ETH Price: $3,395.77 (+1.51%)

Token

PLEDGE (PLEDGE)
 

Overview

Max Total Supply

1,000,000,000 PLEDGE

Holders

1,718

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
beeeee.eth
Balance
3,072.236841442701372577 PLEDGE

Value
$0.00
0xd598e0ccbbc94714422d544f1caf162234c296ba
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
PLEDGE

Compiler Version
v0.8.28+commit.7893614a

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 21 : pledge.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/*                                                                                                                                                                                                                            
                                                    ..            ..                                                      
                                                    :.     :;:::;;:;::..                            .                     
                                                   .:.    .;xxxxXXXXx+;:..              .                                 
                                                   . .   :;X$&&$&&$$$X+;::...         ...                                 
                                                  .  ..:+xX$x:.....:+XXx++;::...........:.                                
                                                .+++++xX$X+.           .+XX++;;:::::...:;;:..........        .            
                                    .         . .+$&&&&x:.                .;Xx++;;;;::;;+++;;:::..:::......     .         
                              . . .  .     .      :::;:...                   :xXXx++;+++xXx;+;..... .        .            
            . ..  . .  ... .. . ..  ...              ...                   ....:X$XXxxxXXXXxx+x++;;;::............ .      
        .. ......... .. .......... .... .  .                              ...:...:X$$X$Xx+;;;;:...... ... ...... . ..     
        .........:......... .       ....... .                              .:;:.....$$X;.   ..;;;;;;;;;;;;:::..:......    
     .....::::;;:;+.;:.:...         ...::::.. . ...  .            .       ...:::.. ...;      .+xx++;+;+;+;;;;;;:;:::...   
    ..:..:+;;++;x++Xxxxxx++x;::...    ::;;;:;......... .          ....    ...:;;::..  ...    .;++xx++++xx+x++x++++;:..    
  ..::.;;+;++xx+XXX$XXXX$$$&&&$$$$$Xx::;++++;:;.............      .:;;;;::...:xx;:....  .;::::xXXXXXXXX$$$$$$$$XXxx;+:.   
 . :::;;+x+xXXXXXX$$$$$$$$$$$$&$$$$$&&$$$X+++;:......... ......    .+xxXxx::..;XX+;.......+x+$$$$$$Xx;:                   
  ..:;;;xXXX$$$&&$$XxxXxxxx+++;;+++++x$&&$Xx+;;;.....:.........    .:+xxxx;;:..+$Xx+::....;X$$.                           
                                    ;&$+;;X&$x+;;:..:::::;....:..   .+xxx++::...;$&Xx+;:..+;                              
                                    x$x.   +&&$XXx;;:;::;+;..:;;++;:;+x$x++;;....;$&$XXXXXX.                              
                                     +$;;:;X$+   .xXxxxx+++;..;xX$$X+;x$$x;+;;::.:;$&$$$$$;                               
                                        x$$$$X;...;$$+.  ;Xx+..;xXXxx++x$$Xx++;;:::+$$$$x.                                
                                           ;X$X$XX$Xx+;:;;x$$XXx$$Xxx+++x$$XXx+++;::.                                     
                                            ;XX&&&&xxXX$$$&$+:;X$&$Xxx+++x$&$Xx+;:::                                      
                                               ;&$Xxxx$$$&X++:.:XX$$XXxx+xx$&XXX++:                                       
                                                :X$$$$$&$x;xXX$$$$X$$XXXX++x.                                             
                                                    :+x$x++;+x$&$XXxX$XXx+;                                               
                                                       ;XX$$$$$$X++;.                                                     
                                                                                                                          
                                                                                                                          
                                                                                                                          
                                                                                                                          
                          ........    ......      ..........  .......        .:;:.:.  ..........                          
                          :;&X;;+X$;  ;+$X;;.     ;x$+;;;+Xx  :$$;;+X$+.   +$+:.;X&+  ;x$x;;;;XX                          
                            &+    +$   .Xx         ;X. .; ;+   XX    .xx. X$.     +:   :$: .: +x                          
                            &x   :Xx   .Xx         ;$XxX&      XX     ;$::$x           :$XxX$                             
                            &$xxx+.    .Xx     x.  ;X. .x  .   XX     ;$..$x   ;XX$$:  :$: .+  .                          
                            &+         .Xx    .&:  ;X.    +x   XX    :X+  x&;     Xx   :$:    +X                          
                          +x&$x+:     xx$$xxxxx&:.+X$XxxxxXx  ;$$xxxXX:    ;XX+;;x$+  +X$Xxxxx$X                          
*/

import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

/// @title PLEDGE Token
/// @dev ERC20 token with pledge mechanics where if a user pledges to limit their monthly transfers, they can transfer up to 1% of their balance each month without breaking the pledge.
/// @notice This is a token contract where holders can pledge to limit their monthly transfers.
/// @author MonkMatto
/// @custom:security-contact [email protected]
/// @custom:disclaimer Not audited. Use at your own risk.
/// @custom:version v0.5.4
contract PLEDGE is ERC20, ERC20Permit, Ownable {

    /// @notice Constructor to create PLEDGE token with admin rights and permit functionality.
    constructor()
        ERC20("PLEDGE", "PLEDGE")
        ERC20Permit("PLEDGE")
        Ownable(msg.sender)
    {}

    bool public protectionsEnabled; // Whether protections are enabled or disabled
    address public feeReceiver; // The address that receives fees during the protection period
    address public uniswapRouterAddress = 0x3fC91A3afd70395Cd496C647d5a6CC9D4B2b7FAD; // The address of the Uniswap Router for penalty exemptions, set to the Universal Router by default
    uint256 public nonAirdropTokensMinted; // The number of non-airdrop tokens minted
    uint256 public protectionStartTime; // The timestamp for calculating penalties
    uint256 public maxTokenSupply = 1_000_000_000 * (10 ** decimals()); // 1 billion tokens with 18 decimals
    uint256 public pledgeAirdropAmount = maxTokenSupply / 1_000; // 0.1% of maxTokenSupply
    uint256 public defaultPledgeOnePercent = pledgeAirdropAmount / 100; // 0.001% of maxTokenSupply
    uint256 private limitDivisor = 10; // The divisor for the pledge limit
    uint256 public constant PROTECTION_PERIOD = 125 minutes; // Period of time during which protections are enabled

    /// @dev Stores pledge data for each address
    /// @param status The status of the pledge: 0 for no pledge, 1 for active pledge, 2 for failed pledge, and 3 for completed pledge
    /// @param onePercent One percent of the pledged balance. For initial airdrops, this is kept at value 0 for optimization but is handled in other functions
    /// @param monthlyWindowStart The timestamp when the current monthly window started
    /// @param amountTransferredThisWindow Amount of tokens transferred in current window
    struct PledgeData {
        uint8 status;
        uint256 onePercent;
        uint256 monthlyWindowStart;
        uint256 amountTransferredThisWindow;
    }

    /// @dev Mapping of addresses to their pledge data
    mapping(address => PledgeData) public pledger;

    /// @dev Emitted when protections are toggled
    /// @param enabled Whether protections are enabled or disabled
    /// @param feeRecipient The address that receives penalties
    /// @param timestamp The timestamp of the event
    event ProtectionsToggled(bool enabled, address feeRecipient, uint256 timestamp);

