Feature Tip: Add private address tag to any address under My Name Tag !
ERC-20
Overview
Max Total Supply
5,192,296,858,534,827.628530496329220095 bb-a-USD
Holders
662
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
0.000000000000000287 bb-a-USDValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
StablePhantomPool
Compiler Version
v0.7.1+commit.f4a555be
Optimization Enabled:
Yes with 9999 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-pool-stable/contracts/StablePool.sol"; import "@balancer-labs/v2-pool-utils/contracts/rates/PriceRateCache.sol"; import "@balancer-labs/v2-pool-utils/contracts/interfaces/IRateProvider.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ERC20Helpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; import "./StablePhantomPoolUserDataHelpers.sol"; /** * @dev StablePool with preminted BPT and rate providers for each token, allowing for e.g. wrapped tokens with a known * price ratio, such as Compound's cTokens. * * BPT is preminted on Pool initialization and registered as one of the Pool's tokens, allowing for swaps to behave as * single-token joins or exits (by swapping a token for BPT). Regular joins and exits are disabled, since no BPT is * minted or burned after initialization. * * Preminted BPT is sometimes called Phantom BPT, as the preminted BPT (which is deposited in the Vault as balance of * the Pool) doesn't belong to any entity until transferred out of the Pool. The Pool's arithmetic behaves as if it * didn't exist, and the BPT total supply is not a useful value: we rely on the 'virtual supply' (how much BPT is * actually owned by some entity) instead. */ contract StablePhantomPool is StablePool { using FixedPoint for uint256; using PriceRateCache for bytes32; using StablePhantomPoolUserDataHelpers for bytes; uint256 private constant _MIN_TOKENS = 2; uint256 private constant _MAX_TOKEN_BALANCE = 2**(112) - 1; uint256 private immutable _bptIndex; // Since this Pool is not joined or exited via the regular onJoinPool and onExitPool hooks, it lacks a way to // continuously pay due protocol fees. Instead, it keeps track of those internally. // Due protocol fees are expressed in BPT, which leads to reduced gas costs when compared to tracking due fees for // each Pool token. This means that some of the BPT deposited in the Vault for the Pool is part of the 'virtual' // supply, as it belongs to the protocol. uint256 private _dueProtocolFeeBptAmount; // The Vault does not provide the protocol swap fee percentage in swap hooks (as swaps don't typically need this // value), so we need to fetch it ourselves from the Vault's ProtocolFeeCollector. However, this value changes so // rarely that it doesn't make sense to perform the required calls to get the current value in every single swap. // Instead, we keep a local copy that can be permissionlessly updated by anyone with the real value. uint256 private _cachedProtocolSwapFeePercentage; event CachedProtocolSwapFeePercentageUpdated(uint256 protocolSwapFeePercentage); // Token rate caches are used to avoid querying the price rate for a token every time we need to work with it. // Data is stored with the following structure: // // [ expires | duration | price rate value ] // [ uint64 | uint64 | uint128 ] mapping(IERC20 => bytes32) private _tokenRateCaches; IRateProvider internal immutable _rateProvider0; IRateProvider internal immutable _rateProvider1; IRateProvider internal immutable _rateProvider2; IRateProvider internal immutable _rateProvider3; IRateProvider internal immutable _rateProvider4; event TokenRateCacheUpdated(IERC20 indexed token, uint256 rate); event TokenRateProviderSet(IERC20 indexed token, IRateProvider indexed provider, uint256 cacheDuration); event DueProtocolFeeIncreased(uint256 bptAmount); enum JoinKindPhantom { INIT, COLLECT_PROTOCOL_FEES } enum ExitKindPhantom { EXACT_BPT_IN_FOR_TOKENS_OUT } // The constructor arguments are received in a struct to work around stack-too-deep issues struct NewPoolParams { IVault vault; string name; string symbol; IERC20[] tokens; IRateProvider[] rateProviders; uint256[] tokenRateCacheDurations; uint256 amplificationParameter; uint256 swapFeePercentage; uint256 pauseWindowDuration; uint256 bufferPeriodDuration; address owner; } constructor(NewPoolParams memory params) StablePool( params.vault, params.name, params.symbol, _insertSorted(params.tokens, IERC20(this)), params.amplificationParameter, params.swapFeePercentage, params.pauseWindowDuration, params.bufferPeriodDuration, params.owner ) { // BasePool checks that the Pool has at least two tokens, but since one of them is the BPT (this contract), we // need to check ourselves that there are at least creator-supplied tokens (i.e. the minimum number of total // tokens for this contract is actually three, including the BPT). _require(params.tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); InputHelpers.ensureInputLengthMatch( params.tokens.length, params.rateProviders.length, params.tokenRateCacheDurations.length ); for (uint256 i = 0; i < params.tokens.length; i++) { if (params.rateProviders[i] != IRateProvider(0)) { _updateTokenRateCache(params.tokens[i], params.rateProviders[i], params.tokenRateCacheDurations[i]); emit TokenRateProviderSet(params.tokens[i], params.rateProviders[i], params.tokenRateCacheDurations[i]); } } // The Vault keeps track of all Pool tokens in a specific order: we need to know what the index of BPT is in // this ordering to be able to identify it when balances arrays are received. Since the tokens array is sorted, // we need to find the correct BPT index in the array returned by `_insertSorted()`. // See `IVault.getPoolTokens()` for more information regarding token ordering. uint256 bptIndex; for (bptIndex = params.tokens.length; bptIndex > 0 && params.tokens[bptIndex - 1] > IERC20(this); bptIndex--) { // solhint-disable-previous-line no-empty-blocks } _bptIndex = bptIndex; // The rate providers are stored as immutable state variables, and for simplicity when accessing those we'll // reference them by token index in the full base tokens plus BPT set (i.e. the tokens the Pool registers). Due // to immutable variables requiring an explicit assignment instead of defaulting to an empty value, it is // simpler to create a new memory array with the values we want to assign to the immutable state variables. IRateProvider[] memory tokensAndBPTRateProviders = new IRateProvider[](params.tokens.length + 1); for (uint256 i = 0; i < tokensAndBPTRateProviders.length; ++i) { if (i < bptIndex) { tokensAndBPTRateProviders[i] = params.rateProviders[i]; } else if (i == bptIndex) { tokensAndBPTRateProviders[i] = IRateProvider(0); } else { tokensAndBPTRateProviders[i] = params.rateProviders[i - 1]; } } // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments _rateProvider0 = (tokensAndBPTRateProviders.length > 0) ? tokensAndBPTRateProviders[0] : IRateProvider(0); _rateProvider1 = (tokensAndBPTRateProviders.length > 1) ? tokensAndBPTRateProviders[1] : IRateProvider(0); _rateProvider2 = (tokensAndBPTRateProviders.length > 2) ? tokensAndBPTRateProviders[2] : IRateProvider(0); _rateProvider3 = (tokensAndBPTRateProviders.length > 3) ? tokensAndBPTRateProviders[3] : IRateProvider(0); _rateProvider4 = (tokensAndBPTRateProviders.length > 4) ? tokensAndBPTRateProviders[4] : IRateProvider(0); _updateCachedProtocolSwapFeePercentage(params.vault); } function getMinimumBpt() external pure returns (uint256) { return _getMinimumBpt(); } function getBptIndex() external view returns (uint256) { return _bptIndex; } function getDueProtocolFeeBptAmount() external view returns (uint256) { return _dueProtocolFeeBptAmount; } /** * @dev StablePools with two tokens may use the IMinimalSwapInfoPool interface. This should never happen since this * Pool has a minimum of three tokens, but we override and revert unconditionally in this handler anyway. */ function onSwap( SwapRequest memory, uint256, uint256 ) public pure override returns (uint256) { _revert(Errors.UNHANDLED_BY_PHANTOM_POOL); } // StablePool's `_onSwapGivenIn` and `_onSwapGivenOut` handlers are meant to process swaps between Pool tokens. // Since one of the Pool's tokens is the preminted BPT, we neeed to a) handle swaps where that tokens is involved // separately (as they are effectively single-token joins or exits), and b) remove BPT from the balances array when // processing regular swaps before delegating those to StablePool's handler. // // Since StablePools don't accurately track protocol fees in single-token joins and exit, and not only does this // Pool not support multi-token joins or exits, but also they are expected to be much more prevalent, we compute // protocol fees in a different and more straightforward way. Recall that due protocol fees are expressed as BPT // amounts: for any swap involving BPT, we simply add the corresponding protocol swap fee to that amount, and for // swaps without BPT we convert the fee amount to the equivalent BPT amount. Note that swap fees are charged by // BaseGeneralPool. // // The given in and given out handlers are quite similar and could use an intermediate abstraction, but keeping the // duplication seems to lead to more readable code, given the number of variants at play. function _onSwapGivenIn( SwapRequest memory request, uint256[] memory balancesIncludingBpt, uint256 indexIn, uint256 indexOut ) internal virtual override whenNotPaused returns (uint256 amountOut) { _cacheTokenRatesIfNecessary(); uint256 protocolSwapFeePercentage = _cachedProtocolSwapFeePercentage; // Compute virtual BPT supply and token balances (sans BPT). (uint256 virtualSupply, uint256[] memory balances) = _dropBptItem(balancesIncludingBpt); if (request.tokenIn == IERC20(this)) { amountOut = _onSwapTokenGivenBptIn(request.amount, _skipBptIndex(indexOut), virtualSupply, balances); // For given in swaps, request.amount holds the amount in. if (protocolSwapFeePercentage > 0) { _trackDueProtocolFeeByBpt(request.amount, protocolSwapFeePercentage); } } else if (request.tokenOut == IERC20(this)) { amountOut = _onSwapBptGivenTokenIn(request.amount, _skipBptIndex(indexIn), virtualSupply, balances); if (protocolSwapFeePercentage > 0) { _trackDueProtocolFeeByBpt(amountOut, protocolSwapFeePercentage); } } else { // To compute accrued protocol fees in BPT, we measure the invariant before and after the swap, then compute // the equivalent BPT amount that accounts for that growth and finally extract the percentage that // corresponds to protocol fees. // Since the original StablePool._onSwapGivenIn implementation already computes the invariant, we fully // replace it and reimplement it here to take advantage of that. (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariant = StableMath._calculateInvariant(currentAmp, balances, true); amountOut = StableMath._calcOutGivenIn( currentAmp, balances, _skipBptIndex(indexIn), _skipBptIndex(indexOut), request.amount, invariant ); if (protocolSwapFeePercentage > 0) { // We could've stored these indices in stack variables, but that causes stack-too-deep issues. uint256 newIndexIn = _skipBptIndex(indexIn); uint256 newIndexOut = _skipBptIndex(indexOut); uint256 amountInWithFee = _addSwapFeeAmount(request.amount); balances[newIndexIn] = balances[newIndexIn].add(amountInWithFee); balances[newIndexOut] = balances[newIndexOut].sub(amountOut); _trackDueProtocolFeeByInvariantIncrement( invariant, currentAmp, balances, virtualSupply, protocolSwapFeePercentage ); } } } function _onSwapGivenOut( SwapRequest memory request, uint256[] memory balancesIncludingBpt, uint256 indexIn, uint256 indexOut ) internal virtual override whenNotPaused returns (uint256 amountIn) { _cacheTokenRatesIfNecessary(); uint256 protocolSwapFeePercentage = _cachedProtocolSwapFeePercentage; // Compute virtual BPT supply and token balances (sans BPT). (uint256 virtualSupply, uint256[] memory balances) = _dropBptItem(balancesIncludingBpt); if (request.tokenIn == IERC20(this)) { amountIn = _onSwapBptGivenTokenOut(request.amount, _skipBptIndex(indexOut), virtualSupply, balances); if (protocolSwapFeePercentage > 0) { _trackDueProtocolFeeByBpt(amountIn, protocolSwapFeePercentage); } } else if (request.tokenOut == IERC20(this)) { amountIn = _onSwapTokenGivenBptOut(request.amount, _skipBptIndex(indexIn), virtualSupply, balances); // For given out swaps, request.amount holds the amount out. if (protocolSwapFeePercentage > 0) { _trackDueProtocolFeeByBpt(request.amount, protocolSwapFeePercentage); } } else { // To compute accrued protocol fees in BPT, we measure the invariant before and after the swap, then compute // the equivalent BPT amount that accounts for that growth and finally extract the percentage that // corresponds to protocol fees. // Since the original StablePool._onSwapGivenOut implementation already computes the invariant, we fully // replace it and reimplement it here to take advtange of that. (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariant = StableMath._calculateInvariant(currentAmp, balances, true); amountIn = StableMath._calcInGivenOut( currentAmp, balances, _skipBptIndex(indexIn), _skipBptIndex(indexOut), request.amount, invariant ); if (protocolSwapFeePercentage > 0) { // We could've stored these indices in stack variables, but that causes stack-too-deep issues. uint256 newIndexIn = _skipBptIndex(indexIn); uint256 newIndexOut = _skipBptIndex(indexOut); uint256 amountInWithFee = _addSwapFeeAmount(amountIn); balances[newIndexIn] = balances[newIndexIn].add(amountInWithFee); balances[newIndexOut] = balances[newIndexOut].sub(request.amount); _trackDueProtocolFeeByInvariantIncrement( invariant, currentAmp, balances, virtualSupply, protocolSwapFeePercentage ); } } } /** * @dev Calculate token out for exact BPT in (exit) */ function _onSwapTokenGivenBptIn( uint256 bptIn, uint256 tokenIndex, uint256 virtualSupply, uint256[] memory balances ) internal view returns (uint256 amountOut) { // Use virtual total supply and zero swap fees for joins. (uint256 amp, ) = _getAmplificationParameter(); amountOut = StableMath._calcTokenOutGivenExactBptIn(amp, balances, tokenIndex, bptIn, virtualSupply, 0); } /** * @dev Calculate token in for exact BPT out (join) */ function _onSwapTokenGivenBptOut( uint256 bptOut, uint256 tokenIndex, uint256 virtualSupply, uint256[] memory balances ) internal view returns (uint256 amountIn) { // Use virtual total supply and zero swap fees for joins (uint256 amp, ) = _getAmplificationParameter(); amountIn = StableMath._calcTokenInGivenExactBptOut(amp, balances, tokenIndex, bptOut, virtualSupply, 0); } /** * @dev Calculate BPT in for exact token out (exit) */ function _onSwapBptGivenTokenOut( uint256 amountOut, uint256 tokenIndex, uint256 virtualSupply, uint256[] memory balances ) internal view returns (uint256 bptIn) { // Avoid BPT balance for stable pool math. Use virtual total supply and zero swap fees for exits. (uint256 amp, ) = _getAmplificationParameter(); uint256[] memory amountsOut = new uint256[](_getTotalTokens() - 1); amountsOut[tokenIndex] = amountOut; bptIn = StableMath._calcBptInGivenExactTokensOut(amp, balances, amountsOut, virtualSupply, 0); } /** * @dev Calculate BPT out for exact token in (join) */ function _onSwapBptGivenTokenIn( uint256 amountIn, uint256 tokenIndex, uint256 virtualSupply, uint256[] memory balances ) internal view returns (uint256 bptOut) { uint256[] memory amountsIn = new uint256[](_getTotalTokens() - 1); amountsIn[tokenIndex] = amountIn; (uint256 amp, ) = _getAmplificationParameter(); bptOut = StableMath._calcBptOutGivenExactTokensIn(amp, balances, amountsIn, virtualSupply, 0); } /** * @dev Tracks newly charged protocol fees after a swap where BPT was not involved (i.e. a regular swap). */ function _trackDueProtocolFeeByInvariantIncrement( uint256 previousInvariant, uint256 amp, uint256[] memory postSwapBalances, uint256 virtualSupply, uint256 protocolSwapFeePercentage ) private { // To convert the protocol swap fees to a BPT amount, we compute the invariant growth (which is due exclusively // to swap fees), extract the portion that corresponds to protocol swap fees, and then compute the equivalent // amount of BPT that would cause such an increase. // // Invariant growth is related to new BPT and supply by: // invariant ratio = (bpt amount + supply) / supply // With some manipulation, this becomes: // (invariant ratio - 1) * supply = bpt amount // // However, a part of the invariant growth was due to non protocol swap fees (i.e. value accrued by the // LPs), so we only mint a percentage of this BPT amount: that which corresponds to protocol fees. // We round down, favoring LP fees. uint256 postSwapInvariant = StableMath._calculateInvariant(amp, postSwapBalances, false); uint256 invariantRatio = postSwapInvariant.divDown(previousInvariant); if (invariantRatio > FixedPoint.ONE) { // This condition should always be met outside of rounding errors (for non-zero swap fees). uint256 protocolFeeAmount = protocolSwapFeePercentage.mulDown( invariantRatio.sub(FixedPoint.ONE).mulDown(virtualSupply) ); _dueProtocolFeeBptAmount = _dueProtocolFeeBptAmount.add(protocolFeeAmount); emit DueProtocolFeeIncreased(protocolFeeAmount); } } /** * @dev Tracks newly charged protocol fees after a swap where `bptAmount` was either sent or received (i.e. a * single-token join or exit). */ function _trackDueProtocolFeeByBpt(uint256 bptAmount, uint256 protocolSwapFeePercentage) private { uint256 feeAmount = _addSwapFeeAmount(bptAmount).sub(bptAmount); uint256 protocolFeeAmount = feeAmount.mulDown(protocolSwapFeePercentage); _dueProtocolFeeBptAmount = _dueProtocolFeeBptAmount.add(protocolFeeAmount); emit DueProtocolFeeIncreased(protocolFeeAmount); } /** * Since this Pool has preminted BPT which is stored in the Vault, it cannot simply be minted at construction. * * We take advantage of the fact that StablePools have an initialization step where BPT is minted to the first * account joining them, and perform both actions at once. By minting the entire BPT supply for the initial joiner * and then pulling all tokens except those due the joiner, we arrive at the desired state of the Pool holding all * BPT except the joiner's. */ function _onInitializePool( bytes32, address sender, address, uint256[] memory scalingFactors, bytes memory userData ) internal override whenNotPaused returns (uint256, uint256[] memory) { StablePhantomPool.JoinKindPhantom kind = userData.joinKind(); _require(kind == StablePhantomPool.JoinKindPhantom.INIT, Errors.UNINITIALIZED); uint256[] memory amountsInIncludingBpt = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(amountsInIncludingBpt.length, _getTotalTokens()); _upscaleArray(amountsInIncludingBpt, scalingFactors); (uint256 amp, ) = _getAmplificationParameter(); (, uint256[] memory amountsIn) = _dropBptItem(amountsInIncludingBpt); // The true argument in the _calculateInvariant call instructs it to round up uint256 invariantAfterJoin = StableMath._calculateInvariant(amp, amountsIn, true); // Set the initial BPT to the value of the invariant uint256 bptAmountOut = invariantAfterJoin; // BasePool will mint bptAmountOut for the sender: we then also mint the remaining BPT to make up for the total // supply, and have the Vault pull those tokens from the sender as part of the join. // Note that the sender need not approve BPT for the Vault as the Vault already has infinite BPT allowance for // all accounts. uint256 initialBpt = _MAX_TOKEN_BALANCE.sub(bptAmountOut); _mintPoolTokens(sender, initialBpt); amountsInIncludingBpt[_bptIndex] = initialBpt; return (bptAmountOut, amountsInIncludingBpt); } /** * @dev Revert on all joins, except for the special join kind that simply pays due protocol fees to the Vault. */ function _onJoinPool( bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory userData ) internal override returns ( uint256, uint256[] memory, uint256[] memory ) { JoinKindPhantom kind = userData.joinKind(); if (kind == JoinKindPhantom.COLLECT_PROTOCOL_FEES) { return _collectProtocolFees(); } _revert(Errors.UNHANDLED_BY_PHANTOM_POOL); } /** * @dev Collects due protocol fees */ function _collectProtocolFees() private returns ( uint256 bptOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ) { uint256 totalTokens = _getTotalTokens(); // This join neither grants BPT nor takes any tokens from the sender. bptOut = 0; amountsIn = new uint256[](totalTokens); // Due protocol fees are all zero except for the BPT amount, which is then zeroed out. dueProtocolFeeAmounts = new uint256[](totalTokens); dueProtocolFeeAmounts[_bptIndex] = _dueProtocolFeeBptAmount; _dueProtocolFeeBptAmount = 0; } /** * @dev Revert on all exits. */ function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256, uint256[] memory, bytes memory userData ) internal view override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { ExitKindPhantom kind = userData.exitKind(); // Exits typically revert, except for the proportional exit when the emergency pause mechanism has been // triggered. This allows for a simple and safe way to exit the Pool. if (kind == ExitKindPhantom.EXACT_BPT_IN_FOR_TOKENS_OUT) { _ensurePaused(); // Note that this will cause the user's BPT to be burned, which is not something that happens during // regular operation of this Pool, and may lead to accounting errors. Because of this, it is highly // advisable to stop using a Pool after it is paused and the pause window expires. (bptAmountIn, amountsOut) = _proportionalExit(balances, userData); // For simplicity, due protocol fees are set to zero. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } else { _revert(Errors.UNHANDLED_BY_PHANTOM_POOL); } } function _proportionalExit(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This proportional exit function is only enabled if the contract is paused, to provide users a way to // retrieve their tokens in case of an emergency. // // This particular exit function is the only one available because it is the simplest, and therefore least // likely to be incorrect, or revert and lock funds. (, uint256[] memory balancesWithoutBpt) = _dropBptItem(balances); uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = StableMath._calcTokensOutGivenExactBptIn( balancesWithoutBpt, bptAmountIn, // This process burns BPT, rendering the approximation returned by `_dropBPTItem` inaccurate, // so we use the real method here _getVirtualSupply(balances[_bptIndex]) ); return (bptAmountIn, _addBptItem(amountsOut, 0)); } // Scaling factors function getScalingFactor(IERC20 token) external view returns (uint256) { return _scalingFactor(token); } /** * @dev Overrides scaling factor getter to introduce the tokens' rates. */ function _scalingFactors() internal view virtual override returns (uint256[] memory scalingFactors) { // There is no need to check the arrays length since both are based on `_getTotalTokens` uint256 totalTokens = _getTotalTokens(); scalingFactors = super._scalingFactors(); // Given there is no generic direction for this rounding, it follows the same strategy as the BasePool. // prettier-ignore { if (totalTokens > 0) { scalingFactors[0] = scalingFactors[0].mulDown(getTokenRate(_token0)); } if (totalTokens > 1) { scalingFactors[1] = scalingFactors[1].mulDown(getTokenRate(_token1)); } if (totalTokens > 2) { scalingFactors[2] = scalingFactors[2].mulDown(getTokenRate(_token2)); } if (totalTokens > 3) { scalingFactors[3] = scalingFactors[3].mulDown(getTokenRate(_token3)); } if (totalTokens > 4) { scalingFactors[4] = scalingFactors[4].mulDown(getTokenRate(_token4)); } } } /** * @dev Overrides scaling factor getter to introduce the token's rate. */ function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { // Given there is no generic direction for this rounding, it follows the same strategy as the BasePool. uint256 baseScalingFactor = super._scalingFactor(token); return baseScalingFactor.mulDown(getTokenRate(token)); } // Token rates /** * @dev Returns the rate providers configured for each token (in the same order as registered). */ function getRateProviders() external view returns (IRateProvider[] memory providers) { uint256 totalTokens = _getTotalTokens(); providers = new IRateProvider[](totalTokens); // prettier-ignore { if (totalTokens > 0) { providers[0] = _rateProvider0; } else { return providers; } if (totalTokens > 1) { providers[1] = _rateProvider1; } else { return providers; } if (totalTokens > 2) { providers[2] = _rateProvider2; } else { return providers; } if (totalTokens > 3) { providers[3] = _rateProvider3; } else { return providers; } if (totalTokens > 4) { providers[4] = _rateProvider4; } else { return providers; } } } function _getRateProvider(IERC20 token) internal view returns (IRateProvider) { // prettier-ignore if (token == _token0) { return _rateProvider0; } else if (token == _token1) { return _rateProvider1; } else if (token == _token2) { return _rateProvider2; } else if (token == _token3) { return _rateProvider3; } else if (token == _token4) { return _rateProvider4; } else { _revert(Errors.INVALID_TOKEN); } } /** * @dev Returns the token rate for token. All token rates are fixed-point values with 18 decimals. * In case there is no rate provider for the provided token it returns 1e18. */ function getTokenRate(IERC20 token) public view virtual returns (uint256) { // We optimize for the scenario where all tokens have rate providers, except the BPT (which never has a rate // provider). Therefore, we return early if token is BPT, and otherwise optimistically read the cache expecting // that it will not be empty (instead of e.g. fetching the provider to avoid a cache read, since we don't need // the provider at all). if (token == this) { return FixedPoint.ONE; } bytes32 tokenRateCache = _tokenRateCaches[token]; return tokenRateCache == bytes32(0) ? FixedPoint.ONE : tokenRateCache.getRate(); } /** * @dev Returns the cached value for token's rate. * Note it could return an empty value if the requested token does not have one or if the token does not belong * to the pool. */ function getTokenRateCache(IERC20 token) external view returns ( uint256 rate, uint256 duration, uint256 expires ) { _require(_getRateProvider(token) != IRateProvider(0), Errors.TOKEN_DOES_NOT_HAVE_RATE_PROVIDER); rate = _tokenRateCaches[token].getRate(); (duration, expires) = _tokenRateCaches[token].getTimestamps(); } /** * @dev Sets a new duration for a token rate cache. It reverts if there was no rate provider set initially. * Note this function also updates the current cached value. * @param duration Number of seconds until the current token rate is fetched again. */ function setTokenRateCacheDuration(IERC20 token, uint256 duration) external authenticate { IRateProvider provider = _getRateProvider(token); _require(address(provider) != address(0), Errors.TOKEN_DOES_NOT_HAVE_RATE_PROVIDER); _updateTokenRateCache(token, provider, duration); emit TokenRateProviderSet(token, provider, duration); } /** * @dev Forces a rate cache hit for a token. * It will revert if the requested token does not have an associated rate provider. */ function updateTokenRateCache(IERC20 token) external { IRateProvider provider = _getRateProvider(token); _require(address(provider) != address(0), Errors.TOKEN_DOES_NOT_HAVE_RATE_PROVIDER); uint256 duration = _tokenRateCaches[token].getDuration(); _updateTokenRateCache(token, provider, duration); } /** * @dev Internal function to update a token rate cache for a known provider and duration. * It trusts the given values, and does not perform any checks. */ function _updateTokenRateCache( IERC20 token, IRateProvider provider, uint256 duration ) private { uint256 rate = provider.getRate(); bytes32 cache = PriceRateCache.encode(rate, duration); _tokenRateCaches[token] = cache; emit TokenRateCacheUpdated(token, rate); } /** * @dev Caches the rates of all tokens if necessary */ function _cacheTokenRatesIfNecessary() internal { uint256 totalTokens = _getTotalTokens(); // prettier-ignore { if (totalTokens > 0) { _cacheTokenRateIfNecessary(_token0); } else { return; } if (totalTokens > 1) { _cacheTokenRateIfNecessary(_token1); } else { return; } if (totalTokens > 2) { _cacheTokenRateIfNecessary(_token2); } else { return; } if (totalTokens > 3) { _cacheTokenRateIfNecessary(_token3); } else { return; } if (totalTokens > 4) { _cacheTokenRateIfNecessary(_token4); } else { return; } } } /** * @dev Caches the rate for a token if necessary. It ignores the call if there is no provider set. */ function _cacheTokenRateIfNecessary(IERC20 token) internal { // We optimize for the scenario where all tokens have rate providers, except the BPT (which never has a rate // provider). Therefore, we return early if token is BPT, and otherwise optimistically read the cache expecting // that it will not be empty (instead of e.g. fetching the provider to avoid a cache read in situations where // we might not need the provider if the cache is still valid). if (token == this) return; bytes32 cache = _tokenRateCaches[token]; if (cache != bytes32(0)) { (uint256 duration, uint256 expires) = _tokenRateCaches[token].getTimestamps(); if (block.timestamp > expires) { // solhint-disable-previous-line not-rely-on-time _updateTokenRateCache(token, _getRateProvider(token), duration); } } } function getCachedProtocolSwapFeePercentage() public view returns (uint256) { return _cachedProtocolSwapFeePercentage; } function updateCachedProtocolSwapFeePercentage() external { _updateCachedProtocolSwapFeePercentage(getVault()); } function _updateCachedProtocolSwapFeePercentage(IVault vault) private { uint256 newPercentage = vault.getProtocolFeesCollector().getSwapFeePercentage(); _cachedProtocolSwapFeePercentage = newPercentage; emit CachedProtocolSwapFeePercentageUpdated(newPercentage); } /** * @dev Overrides only owner action to allow setting the cache duration for the token rates */ function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setTokenRateCacheDuration.selector)) || super._isOwnerOnlyAction(actionId); } function _skipBptIndex(uint256 index) internal view returns (uint256) { return index < _bptIndex ? index : index.sub(1); } function _dropBptItem(uint256[] memory amounts) internal view returns (uint256 virtualSupply, uint256[] memory amountsWithoutBpt) { // The initial amount of BPT pre-minted is _MAX_TOKEN_BALANCE and it goes entirely to the pool balance in the // vault. So the virtualSupply (the actual supply in circulation) is defined as: // virtualSupply = totalSupply() - (_balances[_bptIndex] - _dueProtocolFeeBptAmount) // // However, since this Pool never mints or burns BPT outside of the initial supply (except in the event of an // emergency pause), we can simply use `_MAX_TOKEN_BALANCE` instead of `totalSupply()` and save // gas. virtualSupply = _MAX_TOKEN_BALANCE - amounts[_bptIndex] + _dueProtocolFeeBptAmount; amountsWithoutBpt = new uint256[](amounts.length - 1); for (uint256 i = 0; i < amountsWithoutBpt.length; i++) { amountsWithoutBpt[i] = amounts[i < _bptIndex ? i : i + 1]; } } function _addBptItem(uint256[] memory amounts, uint256 bptAmount) internal view returns (uint256[] memory amountsWithBpt) { amountsWithBpt = new uint256[](amounts.length + 1); for (uint256 i = 0; i < amountsWithBpt.length; i++) { amountsWithBpt[i] = i == _bptIndex ? bptAmount : amounts[i < _bptIndex ? i : i - 1]; } } /** * @dev Returns the number of tokens in circulation. * * In other pools, this would be the same as `totalSupply`, but since this pool pre-mints all BPT, `totalSupply` * remains constant, whereas `getVirtualSupply` increases as users join the pool and decreases as they exit it. */ function getVirtualSupply() external view returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); // Note that unlike all other balances, the Vault's BPT balance does not need scaling as its scaling factor is // one. return _getVirtualSupply(balances[_bptIndex]); } function _getVirtualSupply(uint256 bptBalance) internal view returns (uint256) { return totalSupply().sub(bptBalance).add(_dueProtocolFeeBptAmount); } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time. * Because of preminted BPT, it uses `getVirtualSupply` instead of `totalSupply`. */ function getRate() public view override returns (uint256) { (, uint256[] memory balancesIncludingBpt, ) = getVault().getPoolTokens(getPoolId()); _upscaleArray(balancesIncludingBpt, _scalingFactors()); (uint256 virtualSupply, uint256[] memory balances) = _dropBptItem(balancesIncludingBpt); (uint256 currentAmp, ) = _getAmplificationParameter(); return StableMath._getRate(balances, currentAmp, virtualSupply); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseGeneralPool.sol"; import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol"; import "@balancer-labs/v2-pool-utils/contracts/interfaces/IRateProvider.sol"; import "./StableMath.sol"; import "./StablePoolUserData.sol"; contract StablePool is BaseGeneralPool, BaseMinimalSwapInfoPool, IRateProvider { using WordCodec for bytes32; using FixedPoint for uint256; using StablePoolUserData for bytes; // This contract uses timestamps to slowly update its Amplification parameter over time. These changes must occur // over a minimum time period much larger than the blocktime, making timestamp manipulation a non-issue. // solhint-disable not-rely-on-time // Amplification factor changes must happen over a minimum period of one day, and can at most divide or multiply the // current value by 2 every