanceGivenInvariantAndAllOtherBalances(
        uint256 amplificationParameter,
        uint256[] memory balances,
        uint256 invariant,
        uint256 tokenIndex
    ) internal pure returns (uint256) {
        // Rounds result up overall

        uint256 ampTimesTotal = amplificationParameter * balances.length;
        uint256 sum = balances[0];
        uint256 P_D = balances[0] * balances.length;
        for (uint256 j = 1; j < balances.length; j++) {
            P_D = Math.divDown(Math.mul(Math.mul(P_D, balances[j]), balances.length), invariant);
            sum = sum.add(balances[j]);
        }
        // No need to use safe math, based on the loop above `sum` is greater than or equal to `balances[tokenIndex]`
        sum = sum - balances[tokenIndex];

        uint256 inv2 = Math.mul(invariant, invariant);
        // We remove the balance from c by multiplying it
        uint256 c = Math.mul(
            Math.mul(Math.divUp(inv2, Math.mul(ampTimesTotal, P_D)), _AMP_PRECISION),
            balances[tokenIndex]
        );
        uint256 b = sum.add(Math.mul(Math.divDown(invariant, ampTimesTotal), _AMP_PRECISION));

        // We iterate to find the balance
        uint256 prevTokenBalance = 0;
        // We multiply the first iteration outside the loop with the invariant to set the value of the
        // initial approximation.
        uint256 tokenBalance = Math.divUp(inv2.add(c), invariant.add(b));

        for (uint256 i = 0; i < 255; i++) {
            prevTokenBalance = tokenBalance;

            tokenBalance = Math.divUp(
                Math.mul(tokenBalance, tokenBalance).add(c),
                Math.mul(tokenBalance, 2).add(b).sub(invariant)
            );

            if (tokenBalance > prevTokenBalance) {
                if (tokenBalance - prevTokenBalance <= 1) {
                    return tokenBalance;
                }
            } else if (prevTokenBalance - tokenBalance <= 1) {
                return tokenBalance;
            }
        }

        _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE);
    }

    function _computeProportionalAmountsIn(
        uint256[] memory balances,
        uint256 bptAmountOut,
        uint256 totalBPT
    ) internal pure returns (uint256[] memory) {
        /************************************************************************************
        // tokensInForExactBptOut                                                          //
        // (per token)                                                                     //
        // aI = amountIn                   /   bptOut   \                                  //
        // b = balance           aI = b * | ------------ |                                 //
        // bptOut = bptAmountOut           \  totalBPT  /                                  //
        // bpt = totalBPT                                                                  //
        ************************************************************************************/

        // Tokens in, so we round up overall.
        uint256 bptRatio = bptAmountOut.divUp(totalBPT);

        uint256[] memory amountsIn = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsIn[i] = balances[i].mulUp(bptRatio);
        }

        return amountsIn;
    }
}

File 18 of 52 : LogExpMath.sol
// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 0) {
            // We solve the 0^0 indetermination by making it equal one.
            return uint256(ONE_18);
        }

        if (x == 0) {
            return 0;
        }

        // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
        // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
        // x^y = exp(y * ln(x)).

        // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
        _require(x >> 255 == 0, Errors.X_OUT_OF_BOUNDS);
        int256 x_int256 = int256(x);

        // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
        // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

        // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
        _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);
        int256 y_int256 = int256(y);

        int256 logx_times_y;
        if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
            int256 ln_36_x = _ln_36(x_int256);

            // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
            // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
            // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
            // (downscaled) last 18 decimals.
            logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
        } else {
            logx_times_y = _ln(x_int256) * y_int256;
        }
        logx_times_y /= ONE_18;

        // Finally, we compute exp(y * ln(x)) to arrive at x^y
        _require(
            MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
            Errors.PRODUCT_OUT_OF_BOUNDS
        );

        return uint256(exp(logx_times_y));
    }

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT);

        if (x < 0) {
            // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
            // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
            // Fixed point division requires multiplying by ONE_18.
            return ((ONE_18 * ONE_18) / exp(-x));
        }

        // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
        // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
        // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
        // decomposition.
        // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
        // decomposition, which will be lower than the smallest x_n.
        // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
        // We mutate x by subtracting x_n, making it the remainder of the decomposition.

        // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
        // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
        // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
        // decomposition.

        // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
        // it and compute the accumulated product.

        int256 firstAN;
        if (x >= x0) {
            x -= x0;
            firstAN = a0;
        } else if (x >= x1) {
            x -= x1;
            firstAN = a1;
        } else {
            firstAN = 1; // One with no decimal places
        }

        // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
        // smaller terms.
        x *= 100;

        // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
        // one. Recall that fixed point multiplication requires dividing by ONE_20.
        int256 product = ONE_20;

        if (x >= x2) {
            x -= x2;
            product = (product * a2) / ONE_20;
        }
        if (x >= x3) {
            x -= x3;
            product = (product * a3) / ONE_20;
        }
        if (x >= x4) {
            x -= x4;
            product = (product * a4) / ONE_20;
        }
        if (x >= x5) {
            x -= x5;
            product = (product * a5) / ONE_20;
        }
        if (x >= x6) {
            x -= x6;
            product = (product * a6) / ONE_20;
        }
        if (x >= x7) {
            x -= x7;
            product = (product * a7) / ONE_20;
        }
        if (x >= x8) {
            x -= x8;
            product = (product * a8) / ONE_20;
        }
        if (x >= x9) {
            x -= x9;
            product = (product * a9) / ONE_20;
        }

        // x10 and x11 are unnecessary here since we have high enough precision already.

        // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
        // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

        int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
        int256 term; // Each term in the sum, where the nth term is (x^n / n!).

        // The first term is simply x.
        term = x;
        seriesSum += term;

        // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
        // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

        term = ((term * x) / ONE_20) / 2;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 3;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 4;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 5;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 6;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 7;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 8;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 9;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 10;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 11;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 12;
        seriesSum += term;

        // 12 Taylor terms are sufficient for 18 decimal precision.

        // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
        // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
        // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
        // and then drop two digits to return an 18 decimal value.

        return (((product * seriesSum) / ONE_20) * firstAN) / 100;
    }

    /**
     * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
     */
    function log(int256 arg, int256 base) internal pure returns (int256) {
        // This performs a simple base change: log(arg, base) = ln(arg) / ln(base).

        // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
        // upscaling.

        int256 logBase;
        if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
            logBase = _ln_36(base);
        } else {
            logBase = _ln(base) * ONE_18;
        }

        int256 logArg;
        if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
            logArg = _ln_36(arg);
        } else {
            logArg = _ln(arg) * ONE_18;
        }

        // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
        return (logArg * ONE_18) / logBase;
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        // The real natural logarithm is not defined for negative numbers or zero.
        _require(a > 0, Errors.OUT_OF_BOUNDS);
        if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
            return _ln_36(a) / ONE_18;
        } else {
            return _ln(a);
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        if (a < ONE_18) {
            // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
            // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
            // Fixed point division requires multiplying by ONE_18.
            return (-_ln((ONE_18 * ONE_18) / a));
        }

        // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
        // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
        // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
        // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
        // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
        // decomposition, which will be lower than the smallest a_n.
        // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
        // We mutate a by subtracting a_n, making it the remainder of the decomposition.

        // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
        // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
        // ONE_18 to convert them to fixed point.
        // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
        // by it and compute the accumulated sum.

        int256 sum = 0;
        if (a >= a0 * ONE_18) {
            a /= a0; // Integer, not fixed point division
            sum += x0;
        }

        if (a >= a1 * ONE_18) {
            a /= a1; // Integer, not fixed point division
            sum += x1;
        }

        // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
        sum *= 100;
        a *= 100;

        // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

        if (a >= a2) {
            a = (a * ONE_20) / a2;
            sum += x2;
        }

        if (a >= a3) {
            a = (a * ONE_20) / a3;
            sum += x3;
        }

        if (a >= a4) {
            a = (a * ONE_20) / a4;
            sum += x4;
        }

        if (a >= a5) {
            a = (a * ONE_20) / a5;
            sum += x5;
        }

        if (a >= a6) {
            a = (a * ONE_20) / a6;
            sum += x6;
        }

        if (a >= a7) {
            a = (a * ONE_20) / a7;
            sum += x7;
        }

        if (a >= a8) {
            a = (a * ONE_20) / a8;
            sum += x8;
        }

        if (a >= a9) {
            a = (a * ONE_20) / a9;
            sum += x9;
        }

        if (a >= a10) {
            a = (a * ONE_20) / a10;
            sum += x10;
        }

        if (a >= a11) {
            a = (a * ONE_20) / a11;
            sum += x11;
        }

        // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
        // that converges rapidly for values of `a` close to one - the same one used in ln_36.
        // Let z = (a - 1) / (a + 1).
        // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
        // division by ONE_20.
        int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
        int256 z_squared = (z * z) / ONE_20;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_20;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 11;

        // 6 Taylor terms are sufficient for 36 decimal precision.

        // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
        seriesSum *= 2;

        // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
        // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
        // value.

        return (sum + seriesSum) / 100;
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
        // worthwhile.

        // First, we transform x to a 36 digit fixed point value.
        x *= ONE_18;

        // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
        // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
        // division by ONE_36.
        int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
        int256 z_squared = (z * z) / ONE_36;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_36;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 11;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 13;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 15;

        // 8 Taylor terms are sufficient for 36 decimal precision.

        // All that remains is multiplying by 2 (non fixed point).
        return seriesSum * 2;
    }
}

File 19 of 52 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 20 of 52 : IAsset.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
 * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
 * types.
 *
 * This concept is unrelated to a Pool's Asset Managers.
 */
interface IAsset {
    // solhint-disable-previous-line no-empty-blocks
}

File 21 of 52 : IGeneralPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IBasePool.sol";

/**
 * @dev IPools with the General specialization setting should implement this interface.
 *
 * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
 * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will
 * grant to the pool in a 'given out' swap.
 *
 * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
 * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
 * indeed the Vault.
 */
interface IGeneralPool is IBasePool {
    function onSwap(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) external returns (uint256 amount);
}

File 22 of 52 : BasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-interfaces/contracts/pool-utils/IAssetManager.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IControlledPool.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";
import "@balancer-labs/v2-interfaces/contracts/vault/IBasePool.sol";

import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";

import "./BalancerPoolToken.sol";
import "./BasePoolAuthorization.sol";
import "./RecoveryMode.sol";

// solhint-disable max-states-count

/**
 * @notice Reference implementation for the base layer of a Pool contract.
 * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional
 * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism.
 *
 * This Pool pays protocol fees by minting BPT directly to the ProtocolFeeCollector instead of using the
 * `dueProtocolFees` return value. This results in the underlying tokens continuing to provide liquidity
 * for traders, while still keeping gas usage to a minimum since only a single token (the BPT) is transferred.
 *
 * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that
 * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the
 * `whenNotPaused` modifier.
 *
 * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer.
 *
 * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from
 * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces
 * and implement the swap callbacks themselves.
 */
abstract contract BasePool is
    IBasePool,
    IControlledPool,
    BasePoolAuthorization,
    BalancerPoolToken,
    TemporarilyPausable,
    RecoveryMode
{
    using WordCodec for bytes32;
    using FixedPoint for uint256;
    using BasePoolUserData for bytes;

    uint256 private constant _MIN_TOKENS = 2;

    uint256 private constant _DEFAULT_MINIMUM_BPT = 1e6;

    // 1e18 corresponds to 1.0, or a 100% fee
    uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
    uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits

    // `_miscData` is a storage slot that can be used to store unrelated pieces of information. All pools store the
    // recovery mode flag and swap fee percentage, but `miscData` can be extended to store more pieces of information.
    // The most signficant bit is reserved for the recovery mode flag, and the swap fee percentage is stored in
    // the next most significant 63 bits, leaving the remaining 192 bits free to store any other information derived
    // pools might need.
    //
    // This slot is preferred for gas-sensitive operations as it is read in all joins, swaps and exits,
    // and therefore warm.

    // [ recovery | swap  fee | available ]
    // [   1 bit  |  63 bits  |  192 bits ]
    // [ MSB                          LSB ]
    bytes32 private _miscData;

    uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192;
    uint256 private constant _RECOVERY_MODE_BIT_OFFSET = 255;

    // A fee can never be larger than FixedPoint.ONE, which fits in 60 bits, so 63 is more than enough.
    uint256 private constant _SWAP_FEE_PERCENTAGE_BIT_LENGTH = 63;

    bytes32 private immutable _poolId;

    // Note that this value is immutable in the Vault, so we can make it immutable here and save gas
    IProtocolFeesCollector private immutable _protocolFeesCollector;

    event SwapFeePercentageChanged(uint256 swapFeePercentage);

    constructor(
        IVault vault,
        IVault.PoolSpecialization specialization,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        // Base Pools are expected to be deployed using factories. By using the factory address as the action
        // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
        // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
        // any Pool created by the same factory), while still making action identifiers unique among different factories
        // if the selectors match, preventing accidental errors.
        Authentication(bytes32(uint256(msg.sender)))
        BalancerPoolToken(name, symbol, vault)
        BasePoolAuthorization(owner)
        TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration)
    {
        _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS);
        _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS);

        // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
        // to make the developer experience consistent, we are requiring this condition for all the native pools.
        // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same
        // order. We rely on this property to make Pools simpler to write, as it lets us assume that the
        // order of token-specific parameters (such as token weights) will not change.
        InputHelpers.ensureArrayIsSorted(tokens);

        _setSwapFeePercentage(swapFeePercentage);

        bytes32 poolId = vault.registerPool(specialization);

        vault.registerTokens(poolId, tokens, assetManagers);

        // Set immutable state variables - these cannot be read from during construction
        _poolId = poolId;
        _protocolFeesCollector = vault.getProtocolFeesCollector();
    }

    // Getters / Setters

    /**
     * @notice Return the pool id.
     */
    function getPoolId() public view override returns (bytes32) {
        return _poolId;
    }

    function _getTotalTokens() internal view virtual returns (uint256);

    function _getMaxTokens() internal pure virtual returns (uint256);

    /**
     * @dev Returns the minimum BPT supply. This amount is minted to the zero address during initialization, effectively
     * locking it.
     *
     * This is useful to make sure Pool initialization happens only once, but derived Pools can change this value (even
     * to zero) by overriding this function.
     */
    function _getMinimumBpt() internal pure virtual returns (uint256) {
        return _DEFAULT_MINIMUM_BPT;
    }

    /**
     * @notice Return the current value of the swap fee percentage.
     * @dev This is stored in `_miscData`.
     */
    function getSwapFeePercentage() public view virtual override returns (uint256) {
        return _miscData.decodeUint(_SWAP_FEE_PERCENTAGE_OFFSET, _SWAP_FEE_PERCENTAGE_BIT_LENGTH);
    }

    /**
     * @notice Return the ProtocolFeesCollector contract.
     * @dev This is immutable, and retrieved from the Vault on construction. (It is also immutable in the Vault.)
     */
    function getProtocolFeesCollector() public view returns (IProtocolFeesCollector) {
        return _protocolFeesCollector;
    }

    /**
     * @notice Set the swap fee percentage.
     * @dev This is a permissioned function, and disabled if the pool is paused. The swap fee must be within the
     * bounds set by MIN_SWAP_FEE_PERCENTAGE/MAX_SWAP_FEE_PERCENTAGE. Emits the SwapFeePercentageChanged event.
     */
    function setSwapFeePercentage(uint256 swapFeePercentage) public virtual override authenticate whenNotPaused {
        _setSwapFeePercentage(swapFeePercentage);
    }

    function _setSwapFeePercentage(uint256 swapFeePercentage) internal virtual {
        _require(swapFeePercentage >= _getMinSwapFeePercentage(), Errors.MIN_SWAP_FEE_PERCENTAGE);
        _require(swapFeePercentage <= _getMaxSwapFeePercentage(), Errors.MAX_SWAP_FEE_PERCENTAGE);

        _miscData = _miscData.insertUint(
            swapFeePercentage,
            _SWAP_FEE_PERCENTAGE_OFFSET,
            _SWAP_FEE_PERCENTAGE_BIT_LENGTH
        );

        emit SwapFeePercentageChanged(swapFeePercentage);
    }

    function _getMinSwapFeePercentage() internal pure virtual returns (uint256) {
        return _MIN_SWAP_FEE_PERCENTAGE;
    }

    function _getMaxSwapFeePercentage() internal pure virtual returns (uint256) {
        return _MAX_SWAP_FEE_PERCENTAGE;
    }

    /**
     * @notice Returns whether the pool is in Recovery Mode.
     */
    function inRecoveryMode() public view override returns (bool) {
        return _miscData.decodeBool(_RECOVERY_MODE_BIT_OFFSET);
    }

    /**
     * @dev Sets the recoveryMode state, and emits the corresponding event.
     */
    function _setRecoveryMode(bool enabled) internal virtual override {
        _miscData = _miscData.insertBool(enabled, _RECOVERY_MODE_BIT_OFFSET);

        emit RecoveryModeStateChanged(enabled);

        // Some pools need to update their state when leaving recovery mode to ensure proper functioning of the Pool.
        // We do not allow an `_onEnableRecoveryMode()` hook as this may jeopardize the ability to enable Recovery mode.
        if (!enabled) _onDisableRecoveryMode();
    }

    /**
     * @dev Performs any necessary actions on the disabling of Recovery Mode.
     * This is usually to reset any fee collection mechanisms to ensure that they operate correctly going forward.
     */
    function _onDisableRecoveryMode() internal virtual {}

    /**
     * @notice Set the asset manager parameters for the given token.
     * @dev This is a permissioned function, unavailable when the pool is paused.
     * The details of the configuration data are set by each Asset Manager. (For an example, see
     * `RewardsAssetManager`.)
     */
    function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig)
        public
        virtual
        override
        authenticate
        whenNotPaused
    {
        _setAssetManagerPoolConfig(token, poolConfig);
    }

    function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private {
        bytes32 poolId = getPoolId();
        (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token);

        IAssetManager(assetManager).setConfig(poolId, poolConfig);
    }

    /**
     * @notice Pause the pool: an emergency action which disables all pool functions.
     * @dev This is a permissioned function that will only work during the Pause Window set during pool factory
     * deployment (see `TemporarilyPausable`).
     */
    function pause() external authenticate {
        _setPaused(true);
    }

    /**
     * @notice Reverse a `pause` operation, and restore a pool to normal functionality.
     * @dev This is a permissioned function that will only work on a paused pool within the Buffer Period set during
     * pool factory deployment (see `TemporarilyPausable`). Note that any paused pools will automatically unpause
     * after the Buffer Period expires.
     */
    function unpause() external authenticate {
        _setPaused(false);
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return
            (actionId == getActionId(this.setSwapFeePercentage.selector)) ||
            (actionId == getActionId(this.setAssetManagerPoolConfig.selector)) ||
            super._isOwnerOnlyAction(actionId);
    }

    function _getMiscData() internal view returns (bytes32) {
        return _miscData;
    }

    /**
     * @dev Inserts data into the least-significant 192 bits of the misc data storage slot.
     * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded.
     */
    function _setMiscData(bytes32 newData) internal {
        _miscData = _miscData.insertBits192(newData, 0);
    }

    // Join / Exit Hooks

    modifier onlyVault(bytes32 poolId) {
        _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
        _require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
        _;
    }

    /**
     * @notice Vault hook for adding liquidity to a pool (including the first time, "initializing" the pool).
     * @dev This function can only be called from the Vault, from `joinPool`.
     */
    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        _beforeSwapJoinExit();

        uint256[] memory scalingFactors = _scalingFactors();

        if (totalSupply() == 0) {
            (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool(
                poolId,
                sender,
                recipient,
                scalingFactors,
                userData
            );

            // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a
            // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the
            // Pool from ever being fully drained.
            _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT);
            _mintPoolTokens(address(0), _getMinimumBpt());
            _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt());

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);

            return (amountsIn, new uint256[](balances.length));
        } else {
            _upscaleArray(balances, scalingFactors);
            (uint256 bptAmountOut, uint256[] memory amountsIn) = _onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                inRecoveryMode() ? 0 : protocolSwapFeePercentage, // Protocol fees are disabled while in recovery mode
                scalingFactors,
                userData
            );

            // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.

            _mintPoolTokens(recipient, bptAmountOut);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);

            // This Pool ignores the `dueProtocolFees` return value, so we simply return a zeroed-out array.
            return (amountsIn, new uint256[](balances.length));
        }
    }

    /**
     * @notice Vault hook for removing liquidity from a pool.
     * @dev This function can only be called from the Vault, from `exitPool`.
     */
    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory amountsOut;
        uint256 bptAmountIn;

        // When a user calls `exitPool`, this is the first point of entry from the Vault.
        // We first check whether this is a Recovery Mode exit - if so, we proceed using this special lightweight exit
        // mechanism which avoids computing any complex values, interacting with external contracts, etc., and generally
        // should always work, even if the Pool's mathematics or a dependency break down.
        if (userData.isRecoveryModeExitKind()) {
            // This exit kind is only available in Recovery Mode.
            _ensureInRecoveryMode();

            // Note that we don't upscale balances nor downscale amountsOut - we don't care about scaling factors during
            // a recovery mode exit.
            (bptAmountIn, amountsOut) = _doRecoveryModeExit(balances, totalSupply(), userData);
        } else {
            // Note that we only call this if we're not in a recovery mode exit.
            _beforeSwapJoinExit();

            uint256[] memory scalingFactors = _scalingFactors();
            _upscaleArray(balances, scalingFactors);

            (bptAmountIn, amountsOut) = _onExitPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                inRecoveryMode() ? 0 : protocolSwapFeePercentage, // Protocol fees are disabled while in recovery mode
                scalingFactors,
                userData
            );

            // amountsOut are amounts exiting the Pool, so we round down.
            _downscaleDownArray(amountsOut, scalingFactors);
        }

        // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.

        _burnPoolTokens(sender, bptAmountIn);

        // This Pool ignores the `dueProtocolFees` return value, so we simply return a zeroed-out array.
        return (amountsOut, new uint256[](balances.length));
    }

    // Query functions

    /**
     * @notice "Dry run" `onJoinPool`.
     * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `sender` would have to supply.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external override returns (uint256 bptOut, uint256[] memory amountsIn) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onJoinPool,
            _downscaleUpArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptOut, amountsIn);
    }

    /**
     * @notice "Dry run" `onExitPool`.
     * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `recipient` would receive.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external override returns (uint256 bptIn, uint256[] memory amountsOut) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onExitPool,
            _downscaleDownArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptIn, amountsOut);
    }

    // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are
    // upscaled.

    /**
     * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
     *
     * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
     *
     * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and
     * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP
     * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire
     * Pool's lifetime.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     */
    function _onInitializePool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);

    /**
     * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
     *
     * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
     * tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * Minted BPT will be sent to `recipient`.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);

    /**
     * @dev Called whenever the Pool is exited.
     *
     * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
     * the number of tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * BPT will be burnt from `sender`.
     *
     * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
     * (rounding down) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual returns (uint256 bptAmountIn, uint256[] memory amountsOut);

    /**
     * @dev Called at the very beginning of swaps, joins and exits, even before the scaling factors are read. Derived
     * contracts can extend this implementation to perform any state-changing operations they might need (including e.g.
     * updating the scaling factors),
     *
     * The only scenario in which this function is not called is during a recovery mode exit. This makes it safe to
     * perform non-trivial computations or interact with external dependencies here, as recovery mode will not be
     * affected.
     *
     * Since this contract does not implement swaps, derived contracts must also make sure this function is called on
     * swap handlers.
     */
    function _beforeSwapJoinExit() internal virtual {
        // All joins, exits and swaps are disabled (except recovery mode exits).
        _ensureNotPaused();
    }

    // Internal functions

    /**
     * @dev Pays protocol fees by minting `bptAmount` to the Protocol Fee Collector.
     */
    function _payProtocolFees(uint256 bptAmount) internal {
        _mintPoolTokens(address(getProtocolFeesCollector()), bptAmount);
    }

    /**
     * @dev Adds swap fee amount to `amount`, returning a higher value.
     */
    function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount + fee amount, so we round up (favoring a higher fee amount).
        return amount.divUp(getSwapFeePercentage().complement());
    }

    /**
     * @dev Subtracts swap fee amount from `amount`, returning a lower value.
     */
    function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount - fee amount, so we round up (favoring a higher fee amount).
        uint256 feeAmount = amount.mulUp(getSwapFeePercentage());
        return amount.sub(feeAmount);
    }

    // Scaling

    /**
     * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
     * it had 18 decimals.
     */
    function _computeScalingFactor(IERC20 token) internal view returns (uint256) {
        if (address(token) == address(this)) {
            return FixedPoint.ONE;
        }

        // Tokens that don't implement the `decimals` method are not supported.
        uint256 tokenDecimals = ERC20(address(token)).decimals();

        // Tokens with more than 18 decimals are not supported.
        uint256 decimalsDifference = Math.sub(18, tokenDecimals);
        return FixedPoint.ONE * 10**decimalsDifference;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     *
     * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by
     * derived contracts that need to apply further scaling, making these factors potentially non-integer.
     *
     * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is
     * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making
     * even relatively 'large' factors safe to use.
     *
     * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112).
     */
    function _scalingFactor(IERC20 token) internal view virtual returns (uint256);

    /**
     * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault
     * will always pass balances in this order when calling any of the Pool hooks.
     */
    function _scalingFactors() internal view virtual returns (uint256[] memory);

    function getScalingFactors() external view override returns (uint256[] memory) {
        return _scalingFactors();
    }

    /**
     * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
     * scaling or not.
     */
    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of
        // token in should be rounded up, and that of token out rounded down. This is the only place where we round in
        // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no
        // rounding error unless `_scalingFactor()` is overriden).
        return FixedPoint.mulDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates*
     * the `amounts` array.
     */
    function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal pure {
        uint256 length = amounts.length;
        InputHelpers.ensureInputLengthMatch(length, scalingFactors.length);

        for (uint256 i = 0; i < length; ++i) {
            amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded down.
     */
    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal pure {
        uint256 length = amounts.length;
        InputHelpers.ensureInputLengthMatch(length, scalingFactors.length);

        for (uint256 i = 0; i < length; ++i) {
            amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded up.
     */
    function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divUp(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal pure {
        uint256 length = amounts.length;
        InputHelpers.ensureInputLengthMatch(length, scalingFactors.length);

        for (uint256 i = 0; i < length; ++i) {
            amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]);
        }
    }

    function _getAuthorizer() internal view override returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
        // Governance control.
        return getVault().getAuthorizer();
    }

    function _queryAction(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory)
            internal
            returns (uint256, uint256[] memory) _action,
        function(uint256[] memory, uint256[] memory) internal view _downscaleArray
    ) private {
        // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
        // explanation.

        if (msg.sender != address(this)) {
            // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
            // the preceding if statement will be executed instead.

