Feature Tip: Add private address tag to any address under My Name Tag !
ERC-20
Overview
Max Total Supply
4.77 xCC
Holders
13
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
0.004524749161432275 xCCValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Minimal Proxy Contract for 0x87dfad2daf236db7890b38769a1871cb10abea9a
Contract Name:
Conjure
Compiler Version
v0.7.6+commit.7338295f
Optimization Enabled:
No with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.7.6; pragma experimental ABIEncoderV2; import {SafeMath} from "@openzeppelin/contracts/math/SafeMath.sol"; import {Address} from "@openzeppelin/contracts/utils/Address.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "@chainlink/contracts/src/v0.6/interfaces/AggregatorV3Interface.sol"; import {IERC20} from "./interfaces/IERC20.sol"; import "./lib/FixedPoint.sol"; import "./interfaces/IEtherCollateral.sol"; /// @author Conjure Finance Team /// @title Conjure /// @notice Contract to define and track the price of an arbitrary synth contract Conjure is IERC20, ReentrancyGuard { // using Openzeppelin contracts for SafeMath and Address using SafeMath for uint256; using Address for address; using FixedPoint for FixedPoint.uq112x112; using FixedPoint for FixedPoint.uq144x112; // presenting the total supply uint256 internal _totalSupply; // representing the name of the token string internal _name; // representing the symbol of the token string internal _symbol; // representing the decimals of the token uint8 internal constant DECIMALS = 18; // a record of balance of a specific account by address mapping(address => uint256) private _balances; // a record of allowances for a specific address by address to address mapping mapping(address => mapping(address => uint256)) private _allowances; // the owner of the contract address payable public _owner; // the type of the arb asset (single asset, arb asset) // 0... single asset (uses median price) // 1... basket asset (uses weighted average price) // 2... index asset (uses token address and oracle to get supply and price and calculates supply * price / divisor) // 3 .. sqrt index asset (uses token address and oracle to get supply and price and calculates sqrt(supply * price) / divisor) uint256 public _assetType; // the address of the collateral contract factory address public _factoryContract; // the address of the collateral contract address public _collateralContract; // struct for oracles struct _oracleStruct { address oracleaddress; address tokenaddress; // 0... chainLink, 1... UniSwap T-wap, 2... custom uint256 oracleType; string signature; bytes calldatas; uint256 weight; uint256 decimals; uint256 values; } // array for oracles _oracleStruct[] public _oracleData; // number of oracles uint256 public _numoracles; // the latest observed price uint256 internal _latestobservedprice; // the latest observed price timestamp uint256 internal _latestobservedtime; // the divisor for the index uint256 public _indexdivisor; // the modifier if the asset type is an inverse type bool public _inverse; // shows the init state of the contract bool public _inited; // the modifier if the asset type is an inverse type uint256 public _deploymentPrice; // maximum decimal size for the used prices uint256 private constant MAXIMUM_DECIMALS = 18; // The number representing 1.0 uint256 private constant UNIT = 10**18; // chainLink aggregator decimals to give back uint256 private constant CHAINLINK_RETURN_DECIMALS = 8; // the eth usd price feed chainLink oracle address address public ethUsdChainLinkOracle; // ========== EVENTS ========== event NewOwner(address newOwner); event Issued(address indexed account, uint256 value); event Burned(address indexed account, uint256 value); event AssetTypeSet(uint256 value); event IndexDivisorSet(uint256 value); // only owner modifier modifier onlyOwner { _onlyOwner(); _; } // only owner view function _onlyOwner() private view { require(msg.sender == _owner, "Only the contract owner may perform this action"); } constructor() { // Don't allow implementation to be initialized. _factoryContract = address(1); } /** * @dev initializes the clone implementation and the Conjure contract * * @param nameSymbol array holding the name and the symbol of the asset * @param conjureAddresses array holding the owner, indexed UniSwap oracle and ethUsdChainLinkOracle address * @param factoryAddress_ the address of the factory * @param collateralContract the EtherCollateral contract of the asset */ function initialize( string[2] memory nameSymbol, address[] memory conjureAddresses, address factoryAddress_, address collateralContract ) external { require(_factoryContract == address(0), "already initialized"); require(factoryAddress_ != address(0), "factory can not be null"); require(collateralContract != address(0), "collateralContract can not be null"); _owner = payable(conjureAddresses[0]); _name = nameSymbol[0]; _symbol = nameSymbol[1]; ethUsdChainLinkOracle = conjureAddresses[1]; _factoryContract = factoryAddress_; // mint new EtherCollateral contract _collateralContract = collateralContract; } /** * @dev inits the conjure asset can only be called by the factory address * * @param inverse_ indicated it the asset is an inverse asset or not * @param divisorAssetType array containing the divisor and the asset type * @param oracleAddresses_ the array holding the oracle addresses 1. address to call, * 2. address of the token for supply if needed * @param oracleTypesValuesWeightsDecimals array holding the oracle types,values,weights and decimals * @param signatures_ array holding the oracle signatures * @param callData_ array holding the oracle callData */ function init( bool inverse_, uint256[2] memory divisorAssetType, address[][2] memory oracleAddresses_, uint256[][4] memory oracleTypesValuesWeightsDecimals, string[] memory signatures_, bytes[] memory callData_ ) external { require(msg.sender == _factoryContract, "can only be called by factory contract"); require(_inited == false, "Contract already inited"); require(divisorAssetType[0] != 0, "Divisor should not be 0"); _assetType = divisorAssetType[1]; _numoracles = oracleAddresses_[0].length; _indexdivisor = divisorAssetType[0]; _inverse = inverse_; emit AssetTypeSet(_assetType); emit IndexDivisorSet(_indexdivisor); uint256 weightCheck; // push the values into the oracle struct for further processing for (uint i = 0; i < oracleAddresses_[0].length; i++) { require(oracleTypesValuesWeightsDecimals[3][i] <= 18, "Decimals too high"); _oracleData.push(_oracleStruct({ oracleaddress: oracleAddresses_[0][i], tokenaddress: oracleAddresses_[1][i], oracleType: oracleTypesValuesWeightsDecimals[0][i], signature: signatures_[i], calldatas: callData_[i], weight: oracleTypesValuesWeightsDecimals[2][i], values: oracleTypesValuesWeightsDecimals[1][i], decimals: oracleTypesValuesWeightsDecimals[3][i] })); weightCheck += oracleTypesValuesWeightsDecimals[2][i]; } // for basket assets weights must add up to 100 if (_assetType == 1) { require(weightCheck == 100, "Weights not 100"); } updatePrice(); _deploymentPrice = getLatestPrice(); _inited = true; } /** * @dev lets the EtherCollateral contract instance burn synths * * @param account the account address where the synths should be burned to * @param amount the amount to be burned */ function burn(address account, uint amount) external { require(msg.sender == _collateralContract, "Only Collateral Contract"); _internalBurn(account, amount); } /** * @dev lets the EtherCollateral contract instance mint new synths * * @param account the account address where the synths should be minted to * @param amount the amount to be minted */ function mint(address account, uint amount) external { require(msg.sender == _collateralContract, "Only Collateral Contract"); _internalIssue(account, amount); } /** * @dev Internal function to mint new synths * * @param account the account address where the synths should be minted to * @param amount the amount to be minted */ function _internalIssue(address account, uint amount) internal { _balances[account] = _balances[account].add(amount); _totalSupply = _totalSupply.add(amount); emit Transfer(address(0), account, amount); emit Issued(account, amount); } /** * @dev Internal function to burn synths * * @param account the account address where the synths should be burned to * @param amount the amount to be burned */ function _internalBurn(address account, uint amount) internal { _balances[account] = _balances[account].sub(amount); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); emit Burned(account, amount); } /** * @dev lets the owner change the contract owner * * @param _newOwner the new owner address of the contract */ function changeOwner(address payable _newOwner) external onlyOwner { require(_newOwner != address(0), "_newOwner can not be null"); _owner = _newOwner; emit NewOwner(_newOwner); } /** * @dev lets the owner collect the fees accrued */ function collectFees() external onlyOwner { _owner.transfer(address(this).balance); } /** * @dev gets the latest price of an oracle asset * uses chainLink oracles to get the price * * @return the current asset price */ function getLatestPrice(AggregatorV3Interface priceFeed) internal