Feature Tip: Add private address tag to any address under My Name Tag !
ERC-721
Overview
Max Total Supply
1,024 SHACKLED
Holders
397
Market
Volume (24H)
0.0102 ETH
Min Price (24H)
$5.35 @ 0.001600 ETH
Max Price (24H)
$23.39 @ 0.007000 ETH
Other Info
Token Contract
Balance
3 SHACKLEDLoading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Name:
Shackled
Compiler Version
v0.8.9+commit.e5eed63a
Optimization Enabled:
Yes with 1 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import "./ShackledUtils.sol"; import "./ShackledStructs.sol"; import "./ShackledRenderer.sol"; import "./ShackledGenesis.sol"; import "@openzeppelin/contracts/access/Ownable.sol"; import "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; contract Shackled is ERC721Enumerable, Ownable { /// minting parameters for the Genesis collection bytes32 public mintState; bytes32 public publicMintState = keccak256(abi.encodePacked("public_mint")); bytes32 public presaleMintState = keccak256(abi.encodePacked("presale")); uint256 public maxSupply = 1024; uint256 public mintPrice = 0.15 ether; uint256 public reservedTokens = 20; uint256 public txnQtyLimit = 5; mapping(uint256 => bytes32) public tokenSeedHashes; /// rendering engine parameters int256 public canvasDim = 128; uint256 public outputHeight = 512; uint256 public outputWidth = 512; bool public returnSVG = true; event Received(address, uint256); constructor() ERC721("Shackled", "SHACKLED") {} /** @dev Mint allocated token IDs assigned to active Dawn Key holders. * @param quantity The amount to mint * @param allowlistMintIds The allocated ids to mint at mintPrice * @param dawnKeyMintIds The allocated ids to mint free * @param signature The signature to verify */ function presaleMint( uint256 quantity, uint256[] calldata allowlistMintIds, uint256[] calldata dawnKeyMintIds, bytes calldata signature ) public payable { require(presaleMintState == mintState, "Presale mint is not active"); /// verify the signature to confirm valid paramaters have been sent require( checkSignature(signature, allowlistMintIds, dawnKeyMintIds), "Invalid signature" ); uint256 nMintableIds = allowlistMintIds.length + dawnKeyMintIds.length; /// check that the current balance indicates tokens are still mintable /// to raise an error and stop the transaction that wont lead to any mints /// note that this doesnt guarantee tokens haven't been minted /// as they may have been transfered out of the holder's wallet require( quantity + balanceOf(msg.sender) <= nMintableIds, "Quantity requested is too high" ); /// determine how many allowlistMints are being made /// and that sufficient value has been sent to cover this uint256 dawnKeyMintsRequested; for (uint256 i = 0; i < dawnKeyMintIds.length; i++) { if (!_exists(dawnKeyMintIds[i])) { if (dawnKeyMintsRequested < quantity) { dawnKeyMintsRequested++; } else { break; } } } uint256 allowListMintsRequested = quantity - dawnKeyMintsRequested; require( msg.value >= mintPrice * allowListMintsRequested, "Insufficient value to mint" ); /// iterate through all mintable ids (dawn key mints first) /// and mint up to the requested quantity uint16 numMinted; for (uint256 i = 0; i < nMintableIds; ++i) { if (numMinted == quantity) { break; } bool dawnKeyMint = i < dawnKeyMintIds.length; uint256 tokenId = dawnKeyMint ? dawnKeyMintIds[i] : allowlistMintIds[i - dawnKeyMintIds.length]; /// check that this specific token is mintable /// prevents minting, transfering out of the wallet, and minting again if (_exists(tokenId)) { continue; } _safeMint(msg.sender, tokenId); storeSeedHash(tokenId); ++numMinted; } require(numMinted == quantity, "Requested quantity not minted"); } /** @dev Mints a token during the public mint phase * @param quantity The quantity of tokens to mint */ function publicMint(uint256 quantity) public payable { require(mintState == publicMintState, "Public mint is not active"); require(quantity <= txnQtyLimit, "Quantity exceeds txn limit"); // check the txn value require( msg.value >= mintPrice * quantity, "Insufficient value to mint" ); /// Disallow transactions that would exceed the maxSupply require( totalSupply() + quantity <= maxSupply, "Insufficient supply remaining" ); /// mint the requested quantity /// go through the whole supply to find tokens /// as some may not have been minted in presale uint256 minted; for (uint256 tokenId = 0; tokenId < maxSupply; tokenId++) { if (!_exists(tokenId)) { _safeMint(msg.sender, tokenId); storeSeedHash(tokenId); minted++; } if (minted == quantity) { break; } } } /** @dev Store the seedhash for a tokenId */ function storeSeedHash(uint256 tokenId) internal { require(_exists(tokenId), "TokenId does not exist"); require(tokenSeedHashes[tokenId] == 0, "Seed hash already set"); /// create a hash that will be used to seed each Genesis piece /// use a range of parameters to reduce predictability and gamification tokenSeedHashes[tokenId] = keccak256( abi.encodePacked( block.timestamp, block.difficulty, msg.sender, tokenId ) ); } /** @dev Set the contract's mint state */ function setMintState(string memory newMintState) public onlyOwner { mintState = keccak256(abi.encodePacked(newMintState)); } /** @dev validate a signature */ function checkSignature( bytes memory signature, uint256[] calldata allowlistMintIds, uint256[] calldata dawnKeyMintIds ) public view returns (bool) { bytes32 payloadHash = keccak256( abi.encode(this, msg.sender, allowlistMintIds, dawnKeyMintIds) ); address actualSigner = ECDSA.recover( ECDSA.toEthSignedMessageHash(payloadHash), signature ); address owner = owner(); return (owner == actualSigner); } /** * @dev Set some tokens aside for the team */ function reserveTokens() public onlyOwner { for (uint256 i = 0; i < reservedTokens; i++) { uint256 tokenId = totalSupply(); _safeMint(msg.sender, tokenId); storeSeedHash(tokenId); } } /** * @dev Withdraw ether to owner's wallet */ function withdrawEth() public onlyOwner { uint256 balance = address(this).balance; (bool success, ) = payable(msg.sender).call{value: balance}(""); require(success, "Withdraw failed"); } /** @dev run the rendering engine on any given renderParams */ function render( ShackledStructs.RenderParams memory renderParams, int256 canvasDim_, bool returnSVG ) public view returns (string memory) { return ShackledRenderer.render(renderParams, canvasDim_, returnSVG); } /** generate a genesis piece from a given tokenHash */ function generateGenesisPiece(bytes32 tokenHash) public view returns ( ShackledStructs.RenderParams memory, ShackledStructs.Metadata memory ) { return ShackledGenesis.generateGenesisPiece(tokenHash); } /** @dev render the art for a Shackled Genesis NFT and get the 'raw' metadata */ function renderGenesis(uint256 tokenId, int256 canvasDim_) public view returns ( string memory, ShackledStructs.RenderParams memory, ShackledStructs.Metadata memory ) { /// get the hash created when this token was minted bytes32 tokenHash = tokenSeedHashes[tokenId]; /// generate the geometry and color of this genesis piece ( ShackledStructs.RenderParams memory renderParams, ShackledStructs.Metadata memory metadata ) = ShackledGenesis.generateGenesisPiece(tokenHash); // run the rendering engine and return an encoded image string memory image = ShackledRenderer.render( renderParams, canvasDim_, returnSVG ); return (image, renderParams, metadata); } /** @dev run the rendering engine and return a token's final metadata */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require( _exists(tokenId), "ERC721Metadata: URI query for nonexistent token" ); ( string memory image, ShackledStructs.RenderParams memory renderParams, ShackledStructs.Metadata memory metadata ) = renderGenesis(tokenId, canvasDim); // construct and encode the metadata json return ShackledUtils.getEncodedMetadata(image, metadata, tokenId); } /** @dev change the canvas size to render on */ function updateCanvasDim(int256 _canvasDim) public onlyOwner { canvasDim = _canvasDim; } /** @dev change the desired output width to interpolate to in the svg container */ function updateOutputWidth(uint256 _outputWidth) public onlyOwner { outputWidth = _outputWidth; } /** @dev change the desired output height to interpolate to in the svg container */ function updateOutputHeight(uint256 _outputHeight) public onlyOwner { outputHeight = _outputHeight; } receive() external payable { emit Received(msg.sender, msg.value); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import "./ShackledStructs.sol"; library ShackledUtils { string internal constant TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /** @dev Flatten 3d tris array into 2d verts */ function flattenTris(int256[3][3][] memory tris) internal pure returns (int256[3][] memory) { /// initialize a dynamic in-memory array int256[3][] memory flattened = new int256[3][](3 * tris.length); for (uint256 i = 0; i < tris.length; i++) { /// tris.length == N // add values to specific index, as cannot push to array in memory flattened[(i * 3) + 0] = tris[i][0]; flattened[(i * 3) + 1] = tris[i][1]; flattened[(i * 3) + 2] = tris[i][2]; } return flattened; } /** @dev Unflatten 2d verts array into 3d tries (inverse of flattenTris function) */ function unflattenVertsToTris(int256[3][] memory verts) internal pure returns (int256[3][3][] memory) { /// initialize an array with length = 1/3 length of verts int256[3][3][] memory tris = new int256[3][3][](verts.length / 3); for (uint256 i = 0; i < verts.length; i += 3) { tris[i / 3] = [verts[i], verts[i + 1], verts[i + 2]]; } return tris; } /** @dev clip an array to a certain length (to trim empty tail slots) */ function clipArray12ToLength(int256[12][] memory arr, uint256 desiredLen) internal pure returns (int256[12][] memory) { uint256 nToCull = arr.length - desiredLen; assembly { mstore(arr, sub(mload(arr), nToCull)) } return arr; } /** @dev convert an unsigned int to a string */ function uint2str(uint256 _i) internal pure returns (string memory _uintAsString) { if (_i == 0) { return "0"; } uint256 j = _i; uint256 len; while (j != 0) { len++; j /= 10; } bytes memory bstr = new bytes(len); uint256 k = len; while (_i != 0) { k = k - 1; uint8 temp = (48 + uint8(_i - (_i / 10) * 10)); bytes1 b1 = bytes1(temp); bstr[k] = b1; _i /= 10; } return string(bstr); } /** @dev get the hex encoding of various powers of 2 (canvas size options) */ function getHex(uint256 _i) internal pure returns (bytes memory _hex) { if (_i == 8) { return hex"08_00_00_00"; } else if (_i == 16) { return hex"10_00_00_00"; } else if (_i == 32) { return hex"20_00_00_00"; } else if (_i == 64) { return hex"40_00_00_00"; } else if (_i == 128) { return hex"80_00_00_00"; } else if (_i == 256) { return hex"00_01_00_00"; } else if (_i == 512) { return hex"00_02_00_00"; } } /** @dev create an svg container for a bitmap (for display on svg-only platforms) */ function getSVGContainer( string memory encodedBitmap, int256 canvasDim, uint256 outputHeight, uint256 outputWidth ) internal view returns (string memory) { uint256 canvasDimUnsigned = uint256(canvasDim); // construct some elements in memory prior to return string to avoid stack too deep bytes memory imgSize = abi.encodePacked( "width='", ShackledUtils.uint2str(canvasDimUnsigned), "' height='", ShackledUtils.uint2str(canvasDimUnsigned), "'" ); bytes memory canvasSize = abi.encodePacked( "width='", ShackledUtils.uint2str(outputWidth), "' height='", ShackledUtils.uint2str(outputHeight), "'" ); bytes memory scaleStartTag = abi.encodePacked( "<g transform='scale(", ShackledUtils.uint2str(outputWidth / canvasDimUnsigned), ")'>" ); return string( abi.encodePacked( "data:image/svg+xml;base64,", Base64.encode( abi.encodePacked( "<svg xmlns='http://www.w3.org/2000/svg' xmlns:xlink='http://www.w3.org/1999/xlink' ", "shape-rendering='crispEdges' ", canvasSize, ">", scaleStartTag, "<image ", imgSize, " style='image-rendering: pixelated; image-rendering: crisp-edges;' ", "href='", encodedBitmap, "'/></g></svg>" ) ) ) ); } /** @dev converts raw metadata into */ function getAttributes(ShackledStructs.Metadata memory metadata) internal pure returns (bytes memory) { return abi.encodePacked( "{", '"Structure": "', metadata.geomSpec, '", "Chroma": "', metadata.colorScheme, '", "Pseudosymmetry": "', metadata.pseudoSymmetry, '", "Wireframe": "', metadata.wireframe, '", "Inversion": "', metadata.inversion, '", "Prisms": "', uint2str(metadata.nPrisms), '"}' ); } /** @dev create and encode the token's metadata */ function getEncodedMetadata( string memory image, ShackledStructs.Metadata memory metadata, uint256 tokenId ) internal view returns (string memory) { /// get attributes and description here to avoid stack too deep string memory description = '"description": "Shackled is the first general-purpose 3D renderer' " running on the Ethereum blockchain." ' Each piece represents a leap forward in on-chain computer graphics, and the collection itself is an NFT first."'; return string( abi.encodePacked( "data:application/json;base64,", Base64.encode( bytes( string( abi.encodePacked( '{"name": "Shackled Genesis #', uint2str(tokenId), '", ', description, ', "attributes":', getAttributes(metadata), ', "image":"', image, '"}' ) ) ) ) ) ); } // fragment = // [ canvas_x, canvas_y, depth, col_x, col_y, col_z, normal_x, normal_y, normal_z, world_x, world_y, world_z ], /** @dev get an encoded 2d bitmap by combining the object and background fragments */ function getEncodedBitmap( int256[12][] memory fragments, int256[5][] memory background, int256 canvasDim, bool invert ) internal view returns (string memory) { uint256 canvasDimUnsigned = uint256(canvasDim); bytes memory fileHeader = abi.encodePacked( hex"42_4d", // BM hex"36_04_00_00", // size of the bitmap file in bytes (14 (file header) + 40 (info header) + size of raw data (1024)) hex"00_00_00_00", // 2x2 bytes reserved hex"36_00_00_00" // offset of pixels in bytes ); bytes memory infoHeader = abi.encodePacked( hex"28_00_00_00", // size of the header in bytes (40) getHex(canvasDimUnsigned), // width in pixels 32 getHex(canvasDimUnsigned), // height in pixels 32 hex"01_00", // number of color plans (must be 1) hex"18_00", // number of bits per pixel (24) hex"00_00_00_00", // type of compression (none) hex"00_04_00_00", // size of the raw bitmap data (1024) hex"C4_0E_00_00", // horizontal resolution hex"C4_0E_00_00", // vertical resolution hex"00_00_00_00", // number of used colours hex"05_00_00_00" // number of important colours ); bytes memory headers = abi.encodePacked(fileHeader, infoHeader); /// create a container for the bitmap's bytes bytes memory bytesArray = new bytes(3 * canvasDimUnsigned**2); /// write the background first so it is behind the fragments bytesArray = writeBackgroundToBytesArray( background, bytesArray, canvasDimUnsigned, invert ); bytesArray = writeFragmentsToBytesArray( fragments, bytesArray, canvasDimUnsigned, invert ); return string( abi.encodePacked( "data:image/bmp;base64,", Base64.encode(BytesUtils.MergeBytes(headers, bytesArray)) ) ); } /** @dev write the fragments to the bytes array */ function writeFragmentsToBytesArray( int256[12][] memory fragments, bytes memory bytesArray, uint256 canvasDimUnsigned, bool invert ) internal pure returns (bytes memory) { /// loop through each fragment /// and write it's color into bytesArray in its canvas equivelant position for (uint256 i = 0; i < fragments.length; i++) { /// check if x and y are both greater than 0 if ( uint256(fragments[i][0]) >= 0 && uint256(fragments[i][1]) >= 0 ) { /// calculating the starting bytesArray ix for this fragment's colors uint256 flatIx = ((canvasDimUnsigned - uint256(fragments[i][1]) - 1) * canvasDimUnsigned + (canvasDimUnsigned - uint256(fragments[i][0]) - 1)) * 3; /// red uint256 r = fragments[i][3] > 255 ? 255 : uint256(fragments[i][3]); /// green uint256 g = fragments[i][4] > 255 ? 255 : uint256(fragments[i][4]); /// blue uint256 b = fragments[i][5] > 255 ? 255 : uint256(fragments[i][5]); if (invert) { r = 255 - r; g = 255 - g; b = 255 - b; } bytesArray[flatIx + 0] = bytes1(uint8(b)); bytesArray[flatIx + 1] = bytes1(uint8(g)); bytesArray[flatIx + 2] = bytes1(uint8(r)); } } return bytesArray; } /** @dev write the fragments to the bytes array using a separate function from above to account for variable input size */ function writeBackgroundToBytesArray( int256[5][] memory background, bytes memory bytesArray, uint256 canvasDimUnsigned, bool invert ) internal pure returns (bytes memory) { /// loop through each fragment /// and write it's color into bytesArray in its canvas equivelant position for (uint256 i = 0; i < background.length; i++) { /// check if x and y are both greater than 0 if ( uint256(background[i][0]) >= 0 && uint256(background[i][1]) >= 0 ) { /// calculating the starting bytesArray ix for this fragment's colors uint256 flatIx = (uint256(background[i][1]) * canvasDimUnsigned + uint256(background[i][0])) * 3; // red uint256 r = background[i][2] > 255 ? 255 : uint256(background[i][2]); /// green uint256 g = background[i][3] > 255 ? 255 : uint256(background[i][3]); // blue uint256 b = background[i][4] > 255 ? 255 : uint256(background[i][4]); if (invert) { r = 255 - r; g = 255 - g; b = 255 - b; } bytesArray[flatIx + 0] = bytes1(uint8(b)); bytesArray[flatIx + 1] = bytes1(uint8(g)); bytesArray[flatIx + 2] = bytes1(uint8(r)); } } return bytesArray; } } /// [MIT License] /// @title Base64 /// @notice Provides a function for encoding some bytes in base64 /// @author Brecht Devos <[email protected]> library Base64 { bytes internal constant TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; /// @notice Encodes some bytes to the base64 representation function encode(bytes memory data) internal view returns (string memory) { uint256 len = data.length; if (len == 0) return ""; // multiply by 4/3 rounded up uint256 encodedLen = 4 * ((len + 2) / 3); // Add some extra buffer at the end bytes memory result = new bytes(encodedLen + 32); bytes memory table = TABLE; assembly { let tablePtr := add(table, 1) let resultPtr := add(result, 32) for { let i := 0 } lt(i, len) { } { i := add(i, 3) let input := and(mload(add(data, i)), 0xffffff) let out := mload(add(tablePtr, and(shr(18, input), 0x3F))) out := shl(8, out) out := add( out, and(mload(add(tablePtr, and(shr(12, input), 0x3F))), 0xFF) ) out := shl(8, out) out := add( out, and(mload(add(tablePtr, and(shr(6, input), 0x3F))), 0xFF) ) out := shl(8, out) out := add( out, and(mload(add(tablePtr, and(input, 0x3F))), 0xFF) ) out := shl(224, out) mstore(resultPtr, out) resultPtr := add(resultPtr, 4) } switch mod(len, 3) case 1 { mstore(sub(resultPtr, 2), shl(240, 0x3d3d)) } case 2 { mstore(sub(resultPtr, 1), shl(248, 0x3d)) } mstore(result, encodedLen) } return string(result); } } library BytesUtils { function char(bytes1 b) internal view returns (bytes1 c) { if (uint8(b) < 10) return bytes1(uint8(b) + 0x30); else return bytes1(uint8(b) + 0x57); } function bytes32string(bytes32 b32) internal view returns (string memory out) { bytes memory s = new bytes(64); for (uint32 i = 0; i < 32; i++) { bytes1 b = bytes1(b32[i]); bytes1 hi = bytes1(uint8(b) / 16); bytes1 lo = bytes1(uint8(b) - 16 * uint8(hi)); s[i * 2] = char(hi); s[i * 2 + 1] = char(lo); } out = string(s); } function hach(string memory value) internal view returns (string memory) { return bytes32string(sha256(abi.encodePacked(value))); } function MergeBytes(bytes memory a, bytes memory b) internal pure returns (bytes memory c) { // Store the length of the first array uint256 alen = a.length; // Store the length of BOTH arrays uint256 totallen = alen + b.length; // Count the loops required for array a (sets of 32 bytes) uint256 loopsa = (a.length + 31) / 32; // Count the loops required for array b (sets of 32 bytes) uint256 loopsb = (b.length + 31) / 32; assembly { let m := mload(0x40) // Load the length of both arrays to the head of the new bytes array mstore(m, totallen) // Add the contents of a to the array for { let i := 0 } lt(i, loopsa) { i := add(1, i) } { mstore( add(m, mul(32, add(1, i))), mload(add(a, mul(32, add(1, i)))) ) } // Add the contents of b to the array for { let i := 0 } lt(i, loopsb) { i := add(1, i) } { mstore( add(m, add(mul(32, add(1, i)), alen)), mload(add(b, mul(32, add(1, i)))) ) } mstore(0x40, add(m, add(32, totallen))) c := m } } }
// SPDX-License-Identifier: Unlicense pragma solidity ^0.8.0; library ShackledStructs { struct Metadata { string colorScheme; /// name of the color scheme string geomSpec; /// name of the geometry specification uint256 nPrisms; /// number of prisms made string pseudoSymmetry; /// horizontal, vertical, diagonal string wireframe; /// enabled or disabled string inversion; /// enabled or disabled } struct RenderParams { uint256[3][] faces; /// index of verts and colorss used for each face (triangle) int256[3][] verts; /// x, y, z coordinates used in the geometry int256[3][] cols; /// colors of each vert int256[3] objPosition; /// position to place the object int256 objScale; /// scalar for the object int256[3][2] backgroundColor; /// color of the background (gradient) LightingParams lightingParams; /// parameters for the lighting bool perspCamera; /// true = perspective camera, false = orthographic bool backfaceCulling; /// whether to implement backface culling (saves gas!) bool invert; /// whether to invert colors in the final encoding stage bool wireframe; /// whether to only render edges } /// struct for testing lighting struct LightingParams { bool applyLighting; /// true = apply lighting, false = don't apply lighting int256 lightAmbiPower; /// power of the ambient light int256 lightDiffPower; /// power of the diffuse light int256 lightSpecPower; /// power of the specular light uint256 inverseShininess; /// shininess of the material int256[3] lightPos; /// position of the light int256[3] lightColSpec; /// color of the specular light int256[3] lightColDiff; /// color of the diffuse light int256[3] lightColAmbi; /// color of the ambient light } }
// // SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import "./ShackledCoords.sol"; import "./ShackledRasteriser.sol"; import "./ShackledUtils.sol"; import "./ShackledStructs.sol"; library ShackledRenderer { uint256 constant outputHeight = 512; uint256 constant outputWidth = 512; /** @dev take any geometry, render it, and return a bitmap image inside an SVG this can be called to render the Shackled art collection (the output of ShackledGenesis.sol) or any other custom made geometry */ function render( ShackledStructs.RenderParams memory renderParams, int256 canvasDim, bool returnSVG ) public view returns (string memory) { /// prepare the fragments int256[12][3][] memory trisFragments = prepareGeometryForRender( renderParams, canvasDim ); /// run Bresenham's line algorithm to rasterize the fragments int256[12][] memory fragments = ShackledRasteriser.rasterise( trisFragments, canvasDim, renderParams.wireframe ); fragments = ShackledRasteriser.depthTesting(fragments, canvasDim); if (renderParams.lightingParams.applyLighting) { /// apply lighting (Blinn phong) fragments = ShackledRasteriser.lightScene( fragments, renderParams.lightingParams ); } /// get the background int256[5][] memory background = ShackledRasteriser.getBackground( canvasDim, renderParams.backgroundColor ); /// place each fragment in an encoded bitmap string memory encodedBitmap = ShackledUtils.getEncodedBitmap( fragments, background, canvasDim, renderParams.invert ); if (returnSVG) { /// insert the bitmap into an encoded svg (to be accepted by OpenSea) return ShackledUtils.getSVGContainer( encodedBitmap, canvasDim, outputHeight, outputWidth ); } else { return encodedBitmap; } } /** @dev prepare the triangles and colors for rasterization */ function prepareGeometryForRender( ShackledStructs.RenderParams memory renderParams, int256 canvasDim ) internal view returns (int256[12][3][] memory) { /// convert geometry and colors from PLY standard into Shackled format /// create the final triangles and colors that will be rendered /// by pulling the numbers out of the faces array /// and using them to index into the verts and colors arrays /// make copies of each coordinate and color int256[3][3][] memory tris = new int256[3][3][]( renderParams.faces.length ); int256[3][3][] memory trisCols = new int256[3][3][]( renderParams.faces.length ); for (uint256 i = 0; i < renderParams.faces.length; i++) { for (uint256 j = 0; j < 3; j++) { for (uint256 k = 0; k < 3; k++) { /// copy the values from verts and cols arrays /// using the faces lookup array to index into them tris[i][j][k] = renderParams.verts[ renderParams.faces[i][j] ][k]; trisCols[i][j][k] = renderParams.cols[ renderParams.faces[i][j] ][k]; } } } /// convert the fragments from model to world space int256[3][] memory vertsWorldSpace = ShackledCoords .convertToWorldSpaceWithModelTransform( tris, renderParams.objScale, renderParams.objPosition ); /// convert the vertices back to triangles in world space int256[3][3][] memory trisWorldSpace = ShackledUtils .unflattenVertsToTris(vertsWorldSpace); /// implement backface culling if (renderParams.backfaceCulling) { (trisWorldSpace, trisCols) = ShackledCoords.backfaceCulling( trisWorldSpace, trisCols ); } /// update vertsWorldSpace vertsWorldSpace = ShackledUtils.flattenTris(trisWorldSpace); /// convert the fragments from world to camera space int256[3][] memory vertsCameraSpace = ShackledCoords .convertToCameraSpaceViaVertexShader( vertsWorldSpace, canvasDim, renderParams.perspCamera ); /// convert the vertices back to triangles in camera space int256[3][3][] memory trisCameraSpace = ShackledUtils .unflattenVertsToTris(vertsCameraSpace); int256[12][3][] memory trisFragments = ShackledRasteriser .initialiseFragments( trisCameraSpace, trisWorldSpace, trisCols, canvasDim ); return trisFragments; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import "./ShackledStructs.sol"; import "./ShackledMath.sol"; import "./Trigonometry.sol"; /* dir codes: 0: right-left 1: left-right 2: up-down 3: down-up sel codes: 0: random 1: biggest-first 2: smallest-first */ library ShackledGenesis { uint256 constant MAX_N_ATTEMPTS = 150; // max number of attempts to find a valid triangle int256 constant ROT_XY_MAX = 12; // max amount of rotation in xy plane int256 constant MAX_CANVAS_SIZE = 32000; // max size of canvas /// a struct to hold vars in makeFacesVertsCols() to prevent StackTooDeep struct FacesVertsCols { uint256[3][] faces; int256[3][] verts; int256[3][] cols; uint256 nextColIdx; uint256 nextVertIdx; uint256 nextFaceIdx; } /** @dev generate all parameters required for the shackled renderer from a seed hash @param tokenHash a hash of the tokenId to be used in 'random' number generation */ function generateGenesisPiece(bytes32 tokenHash) external view returns ( ShackledStructs.RenderParams memory renderParams, ShackledStructs.Metadata memory metadata ) { /// initial model paramaters renderParams.objScale = 1; renderParams.objPosition = [int256(0), 0, -2500]; /// generate the geometry and colors ( FacesVertsCols memory vars, ColorUtils.ColScheme memory colScheme, GeomUtils.GeomSpec memory geomSpec, GeomUtils.GeomVars memory geomVars ) = generateGeometryAndColors(tokenHash, renderParams.objPosition); renderParams.faces = vars.faces; renderParams.verts = vars.verts; renderParams.cols = vars.cols; /// use a perspective camera renderParams.perspCamera = true; if (geomSpec.id == 3) { renderParams.wireframe = false; renderParams.backfaceCulling = true; } else { /// determine wireframe trait (5% chance) if (GeomUtils.randN(tokenHash, "wireframe", 1, 100) > 95) { renderParams.wireframe = true; renderParams.backfaceCulling = false; } else { renderParams.wireframe = false; renderParams.backfaceCulling = true; } } if ( colScheme.id == 2 || colScheme.id == 3 || colScheme.id == 7 || colScheme.id == 8 ) { renderParams.invert = false; } else { /// inversion (40% chance) renderParams.invert = GeomUtils.randN(tokenHash, "invert", 1, 10) > 6; } /// background colors renderParams.backgroundColor = [ colScheme.bgColTop, colScheme.bgColBottom ]; /// lighting parameters renderParams.lightingParams = ShackledStructs.LightingParams({ applyLighting: true, lightAmbiPower: 0, lightDiffPower: 2000, lightSpecPower: 3000, inverseShininess: 10, lightColSpec: colScheme.lightCol, lightColDiff: colScheme.lightCol, lightColAmbi: colScheme.lightCol, lightPos: [int256(-50), 0, 0] }); /// create the metadata metadata.colorScheme = colScheme.name; metadata.geomSpec = geomSpec.name; metadata.nPrisms = geomVars.nPrisms; if (geomSpec.isSymmetricX) { if (geomSpec.isSymmetricY) { metadata.pseudoSymmetry = "Diagonal"; } else { metadata.pseudoSymmetry = "Horizontal"; } } else if (geomSpec.isSymmetricY) { metadata.pseudoSymmetry = "Vertical"; } else { metadata.pseudoSymmetry = "Scattered"; } if (renderParams.wireframe) { metadata.wireframe = "Enabled"; } else { metadata.wireframe = "Disabled"; } if (renderParams.invert) { metadata.inversion = "Enabled"; } else { metadata.inversion = "Disabled"; } } /** @dev run a generative algorithm to create 3d geometries (prisms) and colors to render with Shackled also returns the faces and verts, which can be used to build a .obj file for in-browser rendering */ function generateGeometryAndColors( bytes32 tokenHash, int256[3] memory objPosition ) internal view returns ( FacesVertsCols memory vars, ColorUtils.ColScheme memory colScheme, GeomUtils.GeomSpec memory geomSpec, GeomUtils.GeomVars memory geomVars ) { /// get this geom's spec geomSpec = GeomUtils.generateSpec(tokenHash); /// create the triangles ( int256[3][3][] memory tris, int256[] memory zFronts, int256[] memory zBacks ) = create2dTris(tokenHash, geomSpec); /// prismify geomVars = prismify(tokenHash, tris, zFronts, zBacks); /// generate colored faces /// get a color scheme colScheme = ColorUtils.getScheme(tokenHash, tris); /// get faces, verts and colors vars = makeFacesVertsCols( tokenHash, tris, geomVars, colScheme, objPosition ); } /** @dev 'randomly' create an array of 2d triangles that will define each eventual 3d prism */ function create2dTris(bytes32 tokenHash, GeomUtils.GeomSpec memory geomSpec) internal view returns ( int256[3][3][] memory, /// tris int256[] memory, /// zFronts int256[] memory /// zBacks ) { /// initiate vars that will be used to store the triangle info GeomUtils.TriVars memory triVars; triVars.tris = new int256[3][3][]((geomSpec.maxPrisms + 5) * 2); triVars.zFronts = new int256[]((geomSpec.maxPrisms + 5) * 2); triVars.zBacks = new int256[]((geomSpec.maxPrisms + 5) * 2); /// 'randomly' initiate the starting radius int256 initialSize; if (geomSpec.forceInitialSize == 0) { initialSize = GeomUtils.randN( tokenHash, "size", geomSpec.minTriRad, geomSpec.maxTriRad ); } else { initialSize = geomSpec.forceInitialSize; } /// 50% chance of 30deg rotation, 50% chance of 210deg rotation int256 initialRot = GeomUtils.randN(tokenHash, "rot", 0, 1) == 0 ? int256(30) : int256(210); /// create the first triangle int256[3][3] memory currentTri = GeomUtils.makeTri( [int256(0), 0, 0], initialSize, initialRot ); /// save it triVars.tris[0] = currentTri; /// calculate the first triangle's zs triVars.zBacks[0] = GeomUtils.calculateZ( currentTri, tokenHash, triVars.nextTriIdx, geomSpec, false ); triVars.zFronts[0] = GeomUtils.calculateZ( currentTri, tokenHash, triVars.nextTriIdx, geomSpec, true ); /// get the position to add the next triangle if (geomSpec.isSymmetricY) { /// override the first tri, since it is not symmetrical /// but temporarily save it as its needed as a reference tri triVars.nextTriIdx = 0; } else { triVars.nextTriIdx = 1; } /// make new triangles for (uint256 i = 0; i < MAX_N_ATTEMPTS; i++) { /// get a reference to a previous triangle uint256 refIdx = uint256( GeomUtils.randN( tokenHash, string(abi.encodePacked("refIdx", i)), 0, int256(triVars.nextTriIdx) - 1 ) ); /// ensure that the 'random' number generated is different in each while loop /// by incorporating the nAttempts and nextTriIdx into the seed modifier if ( GeomUtils.randN( tokenHash, string(abi.encodePacked("adj", i, triVars.nextTriIdx)), 0, 100 ) <= geomSpec.probVertOpp ) { /// attempt to recursively add vertically opposite triangles triVars = GeomUtils.makeVerticallyOppositeTriangles( tokenHash, i, // attemptNum (to create unique random seeds) refIdx, triVars, geomSpec, -1, -1, 0 // depth (to create unique random seeds within recursion) ); } else { /// attempt to recursively add adjacent triangles triVars = GeomUtils.makeAdjacentTriangles( tokenHash, i, // attemptNum (to create unique random seeds) refIdx, triVars, geomSpec, -1, -1, 0 // depth (to create unique random seeds within recursion) ); } /// can't have this many triangles if (triVars.nextTriIdx >= geomSpec.maxPrisms) { break; } } /// clip all the arrays to the actual number of triangles triVars.tris = GeomUtils.clipTrisToLength( triVars.tris, triVars.nextTriIdx ); triVars.zBacks = GeomUtils.clipZsToLength( triVars.zBacks, triVars.nextTriIdx ); triVars.zFronts = GeomUtils.clipZsToLength( triVars.zFronts, triVars.nextTriIdx ); return (triVars.tris, triVars.zBacks, triVars.zFronts); } /** @dev prismify the initial 2d triangles output */ function prismify( bytes32 tokenHash, int256[3][3][] memory tris, int256[] memory zFronts, int256[] memory zBacks ) internal view returns (GeomUtils.GeomVars memory) { /// initialise a struct to hold the vars we need GeomUtils.GeomVars memory geomVars; /// record the num of prisms geomVars.nPrisms = uint256(tris.length); /// figure out what point to put in the middle geomVars.extents = GeomUtils.getExtents(tris); // mins[3], maxs[3] /// scale the tris to fit in the canvas geomVars.width = geomVars.extents[1][0] - geomVars.extents[0][0]; geomVars.height = geomVars.extents[1][1] - geomVars.extents[0][1]; geomVars.extent = ShackledMath.max(geomVars.width, geomVars.height); geomVars.scaleNum = 2000; /// multiple all tris by the scale, then divide by the extent for (uint256 i = 0; i < tris.length; i++) { tris[i] = [ ShackledMath.vector3DivScalar( ShackledMath.vector3MulScalar( tris[i][0], geomVars.scaleNum ), geomVars.extent ), ShackledMath.vector3DivScalar( ShackledMath.vector3MulScalar( tris[i][1], geomVars.scaleNum ), geomVars.extent ), ShackledMath.vector3DivScalar( ShackledMath.vector3MulScalar( tris[i][2], geomVars.scaleNum ), geomVars.extent ) ]; } /// we may like to do some rotation, this means we get the shapes in the middle /// arrow up, down, left, right // 50% chance of x, y rotation being positive or negative geomVars.rotX = (GeomUtils.randN(tokenHash, "rotX", 0, 1) == 0) ? ROT_XY_MAX : -ROT_XY_MAX; geomVars.rotY = (GeomUtils.randN(tokenHash, "rotY", 0, 1) == 0) ? ROT_XY_MAX : -ROT_XY_MAX; // 50% chance to z rotation being 0 or 30 geomVars.rotZ = (GeomUtils.randN(tokenHash, "rotZ", 0, 1) == 0) ? int256(0) : int256(30); /// rotate all tris around facing (z) axis for (uint256 i = 0; i < tris.length; i++) { tris[i] = GeomUtils.triRotHelp(2, tris[i], geomVars.rotZ); } geomVars.trisBack = GeomUtils.copyTris(tris); geomVars.trisFront = GeomUtils.copyTris(tris); /// front triangles need to come forward, back triangles need to go back for (uint256 i = 0; i < tris.length; i++) { for (uint256 j = 0; j < 3; j++) { for (uint256 k = 0; k < 3; k++) { if (k == 2) { /// get the z values (make sure the scale is applied) geomVars.trisFront[i][j][k] = zFronts[i]; geomVars.trisBack[i][j][k] = zBacks[i]; } else { /// copy the x and y values geomVars.trisFront[i][j][k] = tris[i][j][k]; geomVars.trisBack[i][j][k] = tris[i][j][k]; } } } } /// rotate - order is import here (must come after prism splitting, and is dependant on z rotation) if (geomVars.rotZ == 0) { /// x then y (geomVars.trisBack, geomVars.trisFront) = GeomUtils.triBfHelp( 0, geomVars.trisBack, geomVars.trisFront, geomVars.rotX ); (geomVars.trisBack, geomVars.trisFront) = GeomUtils.triBfHelp( 1, geomVars.trisBack, geomVars.trisFront, geomVars.rotY ); } else { /// y then x (geomVars.trisBack, geomVars.trisFront) = GeomUtils.triBfHelp( 1, geomVars.trisBack, geomVars.trisFront, geomVars.rotY ); (geomVars.trisBack, geomVars.trisFront) = GeomUtils.triBfHelp( 0, geomVars.trisBack, geomVars.trisFront, geomVars.rotX ); } return geomVars; } /** @dev create verts and faces out of the geom and get their colors */ function makeFacesVertsCols( bytes32 tokenHash, int256[3][3][] memory tris, GeomUtils.GeomVars memory geomVars, ColorUtils.ColScheme memory scheme, int256[3] memory objPosition ) internal view returns (FacesVertsCols memory vars) { /// the tris defined thus far are those at the front of each prism /// we need to calculate how many tris will then be in the final prisms (3 sides have 2 tris each, plus the front tri, = 7) uint256 numTrisPrisms = tris.length * 7; /// 7 tris per 3D prism (not inc. back) vars.faces = new uint256[3][](numTrisPrisms); /// array that holds indexes of verts needed to make each final triangle vars.verts = new int256[3][](tris.length * 6); /// the vertices for all final triangles vars.cols = new int256[3][](tris.length * 6); /// 1 col per final tri vars.nextColIdx = 0; vars.nextVertIdx = 0; vars.nextFaceIdx = 0; /// get some number of highlight triangles geomVars.hltPrismIdx = ColorUtils.getHighlightPrismIdxs( tris, tokenHash, scheme.hltNum, scheme.hltVarCode, scheme.hltSelCode ); int256[3][2] memory frontExtents = GeomUtils.getExtents( geomVars.trisFront ); // mins[3], maxs[3] int256[3][2] memory backExtents = GeomUtils.getExtents( geomVars.trisBack ); // mins[3], maxs[3] int256[3][2] memory meanExtents = [ [ (frontExtents[0][0] + backExtents[0][0]) / 2, (frontExtents[0][1] + backExtents[0][1]) / 2, (frontExtents[0][2] + backExtents[0][2]) / 2 ], [ (frontExtents[1][0] + backExtents[1][0]) / 2, (frontExtents[1][1] + backExtents[1][1]) / 2, (frontExtents[1][2] + backExtents[1][2]) / 2 ] ]; /// apply translations such that we're at the center geomVars.center = ShackledMath.vector3DivScalar( ShackledMath.vector3Add(meanExtents[0], meanExtents[1]), 2 ); geomVars.center[2] = 0; for (uint256 i = 0; i < tris.length; i++) { int256[3][6] memory prismCols; ColorUtils.SubScheme memory subScheme = ColorUtils.inArray( geomVars.hltPrismIdx, i ) ? scheme.hlt : scheme.pri; /// get the colors for the prism prismCols = ColorUtils.getColForPrism( tokenHash, geomVars.trisFront[i], subScheme, meanExtents ); /// save the colors (6 per prism) for (uint256 j = 0; j < 6; j++) { vars.cols[vars.nextColIdx] = prismCols[j]; vars.nextColIdx++; } /// add 3 points (back) for (uint256 j = 0; j < 3; j++) { vars.verts[vars.nextVertIdx] = [ geomVars.trisBack[i][j][0], geomVars.trisBack[i][j][1], -geomVars.trisBack[i][j][2] /// flip the Z ]; vars.nextVertIdx += 1; } /// add 3 points (front) for (uint256 j = 0; j < 3; j++) { vars.verts[vars.nextVertIdx] = [ geomVars.trisFront[i][j][0], geomVars.trisFront[i][j][1], -geomVars.trisFront[i][j][2] /// flip the Z ]; vars.nextVertIdx += 1; } /// create the faces uint256 ii = i * 6; /// the orders are all important here (back is not visible) /// front vars.faces[vars.nextFaceIdx] = [ii + 3, ii + 4, ii + 5]; /// side 1 flat vars.faces[vars.nextFaceIdx + 1] = [ii + 4, ii + 3, ii + 0]; vars.faces[vars.nextFaceIdx + 2] = [ii + 0, ii + 1, ii + 4]; /// side 2 rhs vars.faces[vars.nextFaceIdx + 3] = [ii + 5, ii + 4, ii + 1]; vars.faces[vars.nextFaceIdx + 4] = [ii + 1, ii + 2, ii + 5]; /// side 3 lhs vars.faces[vars.nextFaceIdx + 5] = [ii + 2, ii + 0, ii + 3]; vars.faces[vars.nextFaceIdx + 6] = [ii + 3, ii + 5, ii + 2]; vars.nextFaceIdx += 7; } for (uint256 i = 0; i < vars.verts.length; i++) { vars.verts[i] = ShackledMath.vector3Sub( vars.verts[i], geomVars.center ); } } } /** Hold some functions useful for coloring in the prisms */ library ColorUtils { /// a struct to hold vars within the main color scheme /// which can be used for both highlight (hlt) an primar (pri) colors struct SubScheme { int256[3] colA; // either the entire solid color, or one side of the gradient int256[3] colB; // either the same as A (solid), or different (gradient) bool isInnerGradient; // whether the gradient spans the triangle (true) or canvas (false) int256 dirCode; // which direction should the gradient be interpolated int256[3] jiggle; // how much to randomly jiffle the color space bool isJiggleInner; // does each inner vertiex get a jiggle, or is it triangle wide int256[3] backShift; // how much to take off the back face colors } /// a struct for each piece's color scheme struct ColScheme { string name; uint256 id; /// the primary color SubScheme pri; /// the highlight color SubScheme hlt; /// remaining parameters (not common to hlt and pri) uint256 hltNum; int256 hltSelCode; int256 hltVarCode; /// other scene colors int256[3] lightCol; int256[3] bgColTop; int256[3] bgColBottom; } /** @dev calculate the color of a prism returns an array of 6 colors (for each vertex of a prism) */ function getColForPrism( bytes32 tokenHash, int256[3][3] memory triFront, SubScheme memory subScheme, int256[3][2] memory extents ) external view returns (int256[3][6] memory cols) { if ( subScheme.colA[0] == subScheme.colB[0] && subScheme.colA[1] == subScheme.colB[1] && subScheme.colA[2] == subScheme.colB[2] ) { /// just use color A (as B is the same, so there's no gradient) for (uint256 i = 0; i < 6; i++) { cols[i] = copyColor(subScheme.colA); } } else { /// get the colors according to the direction code int256[3][3] memory triFrontCopy = GeomUtils.copyTri(triFront); int256[3][3] memory frontTriCols = applyDirHelp( triFrontCopy, subScheme.colA, subScheme.colB, subScheme.dirCode, subScheme.isInnerGradient, extents ); /// write in the same front colors as the back colors for (uint256 i = 0; i < 3; i++) { cols[i] = copyColor(frontTriCols[i]); cols[i + 3] = copyColor(frontTriCols[i]); } } /// perform the jiggling int256[3] memory jiggle; if (!subScheme.isJiggleInner) { /// get one set of jiggle values to use for all colors created jiggle = getJiggle(subScheme.jiggle, tokenHash, 0); } for (uint256 i = 0; i < 6; i++) { if (subScheme.isJiggleInner) { // jiggle again per col to create // use the last jiggle res in the random seed to get diff jiggles for each prism jiggle = getJiggle(subScheme.jiggle, tokenHash, jiggle[0]); } /// convert to hsv prior to jiggle int256[3] memory colHsv = rgb2hsv( cols[i][0], cols[i][1], cols[i][2] ); /// add the jiggle to the colors in hsv space colHsv[0] = colHsv[0] + jiggle[0]; colHsv[1] = colHsv[1] + jiggle[1]; colHsv[2] = colHsv[2] + jiggle[2]; /// convert back to rgb int256[3] memory colRgb = hsv2rgb(colHsv[0], colHsv[1], colHsv[2]); cols[i][0] = colRgb[0]; cols[i][1] = colRgb[1]; cols[i][2] = colRgb[2]; } /// perform back shifting for (uint256 i = 0; i < 3; i++) { cols[i][0] -= subScheme.backShift[0]; cols[i][1] -= subScheme.backShift[1]; cols[i][2] -= subScheme.backShift[2]; } /// ensure that we're in 255 range for (uint256 i = 0; i < 6; i++) { cols[i][0] = ShackledMath.max(0, ShackledMath.min(255, cols[i][0])); cols[i][1] = ShackledMath.max(0, ShackledMath.min(255, cols[i][1])); cols[i][2] = ShackledMath.max(0, ShackledMath.min(255, cols[i][2])); } return cols; } /** @dev roll a schemeId given a list of weightings */ function getSchemeId(bytes32 tokenHash, int256[2][10] memory weightings) internal view returns (uint256) { int256 n = GeomUtils.randN( tokenHash, "schemedId", weightings[0][0], weightings[weightings.length - 1][1] ); for (uint256 i = 0; i < weightings.length; i++) { if (weightings[i][0] <= n && n <= weightings[i][1]) { return i; } } } /** @dev make a copy of a color */ function copyColor(int256[3] memory c) internal view returns (int256[3] memory) { return [c[0], c[1], c[2]]; } /** @dev get a color scheme */ function getScheme(bytes32 tokenHash, int256[3][3][] memory tris) external view returns (ColScheme memory colScheme) { /// 'randomly' select 1 of the 9 schemes uint256 schemeId = getSchemeId( tokenHash, [ [int256(0), 1500], [int256(1500), 2500], [int256(2500), 3000], [int256(3000), 3100], [int256(3100), 5500], [int256(5500), 6000], [int256(6000), 6500], [int256(6500), 8000], [int256(8000), 9500], [int256(9500), 10000] ] ); // int256 schemeId = GeomUtils.randN(tokenHash, "schemeID", 1, 9); /// define the color scheme to use for this piece /// all arrays are on the order of 1000 to remain accurate as integers /// will require division by 1000 later when in use if (schemeId == 0) { /// plain / beigey with a highlight, and a matching background colour colScheme = ColScheme({ name: "Accentuated", id: schemeId, pri: SubScheme({ colA: [int256(60), 30, 25], colB: [int256(205), 205, 205], isInnerGradient: false, dirCode: 0, jiggle: [int256(13), 13, 13], isJiggleInner: false, backShift: [int256(205), 205, 205] }), hlt: SubScheme({ colA: [int256(255), 0, 0], colB: [int256(255), 50, 0], isInnerGradient: true, dirCode: GeomUtils.randN(tokenHash, "hltDir", 0, 3), /// get a 'random' dir code jiggle: [int256(50), 50, 50], isJiggleInner: false, backShift: [int256(205), 205, 205] }), hltNum: uint256(GeomUtils.randN(tokenHash, "hltNum", 3, 5)), /// get a 'random' number of highlights between 3 and 5 hltSelCode: 1, /// 'biggest' selection code hltVarCode: 0, lightCol: [int256(255), 255, 255], bgColTop: [int256(0), 0, 0], bgColBottom: [int256(1), 1, 1] }); } else if (schemeId == 1) { /// neutral overall colScheme = ColScheme({ name: "Emergent", id: schemeId, pri: SubScheme({ colA: [int256(0), 77, 255], colB: [int256(0), 255, 25], isInnerGradient: true, dirCode: GeomUtils.randN(tokenHash, "priDir", 2, 3), /// get a 'random' dir code (2 or 3) jiggle: [int256(60), 60, 60], isJiggleInner: false, backShift: [int256(-255), -255, -255] }), hlt: SubScheme({ colA: [int256(0), 77, 255], colB: [int256(0), 255, 25], isInnerGradient: true, dirCode: 3, jiggle: [int256(60), 60, 60], isJiggleInner: false, backShift: [int256(-255), -255, -255] }), hltNum: uint256(GeomUtils.randN(tokenHash, "hltNum", 4, 6)), /// get a 'random' number of highlights between 4 and 6 hltSelCode: 2, /// smallest-first hltVarCode: 0, lightCol: [int256(255), 255, 255], bgColTop: [int256(255), 255, 255], bgColBottom: [int256(255), 255, 255] }); } else if (schemeId == 2) { /// vaporwave int256 maxHighlights = ShackledMath.max(0, int256(tris.length) - 8); int256 minHighlights = ShackledMath.max( 0, int256(maxHighlights) - 2 ); colScheme = ColScheme({ name: "Sunset", id: schemeId, pri: SubScheme({ colA: [int256(179), 0, 179], colB: [int256(0), 0, 255], isInnerGradient: false, dirCode: 2, /// up-down jiggle: [int256(25), 25, 25], isJiggleInner: true, backShift: [int256(127), 127, 127] }), hlt: SubScheme({ colA: [int256(0), 0, 0], colB: [int256(0), 0, 0], isInnerGradient: true, dirCode: 3, /// down-up jiggle: [int256(15), 0, 15], isJiggleInner: true, backShift: [int256(0), 0, 0] }), hltNum: uint256( GeomUtils.randN( tokenHash, "hltNum", minHighlights, maxHighlights ) ), /// get a 'random' number of highlights between minHighlights and maxHighlights hltSelCode: 2, /// smallest-first hltVarCode: 0, lightCol: [int256(255), 255, 255], bgColTop: [int256(250), 103, 247], bgColBottom: [int256(157), 104, 250] }); } else if (schemeId == 3) { /// gold int256 priDirCode = GeomUtils.randN(tokenHash, "pirDir", 0, 1); /// get a 'random' dir code (0 or 1) colScheme = ColScheme({ name: "Stone & Gold", id: schemeId, pri: SubScheme({ colA: [int256(50), 50, 50], colB: [int256(100), 100, 100], isInnerGradient: true, dirCode: priDirCode, jiggle: [int256(10), 10, 10], isJiggleInner: true, backShift: [int256(128), 128, 128] }), hlt: SubScheme({ colA: [int256(255), 197, 0], colB: [int256(255), 126, 0], isInnerGradient: true, dirCode: priDirCode, jiggle: [int256(0), 0, 0], isJiggleInner: false, backShift: [int256(64), 64, 64] }), hltNum: 1, hltSelCode: 1, /// biggest-first hltVarCode: 0, lightCol: [int256(255), 255, 255], bgColTop: [int256(0), 0, 0], bgColBottom: [int256(0), 0, 0] }); } else if (schemeId == 4) { /// random pastel colors (sometimes black) /// for primary colors, /// follow the pattern of making a new and unique seedHash for each variable /// so they are independant /// seed modifiers = pri/hlt + a/b + /r/g/b colScheme = ColScheme({ name: "Denatured", id: schemeId, pri: SubScheme({ colA: [ GeomUtils.randN(tokenHash, "PAR", 25, 255), GeomUtils.randN(tokenHash, "PAG", 25, 255), GeomUtils.randN(tokenHash, "PAB", 25, 255) ], colB: [ GeomUtils.randN(tokenHash, "PBR", 25, 255), GeomUtils.randN(tokenHash, "PBG", 25, 255), GeomUtils.randN(tokenHash, "PBB", 25, 255) ], isInnerGradient: false, dirCode: GeomUtils.randN(tokenHash, "pri", 0, 1), /// get a 'random' dir code (0 or 1) jiggle: [int256(0), 0, 0], isJiggleInner: false, backShift: [int256(127), 127, 127] }), hlt: SubScheme({ colA: [ GeomUtils.randN(tokenHash, "HAR", 25, 255), GeomUtils.randN(tokenHash, "HAG", 25, 255), GeomUtils.randN(tokenHash, "HAB", 25, 255) ], colB: [ GeomUtils.randN(tokenHash, "HBR", 25, 255), GeomUtils.randN(tokenHash, "HBG", 25, 255), GeomUtils.randN(tokenHash, "HBB", 25, 255) ], isInnerGradient: false, dirCode: GeomUtils.randN(tokenHash, "hlt", 0, 1), /// get a 'random' dir code (0 or 1) jiggle: [int256(0), 0, 0], isJiggleInner: false, backShift: [int256(127), 127, 127] }), hltNum: tris.length / 2, hltSelCode: 2, /// smallest-first hltVarCode: 0, lightCol: [int256(255), 255, 255], bgColTop: [int256(3), 3, 3], bgColBottom: [int256(0), 0, 0] }); } else if (schemeId == 5) { /// inter triangle random colors ('chameleonic') /// pri dir code is anything (0, 1, 2, 3) /// hlt dir code is oppose to pri dir code (rl <-> lr, up <-> du) int256 priDirCode = GeomUtils.randN(tokenHash, "pri", 0, 3); /// get a 'random' dir code (0 or 1) int256 hltDirCode; if (priDirCode == 0 || priDirCode == 1) { hltDirCode = priDirCode == 0 ? int256(1) : int256(0); } else { hltDirCode = priDirCode == 2 ? int256(3) : int256(2); } /// for primary colors, /// follow the pattern of making a new and unique seedHash for each variable /// so they are independant /// seed modifiers = pri/hlt + a/b + /r/g/b colScheme = ColScheme({ name: "Chameleonic", id: schemeId, pri: SubScheme({ colA: [ GeomUtils.randN(tokenHash, "PAR", 25, 255), GeomUtils.randN(tokenHash, "PAG", 25, 255), GeomUtils.randN(tokenHash, "PAB", 25, 255) ], colB: [ GeomUtils.randN(tokenHash, "PBR", 25, 255), GeomUtils.randN(tokenHash, "PBG", 25, 255), GeomUtils.randN(tokenHash, "PBB", 25, 255) ], isInnerGradient: true, dirCode: priDirCode, jiggle: [int256(25), 25, 25], isJiggleInner: true, backShift: [int256(0), 0, 0] }), hlt: SubScheme({ colA: [ GeomUtils.randN(tokenHash, "HAR", 25, 255), GeomUtils.randN(tokenHash, "HAG", 25, 255), GeomUtils.randN(tokenHash, "HAB", 25, 255) ], colB: [ GeomUtils.randN(tokenHash, "HBR", 25, 255), GeomUtils.randN(tokenHash, "HBG", 25, 255), GeomUtils.randN(tokenHash, "HBB", 25, 255) ], isInnerGradient: true, dirCode: hltDirCode, jiggle: [int256(255), 255, 255], isJiggleInner: true, backShift: [int256(205), 205, 205] }), hltNum: 12, hltSelCode: 2, /// smallest-first hltVarCode: 0, lightCol: [int256(255), 255, 255], bgColTop: [int256(3), 3, 3], bgColBottom: [int256(0), 0, 0] }); } else if (schemeId == 6) { /// each prism is a different colour with some randomisation /// pri dir code is anything (0, 1, 2, 3) /// hlt dir code is oppose to pri dir code (rl <-> lr, up <-> du) int256 priDirCode = GeomUtils.randN(tokenHash, "pri", 0, 1); /// get a 'random' dir code (0 or 1) int256 hltDirCode; if (priDirCode == 0 || priDirCode == 1) { hltDirCode = priDirCode == 0 ? int256(1) : int256(0); } else { hltDirCode = priDirCode == 2 ? int256(3) : int256(2); } /// for primary colors, /// follow the pattern of making a new and unique seedHash for each variable /// so they are independant /// seed modifiers = pri/hlt + a/b + /r/g/b colScheme = ColScheme({ name: "Gradiated", id: schemeId, pri: SubScheme({ colA: [ GeomUtils.randN(tokenHash, "PAR", 25, 255), GeomUtils.randN(tokenHash, "PAG", 25, 255), GeomUtils.randN(tokenHash, "PAB", 25, 255) ], colB: [ GeomUtils.randN(tokenHash, "PBR", 25, 255), GeomUtils.randN(tokenHash, "PBG", 25, 255), GeomUtils.randN(tokenHash, "PBB", 25, 255) ], isInnerGradient: false, dirCode: priDirCode, jiggle: [int256(127), 127, 127], isJiggleInner: false, backShift: [int256(205), 205, 205] }), hlt: SubScheme({ colA: [ GeomUtils.randN(tokenHash, "HAR", 25, 255), GeomUtils.randN(tokenHash, "HAG", 25, 255), GeomUtils.randN(tokenHash, "HAB", 25, 255) ], colB: [ GeomUtils.randN(tokenHash, "HBR", 25, 255), GeomUtils.randN(tokenHash, "HBG", 25, 255), GeomUtils.randN(tokenHash, "HBB", 25, 255) ], isInnerGradient: false, dirCode: hltDirCode, jiggle: [int256(127), 127, 127], isJiggleInner: false, backShift: [int256(205), 205, 205] }), hltNum: 12, /// get a 'random' number of highlights between 4 and 6 hltSelCode: 2, /// smallest-first hltVarCode: 0, lightCol: [int256(255), 255, 255], bgColTop: [int256(3), 3, 3], bgColBottom: [int256(0), 0, 0] }); } else if (schemeId == 7) { /// feature colour on white primary, with feature colour background /// calculate the feature color in hsv int256[3] memory hsv = [ GeomUtils.randN(tokenHash, "hsv", 0, 255), 230, 255 ]; int256[3] memory hltColA = hsv2rgb(hsv[0], hsv[1], hsv[2]); colScheme = ColScheme({ name: "Vivid Alabaster", id: schemeId, pri: SubScheme({ colA: [int256(255), 255, 255], colB: [int256(255), 255, 255], isInnerGradient: true, dirCode: GeomUtils.randN(tokenHash, "pri", 0, 3), /// get a 'random' dir code (0 or 1) jiggle: [int256(25), 25, 25], isJiggleInner: true, backShift: [int256(127), 127, 127] }), hlt: SubScheme({ colA: hltColA, colB: copyColor(hltColA), /// same as A isInnerGradient: true, dirCode: GeomUtils.randN(tokenHash, "pri", 0, 3), /// same as priDirCode jiggle: [int256(25), 50, 50], isJiggleInner: true, backShift: [int256(180), 180, 180] }), hltNum: tris.length % 2 == 1 ? (tris.length / 2) + 1 : tris.length / 2, hltSelCode: GeomUtils.randN(tokenHash, "hltSel", 0, 2), hltVarCode: 0, lightCol: [int256(255), 255, 255], bgColTop: hsv2rgb( ShackledMath.mod((hsv[0] - 9), 255), 105, 255 ), bgColBottom: hsv2rgb( ShackledMath.mod((hsv[0] + 9), 255), 105, 255 ) }); } else if (schemeId == 8) { /// feature colour on black primary, with feature colour background /// calculate the feature color in hsv int256[3] memory hsv = [ GeomUtils.randN(tokenHash, "hsv", 0, 255), 245, 190 ]; int256[3] memory hltColA = hsv2rgb(hsv[0], hsv[1], hsv[2]); colScheme = ColScheme({ name: "Vivid Ink", id: schemeId, pri: SubScheme({ colA: [int256(0), 0, 0], colB: [int256(0), 0, 0], isInnerGradient: true, dirCode: GeomUtils.randN(tokenHash, "pri", 0, 3), /// get a 'random' dir code (0 or 1) jiggle: [int256(25), 25, 25], isJiggleInner: false, backShift: [int256(-60), -60, -60] }), hlt: SubScheme({ colA: hltColA, colB: copyColor(hltColA), /// same as A isInnerGradient: true, dirCode: GeomUtils.randN(tokenHash, "pri", 0, 3), /// same as priDirCode jiggle: [int256(0), 0, 0], isJiggleInner: false, backShift: [int256(-60), -60, -60] }), hltNum: tris.length % 2 == 1 ? (tris.length / 2) + 1 : tris.length / 2, hltSelCode: GeomUtils.randN(tokenHash, "hltSel", 0, 2), hltVarCode: GeomUtils.randN(tokenHash, "hltVar", 0, 2), lightCol: [int256(255), 255, 255], bgColTop: hsv2rgb( ShackledMath.mod((hsv[0] - 9), 255), 105, 255 ), bgColBottom: hsv2rgb( ShackledMath.mod((hsv[0] + 9), 255), 105, 255 ) }); } else if (schemeId == 9) { colScheme = ColScheme({ name: "Pigmented", id: schemeId, pri: SubScheme({ colA: [int256(50), 30, 25], colB: [int256(205), 205, 205], isInnerGradient: false, dirCode: 0, jiggle: [int256(13), 13, 13], isJiggleInner: false, backShift: [int256(205), 205, 205] }), hlt: SubScheme({ colA: [int256(255), 0, 0], colB: [int256(255), 50, 0], isInnerGradient: true, dirCode: GeomUtils.randN(tokenHash, "hltDir", 0, 3), /// get a 'random' dir code jiggle: [int256(255), 50, 50], isJiggleInner: false, backShift: [int256(205), 205, 205] }), hltNum: tris.length / 3, hltSelCode: 1, /// 'biggest' selection code hltVarCode: 0, lightCol: [int256(255), 255, 255], bgColTop: [int256(0), 0, 0], bgColBottom: [int256(7), 7, 7] }); } else { revert("invalid scheme id"); } return colScheme; } /** @dev convert hsv to rgb color assume h, s and v and in range [0, 255] outputs rgb in range [0, 255] */ function hsv2rgb( int256 h, int256 s, int256 v ) internal view returns (int256[3] memory res) { /// ensure range 0, 255 h = ShackledMath.max(0, ShackledMath.min(255, h)); s = ShackledMath.max(0, ShackledMath.min(255, s)); v = ShackledMath.max(0, ShackledMath.min(255, v)); int256 h2 = (((h % 255) * 1e3) / 255) * 360; /// convert to degress int256 v2 = (v * 1e3) / 255; int256 s2 = (s * 1e3) / 255; /// calculate c, x and m while scaling all by 1e3 /// otherwise x will be too small and round to 0 int256 c = (v2 * s2) / 1e3; int256 x = (c * (1 * 1e3 - ShackledMath.abs(((h2 / 60) % (2 * 1e3)) - (1 * 1e3)))); x = x / 1e3; int256 m = v2 - c; if (0 <= h2 && h2 < 60000) { res = [c + m, x + m, m]; } else if (60000 <= h2 && h2 < 120000) { res = [x + m, c + m, m]; } else if (120000 < h2 && h2 < 180000) { res = [m, c + m, x + m]; } else if (180000 < h2 && h2 < 240000) { res = [m, x + m, c + m]; } else if (240000 < h2 && h2 < 300000) { res = [x + m, m, c + m]; } else if (300000 < h2 && h2 < 360000) { res = [c + m, m, x + m]; } else { res = [int256(0), 0, 0]; } /// scale into correct range return [ (res[0] * 255) / 1e3, (res[1] * 255) / 1e3, (res[2] * 255) / 1e3 ]; } /** @dev convert rgb to hsv expects rgb to be in range [0, 255] outputs hsv in range [0, 255] */ function rgb2hsv( int256 r, int256 g, int256 b ) internal view returns (int256[3] memory) { int256 r2 = (r * 1e3) / 255; int256 g2 = (g * 1e3) / 255; int256 b2 = (b * 1e3) / 255; int256 max = ShackledMath.max(ShackledMath.max(r2, g2), b2); int256 min = ShackledMath.min(ShackledMath.min(r2, g2), b2); int256 delta = max - min; /// calculate hue int256 h; if (delta != 0) { if (max == r2) { int256 _h = ((g2 - b2) * 1e3) / delta; h = 60 * ShackledMath.mod(_h, 6000); } else if (max == g2) { h = 60 * (((b2 - r2) * 1e3) / delta + (2000)); } else if (max == b2) { h = 60 * (((r2 - g2) * 1e3) / delta + (4000)); } } h = (h % (360 * 1e3)) / 360; /// calculate saturation int256 s; if (max != 0) { s = (delta * 1e3) / max; } /// calculate value int256 v = max; return [(h * 255) / 1e3, (s * 255) / 1e3, (v * 255) / 1e3]; } /** @dev get vector of three numbers that can be used to jiggle a color */ function getJiggle( int256[3] memory jiggle, bytes32 randomSeed, int256 seedModifier ) internal view returns (int256[3] memory) { return [ jiggle[0] + GeomUtils.randN( randomSeed, string(abi.encodePacked("0", seedModifier)), -jiggle[0], jiggle[0] ), jiggle[1] + GeomUtils.randN( randomSeed, string(abi.encodePacked("1", seedModifier)), -jiggle[1], jiggle[1] ), jiggle[2] + GeomUtils.randN( randomSeed, string(abi.encodePacked("2", seedModifier)), -jiggle[2], jiggle[2] ) ]; } /** @dev check if a uint is in an array */ function inArray(uint256[] memory array, uint256 value) external view returns (bool) { for (uint256 i = 0; i < array.length; i++) { if (array[i] == value) { return true; } } return false; } /** @dev a helper function to apply the direction code in interpolation */ function applyDirHelp( int256[3][3] memory triFront, int256[3] memory colA, int256[3] memory colB, int256 dirCode, bool isInnerGradient, int256[3][2] memory extents ) internal view returns (int256[3][3] memory triCols) { uint256[3] memory order; if (isInnerGradient) { /// perform the simple 3 sort - always color by the front order = getOrderedPointIdxsInDir(triFront, dirCode); } else { /// order irrelevant in other case order = [uint256(0), 1, 2]; } /// axis is 0 (horizontal) if dir code is left-right or right-left /// 1 (vertical) otherwise uint256 axis = (dirCode == 0 || dirCode == 1) ? 