            // solhint-disable-next-line avoid-low-level-calls
            (bool success, ) = address(this).call(msg.data);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // This call should always revert to decode the bpt and token amounts from the revert reason
                switch success
                    case 0 {
                        // Note we are manually writing the memory slot 0. We can safely overwrite whatever is
                        // stored there as we take full control of the execution and then immediately return.

                        // We copy the first 4 bytes to check if it matches with the expected signature, otherwise
                        // there was another revert reason and we should forward it.
                        returndatacopy(0, 0, 0x04)
                        let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)

                        // If the first 4 bytes don't match with the expected signature, we forward the revert reason.
                        if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }

                        // The returndata contains the signature, followed by the raw memory representation of the
                        // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
                        // representation of these.
                        // An ABI-encoded response will include one additional field to indicate the starting offset of
                        // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
                        // returndata.
                        //
                        // In returndata:
                        // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  4 bytes  ][  32 bytes ][       32 bytes      ][ (32 * length) bytes ]
                        //
                        // We now need to return (ABI-encoded values):
                        // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  32 bytes ][       32 bytes     ][       32 bytes      ][ (32 * length) bytes ]

                        // We copy 32 bytes for the `bptAmount` from returndata into memory.
                        // Note that we skip the first 4 bytes for the error signature
                        returndatacopy(0, 0x04, 32)

                        // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
                        // the initial 64 bytes.
                        mstore(0x20, 64)

                        // We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
                        // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
                        // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
                        returndatacopy(0x40, 0x24, sub(returndatasize(), 36))

                        // We finally return the ABI-encoded uint256 and the array, which has a total length equal to
                        // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
                        // error signature.
                        return(0, add(returndatasize(), 28))
                    }
                    default {
                        // This call should always revert, but we fail nonetheless if that didn't happen
                        invalid()
                    }
            }
        } else {
            // This imitates the relevant parts of the bodies of onJoin and onExit. Since they're not virtual, we know
            // that their implementations will match this regardless of what derived contracts might do.

            _beforeSwapJoinExit();

            uint256[] memory scalingFactors = _scalingFactors();
            _upscaleArray(balances, scalingFactors);

            (uint256 bptAmount, uint256[] memory tokenAmounts) = _action(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );

            _downscaleArray(tokenAmounts, scalingFactors);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
                // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
                // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
                let size := mul(mload(tokenAmounts), 32)

                // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
                // will be at least one available slot due to how the memory scratch space works.
                // We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
                let start := sub(tokenAmounts, 0x20)
                mstore(start, bptAmount)

                // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
                // We use the previous slot to `bptAmount`.
                mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
                start := sub(start, 0x04)

                // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
                // the `bptAmount`, the array 's length, and the error signature.
                revert(start, add(size, 68))
            }
        }
    }
}

File 23 of 52 : IBasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IVault.sol";
import "./IPoolSwapStructs.sol";

/**
 * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not
 * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from
 * either IGeneralPool or IMinimalSwapInfoPool
 */
interface IBasePool is IPoolSwapStructs {
    /**
     * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of
     * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault.
     * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect
     * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`.
     *
     * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join.
     *
     * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account
     * designated to receive any benefits (typically pool shares). `balances` contains the total balances
     * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as minting pool shares.
     */
    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);

    /**
     * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many
     * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes
     * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`,
     * as well as collect the reported amount in protocol fees, which the Pool should calculate based on
     * `protocolSwapFeePercentage`.
     *
     * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share.
     *
     * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account
     * to which the Vault will send the proceeds. `balances` contains the total token balances for each token
     * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as burning pool shares.
     */
    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);

    /**
     * @dev Returns this Pool's ID, used when interacting with the Vault (to e.g. join the Pool or swap with it).
     */
    function getPoolId() external view returns (bytes32);

    /**
     * @dev Returns the current swap fee percentage as a 18 decimal fixed point number, so e.g. 1e17 corresponds to a
     * 10% swap fee.
     */
    function getSwapFeePercentage() external view returns (uint256);

    /**
     * @dev Returns the scaling factors of each of the Pool's tokens. This is an implementation detail that is typically
     * not relevant for outside parties, but which might be useful for some types of Pools.
     */
    function getScalingFactors() external view returns (uint256[] memory);

    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn);

    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut);
}

File 24 of 52 : IVault.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma experimental ABIEncoderV2;

import "../solidity-utils/openzeppelin/IERC20.sol";
import "../solidity-utils/helpers/IAuthentication.sol";
import "../solidity-utils/helpers/ISignaturesValidator.sol";
import "../solidity-utils/helpers/ITemporarilyPausable.sol";
import "../solidity-utils/misc/IWETH.sol";

import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "./IProtocolFeesCollector.sol";

pragma solidity ^0.7.0;

/**
 * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
 * don't override one of these declarations.
 */
interface IVault is ISignaturesValidator, ITemporarilyPausable, IAuthentication {
    // Generalities about the Vault:
    //
    // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
    // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
    // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
    // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
    // a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
    //
    // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
    // while execution control is transferred to a token contract during a swap) will result in a revert. View
    // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
    // Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
    //
    // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.

    // Authorizer
    //
    // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
    // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
    // can perform a given action.

    /**
     * @dev Returns the Vault's Authorizer.
     */
    function getAuthorizer() external view returns (IAuthorizer);

    /**
     * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
     *
     * Emits an `AuthorizerChanged` event.
     */
    function setAuthorizer(IAuthorizer newAuthorizer) external;

    /**
     * @dev Emitted when a new authorizer is set by `setAuthorizer`.
     */
    event AuthorizerChanged(IAuthorizer indexed newAuthorizer);

    // Relayers
    //
    // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
    // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
    // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
    // this power, two things must occur:
    //  - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
    //    means that Balancer governance must approve each individual contract to act as a relayer for the intended
    //    functions.
    //  - Each user must approve the relayer to act on their behalf.
    // This double protection means users cannot be tricked into approving malicious relayers (because they will not
    // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
    // Authorizer or governance drain user funds, since they would also need to be approved by each individual user.

    /**
     * @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
     */
    function hasApprovedRelayer(address user, address relayer) external view returns (bool);

    /**
     * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
     *
     * Emits a `RelayerApprovalChanged` event.
     */
    function setRelayerApproval(
        address sender,
        address relayer,
        bool approved
    ) external;

    /**
     * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
     */
    event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);

    // Internal Balance
    //
    // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
    // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
    // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
    // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
    //
    // Internal Balance management features batching, which means a single contract call can be used to perform multiple
    // operations of different kinds, with different senders and recipients, at once.

    /**
     * @dev Returns `user`'s Internal Balance for a set of tokens.
     */
    function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);

    /**
     * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
     * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
     * it lets integrators reuse a user's Vault allowance.
     *
     * For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
     */
    function manageUserBalance(UserBalanceOp[] memory ops) external payable;

    /**
     * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
     without manual WETH wrapping or unwrapping.
     */
    struct UserBalanceOp {
        UserBalanceOpKind kind;
        IAsset asset;
        uint256 amount;
        address sender;
        address payable recipient;
    }

    // There are four possible operations in `manageUserBalance`:
    //
    // - DEPOSIT_INTERNAL
    // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
    // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
    // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
    // relevant for relayers).
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - WITHDRAW_INTERNAL
    // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
    // it to the recipient as ETH.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_INTERNAL
    // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_EXTERNAL
    // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
    // relayers, as it lets them reuse a user's Vault allowance.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `ExternalBalanceTransfer` event.

    enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }

    /**
     * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
     * interacting with Pools using Internal Balance.
     *
     * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
     * address.
     */
    event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);

    /**
     * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
     */
    event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);

    // Pools
    //
    // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
    // functionality:
    //
    //  - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
    // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
    // which increase with the number of registered tokens.
    //
    //  - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
    // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
    // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
    // independent of the number of registered tokens.
    //
    //  - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
    // minimal swap info Pools, these are called via IMinimalSwapInfoPool.

    enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }

    /**
     * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
     * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
     * changed.
     *
     * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
     * depending on the chosen specialization setting. This contract is known as the Pool's contract.
     *
     * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
     * multiple Pools may share the same contract.
     *
     * Emits a `PoolRegistered` event.
     */
    function registerPool(PoolSpecialization specialization) external returns (bytes32);

    /**
     * @dev Emitted when a Pool is registered by calling `registerPool`.
     */
    event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);

    /**
     * @dev Returns a Pool's contract address and specialization setting.
     */
    function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);

    /**
     * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
     * exit by receiving registered tokens, and can only swap registered tokens.
     *
     * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
     * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
     * ascending order.
     *
     * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
     * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
     * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
     * expected to be highly secured smart contracts with sound design principles, and the decision to register an
     * Asset Manager should not be made lightly.
     *
     * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
     * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
     * different Asset Manager.
     *
     * Emits a `TokensRegistered` event.
     */
    function registerTokens(
        bytes32 poolId,
        IERC20[] memory tokens,
        address[] memory assetManagers
    ) external;

    /**
     * @dev Emitted when a Pool registers tokens by calling `registerTokens`.
     */
    event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);

    /**
     * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
     * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
     * must be deregistered in the same `deregisterTokens` call.
     *
     * A deregistered token can be re-registered later on, possibly with a different Asset Manager.
     *
     * Emits a `TokensDeregistered` event.
     */
    function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;

    /**
     * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
     */
    event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);

    /**
     * @dev Returns detailed information for a Pool's registered token.
     *
     * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
     * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
     * equals the sum of `cash` and `managed`.
     *
     * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
     * `managed` or `total` balance to be greater than 2^112 - 1.
     *
     * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
     * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
     * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
     * change for this purpose, and will update `lastChangeBlock`.
     *
     * `assetManager` is the Pool's token Asset Manager.
     */
    function getPoolTokenInfo(bytes32 poolId, IERC20 token)
        external
        view
        returns (
            uint256 cash,
            uint256 managed,
            uint256 lastChangeBlock,
            address assetManager
        );

    /**
     * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
     * the tokens' `balances` changed.
     *
     * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
     * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
     *
     * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
     * order as passed to `registerTokens`.
     *
     * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
     * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
     * instead.
     */
    function getPoolTokens(bytes32 poolId)
        external
        view
        returns (
            IERC20[] memory tokens,
            uint256[] memory balances,
            uint256 lastChangeBlock
        );

    /**
     * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
     * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
     * Pool shares.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
     * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
     * these maximums.
     *
     * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
     * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
     * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
     * back to the caller (not the sender, which is important for relayers).
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
     * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
     * `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
     *
     * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
     * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
     * withdrawn from Internal Balance: attempting to do so will trigger a revert.
     *
     * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
     * directly to the Pool's contract, as is `recipient`.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function joinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        JoinPoolRequest memory request
    ) external payable;

    struct JoinPoolRequest {
        IAsset[] assets;
        uint256[] maxAmountsIn;
        bytes userData;
        bool fromInternalBalance;
    }

    /**
     * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
     * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
     * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
     * `getPoolTokenInfo`).
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
     * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
     * it just enforces these minimums.
     *
     * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
     * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
     * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
     * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
     * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
     *
     * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
     * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
     * do so will trigger a revert.
     *
     * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
     * `tokens` array. This array must match the Pool's registered tokens.
     *
     * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
     * passed directly to the Pool's contract.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function exitPool(
        bytes32 poolId,
        address sender,
        address payable recipient,
        ExitPoolRequest memory request
    ) external;

    struct ExitPoolRequest {
        IAsset[] assets;
        uint256[] minAmountsOut;
        bytes userData;
        bool toInternalBalance;
    }

    /**
     * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
     */
    event PoolBalanceChanged(
        bytes32 indexed poolId,
        address indexed liquidityProvider,
        IERC20[] tokens,
        int256[] deltas,
        uint256[] protocolFeeAmounts
    );

    enum PoolBalanceChangeKind { JOIN, EXIT }

    // Swaps
    //
    // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
    // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
    // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
    //
    // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
    // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
    // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
    // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
    // individual swaps.
    //
    // There are two swap kinds:
    //  - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
    // `onSwap` hook) the amount of tokens out (to send to the recipient).
    //  - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
    // (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
    //
    // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
    // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
    // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
    // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
    // the final intended token.
    //
    // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
    // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
    // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
    // much less gas than they would otherwise.
    //
    // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
    // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
    // updating the Pool's internal accounting).
    //
    // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
    // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
    // minimum amount of tokens to receive (by passing a negative value) is specified.
    //
    // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
    // this point in time (e.g. if the transaction failed to be included in a block promptly).
    //
    // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
    // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
    // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
    // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
    //
    // Finally, Internal Balance can be used when either sending or receiving tokens.

    enum SwapKind { GIVEN_IN, GIVEN_OUT }

    /**
     * @dev Performs a swap with a single Pool.
     *
     * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
     * taken from the Pool, which must be greater than or equal to `limit`.
     *
     * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
     * sent to the Pool, which must be less than or equal to `limit`.
     *
     * Internal Balance usage and the recipient are determined by the `funds` struct.
     *
     * Emits a `Swap` event.
     */
    function swap(
        SingleSwap memory singleSwap,
        FundManagement memory funds,
        uint256 limit,
        uint256 deadline
    ) external payable returns (uint256);

    /**
     * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
     * the `kind` value.
     *
     * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
     * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct SingleSwap {
        bytes32 poolId;
        SwapKind kind;
        IAsset assetIn;
        IAsset assetOut;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
     * the amount of tokens sent to or received from the Pool, depending on the `kind` value.
     *
     * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
     * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
     * the same index in the `assets` array.
     *
     * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
     * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
     * `amountOut` depending on the swap kind.
     *
     * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
     * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
     * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
     *
     * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
     * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
     * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
     * or unwrapped from WETH by the Vault.
     *
     * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
     * the minimum or maximum amount of each token the vault is allowed to transfer.
     *
     * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
     * equivalent `swap` call.
     *
     * Emits `Swap` events.
     */
    function batchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds,
        int256[] memory limits,
        uint256 deadline
    ) external payable returns (int256[] memory);

    /**
     * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
     * `assets` array passed to that function, and ETH assets are converted to WETH.
     *
     * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
     * from the previous swap, depending on the swap kind.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct BatchSwapStep {
        bytes32 poolId;
        uint256 assetInIndex;
        uint256 assetOutIndex;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
     */
    event Swap(
        bytes32 indexed poolId,
        IERC20 indexed tokenIn,
        IERC20 indexed tokenOut,
        uint256 amountIn,
        uint256 amountOut
    );

    /**
     * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
     * `recipient` account.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
     * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
     * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
     * `joinPool`.
     *
     * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
     * transferred. This matches the behavior of `exitPool`.
     *
     * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
     * revert.
     */
    struct FundManagement {
        address sender;
        bool fromInternalBalance;
        address payable recipient;
        bool toInternalBalance;
    }

    /**
     * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
     * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
     *
     * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
     * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
     * receives are the same that an equivalent `batchSwap` call would receive.
     *
     * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
     * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
     * approve them for the Vault, or even know a user's address.
     *
     * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
     * eth_call instead of eth_sendTransaction.
     */
    function queryBatchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds
    ) external returns (int256[] memory assetDeltas);

    // Flash Loans

    /**
     * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
     * and then reverting unless the tokens plus a proportional protocol fee have been returned.
     *
     * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
     * for each token contract. `tokens` must be sorted in ascending order.
     *
     * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
     * `receiveFlashLoan` call.
     *
     * Emits `FlashLoan` events.
     */
    function flashLoan(
        IFlashLoanRecipient recipient,
        IERC20[] memory tokens,
        uint256[] memory amounts,
        bytes memory userData
    ) external;

    /**
     * @dev Emitted for each individual flash loan performed by `flashLoan`.
     */
    event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);

    // Asset Management
    //
    // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
    // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
    // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
    // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
    // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
    // not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
    //
    // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
    // for example by lending unused tokens out for interest, or using them to participate in voting protocols.
    //
    // This concept is unrelated to the IAsset interface.

    /**
     * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
     *
     * Pool Balance management features batching, which means a single contract call can be used to perform multiple
     * operations of different kinds, with different Pools and tokens, at once.
     *
     * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
     */
    function managePoolBalance(PoolBalanceOp[] memory ops) external;

    struct PoolBalanceOp {
        PoolBalanceOpKind kind;
        bytes32 poolId;
        IERC20 token;
        uint256 amount;
    }

    /**
     * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
     *
     * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
     *
     * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
     * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
     */
    enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }

    /**
     * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
     */
    event PoolBalanceManaged(
        bytes32 indexed poolId,
        address indexed assetManager,
        IERC20 indexed token,
        int256 cashDelta,
        int256 managedDelta
    );

    // Protocol Fees
    //
    // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
    // permissioned accounts.
    //
    // There are two kinds of protocol fees:
    //
    //  - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
    //
    //  - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
    // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
    // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
    // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
    // exiting a Pool in debt without first paying their share.

    /**
     * @dev Returns the current protocol fee module.
     */
    function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);

    /**
     * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
     * error in some part of the system.
     *
     * The Vault can only be paused during an initial time period, after which pausing is forever disabled.
     *
     * While the contract is paused, the following features are disabled:
     * - depositing and transferring internal balance
     * - transferring external balance (using the Vault's allowance)
     * - swaps
     * - joining Pools
     * - Asset Manager interactions
     *
     * Internal Balance can still be withdrawn, and Pools exited.
     */
    function setPaused(bool paused) external;

    /**
     * @dev Returns the Vault's WETH instance.
     */
    function WETH() external view returns (IWETH);
    // solhint-disable-previous-line func-name-mixedcase
}

File 25 of 52 : IPoolSwapStructs.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../solidity-utils/openzeppelin/IERC20.sol";

import "./IVault.sol";

interface IPoolSwapStructs {
    // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and
    // IMinimalSwapInfoPool.
    //
    // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or
    // 'given out') which indicates whether or not the amount sent by the pool is known.
    //
    // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take
    // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`.
    //
    // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in
    // some Pools.
    //
    // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than
    // one Pool.
    //
    // The meaning of `lastChangeBlock` depends on the Pool specialization:
    //  - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total
    //    balance.
    //  - General: the last block in which *any* of the Pool's registered tokens changed its total balance.
    //
    // `from` is the origin address for the funds the Pool receives, and `to` is the destination address
    // where the Pool sends the outgoing tokens.
    //
    // `userData` is extra data provided by the caller - typically a signature from a trusted party.
    struct SwapRequest {
        IVault.SwapKind kind;
        IERC20 tokenIn;
        IERC20 tokenOut;
        uint256 amount;
        // Misc data
        bytes32 poolId;
        uint256 lastChangeBlock;
        address from;
        address to;
        bytes userData;
    }
}

File 26 of 52 : IAuthentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthentication {
    /**
     * @dev Returns the action identifier associated with the external function described by `selector`.
     */
    function getActionId(bytes4 selector) external view returns (bytes32);
}

File 27 of 52 : ISignaturesValidator.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the SignatureValidator helper, used to support meta-transactions.
 */
interface ISignaturesValidator {
    /**
     * @dev Returns the EIP712 domain separator.
     */
    function getDomainSeparator() external view returns (bytes32);

    /**
     * @dev Returns the next nonce used by an address to sign messages.
     */
    function getNextNonce(address user) external view returns (uint256);
}

File 28 of 52 : ITemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the TemporarilyPausable helper.
 */
interface ITemporarilyPausable {
    /**
     * @dev Emitted every time the pause state changes by `_setPaused`.
     */
    event PausedStateChanged(bool paused);

    /**
     * @dev Returns the current paused state.
     */
    function getPausedState()
        external
        view
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        );
}

File 29 of 52 : IWETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

/**
 * @dev Interface for WETH9.
 * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol
 */
interface IWETH is IERC20 {
    function deposit() external payable;

    function withdraw(uint256 amount) external;
}

File 30 of 52 : IAuthorizer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthorizer {
    /**
     * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
     */
    function canPerform(
        bytes32 actionId,
        address account,
        address where
    ) external view returns (bool);
}

File 31 of 52 : IFlashLoanRecipient.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// Inspired by Aave Protocol's IFlashLoanReceiver.

import "../solidity-utils/openzeppelin/IERC20.sol";

interface IFlashLoanRecipient {
    /**
     * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
     *
     * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
     * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
     * Vault, or else the entire flash loan will revert.
     *
     * `userData` is the same value passed in the `IVault.flashLoan` call.
     */
    function receiveFlashLoan(
        IERC20[] memory tokens,
        uint256[] memory amounts,
        uint256[] memory feeAmounts,
        bytes memory userData
    ) external;
}

File 32 of 52 : IProtocolFeesCollector.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../solidity-utils/openzeppelin/IERC20.sol";

import "./IVault.sol";
import "./IAuthorizer.sol";

interface IProtocolFeesCollector {
    event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
    event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);

    function withdrawCollectedFees(
        IERC20[] calldata tokens,
        uint256[] calldata amounts,
        address recipient
    ) external;

    function setSwapFeePercentage(uint256 newSwapFeePercentage) external;

    function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external;

    function getSwapFeePercentage() external view returns (uint256);

    function getFlashLoanFeePercentage() external view returns (uint256);

    function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts);

    function getAuthorizer() external view returns (IAuthorizer);

    function vault() external view returns (IVault);
}

File 33 of 52 : IAssetManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../solidity-utils/openzeppelin/IERC20.sol";

interface IAssetManager {
    /**
     * @notice Emitted when asset manager is rebalanced
     */
    event Rebalance(bytes32 poolId);

    /**
     * @notice Sets the config
     */
    function setConfig(bytes32 poolId, bytes calldata config) external;

    /**
     * Note: No function to read the asset manager config is included in IAssetManager
     * as the signature is expected to vary between asset manager implementations
     */

    /**
     * @notice Returns the asset manager's token
     */
    function getToken() external view returns (IERC20);

    /**
     * @return the current assets under management of this asset manager
     */
    function getAUM(bytes32 poolId) external view returns (uint256);

    /**
     * @return poolCash - The up-to-date cash balance of the pool
     * @return poolManaged - The up-to-date managed balance of the pool
     */
    function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged);

    /**
     * @return The difference in tokens between the target investment
     * and the currently invested amount (i.e. the amount that can be invested)
     */
    function maxInvestableBalance(bytes32 poolId) external view returns (int256);

    /**
     * @notice Updates the Vault on the value of the pool's investment returns
     */
    function updateBalanceOfPool(bytes32 poolId) external;

    /**
     * @notice Determines whether the pool should rebalance given the provided balances
     */
    function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool);

    /**
     * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage.
     * @param poolId - the poolId of the pool to be rebalanced
     * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance
     */
    function rebalance(bytes32 poolId, bool force) external;

    /**
     * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals
     * @param poolId - the poolId of the pool to withdraw funds back to
     * @param amount - the amount of tokens to withdraw back to the pool
     */
    function capitalOut(bytes32 poolId, uint256 amount) external;
}

File 34 of 52 : IControlledPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../solidity-utils/openzeppelin/IERC20.sol";

interface IControlledPool {
    function setSwapFeePercentage(uint256 swapFeePercentage) external;

    function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) external;
}

File 35 of 52 : WordCodec.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";

import "../math/Math.sol";