day. // WARNING: this only limits *a single* amplification change to have a maximum rate of change of twice the original // value daily. It is possible to perform multiple amplification changes in sequence to increase this value more // rapidly: for example, by doubling the value every day it can increase by a factor of 8 over three days (2^3). uint256 private constant _MIN_UPDATE_TIME = 1 days; uint256 private constant _MAX_AMP_UPDATE_DAILY_RATE = 2; bytes32 private _packedAmplificationData; event AmpUpdateStarted(uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime); event AmpUpdateStopped(uint256 currentValue); uint256 private immutable _totalTokens; IERC20 internal immutable _token0; IERC20 internal immutable _token1; IERC20 internal immutable _token2; IERC20 internal immutable _token3; IERC20 internal immutable _token4; // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time. // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported. uint256 internal immutable _scalingFactor0; uint256 internal immutable _scalingFactor1; uint256 internal immutable _scalingFactor2; uint256 internal immutable _scalingFactor3; uint256 internal immutable _scalingFactor4; // To track how many tokens are owed to the Vault as protocol fees, we measure and store the value of the invariant // after every join and exit. All invariant growth that happens between join and exit events is due to swap fees. uint256 internal _lastInvariant; // Because the invariant depends on the amplification parameter, and this value may change over time, we should only // compare invariants that were computed using the same value. We therefore store it whenever we store // _lastInvariant. uint256 internal _lastInvariantAmp; constructor( IVault vault, string memory name, string memory symbol, IERC20[] memory tokens, uint256 amplificationParameter, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) BasePool( vault, // Because we're inheriting from both BaseGeneralPool and BaseMinimalSwapInfoPool we can choose any // specialization setting. Since this Pool never registers or deregisters any tokens after construction, // picking Two Token when the Pool only has two tokens is free gas savings. tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.GENERAL, name, symbol, tokens, new address[](tokens.length), swapFeePercentage, pauseWindowDuration, bufferPeriodDuration, owner ) { _require(amplificationParameter >= StableMath._MIN_AMP, Errors.MIN_AMP); _require(amplificationParameter <= StableMath._MAX_AMP, Errors.MAX_AMP); uint256 totalTokens = tokens.length; _totalTokens = totalTokens; // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments _token0 = tokens[0]; _token1 = tokens[1]; _token2 = totalTokens > 2 ? tokens[2] : IERC20(0); _token3 = totalTokens > 3 ? tokens[3] : IERC20(0); _token4 = totalTokens > 4 ? tokens[4] : IERC20(0); _scalingFactor0 = _computeScalingFactor(tokens[0]); _scalingFactor1 = _computeScalingFactor(tokens[1]); _scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0; _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0; _scalingFactor4 = totalTokens > 4 ? _computeScalingFactor(tokens[4]) : 0; uint256 initialAmp = Math.mul(amplificationParameter, StableMath._AMP_PRECISION); _setAmplificationData(initialAmp); } function getLastInvariant() external view returns (uint256 lastInvariant, uint256 lastInvariantAmp) { lastInvariant = _lastInvariant; lastInvariantAmp = _lastInvariantAmp; } // Base Pool handlers // Swap - General Pool specialization (from BaseGeneralPool) function _onSwapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual override whenNotPaused returns (uint256) { (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariant = StableMath._calculateInvariant(currentAmp, balances, true); uint256 amountOut = StableMath._calcOutGivenIn( currentAmp, balances, indexIn, indexOut, swapRequest.amount, invariant ); return amountOut; } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual override whenNotPaused returns (uint256) { (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariant = StableMath._calculateInvariant(currentAmp, balances, true); uint256 amountIn = StableMath._calcInGivenOut( currentAmp, balances, indexIn, indexOut, swapRequest.amount, invariant ); return amountIn; } // Swap - Two Token Pool specialization (from BaseMinimalSwapInfoPool) function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual override returns (uint256) { _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS); (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays( swapRequest, balanceTokenIn, balanceTokenOut ); return _onSwapGivenIn(swapRequest, balances, indexIn, indexOut); } function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual override returns (uint256) { _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS); (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays( swapRequest, balanceTokenIn, balanceTokenOut ); return _onSwapGivenOut(swapRequest, balances, indexIn, indexOut); } function _getSwapBalanceArrays( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) private view returns ( uint256[] memory balances, uint256 indexIn, uint256 indexOut ) { balances = new uint256[](2); if (_isToken0(swapRequest.tokenIn)) { indexIn = 0; indexOut = 1; balances[0] = balanceTokenIn; balances[1] = balanceTokenOut; } else { // _token0 == swapRequest.tokenOut indexOut = 0; indexIn = 1; balances[0] = balanceTokenOut; balances[1] = balanceTokenIn; } } // Initialize function _onInitializePool( bytes32, address, address, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) { // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent // initialization in this case. StablePoolUserData.JoinKind kind = userData.joinKind(); _require(kind == StablePoolUserData.JoinKind.INIT, Errors.UNINITIALIZED); uint256[] memory amountsIn = userData.initialAmountsIn(); InputHelpers.ensureInputLengthMatch(amountsIn.length, _getTotalTokens()); _upscaleArray(amountsIn, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 invariantAfterJoin = StableMath._calculateInvariant(currentAmp, amountsIn, true); // Set the initial BPT to the value of the invariant. uint256 bptAmountOut = invariantAfterJoin; _updateLastInvariant(invariantAfterJoin, currentAmp); return (bptAmountOut, amountsIn); } // Join function _onJoinPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override whenNotPaused returns ( uint256, uint256[] memory, uint256[] memory ) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas to // calculate the fee amounts during each individual swap. uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the join, in order to compute the // protocol swap fee amounts due in future joins and exits. _updateInvariantAfterJoin(balances, amountsIn); return (bptAmountOut, amountsIn, dueProtocolFeeAmounts); } function _doJoin( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { StablePoolUserData.JoinKind kind = userData.joinKind(); if (kind == StablePoolUserData.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) { return _joinExactTokensInForBPTOut(balances, scalingFactors, userData); } else if (kind == StablePoolUserData.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) { return _joinTokenInForExactBPTOut(balances, userData); } else { _revert(Errors.UNHANDLED_JOIN_KIND); } } function _joinExactTokensInForBPTOut( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut(); InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length); _upscaleArray(amountsIn, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 bptAmountOut = StableMath._calcBptOutGivenExactTokensIn( currentAmp, balances, amountsIn, totalSupply(), getSwapFeePercentage() ); _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT); return (bptAmountOut, amountsIn); } function _joinTokenInForExactBPTOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut(); // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); uint256[] memory amountsIn = new uint256[](_getTotalTokens()); (uint256 currentAmp, ) = _getAmplificationParameter(); amountsIn[tokenIndex] = StableMath._calcTokenInGivenExactBptOut( currentAmp, balances, tokenIndex, bptAmountOut, totalSupply(), getSwapFeePercentage() ); return (bptAmountOut, amountsIn); } // Exit function _onExitPool( bytes32, address, address, uint256[] memory balances, uint256, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual override returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ) { // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens // out) remain functional. if (_isNotPaused()) { // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids // spending gas calculating fee amounts during each individual swap dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage); // Update current balances by subtracting the protocol fee amounts _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub); } else { // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and // reduce the potential for errors. dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); } (bptAmountIn, amountsOut) = _doExit(balances, scalingFactors, userData); // Update the invariant with the balances the Pool will have after the exit, in order to compute the // protocol swap fee amounts due in future joins and exits. _updateInvariantAfterExit(balances, amountsOut); return (bptAmountIn, amountsOut, dueProtocolFeeAmounts); } function _doExit( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view returns (uint256, uint256[] memory) { StablePoolUserData.ExitKind kind = userData.exitKind(); if (kind == StablePoolUserData.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) { return _exitExactBPTInForTokenOut(balances, userData); } else if (kind == StablePoolUserData.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) { return _exitExactBPTInForTokensOut(balances, userData); } else if (kind == StablePoolUserData.ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT) { return _exitBPTInForExactTokensOut(balances, scalingFactors, userData); } else { _revert(Errors.UNHANDLED_EXIT_KIND); } } function _exitExactBPTInForTokenOut(uint256[] memory balances, bytes memory userData) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS); // We exit in a single token, so initialize amountsOut with zeros uint256[] memory amountsOut = new uint256[](_getTotalTokens()); // And then assign the result to the selected token (uint256 currentAmp, ) = _getAmplificationParameter(); amountsOut[tokenIndex] = StableMath._calcTokenOutGivenExactBptIn( currentAmp, balances, tokenIndex, bptAmountIn, totalSupply(), getSwapFeePercentage() ); return (bptAmountIn, amountsOut); } function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData) private view returns (uint256, uint256[] memory) { // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency. // This particular exit function is the only one that remains available because it is the simplest one, and // therefore the one with the lowest likelihood of errors. uint256 bptAmountIn = userData.exactBptInForTokensOut(); // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`. uint256[] memory amountsOut = StableMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply()); return (bptAmountIn, amountsOut); } function _exitBPTInForExactTokensOut( uint256[] memory balances, uint256[] memory scalingFactors, bytes memory userData ) private view whenNotPaused returns (uint256, uint256[] memory) { // This exit function is disabled if the contract is paused. (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut(); InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens()); _upscaleArray(amountsOut, scalingFactors); (uint256 currentAmp, ) = _getAmplificationParameter(); uint256 bptAmountIn = StableMath._calcBptInGivenExactTokensOut( currentAmp, balances, amountsOut, totalSupply(), getSwapFeePercentage() ); _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT); return (bptAmountIn, amountsOut); } // Helpers /** * @dev Stores the last measured invariant, and the amplification parameter used to compute it. */ function _updateLastInvariant(uint256 invariant, uint256 amplificationParameter) internal { _lastInvariant = invariant; _lastInvariantAmp = amplificationParameter; } /** * @dev Returns the amount of protocol fees to pay, given the value of the last stored invariant and the current * balances. */ function _getDueProtocolFeeAmounts(uint256[] memory balances, uint256 protocolSwapFeePercentage) private view returns (uint256[] memory) { // Initialize with zeros uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens()); // Early return if the protocol swap fee percentage is zero, saving gas. if (protocolSwapFeePercentage == 0) { return dueProtocolFeeAmounts; } // Instead of paying the protocol swap fee in all tokens proportionally, we will pay it in a single one. This // will reduce gas costs for single asset joins and exits, as at most only two Pool balances will change (the // token joined/exited, and the token in which fees will be paid). // The protocol fee is charged using the token with the highest balance in the pool. uint256 chosenTokenIndex = 0; uint256 maxBalance = balances[0]; for (uint256 i = 1; i < _getTotalTokens(); ++i) { uint256 currentBalance = balances[i]; if (currentBalance > maxBalance) { chosenTokenIndex = i; maxBalance = currentBalance; } } // Set the fee amount to pay in the selected token dueProtocolFeeAmounts[chosenTokenIndex] = StableMath._calcDueTokenProtocolSwapFeeAmount( _lastInvariantAmp, balances, _lastInvariant, chosenTokenIndex, protocolSwapFeePercentage ); return dueProtocolFeeAmounts; } /** * @dev Computes and stores the value of the invariant after a join, which is required to compute due protocol fees * in the future. */ function _updateInvariantAfterJoin(uint256[] memory balances, uint256[] memory amountsIn) private { _mutateAmounts(balances, amountsIn, FixedPoint.add); (uint256 currentAmp, ) = _getAmplificationParameter(); // This invariant is used only to compute the final balance when calculating the protocol fees. These are // rounded down, so we round the invariant up. _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances, true), currentAmp); } /** * @dev Computes and stores the value of the invariant after an exit, which is required to compute due protocol fees * in the future. */ function _updateInvariantAfterExit(uint256[] memory balances, uint256[] memory amountsOut) private { _mutateAmounts(balances, amountsOut, FixedPoint.sub); (uint256 currentAmp, ) = _getAmplificationParameter(); // This invariant is used only to compute the final balance when calculating the protocol fees. These are // rounded down, so we round the invariant up. _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances, true), currentAmp); } /** * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`. * * Equivalent to `amounts = amounts.map(mutation)`. */ function _mutateAmounts( uint256[] memory toMutate, uint256[] memory arguments, function(uint256, uint256) pure returns (uint256) mutation ) private view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { toMutate[i] = mutation(toMutate[i], arguments[i]); } } /** * @dev This function returns the appreciation of one BPT relative to the * underlying tokens. This starts at 1 when the pool is created and grows over time */ function getRate() public view virtual override returns (uint256) { (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId()); _upscaleArray(balances, _scalingFactors()); (uint256 currentAmp, ) = _getAmplificationParameter(); return StableMath._getRate(balances, currentAmp, totalSupply()); } // Amplification /** * @dev Begins changing the amplification parameter to `rawEndValue` over time. The value will change linearly until * `endTime` is reached, when it will be `rawEndValue`. * * NOTE: Internally, the amplification parameter is represented using higher precision. The values returned by * `getAmplificationParameter` have to be corrected to account for this when comparing to `rawEndValue`. */ function startAmplificationParameterUpdate(uint256 rawEndValue, uint256 endTime) external authenticate { _require(rawEndValue >= StableMath._MIN_AMP, Errors.MIN_AMP); _require(rawEndValue <= StableMath._MAX_AMP, Errors.MAX_AMP); uint256 duration = Math.sub(endTime, block.timestamp); _require(duration >= _MIN_UPDATE_TIME, Errors.AMP_END_TIME_TOO_CLOSE); (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); _require(!isUpdating, Errors.AMP_ONGOING_UPDATE); uint256 endValue = Math.mul(rawEndValue, StableMath._AMP_PRECISION); // daily rate = (endValue / currentValue) / duration * 1 day // We perform all multiplications first to not reduce precision, and round the division up as we want to avoid // large rates. Note that these are regular integer multiplications and divisions, not fixed point. uint256 dailyRate = endValue > currentValue ? Math.divUp(Math.mul(1 days, endValue), Math.mul(currentValue, duration)) : Math.divUp(Math.mul(1 days, currentValue), Math.mul(endValue, duration)); _require(dailyRate <= _MAX_AMP_UPDATE_DAILY_RATE, Errors.AMP_RATE_TOO_HIGH); _setAmplificationData(currentValue, endValue, block.timestamp, endTime); } /** * @dev Stops the amplification parameter change process, keeping the current value. */ function stopAmplificationParameterUpdate() external authenticate { (uint256 currentValue, bool isUpdating) = _getAmplificationParameter(); _require(isUpdating, Errors.AMP_NO_ONGOING_UPDATE); _setAmplificationData(currentValue); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(StablePool.startAmplificationParameterUpdate.selector)) || (actionId == getActionId(StablePool.stopAmplificationParameterUpdate.selector)) || super._isOwnerOnlyAction(actionId); } function getAmplificationParameter() external view returns ( uint256 value, bool isUpdating, uint256 precision ) { (value, isUpdating) = _getAmplificationParameter(); precision = StableMath._AMP_PRECISION; } function _getAmplificationParameter() internal view returns (uint256 value, bool isUpdating) { (uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime) = _getAmplificationData(); // Note that block.timestamp >= startTime, since startTime is set to the current time when an update starts if (block.timestamp < endTime) { isUpdating = true; // We can skip checked arithmetic as: // - block.timestamp is always larger or equal to startTime // - endTime is always larger than startTime // - the value delta is bounded by the largest amplification parameter, which never causes the // multiplication to overflow. // This also means that the following computation will never revert nor yield invalid results. if (endValue > startValue) { value = startValue + ((endValue - startValue) * (block.timestamp - startTime)) / (endTime - startTime); } else { value = startValue - ((startValue - endValue) * (block.timestamp - startTime)) / (endTime - startTime); } } else { isUpdating = false; value = endValue; } } function _getMaxTokens() internal pure override returns (uint256) { return StableMath._MAX_STABLE_TOKENS; } function _getTotalTokens() internal view virtual override returns (uint256) { return _totalTokens; } function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) { // prettier-ignore if (_isToken0(token)) { return _getScalingFactor0(); } else if (_isToken1(token)) { return _getScalingFactor1(); } else if (token == _token2) { return _getScalingFactor2(); } else if (token == _token3) { return _getScalingFactor3(); } else if (token == _token4) { return _getScalingFactor4(); } else { _revert(Errors.INVALID_TOKEN); } } function _scalingFactors() internal view virtual override returns (uint256[] memory) { uint256 totalTokens = _getTotalTokens(); uint256[] memory scalingFactors = new uint256[](totalTokens); // prettier-ignore { scalingFactors[0] = _getScalingFactor0(); scalingFactors[1] = _getScalingFactor1(); if (totalTokens > 2) { scalingFactors[2] = _getScalingFactor2(); } else { return scalingFactors; } if (totalTokens > 3) { scalingFactors[3] = _getScalingFactor3(); } else { return scalingFactors; } if (totalTokens > 4) { scalingFactors[4] = _getScalingFactor4(); } else { return scalingFactors; } } return scalingFactors; } function _setAmplificationData(uint256 value) private { _storeAmplificationData(value, value, block.timestamp, block.timestamp); emit AmpUpdateStopped(value); } function _setAmplificationData( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) private { _storeAmplificationData(startValue, endValue, startTime, endTime); emit AmpUpdateStarted(startValue, endValue, startTime, endTime); } function _storeAmplificationData( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) private { _packedAmplificationData = WordCodec.encodeUint(uint64(startValue), 0) | WordCodec.encodeUint(uint64(endValue), 64) | WordCodec.encodeUint(uint64(startTime), 64 * 2) | WordCodec.encodeUint(uint64(endTime), 64 * 3); } function _getAmplificationData() private view returns ( uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime ) { startValue = _packedAmplificationData.decodeUint64(0); endValue = _packedAmplificationData.decodeUint64(64); startTime = _packedAmplificationData.decodeUint64(64 * 2); endTime = _packedAmplificationData.decodeUint64(64 * 3); } function _isToken0(IERC20 token) internal view returns (bool) { return token == _token0; } function _isToken1(IERC20 token) internal view returns (bool) { return token == _token1; } function _getScalingFactor0() internal view returns (uint256) { return _scalingFactor0; } function _getScalingFactor1() internal view returns (uint256) { return _scalingFactor1; } function _getScalingFactor2() internal view returns (uint256) { return _scalingFactor2; } function _getScalingFactor3() internal view returns (uint256) { return _scalingFactor3; } function _getScalingFactor4() internal view returns (uint256) { return _scalingFactor4; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol"; /** * Price rate caches are used to avoid querying the price rate for a token every time we need to work with it. It is * useful for slow changing rates, such as those that arise from interest-bearing tokens (e.g. waDAI into DAI). * * The cache data is packed into a single bytes32 value with the following structure: * [ expires | duration | price rate value ] * [ uint64 | uint64 | uint128 ] * [ MSB LSB ] * * * 'rate' is an 18 decimal fixed point number, supporting rates of up to ~3e20. 'expires' is a Unix timestamp, and * 'duration' is expressed in seconds. */ library PriceRateCache { using WordCodec for bytes32; uint256 private constant _PRICE_RATE_CACHE_VALUE_OFFSET = 0; uint256 private constant _PRICE_RATE_CACHE_DURATION_OFFSET = 128; uint256 private constant _PRICE_RATE_CACHE_EXPIRES_OFFSET = 128 + 64; /** * @dev Returns the rate of a price rate cache. */ function getRate(bytes32 cache) internal pure returns (uint256) { return cache.decodeUint128(_PRICE_RATE_CACHE_VALUE_OFFSET); } /** * @dev Returns the duration of a price rate cache. */ function getDuration(bytes32 cache) internal pure returns (uint256) { return cache.decodeUint64(_PRICE_RATE_CACHE_DURATION_OFFSET); } /** * @dev Returns the duration and expiration time of a price rate cache. */ function getTimestamps(bytes32 cache) internal pure returns (uint256 duration, uint256 expires) { duration = getDuration(cache); expires = cache.decodeUint64(_PRICE_RATE_CACHE_EXPIRES_OFFSET); } /** * @dev Encodes rate and duration into a price rate cache. The expiration time is computed automatically, counting * from the current time. */ function encode(uint256 rate, uint256 duration) internal view returns (bytes32) { _require(rate < 2**128, Errors.PRICE_RATE_OVERFLOW); // solhint-disable not-rely-on-time return WordCodec.encodeUint(uint128(rate), _PRICE_RATE_CACHE_VALUE_OFFSET) | WordCodec.encodeUint(uint64(duration), _PRICE_RATE_CACHE_DURATION_OFFSET) | WordCodec.encodeUint(uint64(block.timestamp + duration), _PRICE_RATE_CACHE_EXPIRES_OFFSET); } /** * @dev Returns rate, duration and expiration time of a price rate cache. */ function decode(bytes32 cache) internal pure returns ( uint256 rate, uint256 duration, uint256 expires ) { rate = getRate(cache); (duration, expires) = getTimestamps(cache); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IRateProvider { /** * @dev Returns an 18 decimal fixed point number that is the exchange rate of the token to some other underlying * token. The meaning of this rate depends on the context. */ function getRate() external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow checks. * Adapted from OpenZeppelin's SafeMath library. */ library Math { /** * @dev Returns the absolute value of a signed integer. */ function abs(int256 a) internal pure returns (uint256) { return a > 0 ? uint256(a) : uint256(-a); } /** * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the addition of two signed integers, reverting on overflow. */ function add(int256 a, int256 b) internal pure returns (int256) { int256 c = a + b; _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } /** * @dev Returns the subtraction of two signed integers, reverting on overflow. */ function sub(int256 a, int256 b) internal pure returns (int256) { int256 c = a - b; _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW); return c; } /** * @dev Returns the largest of two numbers of 256 bits. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers of 256 bits. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a * b; _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW); return c; } function div( uint256 a, uint256 b, bool roundUp ) internal pure returns (uint256) { return roundUp ? divUp(a, b) : divDown(a, b); } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); return a / b; } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { return 1 + (a - 1) / b; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./LogExpMath.sol"; import "../helpers/BalancerErrors.sol"; /* solhint-disable private-vars-leading-underscore */ library FixedPoint { uint256 internal constant ONE = 1e18; // 18 decimal places uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14) // Minimum base for the power function when the exponent is 'free' (larger than ONE). uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18; function add(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { // Fixed Point addition is the same as regular checked addition _require(b <= a, Errors.SUB_OVERFLOW); uint256 c = a - b; return c; } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); return product / ONE; } function mulUp(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW); if (product == 0) { return 0; } else { // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((product - 1) / ONE) + 1; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow return aInflated / b; } } function divUp(uint256 a, uint256 b) internal pure returns (uint256) { _require(b != 0, Errors.ZERO_DIVISION); if (a == 0) { return 0; } else { uint256 aInflated = a * ONE; _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow // The traditional divUp formula is: // divUp(x, y) := (x + y - 1) / y // To avoid intermediate overflow in the addition, we distribute the division and get: // divUp(x, y) := (x - 1) / y + 1 // Note that this requires x != 0, which we already tested for. return ((aInflated - 1) / b) + 1; } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above * the true value (that is, the error function expected - actual is always positive). */ function powDown(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); if (raw < maxError) { return 0; } else { return sub(raw, maxError); } } /** * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below * the true value (that is, the error function expected - actual is always negative). */ function powUp(uint256 x, uint256 y) internal pure returns (uint256) { uint256 raw = LogExpMath.pow(x, y); uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1); return add(raw, maxError); } /** * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1. * * Useful when computing the complement for values with some level of relative error, as it strips this error and * prevents intermediate negative values. */ function complement(uint256 x) internal pure returns (uint256) { return (x < ONE) ? (ONE - x) : 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-vault/contracts/interfaces/IAsset.sol"; import "../openzeppelin/IERC20.sol"; // solhint-disable function _asIAsset(IERC20[] memory tokens) pure returns (IAsset[] memory assets) { // solhint-disable-next-line no-inline-assembly assembly { assets := tokens } } function _sortTokens( IERC20 tokenA, IERC20 tokenB, IERC20 tokenC ) pure returns (IERC20[] memory tokens) { (uint256 indexTokenA, uint256 indexTokenB, uint256 indexTokenC) = _getSortedTokenIndexes(tokenA, tokenB, tokenC); tokens = new IERC20[](3); tokens[indexTokenA] = tokenA; tokens[indexTokenB] = tokenB; tokens[indexTokenC] = tokenC; } function _insertSorted(IERC20[] memory tokens, IERC20 token) pure returns (IERC20[] memory sorted) { sorted = new IERC20[](tokens.length + 1); if (tokens.length == 0) { sorted[0] = token; return sorted; } uint256 i; for (i = tokens.length; i > 0 && tokens[i - 1] > token; i--) sorted[i] = tokens[i - 1]; for (uint256 j = 0; j < i; j++) sorted[j] = tokens[j]; sorted[i] = token; } function _getSortedTokenIndexes( IERC20 tokenA, IERC20 tokenB, IERC20 tokenC ) pure returns ( uint256 indexTokenA, uint256 indexTokenB, uint256 indexTokenC ) { if (tokenA < tokenB) { if (tokenB < tokenC) { // (tokenA, tokenB, tokenC) return (0, 1, 2); } else if (tokenA < tokenC) { // (tokenA, tokenC, tokenB) return (0, 2, 1); } else { // (tokenC, tokenA, tokenB) return (1, 2, 0); } } else { // tokenB < tokenA if (tokenC < tokenB) { // (tokenC, tokenB, tokenA) return (2, 1, 0); } else if (tokenC < tokenA) { // (tokenB, tokenC, tokenA) return (2, 0, 1); } else { // (tokenB, tokenA, tokenC) return (1, 0, 2); } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // solhint-disable /** * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are * supported. */ function _require(bool condition, uint256 errorCode) pure { if (!condition) _revert(errorCode); } /** * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported. */ function _revert(uint256 errorCode) pure { // We're going to dynamically create a revert string based on the error code, with the following format: // 'BAL#{errorCode}' // where the code is left-padded with zeroes to three digits (so they range from 000 to 999). // // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a // number (8 to 16 bits) than the individual string characters. // // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a // safe place to rely on it without worrying about how its usage might affect e.g. memory contents. assembly { // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999 // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for // the '0' character. let units := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let tenths := add(mod(errorCode, 10), 0x30) errorCode := div(errorCode, 10) let hundreds := add(mod(errorCode, 10), 0x30) // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the // characters to it, each shifted by a multiple of 8. // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte // array). let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds)))) // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded // message will have the following layout: // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ] // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten. mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000) // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away). mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020) // The string length is fixed: 7 characters. mstore(0x24, 7) // Finally, the string itself is stored. mstore(0x44, revertReason) // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of // the encoded message is therefore 4 + 32 + 32 + 32 = 100. revert(0, 100) } } library Errors { // Math uint256 internal constant ADD_OVERFLOW = 0; uint256 internal constant SUB_OVERFLOW = 1; uint256 internal constant SUB_UNDERFLOW = 2; uint256 internal constant MUL_OVERFLOW = 3; uint256 internal constant ZERO_DIVISION = 4; uint256 internal constant DIV_INTERNAL = 5; uint256 internal constant X_OUT_OF_BOUNDS = 6; uint256 internal constant Y_OUT_OF_BOUNDS = 7; uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8; uint256 internal constant INVALID_EXPONENT = 9; // Input uint256 internal constant OUT_OF_BOUNDS = 100; uint256 internal constant UNSORTED_ARRAY = 101; uint256 internal constant UNSORTED_TOKENS = 102; uint256 internal constant INPUT_LENGTH_MISMATCH = 103; uint256 internal constant ZERO_TOKEN = 104; // Shared pools uint256 internal constant MIN_TOKENS = 200; uint256 internal constant MAX_TOKENS = 201; uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202; uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203; uint256 internal constant MINIMUM_BPT = 204; uint256 internal constant CALLER_NOT_VAULT = 205; uint256 internal constant UNINITIALIZED = 206; uint256 internal constant BPT_IN_MAX_AMOUNT = 207; uint256 internal constant BPT_OUT_MIN_AMOUNT = 208; uint256 internal constant EXPIRED_PERMIT = 209; uint256 internal constant NOT_TWO_TOKENS = 210; // Pools uint256 internal constant MIN_AMP = 300; uint256 internal constant