view returns (uint) { ( , int price, , , ) = priceFeed.latestRoundData(); return uint(price); } /** * @dev gets the latest ETH USD Price from the given oracle * * @return the current eth usd price */ function getLatestETHUSDPrice() public view returns (uint) { ( , int price, , , ) = AggregatorV3Interface(ethUsdChainLinkOracle).latestRoundData(); return uint(price) * 10 ** (MAXIMUM_DECIMALS - CHAINLINK_RETURN_DECIMALS); } /** * @dev implementation of a quicksort algorithm * * @param arr the array to be sorted * @param left the left outer bound element to start the sort * @param right the right outer bound element to stop the sort */ function quickSort(uint[] memory arr, int left, int right) internal pure { int i = left; int j = right; if (i == j) return; uint pivot = arr[uint(left + (right - left) / 2)]; while (i <= j) { while (arr[uint(i)] < pivot) i++; while (pivot < arr[uint(j)]) j--; if (i <= j) { (arr[uint(i)], arr[uint(j)]) = (arr[uint(j)], arr[uint(i)]); i++; j--; } } if (left < j) quickSort(arr, left, j); if (i < right) quickSort(arr, i, right); } /** * @dev implementation to get the average value of an array * * @param arr the array to be averaged * @return the (weighted) average price of an asset */ function getAverage(uint[] memory arr) internal view returns (uint) { uint sum = 0; // do the sum of all array values for (uint i = 0; i < arr.length; i++) { sum += arr[i]; } // if we dont have any weights (single asset with even array members) if (_assetType == 0) { return (sum / arr.length); } // index pricing we do division by divisor if ((_assetType == 2) || (_assetType == 3)) { return sum / _indexdivisor; } // divide by 100 cause the weights sum up to 100 and divide by the divisor if set (defaults to 1) return ((sum / 100) / _indexdivisor); } /** * @dev sort implementation which calls the quickSort function * * @param data the array to be sorted * @return the sorted array */ function sort(uint[] memory data) internal pure returns (uint[] memory) { quickSort(data, int(0), int(data.length - 1)); return data; } /** * @dev implementation of a square rooting algorithm * babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) * * @param y the value to be square rooted * @return z the square rooted value */ function sqrt(uint256 y) internal pure returns (uint256 z) { if (y > 3) { z = y; uint256 x = (y + 1) / 2; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } else { z = 0; } } /** * @dev gets the latest recorded price of the synth in USD * * @return the last recorded synths price */ function getLatestPrice() public view returns (uint) { return _latestobservedprice; } /** * @dev gets the latest recorded price time * * @return the last recorded time of a synths price */ function getLatestPriceTime() external view returns (uint) { return _latestobservedtime; } /** * @dev gets the latest price of the synth in USD by calculation and write the checkpoints for view functions */ function updatePrice() public { uint256 returnPrice = updateInternalPrice(); // if it is an inverse asset we do price = _deploymentPrice - (current price - _deploymentPrice) // --> 2 * deployment price - current price // but only if the asset is inited otherwise we return the normal price calculation if (_inverse && _inited) { if (_deploymentPrice.mul(2) <= returnPrice) { returnPrice = 0; } else { returnPrice = _deploymentPrice.mul(2).sub(returnPrice); } } _latestobservedprice = returnPrice; _latestobservedtime = block.timestamp; // if price reaches 0 we close the collateral contract and no more loans can be opened if (returnPrice <= 0) { IEtherCollateral(_collateralContract).setAssetClosed(); } } /** * @dev gets the latest price of the synth in USD by calculation --> internal calculation * * @return the current synths price */ function updateInternalPrice() internal returns (uint) { require(_oracleData.length > 0, "No oracle feeds supplied"); // storing all in an array for further processing uint[] memory prices = new uint[](_oracleData.length); for (uint i = 0; i < _oracleData.length; i++) { // chainLink oracle if (_oracleData[i].oracleType == 0) { AggregatorV3Interface priceFeed = AggregatorV3Interface(_oracleData[i].oracleaddress); prices[i] = getLatestPrice(priceFeed); // norming price if (MAXIMUM_DECIMALS != _oracleData[i].decimals) { prices[i] = prices[i] * 10 ** (MAXIMUM_DECIMALS - _oracleData[i].decimals); } } // custom oracle and UniSwap else { string memory signature = _oracleData[i].signature; bytes memory callDatas = _oracleData[i].calldatas; bytes memory callData; if (bytes(signature).length == 0) { callData = callDatas; } else { callData = abi.encodePacked(bytes4(keccak256(bytes(signature))), callDatas); } (bool success, bytes memory data) = _oracleData[i].oracleaddress.call{value:_oracleData[i].values}(callData); require(success, "Call unsuccessful"); // UniSwap V2 use NDX Custom Oracle call if (_oracleData[i].oracleType == 1) { FixedPoint.uq112x112 memory price = abi.decode(data, (FixedPoint.uq112x112)); // since this oracle is using token / eth prices we have to norm it to usd prices prices[i] = price.mul(getLatestETHUSDPrice()).decode144(); } else { prices[i] = abi.decode(data, (uint)); // norming price if (MAXIMUM_DECIMALS != _oracleData[i].decimals) { prices[i] = prices[i] * 10 ** (MAXIMUM_DECIMALS - _oracleData[i].decimals); } } } // for market cap and sqrt market cap asset types if (_assetType == 2 || _assetType == 3) { // get total supply for indexes uint tokenTotalSupply = IERC20(_oracleData[i].tokenaddress).totalSupply(); uint tokenDecimals = IERC20(_oracleData[i].tokenaddress).decimals(); // norm total supply if (MAXIMUM_DECIMALS != tokenDecimals) { require(tokenDecimals <= 18, "Decimals too high"); tokenTotalSupply = tokenTotalSupply * 10 ** (MAXIMUM_DECIMALS - tokenDecimals); } // index use market cap if (_assetType == 2) { prices[i] = (prices[i].mul(tokenTotalSupply) / UNIT); } // sqrt market cap if (_assetType == 3) { // market cap prices[i] =prices[i].mul(tokenTotalSupply) / UNIT; // sqrt market cap prices[i] = sqrt(prices[i]); } } // if we have a basket asset we use weights provided if (_assetType == 1) { prices[i] = prices[i] * _oracleData[i].weight; } } uint[] memory sorted = sort(prices); /// for single assets return median if (_assetType == 0) { // uneven so we can take the middle if (sorted.length % 2 == 1) { uint sizer = (sorted.length + 1) / 2; return sorted[sizer-1]; // take average of the 2 most inner numbers } else { uint size1 = (sorted.length) / 2; uint[] memory sortedMin = new uint[](2); sortedMin[0] = sorted[size1-1]; sortedMin[1] = sorted[size1]; return getAverage(sortedMin); } } // else return average for arb assets return getAverage(sorted); } /** * ERC 20 Specific Functions */ /** * receive function to receive funds */ receive() external payable {} /** * @dev Returns the name of the token. */ function name() external override view returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() external override view returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() external override pure returns (uint8) { return DECIMALS; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() external override view returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. Uses burn abstraction for balance updates without gas and universally. */ function balanceOf(address account) external override view returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address dst, uint256 rawAmount) external override returns (bool) { uint256 amount = rawAmount; _transfer(msg.sender, dst, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) external override view returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) external override returns (bool) { _approve(msg.sender, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}; * * Requirements: * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address src, address dst, uint256 rawAmount) external override returns (bool) { address spender = msg.sender; uint256 spenderAllowance = _allowances[src][spender]; uint256 amount = rawAmount; if (spender != src && spenderAllowance != uint256(-1)) { uint256 newAllowance = spenderAllowance.sub( amount, "CONJURE::transferFrom: transfer amount exceeds spender allowance" ); _allowances[src][spender] = newAllowance; } _transfer(src, dst, amount); return true; } /** * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens. * * This is internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _transfer( address sender, address recipient, uint256 amount ) internal { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _balances[sender] = _balances[sender].sub( amount, "ERC20: transfer amount exceeds balance" ); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } /** * @dev Returns the substraction of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b > a) return (false, 0); return (true, a - b); } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. * * _Available since v3.4._ */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a / b); } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. * * _Available since v3.4._ */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { if (b == 0) return (false, 0); return (true, a % b); } /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "SafeMath: addition overflow"); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SafeMath: subtraction overflow"); return a - b; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) return 0; uint256 c = a * b; require(c / a == b, "SafeMath: multiplication overflow"); return c; } /** * @dev Returns the integer division of two unsigned integers, reverting on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: division by zero"); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "SafeMath: modulo by zero"); return a % b; } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {trySub}. * * Counterpart to Solidity's `-` operator. * * Requirements: * * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b <= a, errorMessage); return a - b; } /** * @dev Returns the integer division of two unsigned integers, reverting with custom message on * division by zero. The result is rounded towards zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryDiv}. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a / b; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * reverting with custom message when dividing by zero. * * CAUTION: This function is deprecated because it requires allocating memory for the error * message unnecessarily. For custom revert reasons use {tryMod}. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) { require(b > 0, errorMessage); return a % b; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; // solhint-disable-next-line no-inline-assembly assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{ value: amount }(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain`call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.call{ value: value }(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.staticcall(data); return _verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = target.delegatecall(data); return _verifyCallResult(success, returndata, errorMessage); } function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly // solhint-disable-next-line no-inline-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor () internal { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and make it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0; interface AggregatorV3Interface { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); // getRoundData and latestRoundData should both raise "No data present" // if they do not have data to report, instead of returning unset values // which could be misinterpreted as actual reported values. function getRoundData(uint80 _roundId) external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); function latestRoundData() external view returns ( uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound ); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity 0.7.6; /************************************************************************************************ From https://github.com/Uniswap/uniswap-lib/blob/master/contracts/libraries/FixedPoint.sol Copied from the github repository at commit hash 9642a0705fdaf36b477354a4167a8cd765250860. Modifications: - Removed `sqrt` function Subject to the GPL-3.0 license *************************************************************************************************/ // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) library FixedPoint { // range: [0, 2**112 - 1] // resolution: 1 / 2**112 struct uq112x112 { uint224 _x; } // range: [0, 2**144 - 1] // resolution: 1 / 2**112 struct uq144x112 { uint _x; } uint8 private constant RESOLUTION = 112; uint private constant Q112 = uint(1) << RESOLUTION; uint private constant Q224 = Q112 << RESOLUTION; // encode a uint112 as a UQ112x112 function encode(uint112 x) internal pure returns (uq112x112 memory) { return uq112x112(uint224(x) << RESOLUTION); } // encodes a uint144 as a UQ144x112 function encode144(uint144 x) internal pure returns (uq144x112 memory) { return uq144x112(uint256(x) << RESOLUTION); } // divide a UQ112x112 by a uint112, returning a UQ112x112 function div(uq112x112 memory self, uint112 x) internal pure returns (uq112x112 memory) { require(x != 0, "FixedPoint: DIV_BY_ZERO"); return uq112x112(self._x / uint224(x)); } // multiply a UQ112x112 by a uint, returning a UQ144x112 // reverts on overflow function mul(uq112x112 memory self, uint y) internal pure returns (uq144x112 memory) { uint z; require( y == 0 || (z = uint(self._x) * y) / y == uint(self._x), "FixedPoint: MULTIPLICATION_OVERFLOW" ); return uq144x112(z); } // returns a UQ112x112 which represents the ratio of the numerator to the