/**
 * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
 * a single storage slot, saving gas by performing less storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 *
 * We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and
 * error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or
 * memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location),
 * using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even
 * prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-intensive,
 * and the cost of accesing memory increases quadratically with the number of allocated words. Manual packing and
 * unpacking is therefore the preferred approach.
 */
library WordCodec {
    // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word,
    // or to insert a new one replacing the old.
    uint256 private constant _MASK_1 = 2**(1) - 1;
    uint256 private constant _MASK_192 = 2**(192) - 1;

    // In-place insertion

    /**
     * @dev Inserts an unsigned integer of bitLength, shifted by an offset, into a 256 bit word,
     * replacing the old value. Returns the new word.
     */
    function insertUint(
        bytes32 word,
        uint256 value,
        uint256 offset,
        uint256 bitLength
    ) internal pure returns (bytes32) {
        _validateEncodingParams(value, offset, bitLength);

        uint256 mask = (1 << bitLength) - 1;
        bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using `bitLength` bits.
     */
    function insertInt(
        bytes32 word,
        int256 value,
        uint256 offset,
        uint256 bitLength
    ) internal pure returns (bytes32) {
        _validateEncodingParams(value, offset, bitLength);

        uint256 mask = (1 << bitLength) - 1;
        bytes32 clearedWord = bytes32(uint256(word) & ~(mask << offset));
        // Integer values need masking to remove the upper bits of negative values.
        return clearedWord | bytes32((uint256(value) & mask) << offset);
    }

    // Encoding

    /**
     * @dev Encodes an unsigned integer shifted by an offset. Ensures value fits within
     * `bitLength` bits.
     *
     * The return value can be ORed bitwise with other encoded values to form a 256 bit word.
     */
    function encodeUint(
        uint256 value,
        uint256 offset,
        uint256 bitLength
    ) internal pure returns (bytes32) {
        _validateEncodingParams(value, offset, bitLength);

        return bytes32(value << offset);
    }

    /**
     * @dev Encodes a signed integer shifted by an offset.
     *
     * The return value can be ORed bitwise with other encoded values to form a 256 bit word.
     */
    function encodeInt(
        int256 value,
        uint256 offset,
        uint256 bitLength
    ) internal pure returns (bytes32) {
        _validateEncodingParams(value, offset, bitLength);

        uint256 mask = (1 << bitLength) - 1;
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & mask) << offset);
    }

    // Decoding

    /**
     * @dev Decodes and returns an unsigned integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
     */
    function decodeUint(
        bytes32 word,
        uint256 offset,
        uint256 bitLength
    ) internal pure returns (uint256) {
        return uint256(word >> offset) & ((1 << bitLength) - 1);
    }

    /**
     * @dev Decodes and returns a signed integer with `bitLength` bits, shifted by an offset, from a 256 bit word.
     */
    function decodeInt(
        bytes32 word,
        uint256 offset,
        uint256 bitLength
    ) internal pure returns (int256) {
        int256 maxInt = int256((1 << (bitLength - 1)) - 1);
        uint256 mask = (1 << bitLength) - 1;

        int256 value = int256(uint256(word >> offset) & mask);
        // In case the decoded value is greater than the max positive integer that can be represented with bitLength
        // bits, we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.
        return value > maxInt ? (value | int256(~mask)) : value;
    }

    // Special cases

    /**
     * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
     */
    function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) {
        return (uint256(word >> offset) & _MASK_1) == 1;
    }

    /**
     * @dev Inserts a 192 bit value shifted by an offset into a 256 bit word, replacing the old value.
     * Returns the new word.
     *
     * Assumes `value` can be represented using 192 bits.
     */
    function insertBits192(
        bytes32 word,
        bytes32 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset));
        return clearedWord | bytes32((uint256(value) & _MASK_192) << offset);
    }

    /**
     * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
     * word.
     */
    function insertBool(
        bytes32 word,
        bool value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset));
        return clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
    }

    // Helpers

    function _validateEncodingParams(
        uint256 value,
        uint256 offset,
        uint256 bitLength
    ) private pure {
        _require(offset < 256, Errors.OUT_OF_BOUNDS);
        // We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller
        // the maximum bit length.
        _require(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset), Errors.OUT_OF_BOUNDS);

        // Testing unsigned values for size is straightforward: their upper bits must be cleared.
        _require(value >> bitLength == 0, Errors.CODEC_OVERFLOW);
    }

    function _validateEncodingParams(
        int256 value,
        uint256 offset,
        uint256 bitLength
    ) private pure {
        _require(offset < 256, Errors.OUT_OF_BOUNDS);
        // We never accept 256 bit values (which would make the codec pointless), and the larger the offset the smaller
        // the maximum bit length.
        _require(bitLength >= 1 && bitLength <= Math.min(255, 256 - offset), Errors.OUT_OF_BOUNDS);

        // Testing signed values for size is a bit more involved.
        if (value >= 0) {
            // For positive values, we can simply check that the upper bits are clear. Notice we remove one bit from the
            // length for the sign bit.
            _require(value >> (bitLength - 1) == 0, Errors.CODEC_OVERFLOW);
        } else {
            // Negative values can receive the same treatment by making them positive, with the caveat that the range
            // for negative values in two's complement supports one more value than for the positive case.
            _require(Math.abs(value + 1) >> (bitLength - 1) == 0, Errors.CODEC_OVERFLOW);
        }
    }
}

File 36 of 52 : TemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/ITemporarilyPausable.sol";

/**
 * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be
 * used as an emergency switch in case a security vulnerability or threat is identified.
 *
 * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be
 * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets
 * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful
 * analysis later determines there was a false alarm.
 *
 * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional
 * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time
 * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires.
 *
 * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is
 * irreversible.
 */
abstract contract TemporarilyPausable is ITemporarilyPausable {
    // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
    // solhint-disable not-rely-on-time

    uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days;
    uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days;

    uint256 private immutable _pauseWindowEndTime;
    uint256 private immutable _bufferPeriodEndTime;

    bool private _paused;

    constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
        _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION);
        _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION);

        uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration;

        _pauseWindowEndTime = pauseWindowEndTime;
        _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration;
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    modifier whenNotPaused() {
        _ensureNotPaused();
        _;
    }

    /**
     * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer
     * Period.
     */
    function getPausedState()
        external
        view
        override
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        )
    {
        paused = !_isNotPaused();
        pauseWindowEndTime = _getPauseWindowEndTime();
        bufferPeriodEndTime = _getBufferPeriodEndTime();
    }

    /**
     * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and
     * unpaused until the end of the Buffer Period.
     *
     * Once the Buffer Period expires, this function reverts unconditionally.
     */
    function _setPaused(bool paused) internal {
        if (paused) {
            _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED);
        } else {
            _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED);
        }

        _paused = paused;
        emit PausedStateChanged(paused);
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    function _ensureNotPaused() internal view {
        _require(_isNotPaused(), Errors.PAUSED);
    }

    /**
     * @dev Reverts if the contract is not paused.
     */
    function _ensurePaused() internal view {
        _require(!_isNotPaused(), Errors.NOT_PAUSED);
    }

    /**
     * @dev Returns true if the contract is unpaused.
     *
     * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no
     * longer accessed.
     */
    function _isNotPaused() internal view returns (bool) {
        // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access.
        return block.timestamp > _getBufferPeriodEndTime() || !_paused;
    }

    // These getters lead to reduced bytecode size by inlining the immutable variables in a single place.

    function _getPauseWindowEndTime() private view returns (uint256) {
        return _pauseWindowEndTime;
    }

    function _getBufferPeriodEndTime() private view returns (uint256) {
        return _bufferPeriodEndTime;
    }
}

File 37 of 52 : ERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20.sol";

import "./SafeMath.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is IERC20 {
    using SafeMath for uint256;

    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}. The total supply should only be read using this function
     *
     * Can be overridden by derived contracts to store the total supply in a different way (e.g. packed with other
     * storage values).
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev Sets a new value for the total supply. It should only be set using this function.
     *
     * * Can be overridden by derived contracts to store the total supply in a different way (e.g. packed with other
     * storage values).
     */
    function _setTotalSupply(uint256 value) internal virtual {
        _totalSupply = value;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(msg.sender, recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(msg.sender, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(
            sender,
            msg.sender,
            _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE)
        );
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(
            msg.sender,
            spender,
            _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO)
        );
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS);
        _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE);
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), account, amount);

        _setTotalSupply(totalSupply().add(amount));
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS);

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_BALANCE);
        _setTotalSupply(totalSupply().sub(amount));
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        // solhint-disable-previous-line no-empty-blocks
    }
}

File 38 of 52 : BalancerPoolToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/vault/IVault.sol";

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol";

/**
 * @title Highly opinionated token implementation
 * @author Balancer Labs
 * @dev
 * - Includes functions to increase and decrease allowance as a workaround
 *   for the well-known issue with `approve`:
 *   https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not
 *   decreased by calls to transferFrom
 * - Lets a token holder use `transferFrom` to send their own tokens,
 *   without first setting allowance
 * - Emits 'Approval' events whenever allowance is changed by `transferFrom`
 * - Assigns infinite allowance for all token holders to the Vault
 */
contract BalancerPoolToken is ERC20Permit {
    IVault private immutable _vault;

    constructor(
        string memory tokenName,
        string memory tokenSymbol,
        IVault vault
    ) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) {
        _vault = vault;
    }

    function getVault() public view returns (IVault) {
        return _vault;
    }

    // Overrides

    /**
     * @dev Override to grant the Vault infinite allowance, causing for Pool Tokens to not require approval.
     *
     * This is sound as the Vault already provides authorization mechanisms when initiation token transfers, which this
     * contract inherits.
     */
    function allowance(address owner, address spender) public view override returns (uint256) {
        if (spender == address(getVault())) {
            return uint256(-1);
        } else {
            return super.allowance(owner, spender);
        }
    }

    /**
     * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public override returns (bool) {
        uint256 currentAllowance = allowance(sender, msg.sender);
        _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE);

        _transfer(sender, recipient, amount);

        if (msg.sender != sender && currentAllowance != uint256(-1)) {
            // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount
            _approve(sender, msg.sender, currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero)
     */
    function decreaseAllowance(address spender, uint256 amount) public override returns (bool) {
        uint256 currentAllowance = allowance(msg.sender, spender);

        if (amount >= currentAllowance) {
            _approve(msg.sender, spender, 0);
        } else {
            // No risk of underflow due to if condition
            _approve(msg.sender, spender, currentAllowance - amount);
        }

        return true;
    }

    // Internal functions

    function _mintPoolTokens(address recipient, uint256 amount) internal {
        _mint(recipient, amount);
    }

    function _burnPoolTokens(address sender, uint256 amount) internal {
        _burn(sender, amount);
    }
}

File 39 of 52 : BasePoolAuthorization.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/vault/IAuthorizer.sol";

import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";

/**
 * @dev Base authorization layer implementation for Pools.
 *
 * The owner account can call some of the permissioned functions - access control of the rest is delegated to the
 * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership,
 * granular roles, etc., could be built on top of this by making the owner a smart contract.
 *
 * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate
 * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`.
 */
abstract contract BasePoolAuthorization is Authentication {
    address private immutable _owner;

    address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B;

    constructor(address owner) {
        _owner = owner;
    }

    function getOwner() public view returns (address) {
        return _owner;
    }

    function getAuthorizer() external view returns (IAuthorizer) {
        return _getAuthorizer();
    }

    function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
        if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) {
            // Only the owner can perform "owner only" actions, unless the owner is delegated.
            return msg.sender == getOwner();
        } else {
            // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated.
            return _getAuthorizer().canPerform(actionId, account, address(this));
        }
    }

    function _isOwnerOnlyAction(bytes32) internal view virtual returns (bool) {
        return false;
    }

    function _getAuthorizer() internal view virtual returns (IAuthorizer);
}

File 40 of 52 : RecoveryMode.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/BasePoolUserData.sol";
import "@balancer-labs/v2-interfaces/contracts/pool-utils/IRecoveryMode.sol";

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";

import "./BasePoolAuthorization.sol";

/**
 * @notice Handle storage and state changes for pools that support "Recovery Mode".
 *
 * @dev This is intended to provide a safe way to exit any pool during some kind of emergency, to avoid locking funds
 * in the event the pool enters a non-functional state (i.e., some code that normally runs during exits is causing
 * them to revert).
 *
 * Recovery Mode is *not* the same as pausing the pool. The pause function is only available during a short window
 * after factory deployment. Pausing can only be intentionally reversed during a buffer period, and the contract
 * will permanently unpause itself thereafter. Paused pools are completely disabled, in a kind of suspended animation,
 * until they are voluntarily or involuntarily unpaused.
 *
 * By contrast, a privileged account - typically a governance multisig - can place a pool in Recovery Mode at any
 * time, and it is always reversible. The pool is *not* disabled while in this mode: though of course whatever
 * condition prompted the transition to Recovery Mode has likely effectively disabled some functions. Rather,
 * a special "clean" exit is enabled, which runs the absolute minimum code necessary to exit proportionally.
 * In particular, stable pools do not attempt to compute the invariant (which is a complex, iterative calculation
 * that can fail in extreme circumstances), and no protocol fees are collected.
 *
 * It is critical to ensure that turning on Recovery Mode would do no harm, if activated maliciously or in error.
 */
abstract contract RecoveryMode is IRecoveryMode, BasePoolAuthorization {
    using FixedPoint for uint256;
    using BasePoolUserData for bytes;

    /**
     * @dev Reverts if the contract is in Recovery Mode.
     */
    modifier whenNotInRecoveryMode() {
        _ensureNotInRecoveryMode();
        _;
    }

    /**
     * @notice Enable recovery mode, which enables a special safe exit path for LPs.
     * @dev Does not otherwise affect pool operations (beyond deferring payment of protocol fees), though some pools may
     * perform certain operations in a "safer" manner that is less likely to fail, in an attempt to keep the pool
     * running, even in a pathological state. Unlike the Pause operation, which is only available during a short window
     * after factory deployment, Recovery Mode can always be enabled.
     */
    function enableRecoveryMode() external override authenticate {
        _setRecoveryMode(true);
    }

    /**
     * @notice Disable recovery mode, which disables the special safe exit path for LPs.
     * @dev Protocol fees are not paid while in Recovery Mode, so it should only remain active for as long as strictly
     * necessary.
     *
     * This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
     *
     * This function depends on the invariant value, which may be calculated incorrectly in the middle of a join or
     * an exit, because the state of the pool could be out of sync with the state of the Vault.
     * `_onDisableRecoveryMode` will revert when called from such a context for composable stable pools, effectively
     * protecting this function.
     *
     * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
     */
    function disableRecoveryMode() external override authenticate {
        _setRecoveryMode(false);
    }

    // Defer implementation for functions that require storage

    /**
     * @notice Override to check storage and return whether the pool is in Recovery Mode
     */
    function inRecoveryMode() public view virtual override returns (bool);

    /**
     * @dev Override to update storage and emit the event
     *
     * No complex code or external calls that could fail should be placed in the implementations,
     * which could jeopardize the ability to enable and disable Recovery Mode.
     */
    function _setRecoveryMode(bool enabled) internal virtual;

    /**
     * @dev Reverts if the contract is not in Recovery Mode.
     */
    function _ensureInRecoveryMode() internal view {
        _require(inRecoveryMode(), Errors.NOT_IN_RECOVERY_MODE);
    }

    /**
     * @dev Reverts if the contract is in Recovery Mode.
     */
    function _ensureNotInRecoveryMode() internal view {
        _require(!inRecoveryMode(), Errors.IN_RECOVERY_MODE);
    }

    /**
     * @dev A minimal proportional exit, suitable as is for most pools: though not for pools with preminted BPT
     * or other special considerations. Designed to be overridden if a pool needs to do extra processing,
     * such as scaling a stored invariant, or caching the new total supply.
     *
     * No complex code or external calls should be made in derived contracts that override this!
     */
    function _doRecoveryModeExit(
        uint256[] memory balances,
        uint256 totalSupply,
        bytes memory userData
    ) internal virtual returns (uint256, uint256[] memory) {
        uint256 bptAmountIn = userData.recoveryModeExit();

        uint256[] memory amountsOut = _computeProportionalAmountsOut(balances, totalSupply, bptAmountIn);

        return (bptAmountIn, amountsOut);
    }

    function _computeProportionalAmountsOut(
        uint256[] memory balances,
        uint256 totalSupply,
        uint256 bptAmountIn
    ) internal pure returns (uint256[] memory amountsOut) {
        /**********************************************************************************************
        // exactBPTInForTokensOut                                                                    //
        // (per token)                                                                               //
        // aO = tokenAmountOut             /        bptIn         \                                  //
        // b = tokenBalance      a0 = b * | ---------------------  |                                 //
        // bptIn = bptAmountIn             \     bptTotalSupply    /                                 //
        // bpt = bptTotalSupply                                                                      //
        **********************************************************************************************/

        // Since we're computing an amount out, we round down overall. This means rounding down on both the
        // multiplication and division.

        uint256 bptRatio = bptAmountIn.divDown(totalSupply);

        amountsOut = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsOut[i] = balances[i].mulDown(bptRatio);
        }
    }
}

File 41 of 52 : SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, Errors.SUB_OVERFLOW);
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        uint256 errorCode
    ) internal pure returns (uint256) {
        _require(b <= a, errorCode);
        uint256 c = a - b;

        return c;
    }
}

File 42 of 52 : ERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/openzeppelin/IERC20Permit.sol";

import "./ERC20.sol";
import "../helpers/EOASignaturesValidator.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EOASignaturesValidator {
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH = keccak256(
        "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
    );

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {
        // solhint-disable-previous-line no-empty-blocks
    }

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        bytes32 structHash = keccak256(
            abi.encode(_PERMIT_TYPEHASH, owner, spender, value, getNextNonce(owner), deadline)
        );

        _ensureValidSignature(owner, structHash, _toArraySignature(v, r, s), deadline, Errors.INVALID_SIGNATURE);

        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view override returns (uint256) {
        return getNextNonce(owner);
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return getDomainSeparator();
    }
}

File 43 of 52 : IERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
     * given `owner`'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 44 of 52 : EOASignaturesValidator.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/ISignaturesValidator.sol";

import "../openzeppelin/EIP712.sol";

/**
 * @dev Utility for signing Solidity function calls.
 */
abstract contract EOASignaturesValidator is ISignaturesValidator, EIP712 {
    // Replay attack prevention for each account.
    mapping(address => uint256) internal _nextNonce;

    function getDomainSeparator() public view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    function getNextNonce(address account) public view override returns (uint256) {
        return _nextNonce[account];
    }

    function _ensureValidSignature(
        address account,
        bytes32 structHash,
        bytes memory signature,
        uint256 errorCode
    ) internal {
        return _ensureValidSignature(account, structHash, signature, type(uint256).max, errorCode);
    }

    function _ensureValidSignature(
        address account,
        bytes32 structHash,
        bytes memory signature,
        uint256 deadline,
        uint256 errorCode
    ) internal {
        bytes32 digest = _hashTypedDataV4(structHash);
        _require(_isValidSignature(account, digest, signature), errorCode);

        // We could check for the deadline before validating the signature, but this leads to saner error processing (as
        // we only care about expired deadlines if the signature is correct) and only affects the gas cost of the revert
        // scenario, which will only occur infrequently, if ever.
        // The deadline is timestamp-based: it should not be relied upon for sub-minute accuracy.
        // solhint-disable-next-line not-rely-on-time
        _require(deadline >= block.timestamp, Errors.EXPIRED_SIGNATURE);

        // We only advance the nonce after validating the signature. This is irrelevant for this module, but it can be
        // important in derived contracts that override _isValidSignature (e.g. SignaturesValidator), as we want for
        // the observable state to still have the current nonce as the next valid one.
        _nextNonce[account] += 1;
    }

    function _isValidSignature(
        address account,
        bytes32 digest,
        bytes memory signature
    ) internal view virtual returns (bool) {
        _require(signature.length == 65, Errors.MALFORMED_SIGNATURE);

        bytes32 r;
        bytes32 s;
        uint8 v;

        // ecrecover takes the r, s and v signature parameters, and the only way to get them is to use assembly.
        // solhint-disable-next-line no-inline-assembly
        assembly {
            r := mload(add(signature, 0x20))
            s := mload(add(signature, 0x40))
            v := byte(0, mload(add(signature, 0x60)))
        }

        address recoveredAddress = ecrecover(digest, v, r, s);

        // ecrecover returns the zero address on recover failure, so we need to handle that explicitly.
        return (recoveredAddress != address(0) && recoveredAddress == account);
    }

    function _toArraySignature(
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (bytes memory) {
        bytes memory signature = new bytes(65);
        // solhint-disable-next-line no-inline-assembly
        assembly {
            mstore(add(signature, 32), r)
            mstore(add(signature, 64), s)
            mstore8(add(signature, 96), v)
        }

        return signature;
    }
}

File 45 of 52 : EIP712.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _HASHED_NAME = keccak256(bytes(name));
        _HASHED_VERSION = keccak256(bytes(version));
        _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view virtual returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
    }

    function _getChainId() private view returns (uint256 chainId) {
        // Silence state mutability warning without generating bytecode.
        // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and
        // https://github.com/ethereum/solidity/issues/2691
        this;

        // solhint-disable-next-line no-inline-assembly
        assembly {
            chainId := chainid()
        }
    }
}

File 46 of 52 : Authentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/IAuthentication.sol";

/**
 * @dev Building block for performing access control on external functions.
 *
 * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
 * to external functions to only make them callable by authorized accounts.
 *
 * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
 */
abstract contract Authentication is IAuthentication {
    bytes32 private immutable _actionIdDisambiguator;

    /**
     * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
     * multi contract systems.
     *
     * There are two main uses for it:
     *  - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
     *    unique. The contract's own address is a good option.
     *  - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
     *    shared by the entire family (and no other contract) should be used instead.
     */
    constructor(bytes32 actionIdDisambiguator) {
        _actionIdDisambiguator = actionIdDisambiguator;
    }

    /**
     * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
     */
    modifier authenticate() {
        _authenticateCaller();
        _;
    }

    /**
     * @dev Reverts unless the caller is allowed to call the entry point function.
     */
    function _authenticateCaller() internal view {
        bytes32 actionId = getActionId(msg.sig);
        _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
    }

    function getActionId(bytes4 selector) public view override returns (bytes32) {
        // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
        // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
        // multiple contracts.
        return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
    }

    function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}

File 47 of 52 : BasePoolUserData.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

library BasePoolUserData {
    // Special ExitKind for all pools, used in Recovery Mode. Use the max 8-bit value to prevent conflicts
    // with future additions to the ExitKind enums (or any front-end code that maps to existing values)
    uint8 public constant RECOVERY_MODE_EXIT_KIND = 255;

    // Return true if this is the special exit kind.
    function isRecoveryModeExitKind(bytes memory self) internal pure returns (bool) {
        // Check for the "no data" case, or abi.decode would revert
        return self.length > 0 && abi.decode(self, (uint8)) == RECOVERY_MODE_EXIT_KIND;
    }

    // Parse the bptAmountIn out of the userData
    function recoveryModeExit(bytes memory self) internal pure returns (uint256 bptAmountIn) {
        (, bptAmountIn) = abi.decode(self, (uint8, uint256));
    }
}

File 48 of 52 : IRecoveryMode.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the RecoveryMode module.
 */
interface IRecoveryMode {
    /**
     * @dev Emitted when the Recovery Mode status changes.
     */
    event RecoveryModeStateChanged(bool enabled);

    /**
     * @notice Enables Recovery Mode in the Pool, disabling protocol fee collection and allowing for safe proportional
     * exits with low computational complexity and no dependencies.
     */
    function enableRecoveryMode() external;

    /**
     * @notice Disables Recovery Mode in the Pool, restoring protocol fee collection and disallowing proportional exits.
     */
    function disableRecoveryMode() external;

    /**
     * @notice Returns true if the Pool is in Recovery Mode.
     */
    function inRecoveryMode() external view returns (bool);
}

File 49 of 52 : ProtocolFeeCache.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-interfaces/contracts/standalone-utils/IProtocolFeePercentagesProvider.sol";

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/SafeCast.sol";

import "../RecoveryMode.sol";

/**
 * @dev The Vault does not provide the protocol swap fee percentage in swap hooks (as swaps don't typically need this
 * value), so for swaps that need this value, we would have to to fetch it ourselves from the
 * ProtocolFeePercentagesProvider. Additionally, other protocol fee types (such as Yield or AUM) can only be obtained
 * by making said call.
 *
 * However, these values change so rarely that it doesn't make sense to perform the required calls to get the current
 * values in every single user interaction. Instead, we keep a local copy that can be permissionlessly updated by anyone
 * with the real value. We also pack these values together, performing a single storage read to get them all.
 *
 * When initialized with a special sentinel value, the swap fee is delegated, meaning the mutable protocol swap fee
 * cache is set to the current value stored in the ProtocolFeePercentagesProvider, and can be updated by anyone with a
 * call to `updateProtocolFeePercentageCache`. Any other value means the protocol swap fee is fixed, so it is instead
 * stored in the immutable `_fixedProtocolSwapFeePercentage`.
 */
abstract contract ProtocolFeeCache is RecoveryMode {
    using SafeCast for uint256;

    IProtocolFeePercentagesProvider private immutable _protocolFeeProvider;

    // Protocol Fee Percentages can never be larger than 100% (1e18), which fits in ~59 bits, so using 64 for each type
    // is sufficient.
    struct FeeTypeCache {
        uint64 swapFee;
        uint64 yieldFee;
        uint64 aumFee;
    }

    FeeTypeCache private _cache;

    event ProtocolFeePercentageCacheUpdated(uint256 indexed feeType, uint256 protocolFeePercentage);

    // Swap fees can be set to a fixed value at construction, or delegated to the ProtocolFeePercentagesProvider if
    // passing the special sentinel value.
    uint256 public constant DELEGATE_PROTOCOL_SWAP_FEES_SENTINEL = type(uint256).max;

    bool private immutable _delegatedProtocolSwapFees;

    // Only valid when `_delegatedProtocolSwapFees` is false
    uint256 private immutable _fixedProtocolSwapFeePercentage;

    constructor(IProtocolFeePercentagesProvider protocolFeeProvider, uint256 protocolSwapFeePercentage) {
        // Protocol swap fees are delegated to the value reported by the ProtocolFeePercentagesProvider if the sentinel
        // value is passed.
        bool delegatedProtocolSwapFees = protocolSwapFeePercentage == DELEGATE_PROTOCOL_SWAP_FEES_SENTINEL;

        _delegatedProtocolSwapFees = delegatedProtocolSwapFees;
        _protocolFeeProvider = protocolFeeProvider;

        _updateProtocolFeeCache(protocolFeeProvider, ProtocolFeeType.YIELD);
        _updateProtocolFeeCache(protocolFeeProvider, ProtocolFeeType.AUM);

        if (delegatedProtocolSwapFees) {
            _updateProtocolFeeCache(protocolFeeProvider, ProtocolFeeType.SWAP);
        } else {
            _require(
                protocolSwapFeePercentage <= protocolFeeProvider.getFeeTypeMaximumPercentage(ProtocolFeeType.SWAP),
                Errors.SWAP_FEE_PERCENTAGE_TOO_HIGH
            );

            // We cannot set `_fixedProtocolSwapFeePercentage` here due to it being immutable so instead we must set it
            // in the main function scope with a value based on whether protocol fees are delegated.