    /// @dev Emitted when a penalty is charged
    /// @param user The address that was charged the penalty
    /// @param attemptedAmount The amount that was attempted to be transferred
    /// @param adjustedAmount The amount that was actually transferred after the penalty
    /// @param penalty The amount of the penalty sent to the feeReceiver
    event PenaltyCharged(address user, uint256 attemptedAmount, uint256 adjustedAmount, uint256 penalty);

    /// @dev Emitted when a new pledge is created
    /// @param pledgerAddress The address that created the pledge
    /// @param pledgerBalance The balance pledged
    event CreatedPledge(address indexed pledgerAddress, uint256 pledgerBalance);

    /// @dev Emitted when a pledge is broken due to excessive transfers
    /// @param pledgerAddress The address that broke their pledge
    /// @param transferredAmount The amount transferred that broke the pledge
    /// @param allowedTransferAmount The maximum amount that was allowed to transfer
    event BrokenPledge(address indexed pledgerAddress, uint256 transferredAmount, uint256 allowedTransferAmount);

    /// @dev Emitted when a pledge is completed
    /// @param pledgerAddress The address that completed their pledge
    event CompletedPledge(address indexed pledgerAddress);

    /// @notice Returns the time in seconds remaining in the current window for a given address.
    /// @dev Conveniently calculates time until the current window expires for a given address.
    /// @param _address The address to check.
    /// @return The time until the current window expires in seconds
    function getTimeRemainingInWindow(address _address) public view returns (uint256) {
        if (_isWindowExpired(_address)) {
            return 0;
        } else {
            return 30 days - (block.timestamp - pledger[_address].monthlyWindowStart);
        }
    }

    /// @notice Returns the amount that can be transferred by a given address at the current time without breaking the pledge. If there is no pledge active, it returns 0.
    /// @dev If the pledge is active, it checks if the current window has expired. If it has, it returns the full one percent, otherwise it returns the remaining amount that can be transferred in the current window.
    /// @param _address The address to check.
    /// @return The amount that can be transferred by the address at the current time without breaking the pledge.
    function getTransferableAmount(address _address) public view returns (uint256) {
        if (pledger[_address].status == 1) {
          uint256 transferable;
          uint256 onePercent = pledger[_address].onePercent;
          // Because airdrop accounts have default onePercent value of 0, we need to set it to defaultPledgeOnePercent
          if (onePercent == 0) {
              onePercent = defaultPledgeOnePercent;
          }
          if (_isWindowExpired(_address)) {
              transferable = onePercent;
          } else {
              transferable = onePercent - pledger[_address].amountTransferredThisWindow;
          }
          return transferable > balanceOf(_address) ? balanceOf(_address) : transferable;
        } else {
            return 0;
        }
    }

    /// @notice Returns the pledged balance of a given address.
    /// @dev If the pledge is active, it returns a very close approximation of the initially pledged balance, otherwise it returns 0.
    /// @param _address The address to check.
    /// @return pledgedBalance The pledged balance of the address.
    function getPledgedBalance(address _address) public view returns (uint256) {
        if (pledger[_address].status == 1) {
            uint256 onePercent = pledger[_address].onePercent;
            // Because airdrop accounts have default onePercent value of 0, we need to set it to defaultPledgeOnePercent
            if (onePercent == 0) {
                onePercent = defaultPledgeOnePercent;
            }
            uint256 pledgedBalance = onePercent * 100;
            return pledgedBalance;
        } else {
            return 0;
        }
    }

    /// @notice Returns the pledge data of a given address.
    /// @dev Returns the pledger status, balance, pledged balance, amount transferred this window, transferable amount, and time remaining in the current window (0 means the window has expired) for a given address.
    /// @param _address The address to check.
    /// @return The pledger status, balance, pledged balance, amount transferred this window, transferable amount, and time remaining in the current window for the address.
    function getPledgerData(address _address) external view returns (uint8, uint256, uint256, uint256, uint256, uint256) {
        return (
            pledger[_address].status,
            balanceOf(_address),
            getPledgedBalance(_address),
            pledger[_address].amountTransferredThisWindow,
            getTransferableAmount(_address),
            getTimeRemainingInWindow(_address)
        );
    }

    /// @notice Allows the owner to begin a temporary launch protection.
    /// @dev Allows the owner to enable protections for a set period of time and set the feeReceiver address.
    /// @param _feeReceiver The address that will receive penalties.
    function beginLaunchProtection(address _feeReceiver) external onlyOwner {
        feeReceiver = _feeReceiver;
        protectionsEnabled = true;
        protectionStartTime = block.timestamp;
        emit ProtectionsToggled(protectionsEnabled, feeReceiver, block.timestamp);
    }

    /// @notice Allows the owner to disable launch protection.
    /// @dev After the protection window has ended, penalties are automatically bypassed, but the owner can disable protections to save gas on future transfers.
    function disableLaunchProtection() external onlyOwner {
        protectionsEnabled = false;
        emit ProtectionsToggled(protectionsEnabled, feeReceiver, block.timestamp);
    }

    /// @notice Allows the owner to set the Uniswap Router address.
    /// @dev Allows the owner to set the Uniswap Router address to prevent penalties on token distributions from the router.
    /// @dev It is set as state on deployment to the universal router address, but it can be updated on contract if needed.
    /// @param _uniswapRouterAddress The address of the Uniswap Router being used for token distributions during the protection period.
    function setUniswapRouterAddress(address _uniswapRouterAddress) external onlyOwner {
        uniswapRouterAddress = _uniswapRouterAddress;
    }

    /// @notice Allows the owner to set the amount that can be transferred without penalty during the protection period.
    /// @dev Sets the divisor for the defaultPledgerOnePercent value, which is used to calculate the base limit for transfers during the protection period.
    /// @param _limitDivisor The amount to divide defaultPledgerOnePercent by.
    function setLimitDivisor(uint256 _limitDivisor) external onlyOwner {
        require(_limitDivisor > 0, "INVALID_DIVISOR");
        limitDivisor = _limitDivisor;
    }

    /// @notice Allows the owner to airdrop tokens to pledgers.
    /// @dev Allows the owner to airdrop 1 million tokens or 0.1% of maxTokenSupply number of tokens to pledgers who have not yet pledged.
    /// @dev 90% of maxTokenSupply is reserved for airdrops, and 10% is reserved for non-airdrop tokens.
    /// @dev To save a lot of gas during airdrops, the 'onePercent' value in the pledge struct is not set and remains 0. Airdrop recipients will be the only accounts that have an active status and onePercent value of 0, so elsewhere in the contract we check for this and set it to defaultPledgeOnePercent.
    /// @param _addresses The addresses to airdrop tokens to.
    function airdropToPledgers(address[] calldata _addresses) external onlyOwner {
        uint256 len = _addresses.length;
        require(totalSupply() - nonAirdropTokensMinted + len * pledgeAirdropAmount <= maxTokenSupply * 90 / 100, "90% MAX SUPPLY AIRDROP CAP REACHED");
        for (uint256 i = 0; i < len; ) {          
            require(pledger[_addresses[i]].status == 0 && _addresses[i] != address(0), "INVALID PLEDGER");
            _mint(_addresses[i], pledgeAirdropAmount);
            pledger[_addresses[i]].status = 1;
            unchecked {
                i += 1;
            }
        }
    }