MAX_AMP = 301; uint256 internal constant MIN_WEIGHT = 302; uint256 internal constant MAX_STABLE_TOKENS = 303; uint256 internal constant MAX_IN_RATIO = 304; uint256 internal constant MAX_OUT_RATIO = 305; uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306; uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307; uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308; uint256 internal constant INVALID_TOKEN = 309; uint256 internal constant UNHANDLED_JOIN_KIND = 310; uint256 internal constant ZERO_INVARIANT = 311; uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312; uint256 internal constant ORACLE_NOT_INITIALIZED = 313; uint256 internal constant ORACLE_QUERY_TOO_OLD = 314; uint256 internal constant ORACLE_INVALID_INDEX = 315; uint256 internal constant ORACLE_BAD_SECS = 316; uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317; uint256 internal constant AMP_ONGOING_UPDATE = 318; uint256 internal constant AMP_RATE_TOO_HIGH = 319; uint256 internal constant AMP_NO_ONGOING_UPDATE = 320; uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321; uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322; uint256 internal constant RELAYER_NOT_CONTRACT = 323; uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324; uint256 internal constant REBALANCING_RELAYER_REENTERED = 325; uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326; uint256 internal constant SWAPS_DISABLED = 327; uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328; uint256 internal constant PRICE_RATE_OVERFLOW = 329; uint256 internal constant INVALID_JOIN_EXIT_KIND_WHILE_SWAPS_DISABLED = 330; uint256 internal constant WEIGHT_CHANGE_TOO_FAST = 331; uint256 internal constant LOWER_GREATER_THAN_UPPER_TARGET = 332; uint256 internal constant UPPER_TARGET_TOO_HIGH = 333; uint256 internal constant UNHANDLED_BY_LINEAR_POOL = 334; uint256 internal constant OUT_OF_TARGET_RANGE = 335; uint256 internal constant UNHANDLED_EXIT_KIND = 336; uint256 internal constant UNAUTHORIZED_EXIT = 337; uint256 internal constant MAX_MANAGEMENT_SWAP_FEE_PERCENTAGE = 338; uint256 internal constant UNHANDLED_BY_MANAGED_POOL = 339; uint256 internal constant UNHANDLED_BY_PHANTOM_POOL = 340; uint256 internal constant TOKEN_DOES_NOT_HAVE_RATE_PROVIDER = 341; uint256 internal constant INVALID_INITIALIZATION = 342; uint256 internal constant OUT_OF_NEW_TARGET_RANGE = 343; uint256 internal constant UNAUTHORIZED_OPERATION = 344; uint256 internal constant UNINITIALIZED_POOL_CONTROLLER = 345; // Lib uint256 internal constant REENTRANCY = 400; uint256 internal constant SENDER_NOT_ALLOWED = 401; uint256 internal constant PAUSED = 402; uint256 internal constant PAUSE_WINDOW_EXPIRED = 403; uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404; uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405; uint256 internal constant INSUFFICIENT_BALANCE = 406; uint256 internal constant INSUFFICIENT_ALLOWANCE = 407; uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408; uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409; uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410; uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411; uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412; uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413; uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414; uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415; uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416; uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417; uint256 internal constant SAFE_ERC20_CALL_FAILED = 418; uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419; uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420; uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421; uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422; uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423; uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424; uint256 internal constant BUFFER_PERIOD_EXPIRED = 425; uint256 internal constant CALLER_IS_NOT_OWNER = 426; uint256 internal constant NEW_OWNER_IS_ZERO = 427; uint256 internal constant CODE_DEPLOYMENT_FAILED = 428; uint256 internal constant CALL_TO_NON_CONTRACT = 429; uint256 internal constant LOW_LEVEL_CALL_FAILED = 430; uint256 internal constant NOT_PAUSED = 431; uint256 internal constant ADDRESS_ALREADY_ALLOWLISTED = 432; uint256 internal constant ADDRESS_NOT_ALLOWLISTED = 433; // Vault uint256 internal constant INVALID_POOL_ID = 500; uint256 internal constant CALLER_NOT_POOL = 501; uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502; uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503; uint256 internal constant INVALID_SIGNATURE = 504; uint256 internal constant EXIT_BELOW_MIN = 505; uint256 internal constant JOIN_ABOVE_MAX = 506; uint256 internal constant SWAP_LIMIT = 507; uint256 internal constant SWAP_DEADLINE = 508; uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509; uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510; uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511; uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512; uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513; uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514; uint256 internal constant INVALID_POST_LOAN_BALANCE = 515; uint256 internal constant INSUFFICIENT_ETH = 516; uint256 internal constant UNALLOCATED_ETH = 517; uint256 internal constant ETH_TRANSFER = 518; uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519; uint256 internal constant TOKENS_MISMATCH = 520; uint256 internal constant TOKEN_NOT_REGISTERED = 521; uint256 internal constant TOKEN_ALREADY_REGISTERED = 522; uint256 internal constant TOKENS_ALREADY_SET = 523; uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524; uint256 internal constant NONZERO_TOKEN_BALANCE = 525; uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526; uint256 internal constant POOL_NO_TOKENS = 527; uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528; // Fees uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600; uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601; uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./StablePhantomPool.sol"; library StablePhantomPoolUserDataHelpers { function joinKind(bytes memory self) internal pure returns (StablePhantomPool.JoinKindPhantom) { return abi.decode(self, (StablePhantomPool.JoinKindPhantom)); } function exitKind(bytes memory self) internal pure returns (StablePhantomPool.ExitKindPhantom) { return abi.decode(self, (StablePhantomPool.ExitKindPhantom)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (StablePhantomPool.JoinKindPhantom, uint256[])); } // Exits function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (StablePhantomPool.ExitKindPhantom, uint256)); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; import "./BalancerErrors.sol"; library InputHelpers { function ensureInputLengthMatch(uint256 a, uint256 b) internal pure { _require(a == b, Errors.INPUT_LENGTH_MISMATCH); } function ensureInputLengthMatch( uint256 a, uint256 b, uint256 c ) internal pure { _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH); } function ensureArrayIsSorted(IERC20[] memory array) internal pure { address[] memory addressArray; // solhint-disable-next-line no-inline-assembly assembly { addressArray := array } ensureArrayIsSorted(addressArray); } function ensureArrayIsSorted(address[] memory array) internal pure { if (array.length < 2) { return; } address previous = array[0]; for (uint256 i = 1; i < array.length; ++i) { address current = array[i]; _require(previous < current, Errors.UNSORTED_ARRAY); previous = current; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in * a single storage slot, saving gas by performing less storage accesses. * * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128. * * We could use Solidity structs to pack values together in a single storage slot instead of relying on a custom and * error-prone library, but unfortunately Solidity only allows for structs to live in either storage, calldata or * memory. Because a memory struct uses not just memory but also a slot in the stack (to store its memory location), * using memory for word-sized values (i.e. of 256 bits or less) is strictly less gas performant, and doesn't even * prevent stack-too-deep issues. This is compounded by the fact that Balancer contracts typically are memory-intensive, * and the cost of accesing memory increases quadratically with the number of allocated words. Manual packing and * unpacking is therefore the preferred approach. */ library WordCodec { // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word, // or to insert a new one replacing the old. uint256 private constant _MASK_1 = 2**(1) - 1; uint256 private constant _MASK_5 = 2**(5) - 1; uint256 private constant _MASK_7 = 2**(7) - 1; uint256 private constant _MASK_10 = 2**(10) - 1; uint256 private constant _MASK_16 = 2**(16) - 1; uint256 private constant _MASK_22 = 2**(22) - 1; uint256 private constant _MASK_31 = 2**(31) - 1; uint256 private constant _MASK_32 = 2**(32) - 1; uint256 private constant _MASK_53 = 2**(53) - 1; uint256 private constant _MASK_64 = 2**(64) - 1; uint256 private constant _MASK_96 = 2**(96) - 1; uint256 private constant _MASK_128 = 2**(128) - 1; uint256 private constant _MASK_192 = 2**(192) - 1; // Largest positive values that can be represented as N bits signed integers. int256 private constant _MAX_INT_22 = 2**(21) - 1; int256 private constant _MAX_INT_53 = 2**(52) - 1; // In-place insertion /** * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new * word. */ function insertBool( bytes32 word, bool value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset)); return clearedWord | bytes32(uint256(value ? 1 : 0) << offset); } // Unsigned /** * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes. */ function insertUint5( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 7 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 7 bits, otherwise it may overwrite sibling bytes. */ function insertUint7( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_7 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes. */ function insertUint10( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. * Returns the new word. * * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes. */ function insertUint16( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 31 bits. */ function insertUint31( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes. */ function insertUint32( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset)); return clearedWord | bytes32(value << offset); } /** * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes. */ function insertUint64( bytes32 word, uint256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset)); return clearedWord | bytes32(value << offset); } // Signed /** * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns * the new word. * * Assumes `value` can be represented using 22 bits. */ function insertInt22( bytes32 word, int256 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset)); // Integer values need masking to remove the upper bits of negative values. return clearedWord | bytes32((uint256(value) & _MASK_22) << offset); } // Bytes /** * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word. * * Assumes `value` can be represented using 192 bits. */ function insertBits192( bytes32 word, bytes32 value, uint256 offset ) internal pure returns (bytes32) { bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset)); return clearedWord | bytes32((uint256(value) & _MASK_192) << offset); } // Encoding // Unsigned /** * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to * ensure that the values are bounded. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) { return bytes32(value << offset); } // Signed /** * @dev Encodes a 22 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_22) << offset); } /** * @dev Encodes a 53 bits signed integer shifted by an offset. * * The return value can be logically ORed with other encoded values to form a 256 bit word. */ function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) { // Integer values need masking to remove the upper bits of negative values. return bytes32((uint256(value) & _MASK_53) << offset); } // Decoding /** * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word. */ function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) { return (uint256(word >> offset) & _MASK_1) == 1; } // Unsigned /** * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_5; } /** * @dev Decodes and returns a 7 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint7(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_7; } /** * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_10; } /** * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_16; } /** * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_31; } /** * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_32; } /** * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_64; } /** * @dev Decodes and returns a 96 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint96(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_96; } /** * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word. */ function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) { return uint256(word >> offset) & _MASK_128; } // Signed /** * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_22); // In case the decoded value is greater than the max positive integer that can be represented with 22 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value; } /** * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word. */ function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) { int256 value = int256(uint256(word >> offset) & _MASK_53); // In case the decoded value is greater than the max positive integer that can be represented with 53 bits, // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit // representation. return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IGeneralPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IGeneralPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the General * specialization setting. */ abstract contract BaseGeneralPool is IGeneralPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) public virtual override onlyVault(swapRequest.poolId) returns (uint256) { _validateIndexes(indexIn, indexOut, _getTotalTokens()); uint256[] memory scalingFactors = _scalingFactors(); return swapRequest.kind == IVault.SwapKind.GIVEN_IN ? _swapGivenIn(swapRequest, balances, indexIn, indexOut, scalingFactors) : _swapGivenOut(swapRequest, balances, indexIn, indexOut, scalingFactors); } function _swapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut, uint256[] memory scalingFactors ) internal returns (uint256) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. swapRequest.amount = _subtractSwapFeeAmount(swapRequest.amount); _upscaleArray(balances, scalingFactors); swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexIn]); uint256 amountOut = _onSwapGivenIn(swapRequest, balances, indexIn, indexOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactors[indexOut]); } function _swapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut, uint256[] memory scalingFactors ) internal returns (uint256) { _upscaleArray(balances, scalingFactors); swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexOut]); uint256 amountIn = _onSwapGivenOut(swapRequest, balances, indexIn, indexOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactors[indexIn]); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. return _addSwapFeeAmount(amountIn); } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest` and `balances` are upscaled. The swap fee has already been deducted from * `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest` and `balances` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) internal virtual returns (uint256); function _validateIndexes( uint256 indexIn, uint256 indexOut, uint256 limit ) private pure { _require(indexIn < limit && indexOut < limit, Errors.OUT_OF_BOUNDS); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./BasePool.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol"; /** * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`. * * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal * Swap Info specialization settings. */ abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool { // Swap Hooks function onSwap( SwapRequest memory request, uint256 balanceTokenIn, uint256 balanceTokenOut ) public virtual override onlyVault(request.poolId) returns (uint256) { uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn); uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut); if (request.kind == IVault.SwapKind.GIVEN_IN) { // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis. uint256 amountInMinusSwapFees = _subtractSwapFeeAmount(request.amount); // Process the (upscaled!) swap fee. uint256 swapFee = request.amount - amountInMinusSwapFees; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); request.amount = amountInMinusSwapFees; // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenIn); uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut); // amountOut tokens are exiting the Pool, so we round down. return _downscaleDown(amountOut, scalingFactorTokenOut); } else { // All token amounts are upscaled. balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn); balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut); request.amount = _upscale(request.amount, scalingFactorTokenOut); uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut); // amountIn tokens are entering the Pool, so we round up. amountIn = _downscaleUp(amountIn, scalingFactorTokenIn); // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis. uint256 amountInPlusSwapFees = _addSwapFeeAmount(amountIn); // Process the (upscaled!) swap fee. uint256 swapFee = amountInPlusSwapFees - amountIn; _processSwapFeeAmount(request.tokenIn, _upscale(swapFee, scalingFactorTokenIn)); return amountInPlusSwapFees; } } /* * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known. * * Returns the amount of tokens that will be taken from the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already * been deducted from `swapRequest.amount`. * * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the * Vault. */ function _onSwapGivenIn( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /* * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known. * * Returns the amount of tokens that will be granted to the Pool in return. * * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. * * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee * and returning it to the Vault. */ function _onSwapGivenOut( SwapRequest memory swapRequest, uint256 balanceTokenIn, uint256 balanceTokenOut ) internal virtual returns (uint256); /** * @dev Called whenever a swap fee is charged. Implementations should call their parents via super, to ensure all * implementations in the inheritance tree are called. * * Callers must call one of the three `_processSwapFeeAmount` functions when swap fees are computed, * and upscale `amount`. */ function _processSwapFeeAmount( uint256, /*index*/ uint256 /*amount*/ ) internal virtual { // solhint-disable-previous-line no-empty-blocks } function _processSwapFeeAmount(IERC20 token, uint256 amount) internal { _processSwapFeeAmount(_tokenAddressToIndex(token), amount); } function _processSwapFeeAmounts(uint256[] memory amounts) internal { InputHelpers.ensureInputLengthMatch(amounts.length, _getTotalTokens()); for (uint256 i = 0; i < _getTotalTokens(); ++i) { _processSwapFeeAmount(i, amounts[i]); } } /** * @dev Returns the index of `token` in the Pool's token array (i.e. the one `vault.getPoolTokens()` would return). * * A trivial (and incorrect!) implementation is already provided for Pools that don't override * `_processSwapFeeAmount` and skip the entire feature. However, Pools that do override `_processSwapFeeAmount` * *must* override this function with a meaningful implementation. */ function _tokenAddressToIndex( IERC20 /*token*/ ) internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; // These functions start with an underscore, as if they were part of a contract and not a library. At some point this // should be fixed. Additionally, some variables have non mixed case names (e.g. P_D) that relate to the mathematical // derivations. // solhint-disable private-vars-leading-underscore, var-name-mixedcase library StableMath { using FixedPoint for uint256; uint256 internal constant _MIN_AMP = 1; uint256 internal constant _MAX_AMP = 5000; uint256 internal constant _AMP_PRECISION = 1e3; uint256 internal constant _MAX_STABLE_TOKENS = 5; // Note on unchecked arithmetic: // This contract performs a large number of additions, subtractions, multiplications and divisions, often inside // loops. Since many of these operations are gas-sensitive (as they happen e.g. during a swap), it is important to // not make any unnecessary checks. We rely on a set of invariants to avoid having to use checked arithmetic (the // Math library), including: // - the number of tokens is bounded by _MAX_STABLE_TOKENS // - the amplification parameter is bounded by _MAX_AMP * _AMP_PRECISION, which fits in 23 bits // - the token balances are bounded by 2^112 (guaranteed by the Vault) times 1e18 (the maximum scaling factor), // which fits in 172 bits // // This means e.g. we can safely multiply a balance by the amplification parameter without worrying about overflow. // About swap fees on joins and exits: // Any join or exit that is not perfectly balanced (e.g. all single token joins or exits) is mathematically // equivalent to a perfectly balanced join or exit followed by a series of swaps. Since these swaps would charge // swap fees, it follows that (some) joins and exits should as well. // On these operations, we split the token amounts in 'taxable' and 'non-taxable' portions, where the 'taxable' part // is the one to which swap fees are applied. // Computes the invariant given the current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) function _calculateInvariant( uint256 amplificationParameter, uint256[] memory balances, bool roundUp ) internal pure returns (uint256) { /********************************************************************************************** // invariant // // D = invariant D^(n+1) // // A = amplification coefficient A n^n S + D = A D n^n + ----------- // // S = sum of balances n^n P // // P = product of balances // // n = number of tokens // **********************************************************************************************/ // We support rounding up or down. uint256 sum = 0; uint256 numTokens = balances.length; for (uint256 i = 0; i < numTokens; i++) { sum = sum.add(balances[i]); } if (sum == 0) { return 0; } uint256 prevInvariant = 0; uint256 invariant = sum; uint256 ampTimesTotal = amplificationParameter * numTokens; for (uint256 i = 0; i < 255; i++) { uint256 P_D = balances[0] * numTokens; for (uint256 j = 1; j < numTokens; j++) { P_D = Math.div(Math.mul(Math.mul(P_D, balances[j]), numTokens), invariant, roundUp); } prevInvariant = invariant; invariant = Math.div( Math.mul(Math.mul(numTokens, invariant), invariant).add( Math.div(Math.mul(Math.mul(ampTimesTotal, sum), P_D), _AMP_PRECISION, roundUp) ), Math.mul(numTokens + 1, invariant).add( // No need to use checked arithmetic for the amp precision, the amp is guaranteed to be at least 1 Math.div(Math.mul(ampTimesTotal - _AMP_PRECISION, P_D), _AMP_PRECISION, !roundUp) ), roundUp ); if (invariant > prevInvariant) { if (invariant - prevInvariant <= 1) { return invariant; } } else if (prevInvariant - invariant <= 1) { return invariant; } } _revert(Errors.STABLE_INVARIANT_DIDNT_CONVERGE); } // Computes how many tokens can be taken out of a pool if `tokenAmountIn` are sent, given the current balances. // The amplification parameter equals: A n^(n-1) // The invariant should be rounded up. function _calcOutGivenIn( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountIn, uint256 invariant ) internal pure returns (uint256) { /************************************************************************************************************** // outGivenIn token x for y - polynomial equation to solve // // ay = amount out to calculate // // by = balance token out // // y = by - ay (finalBalanceOut) // // D = invariant D D^(n+1) // // A = amplification coefficient y^2 + ( S - ---------- - D) * y - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but y // // P = product of final balances but y // **************************************************************************************************************/ // Amount out, so we round down overall. balances[tokenIndexIn] = balances[tokenIndexIn].add(tokenAmountIn); uint256 finalBalanceOut = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexOut ); // No need to use checked arithmetic since `tokenAmountIn` was actually added to the same balance right before // calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexIn] = balances[tokenIndexIn] - tokenAmountIn; return balances[tokenIndexOut].sub(finalBalanceOut).sub(1); } // Computes how many tokens must be sent to a pool if `tokenAmountOut` are sent given the // current balances, using the Newton-Raphson approximation. // The amplification parameter equals: A n^(n-1) // The invariant should be rounded up. function _calcInGivenOut( uint256 amplificationParameter, uint256[] memory balances, uint256 tokenIndexIn, uint256 tokenIndexOut, uint256 tokenAmountOut, uint256 invariant ) internal pure returns (uint256) { /************************************************************************************************************** // inGivenOut token x for y - polynomial equation to solve // // ax = amount in to calculate // // bx = balance token in // // x = bx + ax (finalBalanceIn) // // D = invariant D D^(n+1) // // A = amplification coefficient x^2 + ( S - ---------- - D) * x - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but x // // P = product of final balances but x // **************************************************************************************************************/ // Amount in, so we round up overall. balances[tokenIndexOut] = balances[tokenIndexOut].sub(tokenAmountOut); uint256 finalBalanceIn = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, invariant, tokenIndexIn ); // No need to use checked arithmetic since `tokenAmountOut` was actually subtracted from the same balance right // before calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array. balances[tokenIndexOut] = balances[tokenIndexOut] + tokenAmountOut; return finalBalanceIn.sub(balances[tokenIndexIn]).add(1); } function _calcBptOutGivenExactTokensIn( uint256 amp, uint256[] memory balances, uint256[] memory amountsIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT out, so we round down overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token, relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length); // The weighted sum of token balance ratios with fee uint256 invariantRatioWithFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divDown(sumBalances); balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]); invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { uint256 amountInWithoutFee; // Check if the balance ratio is greater than the ideal ratio to charge fees or not if (balanceRatiosWithFee[i] > invariantRatioWithFees) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE)); uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } else { amountInWithoutFee = amountsIn[i]; } newBalances[i] = balances[i].add(amountInWithoutFee); } // Get current and new invariants, taking swap fees into account uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = _calculateInvariant(amp, newBalances, false); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // If the invariant didn't increase for any reason, we simply don't mint BPT if (invariantRatio > FixedPoint.ONE) { return bptTotalSupply.mulDown(invariantRatio - FixedPoint.ONE); } else { return 0; } } function _calcTokenInGivenExactBptOut( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token in, so we round up overall. // Get the current invariant uint256 currentInvariant = _calculateInvariant(amp, balances, true); // Calculate new invariant uint256 newInvariant = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount in without fee. uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountInWithoutFee = newBalanceTokenIndex.sub(balances[tokenIndex]); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees // accordingly. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } /* Flow of calculations: amountsTokenOut -> amountsOutProportional -> amountOutPercentageExcess -> amountOutBeforeFee -> newInvariant -> amountBPTIn */ function _calcBptInGivenExactTokensOut( uint256 amp, uint256[] memory balances, uint256[] memory amountsOut, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // BPT in, so we round up overall. // First loop calculates the sum of all token balances, which will be used to calculate // the current weights of each token relative to this sum uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // Calculate the weighted balance ratio without considering fees uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length); uint256 invariantRatioWithoutFees = 0; for (uint256 i = 0; i < balances.length; i++) { uint256 currentWeight = balances[i].divUp(sumBalances); balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]); invariantRatioWithoutFees = invariantRatioWithoutFees.add(balanceRatiosWithoutFee[i].mulUp(currentWeight)); } // Second loop calculates new amounts in, taking into account the fee on the percentage excess uint256[] memory newBalances = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to // 'token out'. This results in slightly larger price impact. uint256 amountOutWithFee; if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) { uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement()); uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage)); } else { amountOutWithFee = amountsOut[i]; } newBalances[i] = balances[i].sub(amountOutWithFee); } // Get current and new invariants, taking into account swap fees uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = _calculateInvariant(amp, newBalances, false); uint256 invariantRatio = newInvariant.divDown(currentInvariant); // return amountBPTIn return bptTotalSupply.mulUp(invariantRatio.complement()); } function _calcTokenOutGivenExactBptIn( uint256 amp, uint256[] memory balances, uint256 tokenIndex, uint256 bptAmountIn, uint256 bptTotalSupply, uint256 swapFeePercentage ) internal pure returns (uint256) { // Token out, so we round down overall. // Get the current and new invariants. Since we need a bigger new invariant, we round the current one up. uint256 currentInvariant = _calculateInvariant(amp, balances, true); uint256 newInvariant = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply).mulUp(currentInvariant); // Calculate amount out without fee uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances( amp, balances, newInvariant, tokenIndex ); uint256 amountOutWithoutFee = balances[tokenIndex].sub(newBalanceTokenIndex); // First calculate the sum of all token balances, which will be used to calculate // the current weight of each token uint256 sumBalances = 0; for (uint256 i = 0; i < balances.length; i++) { sumBalances = sumBalances.add(balances[i]); } // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result // in swap fees. uint256 currentWeight = balances[tokenIndex].divDown(sumBalances); uint256 taxablePercentage = currentWeight.complement(); // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it // to 'token out'. This results in slightly larger price impact. Fees are rounded up. uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage); uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount); // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50% return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)); } function _calcTokensOutGivenExactBptIn( uint256[] memory balances, uint256 bptAmountIn, uint256 bptTotalSupply ) internal pure returns (uint256[] memory) { /********************************************************************************************** // exactBPTInForTokensOut // // (per token) // // aO = tokenAmountOut / bptIn \ // // b = tokenBalance a0 = b * | --------------------- | // // bptIn = bptAmountIn \ bptTotalSupply / // // bpt = bptTotalSupply // **********************************************************************************************/ // Since we're computing an amount out, we round down overall. This means rounding down on both the // multiplication and division. uint256 bptRatio = bptAmountIn.divDown(bptTotalSupply); uint256[] memory amountsOut = new uint256[](balances.length); for (uint256 i = 0; i < balances.length; i++) { amountsOut[i] = balances[i].mulDown(bptRatio); } return amountsOut; } // The amplification parameter equals: A n^(n-1) function _calcDueTokenProtocolSwapFeeAmount( uint256 amplificationParameter, uint256[] memory balances, uint256 lastInvariant, uint256 tokenIndex, uint256 protocolSwapFeePercentage ) internal pure returns (uint256) { /************************************************************************************************************** // oneTokenSwapFee - polynomial equation to solve // // af = fee amount to calculate in one token // // bf = balance of fee token // // f = bf - af (finalBalanceFeeToken) // // D = old invariant D D^(n+1) // // A = amplification coefficient f^2 + ( S - ---------- - D) * f - ------------- = 0 // // n = number of tokens (A * n^n) A * n^2n * P // // S = sum of final balances but f // // P = product of final balances but f // **************************************************************************************************************/ // Protocol swap fee amount, so we round down overall. uint256 finalBalanceFeeToken = _getTokenBalanceGivenInvariantAndAllOtherBalances( amplificationParameter, balances, lastInvariant, tokenIndex ); if (balances[tokenIndex] <= finalBalanceFeeToken) { // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool // from entering a locked state in which joins and exits revert while computing accumulated swap fees. return 0; } // Result is rounded down uint256 accumulatedTokenSwapFees = balances[tokenIndex] - finalBalanceFeeToken; return accumulatedTokenSwapFees.mulDown(protocolSwapFeePercentage); } // This function calculates the balance of a given token (tokenIndex) // given all the other balances and the invariant function _getTokenBalanceGivenInvariantAndAllOtherBalances( uint256 amplificationParameter, uint256[] memory balances, uint256 invariant, uint256 tokenIndex ) internal pure returns (uint256) { // Rounds result up overall uint256 ampTimesTotal = amplificationParameter * balances.length; uint256 sum = balances[0]; uint256 P_D = balances[0] * balances.length; for (uint256 j = 1; j < balances.length; j++) { P_D = Math.divDown(Math.mul(Math.mul(P_D, balances[j]), balances.length), invariant); sum = sum.add(balances[j]); } // No need to use safe math, based on the loop above `sum` is greater than or equal to `balances[tokenIndex]` sum = sum - balances[tokenIndex]; uint256 inv2 = Math.mul(invariant, invariant); // We remove the balance from c by multiplying it uint256 c = Math.mul( Math.mul(Math.divUp(inv2, Math.mul(ampTimesTotal, P_D)), _AMP_PRECISION), balances[tokenIndex] ); uint256 b = sum.add(Math.mul(Math.divDown(invariant, ampTimesTotal), _AMP_PRECISION)); // We iterate to find the balance uint256 prevTokenBalance = 0; // We multiply the first iteration outside the loop with the invariant to set the value of the // initial approximation. uint256 tokenBalance = Math.divUp(inv2.add(c), invariant.add(b)); for (uint256 i = 0; i < 255; i++) { prevTokenBalance = tokenBalance; tokenBalance = Math.divUp( Math.mul(tokenBalance, tokenBalance).add(c), Math.mul(tokenBalance, 2).add(b).sub(invariant) ); if (tokenBalance > prevTokenBalance) { if (tokenBalance - prevTokenBalance <= 1) { return tokenBalance; } } else if (prevTokenBalance - tokenBalance <= 1) { return tokenBalance; } } _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE); } function _getRate( uint256[] memory balances, uint256 amp, uint256 supply ) internal pure returns (uint256) { // When calculating the current BPT rate, we may not have paid the protocol fees, therefore // the invariant should be smaller than its current value. Then, we round down overall. uint256 invariant = _calculateInvariant(amp, balances, false); return invariant.divDown(supply); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; library StablePoolUserData { // In order to preserve backwards compatibility, make sure new join and exit kinds are added at the end of the enum. enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT } enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT } function joinKind(bytes memory self) internal pure returns (JoinKind) { return abi.decode(self, (JoinKind)); } function exitKind(bytes memory self) internal pure returns (ExitKind) { return abi.decode(self, (ExitKind)); } // Joins function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) { (, amountsIn) = abi.decode(self, (JoinKind, uint256[])); } function exactTokensInForBptOut(bytes memory self) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) { (, amountsIn, minBPTAmountOut) = abi.decode(self, (JoinKind, uint256[], uint256)); } function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) { (, bptAmountOut, tokenIndex) = abi.decode(self, (JoinKind, uint256, uint256)); } // Exits function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) { (, bptAmountIn, tokenIndex) = abi.decode(self, (ExitKind, uint256, uint256)); } function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) { (, bptAmountIn) = abi.decode(self, (ExitKind, uint256)); } function bptInForExactTokensOut(bytes memory self) internal pure returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn) { (, amountsOut, maxBPTAmountIn) = abi.decode(self, (ExitKind, uint256[], uint256)); } }