            // Emit an event as we do in `_updateProtocolFeeCache` to appear the same to offchain indexers.
            emit ProtocolFeePercentageCacheUpdated(ProtocolFeeType.SWAP, protocolSwapFeePercentage);
        }

        // As `_fixedProtocolSwapFeePercentage` is immutable we must set a value, but just set to zero if it's not used.
        _fixedProtocolSwapFeePercentage = delegatedProtocolSwapFees ? 0 : protocolSwapFeePercentage;
    }

    /**
     * @dev Returns the cached protocol fee percentage. If `getProtocolSwapFeeDelegation()` is false, this value is
     * immutable for swap fee queries. Alternatively, it will track the global fee percentage set in the
     * ProtocolFeePercentagesProvider.
     */
    function getProtocolFeePercentageCache(uint256 feeType) public view returns (uint256) {
        if (inRecoveryMode()) {
            return 0;
        }

        if (feeType == ProtocolFeeType.SWAP) {
            return getProtocolSwapFeeDelegation() ? _cache.swapFee : _fixedProtocolSwapFeePercentage;
        } else if (feeType == ProtocolFeeType.YIELD) {
            return _cache.yieldFee;
        } else if (feeType == ProtocolFeeType.AUM) {
            return _cache.aumFee;
        } else {
            _revert(Errors.UNHANDLED_FEE_TYPE);
        }
    }

    /**
     * @dev Can be called by anyone to update the cached fee percentages (swap fee is only updated when delegated).
     * Updates the cache to the latest value set by governance.
     *
     * This function will revert when called within a Vault context (i.e. in the middle of a join or an exit).
     *
     * This function depends on the invariant value, which may be calculated incorrectly in the middle of a join or
     * an exit, because the state of the pool could be out of sync with the state of the Vault.
     * `_beforeProtocolFeeCacheUpdate` will revert when called from such a context for composable stable pools,
     * effectively protecting this function.
     *
     * See https://forum.balancer.fi/t/reentrancy-vulnerability-scope-expanded/4345 for reference.
     */
    function updateProtocolFeePercentageCache() external {
        _beforeProtocolFeeCacheUpdate();

        if (getProtocolSwapFeeDelegation()) {
            _updateProtocolFeeCache(_protocolFeeProvider, ProtocolFeeType.SWAP);
        }

        _updateProtocolFeeCache(_protocolFeeProvider, ProtocolFeeType.YIELD);
        _updateProtocolFeeCache(_protocolFeeProvider, ProtocolFeeType.AUM);
    }

    /**
     * @dev Override in derived contracts to perform some action before the cache is updated. This is typically relevant
     * to Pools that incur protocol debt between operations. To avoid altering the amount due retroactively, this debt
     * needs to be paid before the fee percentages change.
     */
    function _beforeProtocolFeeCacheUpdate() internal virtual {}

    /**
     * @dev Returns whether this Pool tracks protocol swap fee changes in the IProtocolFeePercentagesProvider.
     */
    function getProtocolSwapFeeDelegation() public view returns (bool) {
        return _delegatedProtocolSwapFees;
    }

    function _updateProtocolFeeCache(IProtocolFeePercentagesProvider protocolFeeProvider, uint256 feeType) private {
        uint256 currentValue = protocolFeeProvider.getFeeTypePercentage(feeType);

        if (feeType == ProtocolFeeType.SWAP) {
            _cache.swapFee = currentValue.toUint64();
        } else if (feeType == ProtocolFeeType.YIELD) {
            _cache.yieldFee = currentValue.toUint64();
        } else if (feeType == ProtocolFeeType.AUM) {
            _cache.aumFee = currentValue.toUint64();
        } else {
            _revert(Errors.UNHANDLED_FEE_TYPE);
        }

        emit ProtocolFeePercentageCacheUpdated(feeType, currentValue);
    }
}

File 50 of 52 : InvariantGrowthProtocolSwapFees.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "./ProtocolFees.sol";

library InvariantGrowthProtocolSwapFees {
    using FixedPoint for uint256;

    function getProtocolOwnershipPercentage(
        uint256 invariantGrowthRatio,
        uint256 supplyGrowthRatio,
        uint256 protocolSwapFeePercentage
    ) internal pure returns (uint256) {
        // Joins and exits are symmetrical; for simplicity, we consider a join, where the invariant and supply
        // both increase.

        // |-------------------------|-- original invariant * invariantGrowthRatio
        // |   increase from fees    |
        // |-------------------------|-- original invariant * supply growth ratio (fee-less invariant)
        // |                         |
        // | increase from balances  |
        // |-------------------------|-- original invariant
        // |                         |
        // |                         |  |------------------|-- currentSupply
        // |                         |  |    BPT minted    |
        // |                         |  |------------------|-- previousSupply
        // |   original invariant    |  |  original supply |
        // |_________________________|  |__________________|
        //
        // If the join is proportional, the invariant and supply will likewise increase proportionally,
        // so the growth ratios (invariantGrowthRatio / supplyGrowthRatio) will be equal. In this case, we do not charge
        // any protocol fees.
        // We also charge no protocol fees in the case where `invariantGrowthRatio < supplyGrowthRatio` to avoid
        // potential underflows, however this should only occur in extremely low volume actions due solely to rounding
        // error.

        if ((supplyGrowthRatio >= invariantGrowthRatio) || (protocolSwapFeePercentage == 0)) return 0;

        // If the join is non-proportional, the supply increase will be proportionally less than the invariant increase,
        // since the BPT minted will be based on fewer tokens (because swap fees are not included). So the supply growth
        // is due entirely to the balance changes, while the invariant growth also includes swap fees.
        //
        // To isolate the amount of increase by fees then, we multiply the original invariant by the supply growth
        // ratio to get the "feeless invariant". The difference between the final invariant and this value is then
        // the amount of the invariant due to fees, which we convert to a percentage by normalizing against the
        // final invariant. This is expressed as the expression below:
        //
        // invariantGrowthFromFees = currentInvariant - supplyGrowthRatio * previousInvariant
        //
        // We then divide through by current invariant so the LHS can be identified as the fraction of the pool which
        // is made up of accumulated swap fees.
        //
        // swapFeesPercentage = 1 - supplyGrowthRatio * previousInvariant / currentInvariant
        //
        // We then define `invariantGrowthRatio` in a similar fashion to `supplyGrowthRatio` to give the result:
        //
        // swapFeesPercentage = 1 - supplyGrowthRatio / invariantGrowthRatio
        //
        // Using this form allows us to consider only the ratios of the two invariants, rather than their absolute
        // values: a useful property, as this is sometimes easier than calculating the full invariant twice.

        // We've already checked that `supplyGrowthRatio` is smaller than `invariantGrowthRatio`, and hence their ratio
        // smaller than FixedPoint.ONE, allowing for unchecked arithmetic.
        uint256 swapFeesPercentage = FixedPoint.ONE - supplyGrowthRatio.divDown(invariantGrowthRatio);

        // We then multiply by the protocol swap fee percentage to get the fraction of the pool which the protocol
        // should own once fees have been collected.
        return swapFeesPercentage.mulDown(protocolSwapFeePercentage);
    }

    function calcDueProtocolFees(
        uint256 invariantGrowthRatio,
        uint256 previousSupply,
        uint256 currentSupply,
        uint256 protocolSwapFeePercentage
    ) internal pure returns (uint256) {
        uint256 protocolOwnershipPercentage = getProtocolOwnershipPercentage(
            invariantGrowthRatio,
            currentSupply.divDown(previousSupply),
            protocolSwapFeePercentage
        );

        return ProtocolFees.bptForPoolOwnershipPercentage(currentSupply, protocolOwnershipPercentage);
    }
}

File 51 of 52 : SafeCast.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "@balancer-labs/v2-interfaces/contracts/solidity-utils/helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 *
 * Can be combined with {SafeMath} and {SignedSafeMath} to extend it to smaller types, by performing
 * all math on `uint256` and `int256` and then downcasting.
 */
library SafeCast {
    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        _require(value >> 255 == 0, Errors.SAFE_CAST_VALUE_CANT_FIT_INT256);
        return int256(value);
    }

    /**
     * @dev Converts an unsigned uint256 into an unsigned uint64.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxUint64.
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        _require(value <= type(uint64).max, Errors.SAFE_CAST_VALUE_CANT_FIT_UINT64);
        return uint64(value);
    }
}

File 52 of 52 : ProtocolFees.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";

library ProtocolFees {
    using FixedPoint for uint256;

    /**
     * @dev Calculates the amount of BPT necessary to give ownership of a given percentage of the Pool.
     * Note that this function reverts if `poolPercentage` >= 100%, it's expected that the caller will enforce this.
     * @param totalSupply - The total supply of the pool prior to minting BPT.
     * @param poolOwnershipPercentage - The desired ownership percentage of the pool to have as a result of minting BPT.
     * @return bptAmount - The amount of BPT to mint such that it is `poolPercentage` of the resultant total supply.
     */
    function bptForPoolOwnershipPercentage(uint256 totalSupply, uint256 poolOwnershipPercentage)
        internal
        pure
        returns (uint256)
    {
        // If we mint some amount `bptAmount` of BPT then the percentage ownership of the pool this grants is given by:
        // `poolOwnershipPercentage = bptAmount / (totalSupply + bptAmount)`.
        // Solving for `bptAmount`, we arrive at:
        // `bptAmount = totalSupply * poolOwnershipPercentage / (1 - poolOwnershipPercentage)`.
        return Math.divDown(Math.mul(totalSupply, poolOwnershipPercentage), poolOwnershipPercentage.complement());
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 800
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"components":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"contract IProtocolFeePercentagesProvider","name":"protocolFeeProvider","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"contract IRateProvider[]","name":"rateProviders","type":"address[]"},{"internalType":"uint256[]","name":"tokenRateCacheDurations","type":"uint256[]"},{"internalType":"bool[]","name":"exemptFromYieldProtocolFeeFlags","type":"bool[]"},{"internalType":"uint256","name":"amplificationParameter","type":"uint256"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"address","name":"owner","type":"address"},{"internalType":"string","name":"version","type":"string"}],"internalType":"struct ComposableStablePool.NewPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"AmpUpdateStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"currentValue","type":"uint256"}],"name":"AmpUpdateStopped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"feeType","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"protocolFeePercentage","type":"uint256"}],"name":"ProtocolFeePercentageCacheUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"RecoveryModeStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"rate","type":"uint256"}],"name":"TokenRateCacheUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"tokenIndex","type":"uint256"},{"indexed":true,"internalType":"contract IRateProvider","name":"provider","type":"address"},{"indexed":false,"internalType":"uint256","name":"cacheDuration","type":"uint256"}],"name":"TokenRateProviderSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DELEGATE_PROTOCOL_SWAP_FEES_SENTINEL","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"disableRecoveryMode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"enableRecoveryMode","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getActualSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmplificationParameter","outputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bool","name":"isUpdating","type":"bool"},{"internalType":"uint256","name":"precision","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBptIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDomainSeparator","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastJoinExitData","outputs":[{"internalType":"uint256","name":"lastJoinExitAmplification","type":"uint256"},{"internalType":"uint256","name":"lastPostJoinExitInvariant","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMinimumBpt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getNextNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"feeType","type":"uint256"}],"name":"getProtocolFeePercentageCache","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getProtocolFeesCollector","outputs":[{"internalType":"contract IProtocolFeesCollector","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getProtocolSwapFeeDelegation","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRateProviders","outputs":[{"internalType":"contract IRateProvider[]","name":"","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getTokenRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getTokenRateCache","outputs":[{"internalType":"uint256","name":"rate","type":"uint256"},{"internalType":"uint256","name":"oldRate","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint256","name":"expires","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"inRecoveryMode","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"isTokenExemptFromYieldProtocolFee","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"swapRequest","type":"tuple"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"indexIn","type":"uint256"},{"internalType":"uint256","name":"indexOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"setTokenRateCacheDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawEndValue","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"startAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"updateProtocolFeePercentageCache","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"updateTokenRateCache","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"}]