    /// @notice Allows the owner to mint tokens to a given address.
    /// @dev Allows the owner to mint up to 10% of maxTokenSupply amount of tokens to a given address.
    /// @dev 10% is reserved for non-airdrop tokens, and 90% of maxTokenSupply is reserved for airdrops.
    /// @param _to The address to mint tokens to.
    /// @param _amount The amount of tokens to mint.
    function mint(address _to, uint256 _amount) external virtual onlyOwner {
        require(nonAirdropTokensMinted + _amount <= maxTokenSupply / 10, "10% MAX SUPPLY NON-AIRDROP CAP REACHED");
        require(_amount > 0 && _amount + totalSupply() <= maxTokenSupply, "WRONG AMOUNT");
        require(_to != address(0), "INVALID ADDRESS");
        _mint(_to, _amount);
        nonAirdropTokensMinted += _amount;
    }

    /// @notice Allows an EOA to register a pledge on contract.
    /// @dev Allows EOA to record a pledge on contract if they own >= 100 base token units.
    /// @dev Accounts that have previously failed a pledge cannot pledge again.
    /// @dev Accounts that have an active pledge cannot reduce their pledge.
    /// @dev monthlyWindowStart is not set during pledging, but is updated during transfers.
    function pledge() external {
        address from = msg.sender;
        uint256 balance = balanceOf(from);
        require(pledger[from].status != 2, "HAS FAILED PLEDGE");
        require(balance >= 100, "MUST OWN >= 100 BASE UNITS");
        uint256 pledgedBalance = getPledgedBalance(from);
        require(balance >= pledgedBalance, "CANNOT REDUCE PLEDGE");
        pledger[from].onePercent = balance / 100;
        pledger[from].status = 1;
        emit CreatedPledge(from, balance);
    }

    /// @notice Allows EOA to complete a pledge.
    /// @dev Allows EOA to complete a pledge if they have no balance and have not failed a pledge.
    function completePledge() external {
        address from = msg.sender;
        require(pledger[from].status == 1, "NO ACTIVE PLEDGE");
        require(balanceOf(from) == 0, "MUST HAVE 0 BALANCE");
        pledger[from].status = 3;
        emit CompletedPledge(from);
    }

    /// @dev Overrides the internal _update function to add penalty logic and pledge status updates as required.
    /// @dev calls _updatePledgeStatus to update the pledge status for the sender.
    /// @param from The address tokens are being transferred from.
    /// @param to The address tokens are being transferred to.
    /// @param value The quantity of tokens being transferred.
    function _update(address from, address to, uint256 value) internal virtual override {
        if (
            protectionsEnabled &&
            block.timestamp <= protectionStartTime + PROTECTION_PERIOD &&
            value > defaultPledgeOnePercent / limitDivisor &&
            from != uniswapRouterAddress &&
            from != owner() &&
            from != address(0)
        ) {
            require(balanceOf(from) >= value, "ERC20: transfer amount exceeds balance");
            (uint256 adjustedAmount, uint256 penalty) = _calculatePenalty(value);
            if (penalty > 0) {
                super._update(from, feeReceiver, penalty);
                emit PenaltyCharged(tx.origin, value, adjustedAmount, penalty);
            }
            if (adjustedAmount > 0) {
                super._update(from, to, adjustedAmount);
            }
        } else {
            super._update(from, to, value);
        }
        if (pledger[from].status == 1) {
            _updatePledgeStatus(from, value);
        }
    }

    /// @dev Internal function that calculates the penalty for a given amount of tokens based on the time since launch and the amount over the limit.
    /// @dev These penalties are combined to create a penalty percentage that is applied to the excess amount.
    /// @param attemptedAmount The amount of tokens that were attempted to be transferred.
    /// @return adjustedAmount The amount of tokens that can be transferred after the penalty.
    /// @return penalty The amount of the penalty that will be charged.
    function _calculatePenalty(uint256 attemptedAmount) internal view returns (uint256 adjustedAmount, uint256 penalty) {     
        uint256 timeSinceLaunch = block.timestamp - protectionStartTime;
        uint256 baseLimit = defaultPledgeOnePercent / limitDivisor;
        
        // Only apply penalty to amount over baseLimit
        uint256 excessAmount = attemptedAmount - baseLimit;
        
        // Time factor: 100 at start, linearly decreases to 0
        uint256 timePenalty = ((PROTECTION_PERIOD - timeSinceLaunch) * 100) / PROTECTION_PERIOD;
        
        // Amount factor: 0 when at baseLimit, approaches 100 as amount increases
        uint256 amountPenalty = (excessAmount * 100) / (baseLimit + excessAmount);
        
        // Combined penalty percentage (0-100)
        uint256 penaltyPercent = (timePenalty * amountPenalty) / 100;
        
        // Apply penalty to excess amount
        uint256 penaltyAmount = (excessAmount * penaltyPercent) / 100;
        
        return (attemptedAmount - penaltyAmount, penaltyAmount);
    }

    /// @dev Internal function to update the pledge status for a given address.
    /// @param from The address tokens are being transferred from.
    /// @param amount The quantity of tokens being transferred.
    function _updatePledgeStatus(address from, uint256 amount) internal {
        if (_isWindowExpired(from)) {
            pledger[from].monthlyWindowStart = block.timestamp;
            pledger[from].amountTransferredThisWindow = amount;
        } else {
            pledger[from].amountTransferredThisWindow += amount;
        }
        uint256 onePercent = pledger[from].onePercent;
        // Because airdrop accounts have default onePercent value of 0, we need to set it to defaultPledgeOnePercent
        if (onePercent == 0) {
            onePercent = defaultPledgeOnePercent;
        }
        if (pledger[from].amountTransferredThisWindow > onePercent) {
            pledger[from].status = 2;
            emit BrokenPledge(from, pledger[from].amountTransferredThisWindow, onePercent);
        }
    }

    /// @dev Internal function to check if the pledge window has expired for a given address.
    /// @param _address The address to check.
    /// @return true if the pledge window has expired for the address.
    function _isWindowExpired(address _address) internal view returns (bool) {
        return (block.timestamp - pledger[_address].monthlyWindowStart) >= 30 days;
    }
}

File 2 of 21 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 3 of 21 : ERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC-20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

File 4 of 21 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 5 of 21 : Nonces.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

File 6 of 21 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP-712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP-712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP-712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

File 7 of 21 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(
        bytes32 hash,
        bytes memory signature
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            assembly ("memory-safe") {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures]
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 8 of 21 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 9 of 21 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 10 of 21 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 11 of 21 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 12 of 21 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 13 of 21 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 14 of 21 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        assembly ("memory-safe") {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 15 of 21 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an ERC-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 16 of 21 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 17 of 21 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 18 of 21 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