// SPDX-License-Identifier: MIT // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. _require(x < 2**255, Errors.X_OUT_OF_BOUNDS); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y _require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, Errors.PRODUCT_OUT_OF_BOUNDS ); return uint256(exp(logx_times_y)); } /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } /** * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument. */ function log(int256 arg, int256 base) internal pure returns (int256) { // This performs a simple base change: log(arg, base) = ln(arg) / ln(base). // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by // upscaling. int256 logBase; if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) { logBase = _ln_36(base); } else { logBase = _ln(base) * ONE_18; } int256 logArg; if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) { logArg = _ln_36(arg); } else { logArg = _ln(arg) * ONE_18; } // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places return (logArg * ONE_18) / logBase; } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { // The real natural logarithm is not defined for negative numbers or zero. _require(a > 0, Errors.OUT_OF_BOUNDS); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol"; import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol"; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol"; import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol"; import "./BalancerPoolToken.sol"; import "./BasePoolAuthorization.sol"; // solhint-disable max-states-count /** * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism. * * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the * `whenNotPaused` modifier. * * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer. * * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces * and implement the swap callbacks themselves. */ abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable { using WordCodec for bytes32; using FixedPoint for uint256; uint256 private constant _MIN_TOKENS = 2; uint256 private constant _DEFAULT_MINIMUM_BPT = 1e6; // 1e18 corresponds to 1.0, or a 100% fee uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001% uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10% - this fits in 64 bits // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information. // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be // used to store any other piece of information. bytes32 private _miscData; uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192; bytes32 private immutable _poolId; event SwapFeePercentageChanged(uint256 swapFeePercentage); constructor( IVault vault, IVault.PoolSpecialization specialization, string memory name, string memory symbol, IERC20[] memory tokens, address[] memory assetManagers, uint256 swapFeePercentage, uint256 pauseWindowDuration, uint256 bufferPeriodDuration, address owner ) // Base Pools are expected to be deployed using factories. By using the factory address as the action // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in // any Pool created by the same factory), while still making action identifiers unique among different factories // if the selectors match, preventing accidental errors. Authentication(bytes32(uint256(msg.sender))) BalancerPoolToken(name, symbol, vault) BasePoolAuthorization(owner) TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration) { _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS); _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS); // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However, // to make the developer experience consistent, we are requiring this condition for all the native pools. // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same // order. We rely on this property to make Pools simpler to write, as it lets us assume that the // order of token-specific parameters (such as token weights) will not change. InputHelpers.ensureArrayIsSorted(tokens); _setSwapFeePercentage(swapFeePercentage); bytes32 poolId = vault.registerPool(specialization); vault.registerTokens(poolId, tokens, assetManagers); // Set immutable state variables - these cannot be read from during construction _poolId = poolId; } // Getters / Setters function getPoolId() public view override returns (bytes32) { return _poolId; } function _getTotalTokens() internal view virtual returns (uint256); function _getMaxTokens() internal pure virtual returns (uint256); /** * @dev Returns the minimum BPT supply. This amount is minted to the zero address during initialization, effectively * locking it. * * This is useful to make sure Pool initialization happens only once, but derived Pools can change this value (even * to zero) by overriding this function. */ function _getMinimumBpt() internal pure virtual returns (uint256) { return _DEFAULT_MINIMUM_BPT; } function getSwapFeePercentage() public view returns (uint256) { return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET); } function setSwapFeePercentage(uint256 swapFeePercentage) public virtual authenticate whenNotPaused { _setSwapFeePercentage(swapFeePercentage); } function _setSwapFeePercentage(uint256 swapFeePercentage) private { _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE); _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE); _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET); emit SwapFeePercentageChanged(swapFeePercentage); } function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) public virtual authenticate whenNotPaused { _setAssetManagerPoolConfig(token, poolConfig); } function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private { bytes32 poolId = getPoolId(); (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token); IAssetManager(assetManager).setConfig(poolId, poolConfig); } function setPaused(bool paused) external authenticate { _setPaused(paused); } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) { return (actionId == getActionId(this.setSwapFeePercentage.selector)) || (actionId == getActionId(this.setAssetManagerPoolConfig.selector)); } function _getMiscData() internal view returns (bytes32) { return _miscData; } /** * Inserts data into the least-significant 192 bits of the misc data storage slot. * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded. */ function _setMiscData(bytes32 newData) internal { _miscData = _miscData.insertBits192(newData, 0); } // Join / Exit Hooks modifier onlyVault(bytes32 poolId) { _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT); _require(poolId == getPoolId(), Errors.INVALID_POOL_ID); _; } function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); if (totalSupply() == 0) { (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool( poolId, sender, recipient, scalingFactors, userData ); // On initialization, we lock _getMinimumBpt() by minting it for the zero address. This BPT acts as a // minimum as it will never be burned, which reduces potential issues with rounding, and also prevents the // Pool from ever being fully drained. _require(bptAmountOut >= _getMinimumBpt(), Errors.MINIMUM_BPT); _mintPoolTokens(address(0), _getMinimumBpt()); _mintPoolTokens(recipient, bptAmountOut - _getMinimumBpt()); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); return (amountsIn, new uint256[](_getTotalTokens())); } else { _upscaleArray(balances, scalingFactors); (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it. _mintPoolTokens(recipient, bptAmountOut); // amountsIn are amounts entering the Pool, so we round up. _downscaleUpArray(amountsIn, scalingFactors); // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsIn, dueProtocolFeeAmounts); } } function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it. _burnPoolTokens(sender, bptAmountIn); // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down. _downscaleDownArray(amountsOut, scalingFactors); _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors); return (amountsOut, dueProtocolFeeAmounts); } // Query functions /** * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the * Vault with the same arguments, along with the number of tokens `sender` would have to supply. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryJoin( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptOut, uint256[] memory amountsIn) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onJoinPool, _downscaleUpArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptOut, amountsIn); } /** * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the * Vault with the same arguments, along with the number of tokens `recipient` would receive. * * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault * data, such as the protocol swap fee percentage and Pool balances. * * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must * explicitly use eth_call instead of eth_sendTransaction. */ function queryExit( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256 bptIn, uint256[] memory amountsOut) { InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens()); _queryAction( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, userData, _onExitPool, _downscaleDownArray ); // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement, // and we don't need to return anything here - it just silences compiler warnings. return (bptIn, amountsOut); } // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are // upscaled. /** * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero. * * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return. * * Minted BPT will be sent to `recipient`, except for _getMinimumBpt(), which will be deducted from this amount and * sent to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP * from ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire * Pool's lifetime. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. */ function _onInitializePool( bytes32 poolId, address sender, address recipient, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn); /** * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`). * * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of * tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * Minted BPT will be sent to `recipient`. * * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will * be downscaled (rounding up) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts ); /** * @dev Called whenever the Pool is exited. * * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and * the number of tokens to pay in protocol swap fees. * * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely. * * BPT will be burnt from `sender`. * * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled * (rounding down) before being returned to the Vault. * * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault. */ function _onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, uint256[] memory scalingFactors, bytes memory userData ) internal virtual returns ( uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts ); // Internal functions /** * @dev Adds swap fee amount to `amount`, returning a higher value. */ function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount + fee amount, so we round up (favoring a higher fee amount). return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage())); } /** * @dev Subtracts swap fee amount from `amount`, returning a lower value. */ function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) { // This returns amount - fee amount, so we round up (favoring a higher fee amount). uint256 feeAmount = amount.mulUp(getSwapFeePercentage()); return amount.sub(feeAmount); } // Scaling /** * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if * it had 18 decimals. */ function _computeScalingFactor(IERC20 token) internal view returns (uint256) { if (address(token) == address(this)) { return FixedPoint.ONE; } // Tokens that don't implement the `decimals` method are not supported. uint256 tokenDecimals = ERC20(address(token)).decimals(); // Tokens with more than 18 decimals are not supported. uint256 decimalsDifference = Math.sub(18, tokenDecimals); return FixedPoint.ONE * 10**decimalsDifference; } /** * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the * Pool. * * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by * derived contracts that need to apply further scaling, making these factors potentially non-integer. * * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making * even relatively 'large' factors safe to use. * * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112). */ function _scalingFactor(IERC20 token) internal view virtual returns (uint256); /** * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault * will always pass balances in this order when calling any of the Pool hooks. */ function _scalingFactors() internal view virtual returns (uint256[] memory); function getScalingFactors() external view returns (uint256[] memory) { return _scalingFactors(); } /** * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed * scaling or not. */ function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of // token in should be rounded up, and that of token out rounded down. This is the only place where we round in // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no // rounding error unless `_scalingFactor()` is overriden). return FixedPoint.mulDown(amount, scalingFactor); } /** * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates* * the `amounts` array. */ function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded down. */ function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divDown(amount, scalingFactor); } /** * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]); } } /** * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on * whether it needed scaling or not. The result is rounded up. */ function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) { return FixedPoint.divUp(amount, scalingFactor); } /** * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead * *mutates* the `amounts` array. */ function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view { for (uint256 i = 0; i < _getTotalTokens(); ++i) { amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]); } } function _getAuthorizer() internal view override returns (IAuthorizer) { // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which // accounts can call permissioned functions: for example, to perform emergency pauses. // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under // Governance control. return getVault().getAuthorizer(); } function _queryAction( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData, function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory) internal returns (uint256, uint256[] memory, uint256[] memory) _action, function(uint256[] memory, uint256[] memory) internal view _downscaleArray ) private { // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed // explanation. if (msg.sender != address(this)) { // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of // the preceding if statement will be executed instead. // solhint-disable-next-line avoid-low-level-calls (bool success, ) = address(this).call(msg.data); // solhint-disable-next-line no-inline-assembly assembly { // This call should always revert to decode the bpt and token amounts from the revert reason switch success case 0 { // Note we are manually writing the memory slot 0. We can safely overwrite whatever is // stored there as we take full control of the execution and then immediately return. // We copy the first 4 bytes to check if it matches with the expected signature, otherwise // there was another revert reason and we should forward it. returndatacopy(0, 0, 0x04) let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000) // If the first 4 bytes don't match with the expected signature, we forward the revert reason. if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) { returndatacopy(0, 0, returndatasize()) revert(0, returndatasize()) } // The returndata contains the signature, followed by the raw memory representation of the // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded // representation of these. // An ABI-encoded response will include one additional field to indicate the starting offset of // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the // returndata. // // In returndata: // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ] // [ 4 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // // We now need to return (ABI-encoded values): // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ] // [ 32 bytes ][ 32 bytes ][ 32 bytes ][ (32 * length) bytes ] // We copy 32 bytes for the `bptAmount` from returndata into memory. // Note that we skip the first 4 bytes for the error signature returndatacopy(0, 0x04, 32) // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after // the initial 64 bytes. mstore(0x20, 64) // We now copy the raw memory array for the `tokenAmounts` from returndata into memory. // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount. returndatacopy(0x40, 0x24, sub(returndatasize(), 36)) // We finally return the ABI-encoded uint256 and the array, which has a total length equal to // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the // error signature. return(0, add(returndatasize(), 28)) } default { // This call should always revert, but we fail nonetheless if that didn't happen invalid() } } } else { uint256[] memory scalingFactors = _scalingFactors(); _upscaleArray(balances, scalingFactors); (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action( poolId, sender, recipient, balances, lastChangeBlock, protocolSwapFeePercentage, scalingFactors, userData ); _downscaleArray(tokenAmounts, scalingFactors); // solhint-disable-next-line no-inline-assembly assembly { // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32 let size := mul(mload(tokenAmounts), 32) // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there // will be at least one available slot due to how the memory scratch space works. // We can safely overwrite whatever is stored in this slot as we will revert immediately after that. let start := sub(tokenAmounts, 0x20) mstore(start, bptAmount) // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb // We use the previous slot to `bptAmount`. mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb) start := sub(start, 0x04) // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return // the `bptAmount`, the array 's length, and the error signature. revert(start, add(size, 68)) } } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev IPools with the General specialization setting should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will * grant to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IGeneralPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256[] memory balances, uint256 indexIn, uint256 indexOut ) external returns (uint256 amount); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./ITemporarilyPausable.sol"; /** * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be * used as an emergency switch in case a security vulnerability or threat is identified. * * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful * analysis later determines there was a false alarm. * * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires. * * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is * irreversible. */ abstract contract TemporarilyPausable is ITemporarilyPausable { // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy. // solhint-disable not-rely-on-time uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days; uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days; uint256 private immutable _pauseWindowEndTime; uint256 private immutable _bufferPeriodEndTime; bool private _paused; constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) { _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION); _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION); uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration; _pauseWindowEndTime = pauseWindowEndTime; _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration; } /** * @dev Reverts if the contract is paused. */ modifier whenNotPaused() { _ensureNotPaused(); _; } /** * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer * Period. */ function getPausedState() external view override returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ) { paused = !_isNotPaused(); pauseWindowEndTime = _getPauseWindowEndTime(); bufferPeriodEndTime = _getBufferPeriodEndTime(); } /** * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and * unpaused until the end of the Buffer Period. * * Once the Buffer Period expires, this function reverts unconditionally. */ function _setPaused(bool paused) internal { if (paused) { _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED); } else { _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED); } _paused = paused; emit PausedStateChanged(paused); } /** * @dev Reverts if the contract is paused. */ function _ensureNotPaused() internal view { _require(_isNotPaused(), Errors.PAUSED); } /** * @dev Reverts if the contract is not paused. */ function _ensurePaused() internal view { _require(!_isNotPaused(), Errors.NOT_PAUSED); } /** * @dev Returns true if the contract is unpaused. * * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no * longer accessed. */ function _isNotPaused() internal view returns (bool) { // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access. return block.timestamp > _getBufferPeriodEndTime() || !_paused; } // These getters lead to reduced bytecode size by inlining the immutable variables in a single place. function _getPauseWindowEndTime() private view returns (uint256) { return _pauseWindowEndTime; } function _getBufferPeriodEndTime() private view returns (uint256) { return _bufferPeriodEndTime; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; import "./IERC20.sol"; import "./SafeMath.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is IERC20 { using SafeMath for uint256; mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom( address sender, address recipient, uint256 amount ) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve( sender, msg.sender, _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE) ); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve( msg.sender, spender, _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO) ); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer( address sender, address recipient, uint256 amount ) internal virtual { _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS); _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol"; import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol"; import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol"; import "./IAsset.sol"; import "./IAuthorizer.sol"; import "./IFlashLoanRecipient.sol"; import "./IProtocolFeesCollector.sol"; pragma solidity ^0.7.0; /** * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that * don't override one of these declarations. */ interface IVault is ISignaturesValidator, ITemporarilyPausable { // Generalities about the Vault: // // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning // a boolean value: in these scenarios, a non-reverting call is assumed to be successful. // // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g. // while execution control is transferred to a token contract during a swap) will result in a revert. View // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results. // Contracts calling view functions in the Vault must make sure the Vault has not already been entered. // // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools. // Authorizer // // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller // can perform a given action. /** * @dev Returns the Vault's Authorizer. */ function getAuthorizer() external view returns (IAuthorizer); /** * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this. * * Emits an `AuthorizerChanged` event. */ function setAuthorizer(IAuthorizer newAuthorizer) external; /** * @dev Emitted when a new authorizer is set by `setAuthorizer`. */ event AuthorizerChanged(IAuthorizer indexed newAuthorizer); // Relayers // // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions, // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield // this power, two things must occur: // - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This // means that Balancer governance must approve each individual contract to act as a relayer for the intended // functions. // - Each user must approve the relayer to act on their behalf. // This double protection means users cannot be tricked into approving malicious relayers (because they will not // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised // Authorizer or governance drain user funds, since they would also need to be approved by each individual user. /** * @dev Returns true if `user` has approved `relayer` to act as a relayer for them. */ function hasApprovedRelayer(address user, address relayer) external view returns (bool); /** * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise. * * Emits a `RelayerApprovalChanged` event. */ function setRelayerApproval( address sender, address relayer, bool approved ) external; /** * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`. */ event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved); // Internal Balance // // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users. // // Internal Balance management features batching, which means a single contract call can be used to perform multiple // operations of different kinds, with different senders and recipients, at once. /** * @dev Returns `user`'s Internal Balance for a set of tokens. */ function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory); /** * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer) * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as * it lets integrators reuse a user's Vault allowance. * * For each operation, if the caller is not `sender`, it must be an authorized relayer for them. */ function manageUserBalance(UserBalanceOp[] memory ops) external payable; /** * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received without manual WETH wrapping or unwrapping. */ struct UserBalanceOp { UserBalanceOpKind kind; IAsset asset; uint256 amount; address sender; address payable recipient; } // There are four possible operations in `manageUserBalance`: // // - DEPOSIT_INTERNAL // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`. // // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is // relevant for relayers). // // Emits an `InternalBalanceChanged` event. // // // - WITHDRAW_INTERNAL // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`. // // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send // it to the recipient as ETH. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_INTERNAL // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`. // // Reverts if the ETH sentinel value is passed. // // Emits an `InternalBalanceChanged` event. // // // - TRANSFER_EXTERNAL // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by // relayers, as it lets them reuse a user's Vault allowance. // // Reverts if the ETH sentinel value is passed. // // Emits an `ExternalBalanceTransfer` event. enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL } /** * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through * interacting with Pools using Internal Balance. * * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH * address. */ event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta); /** * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account. */ event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount); // Pools // // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced // functionality: // // - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads), // which increase with the number of registered tokens. // // - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are // independent of the number of registered tokens. // // - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like // minimal swap info Pools, these are called via IMinimalSwapInfoPool. enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN } /** * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be * changed. * * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`, * depending on the chosen specialization setting. This contract is known as the Pool's contract. * * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words, * multiple Pools may share the same contract. * * Emits a `PoolRegistered` event. */ function registerPool(PoolSpecialization specialization) external returns (bytes32); /** * @dev Emitted when a Pool is registered by calling `registerPool`. */ event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization); /** * @dev Returns a Pool's contract address and specialization setting. */ function getPool(bytes32 poolId) external view returns (address, PoolSpecialization); /** * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens, * exit by receiving registered tokens, and can only swap registered tokens. * * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in * ascending order. * * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`, * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore * expected to be highly secured smart contracts with sound design principles, and the decision to register an * Asset Manager should not be made lightly. * * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a * different Asset Manager. * * Emits a `TokensRegistered` event. */ function registerTokens( bytes32 poolId, IERC20[] memory tokens, address[] memory assetManagers ) external; /** * @dev Emitted when a Pool registers tokens by calling `registerTokens`. */ event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers); /** * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract. * * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens * must be deregistered in the same `deregisterTokens` call. * * A deregistered token can be re-registered later on, possibly with a different Asset Manager. * * Emits a `TokensDeregistered` event. */ function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external; /** * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`. */ event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens); /** * @dev Returns detailed information for a Pool's registered token. * * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token` * equals the sum of `cash` and `managed`. * * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`, * `managed` or `total` balance to be greater than 2^112 - 1. * * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a * change for this purpose, and will update `lastChangeBlock`. * * `assetManager` is the Pool's token Asset Manager. */ function getPoolTokenInfo(bytes32 poolId, IERC20 token) external view returns ( uint256 cash, uint256 managed, uint256 lastChangeBlock, address assetManager ); /** * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of * the tokens' `balances` changed. * * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order. * * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same * order as passed to `registerTokens`. * * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo` * instead. */ function getPoolTokens(bytes32 poolId) external view returns ( IERC20[] memory tokens, uint256[] memory balances, uint256 lastChangeBlock ); /** * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized * Pool shares. * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces * these maximums. * * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent * back to the caller (not the sender, which is important for relayers). * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final * `assets` array might not be sorted. Pools with no registered tokens cannot be joined. * * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be * withdrawn from Internal Balance: attempting to do so will trigger a revert. * * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed * directly to the Pool's contract, as is `recipient`. * * Emits a `PoolBalanceChanged` event. */ function joinPool( bytes32 poolId, address sender, address recipient, JoinPoolRequest memory request ) external payable; struct JoinPoolRequest { IAsset[] assets; uint256[] maxAmountsIn; bytes userData; bool fromInternalBalance; } /** * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see * `getPoolTokenInfo`). * * If the caller is not `sender`, it must be an authorized relayer for them. * * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault: * it just enforces these minimums. * * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit. * * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited. * * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise, * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to * do so will trigger a revert. * * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the * `tokens` array. This array must match the Pool's registered tokens. * * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement * their own custom logic. This typically requires additional information from the user (such as the expected number * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and * passed directly to the Pool's contract. * * Emits a `PoolBalanceChanged` event. */ function exitPool( bytes32 poolId, address sender, address payable recipient, ExitPoolRequest memory request ) external; struct ExitPoolRequest { IAsset[] assets; uint256[] minAmountsOut; bytes userData; bool toInternalBalance; } /** * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively. */ event PoolBalanceChanged( bytes32 indexed poolId, address indexed liquidityProvider, IERC20[] tokens, int256[] deltas, uint256[] protocolFeeAmounts ); enum PoolBalanceChangeKind { JOIN, EXIT } // Swaps // // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this, // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote. // // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence. // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'), // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out'). // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together // individual swaps. // // There are two swap kinds: // - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the // `onSwap` hook) the amount of tokens out (to send to the recipient). // - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines // (via the `onSwap` hook) the amount of tokens in (to receive from the sender). // // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at // the final intended token. // // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost // much less gas than they would otherwise. // // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only // updating the Pool's internal accounting). // // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the // minimum amount of tokens to receive (by passing a negative value) is specified. // // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after // this point in time (e.g. if the transaction failed to be included in a block promptly). // // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers). // // Finally, Internal Balance can be used when either sending or receiving tokens. enum SwapKind { GIVEN_IN, GIVEN_OUT } /** * @dev Performs a swap with a single Pool. * * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens * taken from the Pool, which must be greater than or equal to `limit`. * * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens * sent to the Pool, which must be less than or equal to `limit`. * * Internal Balance usage and the recipient are determined by the `funds` struct. * * Emits a `Swap` event. */ function swap( SingleSwap memory singleSwap, FundManagement memory funds, uint256 limit, uint256 deadline ) external payable returns (uint256); /** * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on * the `kind` value. * * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address). * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct SingleSwap { bytes32 poolId; SwapKind kind; IAsset assetIn; IAsset assetOut; uint256 amount; bytes userData; } /** * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either * the amount of tokens sent to or received from the Pool, depending on the `kind` value. * * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at * the same index in the `assets` array. * * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or * `amountOut` depending on the swap kind. * * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`. * * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses, * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to * or unwrapped from WETH by the Vault. * * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies * the minimum or maximum amount of each token the vault is allowed to transfer. * * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the * equivalent `swap` call. * * Emits `Swap` events. */ function batchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds, int256[] memory limits, uint256 deadline ) external payable returns (int256[] memory); /** * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the * `assets` array passed to that function, and ETH assets are converted to WETH. * * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out * from the previous swap, depending on the swap kind. * * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be * used to extend swap behavior. */ struct BatchSwapStep { bytes32 poolId; uint256 assetInIndex; uint256 assetOutIndex; uint256 amount; bytes userData; } /** * @dev Emitted for each individual swap performed by `swap` or `batchSwap`. */ event Swap( bytes32 indexed poolId, IERC20 indexed tokenIn, IERC20 indexed tokenOut, uint256 amountIn, uint256 amountOut ); /** * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the * `recipient` account. * * If the caller is not `sender`, it must be an authorized relayer for them. * * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20 * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender` * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of * `joinPool`. * * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of * transferred. This matches the behavior of `exitPool`. * * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a * revert. */ struct FundManagement { address sender; bool fromInternalBalance; address payable recipient; bool toInternalBalance; } /** * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result. * * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH) * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it * receives are the same that an equivalent `batchSwap` call would receive. * * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct. * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens, * approve them for the Vault, or even know a user's address. * * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute * eth_call instead of eth_sendTransaction. */ function queryBatchSwap( SwapKind kind, BatchSwapStep[] memory swaps, IAsset[] memory assets, FundManagement memory funds ) external returns (int256[] memory assetDeltas); // Flash Loans /** * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it, * and then reverting unless the tokens plus a proportional protocol fee have been returned. * * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount * for each token contract. `tokens` must be sorted in ascending order. * * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the * `receiveFlashLoan` call. * * Emits `FlashLoan` events. */ function flashLoan( IFlashLoanRecipient recipient, IERC20[] memory tokens, uint256[] memory amounts, bytes memory userData ) external; /** * @dev Emitted for each individual flash loan performed by `flashLoan`. */ event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount); // Asset Management // // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore // not constrained to the tokens they are managing, but extends to the entire Pool's holdings. // // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit, // for example by lending unused tokens out for interest, or using them to participate in voting protocols. // // This concept is unrelated to the IAsset interface. /** * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates. * * Pool Balance management features batching, which means a single contract call can be used to perform multiple * operations of different kinds, with different Pools and tokens, at once. * * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`. */ function managePoolBalance(PoolBalanceOp[] memory ops) external; struct PoolBalanceOp { PoolBalanceOpKind kind; bytes32 poolId; IERC20 token; uint256 amount; } /** * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged. * * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged. * * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total. * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss). */ enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE } /** * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`. */ event PoolBalanceManaged( bytes32 indexed poolId, address indexed assetManager, IERC20 indexed token, int256 cashDelta, int256 managedDelta ); // Protocol Fees // // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by // permissioned accounts. // // There are two kinds of protocol fees: // // - flash loan fees: charged on all flash loans, as a percentage of the amounts lent. // // - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather, // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as // exiting a Pool in debt without first paying their share. /** * @dev Returns the current protocol fee module. */ function getProtocolFeesCollector() external view returns (IProtocolFeesCollector); /** * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an * error in some part of the system. * * The Vault can only be paused during an initial time period, after which pausing is forever disabled. * * While the contract is paused, the following features are disabled: * - depositing and transferring internal balance * - transferring external balance (using the Vault's allowance) * - swaps * - joining Pools * - Asset Manager interactions * * Internal Balance can still be withdrawn, and Pools exited. */ function setPaused(bool paused) external; /** * @dev Returns the Vault's WETH instance. */ function WETH() external view returns (IWETH); // solhint-disable-previous-line func-name-mixedcase }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IVault.sol"; import "./IPoolSwapStructs.sol"; /** * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from * either IGeneralPool or IMinimalSwapInfoPool */ interface IBasePool is IPoolSwapStructs { /** * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault. * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`. * * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join. * * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account * designated to receive any benefits (typically pool shares). `balances` contains the total balances * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as minting pool shares. */ function onJoinPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts); /** * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`, * as well as collect the reported amount in protocol fees, which the Pool should calculate based on * `protocolSwapFeePercentage`. * * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share. * * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account * to which the Vault will send the proceeds. `balances` contains the total token balances for each token * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return. * * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total * balance. * * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.) * * Contracts implementing this function should check that the caller is indeed the Vault before performing any * state-changing operations, such as burning pool shares. */ function onExitPool( bytes32 poolId, address sender, address recipient, uint256[] memory balances, uint256 lastChangeBlock, uint256 protocolSwapFeePercentage, bytes memory userData ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts); function getPoolId() external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IAssetManager { /** * @notice Emitted when asset manager is rebalanced */ event Rebalance(bytes32 poolId); /** * @notice Sets the config */ function setConfig(bytes32 poolId, bytes calldata config) external; /** * Note: No function to read the asset manager config is included in IAssetManager * as the signature is expected to vary between asset manager implementations */ /** * @notice Returns the asset manager's token */ function getToken() external view returns (IERC20); /** * @return the current assets under management of this asset manager */ function getAUM(bytes32 poolId) external view returns (uint256); /** * @return poolCash - The up-to-date cash balance of the pool * @return poolManaged - The up-to-date managed balance of the pool */ function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged); /** * @return The difference in tokens between the target investment * and the currently invested amount (i.e. the amount that can be invested) */ function maxInvestableBalance(bytes32 poolId) external view returns (int256); /** * @notice Updates the Vault on the value of the pool's investment returns */ function updateBalanceOfPool(bytes32 poolId) external; /** * @notice Determines whether the pool should rebalance given the provided balances */ function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool); /** * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage. * @param poolId - the poolId of the pool to be rebalanced * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance */ function rebalance(bytes32 poolId, bool force) external; /** * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals * @param poolId - the poolId of the pool to withdraw funds back to * @param amount - the amount of tokens to withdraw back to the pool */ function capitalOut(bytes32 poolId, uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol"; /** * @title Highly opinionated token implementation * @author Balancer Labs * @dev * - Includes functions to increase and decrease allowance as a workaround * for the well-known issue with `approve`: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not * decreased by calls to transferFrom * - Lets a token holder use `transferFrom` to send their own tokens, * without first setting allowance * - Emits 'Approval' events whenever allowance is changed by `transferFrom` * - Assigns infinite allowance for all token holders to the Vault */ contract BalancerPoolToken is ERC20Permit { IVault private immutable _vault; constructor( string memory tokenName, string memory tokenSymbol, IVault vault ) ERC20(tokenName, tokenSymbol) ERC20Permit(tokenName) { _vault = vault; } function getVault() public view returns (IVault) { return _vault; } // Overrides /** * @dev Override to grant the Vault infinite allowance, causing for Pool Tokens to not require approval. * * This is sound as the Vault already provides authorization mechanisms when initiation token transfers, which this * contract inherits. */ function allowance(address owner, address spender) public view override returns (uint256) { if (spender == address(getVault())) { return uint256(-1); } else { return super.allowance(owner, spender); } } /** * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool) { uint256 currentAllowance = allowance(sender, msg.sender); _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE); _transfer(sender, recipient, amount); if (msg.sender != sender && currentAllowance != uint256(-1)) { // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount _approve(sender, msg.sender, currentAllowance - amount); } return true; } /** * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero) */ function decreaseAllowance(address spender, uint256 amount) public override returns (bool) { uint256 currentAllowance = allowance(msg.sender, spender); if (amount >= currentAllowance) { _approve(msg.sender, spender, 0); } else { // No risk of underflow due to if condition _approve(msg.sender, spender, currentAllowance - amount); } return true; } // Internal functions function _mintPoolTokens(address recipient, uint256 amount) internal { _mint(recipient, amount); } function _burnPoolTokens(address sender, uint256 amount) internal { _burn(sender, amount); } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol"; import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol"; import "./BasePool.sol"; /** * @dev Base authorization layer implementation for Pools. * * The owner account can call some of the permissioned functions - access control of the rest is delegated to the * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership, * granular roles, etc., could be built on top of this by making the owner a smart contract. * * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`. */ abstract contract BasePoolAuthorization is Authentication { address private immutable _owner; address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B; constructor(address owner) { _owner = owner; } function getOwner() public view returns (address) { return _owner; } function getAuthorizer() external view returns (IAuthorizer) { return _getAuthorizer(); } function _canPerform(bytes32 actionId, address account) internal view override returns (bool) { if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) { // Only the owner can perform "owner only" actions, unless the owner is delegated. return msg.sender == getOwner(); } else { // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated. return _getAuthorizer().canPerform(actionId, account, address(this)); } } function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool); function _getAuthorizer() internal view virtual returns (IAuthorizer); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the TemporarilyPausable helper. */ interface ITemporarilyPausable { /** * @dev Emitted every time the pause state changes by `_setPaused`. */ event PausedStateChanged(bool paused); /** * @dev Returns the current paused state. */ function getPausedState() external view returns ( bool paused, uint256 pauseWindowEndTime, uint256 bufferPeriodEndTime ); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "../helpers/BalancerErrors.sol"; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; _require(c >= a, Errors.ADD_OVERFLOW); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, Errors.SUB_OVERFLOW); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) { _require(b <= a, errorCode); uint256 c = a - b; return c; } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev Interface for the SignatureValidator helper, used to support meta-transactions. */ interface ISignaturesValidator { /** * @dev Returns the EIP712 domain separator. */ function getDomainSeparator() external view returns (bytes32); /** * @dev Returns the next nonce used by an address to sign messages. */ function getNextNonce(address user) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "../openzeppelin/IERC20.sol"; /** * @dev Interface for WETH9. * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol */ interface IWETH is IERC20 { function deposit() external payable; function withdraw(uint256 amount) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; /** * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like * types. * * This concept is unrelated to a Pool's Asset Managers. */ interface IAsset { // solhint-disable-previous-line no-empty-blocks }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthorizer { /** * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`. */ function canPerform( bytes32 actionId, address account, address where ) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; // Inspired by Aave Protocol's IFlashLoanReceiver. import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; interface IFlashLoanRecipient { /** * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient. * * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the * Vault, or else the entire flash loan will revert. * * `userData` is the same value passed in the `IVault.flashLoan` call. */ function receiveFlashLoan( IERC20[] memory tokens, uint256[] memory amounts, uint256[] memory feeAmounts, bytes memory userData ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; import "./IAuthorizer.sol"; interface IProtocolFeesCollector { event SwapFeePercentageChanged(uint256 newSwapFeePercentage); event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage); function withdrawCollectedFees( IERC20[] calldata tokens, uint256[] calldata amounts, address recipient ) external; function setSwapFeePercentage(uint256 newSwapFeePercentage) external; function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external; function getSwapFeePercentage() external view returns (uint256); function getFlashLoanFeePercentage() external view returns (uint256); function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts); function getAuthorizer() external view returns (IAuthorizer); function vault() external view returns (IVault); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol"; import "./IVault.sol"; interface IPoolSwapStructs { // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and // IMinimalSwapInfoPool. // // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or // 'given out') which indicates whether or not the amount sent by the pool is known. // // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`. // // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in // some Pools. // // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than // one Pool. // // The meaning of `lastChangeBlock` depends on the Pool specialization: // - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total // balance. // - General: the last block in which *any* of the Pool's registered tokens changed its total balance. // // `from` is the origin address for the funds the Pool receives, and `to` is the destination address // where the Pool sends the outgoing tokens. // // `userData` is extra data provided by the caller - typically a signature from a trusted party. struct SwapRequest { IVault.SwapKind kind; IERC20 tokenIn; IERC20 tokenOut; uint256 amount; // Misc data bytes32 poolId; uint256 lastChangeBlock; address from; address to; bytes userData; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; import "./ERC20.sol"; import "./IERC20Permit.sol"; import "./EIP712.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * _Available since v3.4._ */ abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 { mapping(address => uint256) private _nonces; // solhint-disable-next-line var-name-mixedcase bytes32 private immutable _PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ constructor(string memory name) EIP712(name, "1") {} /** * @dev See {IERC20Permit-permit}. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual override { // solhint-disable-next-line not-rely-on-time _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT); uint256 nonce = _nonces[owner]; bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ecrecover(hash, v, r, s); _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE); _nonces[owner] = nonce + 1; _approve(owner, spender, value); } /** * @dev See {IERC20Permit-nonces}. */ function nonces(address owner) public view override returns (uint256) { return _nonces[owner]; } /** * @dev See {IERC20Permit-DOMAIN_SEPARATOR}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view override returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens, * given `owner`'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT pragma solidity ^0.7.0; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible, * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding * they need in their contracts using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * _Available since v3.4._ */ abstract contract EIP712 { /* solhint-disable var-name-mixedcase */ bytes32 private immutable _HASHED_NAME; bytes32 private immutable _HASHED_VERSION; bytes32 private immutable _TYPE_HASH; /* solhint-enable var-name-mixedcase */ /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ constructor(string memory name, string memory version) { _HASHED_NAME = keccak256(bytes(name)); _HASHED_VERSION = keccak256(bytes(version)); _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view virtual returns (bytes32) { return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash)); } function _getChainId() private view returns (uint256 chainId) { // Silence state mutability warning without generating bytecode. // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and // https://github.com/ethereum/solidity/issues/2691 this; // solhint-disable-next-line no-inline-assembly assembly { chainId := chainid() } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; import "./BalancerErrors.sol"; import "./IAuthentication.sol"; /** * @dev Building block for performing access control on external functions. * * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied * to external functions to only make them callable by authorized accounts. * * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic. */ abstract contract Authentication is IAuthentication { bytes32 private immutable _actionIdDisambiguator; /** * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in * multi contract systems. * * There are two main uses for it: * - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers * unique. The contract's own address is a good option. * - if the contract belongs to a family that shares action identifiers for the same functions, an identifier * shared by the entire family (and no other contract) should be used instead. */ constructor(bytes32 actionIdDisambiguator) { _actionIdDisambiguator = actionIdDisambiguator; } /** * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions. */ modifier authenticate() { _authenticateCaller(); _; } /** * @dev Reverts unless the caller is allowed to call the entry point function. */ function _authenticateCaller() internal view { bytes32 actionId = getActionId(msg.sig); _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED); } function getActionId(bytes4 selector) public view override returns (bytes32) { // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of // multiple contracts. return keccak256(abi.encodePacked(_actionIdDisambiguator, selector)); } function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; interface IAuthentication { /** * @dev Returns the action identifier associated with the external function described by `selector`. */ function getActionId(bytes4 selector) external view returns (bytes32); }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.7.0; pragma experimental ABIEncoderV2; import "./IBasePool.sol"; /** * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface. * * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool. * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant * to the pool in a 'given out' swap. * * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is * indeed the Vault. */ interface IMinimalSwapInfoPool is IBasePool { function onSwap( SwapRequest memory swapRequest, uint256 currentBalanceTokenIn, uint256 currentBalanceTokenOut ) external returns (uint256 amount); }