6105006040523480156200001257600080fd5b5060405162007f5638038062007f56833981016040819052620000359162001b55565b6020810151600019620000488362000d93565b620000538462000dcc565b8461010001518560000151600087604001518860600151620000808a608001513062000e1560201b60201c565b8a60800151516001016001600160401b03811180156200009f57600080fd5b50604051908082528060200260200182016040528015620000ca578160200160208202803683370190505b508b61012001518c61014001518d61016001518e6101800151828289898d85336001600160a01b031660001b8480604051806040016040528060018152602001603160f81b815250878781600390805190602001906200012c929190620017f2565b50805162000142906004906020840190620017f2565b50506005805460ff19166012179055508151602092830120608052805191012060a052507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60c05260e0526001600160601b0319606091821b81166101005291901b166101205250620001c090506276a70083111561019462000faf565b620001d462278d0082111561019562000faf565b4290910161014081905201610160528551620001f6906002111560c862000faf565b620002106200020462000fc4565b8751111560c962000faf565b620002268662000fc960201b620015511760201c565b620002318462000fd5565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f9062000262908d9060040162001ddb565b602060405180830381600087803b1580156200027d57600080fd5b505af115801562000292573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002b8919062001b1d565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002ed9084908b908b9060040162001d3f565b600060405180830381600087803b1580156200030857600080fd5b505af11580156200031d573d6000803e3d6000fd5b505050508061018081815250508a6001600160a01b031663d2946c2b6040518163ffffffff1660e01b815260040160206040518083038186803b1580156200036457600080fd5b505afa15801562000379573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200039f919062001b36565b60601b6001600160601b0319166101a05250620003d1995050506001891015965061012c955062000faf945050505050565b620003e461138882111561012d62000faf565b6000620003ff826103e86200106960201b6200155b1760201c565b90506200040c8162001098565b5050805151620004216002821160c862000faf565b6200044660018203836020015151846040015151620010d760201b620015861760201c565b6101c0819052815180516000906200045a57fe5b60200260200101516001600160a01b0316610200816001600160a01b031660601b8152505081600001516001815181106200049157fe5b60200260200101516001600160a01b0316610220816001600160a01b031660601b815250508160000151600281518110620004c857fe5b60200260200101516001600160a01b0316610240816001600160a01b031660601b8152505060038111620004fe57600062000517565b8151805160039081106200050e57fe5b60200260200101515b60601b6001600160601b03191661026052600481116200053957600062000552565b8151805160049081106200054957fe5b60200260200101515b60601b6001600160601b0319166102805260058111620005745760006200058d565b8151805160059081106200058457fe5b60200260200101515b60601b6001600160601b0319166102a05281518051620005c69190600090620005b257fe5b6020026020010151620010f760201b60201c565b6102c05281518051620005e091906001908110620005b257fe5b6102e05281518051620005fa91906002908110620005b257fe5b61030052600381116200060f57600062000625565b620006258260000151600381518110620005b257fe5b61032052600481116200063a57600062000650565b620006508260000151600481518110620005b257fe5b6103405260058111620006655760006200067b565b6200067b8260000151600581518110620005b257fe5b61036052815151600019015b600081118015620006b857508251805130919083908110620006a557fe5b60200260200101516001600160a01b0316115b15620006c8576000190162000687565b6101e08190528251516060906001600160401b0381118015620006ea57600080fd5b5060405190808252806020026020018201604052801562000715578160200160208202803683370190505b50905060008080805b8751518110156200093857858110156200085457876020015181815181106200074357fe5b60200260200101518582815181106200075857fe5b60200260200101906001600160a01b031690816001600160a01b031681525050620007c160006001600160a01b03168683815181106200079457fe5b60200260200101516001600160a01b031614158260060186620011c660201b620015a3179092919060201c565b935087604001518181518110620007d457fe5b60200260200101511562000849576200082060006001600160a01b0316868381518110620007fe57fe5b60200260200101516001600160a01b0316141561015562000faf60201b60201c565b6200083d60018286620011c660201b620015a3179092919060201c565b9350600192506200084e565b600191505b6200092f565b8581146200092f57876020015160018203815181106200087057fe5b60200260200101518582815181106200088557fe5b60200260200101906001600160a01b031690816001600160a01b031681525050620008c160006001600160a01b03168683815181106200079457fe5b935087604001516001820381518110620008d757fe5b6020026020010151156200092a576200090160006001600160a01b0316868381518110620007fe57fe5b6200091e60018286620011c660201b620015a3179092919060201c565b9350600192506200092f565b600191505b6001016200071e565b50811560f890811b610460528115901b61048052835184906000906200095a57fe5b60200260200101516001600160a01b0316610380816001600160a01b031660601b81525050836001815181106200098d57fe5b60200260200101516001600160a01b03166103a0816001600160a01b031660601b8152505083600281518110620009c057fe5b60200260200101516001600160a01b03166103c0816001600160a01b031660601b815250506003845111620009f757600062000a0e565b8360038151811062000a0557fe5b60200260200101515b60601b6001600160601b0319166103e052835160041062000a3157600062000a48565b8360048151811062000a3f57fe5b60200260200101515b60601b6001600160601b03191661040052835160051062000a6b57600062000a82565b8360058151811062000a7957fe5b60200260200101515b60601b6001600160601b0319166104205250506104405250508251516020808501515160408601515162000ac595509293509190620010d7811b6200158617901c565b805160609062000ad6903062000e15565b8051909150600019015b60008111801562000b165750306001600160a01b031682828151811062000b0357fe5b60200260200101516001600160a01b0316115b1562000b26576000190162000ae0565b6000805b84515181101562000c3f578281141562000b4357600191505b60208501518051828401916000918490811062000b5c57fe5b60200260200101516001600160a01b03161462000c355762000bb6818760200151848151811062000b8957fe5b60200260200101518860400151858151811062000ba257fe5b6020026020010151620011ef60201b60201c565b8560200151828151811062000bc757fe5b60200260200101516001600160a01b0316817fdd6d1c9badb346de6925b358a472c937b41698d2632696759e43fd6527feeec48860400151858151811062000c0b57fe5b602002602001015160405162000c22919062001df0565b60405180910390a362000c3581620012ea565b5060010162000b2a565b5050505050600019811460f881901b6104c0526001600160601b0319606084901b166104a05262000c7283600262001329565b62000c7f83600362001329565b801562000c995762000c9383600062001329565b62000d58565b60405163178b2b9360e21b815262000d2d906001600160a01b03851690635e2cae4c9062000ccd9060009060040162001df0565b60206040518083038186803b15801562000ce657600080fd5b505afa15801562000cfb573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000d21919062001b1d565b83111561025862000faf565b600060008051602062007f368339815191528360405162000d4f919062001df0565b60405180910390a25b8062000d65578162000d68565b60005b6104e0525050506101a0810151805162000d8b91600d91602090910190620017f2565b505062001e62565b62000d9d62001873565b6040518060600160405280836080015181526020018360a0015181526020018360c0015181525090505b919050565b62000dd662001873565b604051806060016040528062000df784608001513062000e1560201b60201c565b81526020018360a0015181526020018360e001518152509050919050565b606082516001016001600160401b038111801562000e3257600080fd5b5060405190808252806020026020018201604052801562000e5d578160200160208202803683370190505b50905082516000141562000ea057818160008151811062000e7a57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505062000fa9565b82515b60008111801562000edc5750826001600160a01b031684600183038151811062000ec957fe5b60200260200101516001600160a01b0316115b1562000f295783600182038151811062000ef257fe5b602002602001015182828151811062000f0757fe5b6001600160a01b03909216602092830291909101909101526000190162000ea3565b60005b8181101562000f785784818151811062000f4257fe5b602002602001015183828151811062000f5757fe5b6001600160a01b039092166020928302919091019091015260010162000f2c565b508282828151811062000f8757fe5b60200260200101906001600160a01b031690816001600160a01b031681525050505b92915050565b8162000fc05762000fc081620014d4565b5050565b600690565b8062000fc081620014e9565b62000fee62000fe362001570565b82101560cb62000faf565b6200100762000ffc62001579565b82111560ca62000faf565b620010298160c0603f6008546200158560201b620015ca17909392919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906200105e90839062001df0565b60405180910390a150565b600082820262001091841580620010895750838583816200108657fe5b04145b600362000faf565b9392505050565b620010a681804280620015aa565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516200105e919062001df0565b620010f28284148015620010ea57508183145b606762000faf565b505050565b60006001600160a01b0382163014156200111b5750670de0b6b3a764000062000dc7565b6000826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200115757600080fd5b505afa1580156200116c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062001192919062001d1c565b60ff1690506000620011b16012836200161d60201b620015f21760201c565b600a0a670de0b6b3a764000002949350505050565b60006001821b1984168284620011de576000620011e1565b60015b60ff16901b17949350505050565b6000826001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b1580156200122b57600080fd5b505afa15801562001240573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062001266919062001b1d565b6000858152600a602090815260409091205491925062001295908290849086906200160862001635821b17901c565b6000868152600a602052604090819020919091555185907fb77a83204ca282e08dc3a65b0a1ca32ea4e6875c38ef0bf5bf75e52a67354fac90620012db90859062001df0565b60405180910390a25050505050565b6000818152600a602090815260409091205490620013139082906200164062001691821b17901c565b6000928352600a60205260409092209190915550565b604051631a7c326360e01b81526000906001600160a01b03841690631a7c3263906200135a90859060040162001df0565b60206040518083038186803b1580156200137357600080fd5b505afa15801562001388573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620013ae919062001b1d565b905081620013f257620013cc81620016bc60201b620016581760201c565b600b80546001600160401b0319166001600160401b0392909216919091179055620014a6565b600282141562001448576200141281620016bc60201b620016581760201c565b600b80546001600160401b03929092166801000000000000000002600160401b600160801b0319909216919091179055620014a6565b600382141562001499576200146881620016bc60201b620016581760201c565b600b80546001600160401b0392909216600160801b02600160801b600160c01b0319909216919091179055620014a6565b620014a66101bb620014d4565b8160008051602062007f3683398151915282604051620014c7919062001df0565b60405180910390a2505050565b620014e6816210905360ea1b620016da565b50565b600281511015620014fa57620014e6565b6000816000815181106200150a57fe5b602002602001015190506000600190505b8251811015620010f25760008382815181106200153457fe5b6020026020010151905062001565816001600160a01b0316846001600160a01b031610606562000faf60201b60201c565b91506001016200151b565b64e8d4a5100090565b67016345785d8a000090565b6000620015948484846200173b565b506001901b60001901811b1992909216911b1790565b620015c48160c060406200179660201b620016751760201c565b620015de83608060406200179660201b620016751760201c565b620015f7856040806200179660201b620016751760201c565b6200161187600060406200179660201b620016751760201c565b17171760095550505050565b60006200162f83831115600162000faf565b50900390565b60006200164a606084901c1561014962000faf565b6200168942830160e06020620016738660c083838c8c60006060620015ca62001585871b17861c565b6200158560201b620015ca17909392919060201c565b949350505050565b600062000fa9620016a283620017ab565b606080856200158560201b620015ca17909392919060201c565b6000620016d66001600160401b038311156101ba62000faf565b5090565b62461bcd60e51b600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b6200174c6101008310606462000faf565b62001785600182101580156200177d57506200177960ff8461010003620017cb60201b620016881760201c565b8211155b606462000faf565b620010f283821c156101b462000faf565b6000620017a58484846200173b565b50501b90565b600062000fa96000606084620017e360201b6200169e179092919060201c565b6000818310620017dc578162001091565b5090919050565b6001901b6000190191901c1690565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106200183557805160ff191683800117855562001865565b8280016001018555821562001865579182015b828111156200186557825182559160200191906001019062001848565b50620016d692915062001894565b60405180606001604052806060815260200160608152602001606081525090565b5b80821115620016d6576000815560010162001895565b805162000fa98162001e4c565b600082601f830112620018c9578081fd5b8151620018e0620018da8262001e20565b62001df9565b8181529150602080830190848101818402860182018710156200190257600080fd5b6000805b858110156200193257825180151581146200191f578283fd5b8552938301939183019160010162001906565b50505050505092915050565b600082601f8301126200194f578081fd5b815162001960620018da8262001e20565b8181529150602080830190848101818402860182018710156200198257600080fd5b60005b84811015620019ae5781516200199b8162001e4c565b8452928201929082019060010162001985565b505050505092915050565b600082601f830112620019ca578081fd5b8151620019db620018da8262001e20565b818152915060208083019084810181840286018201871015620019fd57600080fd5b60005b84811015620019ae57815162001a168162001e4c565b8452928201929082019060010162001a00565b600082601f83011262001a3a578081fd5b815162001a4b620018da8262001e20565b81815291506020808301908481018184028601820187101562001a6d57600080fd5b60005b84811015620019ae5781518452928201929082019060010162001a70565b600082601f83011262001a9f578081fd5b81516001600160401b0381111562001ab5578182fd5b602062001acb601f8301601f1916820162001df9565b9250818352848183860101111562001ae257600080fd5b60005b8281101562001b0257848101820151848201830152810162001ae5565b8281111562001b145760008284860101525b50505092915050565b60006020828403121562001b2f578081fd5b5051919050565b60006020828403121562001b48578081fd5b8151620010918162001e4c565b60006020828403121562001b67578081fd5b81516001600160401b038082111562001b7e578283fd5b81840191506101c080838703121562001b95578384fd5b62001ba08162001df9565b905062001bae8684620018ab565b815262001bbf8660208501620018ab565b602082015260408301518281111562001bd6578485fd5b62001be48782860162001a8e565b60408301525060608301518281111562001bfc578485fd5b62001c0a8782860162001a8e565b60608301525060808301518281111562001c22578485fd5b62001c30878286016200193e565b60808301525060a08301518281111562001c48578485fd5b62001c5687828601620019b9565b60a08301525060c08301518281111562001c6e578485fd5b62001c7c8782860162001a29565b60c08301525060e08301518281111562001c94578485fd5b62001ca287828601620018b8565b60e083015250610100838101519082015261012080840151908201526101408084015190820152610160808401519082015261018062001ce587828601620018ab565b908201526101a0838101518381111562001cfd578586fd5b62001d0b8882870162001a8e565b918301919091525095945050505050565b60006020828403121562001d2e578081fd5b815160ff8116811462001091578182fd5b60006060820185835260206060818501528186518084526080860191508288019350845b8181101562001d8b5762001d78855162001e40565b8352938301939183019160010162001d63565b505084810360408601528551808252908201925081860190845b8181101562001dcd5762001dba835162001e40565b8552938301939183019160010162001da5565b509298975050505050505050565b602081016003831062001dea57fe5b91905290565b90815260200190565b6040518181016001600160401b038111828210171562001e1857600080fd5b604052919050565b60006001600160401b0382111562001e36578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b0381168114620014e657600080fd5b60805160a05160c05160e0516101005160601c6101205160601c6101405161016051610180516101a05160601c6101c0516101e0516102005160601c6102205160601c6102405160601c6102605160601c6102805160601c6102a05160601c6102c0516102e051610300516103205161034051610360516103805160601c6103a05160601c6103c05160601c6103e05160601c6104005160601c6104205160601c610440516104605160f81c6104805160f81c6104a05160601c6104c05160f81c6104e051615f166200202060003980610e2d52508061090a52508061088a52806108b552806108e05250806147175250806146f3525080612ac3528061436c525080611c1b525080611beb525080611bbb525080611b8b525080611b5b525080611b2b525080612f53525080612f23525080612ef3525080612ec3525080612e93525080612e63525080611f16525080611ed4525080611e92525080611e50525080611e0e525080611dcc5250806110495250806116cd525080611274525080610bec525080611aff525080611adb525080611149525080611125525080611081525080612cd1525080612d13525080612cf25250615f166000f3fe608060405234801561001057600080fd5b50600436106103785760003560e01c806370464016116101d3578063a457c2d711610104578063d505accf116100a2578063ddf4627b1161007c578063ddf4627b146106e3578063eb0f24d6146106eb578063ed24911d146106f3578063f4b7964d146106fb57610378565b8063d505accf146106aa578063d5c096c4146106bd578063dd62ed3e146106d057610378565b8063ab7759f1116100de578063ab7759f11461067f578063b35056b814610692578063b7b814fc1461069a578063d2946c2b146106a257610378565b8063a457c2d714610651578063a9059cbb14610664578063aaabadc51461067757610378565b8063851c1bb311610171578063893d20e81161014b578063893d20e8146106195780638d928af81461062e57806390193b7c1461063657806395d89b411461064957610378565b8063851c1bb3146105eb578063876f303b146105fe57806387ec68171461060657610378565b80637ecebe00116101ad5780637ecebe00146105a55780637f1260d1146105b857806382687a56146105db5780638456cb59146105e357610378565b8063704640161461055e57806370a082311461057157806374f3b0091461058457610378565b80633644e515116102ad57806354a844ba1161024b57806355c676281161022557806355c67628146105165780636028bfd41461051e578063679aefce1461053f5780636daccffa1461054757610378565b806354a844ba146104f357806354dea00a146104fb57806354fd4d501461050e57610378565b8063395093511161028757806339509351146104af5780633c975d51146104c25780633f4ba83a146104d857806350dd6ed9146104e057610378565b80633644e5151461048c57806338e9922e1461049457806338fff2d0146104a757610378565b80631c0de0511161031a57806323b872dd116102f457806323b872dd1461043e5780632df2c7c0146104515780632f1a0bc914610464578063313ce5671461047757610378565b80631c0de051146103fd5780631dd746ea14610414578063238a2d591461042957610378565b8063095ea7b311610356578063095ea7b3146103c35780630da0669c146103e357806315b0015b146103ed57806318160ddd146103f557610378565b806301ec954a1461037d57806304842d4c146103a657806306fdde03146103ae575b600080fd5b61039061038b366004615905565b61070e565b60405161039d9190615d26565b60405180910390f35b6103906107b4565b6103b66107c3565b60405161039d9190615dfc565b6103d66103d1366004615542565b610859565b60405161039d9190615d03565b6103eb610870565b005b6103d6610908565b61039061092c565b610405610932565b60405161039d93929190615d0e565b61041c61095b565b60405161039d9190615ccb565b610431610965565b60405161039d9190615be7565b6103d661044c366004615492565b610a00565b6103eb61045f36600461543e565b610a74565b6103eb610472366004615a54565b610ad8565b61047f610bbb565b60405161039d9190615e67565b610390610bc4565b6103eb6104a2366004615a24565b610bce565b610390610bea565b6103d66104bd366004615542565b610c0e565b6104ca610c49565b60405161039d929190615e3e565b6103eb610c74565b6103eb6104ee366004615740565b610c86565b6103eb610ca4565b61039061050936600461543e565b610cb6565b6103b6610cd1565b610390610d32565b61053161052c366004615659565b610d45565b60405161039d929190615e0f565b610390610d7c565b61054f610de8565b60405161039d93929190615e28565b61039061056c366004615a24565b610e03565b61039061057f36600461543e565b610ebc565b610597610592366004615659565b610ed7565b60405161039d929190615cde565b6103906105b336600461543e565b610fda565b6105cb6105c636600461543e565b610fe5565b60405161039d9493929190615e4c565b610390611047565b6103eb61106b565b6103906105f93660046156fc565b61107d565b6103906110cf565b610531610614366004615659565b6110fd565b610621611123565b60405161039d9190615bd3565b610621611147565b61039061064436600461543e565b61116b565b6103b6611186565b6103d661065f366004615542565b6111e7565b6103d6610672366004615542565b611225565b610621611232565b6103d661068d36600461543e565b61123c565b6103d661124f565b6103eb611260565b610621611272565b6103eb6106b83660046154d2565b611296565b6105976106cb366004615659565b611321565b6103906106de36600461545a565b611444565b610390611481565b6103eb611487565b6103906114b3565b6103eb610709366004615542565b6114bd565b6000846080015161073b610720611147565b6001600160a01b0316336001600160a01b03161460cd6116ad565b610750610746610bea565b82146101f46116ad565b6107586116bb565b61076a84846107656116cb565b6116ef565b6060610774611707565b905060008751600181111561078557fe5b1461079c5761079787878787856117a0565b6107a9565b6107a987878787856117f9565b979650505050505050565b60006107be611834565b905090565b60038054604080516020601f600260001961010060018816150201909516949094049384018190048102820181019092528281526060939092909183018282801561084f5780601f106108245761010080835404028352916020019161084f565b820191906000526020600020905b81548152906001019060200180831161083257829003601f168201915b5050505050905090565b600061086633848461183b565b5060015b92915050565b6108786118a3565b610880610908565b156108b0576108b07f00000000000000000000000000000000000000000000000000000000000000006000611918565b6108db7f00000000000000000000000000000000000000000000000000000000000000006002611918565b6109067f00000000000000000000000000000000000000000000000000000000000000006003611918565b565b7f000000000000000000000000000000000000000000000000000000000000000090565b60025490565b600080600061093f611abc565b15925061094a611ad9565b9150610954611afd565b9050909192565b60606107be611707565b606060006109716116cb565b905060608167ffffffffffffffff8111801561098c57600080fd5b506040519080825280602002602001820160405280156109b6578160200160208202803683370190505b50905060005b828110156109f9576109cd81611b21565b8282815181106109d957fe5b6001600160a01b03909216602092830291909101909101526001016109bc565b5091505090565b600080610a0d8533611444565b9050610a31336001600160a01b0387161480610a295750838210155b61019e6116ad565b610a3c858585611c4a565b336001600160a01b03861614801590610a5757506000198114155b15610a6957610a69853385840361183b565b506001949350505050565b610a7c611d2a565b6000610a8782611dc8565b90506000610a9482611b21565b9050610aad6001600160a01b03821615156101556116ad565b6000828152600a6020526040812054610ac590611f56565b9050610ad2838383611f65565b50505050565b610ae0612048565b610af0600183101561012c6116ad565b610b0161138883111561012d6116ad565b6000610b0d82426115f2565b9050610b216201518082101561013d6116ad565b600080610b2c612076565b91509150610b3d811561013e6116ad565b6000610b4b866103e861155b565b90506000838211610b7a57610b75610b66620151808661155b565b610b70848861155b565b6120ea565b610b94565b610b94610b8a620151808461155b565b610b70868861155b565b9050610ba6600282111561013f6116ad565b610bb28483428961211d565b50505050505050565b60055460ff1690565b60006107be6114b3565b610bd6612048565b610bde61216c565b610be78161217f565b50565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b03871684529091528120549091610866918590610c4490866121f8565b61183b565b600c546000908190610c5e8160e9601761169e565b9250610c6d81600060e961169e565b9150509091565b610c7c612048565b610906600061220a565b610c8e612048565b610c9661216c565b610ca0828261227d565b5050565b610cac612048565b6109066001612372565b6000610cc9610cc483611dc8565b6123c9565b90505b919050565b600d8054604080516020601f600260001961010060018816150201909516949094049384018190048102820181019092528281526060939092909183018282801561084f5780601f106108245761010080835404028352916020019161084f565b6008546000906107be9060c0603f61169e565b60006060610d5b8651610d566116cb565b61241c565b610d708989898989898961242961244b6124b4565b97509795505050505050565b60006060600080600080610d8e6125de565b9398509196509450925090506000610da685856121f8565b90506000610db2612076565b5090506000848214610dcd57610dc882896126ce565b610dcf565b835b9050610ddb8184612830565b9850505050505050505090565b6000806000610df5612076565b90949093506103e892509050565b6000610e0d61124f565b15610e1a57506000610ccc565b81610e6657610e27610908565b610e51577f0000000000000000000000000000000000000000000000000000000000000000610e5f565b600b5467ffffffffffffffff165b9050610ccc565b6002821415610e8e5750600b5468010000000000000000900467ffffffffffffffff16610ccc565b6003821415610eb15750600b54600160801b900467ffffffffffffffff16610ccc565b610ccc6101bb612881565b6001600160a01b031660009081526020819052604090205490565b60608088610ee6610720611147565b610ef1610746610bea565b60606000610efe86612891565b15610f2657610f0b6128c0565b610f1d89610f1761092c565b886128d3565b92509050610f78565b610f2e6116bb565b6060610f38611707565b9050610f448a82612917565b610f688d8d8d8d8d610f5461124f565b610f5e578d610f61565b60005b878e612429565b93509150610f76838261244b565b505b610f828b82612980565b81895167ffffffffffffffff81118015610f9b57600080fd5b50604051908082528060200260200182016040528015610fc5578160200160208202803683370190505b509450945050505b5097509795505050505050565b6000610cc98261116b565b6000806000806000600a6000610ffa88611dc8565b8152602081019190915260400160002054905061101b8115156101556116ad565b6110248161298a565b945061102f81612998565b935061103a816129a6565b9597949650949392505050565b7f000000000000000000000000000000000000000000000000000000000000000090565b611073612048565b610906600161220a565b60007f0000000000000000000000000000000000000000000000000000000000000000826040516020016110b2929190615b90565b604051602081830303815290604052805190602001209050919050565b60008060006110dc6125de565b505092509250506110f681836121f890919063ffffffff16565b9250505090565b6000606061110e8651610d566116cb565b610d70898989898989896129c86129d96124b4565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b6001600160a01b031660009081526006602052604090205490565b60048054604080516020601f600260001961010060018816150201909516949094049384018190048102820181019092528281526060939092909183018282801561084f5780601f106108245761010080835404028352916020019161084f565b6000806111f43385611444565b905080831061120e576112093385600061183b565b61121b565b61121b338585840361183b565b5060019392505050565b6000610866338484611c4a565b60006107be612a42565b6000610cc961124a83611dc8565b612abc565b6008546000906107be9060ff612ae4565b611268612048565b6109066000612372565b7f000000000000000000000000000000000000000000000000000000000000000090565b60007f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886112c58c61116b565b896040516020016112db96959493929190615d4e565b60405160208183030381529060405280519060200120905061130c8882611303878787612aee565b886101f8612b2d565b61131788888861183b565b5050505050505050565b60608088611330610720611147565b61133b610746610bea565b6113436116bb565b606061134d611707565b905061135761092c565b611404576000606061136c8d8d8d868b612b84565b9150915061138561137b611834565b83101560cc6116ad565b6113976000611392611834565b612c5d565b6113aa8b6113a3611834565b8403612c5d565b6113b481846129d9565b808a5167ffffffffffffffff811180156113cd57600080fd5b506040519080825280602002602001820160405280156113f7578160200160208202803683370190505b5095509550505050610fcd565b61140e8882612917565b600060606114368d8d8d8d8d61142261124f565b61142c578d61142f565b60005b898e6129c8565b915091506113aa8b83612c5d565b600061144e611147565b6001600160a01b0316826001600160a01b03161415611470575060001961086a565b61147a8383612c67565b905061086a565b60001981565b61148f612048565b60008061149a612076565b915091506114aa816101406116ad565b610ca082612c92565b60006107be612ccd565b6114c5612048565b6114cd611d2a565b60006114d883611dc8565b905060006114e582611b21565b90506114fe6001600160a01b03821615156101556116ad565b611509828285611f65565b806001600160a01b0316827fdd6d1c9badb346de6925b358a472c937b41698d2632696759e43fd6527feeec4856040516115439190615d26565b60405180910390a350505050565b80610ca081612d6a565b600082820261157f84158061157857508385838161157557fe5b04145b60036116ad565b9392505050565b61159e828414801561159757508183145b60676116ad565b505050565b60006001821b19841682846115b95760006115bc565b60015b60ff16901b17949350505050565b60006115d7848484612de3565b5082821b6000196001831b01831b198516175b949350505050565b60006116028383111560016116ad565b50900390565b600061161b606084901c156101496116ad565b6115ea42830160e060206116388660c083838c8c600060606115ca565b9291906115ca565b6000610cc961164e8361298a565b83906060806115ca565b600061167167ffffffffffffffff8311156101ba6116ad565b5090565b6000611682848484612de3565b50501b90565b6000818310611697578161157f565b5090919050565b6001901b6000190191901c1690565b81610ca057610ca081612881565b6116c3612e29565b610906612e31565b7f000000000000000000000000000000000000000000000000000000000000000090565b61159e818410801561170057508183105b60646116ad565b606060006117136116cb565b905060608167ffffffffffffffff8111801561172e57600080fd5b50604051908082528060200260200182016040528015611758578160200160208202803683370190505b50905060005b828110156109f957611781611772826123c9565b61177b83612e59565b90612f77565b82828151811061178d57fe5b602090810291909101015260010161175e565b60208501516000906001600160a01b03163014806117ca575060408601516001600160a01b031630145b6117e0576117db8686868686612fa3565b6117ed565b6117ed868686868661300d565b90505b95945050505050565b60208501516000906001600160a01b0316301480611823575060408601516001600160a01b031630145b6117e0576117db8686868686613111565b620f424090565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590611896908590615d26565b60405180910390a3505050565b6118ab611d2a565b6118b361216c565b606060008060006118c26125de565b94509450945050935060008311156118dd576118dd83613168565b60006118e7612076565b5090506000838214611902576118fd82876126ce565b611904565b825b90506119108282613179565b505050505050565b604051631a7c326360e01b81526000906001600160a01b03841690631a7c326390611947908590600401615d26565b60206040518083038186803b15801561195f57600080fd5b505afa158015611973573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119979190615a3c565b9050816119ce576119a781611658565b600b805467ffffffffffffffff191667ffffffffffffffff92909216919091179055611a7f565b6002821415611a1c576119e081611658565b600b805467ffffffffffffffff9290921668010000000000000000026fffffffffffffffff000000000000000019909216919091179055611a7f565b6003821415611a7457611a2e81611658565b600b805467ffffffffffffffff92909216600160801b027fffffffffffffffff0000000000000000ffffffffffffffffffffffffffffffff909216919091179055611a7f565b611a7f6101bb612881565b817f6bfb689528fa96ec1ad670ad6d6064be1ae96bfd5d2ee35c837fd0fe0c11959a82604051611aaf9190615d26565b60405180910390a2505050565b6000611ac6611afd565b4211806107be57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b600081611b4f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160011415611b7f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160021415611baf57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160031415611bdf57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160041415611c0f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160051415611c3f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b610ccc610135612881565b611c616001600160a01b03841615156101986116ad565b611c786001600160a01b03831615156101996116ad565b611c8383838361159e565b6001600160a01b038316600090815260208190526040902054611ca990826101a061319f565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611cd890826121f8565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90611896908590615d26565b60408051600080825260208201909252606091611d5d565b611d4a6152aa565b815260200190600190039081611d425790505b509050611d68611147565b6001600160a01b0316630e8e3e84826040518263ffffffff1660e01b8152600401611d939190615c34565b600060405180830381600087803b158015611dad57600080fd5b505af1158015611dc1573d6000803e3d6000fd5b5050505050565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611e0c57506000610ccc565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611e4e57506001610ccc565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611e9057506002610ccc565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611ed257506003610ccc565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611f1457506004610ccc565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611c3f57506005610ccc565b6000610cc98260c0602061169e565b6000826001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b158015611fa057600080fd5b505afa158015611fb4573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611fd89190615a3c565b6000858152600a6020526040902054909150611ff5818385611608565b6000868152600a602052604090819020919091555185907fb77a83204ca282e08dc3a65b0a1ca32ea4e6875c38ef0bf5bf75e52a67354fac90612039908590615d26565b60405180910390a25050505050565b600061205f6000356001600160e01b03191661107d565b9050610be761206e82336131b5565b6101916116ad565b60008060008060008061208761329e565b9350935093509350804210156120da5760019450838311156120be