File 19 of 21 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 20 of 21 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 21 of 21 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": []
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pledgerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"transferredAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"allowedTransferAmount","type":"uint256"}],"name":"BrokenPledge","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pledgerAddress","type":"address"}],"name":"CompletedPledge","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pledgerAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"pledgerBalance","type":"uint256"}],"name":"CreatedPledge","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"attemptedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"adjustedAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"penalty","type":"uint256"}],"name":"PenaltyCharged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"},{"indexed":false,"internalType":"address","name":"feeRecipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"ProtectionsToggled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PROTECTION_PERIOD","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"_addresses","type":"address[]"}],"name":"airdropToPledgers","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_feeReceiver","type":"address"}],"name":"beginLaunchProtection","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"completePledge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"defaultPledgeOnePercent","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"disableLaunchProtection","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeReceiver","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"getPledgedBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"getPledgerData","outputs":[{"internalType":"uint8","name":"","type":"uint8"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"getTimeRemainingInWindow","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_address","type":"address"}],"name":"getTransferableAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTokenSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nonAirdropTokensMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pledge","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pledgeAirdropAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"pledger","outputs":[{"internalType":"uint8","name":"status","type":"uint8"},{"internalType":"uint256","name":"onePercent","type":"uint256"},{"internalType":"uint256","name":"monthlyWindowStart","type":"uint256"},{"internalType":"uint256","name":"amountTransferredThisWindow","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protectionStartTime","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"protectionsEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_limitDivisor","type":"uint256"}],"name":"setLimitDivisor","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_uniswapRouterAddress","type":"address"}],"name":"setUniswapRouterAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswapRouterAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