0 : 1; int256 length; if (axis == 0) { length = extents[1][0] - extents[0][0]; } else { length = extents[1][1] - extents[0][1]; } /// if we're interpolating across the triangle (inner) /// then do so by calculating the color at each point in the triangle for (uint256 i = 0; i < 3; i++) { triCols[order[i]] = interpColHelp( colA, colB, (isInnerGradient) ? triFront[order[0]][axis] : int256(-length / 2), (isInnerGradient) ? triFront[order[2]][axis] : int256(length / 2), triFront[order[i]][axis] ); } } /** @dev a helper function to order points by index in a desired direction */ function getOrderedPointIdxsInDir(int256[3][3] memory tri, int256 dirCode) internal view returns (uint256[3] memory) { // flip if dir is left-right or down-up bool flip = (dirCode == 1 || dirCode == 3) ? true : false; // axis is 0 if horizontal (left-right or right-left), 1 otherwise (vertical) uint256 axis = (dirCode == 0 || dirCode == 1) ? 0 : 1; /// get the values of each point in the tri (flipped as required) int256 f = (flip) ? int256(-1) : int256(1); int256 a = f * tri[0][axis]; int256 b = f * tri[1][axis]; int256 c = f * tri[2][axis]; /// get the ordered indices uint256[3] memory ixOrd = [uint256(0), 1, 2]; /// simplest way to sort 3 numbers if (a > b) { (a, b) = (b, a); (ixOrd[0], ixOrd[1]) = (ixOrd[1], ixOrd[0]); } if (a > c) { (a, c) = (c, a); (ixOrd[0], ixOrd[2]) = (ixOrd[2], ixOrd[0]); } if (b > c) { (b, c) = (c, b); (ixOrd[1], ixOrd[2]) = (ixOrd[2], ixOrd[1]); } return ixOrd; } /** @dev a helper function for linear interpolation betweet two colors*/ function interpColHelp( int256[3] memory colA, int256[3] memory colB, int256 low, int256 high, int256 val ) internal view returns (int256[3] memory result) { int256 ir; int256 lerpScaleFactor = 1e3; if (high - low == 0) { ir = 1; } else { ir = ((val - low) * lerpScaleFactor) / (high - low); } for (uint256 i = 0; i < 3; i++) { /// dont allow interpolation to go below 0 result[i] = ShackledMath.max( 0, colA[i] + ((colB[i] - colA[i]) * ir) / lerpScaleFactor ); } } /** @dev get indexes of the prisms to use highlight coloring*/ function getHighlightPrismIdxs( int256[3][3][] memory tris, bytes32 tokenHash, uint256 nHighlights, int256 varCode, int256 selCode ) internal view returns (uint256[] memory idxs) { nHighlights = nHighlights < tris.length ? nHighlights : tris.length; ///if we just want random triangles then there's no need to sort if (selCode == 0) { idxs = ShackledMath.randomIdx( tokenHash, uint256(nHighlights), tris.length - 1 ); } else { idxs = getSortedTrisIdxs(tris, nHighlights, varCode, selCode); } } /** @dev return the index of the tris sorted by sel code @param selCode will be 1 (biggest first) or 2 (smallest first) */ function getSortedTrisIdxs( int256[3][3][] memory tris, uint256 nHighlights, int256 varCode, int256 selCode ) internal view returns (uint256[] memory) { // determine the sort order int256 orderFactor = (selCode == 2) ? int256(1) : int256(-1); /// get the list of triangle sizes int256[] memory sizes = new int256[](tris.length); for (uint256 i = 0; i < tris.length; i++) { if (varCode == 0) { // use size sizes[i] = GeomUtils.getRadiusLen(tris[i]) * orderFactor; } else if (varCode == 1) { // use x sizes[i] = GeomUtils.getCenterVec(tris[i])[0] * orderFactor; } else if (varCode == 2) { // use y sizes[i] = GeomUtils.getCenterVec(tris[i])[1] * orderFactor; } } /// initialise the index array uint256[] memory idxs = new uint256[](tris.length); for (uint256 i = 0; i < tris.length; i++) { idxs[i] = i; } /// run a boilerplate insertion sort over the index array for (uint256 i = 1; i < tris.length; i++) { int256 key = sizes[i]; uint256 j = i - 1; while (j > 0 && key < sizes[j]) { sizes[j + 1] = sizes[j]; idxs[j + 1] = idxs[j]; j--; } sizes[j + 1] = key; idxs[j + 1] = i; } uint256 nToCull = tris.length - nHighlights; assembly { mstore(idxs, sub(mload(idxs), nToCull)) } return idxs; } } /** Hold some functions externally to reduce contract size for mainnet deployment */ library GeomUtils { /// misc constants int256 constant MIN_INT = type(int256).min; int256 constant MAX_INT = type(int256).max; /// constants for doing trig int256 constant PI = 3141592653589793238; // pi as an 18 decimal value (wad) /// parameters that control geometry creation struct GeomSpec { string name; int256 id; int256 forceInitialSize; uint256 maxPrisms; int256 minTriRad; int256 maxTriRad; bool varySize; int256 depthMultiplier; bool isSymmetricX; bool isSymmetricY; int256 probVertOpp; int256 probAdjRec; int256 probVertOppRec; } /// variables uses when creating the initial 2d triangles struct TriVars { uint256 nextTriIdx; int256[3][3][] tris; int256[3][3] tri; int256 zBackRef; int256 zFrontRef; int256[] zFronts; int256[] zBacks; bool recursiveAttempt; } /// variables used when creating 3d prisms struct GeomVars { int256 rotX; int256 rotY; int256 rotZ; int256[3][2] extents; int256[3] center; int256 width; int256 height; int256 extent; int256 scaleNum; uint256[] hltPrismIdx; int256[3][3][] trisBack; int256[3][3][] trisFront; uint256 nPrisms; } /** @dev generate parameters that will control how the geometry is built */ function generateSpec(bytes32 tokenHash) external view returns (GeomSpec memory spec) { // 'randomly' select 1 of possible geometry specifications uint256 specId = getSpecId( tokenHash, [ [int256(0), 1000], [int256(1000), 3000], [int256(3000), 3500], [int256(3500), 4500], [int256(4500), 5000], [int256(5000), 6000], [int256(6000), 8000] ] ); bool isSymmetricX = GeomUtils.randN(tokenHash, "symmX", 0, 2) > 0; bool isSymmetricY = GeomUtils.randN(tokenHash, "symmY", 0, 2) > 0; int256 defaultDepthMultiplier = randN(tokenHash, "depthMult", 80, 120); int256 defaultMinTriRad = 4800; int256 defaultMaxTriRad = defaultMinTriRad * 3; uint256 defaultMaxPrisms = uint256( randN(tokenHash, "maxPrisms", 8, 16) ); if (specId == 0) { /// all vertically opposite spec = GeomSpec({ id: 0, name: "Verticalized", forceInitialSize: (defaultMinTriRad * 5) / 2, maxPrisms: defaultMaxPrisms, minTriRad: defaultMinTriRad, maxTriRad: defaultMaxTriRad, varySize: true, depthMultiplier: defaultDepthMultiplier, probVertOpp: 100, probVertOppRec: 100, probAdjRec: 0, isSymmetricX: isSymmetricX, isSymmetricY: isSymmetricY }); } else if (specId == 1) { /// fully adjacent spec = GeomSpec({ id: 1, name: "Adjoint", forceInitialSize: (defaultMinTriRad * 5) / 2, maxPrisms: defaultMaxPrisms, minTriRad: defaultMinTriRad, maxTriRad: defaultMaxTriRad, varySize: true, depthMultiplier: defaultDepthMultiplier, probVertOpp: 0, probVertOppRec: 0, probAdjRec: 100, isSymmetricX: isSymmetricX, isSymmetricY: isSymmetricY }); } else if (specId == 2) { /// few but big spec = GeomSpec({ id: 2, name: "Cetacean", forceInitialSize: 0, maxPrisms: 8, minTriRad: defaultMinTriRad * 3, maxTriRad: defaultMinTriRad * 4, varySize: true, depthMultiplier: defaultDepthMultiplier, probVertOpp: 50, probVertOppRec: 50, probAdjRec: 50, isSymmetricX: isSymmetricX, isSymmetricY: isSymmetricY }); } else if (specId == 3) { /// lots but small spec = GeomSpec({ id: 3, name: "Swarm", forceInitialSize: 0, maxPrisms: 16, minTriRad: defaultMinTriRad, maxTriRad: defaultMinTriRad * 2, varySize: true, depthMultiplier: defaultDepthMultiplier, probVertOpp: 50, probVertOppRec: 0, probAdjRec: 0, isSymmetricX: isSymmetricX, isSymmetricY: isSymmetricY }); } else if (specId == 4) { /// all same size spec = GeomSpec({ id: 4, name: "Isomorphic", forceInitialSize: 0, maxPrisms: defaultMaxPrisms, minTriRad: defaultMinTriRad, maxTriRad: defaultMaxTriRad, varySize: false, depthMultiplier: defaultDepthMultiplier, probVertOpp: 50, probVertOppRec: 50, probAdjRec: 50, isSymmetricX: isSymmetricX, isSymmetricY: isSymmetricY }); } else if (specId == 5) { /// trains spec = GeomSpec({ id: 5, name: "Extruded", forceInitialSize: 0, maxPrisms: 10, minTriRad: defaultMinTriRad, maxTriRad: defaultMaxTriRad, varySize: true, depthMultiplier: defaultDepthMultiplier, probVertOpp: 50, probVertOppRec: 50, probAdjRec: 50, isSymmetricX: isSymmetricX, isSymmetricY: isSymmetricY }); } else if (specId == 6) { /// flatpack spec = GeomSpec({ id: 6, name: "Uniform", forceInitialSize: 0, maxPrisms: 12, minTriRad: defaultMinTriRad, maxTriRad: defaultMaxTriRad, varySize: true, depthMultiplier: defaultDepthMultiplier, probVertOpp: 50, probVertOppRec: 50, probAdjRec: 50, isSymmetricX: isSymmetricX, isSymmetricY: isSymmetricY }); } else { revert("invalid specId"); } } /** @dev make triangles to the side of a reference triangle */ function makeAdjacentTriangles( bytes32 tokenHash, uint256 attemptNum, uint256 refIdx, TriVars memory triVars, GeomSpec memory geomSpec, int256 overrideSideIdx, int256 overrideScale, int256 depth ) public view returns (TriVars memory) { /// get the side index (0, 1 or 2) int256 sideIdx; if (overrideSideIdx == -1) { sideIdx = randN( tokenHash, string(abi.encodePacked("sideIdx", attemptNum, depth)), 0, 2 ); } else { sideIdx = overrideSideIdx; } /// get the scale /// this value is scaled up by 1e3 (desired range is 0.333 to 0.8) /// the scale will be divided out when used int256 scale; if (geomSpec.varySize) { if (overrideScale == -1) { scale = randN( tokenHash, string(abi.encodePacked("scaleAdj", attemptNum, depth)), 333, 800 ); } else { scale = overrideScale; } } else { scale = 1e3; } /// make a new triangle int256[3][3] memory newTri = makeTriAdjacent( tokenHash, geomSpec, attemptNum, triVars.tris[refIdx], sideIdx, scale, depth ); /// set the zbackref and frontbackref triVars.zBackRef = -1; /// calculate a new z back triVars.zFrontRef = -1; /// calculate a new z ftont // try to add the triangle, and use the reference z height triVars.recursiveAttempt = false; bool wasAdded = attemptToAddTri(newTri, tokenHash, triVars, geomSpec); if (wasAdded) { // run again if ( randN( tokenHash, string( abi.encodePacked("addAdjRecursive", attemptNum, depth) ), 0, 100 ) <= geomSpec.probAdjRec ) { triVars = makeAdjacentTriangles( tokenHash, attemptNum, triVars.nextTriIdx - 1, triVars, geomSpec, sideIdx, 666, /// always make the next one 2/3 scale depth + 1 ); } } return triVars; } /** @dev make triangles vertically opposite a reference triangle */ function makeVerticallyOppositeTriangles( bytes32 tokenHash, uint256 attemptNum, uint256 refIdx, TriVars memory triVars, GeomSpec memory geomSpec, int256 overrideSideIdx, int256 overrideScale, int256 depth ) public view returns (TriVars memory) { /// get the side index (0, 1 or 2) int256 sideIdx; if (overrideSideIdx == -1) { sideIdx = randN( tokenHash, string(abi.encodePacked("vertOppSideIdx", attemptNum, depth)), 0, 2 ); } else { sideIdx = overrideSideIdx; } /// get the scale /// this value is scaled up by 1e3 /// use attemptNum in seedModifier to ensure unique values each attempt int256 scale; if (geomSpec.varySize) { if (overrideScale == -1) { if ( // prettier-ignore randN( tokenHash, string(abi.encodePacked("vertOppScale1", attemptNum, depth)), 0, 100 ) > 33 ) { // prettier-ignore if ( randN( tokenHash, string(abi.encodePacked("vertOppScale2", attemptNum, depth) ), 0, 100 ) > 50 ) { scale = 1000; /// desired = 1 (same scale) } else { scale = 500; /// desired = 0.5 (half scale) } } else { scale = 2000; /// desired = 2 (double scale) } } else { scale = overrideScale; } } else { scale = 1e3; } /// make a new triangle int256[3][3] memory newTri = makeTriVertOpp( triVars.tris[refIdx], geomSpec, sideIdx, scale ); /// set the zbackref and frontbackref triVars.zBackRef = -1; /// calculate a new z back triVars.zFrontRef = triVars.zFronts[refIdx]; // try to add the triangle, and use the reference z height triVars.recursiveAttempt = false; bool wasAdded = attemptToAddTri(newTri, tokenHash, triVars, geomSpec); if (wasAdded) { /// run again if ( randN( tokenHash, string( abi.encodePacked("recursiveVertOpp", attemptNum, depth) ), 0, 100 ) <= geomSpec.probVertOppRec ) { triVars = makeVerticallyOppositeTriangles( tokenHash, attemptNum, refIdx, triVars, geomSpec, sideIdx, 666, /// always make the next one 2/3 scale depth + 1 ); } } return triVars; } /** @dev place a triangle vertically opposite over the given point @param refTri the reference triangle to base the new triangle on */ function makeTriVertOpp( int256[3][3] memory refTri, GeomSpec memory geomSpec, int256 sideIdx, int256 scale ) internal view returns (int256[3][3] memory) { /// calculate the center of the reference triangle /// add and then divide by 1e3 (the factor by which scale is scaled up) int256 centerDist = (getRadiusLen(refTri) * (1e3 + scale)) / 1e3; /// get the new triangle's direction int256 newAngle = sideIdx * 120 + 60 + (isTriPointingUp(refTri) ? int256(60) : int256(0)); int256 spacing = 64; /// calculate the true offset int256[3] memory offset = vector3RotateZ( [int256(0), centerDist + spacing, 0], newAngle ); int256[3] memory centerVec = getCenterVec(refTri); int256[3] memory newCentre = ShackledMath.vector3Add(centerVec, offset); /// return the new triangle (div by 1e3 to account for scale) int256 newRadius = (scale * getRadiusLen(refTri)) / 1e3; newRadius = ShackledMath.min(geomSpec.maxTriRad, newRadius); newAngle -= 210; return makeTri(newCentre, newRadius, newAngle); } /** @dev make a new adjacent triangle */ function makeTriAdjacent( bytes32 tokenHash, GeomSpec memory geomSpec, uint256 attemptNum, int256[3][3] memory refTri, int256 sideIdx, int256 scale, int256 depth ) internal view returns (int256[3][3] memory) { /// calculate the center of the new triangle /// add and then divide by 1e3 (the factor by which scale is scaled up) int256 centerDist = (getPerpLen(refTri) * (1e3 + scale)) / 1e3; /// get the new triangle's direction int256 newAngle = sideIdx * 120 + (isTriPointingUp(refTri) ? int256(60) : int256(0)); /// determine the direction of the offset offset /// get a unique random seed each attempt to ensure variation // prettier-ignore int256 offsetDirection = randN( tokenHash, string(abi.encodePacked("lateralOffset", attemptNum, depth)), 0, 1 ) * 2 - 1; /// put if off to one side of the triangle if it's smaller /// scale is on order of 1e3 int256 lateralOffset = (offsetDirection * (1e3 - scale) * getSideLen(refTri)) / 1e3; /// make a gap between the triangles int256 spacing = 6000; /// calculate the true offset int256[3] memory offset = vector3RotateZ( [lateralOffset, centerDist + spacing, 0], newAngle ); int256[3] memory newCentre = ShackledMath.vector3Add( getCenterVec(refTri), offset ); /// return the new triangle (div by 1e3 to account for scale) int256 newRadius = (scale * getRadiusLen(refTri)) / 1e3; newRadius = ShackledMath.min(geomSpec.maxTriRad, newRadius); newAngle -= 30; return makeTri(newCentre, newRadius, newAngle); } /** @dev create a triangle centered at centre, with length from centre to point of radius */ function makeTri( int256[3] memory centre, int256 radius, int256 angle ) internal view returns (int256[3][3] memory tri) { /// create a vector to rotate around 3 times int256[3] memory offset = [radius, 0, 0]; /// make 3 points of the tri for (uint256 i = 0; i < 3; i++) { int256 armAngle = 120 * int256(i); int256[3] memory offsetVec = vector3RotateZ( offset, armAngle + angle ); tri[i] = ShackledMath.vector3Add(centre, offsetVec); } } /** @dev rotate a vector around x */ function vector3RotateX(int256[3] memory v, int256 deg) internal view returns (int256[3] memory) { /// get the cos and sin of the angle (int256 cos, int256 sin) = trigHelper(deg); /// calculate new y and z (scaling down to account for trig scaling) int256 y = ((v[1] * cos) - (v[2] * sin)) / 1e18; int256 z = ((v[1] * sin) + (v[2] * cos)) / 1e18; return [v[0], y, z]; } /** @dev rotate a vector around y */ function vector3RotateY(int256[3] memory v, int256 deg) internal view returns (int256[3] memory) { /// get the cos and sin of the angle (int256 cos, int256 sin) = trigHelper(deg); /// calculate new x and z (scaling down to account for trig scaling) int256 x = ((v[0] * cos) - (v[2] * sin)) / 1e18; int256 z = ((v[0] * sin) + (v[2] * cos)) / 1e18; return [x, v[1], z]; } /** @dev rotate a vector around z */ function vector3RotateZ(int256[3] memory v, int256 deg) internal view returns (int256[3] memory) { /// get the cos and sin of the angle (int256 cos, int256 sin) = trigHelper(deg); /// calculate new x and y (scaling down to account for trig scaling) int256 x = ((v[0] * cos) - (v[1] * sin)) / 1e18; int256 y = ((v[0] * sin) + (v[1] * cos)) / 1e18; return [x, y, v[2]]; } /** @dev calculate sin and cos of an angle */ function trigHelper(int256 deg) internal view returns (int256 cos, int256 sin) { /// deal with negative degrees here, since Trigonometry.sol can't int256 n360 = (ShackledMath.abs(deg) / 360) + 1; deg = (deg + (360 * n360)) % 360; uint256 rads = uint256((deg * PI) / 180); /// calculate radians (in 1e18 space) cos = Trigonometry.cos(rads); sin = Trigonometry.sin(rads); } /** @dev Get the 3d vector at the center of a triangle */ function getCenterVec(int256[3][3] memory tri) internal view returns (int256[3] memory) { return ShackledMath.vector3DivScalar( ShackledMath.vector3Add( ShackledMath.vector3Add(tri[0], tri[1]), tri[2] ), 3 ); } /** @dev Get the length from the center of a triangle to point*/ function getRadiusLen(int256[3][3] memory tri) internal view returns (int256) { return ShackledMath.vector3Len( ShackledMath.vector3Sub(getCenterVec(tri), tri[0]) ); } /** @dev Get the length from any point on triangle to other point (equilateral)*/ function getSideLen(int256[3][3] memory tri) internal view returns (int256) { // len * 0.886 return (getRadiusLen(tri) * 8660) / 10000; } /** @dev Get the shortes length from center of triangle to side */ function getPerpLen(int256[3][3] memory tri) internal view returns (int256) { return getRadiusLen(tri) / 2; } /** @dev Determine if a triangle is pointing up*/ function isTriPointingUp(int256[3][3] memory tri) internal view returns (bool) { int256 centerY = getCenterVec(tri)[1]; /// count how many verts are above this y value int256 nAbove = 0; for (uint256 i = 0; i < 3; i++) { if (tri[i][1] > centerY) { nAbove++; } } return nAbove == 1; } /** @dev check if two triangles are close */ function areTrisClose(int256[3][3] memory tri1, int256[3][3] memory tri2) internal view returns (bool) { int256 lenBetweenCenters = ShackledMath.vector3Len( ShackledMath.vector3Sub(getCenterVec(tri1), getCenterVec(tri2)) ); return lenBetweenCenters < (getPerpLen(tri1) + getPerpLen(tri2)); } /** @dev check if two triangles have overlapping points*/ function areTrisPointsOverlapping( int256[3][3] memory tri1, int256[3][3] memory tri2 ) internal view returns (bool) { /// check triangle a against b if ( isPointInTri(tri1, tri2[0]) || isPointInTri(tri1, tri2[1]) || isPointInTri(tri1, tri2[2]) ) { return true; } /// check triangle b against a if ( isPointInTri(tri2, tri1[0]) || isPointInTri(tri2, tri1[1]) || isPointInTri(tri2, tri1[2]) ) { return true; } /// otherwise they mustn't be overlapping return false; } /** @dev calculate if a point is in a tri*/ function isPointInTri(int256[3][3] memory tri, int256[3] memory p) internal view returns (bool) { int256[3] memory p1 = tri[0]; int256[3] memory p2 = tri[1]; int256[3] memory p3 = tri[2]; int256 alphaNum = (p2[1] - p3[1]) * (p[0] - p3[0]) + (p3[0] - p2[0]) * (p[1] - p3[1]); int256 alphaDenom = (p2[1] - p3[1]) * (p1[0] - p3[0]) + (p3[0] - p2[0]) * (p1[1] - p3[1]); int256 betaNum = (p3[1] - p1[1]) * (p[0] - p3[0]) + (p1[0] - p3[0]) * (p[1] - p3[1]); int256 betaDenom = (p2[1] - p3[1]) * (p1[0] - p3[0]) + (p3[0] - p2[0]) * (p1[1] - p3[1]); if (alphaDenom == 0 || betaDenom == 0) { return false; } else { int256 alpha = (alphaNum * 1e6) / alphaDenom; int256 beta = (betaNum * 1e6) / betaDenom; int256 gamma = 1e6 - alpha - beta; return alpha > 0 && beta > 0 && gamma > 0; } } /** @dev check all points of the tri to see if it overlaps with any other tris */ function isTriOverlappingWithTris( int256[3][3] memory tri, int256[3][3][] memory tris, uint256 nextTriIdx ) internal view returns (bool) { /// check against all other tris added thus fat for (uint256 i = 0; i < nextTriIdx; i++) { if ( areTrisClose(tri, tris[i]) || areTrisPointsOverlapping(tri, tris[i]) ) { return true; } } return false; } function isPointCloseToLine( int256[3] memory p, int256[3] memory l1, int256[3] memory l2 ) internal view returns (bool) { int256 x0 = p[0]; int256 y0 = p[1]; int256 x1 = l1[0]; int256 y1 = l1[1]; int256 x2 = l2[0]; int256 y2 = l2[1]; int256 distanceNum = ShackledMath.abs( (x2 - x1) * (y1 - y0) - (x1 - x0) * (y2 - y1) ); int256 distanceDenom = ShackledMath.hypot((x2 - x1), (y2 - y1)); int256 distance = distanceNum / distanceDenom; if (distance < 8) { return true; } } /** compare a triangles points against the lines of other tris */ function isTrisPointsCloseToLines( int256[3][3] memory tri, int256[3][3][] memory tris, uint256 nextTriIdx ) internal view returns (bool) { for (uint256 i = 0; i < nextTriIdx; i++) { for (uint256 p = 0; p < 3; p++) { if (isPointCloseToLine(tri[p], tris[i][0], tris[i][1])) { return true; } if (isPointCloseToLine(tri[p], tris[i][1], tris[i][2])) { return true; } if (isPointCloseToLine(tri[p], tris[i][2], tris[i][0])) { return true; } } } } /** @dev check if tri to add meets certain criteria */ function isTriLegal( int256[3][3] memory tri, int256[3][3][] memory tris, uint256 nextTriIdx, int256 minTriRad ) internal view returns (bool) { // check radius first as point checks will fail // if the radius is too small if (getRadiusLen(tri) < minTriRad) { return false; } return (!isTriOverlappingWithTris(tri, tris, nextTriIdx) && !isTrisPointsCloseToLines(tri, tris, nextTriIdx)); } /** @dev helper function to add triangles */ function attemptToAddTri( int256[3][3] memory tri, bytes32 tokenHash, TriVars memory triVars, GeomSpec memory geomSpec ) internal view returns (bool added) { bool isLegal = isTriLegal( tri, triVars.tris, triVars.nextTriIdx, geomSpec.minTriRad ); if (isLegal && triVars.nextTriIdx < geomSpec.maxPrisms) { // add the triangle triVars.tris[triVars.nextTriIdx] = tri; added = true; // add the new zs if (triVars.zBackRef == -1) { /// z back ref is not provided, calculate it triVars.zBacks[triVars.nextTriIdx] = calculateZ( tri, tokenHash, triVars.nextTriIdx, geomSpec, false ); } else { /// use the provided z back (from the ref) triVars.zBacks[triVars.nextTriIdx] = triVars.zBackRef; } if (triVars.zFrontRef == -1) { /// z front ref is not provided, calculate it triVars.zFronts[triVars.nextTriIdx] = calculateZ( tri, tokenHash, triVars.nextTriIdx, geomSpec, true ); } else { /// use the provided z front (from the ref) triVars.zFronts[triVars.nextTriIdx] = triVars.zFrontRef; } // increment the tris counter triVars.nextTriIdx += 1; // if we're using any type of symmetry then attempt to add a symmetric triangle // only do this recursively once if ( (geomSpec.isSymmetricX || geomSpec.isSymmetricY) && (!triVars.recursiveAttempt) ) { int256[3][3] memory symTri = copyTri(tri); if (geomSpec.isSymmetricX) { symTri[0][0] = -symTri[0][0]; symTri[1][0] = -symTri[1][0]; symTri[2][0] = -symTri[2][0]; // symCenter[0] = -symCenter[0]; } if (geomSpec.isSymmetricY) { symTri[0][1] = -symTri[0][1]; symTri[1][1] = -symTri[1][1]; symTri[2][1] = -symTri[2][1]; // symCenter[1] = -symCenter[1]; } if ( (geomSpec.isSymmetricX || geomSpec.isSymmetricY) && !