5781810382420385850302816120b457fe5b04840195506120d5565b81810382420384860302816120cf57fe5b04840395505b6120e2565b600094508295505b505050509091565b60006120f982151560046116ad565b826121065750600061086a565b81600184038161211257fe5b04600101905061086a565b612129848484846132fd565b7f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf28484848460405161215e9493929190615e4c565b60405180910390a150505050565b610906612177611abc565b6101926116ad565b61219461218a61333c565b82101560cb6116ad565b6121a961219f613345565b82111560ca6116ad565b6008546121ba908260c0603f6115ca565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906121ed908390615d26565b60405180910390a150565b600082820161157f84821015836116ad565b801561222a5761222561221b611ad9565b42106101936116ad565b61223f565b61223f612235611afd565b42106101a96116ad565b6007805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906121ed908390615d03565b6000612287610bea565b90506000612293611147565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b81526004016122c0929190615dc7565b60806040518083038186803b1580156122d857600080fd5b505afa1580156122ec573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906123109190615a75565b604051630639cdb560e21b81529094506001600160a01b03851693506318e736d49250612344915085908790600401615dae565b600060405180830381600087803b15801561235e57600080fd5b505af1158015611317573d6000803e3d6000fd5b600854612381908260ff6115a3565b6008556040517feff3d4d215b42bf0960be9c6d5e05c22cba4df6627a3a523e2acee733b5854c8906123b4908390615d03565b60405180910390a180610be757610be7613351565b60006123d3611047565b8214156123e95750670de0b6b3a7640000610ccc565b6000828152600a6020526040902054801561240c576124078161298a565b61157f565b670de0b6b3a76400009392505050565b610ca081831460676116ad565b6000606061243a600088868661342b565b915091509850989650505050505050565b8151815161245a90829061241c565b60005b81811015610ad25761249584828151811061247457fe5b602002602001015184838151811061248857fe5b6020026020010151612830565b8482815181106124a157fe5b602090810291909101015260010161245d565b333014612572576000306001600160a01b03166000366040516124d8929190615ba8565b6000604051808303816000865af19150503d8060008114612515576040519150601f19603f3d011682016040523d82523d6000602084013e61251a565b606091505b50509050806000811461252957fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b8114612554573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b61257a6116bb565b6060612584611707565b90506125908782612917565b600060606125a88c8c8c8c8c8c898d8d63ffffffff16565b915091506125ba81848663ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b606060008060008060606125f0611147565b6001600160a01b031663f94d4668612606610bea565b6040518263ffffffff1660e01b81526004016126229190615d26565b60006040518083038186803b15801561263a57600080fd5b505afa15801561264e573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052612676919081019061556d565b5091505061268b81612686611707565b612917565b612694816134d9565b9650945060006126a2610c49565b909450905060006126b4888684613512565b945090506126c2878261359f565b95505050509091929394565b80516000908190815b8181101561270f576127058582815181106126ee57fe5b6020026020010151846121f890919063ffffffff16565b92506001016126d7565b50816127205760009250505061086a565b600082868302825b60ff811015612819578260005b868110156127765761276c61274a838761155b565b6127678c848151811061275957fe5b60200260200101518a61155b565b6135b7565b9150600101612735565b508394506127cf6127ae6127a861278d848a61155b565b6127a261279a888d61155b565b6103e86135b7565b906121f8565b8661155b565b6127676127be896001018561155b565b6127a261279a6103e889038a61155b565b9350848411156127f7576001858503116127f2578397505050505050505061086a565b612810565b600184860311612810578397505050505050505061086a565b50600101612728565b50612825610141612881565b505050505092915050565b600061283f82151560046116ad565b8261284c5750600061086a565b670de0b6b3a76400008381029061286f9085838161286657fe5b041460056116ad565b82818161287857fe5b0491505061086a565b610be7816210905360ea1b6135d7565b6000808251118015610cc9575060ff8016828060200190518101906128b69190615ab5565b60ff161492915050565b6109066128cb61124f565b6101b66116ad565b60006060600060606128e4876134d9565b91509150600060606128f7838589613638565b9150915081612907826000613664565b9550955050505050935093915050565b8151815161292690829061241c565b60005b81811015610ad25761296184828151811061294057fe5b602002602001015184838151811061295457fe5b6020026020010151612f77565b84828151811061296d57fe5b6020908102919091010152600101612929565b610ca08282613721565b6000610cc98282606061169e565b6000610cc98260608061169e565b6000806129b283611f56565b91506129c18360e0602061169e565b9050915091565b6000606061243a600188868661342b565b815181516129e890829061241c565b60005b81811015610ad257612a23848281518110612a0257fe5b6020026020010151848381518110612a1657fe5b60200260200101516137ed565b848281518110612a2f57fe5b60209081029190910101526001016129eb565b6000612a4c611147565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b158015612a8457600080fd5b505afa158015612a98573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107be9190615724565b6000610cc97f0000000000000000000000000000000000000000000000000000000000000000835b1c60019081161490565b60408051604180825260808201909252606091829190602082018180368337019050509050836020820152826040820152846060820153949350505050565b6000612b388561383b565b9050612b4e612b48878387613857565b836116ad565b612b5d428410156101b86116ad565b5050506001600160a01b039092166000908152600660205260409020805460010190555050565b600060606000612b9384613906565b9050612bae6000826003811115612ba657fe5b1460ce6116ad565b6060612bb98561391c565b9050612bc78151875161241c565b612bd18187612917565b6000612bdb612076565b5090506060612be983613932565b90506000612bf783836126ce565b9050806000612c146d8000000000000000000000000000836115f2565b9050612c208d82612c5d565b8086612c2a611047565b81518110612c3457fe5b602002602001018181525050612c4a8584613179565b509c939b50929950505050505050505050565b610ca082826139d4565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b612c9e818242426132fd565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516121ed9190615d26565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000612d3a613a61565b30604051602001612d4f959493929190615d82565b60405160208183030381529060405280519060200120905090565b600281511015612d7957610be7565b600081600081518110612d8857fe5b602002602001015190506000600190505b825181101561159e576000838281518110612db057fe5b60200260200101519050612dd9816001600160a01b0316846001600160a01b03161060656116ad565b9150600101612d99565b612df2610100831060646116ad565b612e1a600182101580156117005750612e1060ff8461010003611688565b82111560646116ad565b61159e83821c156101b46116ad565b61090661216c565b6000612e3b6116cb565b905060005b81811015610ca057612e5181613a65565b600101612e40565b600081612e8757507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160011415612eb757507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160021415612ee757507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160031415612f1757507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160041415612f4757507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160051415611c3f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b6000828202612f9184158061157857508385838161157557fe5b670de0b6b3a764000090049392505050565b6000612faf8583612917565b612fd08660600151838581518110612fc357fe5b6020026020010151613ab9565b60608701526000612fe387878787613ac5565b905061300281848781518110612ff557fe5b6020026020010151613ad9565b90506107a981613ae5565b600080808751600181111561301e57fe5b14905061302b8684612917565b61304b8760600151848361303f5786613041565b875b81518110612fc357fe5b876060018181525050600060606000806130648a613b01565b9350935093509350600080613077611047565b8a1461309d57613098878e60600151876130908e613b6a565b888b89613b9f565b6130b8565b6130b8878e60600151876130b08f613b6a565b888b89613bd8565b915091506130c98486858985613bfc565b866130e3576130de828a8d81518110612ff557fe5b613100565b613100828a8c815181106130f357fe5b6020026020010151613c7c565b9d9c50505050505050505050505050565b60006131208660600151613c88565b606087015261312f8583612917565b6131438660600151838681518110612fc357fe5b6060870152600061315687878787613ca9565b90506107a9818486815181106130f357fe5b610be7613173611272565b82612c5d565b61318681600060e9611675565b6131938360e96017611675565b17600c55610ca0613cbd565b60006131ae84841115836116ad565b5050900390565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b6131d4611123565b6001600160a01b0316141580156131ef57506131ef83613cf3565b15613217576131fc611123565b6001600160a01b0316336001600160a01b031614905061086a565b61321f612a42565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161324e93929190615d2f565b60206040518083038186803b15801561326657600080fd5b505afa15801561327a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061147a9190615639565b6000806000806132bd6000604060095461169e9092919063ffffffff16565b6009549094506132cf9060408061169e565b6009549093506132e2906080604061169e565b6009549092506132f59060c0604061169e565b905090919293565b61330a8160c06040611675565b6133178360806040611675565b61332385604080611675565b6133308760006040611675565b17171760095550505050565b64e8d4a5100090565b67016345785d8a000090565b613359611d2a565b6060613363611147565b6001600160a01b031663f94d4668613379610bea565b6040518263ffffffff1660e01b81526004016133959190615d26565b60006040518083038186803b1580156133ad57600080fd5b505afa1580156133c1573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526133e9919081019061556d565b509150506133f981612686611707565b606061340482613932565b90506000613410612076565b509050600061341f82846126ce565b9050610ad28282613179565b600060606000606060008061343f89613b01565b93509350935093506152da8a61345757613cfe61345b565b613d935b905060006060613473868689878f8f8963ffffffff16565b915091506152da8d613487576115f261348b565b6121f85b9050613498878383613e11565b60006134a889858463ffffffff16565b90506134b78789888c85613bfc565b836134c3846000613664565b9a509a5050505050505050505094509492505050565b60006060613500836134e9611047565b815181106134f357fe5b6020026020010151613e7e565b61350984613932565b91509150915091565b60008060008060006135248888613e92565b925092509250600086841161353a57600061353e565b8684035b90506000848411613550576000613554565b8484035b9050600061356f6135656000610e03565b61177b8587612830565b9050600061358a6135806002610e03565b61177b8588612830565b919091019b939a509298505050505050505050565b600061157f6135ae848461155b565b61276784613f14565b60006135c682151560046116ad565b8183816135cf57fe5b049392505050565b62461bcd60e51b600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b60006060600061364784613f3a565b90506060613656878784613f50565b919791965090945050505050565b6060825160010167ffffffffffffffff8111801561368157600080fd5b506040519080825280602002602001820160405280156136ab578160200160208202803683370190505b50905060005b815181101561371a576136c2611047565b81146136f957836136d1611047565b82106136e057600182036136e2565b815b815181106136ec57fe5b60200260200101516136fb565b825b82828151811061370757fe5b60209081029190910101526001016136b1565b5092915050565b6137386001600160a01b038316151561019b6116ad565b6137448260008361159e565b6001600160a01b03821660009081526020819052604090205461376a90826101b261319f565b6001600160a01b03831660009081526020819052604090205561379d6137988261379261092c565b90613fff565b61400d565b60006001600160a01b0316826001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516137e19190615d26565b60405180910390a35050565b60006137fc82151560046116ad565b826138095750600061086a565b670de0b6b3a7640000838102906138239085838161286657fe5b82600182038161382f57fe5b0460010191505061086a565b6000613845612ccd565b826040516020016110b2929190615bb8565b600061386982516041146101b96116ad565b60208281015160408085015160608601518251600080825295019283905292939092811a916001906138a2908990859088908890615dde565b6020604051602081039080840390855afa1580156138c4573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116158015906138fa5750876001600160a01b0316816001600160a01b0316145b98975050505050505050565b600081806020019051810190610cc9919061584f565b60608180602001905181019061157f919061586a565b606080600183510367ffffffffffffffff8111801561395057600080fd5b5060405190808252806020026020018201604052801561397a578160200160208202803683370190505b50905060005b815181101561371a5783613992611047565b82106139a157816001016139a3565b815b815181106139ad57fe5b60200260200101518282815181106139c157fe5b6020908102919091010152600101613980565b6139e06000838361159e565b6139ef613798826127a261092c565b6001600160a01b038216600090815260208190526040902054613a1290826121f8565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906137e1908590615d26565b4690565b613a6d611047565b811415613a7957610be7565b6000818152600a60205260409020548015610ca057600080613a9a836129a6565b9150915080421115610ad257610ad284613ab386611b21565b84611f65565b600061157f8383612f77565b60006117f060008660600151868686614012565b600061157f83836137ed565b6000610cc9613afa613af5610d32565b613f14565b83906137ed565b60006060600080600080613b13610c49565b91509150600060606000613b288a8686614084565b9250925092506000613b38612076565b5090506000868214613b5357613b4e82856126ce565b613b55565b825b949c939b509099509297509095505050505050565b6000613b81613b77611047565b83141560646116ad565b613b89611047565b821061167157613b9a8260016115f2565b610cc9565b60008088613bba57613bb58888888888886140dc565b613bc8565b613bc88888888888886141b3565b9150915097509795505050505050565b60008088613bee57613bb5888888888888614214565b613bc888888888888861427a565b6000613c0886866126ce565b90506000613c168385612830565b90506000613c248683612f77565b905080831115613c72578083036000613c4e613c4883613c4384610e03565b61155b565b866135b7565b90508015613c6f576000613c62878361359f565b9050613c6d81613168565b505b50505b6113178884613179565b600061157f8383612830565b600080613c9d613c96610d32565b8490614329565b905061157f83826115f2565b60006117f060018660600151868686614012565b6000613cc76116cb565b905060005b81811015610ca057613cdd81614365565b15613ceb57613ceb81614394565b600101613ccc565b6000610cc9826143c2565b600060606000613d0d846143cd565b90506001816002811115613d1d57fe5b1415613d3b57613d3187878a8c89896143e3565b9250925050613d88565b6002816002811115613d4957fe5b1415613d5a57613d31878a86614442565b6000816002811115613d6857fe5b1415613d7b57613d3187878a8c88614460565b613d86610150612881565b505b965096945050505050565b600060606000613da284613906565b90506001816003811115613db257fe5b1415613dc657613d3187878a8c8989614501565b6003816003811115613dd457fe5b1415613de557613d31878a86614550565b6002816003811115613df357fe5b1415613e0657613d3187878a8c8861456e565b613d86610136612881565b82518251613e2090829061241c565b60005b81811015611dc157613e5f858281518110613e3a57fe5b6020026020010151858381518110613e4e57fe5b60200260200101518563ffffffff16565b858281518110613e6b57fe5b6020908102919091010152600101613e23565b6000610cc982613e8c61092c565b906115f2565b6000806000613eab84613ea68760016145e8565b6126ce565b9250613eb56146f1565b15613ece57613ec484866126ce565b9150819050613f0d565b613ed6614715565b15613eef57829150613ee884866126ce565b9050613f0d565b613efe84613ea68760006145e8565b9150613f0a84866126ce565b90505b9250925092565b6000670de0b6b3a76400008210613f2c576000610cc9565b50670de0b6b3a76400000390565b60008180602001905181019061157f9190615ad1565b60606000613f5e8385612830565b9050845167ffffffffffffffff81118015613f7857600080fd5b50604051908082528060200260200182016040528015613fa2578160200160208202803683370190505b50915060005b8551811015613ff657613fd782878381518110613fc157fe5b6020026020010151612f7790919063ffffffff16565b838281518110613fe357fe5b6020908102919091010152600101613fa8565b50509392505050565b600061157f8383600161319f565b600255565b6000606061401f85613932565b9050600061402c85613b6a565b9050600061403985613b6a565b90506000614045612076565b509050600061405482866126ce565b90508a156140765761406a828686868e86614739565b955050505050506117f0565b61406a828686868e866147c4565b600060606000806060614096886134d9565b915091506000806140a8838a8a613512565b9150915060006140b8858461359f565b905080156140c9576140c981613168565b9390930199919850919650945050505050565b6000806060875167ffffffffffffffff811180156140f957600080fd5b50604051908082528060200260200182016040528015614123578160200160208202803683370190505b5090508881888151811061413357fe5b6020026020010181815250506000614156878a848989614151610d32565b614857565b905061417e8a8a8a8151811061416857fe5b60200260200101516115f290919063ffffffff16565b89898151811061418a57fe5b602090810291909101015260006141a187836115f2565b919b919a509098505050505050505050565b60008060006141ce8689898c89896141c9610d32565b614ae7565b90506141e08189898151811061416857fe5b8888815181106141ec57fe5b60209081029190910101526000614203868b6115f2565b919a91995090975050505050505050565b600080600061422f8689898c898961422a610d32565b614bd6565b90506142578189898151811061424157fe5b60200260200101516121f890919063ffffffff16565b88888151811061426357fe5b60209081029190910101526000614203868b6121f8565b6000806060875167ffffffffffffffff8111801561429757600080fd5b506040519080825280602002602001820160405280156142c1578160200160208202803683370190505b509050888188815181106142d157fe5b60200260200101818152505060006142f4878a8489896142ef610d32565b614ca3565b90506143068a8a8a8151811061424157fe5b89898151811061431257fe5b602090810291909101015260006141a187836121f8565b600082820261434384158061157857508385838161157557fe5b8061435257600091505061086a565b670de0b6b3a7640000600019820161382f565b6000610cc97f000000000000000000000000000000000000000000000000000000000000000060068401612ae4565b6000818152600a60205260409020546143ac81611640565b6000928352600a60205260409092209190915550565b6000610cc982614f0d565b600081806020019051810190610cc9919061578e565b600060608060006143f385614f30565b915091506144038251885161241c565b6144108261268688613932565b60006144228989858e8e614151610d32565b90506144328282111560cf6116ad565b9a91995090975050505050505050565b60006060600061445184614f53565b90506060613656868884613f50565b6000606060008061447085614f69565b915091506144828651821060646116ad565b6060865167ffffffffffffffff8111801561449c57600080fd5b506040519080825280602002602001820160405280156144c6578160200160208202803683370190505b5090506144da888884868e8e6141c9610d32565b8183815181106144e657fe5b60209081029190910101529199919850909650505050505050565b6000606080600061451185614f80565b915091506145218751835161241c565b61452e8261268688613932565b60006145408989858e8e6142ef610d32565b90506144328282101560d06116ad565b60006060600061455f84614f98565b90506060613656868389614fae565b6000606060008061457e8561504a565b915091506145908651821060646116ad565b6060865167ffffffffffffffff811180156145aa57600080fd5b506040519080825280602002602001820160405280156145d4578160200160208202803683370190505b5090506144da888884868e8e61422a610d32565b8151606090818167ffffffffffffffff8111801561460557600080fd5b5060405190808252806020026020018201604052801561462f578160200160208202803683370190505b50905060005b828110156146e8576000614647611047565b8210156146545781614659565b816001015b905061466481612abc565b8061467b575085801561467b575061467b81614365565b6146985786828151811061468b57fe5b60200260200101516146c8565b6146c88783815181106146a757fe5b6020026020010151600a600084815260200190815260200160002054615061565b8383815181106146d457fe5b602090810291909101015250600101614635565b50949350505050565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b600061474b8387878151811061424157fe5b86868151811061475757fe5b60200260200101818152505060006147718888858861507c565b90508387878151811061478057fe5b60200260200101510387878151811061479557fe5b6020026020010181815250506147b66001613e8c838a898151811061416857fe5b9150505b9695505050505050565b60006147d68387868151811061416857fe5b8685815181106147e257fe5b60200260200101818152505060006147fc8888858961507c565b90508387868151811061480b57fe5b60200260200101510187868151811061482057fe5b6020026020010181815250506147b660016127a289898151811061484057fe5b6020026020010151846115f290919063ffffffff16565b600080805b87518110156148955761488b88828151811061487457fe5b6020026020010151836121f890919063ffffffff16565b915060010161485c565b506060865167ffffffffffffffff811180156148b057600080fd5b506040519080825280602002602001820160405280156148da578160200160208202803683370190505b5090506000805b89518110156149a7576000614912858c84815181106148fc57fe5b60200260200101516137ed90919063ffffffff16565b90506149548b838151811061492357fe5b602002602001015161494e8c858151811061493a57fe5b60200260200101518e868151811061416857fe5b906137ed565b84838151811061496057fe5b60200260200101818152505061499c6149958286858151811061497f57fe5b602002602001015161432990919063ffffffff16565b84906121f8565b9250506001016148e1565b506060895167ffffffffffffffff811180156149c257600080fd5b506040519080825280602002602001820160405280156149ec578160200160208202803683370190505b50905060005b8a51811015614ab7576000848281518110614a0957fe5b6020026020010151841115614a70576000614a32614a2686613f14565b8e8581518110613fc157fe5b90506000614a46828e868151811061416857fe5b9050614a67614a6082670de0b6b3a76400008d90036137ed565b83906121f8565b92505050614a87565b8a8281518110614a7c57fe5b602002602001015190505b614a97818d848151811061416857fe5b838381518110614aa357fe5b6020908102919091010152506001016149f2565b506000614ac48c836126ce565b90506000614ad2828a612830565b9050613100614ae082613f14565b8b90614329565b600080614b0284614afc8761494e818b6115f2565b90614329565b90506000614b128a8a848b61507c565b90506000614b26828b8b8151811061416857fe5b90506000805b8b51811015614b4e57614b448c828151811061487457fe5b9150600101614b2c565b506000614b77828d8d81518110614b6157fe5b602002602001015161283090919063ffffffff16565b90506000614b8482613f14565b90506000614b928583614329565b90506000614ba086836115f2565b9050614bc1614bba83670de0b6b3a76400008d9003612f77565b82906121f8565b98505050505050505050979650505050505050565b600080614beb84614afc8761494e818b6121f8565b90506000614bfb8a8a848b61507c565b90506000614c258a8a81518110614c0e57fe5b6020026020010151836115f290919063ffffffff16565b90506000805b8b51811015614c4d57614c438c828151811061487457fe5b9150600101614c2b565b506000614c60828d8d81518110614b6157fe5b90506000614c6d82613f14565b90506000614c7b8583614329565b90506000614c8986836115f2565b9050614bc1614bba83670de0b6b3a76400008d90036137ed565b600080805b8751811015614cca57614cc088828151811061487457fe5b9150600101614ca8565b506060865167ffffffffffffffff81118015614ce557600080fd5b50604051908082528060200260200182016040528015614d0f578160200160208202803683370190505b5090506000805b8951811015614da9576000614d31858c8481518110614b6157fe5b9050614d738b8381518110614d4257fe5b6020026020010151614d6d8c8581518110614d5957fe5b60200260200101518e868151811061424157fe5b90612830565b848381518110614d7f57fe5b602002602001018181525050614d9e61499582868581518110613fc157fe5b925050600101614d16565b506060895167ffffffffffffffff81118015614dc457600080fd5b50604051908082528060200260200182016040528015614dee578160200160208202803683370190505b50905060005b8a51811015614eaf57600083858381518110614e0c57fe5b60200260200101511115614e68576000614e31614a2686670de0b6b3a76400006115f2565b90506000614e45828e868151811061416857fe5b9050614e5f614a6082670de0b6b3a76400008d9003612f77565b92505050614e7f565b8a8281518110614e7457fe5b602002602001015190505b614e8f818d848151811061424157fe5b838381518110614e9b57fe5b602090810291909101015250600101614df4565b506000614ebc8c836126ce565b90506000614eca828a612830565b9050670de0b6b3a7640000811115614efe57614ef18a670de0b6b3a763ffff198301612f77565b96505050505050506147ba565b600096505050505050506147ba565b6000614f1f63f4b7964d60e01b61107d565b821480610cc95750610cc982615239565b6060600082806020019051810190614f4891906157a9565b909590945092505050565b60008180602001905181019061157f91906157ee565b60008082806020019051810190614f48919061581a565b6060600082806020019051810190614f4891906158ad565b60008180602001905181019061157f91906158cb565b60606000614fbc84846137ed565b90506060855167ffffffffffffffff81118015614fd857600080fd5b50604051908082528060200260200182016040528015615002578160200160208202803683370190505b50905060005b8651811015615040576150218388838151811061497f57fe5b82828151811061502d57fe5b6020908102919091010152600101615008565b5095945050505050565b60008082806020019051810190614f4891906158e7565b600061157f61507384613c4385612998565b6127678461298a565b60008084518602905060008560008151811061509457fe5b6020026020010151905060008651876000815181106150af57fe5b60200260200101510290506000600190505b8751811015615115576150fa6150f46150ed848b85815181106150e057fe5b602002602001015161155b565b8a5161155b565b886135b7565b915061510b8882815181106126ee57fe5b92506001016150c1565b5086858151811061512257fe5b602002602001015182039150600061513a878861155b565b9050600061516661515a61515284610b70898861155b565b6103e861155b565b8a89815181106150e057fe5b9050600061518161517a6151528b896135b7565b86906121f8565b905060008061519d61519386866121f8565b610b708d866121f8565b905060005b60ff81101561521d578192506151d26151bf866127a2858661155b565b610b708e613e8c886127a288600261155b565b9150828211156151fb576001838303116151f6575097506115ea9650505050505050565b615215565b600182840311615215575097506115ea9650505050505050565b6001016151a2565b50615229610142612881565b5050505050505050949350505050565b600061524b632f1a0bc960e01b61107d565b8214806152665750615263637587926b60e11b61107d565b82145b80610cc95750610cc9826000615282631c74c91760e11b61107d565b82148061529d575061529a6350dd6ed960e01b61107d565b82145b80610cc957506000610cc9565b6040805160a081019091528060008152600060208201819052604082018190526060820181905260809091015290565bfe5b803561086a81615ebc565b600082601f8301126152f7578081fd5b813561530a61530582615e9c565b615e75565b81815291506020808301908481018184028601820187101561532b57600080fd5b60005b848110156128255781358452928201929082019060010161532e565b600082601f83011261535a578081fd5b815161536861530582615e9c565b81815291506020808301908481018184028601820187101561538957600080fd5b60005b848110156128255781518452928201929082019060010161538c565b600082601f8301126153b8578081fd5b813567ffffffffffffffff8111156153ce578182fd5b6153e1601f8201601f1916602001615e75565b91508082528360208285010111156153f857600080fd5b8060208401602084013760009082016020015292915050565b80516003811061086a57600080fd5b80516004811061086a57600080fd5b80356002811061086a57600080fd5b60006020828403121561544f578081fd5b813561157f81615ebc565b6000806040838503121561546c578081fd5b823561547781615ebc565b9150602083013561548781615ebc565b809150509250929050565b6000806000606084860312156154a6578081fd5b83356154b181615ebc565b925060208401356154c181615ebc565b929592945050506040919091013590565b600080600080600080600060e0888a0312156154ec578283fd5b87356154f781615ebc565b9650602088013561550781615ebc565b95506040880135945060608801359350608088013561552581615ed1565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215615554578182fd5b823561555f81615ebc565b946020939093013593505050565b600080600060608486031215615581578081fd5b835167ffffffffffffffff80821115615598578283fd5b818601915086601f8301126155ab578283fd5b81516155b961530582615e9c565b80828252602080830192508086018b8283870289010111156155d9578788fd5b8796505b848710156156045780516155f081615ebc565b8452600196909601959281019281016155dd565b50890151909750935050508082111561561b578283fd5b506156288682870161534a565b925050604084015190509250925092565b60006020828403121561564a578081fd5b8151801515811461157f578182fd5b600080600080600080600060e0888a031215615673578081fd5b87359650602088013561568581615ebc565b9550604088013561569581615ebc565b9450606088013567ffffffffffffffff808211156156b1578283fd5b6156bd8b838c016152e7565b955060808a0135945060a08a0135935060c08a01359150808211156156e0578283fd5b506156ed8a828b016153a8565b91505092959891949750929550565b60006020828403121561570d578081fd5b81356001600160e01b03198116811461157f578182fd5b600060208284031215615735578081fd5b815161157f81615ebc565b60008060408385031215615752578182fd5b823561575d81615ebc565b9150602083013567ffffffffffffffff811115615778578182fd5b615784858286016153a8565b9150509250929050565b60006020828403121561579f578081fd5b61157f8383615411565b6000806000606084860312156157bd578081fd5b6157c78585615411565b9250602084015167ffffffffffffffff8111156157e2578182fd5b6156288682870161534a565b60008060408385031215615800578182fd5b61580a8484615411565b9150602083015190509250929050565b60008060006060848603121561582e578081fd5b6158388585615411565b925060208401519150604084015190509250925092565b600060208284031215615860578081fd5b61157f8383615420565b6000806040838503121561587c578182fd5b6158868484615420565b9150602083015167ffffffffffffffff8111156158a1578182fd5b6157848582860161534a565b6000806000606084860312156158c1578081fd5b6157c78585615420565b600080604083850312156158dd578182fd5b61580a8484615420565b6000806000606084860312156158fb578081fd5b6158388585615420565b6000806000806080858703121561591a578182fd5b843567ffffffffffffffff80821115615931578384fd5b818701915061012080838a031215615947578485fd5b61595081615e75565b905061595c898461542f565b815261596b89602085016152dc565b602082015261597d89604085016152dc565b6040820152606083013560608201526080830135608082015260a083013560a08201526159ad8960c085016152dc565b60c08201526159bf8960e085016152dc565b60e082015261010080840135838111156159d7578687fd5b6159e38b8287016153a8565b828401525050809650506020870135915080821115615a00578384fd5b50615a0d878288016152e7565b949794965050505060408301359260600135919050565b600060208284031215615a35578081fd5b5035919050565b600060208284031215615a4d578081fd5b5051919050565b60008060408385031215615a66578182fd5b50508035926020909101359150565b60008060008060808587031215615a8a578182fd5b8451935060208501519250604085015191506060850151615aaa81615ebc565b939692955090935050565b600060208284031215615ac6578081fd5b815161157f81615ed1565b60008060408385031215615ae3578182fd5b8251615aee81615ed1565b6020939093015192949293505050565b6001600160a01b03169052565b6000815180845260208085019450808401835b83811015615b3a57815187529582019590820190600101615b1e565b509495945050505050565b60008151808452815b81811015615b6a57602081850181015186830182015201615b4e565b81811115615b7b5782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b81811015615c285783516001600160a01b031683529284019291840191600101615c03565b50909695505050505050565b602080825282518282018190526000919060409081850190868401855b82811015615cbe578151805160048110615c6757fe5b855280870151615c7988870182615afe565b508581015186860152606080820151615c9482880182615afe565b505060809081015190615ca986820183615afe565b505060a0939093019290850190600101615c51565b5091979650505050505050565b60006020825261157f6020830184615b0b565b600060408252615cf16040830185615b0b565b82810360208401526117f08185615b0b565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526115ea6040830184615b45565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b60006020825261157f6020830184615b45565b6000838252604060208301526115ea6040830184615b0b565b9283529015156020830152604082015260600190565b918252602082015260400190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b60405181810167ffffffffffffffff81118282101715615e9457600080fd5b604052919050565b600067ffffffffffffffff821115615eb2578081fd5b5060209081020190565b6001600160a01b0381168114610be757600080fd5b60ff81168114610be757600080fdfea2646970667358221220b1e5ec4de2ef1abf9e959c7f4391d7d01e93ab6b319e2acf4aba7247f67b09a664736f6c634300070100336bfb689528fa96ec1ad670ad6d6064be1ae96bfd5d2ee35c837fd0fe0c11959a0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c800000000000000000000000097207b095e4d5c9a6e4cfbfcd2c3358e03b90c4a00000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000220000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c0000000000000000000000000000000000000000000000000000000000000032000000000000000000000000000000000000000000000000000000000000003800000000000000000000000000000000000000000000000000000000000000064000000000000000000000000000000000000000000000000000000e8d4a5100000000000000000000000000000000000000000000000000000000000007687ec0000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000003e00000000000000000000000000000000000000000000000000000000000000028444f204e4f5420555345202d204d6f636b20436f6d706f7361626c6520537461626c6520506f6f6c000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000454455354000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000ba100000625a3754423978a60c9317c58a424e3d000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000005d7b226e616d65223a22436f6d706f7361626c65537461626c65506f6f6c222c2276657273696f6e223a332c226465706c6f796d656e74223a2232303233303230362d636f6d706f7361626c652d737461626c652d706f6f6c2d7633227d000000