610160604052600a80546001600160a01b031916733fc91a3afd70395cd496c647d5a6cc9d4b2b7fad179055610033601290565b61003e90600a6103c3565b61004c90633b9aca006103d8565b600d556103e8600d5461005f91906103ef565b600e556064600e5461007191906103ef565b600f55600a601055348015610084575f5ffd5b503360405180604001604052806006815260200165504c4544474560d01b81525080604051806040016040528060018152602001603160f81b81525060405180604001604052806006815260200165504c4544474560d01b81525060405180604001604052806006815260200165504c4544474560d01b815250816003908161010d91906104a6565b50600461011a82826104a6565b5061012a9150839050600561020c565b6101205261013981600661020c565b61014052815160208084019190912060e052815190820120610100524660a0526101c560e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c052506001600160a01b0381166101fd57604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6102068161023e565b506105b8565b5f602083511015610227576102208361028f565b9050610238565b8161023284826104a6565b5060ff90505b92915050565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b5f5f829050601f815111156102b9578260405163305a27a960e01b81526004016101f49190610560565b80516102c482610595565b179392505050565b634e487b7160e01b5f52601160045260245ffd5b6001815b600184111561031b578085048111156102ff576102ff6102cc565b600184161561030d57908102905b60019390931c9280026102e4565b935093915050565b5f8261033157506001610238565b8161033d57505f610238565b8160018114610353576002811461035d57610379565b6001915050610238565b60ff84111561036e5761036e6102cc565b50506001821b610238565b5060208310610133831016604e8410600b841016171561039c575081810a610238565b6103a85f1984846102e0565b805f19048211156103bb576103bb6102cc565b029392505050565b5f6103d160ff841683610323565b9392505050565b8082028115828204841417610238576102386102cc565b5f8261040957634e487b7160e01b5f52601260045260245ffd5b500490565b634e487b7160e01b5f52604160045260245ffd5b600181811c9082168061043657607f821691505b60208210810361045457634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156104a157805f5260205f20601f840160051c8101602085101561047f5750805b601f840160051c820191505b8181101561049e575f815560010161048b565b50505b505050565b81516001600160401b038111156104bf576104bf61040e565b6104d3816104cd8454610422565b8461045a565b6020601f821160018114610505575f83156104ee5750848201515b5f19600385901b1c1916600184901b17845561049e565b5f84815260208120601f198516915b828110156105345787850151825560209485019460019092019101610514565b508482101561055157868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b80516020808301519190811015610454575f1960209190910360031b1b16919050565b60805160a05160c05160e0516101005161012051610140516120e16106095f395f61149e01525f61147101525f61136401525f61133c01525f61129701525f6112c101525f6112eb01526120e15ff3fe608060405234801561000f575f5ffd5b5060043610610228575f3560e01c80638da5cb5b1161012a578063c1361d3b116100b4578063db15d18511610079578063db15d185146104c1578063dd62ed3e146104d4578063ea6270001461050c578063f2fde38b14610514578063f9e19aed14610527575f5ffd5b8063c1361d3b14610423578063ca86f96a1461042c578063cfe7f8581461043f578063d505accf14610452578063dadb40d914610465575f5ffd5b8063a4ef49c4116100fa578063a4ef49c4146103d9578063a6091aaa146103e1578063a9059cbb146103ea578063b1059d8b146103fd578063b3f0067414610410575f5ffd5b80638da5cb5b1461039957806391e12d8d146103aa57806395d89b41146103be578063a3c958e0146103c6575f5ffd5b8063331babd7116101b6578063715018a61161017b578063715018a6146103525780637ecebe001461035a57806384b0196e1461036d57806388ffe867146103885780638a161a3314610390575f5ffd5b8063331babd7146102f15780633644e5151461030457806340c10f191461030c57806350f7c2041461032157806370a082311461032a575f5ffd5b806318160ddd116101fc57806318160ddd1461029357806320ca3c7f1461029b57806323b872dd146102c6578063265c82eb146102d9578063313ce567146102e2575f5ffd5b8062b61dd91461022c57806306950d1c1461025257806306fdde031461025b578063095ea7b314610270575b5f5ffd5b61023f61023a366004611d5d565b61056b565b6040519081526020015b60405180910390f35b61023f611d4c81565b610263610643565b6040516102499190611dab565b61028361027e366004611dbd565b6106d3565b6040519015158152602001610249565b60025461023f565b600a546102ae906001600160a01b031681565b6040516001600160a01b039091168152602001610249565b6102836102d4366004611de5565b6106ec565b61023f600c5481565b60405160128152602001610249565b61023f6102ff366004611d5d565b61070f565b61023f610765565b61031f61031a366004611dbd565b610773565b005b61023f600d5481565b61023f610338366004611d5d565b6001600160a01b03165f9081526020819052604090205490565b61031f6108be565b61023f610368366004611d5d565b6108d1565b6103756108ee565b6040516102499796959493929190611e1f565b61031f610930565b61023f600f5481565b6008546001600160a01b03166102ae565b60085461028390600160a01b900460ff1681565b610263610aaa565b61031f6103d4366004611eb5565b610ab9565b61031f610b07565b61023f600b5481565b6102836103f8366004611dbd565b610b78565b61031f61040b366004611ecc565b610b85565b6009546102ae906001600160a01b031681565b61023f600e5481565b61031f61043a366004611d5d565b610d8a565b61023f61044d366004611d5d565b610e1c565b61031f610460366004611f3d565b610e64565b61049d610473366004611d5d565b60116020525f9081526040902080546001820154600283015460039093015460ff90921692909184565b6040805160ff90951685526020850193909352918301526060820152608001610249565b61031f6104cf366004611d5d565b610f9a565b61023f6104e2366004611faa565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61031f610fc4565b61031f610522366004611d5d565b6110be565b61053a610535366004611d5d565b6110fb565b6040805160ff90971687526020870195909552938501929092526060840152608083015260a082015260c001610249565b6001600160a01b0381165f9081526011602052604081205460ff16600103610637576001600160a01b0382165f908152601160205260408120600101548082036105b45750600f545b6105bd84611175565b156105ca578091506105f2565b6001600160a01b0384165f908152601160205260409020600301546105ef9082611fef565b91505b6001600160a01b0384165f908152602081905260409020548211610616578161062f565b6001600160a01b0384165f908152602081905260409020545b949350505050565b505f919050565b919050565b60606003805461065290612002565b80601f016020809104026020016040519081016040528092919081815260200182805461067e90612002565b80156106c95780601f106106a0576101008083540402835291602001916106c9565b820191905f5260205f20905b8154815290600101906020018083116106ac57829003601f168201915b5050505050905090565b5f336106e08185856111a7565b60019150505b92915050565b5f336106f98582856111b9565b61070485858561122e565b506001949350505050565b6001600160a01b0381165f9081526011602052604081205460ff16600103610637576001600160a01b0382165f90815260116020526040812060010154908190036107595750600f545b5f61062f82606461203a565b5f61076e61128b565b905090565b61077b6113b4565b600a600d5461078a9190612051565b81600b546107989190612070565b11156107fa5760405162461bcd60e51b815260206004820152602660248201527f313025204d415820535550504c59204e4f4e2d41495244524f50204341502052604482015265115050d2115160d21b60648201526084015b60405180910390fd5b5f811180156108175750600d546002546108149083612070565b11155b6108525760405162461bcd60e51b815260206004820152600c60248201526b15d493d391c8105353d5539560a21b60448201526064016107f1565b6001600160a01b03821661089a5760405162461bcd60e51b815260206004820152600f60248201526e494e56414c4944204144445245535360881b60448201526064016107f1565b6108a482826113e1565b80600b5f8282546108b59190612070565b90915550505050565b6108c66113b4565b6108cf5f611419565b565b6001600160a01b0381165f908152600760205260408120546106e6565b5f6060805f5f5f60606108ff61146a565b610907611497565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b335f818152602081815260408083205460119092529091205460ff1660020361098f5760405162461bcd60e51b8152602060048201526011602482015270484153204641494c454420504c4544474560781b60448201526064016107f1565b60648110156109e05760405162461bcd60e51b815260206004820152601a60248201527f4d555354204f574e203e3d20313030204241534520554e49545300000000000060448201526064016107f1565b5f6109ea8361070f565b905080821015610a335760405162461bcd60e51b815260206004820152601460248201527343414e4e4f542052454455434520504c4544474560601b60448201526064016107f1565b610a3e606483612051565b6001600160a01b0384165f8181526011602052604090819020600180820194909455805460ff191690931790925590517f8befdfb767f1fa8afaab1250205358276a8dfd21b2d744e0c068ec9ce67f70e290610a9d9085815260200190565b60405180910390a2505050565b60606004805461065290612002565b610ac16113b4565b5f8111610b025760405162461bcd60e51b815260206004820152600f60248201526e24a72b20a624a22fa224ab24a9a7a960891b60448201526064016107f1565b601055565b610b0f6113b4565b6008805460ff60a01b19169081905560095460408051600160a01b90930460ff16151583526001600160a01b03909116602083015242908201527f2e38c7ebc623cd6558435b9be0c24407b17e2981956d8082c95231e8713113de9060600160405180910390a1565b5f336106e081858561122e565b610b8d6113b4565b600d548190606490610ba090605a61203a565b610baa9190612051565b600e54610bb7908361203a565b600b54600254610bc79190611fef565b610bd19190612070565b1115610c2a5760405162461bcd60e51b815260206004820152602260248201527f393025204d415820535550504c592041495244524f5020434150205245414348604482015261115160f21b60648201526084016107f1565b5f5b81811015610d845760115f858584818110610c4957610c49612083565b9050602002016020810190610c5e9190611d5d565b6001600160a01b0316815260208101919091526040015f205460ff16158015610cb657505f848483818110610c9557610c95612083565b9050602002016020810190610