{ "optimizer": { "enabled": true, "runs": 9999 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"components":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"contract IRateProvider[]","name":"rateProviders","type":"address[]"},{"internalType":"uint256[]","name":"tokenRateCacheDurations","type":"uint256[]"},{"internalType":"uint256","name":"amplificationParameter","type":"uint256"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"address","name":"owner","type":"address"}],"internalType":"struct StablePhantomPool.NewPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"AmpUpdateStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"currentValue","type":"uint256"}],"name":"AmpUpdateStopped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"}],"name":"CachedProtocolSwapFeePercentageUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"bptAmount","type":"uint256"}],"name":"DueProtocolFeeIncreased","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"rate","type":"uint256"}],"name":"TokenRateCacheUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":true,"internalType":"contract IRateProvider","name":"provider","type":"address"},{"indexed":false,"internalType":"uint256","name":"cacheDuration","type":"uint256"}],"name":"TokenRateProviderSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmplificationParameter","outputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bool","name":"isUpdating","type":"bool"},{"internalType":"uint256","name":"precision","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getBptIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCachedProtocolSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getDueProtocolFeeBptAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"lastInvariant","type":"uint256"},{"internalType":"uint256","name":"lastInvariantAmp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMinimumBpt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRateProviders","outputs":[{"internalType":"contract IRateProvider[]","name":"providers","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getScalingFactor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getTokenRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getTokenRateCache","outputs":[{"internalType":"uint256","name":"rate","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint256","name":"expires","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getVirtualSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"swapRequest","type":"tuple"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"indexIn","type":"uint256"},{"internalType":"uint256","name":"indexOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"","type":"tuple"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"setTokenRateCacheDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawEndValue","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"startAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"updateCachedProtocolSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"updateTokenRateCache","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6103e06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b5060405162006ef438038062006ef48339810160408190526200005a9162001485565b8051602082015160408301516060840151620000779030620009cc565b8460c001518560e00151866101000151876101200151886101400151888651600214620000a6576000620000a9565b60025b8989898a516001600160401b0381118015620000c457600080fd5b50604051908082528060200260200182016040528015620000ef578160200160208202803683370190505b5089898989828289898d8280604051806040016040528060018152602001603160f81b81525085858a336001600160a01b031660001b806080818152505050806001600160a01b031660a0816001600160a01b031660601b8152505050816003908051906020019062000164929190620011bf565b5080516200017a906004906020840190620011bf565b505060058054601260ff1990911617905550815160209283012060c052805191012060e052507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005260601b6001600160601b0319166101405250620001ed90506276a70083111561019462000b66565b6200020162278d0082111561019562000b66565b429091016101608190520161018052855162000223906002111560c862000b66565b6200023d6200023162000b7b565b8751111560c962000b66565b620002538662000b8060201b6200156c1760201c565b6200025e8462000b8c565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200028f908d90600401620016a9565b602060405180830381600087803b158015620002aa57600080fd5b505af1158015620002bf573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002e591906200144d565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d2906200031a9084908b908b906004016200160d565b600060405180830381600087803b1580156200033557600080fd5b505af11580156200034a573d6000803e3d6000fd5b5050506101a09190915250620003759950505060018d1015965061012c95505062000b669350505050565b6200038861138886111561012d62000b66565b85516101c0819052865187906000906200039e57fe5b60200260200101516001600160a01b03166101e0816001600160a01b031660601b8152505086600181518110620003d157fe5b60200260200101516001600160a01b0316610200816001600160a01b031660601b8152505060028111620004075760006200041e565b866002815181106200041557fe5b60200260200101515b60601b6001600160601b03191661022052600381116200044057600062000457565b866003815181106200044e57fe5b60200260200101515b60601b6001600160601b03191661024052600481116200047957600062000490565b866004815181106200048757fe5b60200260200101515b6001600160a01b0316610260816001600160a01b031660601b81525050620004d387600081518110620004bf57fe5b602002602001015162000c1860201b60201c565b610280528651620004ec9088906001908110620004bf57fe5b6102a052600281116200050157600062000513565b6200051387600281518110620004bf57fe5b6102c05260038111620005285760006200053a565b6200053a87600381518110620004bf57fe5b6102e052600481116200054f57600062000561565b6200056187600481518110620004bf57fe5b6103008181525050600062000584876103e862000cec60201b620015761760201c565b9050620005918162000d1b565b5050505050505050505050620005b86002826060015151101560c862000b6660201b60201c565b620005df8160600151518260800151518360a001515162000d5a60201b6200159a1760201c565b60005b8160600151518110156200071d5760006001600160a01b0316826080015182815181106200060c57fe5b60200260200101516001600160a01b03161462000714576200067e826060015182815181106200063857fe5b6020026020010151836080015183815181106200065157fe5b60200260200101518460a0015184815181106200066a57fe5b602002602001015162000d7a60201b60201c565b816080015181815181106200068f57fe5b60200260200101516001600160a01b031682606001518281518110620006b157fe5b60200260200101516001600160a01b03167ff00a2bf8c71db611a21183e0a96869752bcd9da29372fa76f865eed4fdd540d18460a001518481518110620006f457fe5b60200260200101516040516200070b9190620016be565b60405180910390a35b600101620005e2565b506060810151515b600081118015620007625750306001600160a01b0316826060015160018303815181106200074f57fe5b60200260200101516001600160a01b0316115b1562000772576000190162000725565b610320819052606082810151516001016001600160401b03811180156200079857600080fd5b50604051908082528060200260200182016040528015620007c3578160200160208202803683370190505b50905060005b8151811015620008935782811015620008285783608001518181518110620007ed57fe5b60200260200101518282815181106200080257fe5b60200260200101906001600160a01b031690816001600160a01b0316815250506200088a565b82811415620008405760008282815181106200080257fe5b836080015160018203815181106200085457fe5b60200260200101518282815181106200086957fe5b60200260200101906001600160a01b031690816001600160a01b0316815250505b600101620007c9565b506000815111620008a6576000620008bd565b80600081518110620008b457fe5b60200260200101515b60601b6001600160601b031916610340528051600110620008e0576000620008f7565b80600181518110620008ee57fe5b60200260200101515b60601b6001600160601b0319166103605280516002106200091a57600062000931565b806002815181106200092857fe5b60200260200101515b60601b6001600160601b031916610380528051600310620009545760006200096b565b806003815181106200096257fe5b60200260200101515b60601b6001600160601b0319166103a05280516004106200098e576000620009a5565b806004815181106200099c57fe5b60200260200101515b60601b6001600160601b0319166103c0528251620009c39062000e6c565b50505062001730565b606082516001016001600160401b0381118015620009e957600080fd5b5060405190808252806020026020018201604052801562000a14578160200160208202803683370190505b50905082516000141562000a5757818160008151811062000a3157fe5b60200260200101906001600160a01b031690816001600160a01b03168152505062000b60565b82515b60008111801562000a935750826001600160a01b031684600183038151811062000a8057fe5b60200260200101516001600160a01b0316115b1562000ae05783600182038151811062000aa957fe5b602002602001015182828151811062000abe57fe5b6001600160a01b03909216602092830291909101909101526000190162000a5a565b60005b8181101562000b2f5784818151811062000af957fe5b602002602001015183828151811062000b0e57fe5b6001600160a01b039092166020928302919091019091015260010162000ae3565b508282828151811062000b3e57fe5b60200260200101906001600160a01b031690816001600160a01b031681525050505b92915050565b8162000b775762000b778162000f9d565b5050565b600590565b8062000b778162000ff0565b62000ba164e8d4a5100082101560cb62000b66565b62000bb967016345785d8a000082111560ca62000b66565b62000bd88160c06008546200107a60201b620015b2179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc9062000c0d908390620016be565b60405180910390a150565b60006001600160a01b03821630141562000c3c5750670de0b6b3a764000062000ce7565b6000826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b15801562000c7857600080fd5b505afa15801562000c8d573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000cb39190620015ea565b60ff169050600062000cd26012836200108f60201b620015c81760201c565b905080600a0a670de0b6b3a764000002925050505b919050565b600082820262000d1484158062000d0c57508385838162000d0957fe5b04145b600362000b66565b9392505050565b62000d2981804280620010a7565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a02338160405162000c0d9190620016be565b62000d75828414801562000d6d57508183145b606762000b66565b505050565b6000826001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b15801562000db657600080fd5b505afa15801562000dcb573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000df191906200144d565b9050600062000e0c82846200113760201b620015de1760201c565b6001600160a01b0386166000818152600e60205260409081902083905551919250907fcfed57d90913b5ee1895919dcccaff83a9f7a842d912ef137272e5fc6123aa869062000e5d908590620016be565b60405180910390a25050505050565b6000816001600160a01b031663d2946c2b6040518163ffffffff1660e01b815260040160206040518083038186803b15801562000ea857600080fd5b505afa15801562000ebd573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000ee3919062001466565b6001600160a01b03166355c676286040518163ffffffff1660e01b815260040160206040518083038186803b15801562000f1c57600080fd5b505afa15801562000f31573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000f5791906200144d565b905080600d819055507f6e4e298b4a98488a054248cfb63661894b93fb9fd398cc9eca58e39215954eb78160405162000f919190620016be565b60405180910390a15050565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b600281511015620010015762001077565b6000816000815181106200101157fe5b602002602001015190506000600190505b825181101562000d755760008382815181106200103b57fe5b602002602001015190506200106c816001600160a01b0316846001600160a01b031610606562000b6660201b60201c565b915060010162001022565b50565b6001600160401b03811b1992909216911b1790565b6000620010a183831115600162000b66565b50900390565b620010c8816001600160401b031660c0620011bb60201b620016511760201c565b620010e9836001600160401b03166080620011bb60201b620016511760201c565b6200110a856001600160401b03166040620011bb60201b620016511760201c565b6200112b876001600160401b03166000620011bb60201b620016511760201c565b17171760095550505050565b60006200114d600160801b841061014962000b66565b620011708242016001600160401b031660c0620011bb60201b620016511760201c565b62001191836001600160401b03166080620011bb60201b620016511760201c565b620011b2856001600160801b03166000620011bb60201b620016511760201c565b17179392505050565b1b90565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f106200120257805160ff191683800117855562001232565b8280016001018555821562001232579182015b828111156200123257825182559160200191906001019062001215565b506200124092915062001244565b5090565b5b8082111562001240576000815560010162001245565b805162000b60816200171a565b600082601f83011262001279578081fd5b8151620012906200128a82620016ee565b620016c7565b818152915060208083019084810181840286018201871015620012b257600080fd5b60005b84811015620012de578151620012cb816200171a565b84529282019290820190600101620012b5565b505050505092915050565b600082601f830112620012fa578081fd5b81516200130b6200128a82620016ee565b8181529150602080830190848101818402860182018710156200132d57600080fd5b60005b84811015620012de57815162001346816200171a565b8452928201929082019060010162001330565b600082601f8301126200136a578081fd5b81516200137b6200128a82620016ee565b8181529150602080830190848101818402860182018710156200139d57600080fd5b60005b84811015620012de57815184529282019290820190600101620013a0565b600082601f830112620013cf578081fd5b81516001600160401b03811115620013e5578182fd5b6020620013fb601f8301601f19168201620016c7565b925081835284818386010111156200141257600080fd5b60005b828110156200143257848101820151848201830152810162001415565b82811115620014445760008284860101525b50505092915050565b6000602082840312156200145f578081fd5b5051919050565b60006020828403121562001478578081fd5b815162000d14816200171a565b60006020828403121562001497578081fd5b81516001600160401b0380821115620014ae578283fd5b8184019150610160808387031215620014c5578384fd5b620014d081620016c7565b9050620014de86846200125b565b8152602083015182811115620014f2578485fd5b6200150087828601620013be565b60208301525060408301518281111562001518578485fd5b6200152687828601620013be565b6040830152506060830151828111156200153e578485fd5b6200154c8782860162001268565b60608301525060808301518281111562001564578485fd5b6200157287828601620012e9565b60808301525060a0830151828111156200158a578485fd5b620015988782860162001359565b60a08301525060c0838101519082015260e08084015190820152610100808401519082015261012080840151908201526101409150620015db868385016200125b565b91810191909152949350505050565b600060208284031215620015fc578081fd5b815160ff8116811462000d14578182fd5b60006060820185835260206060818501528186518084526080860191508288019350845b8181101562001659576200164685516200170e565b8352938301939183019160010162001631565b505084810360408601528551808252908201925081860190845b818110156200169b576200168883516200170e565b8552938301939183019160010162001673565b509298975050505050505050565b6020810160038310620016b857fe5b91905290565b90815260200190565b6040518181016001600160401b0381118282101715620016e657600080fd5b604052919050565b60006001600160401b0382111562001704578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b03811681146200107757600080fd5b60805160a05160601c60c05160e05161010051610120516101405160601c61016051610180516101a0516101c0516101e05160601c6102005160601c6102205160601c6102405160601c6102605160601c610280516102a0516102c0516102e05161030051610320516103405160601c6103605160601c6103805160601c6103a05160601c6103c05160601c6155f362001901600039806109de5280611dc05250806109875280611d5f5250806109305280611cfe5250806108d95280611c9d5250806108775280611c3c525080610f63528061147d528061255e52806125f952806128f8528061323952806136da52806139d85280613f0c5280613f3452508061389f52508061387b52508061385752508061383352508061380f52508061184b5280611d85528061338f52806139ab5250806117ef5280611d24528061334d52806139795250806117935280611cc3528061330b52806139475250806117375280611c6252806139155280613fd05250806116c55280611c0152806138d85280613f9e525080611665525080610c0e525080611afb525080611ad752508061102952508061114d525080611fd5525080612017525080611ff6525080610fff525080610f8952506155f36000f3fe608060405234801561001057600080fd5b50600436106103205760003560e01c806370a08231116101a75780639b02cdde116100ee578063d5c096c411610097578063de82cd3411610071578063de82cd3414610652578063eb0f24d61461065a578063f4b7964d1461066257610320565b8063d5c096c414610624578063d60575ca14610637578063dd62ed3e1461063f57610320565b8063a9059cbb116100c8578063a9059cbb146105f6578063aaabadc514610609578063d505accf1461061157610320565b80639b02cdde146105ba5780639d2c110c146105d0578063a457c2d7146105e357610320565b8063851c1bb3116101505780638d2334e01161012a5780638d2334e0146105a25780638d928af8146105aa57806395d89b41146105b257610320565b8063851c1bb31461056757806387ec68171461057a578063893d20e81461058d57610320565b80637ecebe00116101815780637ecebe001461052a5780637f1260d11461053d57806382687a561461055f57610320565b806370a08231146104ee57806374f3b009146105015780637520e0491461052257610320565b8063313ce5671161026b57806354dea00a116102145780636782f364116101ee5780636782f364146104bc578063679aefce146104cf5780636daccffa146104d757610320565b806354dea00a1461048057806355c67628146104935780636028bfd41461049b57610320565b806338fff2d01161024557806338fff2d014610452578063395093511461045a57806350dd6ed91461046d57610320565b8063313ce567146104225780633644e5151461043757806338e9922e1461043f57610320565b80631c0de051116102cd57806323b872dd116102a757806323b872dd146103e95780632df2c7c0146103fc5780632f1a0bc91461040f57610320565b80631c0de051146103a85780631dd746ea146103bf578063238a2d59146103d457610320565b8063095ea7b3116102fe578063095ea7b31461036b57806316c38b3c1461038b57806318160ddd146103a057610320565b806301ec954a1461032557806304842d4c1461034e57806306fdde0314610356575b600080fd5b6103386103333660046150dc565b610675565b60405161034591906153e1565b60405180910390f35b610338610713565b61035e610723565b60405161034591906154b7565b61037e610379366004614db8565b6107b9565b60405161034591906153be565b61039e610399366004614eaf565b6107d0565b005b6103386107e4565b6103b06107ea565b604051610345939291906153c9565b6103c7610813565b6040516103459190615386565b6103dc61081d565b6040516103459190615339565b61037e6103f7366004614d03565b610a2f565b61039e61040a366004614caf565b610aa5565b61039e61041d3660046151c9565b610afd565b61042a610be0565b6040516103459190615538565b610338610be9565b61039e61044d366004615199565b610bf3565b610338610c0c565b61037e610468366004614db8565b610c30565b61039e61047b366004614fe6565b610c6b565b61033861048e366004614caf565b610c89565b610338610ceb565b6104ae6104a9366004614ee7565b610cfc565b6040516103459291906154ca565b6103386104ca366004614caf565b610d33565b610338610d3e565b6104df610e17565b604051610345939291906154e3565b6103386104fc366004614caf565b610e32565b61051461050f366004614ee7565b610e4d565b604051610345929190615399565b610338610ecb565b610338610538366004614caf565b610ed1565b61055061054b366004614caf565b610eec565b60405161034593929190615507565b610338610f61565b610338610575366004614f8a565b610f85565b6104ae610588366004614ee7565b610fd7565b610595610ffd565b6040516103459190615325565b610338611021565b610595611027565b61035e61104b565b6105c26110ac565b6040516103459291906154f9565b6103386105de36600461514d565b6110b6565b61037e6105f1366004614db8565b6110c3565b61037e610604366004614db8565b611101565b61059561110e565b61039e61061f366004614d43565b611118565b610514610632366004614ee7565b611261565b61039e611392565b61033861064d366004614ccb565b6113a4565b6103386113e1565b61039e6114b9565b61039e610670366004614db8565b6114e5565b600084608001516106a2610687611027565b6001600160a01b0316336001600160a01b03161460cd611655565b6106b76106ad610c0c565b82146101f4611655565b6106c984846106c4611663565b611687565b60606106d361169f565b90506000875160018111156106e457fe5b146106fb576106f68787878785611899565b610708565b6107088787878785611910565b979650505050505050565b600061071d611974565b90505b90565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107af5780601f10610784576101008083540402835291602001916107af565b820191906000526020600020905b81548152906001019060200180831161079257829003601f168201915b5050505050905090565b60006107c633848461197b565b5060015b92915050565b6107d86119d6565b6107e181611a1c565b50565b60025490565b60008060006107f7611ab8565b159250610802611ad5565b915061080c611af9565b9050909192565b606061071d61169f565b60606000610829611663565b90508067ffffffffffffffff8111801561084257600080fd5b5060405190808252806020026020018201604052801561086c578160200160208202803683370190505b50915080156108c8577f0000000000000000000000000000000000000000000000000000000000000000826000815181106108a357fe5b60200260200101906001600160a01b031690816001600160a01b0316815250506108ce565b50610720565b60018111156108c8577f00000000000000000000000000000000000000000000000000000000000000008260018151811061090557fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060028111156108c8577f00000000000000000000000000000000000000000000000000000000000000008260028151811061095c57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060038111156108c8577f0000000000000000000000000000000000000000000000000000000000000000826003815181106109b357fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060048111156108c8577f000000000000000000000000000000000000000000000000000000000000000082600481518110610a0a57fe5b60200260200101906001600160a01b031690816001600160a01b0316815250505b5090565b600080610a3c85336113a4565b9050610a60336001600160a01b0387161480610a585750838210155b61019e611655565b610a6b858585611b1d565b336001600160a01b03861614801590610a8657506000198114155b15610a9857610a98853385840361197b565b60019150505b9392505050565b6000610ab082611bfd565b9050610ac96001600160a01b0382161515610155611655565b6001600160a01b0382166000908152600e6020526040812054610aeb90611def565b9050610af8838383611dfc565b505050565b610b056119d6565b610b15600183101561012c611655565b610b2661138883111561012d611655565b6000610b3282426115c8565b9050610b466201518082101561013d611655565b600080610b51611edb565b91509150610b62811561013e611655565b6000610b70866103e8611576565b90506000838211610b9f57610b9a610b8b6201518086611576565b610b958488611576565b611f4f565b610bb9565b610bb9610baf6201518084611576565b610b958688611576565b9050610bcb600282111561013f611655565b610bd784834289611f82565b50505050505050565b60055460ff1690565b600061071d611fd1565b610bfb6119d6565b610c0361206e565b6107e181612081565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916107c6918590610c6690866120ec565b61197b565b610c736119d6565b610c7b61206e565b610c8582826120fe565b5050565b60006001600160a01b038216301415610cab5750670de0b6b3a7640000610ce6565b6001600160a01b0382166000908152600e60205260409020548015610cd857610cd381612216565b610ce2565b670de0b6b3a76400005b9150505b919050565b60085460009061071d9060c0612222565b60006060610d128651610d0d611663565b612230565b610d278989898989898961223d6122e1612342565b97509795505050505050565b60006107ca826124d2565b60006060610d4a611027565b6001600160a01b031663f94d4668610d60610c0c565b6040518263ffffffff1660e01b8152600401610d7c91906153e1565b60006040518083038186803b158015610d9457600080fd5b505afa158015610da8573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610dd09190810190614de3565b50915050610de581610de061169f565b6124f3565b60006060610df283612554565b915091506000610e00611edb565b509050610e0e828285612660565b94505050505090565b6000806000610e24611edb565b90949093506103e892509050565b6001600160a01b031660009081526020819052604090205490565b60608088610e5c610687611027565b610e676106ad610c0c565b6060610e7161169f565b9050610e7d88826124f3565b6000606080610e928e8e8e8e8e8e8a8f61223d565b925092509250610ea28d8461267b565b610eac82856122e1565b610eb681856122e1565b909550935050505b5097509795505050505050565b600c5490565b6001600160a01b031660009081526006602052604090205490565b60008080610f1081610efd86611bfd565b6001600160a01b03161415610155611655565b6001600160a01b0384166000908152600e6020526040902054610f3290612216565b6001600160a01b0385166000908152600e6020526040902054909350610f5790612685565b9395909450915050565b7f000000000000000000000000000000000000000000000000000000000000000090565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610fba9291906152af565b604051602081830303815290604052805190602001209050919050565b60006060610fe88651610d0d611663565b610d27898989898989896126a56126e8612342565b7f000000000000000000000000000000000000000000000000000000000000000090565b600d5490565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107af5780601f10610784576101008083540402835291602001916107af565b600a54600b549091565b6000610a9e610154612749565b6000806110d033856113a4565b90508083106110ea576110e53385600061197b565b6110f7565b6110f7338585840361197b565b5060019392505050565b60006107c6338484611b1d565b600061071d6127b6565b6111268442111560d1611655565b6001600160a01b038716600090815260066020908152604080832054905190929161117d917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101615409565b60405160208183030381529060405280519060200120905060006111a082612830565b90506000600182888888604051600081526020016040526040516111c79493929190615499565b6020604051602081039080840390855afa1580156111e9573d6000803e3d6000fd5b5050604051601f190151915061122b90506001600160a01b0382161580159061122357508b6001600160a01b0316826001600160a01b0316145b6101f8611655565b6001600160a01b038b1660009081526006602052604090206001850190556112548b8b8b61197b565b5050505050505050505050565b60608088611270610687611027565b61127b6106ad610c0c565b606061128561169f565b905061128f6107e4565b61134257600060606112a48d8d8d868b61284c565b915091506112bd6112b3611974565b83101560cc611655565b6112cf60006112ca611974565b61293f565b6112e28b6112db611974565b840361293f565b6112ec81846126e8565b806112f5611663565b67ffffffffffffffff8111801561130b57600080fd5b50604051908082528060200260200182016040528015611335578160200160208202803683370190505b5095509550505050610ebe565b61134c88826124f3565b60006060806113618e8e8e8e8e8e8a8f6126a5565b9250925092506113718c8461293f565b61137b82856126e8565b61138581856122e1565b9095509350610ebe915050565b6113a261139d611027565b612949565b565b60006113ae611027565b6001600160a01b0316826001600160a01b031614156113d057506000196107ca565b6113da8383612a70565b90506107ca565b600060606113ed611027565b6001600160a01b031663f94d4668611403610c0c565b6040518263ffffffff1660e01b815260040161141f91906153e1565b60006040518083038186803b15801561143757600080fd5b505afa15801561144b573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526114739190810190614de3565b509150506114b3817f0000000000000000000000000000000000000000000000000000000000000000815181106114a657fe5b6020026020010151612a9b565b91505090565b6114c16119d6565b6000806114cc611edb565b915091506114dc81610140611655565b610c8582612abb565b6114ed6119d6565b60006114f883611bfd565b90506115116001600160a01b0382161515610155611655565b61151c838284611dfc565b806001600160a01b0316836001600160a01b03167ff00a2bf8c71db611a21183e0a96869752bcd9da29372fa76f865eed4fdd540d18460405161155f91906153e1565b60405180910390a3505050565b80610c8581612af6565b6000828202610a9e84158061159357508385838161159057fe5b04145b6003611655565b610af882841480156115ab57508183145b6067611655565b67ffffffffffffffff811b1992909216911b1790565b60006115d8838311156001611655565b50900390565b60006115ff7001000000000000000000000000000000008410610149611655565b61161682420167ffffffffffffffff1660c0611651565b61162b8367ffffffffffffffff166080611651565b611648856fffffffffffffffffffffffffffffffff166000611651565b17179392505050565b1b90565b81610c8557610c8581612749565b7f000000000000000000000000000000000000000000000000000000000000000090565b610af8818410801561169857508183105b6064611655565b606060006116ab611663565b90506116b5612b6f565b915080156117265761170c6116e97f0000000000000000000000000000000000000000000000000000000000000000610c89565b836000815181106116f657fe5b6020026020010151612c9790919063ffffffff16565b8260008151811061171957fe5b6020026020010181815250505b60018111156117825761176861175b7f0000000000000000000000000000000000000000000000000000000000000000610c89565b836001815181106116f657fe5b8260018151811061177557fe5b6020026020010181815250505b60028111156117de576117c46117b77f0000000000000000000000000000000000000000000000000000000000000000610c89565b836002815181106116f657fe5b826002815181106117d157fe5b6020026020010181815250505b600381111561183a576118206118137f0000000000000000000000000000000000000000000000000000000000000000610c89565b836003815181106116f657fe5b8260038151811061182d57fe5b6020026020010181815250505b6004811115610a2b5761187c61186f7f0000000000000000000000000000000000000000000000000000000000000000610c89565b836004815181106116f657fe5b8260048151811061188957fe5b6020026020010181815250505090565b60006118a585836124f3565b6118c686606001518385815181106118b957fe5b6020026020010151612cc3565b606087015260006118d987878787612ccf565b90506118f8818487815181106118eb57fe5b6020026020010151612e8a565b905061190381612e96565b9150505b95945050505050565b600061191f8660600151612ebc565b606087015261192e85836124f3565b61194286606001518386815181106118b957fe5b6060870152600061195587878787612edd565b90506119038184868151811061196757fe5b6020026020010151613008565b620f424090565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9259061155f9085906153e1565b6000611a056000357fffffffff0000000000000000000000000000000000000000000000000000000016610f85565b90506107e1611a148233613014565b610191611655565b8015611a3c57611a37611a2d611ad5565b4210610193611655565b611a51565b611a51611a47611af9565b42106101a9611655565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be6490611aad9083906153be565b60405180910390a150565b6000611ac2611af9565b42118061071d57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b611b346001600160a01b0384161515610198611655565b611b4b6001600160a01b0383161515610199611655565b611b56838383610af8565b6001600160a01b038316600090815260208190526040902054611b7c90826101a06130fd565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611bab90826120ec565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061155f9085906153e1565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611c6057507f0000000000000000000000000000000000000000000000000000000000000000610ce6565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611cc157507f0000000000000000000000000000000000000000000000000000000000000000610ce6565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611d2257507f0000000000000000000000000000000000000000000000000000000000000000610ce6565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611d8357507f0000000000000000000000000000000000000000000000000000000000000000610ce6565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611de457507f0000000000000000000000000000000000000000000000000000000000000000610ce6565b610ce6610135612749565b60006107ca826080612222565b6000826001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b158015611e3757600080fd5b505afa158015611e4b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611e6f91906151b1565b90506000611e7d82846115de565b6001600160a01b0386166000818152600e60205260409081902083905551919250907fcfed57d90913b5ee1895919dcccaff83a9f7a842d912ef137272e5fc6123aa8690611ecc9085906153e1565b60405180910390a25050505050565b600080600080600080611eec613113565b935093509350935080421015611f3f576001945083831115611f23578181038242038585030281611f1957fe5b0484019550611f3a565b8181038242038486030281611f3457fe5b04840395505b611f47565b600094508295505b505050509091565b6000611f5e8215156004611655565b82611f6b575060006107ca565b816001840381611f7757fe5b0460010190506107ca565b611f8e8484848461316a565b7f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf284848484604051611fc3949392919061551d565b60405180910390a150505050565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f000000000000000000000000000000000000000000000000000000000000000061203e6131ca565b3060405160200161205395949392919061543d565b60405160208183030381529060405280519060200120905090565b6113a2612079611ab8565b610192611655565b61209464e8d4a5100082101560cb611655565b6120aa67016345785d8a000082111560ca611655565b6008546120b9908260c06115b2565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90611aad9083906153e1565b6000828201610a9e8482101583611655565b6000612108610c0c565b90506000612114611027565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401612141929190615482565b60806040518083038186803b15801561215957600080fd5b505afa15801561216d573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061219191906151ea565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d492506121de915085908790600401615469565b600060405180830381600087803b1580156121f857600080fd5b505af115801561220c573d6000803e3d6000fd5b5050505050505050565b60006107ca82826131ce565b1c67ffffffffffffffff1690565b610c858183146067611655565b6000606080600061224d856131e4565b9050600081801561225a57fe5b14156122c7576122686131fa565b612272898661320e565b909450925061227f611663565b67ffffffffffffffff8111801561229557600080fd5b506040519080825280602002602001820160405280156122bf578160200160208202803683370190505b5091506122d2565b6122d2610154612749565b50985098509895505050505050565b60005b6122ec611663565b811015610af85761232383828151811061230257fe5b602002602001015183838151811061231657fe5b6020026020010151613283565b83828151811061232f57fe5b60209081029190910101526001016122e4565b333014612431576000306001600160a01b03166000366040516123669291906152df565b6000604051808303816000865af19150503d80600081146123a3576040519150601f19603f3d011682016040523d82523d6000602084013e6123a8565b606091505b5050905080600081146123b757fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114612413573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b606061243b61169f565b905061244787826124f3565b6000606061245f8c8c8c8c8c8c898d8d63ffffffff16565b509150915061247281848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b6000806124de836132d4565b9050610ce26124ec84610c89565b8290612c97565b60005b6124fe611663565b811015610af85761253583828151811061251457fe5b602002602001015183838151811061252857fe5b6020026020010151612c97565b83828151811061254157fe5b60209081029190910101526001016124f6565b60006060600c54837f00000000000000000000000000000000000000000000000000000000000000008151811061258757fe5b60200260200101516dffffffffffffffffffffffffffff03019150600183510367ffffffffffffffff811180156125bd57600080fd5b506040519080825280602002602001820160405280156125e7578160200160208202803683370190505b50905060005b815181101561265a57837f000000000000000000000000000000000000000000000000000000000000000082106126275781600101612629565b815b8151811061263357fe5b602002602001015182828151811061264757fe5b60209081029190910101526001016125ed565b50915091565b60008061266f848660006133cf565b90506119078184613283565b610c858282613565565b60008061269183611def565b915061269e8360c0612222565b9050915091565b600060608060006126b585613621565b905060018160018111156126c557fe5b14156122c7576126d3613637565b93509350935050985098509895505050505050565b60005b6126f3611663565b811015610af85761272a83828151811061270957fe5b602002602001015183838151811061271d57fe5b602002602001015161371b565b83828151811061273657fe5b60209081029190910101526001016126eb565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60006127c0611027565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156127f857600080fd5b505afa15801561280c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061071d9190614fca565b600061283a611fd1565b82604051602001610fba9291906152ef565b6000606061285861206e565b600061286384613621565b905061287e600082600181111561287657fe5b1460ce611655565b606061288985613769565b90506128988151610d0d611663565b6128a281876124f3565b60006128ac611edb565b50905060606128ba83612554565b91505060006128cb838360016133cf565b90508060006128e86dffffffffffffffffffffffffffff836115c8565b90506128f48d8261293f565b80867f00000000000000000000000000000000000000000000000000000000000000008151811061292157fe5b6020908102919091010152509c939b50929950505050505050505050565b610c85828261377f565b6000816001600160a01b031663d2946c2b6040518163ffffffff1660e01b815260040160206040518083038186803b15801561298457600080fd5b505afa158015612998573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906129bc9190614fca565b6001600160a01b03166355c676286040518163ffffffff1660e01b815260040160206040518083038186803b1580156129f457600080fd5b505afa158015612a08573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612a2c91906151b1565b905080600d819055507f6e4e298b4a98488a054248cfb63661894b93fb9fd398cc9eca58e39215954eb781604051612a6491906153e1565b60405180910390a15050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b60006107ca600c54612ab584612aaf6107e4565b906115c8565b906120ec565b612ac78182424261316a565