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106103785760003560e01c806370464016116101d3578063a457c2d711610104578063d505accf116100a2578063ddf4627b1161007c578063ddf4627b146106e3578063eb0f24d6146106eb578063ed24911d146106f3578063f4b7964d146106fb57610378565b8063d505accf146106aa578063d5c096c4146106bd578063dd62ed3e146106d057610378565b8063ab7759f1116100de578063ab7759f11461067f578063b35056b814610692578063b7b814fc1461069a578063d2946c2b146106a257610378565b8063a457c2d714610651578063a9059cbb14610664578063aaabadc51461067757610378565b8063851c1bb311610171578063893d20e81161014b578063893d20e8146106195780638d928af81461062e57806390193b7c1461063657806395d89b411461064957610378565b8063851c1bb3146105eb578063876f303b146105fe57806387ec68171461060657610378565b80637ecebe00116101ad5780637ecebe00146105a55780637f1260d1146105b857806382687a56146105db5780638456cb59146105e357610378565b8063704640161461055e57806370a082311461057157806374f3b0091461058457610378565b80633644e515116102ad57806354a844ba1161024b57806355c676281161022557806355c67628146105165780636028bfd41461051e578063679aefce1461053f5780636daccffa1461054757610378565b806354a844ba146104f357806354dea00a146104fb57806354fd4d501461050e57610378565b8063395093511161028757806339509351146104af5780633c975d51146104c25780633f4ba83a146104d857806350dd6ed9146104e057610378565b80633644e5151461048c57806338e9922e1461049457806338fff2d0146104a757610378565b80631c0de0511161031a57806323b872dd116102f457806323b872dd1461043e5780632df2c7c0146104515780632f1a0bc914610464578063313ce5671461047757610378565b80631c0de051146103fd5780631dd746ea14610414578063238a2d591461042957610378565b8063095ea7b311610356578063095ea7b3146103c35780630da0669c146103e357806315b0015b146103ed57806318160ddd146103f557610378565b806301ec954a1461037d57806304842d4c146103a657806306fdde03146103ae575b600080fd5b61039061038b366004615905565b61070e565b60405161039d9190615d26565b60405180910390f35b6103906107b4565b6103b66107c3565b60405161039d9190615dfc565b6103d66103d1366004615542565b610859565b60405161039d9190615d03565b6103eb610870565b005b6103d6610908565b61039061092c565b610405610932565b60405161039d93929190615d0e565b61041c61095b565b60405161039d9190615ccb565b610431610965565b60405161039d9190615be7565b6103d661044c366004615492565b610a00565b6103eb61045f36600461543e565b610a74565b6103eb610472366004615a54565b610ad8565b61047f610bbb565b60405161039d9190615e67565b610390610bc4565b6103eb6104a2366004615a24565b610bce565b610390610bea565b6103d66104bd366004615542565b610c0e565b6104ca610c49565b60405161039d929190615e3e565b6103eb610c74565b6103eb6104ee366004615740565b610c86565b6103eb610ca4565b61039061050936600461543e565b610cb6565b6103b6610cd1565b610390610d32565b61053161052c366004615659565b610d45565b60405161039d929190615e0f565b610390610d7c565b61054f610de8565b60405161039d93929190615e28565b61039061056c366004615a24565b610e03565b61039061057f36600461543e565b610ebc565b610597610592366004615659565b610ed7565b60405161039d929190615cde565b6103906105b336600461543e565b610fda565b6105cb6105c636600461543e565b610fe5565b60405161039d9493929190615e4c565b610390611047565b6103eb61106b565b6103906105f93660046156fc565b61107d565b6103906110cf565b610531610614366004615659565b6110fd565b610621611123565b60405161039d9190615bd3565b610621611147565b61039061064436600461543e565b61116b565b6103b6611186565b6103d661065f366004615542565b6111e7565b6103d6610672366004615542565b611225565b610621611232565b6103d661068d36600461543e565b61123c565b6103d661124f565b6103eb611260565b610621611272565b6103eb6106b83660046154d2565b611296565b6105976106cb366004615659565b611321565b6103906106de36600461545a565b611444565b610390611481565b6103eb611487565b6103906114b3565b6103eb610709366004615542565b6114bd565b6000846080015161073b610720611147565b6001600160a01b0316336001600160a01b03161460cd6116ad565b610750610746610bea565b82146101f46116ad565b6107586116bb565b61076a84846107656116cb565b6116ef565b6060610774611707565b905060008751600181111561078557fe5b1461079c5761079787878787856117a0565b6107a9565b6107a987878787856117f9565b979650505050505050565b60006107be611834565b905090565b60038054604080516020601f600260001961010060018816150201909516949094049384018190048102820181019092528281526060939092909183018282801561084f5780601f106108245761010080835404028352916020019161084f565b820191906000526020600020905b81548152906001019060200180831161083257829003601f168201915b5050505050905090565b600061086633848461183b565b5060015b92915050565b6108786118a3565b610880610908565b156108b0576108b07f00000000000000000000000097207b095e4d5c9a6e4cfbfcd2c3358e03b90c4a6000611918565b6108db7f00000000000000000000000097207b095e4d5c9a6e4cfbfcd2c3358e03b90c4a6002611918565b6109067f00000000000000000000000097207b095e4d5c9a6e4cfbfcd2c3358e03b90c4a6003611918565b565b7f000000000000000000000000000000000000000000000000000000000000000190565b60025490565b600080600061093f611abc565b15925061094a611ad9565b9150610954611afd565b9050909192565b60606107be611707565b606060006109716116cb565b905060608167ffffffffffffffff8111801561098c57600080fd5b506040519080825280602002602001820160405280156109b6578160200160208202803683370190505b50905060005b828110156109f9576109cd81611b21565b8282815181106109d957fe5b6001600160a01b03909216602092830291909101909101526001016109bc565b5091505090565b600080610a0d8533611444565b9050610a31336001600160a01b0387161480610a295750838210155b61019e6116ad565b610a3c858585611c4a565b336001600160a01b03861614801590610a5757506000198114155b15610a6957610a69853385840361183b565b506001949350505050565b610a7c611d2a565b6000610a8782611dc8565b90506000610a9482611b21565b9050610aad6001600160a01b03821615156101556116ad565b6000828152600a6020526040812054610ac590611f56565b9050610ad2838383611f65565b50505050565b610ae0612048565b610af0600183101561012c6116ad565b610b0161138883111561012d6116ad565b6000610b0d82426115f2565b9050610b216201518082101561013d6116ad565b600080610b2c612076565b91509150610b3d811561013e6116ad565b6000610b4b866103e861155b565b90506000838211610b7a57610b75610b66620151808661155b565b610b70848861155b565b6120ea565b610b94565b610b94610b8a620151808461155b565b610b70868861155b565b9050610ba6600282111561013f6116ad565b610bb28483428961211d565b50505050505050565b60055460ff1690565b60006107be6114b3565b610bd6612048565b610bde61216c565b610be78161217f565b50565b7f222bc81c6f3c17e9e9aba47a12f55a1dea42f16300000000000000000000045e90565b3360008181526001602090815260408083206001600160a01b03871684529091528120549091610866918590610c4490866121f8565b61183b565b600c546000908190610c5e8160e9601761169e565b9250610c6d81600060e961169e565b9150509091565b610c7c612048565b610906600061220a565b610c8e612048565b610c9661216c565b610ca0828261227d565b5050565b610cac612048565b6109066001612372565b6000610cc9610cc483611dc8565b6123c9565b90505b919050565b600d8054604080516020601f600260001961010060018816150201909516949094049384018190048102820181019092528281526060939092909183018282801561084f5780601f106108245761010080835404028352916020019161084f565b6008546000906107be9060c0603f61169e565b60006060610d5b8651610d566116cb565b61241c565b610d708989898989898961242961244b6124b4565b97509795505050505050565b60006060600080600080610d8e6125de565b9398509196509450925090506000610da685856121f8565b90506000610db2612076565b5090506000848214610dcd57610dc882896126ce565b610dcf565b835b9050610ddb8184612830565b9850505050505050505090565b6000806000610df5612076565b90949093506103e892509050565b6000610e0d61124f565b15610e1a57506000610ccc565b81610e6657610e27610908565b610e51577f0000000000000000000000000000000000000000000000000000000000000000610e5f565b600b5467ffffffffffffffff165b9050610ccc565b6002821415610e8e5750600b5468010000000000000000900467ffffffffffffffff16610ccc565b6003821415610eb15750600b54600160801b900467ffffffffffffffff16610ccc565b610ccc6101bb612881565b6001600160a01b031660009081526020819052604090205490565b60608088610ee6610720611147565b610ef1610746610bea565b60606000610efe86612891565b15610f2657610f0b6128c0565b610f1d89610f1761092c565b886128d3565b92509050610f78565b610f2e6116bb565b6060610f38611707565b9050610f448a82612917565b610f688d8d8d8d8d610f5461124f565b610f5e578d610f61565b60005b878e612429565b93509150610f76838261244b565b505b610f828b82612980565b81895167ffffffffffffffff81118015610f9b57600080fd5b50604051908082528060200260200182016040528015610fc5578160200160208202803683370190505b509450945050505b5097509795505050505050565b6000610cc98261116b565b6000806000806000600a6000610ffa88611dc8565b8152602081019190915260400160002054905061101b8115156101556116ad565b6110248161298a565b945061102f81612998565b935061103a816129a6565b9597949650949392505050565b7f000000000000000000000000000000000000000000000000000000000000000090565b611073612048565b610906600161220a565b60007f000000000000000000000000dba127fbc23fb20f5929c546af220a991b5c6e01826040516020016110b2929190615b90565b604051602081830303815290604052805190602001209050919050565b60008060006110dc6125de565b505092509250506110f681836121f890919063ffffffff16565b9250505090565b6000606061110e8651610d566116cb565b610d70898989898989896129c86129d96124b4565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b6001600160a01b031660009081526006602052604090205490565b60048054604080516020601f600260001961010060018816150201909516949094049384018190048102820181019092528281526060939092909183018282801561084f5780601f106108245761010080835404028352916020019161084f565b6000806111f43385611444565b905080831061120e576112093385600061183b565b61121b565b61121b338585840361183b565b5060019392505050565b6000610866338484611c4a565b60006107be612a42565b6000610cc961124a83611dc8565b612abc565b6008546000906107be9060ff612ae4565b611268612048565b6109066000612372565b7f000000000000000000000000ce88686553686da562ce7cea497ce749da109f9f90565b60007f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886112c58c61116b565b896040516020016112db96959493929190615d4e565b60405160208183030381529060405280519060200120905061130c8882611303878787612aee565b886101f8612b2d565b61131788888861183b565b5050505050505050565b60608088611330610720611147565b61133b610746610bea565b6113436116bb565b606061134d611707565b905061135761092c565b611404576000606061136c8d8d8d868b612b84565b9150915061138561137b611834565b83101560cc6116ad565b6113976000611392611834565b612c5d565b6113aa8b6113a3611834565b8403612c5d565b6113b481846129d9565b808a5167ffffffffffffffff811180156113cd57600080fd5b506040519080825280602002602001820160405280156113f7578160200160208202803683370190505b5095509550505050610fcd565b61140e8882612917565b600060606114368d8d8d8d8d61142261124f565b61142c578d61142f565b60005b898e6129c8565b915091506113aa8b83612c5d565b600061144e611147565b6001600160a01b0316826001600160a01b03161415611470575060001961086a565b61147a8383612c67565b905061086a565b60001981565b61148f612048565b60008061149a612076565b915091506114aa816101406116ad565b610ca082612c92565b60006107be612ccd565b6114c5612048565b6114cd611d2a565b60006114d883611dc8565b905060006114e582611b21565b90506114fe6001600160a01b03821615156101556116ad565b611509828285611f65565b806001600160a01b0316827fdd6d1c9badb346de6925b358a472c937b41698d2632696759e43fd6527feeec4856040516115439190615d26565b60405180910390a350505050565b80610ca081612d6a565b600082820261157f84158061157857508385838161157557fe5b04145b60036116ad565b9392505050565b61159e828414801561159757508183145b60676116ad565b505050565b60006001821b19841682846115b95760006115bc565b60015b60ff16901b17949350505050565b60006115d7848484612de3565b5082821b6000196001831b01831b198516175b949350505050565b60006116028383111560016116ad565b50900390565b600061161b606084901c156101496116ad565b6115ea42830160e060206116388660c083838c8c600060606115ca565b9291906115ca565b6000610cc961164e8361298a565b83906060806115ca565b600061167167ffffffffffffffff8311156101ba6116ad565b5090565b6000611682848484612de3565b50501b90565b6000818310611697578161157f565b5090919050565b6001901b6000190191901c1690565b81610ca057610ca081612881565b6116c3612e29565b610906612e31565b7f000000000000000000000000000000000000000000000000000000000000000390565b61159e818410801561170057508183105b60646116ad565b606060006117136116cb565b905060608167ffffffffffffffff8111801561172e57600080fd5b50604051908082528060200260200182016040528015611758578160200160208202803683370190505b50905060005b828110156109f957611781611772826123c9565b61177b83612e59565b90612f77565b82828151811061178d57fe5b602090810291909101015260010161175e565b60208501516000906001600160a01b03163014806117ca575060408601516001600160a01b031630145b6117e0576117db8686868686612fa3565b6117ed565b6117ed868686868661300d565b90505b95945050505050565b60208501516000906001600160a01b0316301480611823575060408601516001600160a01b031630145b6117e0576117db8686868686613111565b620f424090565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590611896908590615d26565b60405180910390a3505050565b6118ab611d2a565b6118b361216c565b606060008060006118c26125de565b94509450945050935060008311156118dd576118dd83613168565b60006118e7612076565b5090506000838214611902576118fd82876126ce565b611904565b825b90506119108282613179565b505050505050565b604051631a7c326360e01b81526000906001600160a01b03841690631a7c326390611947908590600401615d26565b60206040518083038186803b15801561195f57600080fd5b505afa158015611973573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906119979190615a3c565b9050816119ce576119a781611658565b600b805467ffffffffffffffff191667ffffffffffffffff92909216919091179055611a7f565b6002821415611a1c576119e081611658565b600b805467ffffffffffffffff9290921668010000000000000000026fffffffffffffffff000000000000000019909216919091179055611a7f565b6003821415611a7457611a2e81611658565b600b805467ffffffffffffffff92909216600160801b027fffffffffffffffff0000000000000000ffffffffffffffffffffffffffffffff909216919091179055611a7f565b611a7f6101bb612881565b817f6bfb689528fa96ec1ad670ad6d6064be1ae96bfd5d2ee35c837fd0fe0c11959a82604051611aaf9190615d26565b60405180910390a2505050565b6000611ac6611afd565b4211806107be57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000006459a76f90565b7f000000000000000000000000000000000000000000000000000000006481346f90565b600081611b4f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160011415611b7f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160021415611baf57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160031415611bdf57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160041415611c0f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160051415611c3f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b610ccc610135612881565b611c616001600160a01b03841615156101986116ad565b611c786001600160a01b03831615156101996116ad565b611c8383838361159e565b6001600160a01b038316600090815260208190526040902054611ca990826101a061319f565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611cd890826121f8565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90611896908590615d26565b60408051600080825260208201909252606091611d5d565b611d4a6152aa565b815260200190600190039081611d425790505b509050611d68611147565b6001600160a01b0316630e8e3e84826040518263ffffffff1660e01b8152600401611d939190615c34565b600060405180830381600087803b158015611dad57600080fd5b505af1158015611dc1573d6000803e3d6000fd5b5050505050565b60007f000000000000000000000000222bc81c6f3c17e9e9aba47a12f55a1dea42f1636001600160a01b0316826001600160a01b03161415611e0c57506000610ccc565b7f000000000000000000000000ba100000625a3754423978a60c9317c58a424e3d6001600160a01b0316826001600160a01b03161415611e4e57506001610ccc565b7f000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc26001600160a01b0316826001600160a01b03161415611e9057506002610ccc565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611ed257506003610ccc565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611f1457506004610ccc565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611c3f57506005610ccc565b6000610cc98260c0602061169e565b6000826001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b158015611fa057600080fd5b505afa158015611fb4573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611fd89190615a3c565b6000858152600a6020526040902054909150611ff5818385611608565b6000868152600a602052604090819020919091555185907fb77a83204ca282e08dc3a65b0a1ca32ea4e6875c38ef0bf5bf75e52a67354fac90612039908590615d26565b60405180910390a25050505050565b600061205f6000356001600160e01b03191661107d565b9050610be761206e82336131b5565b6101916116ad565b60008060008060008061208761329e565b9350935093509350804210156120da5760019450838311156120be5781810382420385850302816120b457fe5b04840195506120d5565b81810382420384860302816120cf57fe5b04840395505b6120e2565b600094508295505b505050509091565b60006120f982151560046116ad565b826121065750600061086a565b81600184038161211257fe5b04600101905061086a565b612129848484846132fd565b7f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf28484848460405161215e9493929190615e4c565b60405180910390a150505050565b610906612177611abc565b6101926116ad565b61219461218a61333c565b82101560cb6116ad565b6121a961219f613345565b82111560ca6116ad565b6008546121ba908260c0603f6115ca565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906121ed908390615d26565b60405180910390a150565b600082820161157f84821015836116ad565b801561222a5761222561221b611ad9565b42106101936116ad565b61223f565b61223f612235611afd565b42106101a96116ad565b6007805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be64906121ed908390615d03565b6000612287610bea565b90506000612293611147565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b81526004016122c0929190615dc7565b60806040518083038186803b1580156122d857600080fd5b505afa1580156122ec573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906123109190615a75565b604051630639cdb560e21b81529094506001600160a01b03851693506318e736d49250612344915085908790600401615dae565b600060405180830381600087803b15801561235e57600080fd5b505af1158015611317573d6000803e3d6000fd5b600854612381908260ff6115a3565b6008556040517feff3d4d215b42bf0960be9c6d5e05c22cba4df6627a3a523e2acee733b5854c8906123b4908390615d03565b60405180910390a180610be757610be7613351565b60006123d3611047565b8214156123e95750670de0b6b3a7640000610ccc565b6000828152600a6020526040902054801561240c576124078161298a565b61157f565b670de0b6b3a76400009392505050565b610ca081831460676116ad565b6000606061243a600088868661342b565b915091509850989650505050505050565b8151815161245a90829061241c565b60005b81811015610ad25761249584828151811061247457fe5b602002602001015184838151811061248857fe5b6020026020010151612830565b8482815181106124a157fe5b602090810291909101015260010161245d565b333014612572576000306001600160a01b03166000366040516124d8929190615ba8565b6000604051808303816000865af19150503d8060008114612515576040519150601f19603f3d011682016040523d82523d6000602084013e61251a565b606091505b50509050806000811461252957fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b8114612554573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b61257a6116bb565b6060612584611707565b90506125908782612917565b600060606125a88c8c8c8c8c8c898d8d63ffffffff16565b915091506125ba81848663ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b606060008060008060606125f0611147565b6001600160a01b031663f94d4668612606610bea565b6040518263ffffffff1660e01b81526004016126229190615d26565b60006040518083038186803b15801561263a57600080fd5b505afa15801561264e573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052612676919081019061556d565b5091505061268b81612686611707565b612917565b612694816134d9565b9650945060006126a2610c49565b909450905060006126b4888684613512565b945090506126c2878261359f565b95505050509091929394565b80516000908190815b8181101561270f576127058582815181106126ee57fe5b6020026020010151846121f890919063ffffffff16565b92506001016126d7565b50816127205760009250505061086a565b600082868302825b60ff811015612819578260005b868110156127765761276c61274a838761155b565b6127678c848151811061275957fe5b60200260200101518a61155b565b6135b7565b9150600101612735565b508394506127cf6127ae6127a861278d848a61155b565b6127a261279a888d61155b565b6103e86135b7565b906121f8565b8661155b565b6127676127be896001018561155b565b6127a261279a6103e889038a61155b565b9350848411156127f7576001858503116127f2578397505050505050505061086a565b612810565b600184860311612810578397505050505050505061086a565b50600101612728565b50612825610141612881565b505050505092915050565b600061283f82151560046116ad565b8261284c5750600061086a565b670de0b6b3a76400008381029061286f9085838161286657fe5b041460056116ad565b82818161287857fe5b0491505061086a565b610be7816210905360ea1b6135d7565b6000808251118015610cc9575060ff8016828060200190518101906128b69190615ab5565b60ff161492915050565b6109066128cb61124f565b6101b66116ad565b60006060600060606128e4876134d9565b91509150600060606128f7838589613638565b9150915081612907826000613664565b9550955050505050935093915050565b8151815161292690829061241c565b60005b81811015610ad25761296184828151811061294057fe5b602002602001015184838151811061295457fe5b6020026020010151612f77565b84828151811061296d57fe5b6020908102919091010152600101612929565b610ca08282613721565b6000610cc98282606061169e565b6000610cc98260608061169e565b6000806129b283611f56565b91506129c18360e0602061169e565b9050915091565b6000606061243a600188868661342b565b815181516129e890829061241c565b60005b81811015610ad257612a23848281518110612a0257fe5b6020026020010151848381518110612a1657fe5b60200260200101516137ed565b848281518110612a2f57fe5b60209081029190910101526001016129eb565b6000612a4c611147565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b158015612a8457600080fd5b505afa158015612a98573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107be9190615724565b6000610cc97f0000000000000000000000000000000000000000000000000000000000000000835b1c60019081161490565b60408051604180825260808201909252606091829190602082018180368337019050509050836020820152826040820152846060820153949350505050565b6000612b388561383b565b9050612b4e612b48878387613857565b836116ad565b612b5d428410156101b86116ad565b5050506001600160a01b039092166000908152600660205260409020805460010190555050565b600060606000612b9384613906565b9050612bae6000826003811115612ba657fe5b1460ce6116ad565b6060612bb98561391c565b9050612bc78151875161241c565b612bd18187612917565b6000612bdb612076565b5090506060612be983613932565b90506000612bf783836126ce565b9050806000612c146d8000000000000000000000000000836115f2565b9050612c208d82612c5d565b8086612c2a611047565b81518110612c3457fe5b602002602001018181525050612c4a8584613179565b509c939b50929950505050505050505050565b610ca082826139d4565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b612c9e818242426132fd565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516121ed9190615d26565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7fee1c6cca5b2f94597edf324fabbfeb3f78dac2d79b4e3920c8d7bc45cf37ac077fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6612d3a613a61565b30604051602001612d4f959493929190615d82565b60405160208183030381529060405280519060200120905090565b600281511015612d7957610be7565b600081600081518110612d8857fe5b602002602001015190506000600190505b825181101561159e576000838281518110612db057fe5b60200260200101519050612dd9816001600160a01b0316846001600160a01b03161060656116ad565b9150600101612d99565b612df2610100831060646116ad565b612e1a600182101580156117005750612e1060ff8461010003611688565b82111560646116ad565b61159e83821c156101b46116ad565b61090661216c565b6000612e3b6116cb565b905060005b81811015610ca057612e5181613a65565b600101612e40565b600081612e8757507f0000000000000000000000000000000000000000000000000de0b6b3a7640000610ccc565b8160011415612eb757507f0000000000000000000000000000000000000000000000000de0b6b3a7640000610ccc565b8160021415612ee757507f0000000000000000000000000000000000000000000000000de0b6b3a7640000610ccc565b8160031415612f1757507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160041415612f4757507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b8160051415611c3f57507f0000000000000000000000000000000000000000000000000000000000000000610ccc565b6000828202612f9184158061157857508385838161157557fe5b670de0b6b3a764000090049392505050565b6000612faf8583612917565b612fd08660600151838581518110612fc357fe5b6020026020010151613ab9565b60608701526000612fe387878787613ac5565b905061300281848781518110612ff557fe5b6020026020010151613ad9565b90506107a981613ae5565b600080808751600181111561301e57fe5b14905061302b8684612917565b61304b8760600151848361303f5786613041565b875b81518110612fc357fe5b876060018181525050600060606000806130648a613b01565b9350935093509350600080613077611047565b8a1461309d57613098878e60600151876130908e613b6a565b888b89613b9f565b6130b8565b6130b8878e60600151876130b08f613b6a565b888b89613bd8565b915091506130c98486858985613bfc565b866130e3576130de828a8d81518110612ff557fe5b613100565b613100828a8c815181106130f357fe5b6020026020010151613c7c565b9d9c50505050505050505050505050565b60006131208660600151613c88565b606087015261312f8583612917565b6131438660600151838681518110612fc357fe5b6060870152600061315687878787613ca9565b90506107a9818486815181106130f357fe5b610be7613173611272565b82612c5d565b61318681600060e9611675565b6131938360e96017611675565b17600c55610ca0613cbd565b60006131ae84841115836116ad565b5050900390565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b6131d4611123565b6001600160a01b0316141580156131ef57506131ef83613cf3565b15613217576131fc611123565b6001600160a01b0316336001600160a01b031614905061086a565b61321f612a42565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161324e93929190615d2f565b60206040518083038186803b15801561326657600080fd5b505afa15801561327a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061147a9190615639565b6000806000806132bd6000604060095461169e9092919063ffffffff16565b6009549094506132cf9060408061169e565b6009549093506132e2906080604061169e565b6009549092506132f59060c0604061169e565b905090919293565b61330a8160c06040611675565b6133178360806040611675565b61332385604080611675565b6133308760006040611675565b17171760095550505050565b64e8d4a5100090565b67016345785d8a000090565b613359611d2a565b6060613363611147565b6001600160a01b031663f94d4668613379610bea565b6040518263ffffffff1660e01b81526004016133959190615d26565b60006040518083038186803b1580156133ad57600080fd5b505afa1580156133c1573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526133e9919081019061556d565b509150506133f981612686611707565b606061340482613932565b90506000613410612076565b509050600061341f82846126ce565b9050610ad28282613179565b600060606000606060008061343f89613b01565b93509350935093506152da8a61345757613cfe61345b565b613d935b905060006060613473868689878f8f8963ffffffff16565b915091506152da8d613487576115f261348b565b6121f85b9050613498878383613e11565b60006134a889858463ffffffff16565b90506134b78789888c85613bfc565b836134c3846000613664565b9a509a5050505050505050505094509492505050565b60006060613500836134e9611047565b815181106134f357fe5b6020026020010151613e7e565b61350984613932565b91509150915091565b60008060008060006135248888613e92565b925092509250600086841161353a57600061353e565b8684035b90506000848411613550576000613554565b8484035b9050600061356f6135656000610e03565b61177b8587612830565b9050600061358a6135806002610e03565b61177b8588612830565b919091019b939a509298505050505050505050565b600061157f6135ae848461155b565b61276784613f14565b60006135c682151560046116ad565b8183816135cf57fe5b049392505050565b62461bcd60e51b600090815260206004526007602452600a808404818106603090810160081b958390069590950190829004918206850160101b01602363ffffff0060e086901c160160181b0190930160c81b60445260e882901c90606490fd5b60006060600061364784613f3a565b90506060613656878784613f50565b919791965090945050505050565b6060825160010167ffffffffffffffff8111801561368157600080fd5b506040519080825280602002602001820160405280156136ab578160200160208202803683370190505b50905060005b815181101561371a576136c2611047565b81146136f957836136d1611047565b82106136e057600182036136e2565b815b815181106136ec57fe5b60200260200101516136fb565b825b82828151811061370757fe5b60209081029190910101526001016136b1565b5092915050565b6137386001600160a01b038316151561019b6116ad565b6137448260008361159e565b6001600160a01b03821660009081526020819052604090205461376a90826101b261319f565b6001600160a01b03831660009081526020819052604090205561379d6137988261379261092c565b90613fff565b61400d565b60006001600160a01b0316826001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516137e19190615d26565b60405180910390a35050565b60006137fc82151560046116ad565b826138095750600061086a565b670de0b6b3a7640000838102906138239085838161286657fe5b82600182038161382f57fe5b0460010191505061086a565b6000613845612ccd565b826040516020016110b2929190615bb8565b600061386982516041146101b96116ad565b60208281015160408085015160608601518251600080825295019283905292939092811a916001906138a2908990859088908890615dde565b6020604051602081039080840390855afa1580156138c4573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b038116158015906138fa5750876001600160a01b0316816001600160a01b0316145b98975050505050505050565b600081806020019051810190610cc9919061584f565b60608180602001905181019061157f919061586a565b606080600183510367ffffffffffffffff8111801561395057600080fd5b5060405190808252806020026020018201604052801561397a578160200160208202803683370190505b50905060005b815181101561371a5783613992611047565b82106139a157816001016139a3565b815b815181106139ad57fe5b60200260200101518282815181106139c157fe5b6020908102919091010152600101613980565b6139e06000838361159e565b6139ef613798826127a261092c565b6001600160a01b038216600090815260208190526040902054613a1290826121f8565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906137e1908590615d26565b4690565b613a6d611047565b811415613a7957610be7565b6000818152600a60205260409020548015610ca057600080613a9a836129a6565b9150915080421115610ad257610ad284613ab386611b21565b84611f65565b600061157f8383612f77565b60006117f060008660600151868686614012565b600061157f83836137ed565b6000610cc9613afa613af5610d32565b613f14565b83906137ed565b60006060600080600080613b13610c49565b91509150600060606000613b288a8686614084565b9250925092506000613b38612076565b5090506000868214613b5357613b4e82856126ce565b613b55565b825b949c939b509099509297509095505050505050565b6000613b81613b77611047565b83141560646116ad565b613b89611047565b821061167157613b9a8260016115f2565b610cc9565b60008088613bba57613bb58888888888886140dc565b613bc8565b613bc88888888888886141b3565b9150915097509795505050505050565b60008088613bee57613bb5888888888888614214565b613bc888888888888861427a565b6000613c0886866126ce565b90506000613c168385612830565b90506000613c248683612f77565b905080831115613c72578083036000613c4e613c4883613c4384610e03565b61155b565b866135b7565b90508015613c6f576000613c62878361359f565b9050613c6d81613168565b505b50505b6113178884613179565b600061157f8383612830565b600080613c9d613c96610d32565b8490614329565b905061157f83826115f2565b60006117f060018660600151868686614012565b6000613cc76116cb565b905060005b81811015610ca057613cdd81614365565b15613ceb57613ceb81614394565b600101613ccc565b6000610cc9826143c2565b600060606000613d0d846143cd565b90506001816002811115613d1d57fe5b1415613d3b57613d3187878a8c89896143e3565b9250925050613d88565b6002816002811115613d4957fe5b1415613d5a57613d31878a86614442565b6000816002811115613d6857fe5b1415613d7b57613d3187878a8c88614460565b613d86610150612881565b505b965096945050505050565b600060606000613da284613906565b90506001816003811115613db257fe5b1415613dc657613d3187878a8c8989614501565b6003816003811115613dd457fe5b1415613de557613d31878a86614550565b6002816003811115613df357fe5b1415613e0657613d3187878a8c8861456e565b613d86610136612881565b82518251613e2090829061241c565b60005b81811015611dc157613e5f858281518110613e3a57fe5b6020026020010151858381518110613e4e57fe5b60200260200101518563ffffffff16565b858281518110613e6b57fe5b6020908102919091010152600101613e23565b6000610cc982613e8c61092c565b906115f2565b6000806000613eab84613ea68760016145e8565b6126ce565b9250613eb56146f1565b15613ece57613ec484866126ce565b9150819050613f0d565b613ed6614715565b15613eef57829150613ee884866126ce565b9050613f0d565b613efe84613ea68760006145e8565b9150613f0a84866126ce565b90505b9250925092565b6000670de0b6b3a76400008210613f2c576000610cc9565b50670de0b6b3a76400000390565b60008180602001905181019061157f9190615ad1565b60606000613f5e8385612830565b9050845167ffffffffffffffff81118015613f7857600080fd5b50604051908082528060200260200182016040528015613fa2578160200160208202803683370190505b50915060005b8551811015613ff657613fd782878381518110613fc157fe5b6020026020010151612f7790919063ffffffff16565b838281518110613fe357fe5b6020908102919091010152600101613fa8565b50509392505050565b600061157f8383600161319f565b600255565b6000606061401f85613932565b9050600061402c85613b6a565b9050600061403985613b6a565b90506000614045612076565b509050600061405482866126ce565b90508a156140765761406a828686868e86614739565b955050505050506117f0565b61406a828686868e866147c4565b600060606000806060614096886134d9565b915091506000806140a8838a8a613512565b9150915060006140b8858461359f565b905080156140c9576140c981613168565b9390930199919850919650945050505050565b6000806060875167ffffffffffffffff811180156140f957600080fd5b50604051908082528060200260200182016040528015614123578160200160208202803683370190505b5090508881888151811061413357fe5b6020026020010181815250506000614156878a848989614151610d32565b614857565b905061417e8a8a8a8151811061416857fe5b60200260200101516115f290919063ffffffff16565b89898151811061418a57fe5b602090810291909101015260006141a187836115f2565b919b919a509098505050505050505050565b60008060006141ce8689898c89896141c9610d32565b614ae7565b90506141e08189898151811061416857fe5b8888815181106141ec57fe5b60209081029190910101526000614203868b6115f2565b919a91995090975050505050505050565b600080600061422f8689898c898961422a610d32565b614bd6565b90506142578189898151811061424157fe5b60200260200101516121f890919063ffffffff16565b88888151811061426357fe5b60209081029190910101526000614203868b6121f8565b6000806060875167ffffffffffffffff8111801561429757600080fd5b506040519080825280602002602001820160405280156142c1578160200160208202803683370190505b509050888188815181106142d157fe5b60200260200101818152505060006142f4878a8489896142ef610d32565b614ca3565b90506143068a8a8a8151811061424157fe5b89898151811061431257fe5b602090810291909101015260006141a187836121f8565b600082820261434384158061157857508385838161157557fe5b8061435257600091505061086a565b670de0b6b3a7640000600019820161382f565b6000610cc97f000000000000000000000000000000000000000000000000000000000000000060068401612ae4565b6000818152600a60205260409020546143ac81611640565b6000928352600a60205260409092209190915550565b6000610cc982614f0d565b600081806020019051810190610cc9919061578e565b600060608060006143f385614f30565b915091506144038251885161241c565b6144108261268688613932565b60006144228989858e8e614151610d32565b90506144328282111560cf6116ad565b9a91995090975050505050505050565b60006060600061445184614f53565b90506060613656868884613f50565b6000606060008061447085614f69565b915091506144828651821060646116ad565b6060865167ffffffffffffffff8111801561449c57600080fd5b506040519080825280602002602001820160405280156144c6578160200160208202803683370190505b5090506144da888884868e8e6141c9610d32565b8183815181106144e657fe5b60209081029190910101529199919850909650505050505050565b6000606080600061451185614f80565b915091506145218751835161241c565b61452e8261268688613932565b60006145408989858e8e6142ef610d32565b90506144328282101560d06116ad565b60006060600061455f84614f98565b90506060613656868389614fae565b6000606060008061457e8561504a565b915091506145908651821060646116ad565b6060865167ffffffffffffffff811180156145aa57600080fd5b506040519080825280602002602001820160405280156145d4578160200160208202803683370190505b5090506144da888884868e8e61422a610d32565b8151606090818167ffffffffffffffff8111801561460557600080fd5b5060405190808252806020026020018201604052801561462f578160200160208202803683370190505b50905060005b828110156146e8576000614647611047565b8210156146545781614659565b816001015b905061466481612abc565b8061467b575085801561467b575061467b81614365565b6146985786828151811061468b57fe5b60200260200101516146c8565b6146c88783815181106146a757fe5b6020026020010151600a600084815260200190815260200160002054615061565b8383815181106146d457fe5b602090810291909101015250600101614635565b50949350505050565b7f000000000000000000000000000000000000000000000000000000000000000190565b7f000000000000000000000000000000000000000000000000000000000000000090565b600061474b8387878151811061424157fe5b86868151811061475757fe5b60200260200101818152505060006147718888858861507c565b90508387878151811061478057fe5b60200260200101510387878151811061479557fe5b6020026020010181815250506147b66001613e8c838a898151811061416857fe5b9150505b9695505050505050565b60006147d68387868151811061416857fe5b8685815181106147e257fe5b60200260200101818152505060006147fc8888858961507c565b90508387868151811061480b57fe5b60200260200101510187868151811061482057fe5b6020026020010181815250506147b660016127a289898151811061484057fe5b6020026020010151846115f290919063ffffffff16565b600080805b87518110156148955761488b88828151811061487457fe5b6020026020010151836121f890919063ffffffff16565b915060010161485c565b506060865167ffffffffffffffff811180156148b057600080fd5b506040519080825280602002602001820160405280156148da578160200160208202803683370190505b5090506000805b89518110156149a7576000614912858c84815181106148fc57fe5b60200260200101516137ed90919063ffffffff16565b90506149548b838151811061492357fe5b602002602001015161494e8c858151811061493a57fe5b60200260200101518e868151811061416857fe5b906137ed565b84838151811061496057fe5b60200260200101818152505061499c6149958286858151811061497f57fe5b602002602001015161432990919063ffffffff16565b84906121f8565b9250506001016148e1565b506060895167ffffffffffffffff811180156149c257600080fd5b506040519080825280602002602001820160405280156149ec578160200160208202803683370190505b50905060005b8a51811015614ab7576000848281518110614a0957fe5b6020026020010151841115614a70576000614a32614a2686613f14565b8e8581518110613fc157fe5b90506000614a46828e868151811061416857fe5b9050614a67614a6082670de0b6b3a76400008d90036137ed565b83906121f8565b92505050614a87565b8a8281518110614a7c57fe5b602002602001015190505b614a97818d848151811061416857fe5b838381518110614aa357fe5b6020908102919091010152506001016149f2565b506000614ac48c836126ce565b90506000614ad2828a612830565b9050613100614ae082613f14565b8b90614329565b600080614b0284614afc8761494e818b6115f2565b90614329565b90506000614b128a8a848b61507c565b90506000614b26828b8b8151811061416857fe5b90506000805b8b51811015614b4e57614b448c828151811061487457fe5b9150600101614b2c565b506000614b77828d8d81518110614b6157fe5b602002602001015161283090919063ffffffff16565b90506000614b8482613f14565b90506000614b928583614329565b90506000614ba086836115f2565b9050614bc1614bba83670de0b6b3a76400008d9003612f77565b82906121f8565b98505050505050505050979650505050505050565b600080614beb84614afc8761494e818b6121f8565b90506000614bfb8a8a848b61507c565b90506000614c258a8a81518110614c0e57fe5b6020026020010151836115f290919063ffffffff16565b90506000805b8b51811015614c4d57614c438c828151811061487457fe5b9150600101614c2b565b506000614c60828d8d81518110614b6157fe5b90506000614c6d82613f14565b90506000614c7b8583614329565b90506000614c8986836115f2565b9050614bc1614bba83670de0b6b3a76400008d90036137ed565b600080805b8751811015614cca57614cc088828151811061487457fe5b9150600101614ca8565b506060865167ffffffffffffffff81118015614ce557600080fd5b50604051908082528060200260200182016040528015614d0f578160200160208202803683370190505b5090506000805b8951811015614da9576000614d31858c8481518110614b6157fe5b9050614d738b8381518110614d4257fe5b6020026020010151614d6d8c8581518110614d5957fe5b60200260200101518e868151811061424157fe5b90612830565b848381518110614d7f57fe5b602002602001018181525050614d9e61499582868581518110613fc157fe5b925050600101614d16565b506060895167ffffffffffffffff81118015614dc457600080fd5b50604051908082528060200260200182016040528015614dee578160200160208202803683370190505b50905060005b8a51811015614eaf57600083858381518110614e0c57fe5b60200260200101511115614e68576000614e31614a2686670de0b6b3a76400006115f2565b90506000614e45828e868151811061416857fe5b9050614e5f614a6082670de0b6b3a76400008d9003612f77565b92505050614e7f565b8a8281518110614e7457fe5b602002602001015190505b614e8f818d848151811061424157fe5b838381518110614e9b57fe5b602090810291909101015250600101614df4565b506000614ebc8c836126ce565b90506000614eca828a612830565b9050670de0b6b3a7640000811115614efe57614ef18a670de0b6b3a763ffff198301612f77565b96505050505050506147ba565b600096505050505050506147ba565b6000614f1f63f4b7964d60e01b61107d565b821480610cc95750610cc982615239565b6060600082806020019051810190614f4891906157a9565b909590945092505050565b60008180602001905181019061157f91906157ee565b60008082806020019051810190614f48919061581a565b6060600082806020019051810190614f4891906158ad565b60008180602001905181019061157f91906158cb565b60606000614fbc84846137ed565b90506060855167ffffffffffffffff81118015614fd857600080fd5b50604051908082528060200260200182016040528015615002578160200160208202803683370190505b50905060005b8651811015615040576150218388838151811061497f57fe5b82828151811061502d57fe5b6020908102919091010152600101615008565b5095945050505050565b60008082806020019051810190614f4891906158e7565b600061157f61507384613c4385612998565b6127678461298a565b60008084518602905060008560008151811061509457fe5b6020026020010151905060008651876000815181106150af57fe5b60200260200101510290506000600190505b8751811015615115576150fa6150f46150ed848b85815181106150e057fe5b602002602001015161155b565b8a5161155b565b886135b7565b915061510b8882815181106126ee57fe5b92506001016150c1565b5086858151811061512257fe5b602002602001015182039150600061513a878861155b565b9050600061516661515a61515284610b70898861155b565b6103e861155b565b8a89815181106150e057fe5b9050600061518161517a6151528b896135b7565b86906121f8565b905060008061519d61519386866121f8565b610b708d866121f8565b905060005b60ff81101561521d578192506151d26151bf866127a2858661155b565b610b708e613e8c886127a288600261155b565b9150828211156151fb576001838303116151f6575097506115ea9650505050505050565b615215565b600182840311615215575097506115ea9650505050505050565b6001016151a2565b50615229610142612881565b5050505050505050949350505050565b600061524b632f1a0bc960e01b61107d565b8214806152665750615263637587926b60e11b61107d565b82145b80610cc95750610cc9826000615282631c74c91760e11b61107d565b82148061529d575061529a6350dd6ed960e01b61107d565b82145b80610cc957506000610cc9565b6040805160a081019091528060008152600060208201819052604082018190526060820181905260809091015290565bfe5b803561086a81615ebc565b600082601f8301126152f7578081fd5b813561530a61530582615e9c565b615e75565b81815291506020808301908481018184028601820187101561532b57600080fd5b60005b848110156128255781358452928201929082019060010161532e565b600082601f83011261535a578081fd5b815161536861530582615e9c565b81815291506020808301908481018184028601820187101561538957600080fd5b60005b848110156128255781518452928201929082019060010161538c565b600082601f8301126153b8578081fd5b813567ffffffffffffffff8111156153ce578182fd5b6153e1601f8201601f1916602001615e75565b91508082528360208285010111156153f857600080fd5b8060208401602084013760009082016020015292915050565b80516003811061086a57600080fd5b80516004811061086a57600080fd5b80356002811061086a57600080fd5b60006020828403121561544f578081fd5b813561157f81615ebc565b6000806040838503121561546c578081fd5b823561547781615ebc565b9150602083013561548781615ebc565b809150509250929050565b6000806000606084860312156154a6578081fd5b83356154b181615ebc565b925060208401356154c181615ebc565b929592945050506040919091013590565b600080600080600080600060e0888a0312156154ec578283fd5b87356154f781615ebc565b9650602088013561550781615ebc565b95506040880135945060608801359350608088013561552581615ed1565b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215615554578182fd5b823561555f81615ebc565b946020939093013593505050565b600080600060608486031215615581578081fd5b835167ffffffffffffffff80821115615598578283fd5b818601915086601f8301126155ab578283fd5b81516155b961530582615e9c565b80828252602080830192508086018b8283870289010111156155d9578788fd5b8796505b848710156156045780516155f081615ebc565b8452600196909601959281019281016155dd565b50890151909750935050508082111561561b578283fd5b506156288682870161534a565b925050604084015190509250925092565b60006020828403121561564a578081fd5b8151801515811461157f578182fd5b600080600080600080600060e0888a031215615673578081fd5b87359650602088013561568581615ebc565b9550604088013561569581615ebc565b9450606088013567ffffffffffffffff808211156156b1578283fd5b6156bd8b838c016152e7565b955060808a0135945060a08a0135935060c08a01359150808211156156e0578283fd5b506156ed8a828b016153a8565b91505092959891949750929550565b60006020828403121561570d578081fd5b81356001600160e01b03198116811461157f578182fd5b600060208284031215615735578081fd5b815161157f81615ebc565b60008060408385031215615752578182fd5b823561575d81615ebc565b9150602083013567ffffffffffffffff811115615778578182fd5b615784858286016153a8565b9150509250929050565b60006020828403121561579f578081fd5b61157f8383615411565b6000806000606084860312156157bd578081fd5b6157c78585615411565b9250602084015167ffffffffffffffff8111156157e2578182fd5b6156288682870161534a565b60008060408385031215615800578182fd5b61580a8484615411565b9150602083015190509250929050565b60008060006060848603121561582e578081fd5b6158388585615411565b925060208401519150604084015190509250925092565b600060208284031215615860578081fd5b61157f8383615420565b6000806040838503121561587c578182fd5b6158868484615420565b9150602083015167ffffffffffffffff8111156158a1578182fd5b6157848582860161534a565b6000806000606084860312156158c1578081fd5b6157c78585615420565b600080604083850312156158dd578182fd5b61580a8484615420565b6000806000606084860312156158fb578081fd5b6158388585615420565b6000806000806080858703121561591a578182fd5b843567ffffffffffffffff80821115615931578384fd5b818701915061012080838a031215615947578485fd5b61595081615e75565b905061595c898461542f565b815261596b89602085016152dc565b602082015261597d89604085016152dc565b6040820152606083013560608201526080830135608082015260a083013560a08201526159ad8960c085016152dc565b60c08201526159bf8960e085016152dc565b60e082015261010080840135838111156159d7578687fd5b6159e38b8287016153a8565b828401525050809650506020870135915080821115615a00578384fd5b50615a0d878288016152e7565b949794965050505060408301359260600135919050565b600060208284031215615a35578081fd5b5035919050565b600060208284031215615a4d578081fd5b5051919050565b60008060408385031215615a66578182fd5b50508035926020909101359150565b60008060008060808587031215615a8a578182fd5b8451935060208501519250604085015191506060850151615aaa81615ebc565b939692955090935050565b600060208284031215615ac6578081fd5b815161157f81615ed1565b60008060408385031215615ae3578182fd5b8251615aee81615ed1565b6020939093015192949293505050565b6001600160a01b03169052565b6000815180845260208085019450808401835b83811015615b3a57815187529582019590820190600101615b1e565b509495945050505050565b60008151808452815b81811015615b6a57602081850181015186830182015201615b4e565b81811115615b7b5782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b81811015615c285783516001600160a01b031683529284019291840191600101615c03565b50909695505050505050565b602080825282518282018190526000919060409081850190868401855b82811015615cbe578151805160048110615c6757fe5b855280870151615c7988870182615afe565b508581015186860152606080820151615c9482880182615afe565b505060809081015190615ca986820183615afe565b505060a0939093019290850190600101615c51565b5091979650505050505050565b60006020825261157f6020830184615b0b565b600060408252615cf16040830185615b0b565b82810360208401526117f08185615b0b565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526115ea6040830184615b45565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b60006020825261157f6020830184615b45565b6000838252604060208301526115ea6040830184615b0b565b9283529015156020830152604082015260600190565b918252602082015260400190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b60405181810167ffffffffffffffff81118282101715615e9457600080fd5b604052919050565b600067ffffffffffffffff821115615eb2578081fd5b5060209081020190565b6001600160a01b0381168114610be757600080fd5b60ff81168114610be757600080fdfea2646970667358221220b1e5ec4de2ef1abf9e959c7f4391d7d01e93ab6b319e2acf4aba7247f67b09a664736f6c63430007010033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.