caa9190611d5d565b6001600160a01b031614155b610cf45760405162461bcd60e51b815260206004820152600f60248201526e24a72b20a624a210282622a223a2a960891b60448201526064016107f1565b610d26848483818110610d0957610d09612083565b9050602002016020810190610d1e9190611d5d565b600e546113e1565b600160115f868685818110610d3d57610d3d612083565b9050602002016020810190610d529190611d5d565b6001600160a01b0316815260208101919091526040015f20805460ff191660ff92909216919091179055600101610c2c565b50505050565b610d926113b4565b600980546001600160a01b0383166001600160a01b031990911681179091556008805460ff60a01b1916600160a01b9081179182905542600c819055604080519290930460ff16151582526020820193909352908101919091527f2e38c7ebc623cd6558435b9be0c24407b17e2981956d8082c95231e8713113de9060600160405180910390a150565b5f610e2682611175565b15610e3257505f919050565b6001600160a01b0382165f90815260116020526040902060020154610e579042611fef565b6106e69062278d00611fef565b83421115610e885760405163313c898160e11b8152600481018590526024016107f1565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9888888610ed38c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f610f2d826114c4565b90505f610f3c828787876114f0565b9050896001600160a01b0316816001600160a01b031614610f83576040516325c0072360e11b81526001600160a01b0380831660048301528b1660248201526044016107f1565b610f8e8a8a8a6111a7565b50505050505050505050565b610fa26113b4565b600a80546001600160a01b0319166001600160a01b0392909216919091179055565b335f8181526011602052604090205460ff166001146110185760405162461bcd60e51b815260206004820152601060248201526f4e4f2041435449564520504c4544474560801b60448201526064016107f1565b6001600160a01b0381165f90815260208190526040902054156110735760405162461bcd60e51b81526020600482015260136024820152724d555354204841564520302042414c414e434560681b60448201526064016107f1565b6001600160a01b0381165f81815260116020526040808220805460ff19166003179055517f5db4685c003ecba127ab382661505e1ea89db4bf387b04ce97d1d15874a03a529190a250565b6110c66113b4565b6001600160a01b0381166110ef57604051631e4fbdf760e01b81525f60048201526024016107f1565b6110f881611419565b50565b6001600160a01b0381165f90815260116020908152604080832054918390528220548291829182918291829160ff16906111348961070f565b6001600160a01b038a165f908152601160205260409020600301546111588b61056b565b6111618c610e1c565b949c939b5091995097509550909350915050565b6001600160a01b0381165f9081526011602052604081206002015462278d009061119f9042611fef565b101592915050565b6111b4838383600161151c565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198114610d84578181101561122057604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016107f1565b610d8484848484035f61151c565b6001600160a01b03831661125757604051634b637e8f60e11b81525f60048201526024016107f1565b6001600160a01b0382166112805760405163ec442f0560e01b81525f60048201526024016107f1565b6111b48383836115ee565b5f306001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480156112e357507f000000000000000000000000000000000000000000000000000000000000000046145b1561130d57507f000000000000000000000000000000000000000000000000000000000000000090565b61076e604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6008546001600160a01b031633146108cf5760405163118cdaa760e01b81523360048201526024016107f1565b6001600160a01b03821661140a5760405163ec442f0560e01b81525f60048201526024016107f1565b6114155f83836115ee565b5050565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b606061076e7f000000000000000000000000000000000000000000000000000000000000000060056117bf565b606061076e7f000000000000000000000000000000000000000000000000000000000000000060066117bf565b5f6106e66114d061128b565b8360405161190160f01b8152600281019290925260228201526042902090565b5f5f5f5f61150088888888611868565b9250925092506115108282611930565b50909695505050505050565b6001600160a01b0384166115455760405163e602df0560e01b81525f60048201526024016107f1565b6001600160a01b03831661156e57604051634a1406b160e11b81525f60048201526024016107f1565b6001600160a01b038085165f9081526001602090815260408083209387168352929052208290558015610d8457826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516115e091815260200190565b60405180910390a350505050565b600854600160a01b900460ff1680156116165750611d4c600c546116129190612070565b4211155b80156116305750601054600f5461162d9190612051565b81115b801561164a5750600a546001600160a01b03848116911614155b801561166457506008546001600160a01b03848116911614155b801561167857506001600160a01b03831615155b15611788578061169c846001600160a01b03165f9081526020819052604090205490565b10156116f95760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b60648201526084016107f1565b5f5f611704836119e8565b90925090508015611770576009546117279086906001600160a01b031683611aad565b6040805132815260208101859052908101839052606081018290527f919599b3adfc944b6ffc7b5fbe435d0dada323806241378ded1cad95f2e4121d9060800160405180910390a15b811561178157611781858584611aad565b5050611793565b611793838383611aad565b6001600160a01b0383165f9081526011602052604090205460ff166001036111b4576111b48382611bd3565b606060ff83146117d9576117d283611ce3565b90506106e6565b8180546117e590612002565b80601f016020809104026020016040519081016040528092919081815260200182805461181190612002565b801561185c5780601f106118335761010080835404028352916020019161185c565b820191905f5260205f20905b81548152906001019060200180831161183f57829003601f168201915b505050505090506106e6565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156118a157505f91506003905082611926565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa1580156118f2573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b03811661191d57505f925060019150829050611926565b92505f91508190505b9450945094915050565b5f82600381111561194357611943612097565b0361194c575050565b600182600381111561196057611960612097565b0361197e5760405163f645eedf60e01b815260040160405180910390fd5b600282600381111561199257611992612097565b036119b35760405163fce698f760e01b8152600481018290526024016107f1565b60038260038111156119c7576119c7612097565b03611415576040516335e2f38360e21b8152600481018290526024016107f1565b5f5f5f600c54426119f99190611fef565b90505f601054600f54611a0c9190612051565b90505f611a198287611fef565b90505f611d4c611a298582611fef565b611a3490606461203a565b611a3e9190612051565b90505f611a4b8385612070565b611a5684606461203a565b611a609190612051565b90505f6064611a6f838561203a565b611a799190612051565b90505f6064611a88838761203a565b611a929190612051565b9050611a9e818b611fef565b9a909950975050505050505050565b6001600160a01b038316611ad7578060025f828254611acc9190612070565b90915550611b479050565b6001600160a01b0383165f9081526020819052604090205481811015611b295760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016107f1565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216611b6357600280548290039055611b81565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611bc691815260200190565b60405180910390a3505050565b611bdc82611175565b15611c09576001600160a01b0382165f908152601160205260409020426002820155600301819055611c39565b6001600160a01b0382165f9081526011602052604081206003018054839290611c33908490612070565b90915550505b6001600160a01b0382165f9081526011602052604081206001015490819003611c615750600f545b6001600160a01b0383165f908152601160205260409020600301548110156111b4576001600160a01b0383165f8181526011602052604090819020805460ff191660021781556003015490517ff3baa52f900a58295c5dcdd74f103ba109926ee544d3fc43547540aa482fadbf91610a9d918590918252602082015260400190565b60605f611cef83611d20565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f8111156106e657604051632cd44ac360e21b815260040160405180910390fd5b80356001600160a01b038116811461063e575f5ffd5b5f60208284031215611d6d575f5ffd5b611d7682611d47565b9392505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f611d766020830184611d7d565b5f5f60408385031215611dce575f5ffd5b611dd783611d47565b946020939093013593505050565b5f5f5f60608486031215611df7575f5ffd5b611e0084611d47565b9250611e0e60208501611d47565b929592945050506040919091013590565b60ff60f81b8816815260e060208201525f611e3d60e0830189611d7d565b8281036040840152611e4f8189611d7d565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015611ea4578351835260209384019390920191600101611e86565b50909b9a5050505050505050505050565b5f60208284031215611ec5575f5ffd5b5035919050565b5f5f60208385031215611edd575f5ffd5b823567ffffffffffffffff811115611ef3575f5ffd5b8301601f81018513611f03575f5ffd5b803567ffffffffffffffff811115611f19575f5ffd5b8560208260051b8401011115611f2d575f5ffd5b6020919091019590945092505050565b5f5f5f5f5f5f5f60e0888a031215611f53575f5ffd5b611f5c88611d47565b9650611f6a60208901611d47565b95506040880135945060608801359350608088013560ff81168114611f8d575f5ffd5b9699959850939692959460a0840135945060c09093013592915050565b5f5f60408385031215611fbb575f5ffd5b611fc483611d47565b9150611fd260208401611d47565b90509250929050565b634e487b7160e01b5f52601160045260245ffd5b818103818111156106e6576106e6611fdb565b600181811c9082168061201657607f821691505b60208210810361203457634e487b7160e01b5f52602260045260245ffd5b50919050565b80820281158282048414176106e6576106e6611fdb565b5f8261206b57634e487b7160e01b5f52601260045260245ffd5b500490565b808201808211156106e6576106e6611fdb565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52602160045260245ffdfea2646970667358221220a34747e21821bbf2984550af2a3d7f8957222664c4d67cf68cb2b3637ba32b0364736f6c634300081c0033