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a023381604051611aad91906153e1565b600281511015612b05576107e1565b600081600081518110612b1457fe5b602002602001015190506000600190505b8251811015610af8576000838281518110612b3c57fe5b60200260200101519050612b65816001600160a01b0316846001600160a01b0316106065611655565b9150600101612b25565b60606000612b7b611663565b905060608167ffffffffffffffff81118015612b9657600080fd5b50604051908082528060200260200182016040528015612bc0578160200160208202803683370190505b509050612bcb61380d565b81600081518110612bd857fe5b602002602001018181525050612bec613831565b81600181518110612bf957fe5b6020026020010181815250506002821115612c3457612c16613855565b81600281518110612c2357fe5b602002602001018181525050612c3d565b91506107209050565b6003821115612c3457612c4e613879565b81600381518110612c5b57fe5b6020026020010181815250506004821115612c3457612c7861389d565b81600481518110612c8557fe5b60200260200101818152505091505090565b6000828202612cb184158061159357508385838161159057fe5b670de0b6b3a764000090049392505050565b6000610a9e8383612c97565b6000612cd961206e565b612ce16138c1565b600d5460006060612cf187612554565b60208a015191935091506001600160a01b0316301415612d3a57612d238860600151612d1c876139d4565b8484613a0d565b93508215612d3557612d358484613a92565b612e7f565b60408801516001600160a01b0316301415612d7d57612d678860600151612d60886139d4565b8484613af2565b93508215612d3557612d35886060015184613a92565b6000612d87611edb565b5090506000612d98828460016133cf565b9050612dbc8284612da88b6139d4565b612db18b6139d4565b8e6060015186613b19565b95508415612e7c576000612dcf896139d4565b90506000612ddc896139d4565b90506000612de989612e96565b9050612e1181878581518110612dfb57fe5b60200260200101516120ec90919063ffffffff16565b868481518110612e1d57fe5b602002602001018181525050612e538d60600151878481518110612e3d57fe5b60200260200101516115c890919063ffffffff16565b868381518110612e5f57fe5b602002602001018181525050612e788486888a8c613bb8565b5050505b50505b505050949350505050565b6000610a9e838361371b565b60006107ca612eb5612ea6610ceb565b670de0b6b3a7640000906115c8565b839061371b565b600080612ed1612eca610ceb565b8490613c63565b9050610ce283826115c8565b6000612ee761206e565b612eef6138c1565b600d5460006060612eff87612554565b60208a015191935091506001600160a01b0316301415612f3157612d678860600151612f2a876139d4565b8484613ca6565b60408801516001600160a01b0316301415612f5e57612d238860600151612f57886139d4565b8484613cc3565b6000612f68611edb565b5090506000612f79828460016133cf565b9050612f9d8284612f898b6139d4565b612f928b6139d4565b8e6060015186613d49565b95508415612e7c576000612fb0896139d4565b90506000612fbd896139d4565b90506000612fce8d60600151612e96565b9050612fe081878581518110612dfb57fe5b868481518110612fec57fe5b602002602001018181525050612e5389878481518110612e3d57fe5b6000610a9e8383613283565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b613033610ffd565b6001600160a01b03161415801561304e575061304e83613dc6565b156130765761305b610ffd565b6001600160a01b0316336001600160a01b03161490506107ca565b61307e6127b6565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b81526004016130ad939291906153ea565b60206040518083038186803b1580156130c557600080fd5b505afa1580156130d9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113da9190614ecb565b600061310c8484111583611655565b5050900390565b60008060008061312f600060095461222290919063ffffffff16565b600954909450613140906040612222565b600954909350613151906080612222565b6009549092506131629060c0612222565b905090919293565b61317f8167ffffffffffffffff1660c0611651565b6131948367ffffffffffffffff166080611651565b6131a98567ffffffffffffffff166040611651565b6131be8767ffffffffffffffff166000611651565b17171760095550505050565b4690565b1c6fffffffffffffffffffffffffffffffff1690565b6000818060200190518101906107ca9190615034565b6113a2613205611ab8565b156101af611655565b600060608061321c85612554565b915050600061322a85613e02565b9050606061326783836132628a7f0000000000000000000000000000000000000000000000000000000000000000815181106114a657fe5b613e18565b905081613275826000613eb4565b945094505050509250929050565b60006132928215156004611655565b8261329f575060006107ca565b670de0b6b3a7640000838102906132c2908583816132b957fe5b04146005611655565b8281816132cb57fe5b049150506107ca565b60006132df82613f9c565b156132f3576132ec61380d565b9050610ce6565b6132fc82613fce565b15613309576132ec613831565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561334b576132ec613855565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b0316141561338d576132ec613879565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611de4576132ec61389d565b81516000908190815b81811015613410576134068682815181106133ef57fe5b6020026020010151846120ec90919063ffffffff16565b92506001016133d8565b508161342157600092505050610a9e565b600082878302825b60ff81101561354d576000858a60008151811061344257fe5b60200260200101510290506000600190505b868110156134965761348c61348561347f848e858151811061347257fe5b6020026020010151611576565b89611576565b868c614000565b9150600101613454565b508394506135036134d26134bf6134b66134b0878c611576565b85611576565b6103e88d614000565b612ab56134cc8a89611576565b88611576565b6134fd6134f06134e66103e8880386611576565b6103e88e15614000565b612ab58a60010189611576565b8b614000565b93508484111561352b576001858503116135265783975050505050505050610a9e565b613544565b6001848603116135445783975050505050505050610a9e565b50600101613429565b50613559610141612749565b50505050509392505050565b61357c6001600160a01b038316151561019b611655565b61358882600083610af8565b6001600160a01b0382166000908152602081905260409020546135ae90826101a16130fd565b6001600160a01b0383166000908152602081905260409020556002546135d49082614028565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906136159085906153e1565b60405180910390a35050565b6000818060200190518101906107ca919061507b565b60006060806000613646611663565b9050600093508067ffffffffffffffff8111801561366357600080fd5b5060405190808252806020026020018201604052801561368d578160200160208202803683370190505b5092508067ffffffffffffffff811180156136a757600080fd5b506040519080825280602002602001820160405280156136d1578160200160208202803683370190505b509150600c54827f00000000000000000000000000000000000000000000000000000000000000008151811061370357fe5b6020908102919091010152506000600c559192909190565b600061372a8215156004611655565b82613737575060006107ca565b670de0b6b3a764000083810290613751908583816132b957fe5b82600182038161375d57fe5b046001019150506107ca565b606081806020019051810190610a9e9190615097565b61378b60008383610af8565b60025461379890826120ec565b6002556001600160a01b0382166000908152602081905260409020546137be90826120ec565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906136159085906153e1565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006138cb611663565b90508015613901576138fc7f0000000000000000000000000000000000000000000000000000000000000000614036565b613907565b506113a2565b6001811115613901576139397f0000000000000000000000000000000000000000000000000000000000000000614036565b60028111156139015761396b7f0000000000000000000000000000000000000000000000000000000000000000614036565b60038111156139015761399d7f0000000000000000000000000000000000000000000000000000000000000000614036565b6004811115613901576139cf7f0000000000000000000000000000000000000000000000000000000000000000614036565b6107e1565b60007f00000000000000000000000000000000000000000000000000000000000000008210610a2b57613a088260016115c8565b6107ca565b600080613a18611edb565b50905060606001613a27611663565b0367ffffffffffffffff81118015613a3e57600080fd5b50604051908082528060200260200182016040528015613a68578160200160208202803683370190505b50905086818781518110613a7857fe5b6020026020010181815250506107088285838860006140b4565b6000613aa183612aaf85612e96565b90506000613aaf8284612c97565b600c54909150613abf90826120ec565b600c556040517f1d2422d87bc31f46211cfdfe158c5eccb86547546c7a4fff6be15a0a944c84b290611fc39083906153e1565b600080613afd611edb565b509050613b0f81848789886000614367565b9695505050505050565b6000613b2b83878681518110612e3d57fe5b868581518110613b3757fe5b6020026020010181815250506000613b518888858961447c565b905083878681518110613b6057fe5b602002602001015101878681518110613b7557fe5b602002602001018181525050613bac6001612ab5898981518110613b9557fe5b6020026020010151846115c890919063ffffffff16565b98975050505050505050565b6000613bc6858560006133cf565b90506000613bd48288613283565b9050670de0b6b3a7640000811115610bd7576000613c0e613c0786613c0185670de0b6b3a76400006115c8565b90612c97565b8590612c97565b600c54909150613c1e90826120ec565b600c556040517f1d2422d87bc31f46211cfdfe158c5eccb86547546c7a4fff6be15a0a944c84b290613c519083906153e1565b60405180910390a15050505050505050565b6000828202613c7d84158061159357508385838161159057fe5b80613c8c5760009150506107ca565b670de0b6b3a7640000600019820161375d565b5092915050565b600080613cb1611edb565b509050613b0f8184878988600061461c565b600060606001613cd1611663565b0367ffffffffffffffff81118015613ce857600080fd5b50604051908082528060200260200182016040528015613d12578160200160208202803683370190505b50905085818681518110613d2257fe5b6020026020010181815250506000613d38611edb565b5090506107088185848860006146e3565b6000613d5b83878781518110612dfb57fe5b868681518110613d6757fe5b6020026020010181815250506000613d818888858861447c565b905083878781518110613d9057fe5b602002602001015103878781518110613da557fe5b602002602001018181525050613bac6001612aaf838a8981518110612e3d57fe5b6000613df17ff4b7964d00000000000000000000000000000000000000000000000000000000610f85565b8214806107ca57506107ca82614978565b600081806020019051810190610a9e919061504f565b60606000613e268484613283565b90506060855167ffffffffffffffff81118015613e4257600080fd5b50604051908082528060200260200182016040528015613e6c578160200160208202803683370190505b50905060005b8651811015613eaa57613e8b838883815181106116f657fe5b828281518110613e9757fe5b6020908102919091010152600101613e72565b5095945050505050565b6060825160010167ffffffffffffffff81118015613ed157600080fd5b50604051908082528060200260200182016040528015613efb578160200160208202803683370190505b50905060005b8151811015613c9f577f00000000000000000000000000000000000000000000000000000000000000008114613f7b57837f00000000000000000000000000000000000000000000000000000000000000008210613f625760018203613f64565b815b81518110613f6e57fe5b6020026020010151613f7d565b825b828281518110613f8957fe5b6020908102919091010152600101613f01565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0390811691161490565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0390811691161490565b6000816140165761401184846149e6565b614020565b6140208484611f4f565b949350505050565b6000610a9e838360016130fd565b6001600160a01b03811630141561404c576107e1565b6001600160a01b0381166000908152600e60205260409020548015610c85576001600160a01b0382166000908152600e6020526040812054819061408f90612685565b91509150804211156140ae576140ae846140a886611bfd565b84611dfc565b50505050565b600080805b86518110156140f2576140e88782815181106140d157fe5b6020026020010151836120ec90919063ffffffff16565b91506001016140b9565b506060855167ffffffffffffffff8111801561410d57600080fd5b50604051908082528060200260200182016040528015614137578160200160208202803683370190505b5090506000805b885181101561420457600061416f858b848151811061415957fe5b602002602001015161371b90919063ffffffff16565b90506141b18a838151811061418057fe5b60200260200101516141ab8b858151811061419757fe5b60200260200101518d8681518110612e3d57fe5b9061371b565b8483815181106141bd57fe5b6020026020010181815250506141f96141f2828685815181106141dc57fe5b6020026020010151613c6390919063ffffffff16565b84906120ec565b92505060010161413e565b506060885167ffffffffffffffff8111801561421f57600080fd5b50604051908082528060200260200182016040528015614249578160200160208202803683370190505b50905060005b895181101561431457600084828151811061426657fe5b60200260200101518411156142cd57600061428f61428386614a06565b8d85815181106116f657fe5b905060006142a3828d8681518110612e3d57fe5b90506142c46142bd82670de0b6b3a76400008d900361371b565b83906120ec565b925050506142e4565b8982815181106142d957fe5b602002602001015190505b6142f4818c8481518110612e3d57fe5b83838151811061430057fe5b60209081029190910101525060010161424f565b5060006143238b8b60016133cf565b905060006143338c8460006133cf565b905060006143418284613283565b905061435661434f82614a06565b8b90613c63565b9d9c50505050505050505050505050565b600080614376888860016133cf565b905060006143928261438c876141ab818b6120ec565b90613c63565b905060006143a28a8a848b61447c565b905060006143cc8a8a815181106143b557fe5b6020026020010151836115c890919063ffffffff16565b90506000805b8b518110156143f4576143ea8c82815181106140d157fe5b91506001016143d2565b50600061441d828d8d8151811061440757fe5b602002602001015161328390919063ffffffff16565b9050600061442a82614a06565b905060006144388583613c63565b9050600061444686836115c8565b905061446761446083670de0b6b3a76400008e900361371b565b82906120ec565b99505050505050505050509695505050505050565b60008084518602905060008560008151811061449457fe5b6020026020010151905060008651876000815181106144af57fe5b60200260200101510290506000600190505b8751811015614508576144ed6144e76144e0848b858151811061347257fe5b8a51611576565b886149e6565b91506144fe8882815181106133ef57fe5b92506001016144c1565b5086858151811061451557fe5b602002602001015182039150600061452d8788611576565b9050600061455961454d61454584610b958988611576565b6103e8611576565b8a898151811061347257fe5b9050600061457461456d6145458b896149e6565b86906120ec565b905060008061459061458686866120ec565b610b958d866120ec565b905060005b60ff811015614610578192506145c56145b286612ab58586611576565b610b958e612aaf88612ab5886002611576565b9150828211156145ee576001838303116145e9575097506140209650505050505050565b614608565b600182840311614608575097506140209650505050505050565b600101614595565b50612e78610142612749565b60008061462b888860016133cf565b905060006146418261438c876141ab818b6115c8565b905060006146518a8a848b61447c565b90506000614665828b8b81518110612e3d57fe5b90506000805b8b5181101561468d576146838c82815181106140d157fe5b915060010161466b565b5060006146a0828d8d8151811061440757fe5b905060006146ad82614a06565b905060006146bb8583613c63565b905060006146c986836115c8565b905061446761446083670de0b6b3a76400008e9003612c97565b600080805b865181101561470a576147008782815181106140d157fe5b91506001016146e8565b506060855167ffffffffffffffff8111801561472557600080fd5b5060405190808252806020026020018201604052801561474f578160200160208202803683370190505b5090506000805b88518110156147e9576000614771858b848151811061440757fe5b90506147b38a838151811061478257fe5b60200260200101516147ad8b858151811061479957fe5b60200260200101518d8681518110612dfb57fe5b90613283565b8483815181106147bf57fe5b6020026020010181815250506147de6141f2828685815181106116f657fe5b925050600101614756565b506060885167ffffffffffffffff8111801561480457600080fd5b5060405190808252806020026020018201604052801561482e578160200160208202803683370190505b50905060005b89518110156148ef5760008385838151811061484c57fe5b602002602001015111156148a857600061487161428386670de0b6b3a76400006115c8565b90506000614885828d8681518110612e3d57fe5b905061489f6142bd82670de0b6b3a76400008d9003612c97565b925050506148bf565b8982815181106148b457fe5b602002602001015190505b6148cf818c8481518110612dfb57fe5b8383815181106148db57fe5b602090810291909101015250600101614834565b5060006148fe8b8b60016133cf565b9050600061490e8c8460006133cf565b9050600061491c8284613283565b9050670de0b6b3a76400008111156149685761495a8a7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008301612c97565b975050505050505050611907565b6000975050505050505050611907565b60006149a37f2f1a0bc900000000000000000000000000000000000000000000000000000000610f85565b8214806149d757506149d47feb0f24d600000000000000000000000000000000000000000000000000000000610f85565b82145b806107ca57506107ca82614a2c565b60006149f58215156004611655565b8183816149fe57fe5b049392505050565b6000670de0b6b3a76400008210614a1e5760006107ca565b50670de0b6b3a76400000390565b6000614a577f38e9922e00000000000000000000000000000000000000000000000000000000610f85565b8214806107ca5750614a887f50dd6ed900000000000000000000000000000000000000000000000000000000610f85565b909114919050565b80356107ca8161558d565b600082601f830112614aab578081fd5b8135614abe614ab98261556d565b615546565b818152915060208083019084810181840286018201871015614adf57600080fd5b60005b84811015614afe57813584529282019290820190600101614ae2565b505050505092915050565b600082601f830112614b19578081fd5b8151614b27614ab98261556d565b818152915060208083019084810181840286018201871015614b4857600080fd5b60005b84811015614afe57815184529282019290820190600101614b4b565b600082601f830112614b77578081fd5b813567ffffffffffffffff811115614b8d578182fd5b614ba06020601f19601f84011601615546565b9150808252836020828501011115614bb757600080fd5b8060208401602084013760009082016020015292915050565b8051600181106107ca57600080fd5b80356107ca816155b0565b6000610120808385031215614bfd578182fd5b614c0681615546565b915050614c138383614bdf565b8152614c228360208401614a90565b6020820152614c348360408401614a90565b6040820152606082013560608201526080820135608082015260a082013560a0820152614c648360c08401614a90565b60c0820152614c768360e08401614a90565b60e08201526101008083013567ffffffffffffffff811115614c9757600080fd5b614ca385828601614b67565b82840152505092915050565b600060208284031215614cc0578081fd5b8135610a9e8161558d565b60008060408385031215614cdd578081fd5b8235614ce88161558d565b91506020830135614cf88161558d565b809150509250929050565b600080600060608486031215614d17578081fd5b8335614d228161558d565b92506020840135614d328161558d565b929592945050506040919091013590565b600080600080600080600060e0888a031215614d5d578283fd5b8735614d688161558d565b96506020880135614d788161558d565b95506040880135945060608801359350608088013560ff81168114614d9b578384fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614dca578182fd5b8235614dd58161558d565b946020939093013593505050565b600080600060608486031215614df7578081fd5b835167ffffffffffffffff80821115614e0e578283fd5b818601915086601f830112614e21578283fd5b8151614e2f614ab98261556d565b80828252602080830192508086018b828387028901011115614e4f578788fd5b8796505b84871015614e7a578051614e668161558d565b845260019690960195928101928101614e53565b508901519097509350505080821115614e91578283fd5b50614e9e86828701614b09565b925050604084015190509250925092565b600060208284031215614ec0578081fd5b8135610a9e816155a2565b600060208284031215614edc578081fd5b8151610a9e816155a2565b600080600080600080600060e0888a031215614f01578081fd5b873596506020880135614f138161558d565b95506040880135614f238161558d565b9450606088013567ffffffffffffffff80821115614f3f578283fd5b614f4b8b838c01614a9b565b955060808a0135945060a08a0135935060c08a0135915080821115614f6e578283fd5b50614f7b8a828b01614b67565b91505092959891949750929550565b600060208284031215614f9b578081fd5b81357fffffffff0000000000000000000000000000000000000000000000000000000081168114610a9e578182fd5b600060208284031215614fdb578081fd5b8151610a9e8161558d565b60008060408385031215614ff8578182fd5b82356150038161558d565b9150602083013567ffffffffffffffff81111561501e578182fd5b61502a85828601614b67565b9150509250929050565b600060208284031215615045578081fd5b610a9e8383614bd0565b60008060408385031215615061578182fd5b61506b8484614bd0565b9150602083015190509250929050565b60006020828403121561508c578081fd5b8151610a9e816155b0565b600080604083850312156150a9578182fd5b82516150b4816155b0565b602084015190925067ffffffffffffffff8111156150d0578182fd5b61502a85828601614b09565b600080600080608085870312156150f1578182fd5b843567ffffffffffffffff80821115615108578384fd5b61511488838901614bea565b95506020870135915080821115615129578384fd5b5061513687828801614a9b565b949794965050505060408301359260600135919050565b600080600060608486031215615161578081fd5b833567ffffffffffffffff811115615177578182fd5b61518386828701614bea565b9660208601359650604090950135949350505050565b6000602082840312156151aa578081fd5b5035919050565b6000602082840312156151c2578081fd5b5051919050565b600080604083850312156151db578182fd5b50508035926020909101359150565b600080600080608085870312156151ff578182fd5b845193506020850151925060408501519150606085015161521f8161558d565b939692955090935050565b6000815180845260208085019450808401835b838110156152595781518752958201959082019060010161523d565b509495945050505050565b60008151808452815b818110156152895760208185018101518683018201520161526d565b8181111561529a5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b8181101561537a5783516001600160a01b031683529284019291840191600101615355565b50909695505050505050565b600060208252610a9e602083018461522a565b6000604082526153ac604083018561522a565b8281036020840152611907818561522a565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526140206040830184615264565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b600060208252610a9e6020830184615264565b600083825260406020830152614020604083018461522a565b9283529015156020830152604082015260600190565b918252602082015260400190565b9283526020830191909152604082015260600190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b60405181810167ffffffffffffffff8111828210171561556557600080fd5b604052919050565b600067ffffffffffffffff821115615583578081fd5b5060209081020190565b6001600160a01b03811681146107e157600080fd5b80151581146107e157600080fd5b600281106107e157600080fdfea26469706673582212209be207960c602875159d44a232a262638e45325c9174ced67dfbb16fb5e1fb4064736f6c634300070100330000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000016000000000000000000000000000000000000000000000000000000000000001c0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002800000000000000000000000000000000000000000000000000000000000000300000000000000000000000000000000000000000000000000000000000000023a00000000000000000000000000000000000000000000000000005af3107a400000000000000000000000000000000000000000000000000000000000006fdbd00000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b000000000000000000000000000000000000000000000000000000000000002642616c616e636572204161766520426f6f7374656420537461626c65506f6f6c2028555344290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000862622d612d55534400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000030000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d000000000000000000000000000000000000000000000000000000000000000030000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d00000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000546000000000000000000000000000000000000000000000000000000000000054600000000000000000000000000000000000000000000000000000000000005460
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106103205760003560e01c806370a08231116101a75780639b02cdde116100ee578063d5c096c411610097578063de82cd3411610071578063de82cd3414610652578063eb0f24d61461065a578063f4b7964d1461066257610320565b8063d5c096c414610624578063d60575ca14610637578063dd62ed3e1461063f57610320565b8063a9059cbb116100c8578063a9059cbb146105f6578063aaabadc514610609578063d505accf1461061157610320565b80639b02cdde146105ba5780639d2c110c146105d0578063a457c2d7146105e357610320565b8063851c1bb3116101505780638d2334e01161012a5780638d2334e0146105a25780638d928af8146105aa57806395d89b41146105b257610320565b8063851c1bb31461056757806387ec68171461057a578063893d20e81461058d57610320565b80637ecebe00116101815780637ecebe001461052a5780637f1260d11461053d57806382687a561461055f57610320565b806370a08231146104ee57806374f3b009146105015780637520e0491461052257610320565b8063313ce5671161026b57806354dea00a116102145780636782f364116101ee5780636782f364146104bc578063679aefce146104cf5780636daccffa146104d757610320565b806354dea00a1461048057806355c67628146104935780636028bfd41461049b57610320565b806338fff2d01161024557806338fff2d014610452578063395093511461045a57806350dd6ed91461046d57610320565b8063313ce567146104225780633644e5151461043757806338e9922e1461043f57610320565b80631c0de051116102cd57806323b872dd116102a757806323b872dd146103e95780632df2c7c0146103fc5780632f1a0bc91461040f57610320565b80631c0de051146103a85780631dd746ea146103bf578063238a2d59146103d457610320565b8063095ea7b3116102fe578063095ea7b31461036b57806316c38b3c1461038b57806318160ddd146103a057610320565b806301ec954a1461032557806304842d4c1461034e57806306fdde0314610356575b600080fd5b6103386103333660046150dc565b610675565b60405161034591906153e1565b60405180910390f35b610338610713565b61035e610723565b60405161034591906154b7565b61037e610379366004614db8565b6107b9565b60405161034591906153be565b61039e610399366004614eaf565b6107d0565b005b6103386107e4565b6103b06107ea565b604051610345939291906153c9565b6103c7610813565b6040516103459190615386565b6103dc61081d565b6040516103459190615339565b61037e6103f7366004614d03565b610a2f565b61039e61040a366004614caf565b610aa5565b61039e61041d3660046151c9565b610afd565b61042a610be0565b6040516103459190615538565b610338610be9565b61039e61044d366004615199565b610bf3565b610338610c0c565b61037e610468366004614db8565b610c30565b61039e61047b366004614fe6565b610c6b565b61033861048e366004614caf565b610c89565b610338610ceb565b6104ae6104a9366004614ee7565b610cfc565b6040516103459291906154ca565b6103386104ca366004614caf565b610d33565b610338610d3e565b6104df610e17565b604051610345939291906154e3565b6103386104fc366004614caf565b610e32565b61051461050f366004614ee7565b610e4d565b604051610345929190615399565b610338610ecb565b610338610538366004614caf565b610ed1565b61055061054b366004614caf565b610eec565b60405161034593929190615507565b610338610f61565b610338610575366004614f8a565b610f85565b6104ae610588366004614ee7565b610fd7565b610595610ffd565b6040516103459190615325565b610338611021565b610595611027565b61035e61104b565b6105c26110ac565b6040516103459291906154f9565b6103386105de36600461514d565b6110b6565b61037e6105f1366004614db8565b6110c3565b61037e610604366004614db8565b611101565b61059561110e565b61039e61061f366004614d43565b611118565b610514610632366004614ee7565b611261565b61039e611392565b61033861064d366004614ccb565b6113a4565b6103386113e1565b61039e6114b9565b61039e610670366004614db8565b6114e5565b600084608001516106a2610687611027565b6001600160a01b0316336001600160a01b03161460cd611655565b6106b76106ad610c0c565b82146101f4611655565b6106c984846106c4611663565b611687565b60606106d361169f565b90506000875160018111156106e457fe5b146106fb576106f68787878785611899565b610708565b6107088787878785611910565b979650505050505050565b600061071d611974565b90505b90565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107af5780601f10610784576101008083540402835291602001916107af565b820191906000526020600020905b81548152906001019060200180831161079257829003601f168201915b5050505050905090565b60006107c633848461197b565b5060015b92915050565b6107d86119d6565b6107e181611a1c565b50565b60025490565b60008060006107f7611ab8565b159250610802611ad5565b915061080c611af9565b9050909192565b606061071d61169f565b60606000610829611663565b90508067ffffffffffffffff8111801561084257600080fd5b5060405190808252806020026020018201604052801561086c578160200160208202803683370190505b50915080156108c8577f0000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c826000815181106108a357fe5b60200260200101906001600160a01b031690816001600160a01b0316815250506108ce565b50610720565b60018111156108c8577f00000000000000000000000000000000000000000000000000000000000000008260018151811061090557fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060028111156108c8577f000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f8260028151811061095c57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060038111156108c8577f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d0826003815181106109b357fe5b60200260200101906001600160a01b031690816001600160a01b03168152505060048111156108c8577f000000000000000000000000000000000000000000000000000000000000000082600481518110610a0a57fe5b60200260200101906001600160a01b031690816001600160a01b0316815250505b5090565b600080610a3c85336113a4565b9050610a60336001600160a01b0387161480610a585750838210155b61019e611655565b610a6b858585611b1d565b336001600160a01b03861614801590610a8657506000198114155b15610a9857610a98853385840361197b565b60019150505b9392505050565b6000610ab082611bfd565b9050610ac96001600160a01b0382161515610155611655565b6001600160a01b0382166000908152600e6020526040812054610aeb90611def565b9050610af8838383611dfc565b505050565b610b056119d6565b610b15600183101561012c611655565b610b2661138883111561012d611655565b6000610b3282426115c8565b9050610b466201518082101561013d611655565b600080610b51611edb565b91509150610b62811561013e611655565b6000610b70866103e8611576565b90506000838211610b9f57610b9a610b8b6201518086611576565b610b958488611576565b611f4f565b610bb9565b610bb9610baf6201518084611576565b610b958688611576565b9050610bcb600282111561013f611655565b610bd784834289611f82565b50505050505050565b60055460ff1690565b600061071d611fd1565b610bfb6119d6565b610c0361206e565b6107e181612081565b7f7b50775383d3d6f0215a8f290f2c9e2eebbeceb20000000000000000000000fe90565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916107c6918590610c6690866120ec565b61197b565b610c736119d6565b610c7b61206e565b610c8582826120fe565b5050565b60006001600160a01b038216301415610cab5750670de0b6b3a7640000610ce6565b6001600160a01b0382166000908152600e60205260409020548015610cd857610cd381612216565b610ce2565b670de0b6b3a76400005b9150505b919050565b60085460009061071d9060c0612222565b60006060610d128651610d0d611663565b612230565b610d278989898989898961223d6122e1612342565b97509795505050505050565b60006107ca826124d2565b60006060610d4a611027565b6001600160a01b031663f94d4668610d60610c0c565b6040518263ffffffff1660e01b8152600401610d7c91906153e1565b60006040518083038186803b158015610d9457600080fd5b505afa158015610da8573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610dd09190810190614de3565b50915050610de581610de061169f565b6124f3565b60006060610df283612554565b915091506000610e00611edb565b509050610e0e828285612660565b94505050505090565b6000806000610e24611edb565b90949093506103e892509050565b6001600160a01b031660009081526020819052604090205490565b60608088610e5c610687611027565b610e676106ad610c0c565b6060610e7161169f565b9050610e7d88826124f3565b6000606080610e928e8e8e8e8e8e8a8f61223d565b925092509250610ea28d8461267b565b610eac82856122e1565b610eb681856122e1565b909550935050505b5097509795505050505050565b600c5490565b6001600160a01b031660009081526006602052604090205490565b60008080610f1081610efd86611bfd565b6001600160a01b03161415610155611655565b6001600160a01b0384166000908152600e6020526040902054610f3290612216565b6001600160a01b0385166000908152600e6020526040902054909350610f5790612685565b9395909450915050565b7f000000000000000000000000000000000000000000000000000000000000000190565b60007f000000000000000000000000b08e16cfc07c684daa2f93c70323badb2a6cbfd282604051602001610fba9291906152af565b604051602081830303815290604052805190602001209050919050565b60006060610fe88651610d0d611663565b610d27898989898989896126a56126e8612342565b7f000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b90565b600d5490565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107af5780601f10610784576101008083540402835291602001916107af565b600a54600b549091565b6000610a9e610154612749565b6000806110d033856113a4565b90508083106110ea576110e53385600061197b565b6110f7565b6110f7338585840361197b565b5060019392505050565b60006107c6338484611b1d565b600061071d6127b6565b6111268442111560d1611655565b6001600160a01b038716600090815260066020908152604080832054905190929161117d917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d9101615409565b60405160208183030381529060405280519060200120905060006111a082612830565b90506000600182888888604051600081526020016040526040516111c79493929190615499565b6020604051602081039080840390855afa1580156111e9573d6000803e3d6000fd5b5050604051601f190151915061122b90506001600160a01b0382161580159061122357508b6001600160a01b0316826001600160a01b0316145b6101f8611655565b6001600160a01b038b1660009081526006602052604090206001850190556112548b8b8b61197b565b5050505050505050505050565b60608088611270610687611027565b61127b6106ad610c0c565b606061128561169f565b905061128f6107e4565b61134257600060606112a48d8d8d868b61284c565b915091506112bd6112b3611974565b83101560cc611655565b6112cf60006112ca611974565b61293f565b6112e28b6112db611974565b840361293f565b6112ec81846126e8565b806112f5611663565b67ffffffffffffffff8111801561130b57600080fd5b50604051908082528060200260200182016040528015611335578160200160208202803683370190505b5095509550505050610ebe565b61134c88826124f3565b60006060806113618e8e8e8e8e8e8a8f6126a5565b9250925092506113718c8461293f565b61137b82856126e8565b61138581856122e1565b9095509350610ebe915050565b6113a261139d611027565b612949565b565b60006113ae611027565b6001600160a01b0316826001600160a01b031614156113d057506000196107ca565b6113da8383612a70565b90506107ca565b600060606113ed611027565b6001600160a01b031663f94d4668611403610c0c565b6040518263ffffffff1660e01b815260040161141f91906153e1565b60006040518083038186803b15801561143757600080fd5b505afa15801561144b573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526114739190810190614de3565b509150506114b3817f0000000000000000000000000000000000000000000000000000000000000001815181106114a657fe5b6020026020010151612a9b565b91505090565b6114c16119d6565b6000806114cc611edb565b915091506114dc81610140611655565b610c8582612abb565b6114ed6119d6565b60006114f883611bfd565b90506115116001600160a01b0382161515610155611655565b61151c838284611dfc565b806001600160a01b0316836001600160a01b03167ff00a2bf8c71db611a21183e0a96869752bcd9da29372fa76f865eed4fdd540d18460405161155f91906153e1565b60405180910390a3505050565b80610c8581612af6565b6000828202610a9e84158061159357508385838161159057fe5b04145b6003611655565b610af882841480156115ab57508183145b6067611655565b67ffffffffffffffff811b1992909216911b1790565b60006115d8838311156001611655565b50900390565b60006115ff7001000000000000000000000000000000008410610149611655565b61161682420167ffffffffffffffff1660c0611651565b61162b8367ffffffffffffffff166080611651565b611648856fffffffffffffffffffffffffffffffff166000611651565b17179392505050565b1b90565b81610c8557610c8581612749565b7f000000000000000000000000000000000000000000000000000000000000000490565b610af8818410801561169857508183105b6064611655565b606060006116ab611663565b90506116b5612b6f565b915080156117265761170c6116e97f0000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c610c89565b836000815181106116f657fe5b6020026020010151612c9790919063ffffffff16565b8260008151811061171957fe5b6020026020010181815250505b60018111156117825761176861175b7f0000000000000000000000007b50775383d3d6f0215a8f290f2c9e2eebbeceb2610c89565b836001815181106116f657fe5b8260