denominator // equivalent to encode(numerator).div(denominator) function fraction(uint112 numerator, uint112 denominator) internal pure returns (uq112x112 memory) { require(denominator > 0, "FixedPoint: DIV_BY_ZERO"); return uq112x112((uint224(numerator) << RESOLUTION) / denominator); } // decode a UQ112x112 into a uint112 by truncating after the radix point function decode(uq112x112 memory self) internal pure returns (uint112) { return uint112(self._x >> RESOLUTION); } // decode a UQ144x112 into a uint144 by truncating after the radix point function decode144(uq144x112 memory self) internal pure returns (uint144) { return uint144(self._x >> RESOLUTION); } // take the reciprocal of a UQ112x112 function reciprocal(uq112x112 memory self) internal pure returns (uq112x112 memory) { require(self._x != 0, "FixedPoint: ZERO_RECIPROCAL"); return uq112x112(uint224(Q224 / self._x)); } }
// SPDX-License-Identifier: MIT pragma solidity 0.7.6; /// @author Conjure Finance Team /// @title IEtherCollateral /// @notice Interface for interacting with the EtherCollateral Contract interface IEtherCollateral { /** * @dev Sets the assetClosed indicator if loan opening is allowed or not * Called by the Conjure contract if the asset price reaches 0. * */ function setAssetClosed() external; }
{ "optimizer": { "enabled": false, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "libraries": {} }
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"AssetTypeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Burned","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"IndexDivisorSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Issued","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"newOwner","type":"address"}],"name":"NewOwner","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"_assetType","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_collateralContract","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_deploymentPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_factoryContract","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_indexdivisor","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_inited","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_inverse","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_numoracles","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"_oracleData","outputs":[{"internalType":"address","name":"oracleaddress","type":"address"},{"internalType":"address","name":"tokenaddress","type":"address"},{"internalType":"uint256","name":"oracleType","type":"uint256"},{"internalType":"string","name":"signature","type":"string"},{"internalType":"bytes","name":"calldatas","type":"bytes"},{"internalType":"uint256","name":"weight","type":"uint256"},{"internalType":"uint256","name":"decimals","type":"uint256"},{"internalType":"uint256","name":"values","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_owner","outputs":[{"internalType":"address payable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address payable","name":"_newOwner","type":"address"}],"name":"changeOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"collectFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"ethUsdChainLinkOracle","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLatestETHUSDPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLatestPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLatestPriceTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"inverse_","type":"bool"},{"internalType":"uint256[2]","name":"divisorAssetType","type":"uint256[2]"},{"internalType":"address[][2]","name":"oracleAddresses_","type":"address[][2]"},{"internalType":"uint256[][4]","name":"oracleTypesValuesWeightsDecimals","type":"uint256[][4]"},{"internalType":"string[]","name":"signatures_","type":"string[]"},{"internalType":"bytes[]","name":"callData_","type":"bytes[]"}],"name":"init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string[2]","name":"nameSymbol","type":"string[2]"},{"internalType":"address[]","name":"conjureAddresses","type":"address[]"},{"internalType":"address","name":"factoryAddress_","type":"address"},{"internalType":"address","name":"collateralContract","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"dst","type":"address"},{"internalType":"uint256","name":"rawAmount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"src","type":"address"},{"internalType":"address","name":"dst","type":"address"},{"internalType":"uint256","name":"rawAmount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"updatePrice","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.