Deployed Bytecode

0x608060405234801561000f575f5ffd5b5060043610610228575f3560e01c80638da5cb5b1161012a578063c1361d3b116100b4578063db15d18511610079578063db15d185146104c1578063dd62ed3e146104d4578063ea6270001461050c578063f2fde38b14610514578063f9e19aed14610527575f5ffd5b8063c1361d3b14610423578063ca86f96a1461042c578063cfe7f8581461043f578063d505accf14610452578063dadb40d914610465575f5ffd5b8063a4ef49c4116100fa578063a4ef49c4146103d9578063a6091aaa146103e1578063a9059cbb146103ea578063b1059d8b146103fd578063b3f0067414610410575f5ffd5b80638da5cb5b1461039957806391e12d8d146103aa57806395d89b41146103be578063a3c958e0146103c6575f5ffd5b8063331babd7116101b6578063715018a61161017b578063715018a6146103525780637ecebe001461035a57806384b0196e1461036d57806388ffe867146103885780638a161a3314610390575f5ffd5b8063331babd7146102f15780633644e5151461030457806340c10f191461030c57806350f7c2041461032157806370a082311461032a575f5ffd5b806318160ddd116101fc57806318160ddd1461029357806320ca3c7f1461029b57806323b872dd146102c6578063265c82eb146102d9578063313ce567146102e2575f5ffd5b8062b61dd91461022c57806306950d1c1461025257806306fdde031461025b578063095ea7b314610270575b5f5ffd5b61023f61023a366004611d5d565b61056b565b6040519081526020015b60405180910390f35b61023f611d4c81565b610263610643565b6040516102499190611dab565b61028361027e366004611dbd565b6106d3565b6040519015158152602001610249565b60025461023f565b600a546102ae906001600160a01b031681565b6040516001600160a01b039091168152602001610249565b6102836102d4366004611de5565b6106ec565b61023f600c5481565b60405160128152602001610249565b61023f6102ff366004611d5d565b61070f565b61023f610765565b61031f61031a366004611dbd565b610773565b005b61023f600d5481565b61023f610338366004611d5d565b6001600160a01b03165f9081526020819052604090205490565b61031f6108be565b61023f610368366004611d5d565b6108d1565b6103756108ee565b6040516102499796959493929190611e1f565b61031f610930565b61023f600f5481565b6008546001600160a01b03166102ae565b60085461028390600160a01b900460ff1681565b610263610aaa565b61031f6103d4366004611eb5565b610ab9565b61031f610b07565b61023f600b5481565b6102836103f8366004611dbd565b610b78565b61031f61040b366004611ecc565b610b85565b6009546102ae906001600160a01b031681565b61023f600e5481565b61031f61043a366004611d5d565b610d8a565b61023f61044d366004611d5d565b610e1c565b61031f610460366004611f3d565b610e64565b61049d610473366004611d5d565b60116020525f9081526040902080546001820154600283015460039093015460ff90921692909184565b6040805160ff90951685526020850193909352918301526060820152608001610249565b61031f6104cf366004611d5d565b610f9a565b61023f6104e2366004611faa565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61031f610fc4565b61031f610522366004611d5d565b6110be565b61053a610535366004611d5d565b6110fb565b6040805160ff90971687526020870195909552938501929092526060840152608083015260a082015260c001610249565b6001600160a01b0381165f9081526011602052604081205460ff16600103610637576001600160a01b0382165f908152601160205260408120600101548082036105b45750600f545b6105bd84611175565b156105ca578091506105f2565b6001600160a01b0384165f908152601160205260409020600301546105ef9082611fef565b91505b6001600160a01b0384165f908152602081905260409020548211610616578161062f565b6001600160a01b0384165f908152602081905260409020545b949350505050565b505f919050565b919050565b60606003805461065290612002565b80601f016020809104026020016040519081016040528092919081815260200182805461067e90612002565b80156106c95780601f106106a0576101008083540402835291602001916106c9565b820191905f5260205f20905b8154815290600101906020018083116106ac57829003601f168201915b5050505050905090565b5f336106e08185856111a7565b60019150505b92915050565b5f336106f98582856111b9565b61070485858561122e565b506001949350505050565b6001600160a01b0381165f9081526011602052604081205460ff16600103610637576001600160a01b0382165f90815260116020526040812060010154908190036107595750600f545b5f61062f82606461203a565b5f61076e61128b565b905090565b61077b6113b4565b600a600d5461078a9190612051565b81600b546107989190612070565b11156107fa5760405162461bcd60e51b815260206004820152602660248201527f313025204d415820535550504c59204e4f4e2d41495244524f50204341502052604482015265115050d2115160d21b60648201526084015b60405180910390fd5b5f811180156108175750600d546002546108149083612070565b11155b6108525760405162461bcd60e51b815260206004820152600c60248201526b15d493d391c8105353d5539560a21b60448201526064016107f1565b6001600160a01b03821661089a5760405162461bcd60e51b815260206004820152600f60248201526e494e56414c4944204144445245535360881b60448201526064016107f1565b6108a482826113e1565b80600b5f8282546108b59190612070565b90915550505050565b6108c66113b4565b6108cf5f611419565b565b6001600160a01b0381165f908152600760205260408120546106e6565b5f6060805f5f5f60606108ff61146a565b610907611497565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b335f818152602081815260408083205460119092529091205460ff1660020361098f5760405162461bcd60e51b8152602060048201526011602482015270484153204641494c454420504c4544474560781b60448201526064016107f1565b60648110156109e05760405162461bcd60e51b815260206004820152601a60248201527f4d555354204f574e203e3d20313030204241534520554e49545300000000000060448201526064016107f1565b5f6109ea8361070f565b905080821015610a335760405162461bcd60e51b815260206004820152601460248201527343414e4e4f542052454455434520504c4544474560601b60448201526064016107f1565b610a3e606483612051565b6001600160a01b0384165f8181526011602052604090819020600180820194909455805460ff191690931790925590517f8befdfb767f1fa8afaab1250205358276a8dfd21b2d744e0c068ec9ce67f70e290610a9d9085815260200190565b60405180910390a2505050565b60606004805461065290612002565b610ac16113b4565b5f8111610b025760405162461bcd60e51b815260206004820152600f60248201526e24a72b20a624a22fa224ab24a9a7a960891b60448201526064016107f1565b601055565b610b0f6113b4565b6008805460ff60a01b19169081905560095460408051600160a01b90930460ff16151583526001600160a01b03909116602083015242908201527f2e38c7ebc623cd6558435b9be0c24407b17e2981956d8082c95231e8713113de9060600160405180910390a1565b5f336106e081858561122e565b610b8d6113b4565b600d548190606490610ba090605a61203a565b610baa9190612051565b600e54610bb7908361203a565b600b54600254610bc79190611fef565b610bd19190612070565b1115610c2a5760405162461bcd60e51b815260206004820152602260248201527f393025204d415820535550504c592041495244524f5020434150205245414348604482015261115160f21b60648201526084016107f1565b5f5b81811015610d845760115f858584818110610c4957610c49612083565b9050602002016020810190610c5e9190611d5d565b6001600160a01b0316815260208101919091526040015f205460ff16158015610cb657505f848483818110610c9557610c95612083565b9050602002016020810190610caa9190611d5d565b6001600160a01b031614155b610cf45760405162461bcd60e51b815260206004820152600f60248201526e24a72b20a624a210282622a223a2a960891b60448201526064016107f1565b610d26848483818110610d0957610d09612083565b9050602002016020810190610d1e9190611d5d565b600e546113e1565b600160115f868685818110610d3d57610d3d612083565b9050602002016020810190610d529190611d5d565b6001600160a01b0316815260208101919091526040015f20805460ff191660ff92909216919091179055600101610c2c565b50505050565b610d926113b4565b600980546001600160a01b0383166001600160a01b031990911681179091556008805460ff60a01b1916600160a01b9081179182905542600c819055604080519290930460ff16151582526020820193909352908101919091527f2e38c7ebc623cd6558435b9be0c24407b17e2981956d8082c95231e8713113de9060600160405180910390a150565b5f610e2682611175565b15610e3257505f919050565b6001600160a01b0382165f90815260116020526040902060020154610e579042611fef565b6106e69062278d00611fef565b83421115610e885760405163313c898160e11b8152600481018590526024016107f1565b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9888888610ed38c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f610f2d826114c4565b90505f610f3c828787876114f0565b9050896001600160a01b0316816001600160a01b031614610f83576040516325c0072360e11b81526001600160a01b0380831660048301528b1660248201526044016107f1565b610f8e8a8a8a6111a7565b50505050505050505050565b610fa26113b4565b600a80546001600160a01b0319166001600160a01b0392909216919091179055565b335f8181526011602052604090205460ff166001146110185760405162461bcd60e51b815260206004820152