018151811061177557fe5b6020026020010181815250505b60028111156117de576117c46117b77f000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f610c89565b836002815181106116f657fe5b826002815181106117d157fe5b6020026020010181815250505b600381111561183a576118206118137f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d0610c89565b836003815181106116f657fe5b8260038151811061182d57fe5b6020026020010181815250505b6004811115610a2b5761187c61186f7f0000000000000000000000000000000000000000000000000000000000000000610c89565b836004815181106116f657fe5b8260048151811061188957fe5b6020026020010181815250505090565b60006118a585836124f3565b6118c686606001518385815181106118b957fe5b6020026020010151612cc3565b606087015260006118d987878787612ccf565b90506118f8818487815181106118eb57fe5b6020026020010151612e8a565b905061190381612e96565b9150505b95945050505050565b600061191f8660600151612ebc565b606087015261192e85836124f3565b61194286606001518386815181106118b957fe5b6060870152600061195587878787612edd565b90506119038184868151811061196757fe5b6020026020010151613008565b620f424090565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9259061155f9085906153e1565b6000611a056000357fffffffff0000000000000000000000000000000000000000000000000000000016610f85565b90506107e1611a148233613014565b610191611655565b8015611a3c57611a37611a2d611ad5565b4210610193611655565b611a51565b611a51611a47611af9565b42106101a9611655565b600780547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be6490611aad9083906153be565b60405180910390a150565b6000611ac2611af9565b42118061071d57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000006227a98890565b7f00000000000000000000000000000000000000000000000000000000624f368890565b611b346001600160a01b0384161515610198611655565b611b4b6001600160a01b0383161515610199611655565b611b56838383610af8565b6001600160a01b038316600090815260208190526040902054611b7c90826101a06130fd565b6001600160a01b038085166000908152602081905260408082209390935590841681522054611bab90826120ec565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef9061155f9085906153e1565b60007f0000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c6001600160a01b0316826001600160a01b03161415611c6057507f0000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c610ce6565b7f0000000000000000000000007b50775383d3d6f0215a8f290f2c9e2eebbeceb26001600160a01b0316826001600160a01b03161415611cc157507f0000000000000000000000000000000000000000000000000000000000000000610ce6565b7f000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f6001600160a01b0316826001600160a01b03161415611d2257507f000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f610ce6565b7f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d06001600160a01b0316826001600160a01b03161415611d8357507f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d0610ce6565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611de457507f0000000000000000000000000000000000000000000000000000000000000000610ce6565b610ce6610135612749565b60006107ca826080612222565b6000826001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b158015611e3757600080fd5b505afa158015611e4b573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611e6f91906151b1565b90506000611e7d82846115de565b6001600160a01b0386166000818152600e60205260409081902083905551919250907fcfed57d90913b5ee1895919dcccaff83a9f7a842d912ef137272e5fc6123aa8690611ecc9085906153e1565b60405180910390a25050505050565b600080600080600080611eec613113565b935093509350935080421015611f3f576001945083831115611f23578181038242038585030281611f1957fe5b0484019550611f3a565b8181038242038486030281611f3457fe5b04840395505b611f47565b600094508295505b505050509091565b6000611f5e8215156004611655565b82611f6b575060006107ca565b816001840381611f7757fe5b0460010190506107ca565b611f8e8484848461316a565b7f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf284848484604051611fc3949392919061551d565b60405180910390a150505050565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7ffe180867ab44aecdeea69d43c5e137ee04843a391fa2055823a1aaefc9f099657fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc661203e6131ca565b3060405160200161205395949392919061543d565b60405160208183030381529060405280519060200120905090565b6113a2612079611ab8565b610192611655565b61209464e8d4a5100082101560cb611655565b6120aa67016345785d8a000082111560ca611655565b6008546120b9908260c06115b2565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90611aad9083906153e1565b6000828201610a9e8482101583611655565b6000612108610c0c565b90506000612114611027565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401612141929190615482565b60806040518083038186803b15801561215957600080fd5b505afa15801561216d573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061219191906151ea565b6040517f18e736d40000000000000000000000000000000000000000000000000000000081529094506001600160a01b03851693506318e736d492506121de915085908790600401615469565b600060405180830381600087803b1580156121f857600080fd5b505af115801561220c573d6000803e3d6000fd5b5050505050505050565b60006107ca82826131ce565b1c67ffffffffffffffff1690565b610c858183146067611655565b6000606080600061224d856131e4565b9050600081801561225a57fe5b14156122c7576122686131fa565b612272898661320e565b909450925061227f611663565b67ffffffffffffffff8111801561229557600080fd5b506040519080825280602002602001820160405280156122bf578160200160208202803683370190505b5091506122d2565b6122d2610154612749565b50985098509895505050505050565b60005b6122ec611663565b811015610af85761232383828151811061230257fe5b602002602001015183838151811061231657fe5b6020026020010151613283565b83828151811061232f57fe5b60209081029190910101526001016122e4565b333014612431576000306001600160a01b03166000366040516123669291906152df565b6000604051808303816000865af19150503d80600081146123a3576040519150601f19603f3d011682016040523d82523d6000602084013e6123a8565b606091505b5050905080600081146123b757fe5b60046000803e6000517fffffffff00000000000000000000000000000000000000000000000000000000167f43adbafb000000000000000000000000000000000000000000000000000000008114612413573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b606061243b61169f565b905061244787826124f3565b6000606061245f8c8c8c8c8c8c898d8d63ffffffff16565b509150915061247281848663ffffffff16565b8051601f1982018390526343adbafb7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc08301526020027fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffdc82016044820181fd5b6000806124de836132d4565b9050610ce26124ec84610c89565b8290612c97565b60005b6124fe611663565b811015610af85761253583828151811061251457fe5b602002602001015183838151811061252857fe5b6020026020010151612c97565b83828151811061254157fe5b60209081029190910101526001016124f6565b60006060600c54837f00000000000000000000000000000000000000000000000000000000000000018151811061258757fe5b60200260200101516dffffffffffffffffffffffffffff03019150600183510367ffffffffffffffff811180156125bd57600080fd5b506040519080825280602002602001820160405280156125e7578160200160208202803683370190505b50905060005b815181101561265a57837f000000000000000000000000000000000000000000000000000000000000000182106126275781600101612629565b815b8151811061263357fe5b602002602001015182828151811061264757fe5b60209081029190910101526001016125ed565b50915091565b60008061266f848660006133cf565b90506119078184613283565b610c858282613565565b60008061269183611def565b915061269e8360c0612222565b9050915091565b600060608060006126b585613621565b905060018160018111156126c557fe5b14156122c7576126d3613637565b93509350935050985098509895505050505050565b60005b6126f3611663565b811015610af85761272a83828151811061270957fe5b602002602001015183838151811061271d57fe5b602002602001015161371b565b83828151811061273657fe5b60209081029190910101526001016126eb565b7f08c379a0000000000000000000000000000000000000000000000000000000006000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60006127c0611027565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b1580156127f857600080fd5b505afa15801561280c573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061071d9190614fca565b600061283a611fd1565b82604051602001610fba9291906152ef565b6000606061285861206e565b600061286384613621565b905061287e600082600181111561287657fe5b1460ce611655565b606061288985613769565b90506128988151610d0d611663565b6128a281876124f3565b60006128ac611edb565b50905060606128ba83612554565b91505060006128cb838360016133cf565b90508060006128e86dffffffffffffffffffffffffffff836115c8565b90506128f48d8261293f565b80867f00000000000000000000000000000000000000000000000000000000000000018151811061292157fe5b6020908102919091010152509c939b50929950505050505050505050565b610c85828261377f565b6000816001600160a01b031663d2946c2b6040518163ffffffff1660e01b815260040160206040518083038186803b15801561298457600080fd5b505afa158015612998573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906129bc9190614fca565b6001600160a01b03166355c676286040518163ffffffff1660e01b815260040160206040518083038186803b1580156129f457600080fd5b505afa158015612a08573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612a2c91906151b1565b905080600d819055507f6e4e298b4a98488a054248cfb63661894b93fb9fd398cc9eca58e39215954eb781604051612a6491906153e1565b60405180910390a15050565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b60006107ca600c54612ab584612aaf6107e4565b906115c8565b906120ec565b612ac78182424261316a565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a023381604051611aad91906153e1565b600281511015612b05576107e1565b600081600081518110612b1457fe5b602002602001015190506000600190505b8251811015610af8576000838281518110612b3c57fe5b60200260200101519050612b65816001600160a01b0316846001600160a01b0316106065611655565b9150600101612b25565b60606000612b7b611663565b905060608167ffffffffffffffff81118015612b9657600080fd5b50604051908082528060200260200182016040528015612bc0578160200160208202803683370190505b509050612bcb61380d565b81600081518110612bd857fe5b602002602001018181525050612bec613831565b81600181518110612bf957fe5b6020026020010181815250506002821115612c3457612c16613855565b81600281518110612c2357fe5b602002602001018181525050612c3d565b91506107209050565b6003821115612c3457612c4e613879565b81600381518110612c5b57fe5b6020026020010181815250506004821115612c3457612c7861389d565b81600481518110612c8557fe5b60200260200101818152505091505090565b6000828202612cb184158061159357508385838161159057fe5b670de0b6b3a764000090049392505050565b6000610a9e8383612c97565b6000612cd961206e565b612ce16138c1565b600d5460006060612cf187612554565b60208a015191935091506001600160a01b0316301415612d3a57612d238860600151612d1c876139d4565b8484613a0d565b93508215612d3557612d358484613a92565b612e7f565b60408801516001600160a01b0316301415612d7d57612d678860600151612d60886139d4565b8484613af2565b93508215612d3557612d35886060015184613a92565b6000612d87611edb565b5090506000612d98828460016133cf565b9050612dbc8284612da88b6139d4565b612db18b6139d4565b8e6060015186613b19565b95508415612e7c576000612dcf896139d4565b90506000612ddc896139d4565b90506000612de989612e96565b9050612e1181878581518110612dfb57fe5b60200260200101516120ec90919063ffffffff16565b868481518110612e1d57fe5b602002602001018181525050612e538d60600151878481518110612e3d57fe5b60200260200101516115c890919063ffffffff16565b868381518110612e5f57fe5b602002602001018181525050612e788486888a8c613bb8565b5050505b50505b505050949350505050565b6000610a9e838361371b565b60006107ca612eb5612ea6610ceb565b670de0b6b3a7640000906115c8565b839061371b565b600080612ed1612eca610ceb565b8490613c63565b9050610ce283826115c8565b6000612ee761206e565b612eef6138c1565b600d5460006060612eff87612554565b60208a015191935091506001600160a01b0316301415612f3157612d678860600151612f2a876139d4565b8484613ca6565b60408801516001600160a01b0316301415612f5e57612d238860600151612f57886139d4565b8484613cc3565b6000612f68611edb565b5090506000612f79828460016133cf565b9050612f9d8284612f898b6139d4565b612f928b6139d4565b8e6060015186613d49565b95508415612e7c576000612fb0896139d4565b90506000612fbd896139d4565b90506000612fce8d60600151612e96565b9050612fe081878581518110612dfb57fe5b868481518110612fec57fe5b602002602001018181525050612e5389878481518110612e3d57fe5b6000610a9e8383613283565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b613033610ffd565b6001600160a01b03161415801561304e575061304e83613dc6565b156130765761305b610ffd565b6001600160a01b0316336001600160a01b03161490506107ca565b61307e6127b6565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b81526004016130ad939291906153ea565b60206040518083038186803b1580156130c557600080fd5b505afa1580156130d9573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906113da9190614ecb565b600061310c8484111583611655565b5050900390565b60008060008061312f600060095461222290919063ffffffff16565b600954909450613140906040612222565b600954909350613151906080612222565b6009549092506131629060c0612222565b905090919293565b61317f8167ffffffffffffffff1660c0611651565b6131948367ffffffffffffffff166080611651565b6131a98567ffffffffffffffff166040611651565b6131be8767ffffffffffffffff166000611651565b17171760095550505050565b4690565b1c6fffffffffffffffffffffffffffffffff1690565b6000818060200190518101906107ca9190615034565b6113a2613205611ab8565b156101af611655565b600060608061321c85612554565b915050600061322a85613e02565b9050606061326783836132628a7f0000000000000000000000000000000000000000000000000000000000000001815181106114a657fe5b613e18565b905081613275826000613eb4565b945094505050509250929050565b60006132928215156004611655565b8261329f575060006107ca565b670de0b6b3a7640000838102906132c2908583816132b957fe5b04146005611655565b8281816132cb57fe5b049150506107ca565b60006132df82613f9c565b156132f3576132ec61380d565b9050610ce6565b6132fc82613fce565b15613309576132ec613831565b7f000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f6001600160a01b0316826001600160a01b0316141561334b576132ec613855565b7f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d06001600160a01b0316826001600160a01b0316141561338d576132ec613879565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415611de4576132ec61389d565b81516000908190815b81811015613410576134068682815181106133ef57fe5b6020026020010151846120ec90919063ffffffff16565b92506001016133d8565b508161342157600092505050610a9e565b600082878302825b60ff81101561354d576000858a60008151811061344257fe5b60200260200101510290506000600190505b868110156134965761348c61348561347f848e858151811061347257fe5b6020026020010151611576565b89611576565b868c614000565b9150600101613454565b508394506135036134d26134bf6134b66134b0878c611576565b85611576565b6103e88d614000565b612ab56134cc8a89611576565b88611576565b6134fd6134f06134e66103e8880386611576565b6103e88e15614000565b612ab58a60010189611576565b8b614000565b93508484111561352b576001858503116135265783975050505050505050610a9e565b613544565b6001848603116135445783975050505050505050610a9e565b50600101613429565b50613559610141612749565b50505050509392505050565b61357c6001600160a01b038316151561019b611655565b61358882600083610af8565b6001600160a01b0382166000908152602081905260409020546135ae90826101a16130fd565b6001600160a01b0383166000908152602081905260409020556002546135d49082614028565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906136159085906153e1565b60405180910390a35050565b6000818060200190518101906107ca919061507b565b60006060806000613646611663565b9050600093508067ffffffffffffffff8111801561366357600080fd5b5060405190808252806020026020018201604052801561368d578160200160208202803683370190505b5092508067ffffffffffffffff811180156136a757600080fd5b506040519080825280602002602001820160405280156136d1578160200160208202803683370190505b509150600c54827f00000000000000000000000000000000000000000000000000000000000000018151811061370357fe5b6020908102919091010152506000600c559192909190565b600061372a8215156004611655565b82613737575060006107ca565b670de0b6b3a764000083810290613751908583816132b957fe5b82600182038161375d57fe5b046001019150506107ca565b606081806020019051810190610a9e9190615097565b61378b60008383610af8565b60025461379890826120ec565b6002556001600160a01b0382166000908152602081905260409020546137be90826120ec565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906136159085906153e1565b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006138cb611663565b90508015613901576138fc7f0000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c614036565b613907565b506113a2565b6001811115613901576139397f0000000000000000000000007b50775383d3d6f0215a8f290f2c9e2eebbeceb2614036565b60028111156139015761396b7f000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f614036565b60038111156139015761399d7f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d0614036565b6004811115613901576139cf7f0000000000000000000000000000000000000000000000000000000000000000614036565b6107e1565b60007f00000000000000000000000000000000000000000000000000000000000000018210610a2b57613a088260016115c8565b6107ca565b600080613a18611edb565b50905060606001613a27611663565b0367ffffffffffffffff81118015613a3e57600080fd5b50604051908082528060200260200182016040528015613a68578160200160208202803683370190505b50905086818781518110613a7857fe5b6020026020010181815250506107088285838860006140b4565b6000613aa183612aaf85612e96565b90506000613aaf8284612c97565b600c54909150613abf90826120ec565b600c556040517f1d2422d87bc31f46211cfdfe158c5eccb86547546c7a4fff6be15a0a944c84b290611fc39083906153e1565b600080613afd611edb565b509050613b0f81848789886000614367565b9695505050505050565b6000613b2b83878681518110612e3d57fe5b868581518110613b3757fe5b6020026020010181815250506000613b518888858961447c565b905083878681518110613b6057fe5b602002602001015101878681518110613b7557fe5b602002602001018181525050613bac6001612ab5898981518110613b9557fe5b6020026020010151846115c890919063ffffffff16565b98975050505050505050565b6000613bc6858560006133cf565b90506000613bd48288613283565b9050670de0b6b3a7640000811115610bd7576000613c0e613c0786613c0185670de0b6b3a76400006115c8565b90612c97565b8590612c97565b600c54909150613c1e90826120ec565b600c556040517f1d2422d87bc31f46211cfdfe158c5eccb86547546c7a4fff6be15a0a944c84b290613c519083906153e1565b60405180910390a15050505050505050565b6000828202613c7d84158061159357508385838161159057fe5b80613c8c5760009150506107ca565b670de0b6b3a7640000600019820161375d565b5092915050565b600080613cb1611edb565b509050613b0f8184878988600061461c565b600060606001613cd1611663565b0367ffffffffffffffff81118015613ce857600080fd5b50604051908082528060200260200182016040528015613d12578160200160208202803683370190505b50905085818681518110613d2257fe5b6020026020010181815250506000613d38611edb565b5090506107088185848860006146e3565b6000613d5b83878781518110612dfb57fe5b868681518110613d6757fe5b6020026020010181815250506000613d818888858861447c565b905083878781518110613d9057fe5b602002602001015103878781518110613da557fe5b602002602001018181525050613bac6001612aaf838a8981518110612e3d57fe5b6000613df17ff4b7964d00000000000000000000000000000000000000000000000000000000610f85565b8214806107ca57506107ca82614978565b600081806020019051810190610a9e919061504f565b60606000613e268484613283565b90506060855167ffffffffffffffff81118015613e4257600080fd5b50604051908082528060200260200182016040528015613e6c578160200160208202803683370190505b50905060005b8651811015613eaa57613e8b838883815181106116f657fe5b828281518110613e9757fe5b6020908102919091010152600101613e72565b5095945050505050565b6060825160010167ffffffffffffffff81118015613ed157600080fd5b50604051908082528060200260200182016040528015613efb578160200160208202803683370190505b50905060005b8151811015613c9f577f00000000000000000000000000000000000000000000000000000000000000018114613f7b57837f00000000000000000000000000000000000000000000000000000000000000018210613f625760018203613f64565b815b81518110613f6e57fe5b6020026020010151613f7d565b825b828281518110613f8957fe5b6020908102919091010152600101613f01565b7f0000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c6001600160a01b0390811691161490565b7f0000000000000000000000007b50775383d3d6f0215a8f290f2c9e2eebbeceb26001600160a01b0390811691161490565b6000816140165761401184846149e6565b614020565b6140208484611f4f565b949350505050565b6000610a9e838360016130fd565b6001600160a01b03811630141561404c576107e1565b6001600160a01b0381166000908152600e60205260409020548015610c85576001600160a01b0382166000908152600e6020526040812054819061408f90612685565b91509150804211156140ae576140ae846140a886611bfd565b84611dfc565b50505050565b600080805b86518110156140f2576140e88782815181106140d157fe5b6020026020010151836120ec90919063ffffffff16565b91506001016140b9565b506060855167ffffffffffffffff8111801561410d57600080fd5b50604051908082528060200260200182016040528015614137578160200160208202803683370190505b5090506000805b885181101561420457600061416f858b848151811061415957fe5b602002602001015161371b90919063ffffffff16565b90506141b18a838151811061418057fe5b60200260200101516141ab8b858151811061419757fe5b60200260200101518d8681518110612e3d57fe5b9061371b565b8483815181106141bd57fe5b6020026020010181815250506141f96141f2828685815181106141dc57fe5b6020026020010151613c6390919063ffffffff16565b84906120ec565b92505060010161413e565b506060885167ffffffffffffffff8111801561421f57600080fd5b50604051908082528060200260200182016040528015614249578160200160208202803683370190505b50905060005b895181101561431457600084828151811061426657fe5b60200260200101518411156142cd57600061428f61428386614a06565b8d85815181106116f657fe5b905060006142a3828d8681518110612e3d57fe5b90506142c46142bd82670de0b6b3a76400008d900361371b565b83906120ec565b925050506142e4565b8982815181106142d957fe5b602002602001015190505b6142f4818c8481518110612e3d57fe5b83838151811061430057fe5b60209081029190910101525060010161424f565b5060006143238b8b60016133cf565b905060006143338c8460006133cf565b905060006143418284613283565b905061435661434f82614a06565b8b90613c63565b9d9c50505050505050505050505050565b600080614376888860016133cf565b905060006143928261438c876141ab818b6120ec565b90613c63565b905060006143a28a8a848b61447c565b905060006143cc8a8a815181106143b557fe5b6020026020010151836115c890919063ffffffff16565b90506000805b8b518110156143f4576143ea8c82815181106140d157fe5b91506001016143d2565b50600061441d828d8d8151811061440757fe5b602002602001015161328390919063ffffffff16565b9050600061442a82614a06565b905060006144388583613c63565b9050600061444686836115c8565b905061446761446083670de0b6b3a76400008e900361371b565b82906120ec565b99505050505050505050509695505050505050565b60008084518602905060008560008151811061449457fe5b6020026020010151905060008651876000815181106144af57fe5b60200260200101510290506000600190505b8751811015614508576144ed6144e76144e0848b858151811061347257fe5b8a51611576565b886149e6565b91506144fe8882815181106133ef57fe5b92506001016144c1565b5086858151811061451557fe5b602002602001015182039150600061452d8788611576565b9050600061455961454d61454584610b958988611576565b6103e8611576565b8a898151811061347257fe5b9050600061457461456d6145458b896149e6565b86906120ec565b905060008061459061458686866120ec565b610b958d866120ec565b905060005b60ff811015614610578192506145c56145b286612ab58586611576565b610b958e612aaf88612ab5886002611576565b9150828211156145ee576001838303116145e9575097506140209650505050505050565b614608565b600182840311614608575097506140209650505050505050565b600101614595565b50612e78610142612749565b60008061462b888860016133cf565b905060006146418261438c876141ab818b6115c8565b905060006146518a8a848b61447c565b90506000614665828b8b81518110612e3d57fe5b90506000805b8b5181101561468d576146838c82815181106140d157fe5b915060010161466b565b5060006146a0828d8d8151811061440757fe5b905060006146ad82614a06565b905060006146bb8583613c63565b905060006146c986836115c8565b905061446761446083670de0b6b3a76400008e9003612c97565b600080805b865181101561470a576147008782815181106140d157fe5b91506001016146e8565b506060855167ffffffffffffffff8111801561472557600080fd5b5060405190808252806020026020018201604052801561474f578160200160208202803683370190505b5090506000805b88518110156147e9576000614771858b848151811061440757fe5b90506147b38a838151811061478257fe5b60200260200101516147ad8b858151811061479957fe5b60200260200101518d8681518110612dfb57fe5b90613283565b8483815181106147bf57fe5b6020026020010181815250506147de6141f2828685815181106116f657fe5b925050600101614756565b506060885167ffffffffffffffff8111801561480457600080fd5b5060405190808252806020026020018201604052801561482e578160200160208202803683370190505b50905060005b89518110156148ef5760008385838151811061484c57fe5b602002602001015111156148a857600061487161428386670de0b6b3a76400006115c8565b90506000614885828d8681518110612e3d57fe5b905061489f6142bd82670de0b6b3a76400008d9003612c97565b925050506148bf565b8982815181106148b457fe5b602002602001015190505b6148cf818c8481518110612dfb57fe5b8383815181106148db57fe5b602090810291909101015250600101614834565b5060006148fe8b8b60016133cf565b9050600061490e8c8460006133cf565b9050600061491c8284613283565b9050670de0b6b3a76400008111156149685761495a8a7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008301612c97565b975050505050505050611907565b6000975050505050505050611907565b60006149a37f2f1a0bc900000000000000000000000000000000000000000000000000000000610f85565b8214806149d757506149d47feb0f24d600000000000000000000000000000000000000000000000000000000610f85565b82145b806107ca57506107ca82614a2c565b60006149f58215156004611655565b8183816149fe57fe5b049392505050565b6000670de0b6b3a76400008210614a1e5760006107ca565b50670de0b6b3a76400000390565b6000614a577f38e9922e00000000000000000000000000000000000000000000000000000000610f85565b8214806107ca5750614a887f50dd6ed900000000000000000000000000000000000000000000000000000000610f85565b909114919050565b80356107ca8161558d565b600082601f830112614aab578081fd5b8135614abe614ab98261556d565b615546565b818152915060208083019084810181840286018201871015614adf57600080fd5b60005b84811015614afe57813584529282019290820190600101614ae2565b505050505092915050565b600082601f830112614b19578081fd5b8151614b27614ab98261556d565b818152915060208083019084810181840286018201871015614b4857600080fd5b60005b84811015614afe57815184529282019290820190600101614b4b565b600082601f830112614b77578081fd5b813567ffffffffffffffff811115614b8d578182fd5b614ba06020601f19601f84011601615546565b9150808252836020828501011115614bb757600080fd5b8060208401602084013760009082016020015292915050565b8051600181106107ca57600080fd5b80356107ca816155b0565b6000610120808385031215614bfd578182fd5b614c0681615546565b915050614c138383614bdf565b8152614c228360208401614a90565b6020820152614c348360408401614a90565b6040820152606082013560608201526080820135608082015260a082013560a0820152614c648360c08401614a90565b60c0820152614c768360e08401614a90565b60e08201526101008083013567ffffffffffffffff811115614c9757600080fd5b614ca385828601614b67565b82840152505092915050565b600060208284031215614cc0578081fd5b8135610a9e8161558d565b60008060408385031215614cdd578081fd5b8235614ce88161558d565b91506020830135614cf88161558d565b809150509250929050565b600080600060608486031215614d17578081fd5b8335614d228161558d565b92506020840135614d328161558d565b929592945050506040919091013590565b600080600080600080600060e0888a031215614d5d578283fd5b8735614d688161558d565b96506020880135614d788161558d565b95506040880135945060608801359350608088013560ff81168114614d9b578384fd5b9699959850939692959460a0840135945060c09093013592915050565b60008060408385031215614dca578182fd5b8235614dd58161558d565b946020939093013593505050565b600080600060608486031215614df7578081fd5b835167ffffffffffffffff80821115614e0e578283fd5b818601915086601f830112614e21578283fd5b8151614e2f614ab98261556d565b80828252602080830192508086018b828387028901011115614e4f578788fd5b8796505b84871015614e7a578051614e668161558d565b845260019690960195928101928101614e53565b508901519097509350505080821115614e91578283fd5b50614e9e86828701614b09565b925050604084015190509250925092565b600060208284031215614ec0578081fd5b8135610a9e816155a2565b600060208284031215614edc578081fd5b8151610a9e816155a2565b600080600080600080600060e0888a031215614f01578081fd5b873596506020880135614f138161558d565b95506040880135614f238161558d565b9450606088013567ffffffffffffffff80821115614f3f578283fd5b614f4b8b838c01614a9b565b955060808a0135945060a08a0135935060c08a0135915080821115614f6e578283fd5b50614f7b8a828b01614b67565b91505092959891949750929550565b600060208284031215614f9b578081fd5b81357fffffffff0000000000000000000000000000000000000000000000000000000081168114610a9e578182fd5b600060208284031215614fdb578081fd5b8151610a9e8161558d565b60008060408385031215614ff8578182fd5b82356150038161558d565b9150602083013567ffffffffffffffff81111561501e578182fd5b61502a85828601614b67565b9150509250929050565b600060208284031215615045578081fd5b610a9e8383614bd0565b60008060408385031215615061578182fd5b61506b8484614bd0565b9150602083015190509250929050565b60006020828403121561508c578081fd5b8151610a9e816155b0565b600080604083850312156150a9578182fd5b82516150b4816155b0565b602084015190925067ffffffffffffffff8111156150d0578182fd5b61502a85828601614b09565b600080600080608085870312156150f1578182fd5b843567ffffffffffffffff80821115615108578384fd5b61511488838901614bea565b95506020870135915080821115615129578384fd5b5061513687828801614a9b565b949794965050505060408301359260600135919050565b600080600060608486031215615161578081fd5b833567ffffffffffffffff811115615177578182fd5b61518386828701614bea565b9660208601359650604090950135949350505050565b6000602082840312156151aa578081fd5b5035919050565b6000602082840312156151c2578081fd5b5051919050565b600080604083850312156151db578182fd5b50508035926020909101359150565b600080600080608085870312156151ff578182fd5b845193506020850151925060408501519150606085015161521f8161558d565b939692955090935050565b6000815180845260208085019450808401835b838110156152595781518752958201959082019060010161523d565b509495945050505050565b60008151808452815b818110156152895760208185018101518683018201520161526d565b8181111561529a5782602083870101525b50601f01601f19169290920160200192915050565b9182527fffffffff0000000000000000000000000000000000000000000000000000000016602082015260240190565b6000828483379101908152919050565b7f190100000000000000000000000000000000000000000000000000000000000081526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b8181101561537a5783516001600160a01b031683529284019291840191600101615355565b50909695505050505050565b600060208252610a9e602083018461522a565b6000604082526153ac604083018561522a565b8281036020840152611907818561522a565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526140206040830184615264565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b600060208252610a9e6020830184615264565b600083825260406020830152614020604083018461522a565b9283529015156020830152604082015260600190565b918252602082015260400190565b9283526020830191909152604082015260600190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b60405181810167ffffffffffffffff8111828210171561556557600080fd5b604052919050565b600067ffffffffffffffff821115615583578081fd5b5060209081020190565b6001600160a01b03811681146107e157600080fd5b80151581146107e157600080fd5b600281106107e157600080fdfea26469706673582212209be207960c602875159d44a232a262638e45325c9174ced67dfbb16fb5e1fb4064736f6c63430007010033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000016000000000000000000000000000000000000000000000000000000000000001c0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002800000000000000000000000000000000000000000000000000000000000000300000000000000000000000000000000000000000000000000000000000000023a00000000000000000000000000000000000000000000000000005af3107a400000000000000000000000000000000000000000000000000000000000006fdbd00000000000000000000000000000000000000000000000000000000000278d00000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b000000000000000000000000000000000000000000000000000000000000002642616c616e636572204161766520426f6f7374656420537461626c65506f6f6c2028555344290000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000862622d612d55534400000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000030000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d000000000000000000000000000000000000000000000000000000000000000030000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d00000000000000000000000000000000000000000000000000000000000000003000000000000000000000000000000000000000000000000000000000000546000000000000000000000000000000000000000000000000000000000000054600000000000000000000000000000000000000000000000000000000000005460
-----Decoded View---------------
Arg [0] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]
-----Encoded View---------------
29 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000160
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000200
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000280
Arg [6] : 0000000000000000000000000000000000000000000000000000000000000300
Arg [7] : 000000000000000000000000000000000000000000000000000000000000023a
Arg [8] : 00000000000000000000000000000000000000000000000000005af3107a4000
Arg [9] : 00000000000000000000000000000000000000000000000000000000006fdbd0
Arg [10] : 0000000000000000000000000000000000000000000000000000000000278d00
Arg [11] : 000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000026
Arg [13] : 42616c616e636572204161766520426f6f7374656420537461626c65506f6f6c
Arg [14] : 2028555344290000000000000000000000000000000000000000000000000000
Arg [15] : 0000000000000000000000000000000000000000000000000000000000000008
Arg [16] : 62622d612d555344000000000000000000000000000000000000000000000000
Arg [17] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [18] : 0000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c
Arg [19] : 000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f
Arg [20] : 0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d0
Arg [21] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [22] : 0000000000000000000000002bbf681cc4eb09218bee85ea2a5d3d13fa40fc0c
Arg [23] : 000000000000000000000000804cdb9116a10bb78768d3252355a1b18067bf8f
Arg [24] : 0000000000000000000000009210f1204b5a24742eba12f710636d76240df3d0
Arg [25] : 0000000000000000000000000000000000000000000000000000000000000003
Arg [26] : 0000000000000000000000000000000000000000000000000000000000005460
Arg [27] : 0000000000000000000000000000000000000000000000000000000000005460
Arg [28] : 0000000000000000000000000000000000000000000000000000000000005460
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.