601060248201526f4e4f2041435449564520504c4544474560801b60448201526064016107f1565b6001600160a01b0381165f90815260208190526040902054156110735760405162461bcd60e51b81526020600482015260136024820152724d555354204841564520302042414c414e434560681b60448201526064016107f1565b6001600160a01b0381165f81815260116020526040808220805460ff19166003179055517f5db4685c003ecba127ab382661505e1ea89db4bf387b04ce97d1d15874a03a529190a250565b6110c66113b4565b6001600160a01b0381166110ef57604051631e4fbdf760e01b81525f60048201526024016107f1565b6110f881611419565b50565b6001600160a01b0381165f90815260116020908152604080832054918390528220548291829182918291829160ff16906111348961070f565b6001600160a01b038a165f908152601160205260409020600301546111588b61056b565b6111618c610e1c565b949c939b5091995097509550909350915050565b6001600160a01b0381165f9081526011602052604081206002015462278d009061119f9042611fef565b101592915050565b6111b4838383600161151c565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198114610d84578181101561122057604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016107f1565b610d8484848484035f61151c565b6001600160a01b03831661125757604051634b637e8f60e11b81525f60048201526024016107f1565b6001600160a01b0382166112805760405163ec442f0560e01b81525f60048201526024016107f1565b6111b48383836115ee565b5f306001600160a01b037f000000000000000000000000910812c44ed2a3b611e4b051d9d83a88d652e2dd161480156112e357507f000000000000000000000000000000000000000000000000000000000000000146145b1561130d57507f62c34e249ca0fab891a94ae6cfcd530ec363ab7bc718d8cf687f32cfc62f37d990565b61076e604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f4cdce9d885cd3eabfe5ec7689a5671fa40f5093d9ea01aaf435775b29c50ad54918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b6008546001600160a01b031633146108cf5760405163118cdaa760e01b81523360048201526024016107f1565b6001600160a01b03821661140a5760405163ec442f0560e01b81525f60048201526024016107f1565b6114155f83836115ee565b5050565b600880546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b606061076e7f504c45444745000000000000000000000000000000000000000000000000000660056117bf565b606061076e7f310000000000000000000000000000000000000000000000000000000000000160066117bf565b5f6106e66114d061128b565b8360405161190160f01b8152600281019290925260228201526042902090565b5f5f5f5f61150088888888611868565b9250925092506115108282611930565b50909695505050505050565b6001600160a01b0384166115455760405163e602df0560e01b81525f60048201526024016107f1565b6001600160a01b03831661156e57604051634a1406b160e11b81525f60048201526024016107f1565b6001600160a01b038085165f9081526001602090815260408083209387168352929052208290558015610d8457826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516115e091815260200190565b60405180910390a350505050565b600854600160a01b900460ff1680156116165750611d4c600c546116129190612070565b4211155b80156116305750601054600f5461162d9190612051565b81115b801561164a5750600a546001600160a01b03848116911614155b801561166457506008546001600160a01b03848116911614155b801561167857506001600160a01b03831615155b15611788578061169c846001600160a01b03165f9081526020819052604090205490565b10156116f95760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b60648201526084016107f1565b5f5f611704836119e8565b90925090508015611770576009546117279086906001600160a01b031683611aad565b6040805132815260208101859052908101839052606081018290527f919599b3adfc944b6ffc7b5fbe435d0dada323806241378ded1cad95f2e4121d9060800160405180910390a15b811561178157611781858584611aad565b5050611793565b611793838383611aad565b6001600160a01b0383165f9081526011602052604090205460ff166001036111b4576111b48382611bd3565b606060ff83146117d9576117d283611ce3565b90506106e6565b8180546117e590612002565b80601f016020809104026020016040519081016040528092919081815260200182805461181190612002565b801561185c5780601f106118335761010080835404028352916020019161185c565b820191905f5260205f20905b81548152906001019060200180831161183f57829003601f168201915b505050505090506106e6565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a08411156118a157505f91506003905082611926565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa1580156118f2573d5f5f3e3d5ffd5b5050604051601f1901519150506001600160a01b03811661191d57505f925060019150829050611926565b92505f91508190505b9450945094915050565b5f82600381111561194357611943612097565b0361194c575050565b600182600381111561196057611960612097565b0361197e5760405163f645eedf60e01b815260040160405180910390fd5b600282600381111561199257611992612097565b036119b35760405163fce698f760e01b8152600481018290526024016107f1565b60038260038111156119c7576119c7612097565b03611415576040516335e2f38360e21b8152600481018290526024016107f1565b5f5f5f600c54426119f99190611fef565b90505f601054600f54611a0c9190612051565b90505f611a198287611fef565b90505f611d4c611a298582611fef565b611a3490606461203a565b611a3e9190612051565b90505f611a4b8385612070565b611a5684606461203a565b611a609190612051565b90505f6064611a6f838561203a565b611a799190612051565b90505f6064611a88838761203a565b611a929190612051565b9050611a9e818b611fef565b9a909950975050505050505050565b6001600160a01b038316611ad7578060025f828254611acc9190612070565b90915550611b479050565b6001600160a01b0383165f9081526020819052604090205481811015611b295760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016107f1565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216611b6357600280548290039055611b81565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611bc691815260200190565b60405180910390a3505050565b611bdc82611175565b15611c09576001600160a01b0382165f908152601160205260409020426002820155600301819055611c39565b6001600160a01b0382165f9081526011602052604081206003018054839290611c33908490612070565b90915550505b6001600160a01b0382165f9081526011602052604081206001015490819003611c615750600f545b6001600160a01b0383165f908152601160205260409020600301548110156111b4576001600160a01b0383165f8181526011602052604090819020805460ff191660021781556003015490517ff3baa52f900a58295c5dcdd74f103ba109926ee544d3fc43547540aa482fadbf91610a9d918590918252602082015260400190565b60605f611cef83611d20565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f8111156106e657604051632cd44ac360e21b815260040160405180910390fd5b80356001600160a01b038116811461063e575f5ffd5b5f60208284031215611d6d575f5ffd5b611d7682611d47565b9392505050565b5f81518084528060208401602086015e5f602082860101526020601f19601f83011685010191505092915050565b602081525f611d766020830184611d7d565b5f5f60408385031215611dce575f5ffd5b611dd783611d47565b946020939093013593505050565b5f5f5f60608486031215611df7575f5ffd5b611e0084611d47565b9250611e0e60208501611d47565b929592945050506040919091013590565b60ff60f81b8816815260e060208201525f611e3d60e0830189611d7d565b8281036040840152611e4f8189611d7d565b606084018890526001600160a01b038716608085015260a0840186905283810360c0850152845180825260208087019350909101905f5b81811015611ea4578351835260209384019390920191600101611e86565b50909b9a5050505050505050505050565b5f60208284031215611ec5575f5ffd5b5035919050565b5f5f60208385031215611edd575f5ffd5b823567ffffffffffffffff811115611ef3575f5ffd5b8301601f81018513611f03575f5ffd5b803567ffffffffffffffff811115611f19575f5ffd5b8560208260051b8401011115611f2d575f5ffd5b6020919091019590945092505050565b5f5f5f5f5f5f5f60e0888a031215611f53575f5ffd5b611f5c88611d47565b9650611f6a60208901611d47565b95506040880135945060608801359350608088013560ff81168114611f8d575f5ffd5b9699959850939692959460a0840135945060c09093013592915050565b5f5f60408385031215611fbb575f5ffd5b611fc483611d47565b9150611fd260208401611d47565b90509250929050565b634e487b7160e01b5f52601160045260245ffd5b818103818111156106e6576106e6611fdb565b600181811c9082168061201657607f821691505b60208210810361203457634e487b7160e01b5f52602260045260245ffd5b50919050565b80820281158282048414176106e6576106e6611fdb565b5f8261206b57634e487b7160e01b5f52601260045260245ffd5b500490565b808201808211156106e6576106e6611fdb565b634e487b7160e01b5f52603260045260245ffd5b634e487b7160e01b5f52602160045260245ffdfea2646970667358221220a34747e21821bbf2984550af2a3d7f8957222664c4d67cf68cb2b3637ba32b0364736f6c634300081c0033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.