(geomSpec.isSymmetricX && geomSpec.isSymmetricY) ) { symTri = [symTri[2], symTri[1], symTri[0]]; } triVars.recursiveAttempt = true; triVars.zBackRef = triVars.zBacks[triVars.nextTriIdx - 1]; triVars.zFrontRef = triVars.zFronts[triVars.nextTriIdx - 1]; attemptToAddTri(symTri, tokenHash, triVars, geomSpec); } } } /** @dev rotate a triangle by x, y, or z @param axis 0 = x, 1 = y, 2 = z */ function triRotHelp( int256 axis, int256[3][3] memory tri, int256 rot ) internal view returns (int256[3][3] memory) { if (axis == 0) { return [ vector3RotateX(tri[0], rot), vector3RotateX(tri[1], rot), vector3RotateX(tri[2], rot) ]; } else if (axis == 1) { return [ vector3RotateY(tri[0], rot), vector3RotateY(tri[1], rot), vector3RotateY(tri[2], rot) ]; } else if (axis == 2) { return [ vector3RotateZ(tri[0], rot), vector3RotateZ(tri[1], rot), vector3RotateZ(tri[2], rot) ]; } } /** @dev a helper to run rotation functions on back/front triangles */ function triBfHelp( int256 axis, int256[3][3][] memory trisBack, int256[3][3][] memory trisFront, int256 rot ) internal view returns (int256[3][3][] memory, int256[3][3][] memory) { int256[3][3][] memory trisBackNew = new int256[3][3][](trisBack.length); int256[3][3][] memory trisFrontNew = new int256[3][3][]( trisFront.length ); for (uint256 i = 0; i < trisBack.length; i++) { trisBackNew[i] = triRotHelp(axis, trisBack[i], rot); trisFrontNew[i] = triRotHelp(axis, trisFront[i], rot); } return (trisBackNew, trisFrontNew); } /** @dev get the maximum extent of the geometry (vertical or horizontal) */ function getExtents(int256[3][3][] memory tris) internal view returns (int256[3][2] memory) { int256 minX = MAX_INT; int256 maxX = MIN_INT; int256 minY = MAX_INT; int256 maxY = MIN_INT; int256 minZ = MAX_INT; int256 maxZ = MIN_INT; for (uint256 i = 0; i < tris.length; i++) { for (uint256 j = 0; j < tris[i].length; j++) { minX = ShackledMath.min(minX, tris[i][j][0]); maxX = ShackledMath.max(maxX, tris[i][j][0]); minY = ShackledMath.min(minY, tris[i][j][1]); maxY = ShackledMath.max(maxY, tris[i][j][1]); minZ = ShackledMath.min(minZ, tris[i][j][2]); maxZ = ShackledMath.max(maxZ, tris[i][j][2]); } } return [[minX, minY, minZ], [maxX, maxY, maxZ]]; } /** @dev go through each triangle and apply a 'height' */ function calculateZ( int256[3][3] memory tri, bytes32 tokenHash, uint256 nextTriIdx, GeomSpec memory geomSpec, bool front ) internal view returns (int256) { int256 h; string memory seedMod = string(abi.encodePacked("calcZ", nextTriIdx)); if (front) { if (geomSpec.id == 6) { h = 1; } else { if (randN(tokenHash, seedMod, 0, 10) > 9) { if (randN(tokenHash, seedMod, 0, 10) > 3) { h = 10; } else { h = 22; } } else { if (randN(tokenHash, seedMod, 0, 10) > 5) { h = 8; } else { h = 1; } } } } else { if (geomSpec.id == 6) { h = -1; } else { if (geomSpec.id == 5) { h = -randN(tokenHash, seedMod, 2, 20); } else { h = -2; } } } if (geomSpec.id == 5) { h += 10; } return h * geomSpec.depthMultiplier; } /** @dev roll a specId given a list of weightings */ function getSpecId(bytes32 tokenHash, int256[2][7] memory weightings) internal view returns (uint256) { int256 n = GeomUtils.randN( tokenHash, "specId", weightings[0][0], weightings[weightings.length - 1][1] ); for (uint256 i = 0; i < weightings.length; i++) { if (weightings[i][0] <= n && n <= weightings[i][1]) { return i; } } } /** @dev get a random number between two numbers with a uniform probability distribution @param randomSeed a hash that we can use to 'randomly' get a number @param seedModifier some string to make the result unique for this tokenHash @param min the minimum number (inclusive) @param max the maximum number (inclusive) examples: to get binary output (0 or 1), set min as 0 and max as 1 */ function randN( bytes32 randomSeed, string memory seedModifier, int256 min, int256 max ) internal view returns (int256) { /// use max() to ensure modulo != 0 return int256( uint256(keccak256(abi.encodePacked(randomSeed, seedModifier))) % uint256(ShackledMath.max(1, (max + 1 - min))) ) + min; } /** @dev clip an array of tris to a certain length (to trim empty tail slots) */ function clipTrisToLength(int256[3][3][] memory arr, uint256 desiredLen) internal view returns (int256[3][3][] memory) { uint256 n = arr.length - desiredLen; assembly { mstore(arr, sub(mload(arr), n)) } return arr; } /** @dev clip an array of Z values to a certain length (to trim empty tail slots) */ function clipZsToLength(int256[] memory arr, uint256 desiredLen) internal view returns (int256[] memory) { uint256 n = arr.length - desiredLen; assembly { mstore(arr, sub(mload(arr), n)) } return arr; } /** @dev make a copy of a triangle */ function copyTri(int256[3][3] memory tri) internal view returns (int256[3][3] memory) { return [ [tri[0][0], tri[0][1], tri[0][2]], [tri[1][0], tri[1][1], tri[1][2]], [tri[2][0], tri[2][1], tri[2][2]] ]; } /** @dev make a copy of an array of triangles */ function copyTris(int256[3][3][] memory tris) internal view returns (int256[3][3][] memory) { int256[3][3][] memory newTris = new int256[3][3][](tris.length); for (uint256 i = 0; i < tris.length; i++) { newTris[i] = copyTri(tris[i]); } return newTris; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/ERC721Enumerable.sol) pragma solidity ^0.8.0; import "../ERC721.sol"; import "./IERC721Enumerable.sol"; /** * @dev This implements an optional extension of {ERC721} defined in the EIP that adds * enumerability of all the token ids in the contract as well as all token ids owned by each * account. */ abstract contract ERC721Enumerable is ERC721, IERC721Enumerable { // Mapping from owner to list of owned token IDs mapping(address => mapping(uint256 => uint256)) private _ownedTokens; // Mapping from token ID to index of the owner tokens list mapping(uint256 => uint256) private _ownedTokensIndex; // Array with all token ids, used for enumeration uint256[] private _allTokens; // Mapping from token id to position in the allTokens array mapping(uint256 => uint256) private _allTokensIndex; /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(IERC165, ERC721) returns (bool) { return interfaceId == type(IERC721Enumerable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721Enumerable-tokenOfOwnerByIndex}. */ function tokenOfOwnerByIndex(address owner, uint256 index) public view virtual override returns (uint256) { require(index < ERC721.balanceOf(owner), "ERC721Enumerable: owner index out of bounds"); return _ownedTokens[owner][index]; } /** * @dev See {IERC721Enumerable-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _allTokens.length; } /** * @dev See {IERC721Enumerable-tokenByIndex}. */ function tokenByIndex(uint256 index) public view virtual override returns (uint256) { require(index < ERC721Enumerable.totalSupply(), "ERC721Enumerable: global index out of bounds"); return _allTokens[index]; } /** * @dev Hook that is called before any token transfer. This includes minting * and burning. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, ``from``'s `tokenId` will be burned. * - `from` cannot be the zero address. * - `to` cannot be the zero address. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 tokenId ) internal virtual override { super._beforeTokenTransfer(from, to, tokenId); if (from == address(0)) { _addTokenToAllTokensEnumeration(tokenId); } else if (from != to) { _removeTokenFromOwnerEnumeration(from, tokenId); } if (to == address(0)) { _removeTokenFromAllTokensEnumeration(tokenId); } else if (to != from) { _addTokenToOwnerEnumeration(to, tokenId); } } /** * @dev Private function to add a token to this extension's ownership-tracking data structures. * @param to address representing the new owner of the given token ID * @param tokenId uint256 ID of the token to be added to the tokens list of the given address */ function _addTokenToOwnerEnumeration(address to, uint256 tokenId) private { uint256 length = ERC721.balanceOf(to); _ownedTokens[to][length] = tokenId; _ownedTokensIndex[tokenId] = length; } /** * @dev Private function to add a token to this extension's token tracking data structures. * @param tokenId uint256 ID of the token to be added to the tokens list */ function _addTokenToAllTokensEnumeration(uint256 tokenId) private { _allTokensIndex[tokenId] = _allTokens.length; _allTokens.push(tokenId); } /** * @dev Private function to remove a token from this extension's ownership-tracking data structures. Note that * while the token is not assigned a new owner, the `_ownedTokensIndex` mapping is _not_ updated: this allows for * gas optimizations e.g. when performing a transfer operation (avoiding double writes). * This has O(1) time complexity, but alters the order of the _ownedTokens array. * @param from address representing the previous owner of the given token ID * @param tokenId uint256 ID of the token to be removed from the tokens list of the given address */ function _removeTokenFromOwnerEnumeration(address from, uint256 tokenId) private { // To prevent a gap in from's tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = ERC721.balanceOf(from) - 1; uint256 tokenIndex = _ownedTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary if (tokenIndex != lastTokenIndex) { uint256 lastTokenId = _ownedTokens[from][lastTokenIndex]; _ownedTokens[from][tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _ownedTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index } // This also deletes the contents at the last position of the array delete _ownedTokensIndex[tokenId]; delete _ownedTokens[from][lastTokenIndex]; } /** * @dev Private function to remove a token from this extension's token tracking data structures. * This has O(1) time complexity, but alters the order of the _allTokens array. * @param tokenId uint256 ID of the token to be removed from the tokens list */ function _removeTokenFromAllTokensEnumeration(uint256 tokenId) private { // To prevent a gap in the tokens array, we store the last token in the index of the token to delete, and // then delete the last slot (swap and pop). uint256 lastTokenIndex = _allTokens.length - 1; uint256 tokenIndex = _allTokensIndex[tokenId]; // When the token to delete is the last token, the swap operation is unnecessary. However, since this occurs so // rarely (when the last minted token is burnt) that we still do the swap here to avoid the gas cost of adding // an 'if' statement (like in _removeTokenFromOwnerEnumeration) uint256 lastTokenId = _allTokens[lastTokenIndex]; _allTokens[tokenIndex] = lastTokenId; // Move the last token to the slot of the to-delete token _allTokensIndex[lastTokenId] = tokenIndex; // Update the moved token's index // This also deletes the contents at the last position of the array delete _allTokensIndex[tokenId]; _allTokens.pop(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.0; import "../Strings.sol"; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS, InvalidSignatureV } function _throwError(RecoverError error) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert("ECDSA: invalid signature"); } else if (error == RecoverError.InvalidSignatureLength) { revert("ECDSA: invalid signature length"); } else if (error == RecoverError.InvalidSignatureS) { revert("ECDSA: invalid signature 's' value"); } else if (error == RecoverError.InvalidSignatureV) { revert("ECDSA: invalid signature 'v' value"); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature` or error string. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] * * _Available since v4.3._ */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) { // Check the signature length // - case 65: r,s,v signature (standard) // - case 64: r,vs signature (cf https://eips.ethereum.org/EIPS/eip-2098) _Available since v4.1._ if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else if (signature.length == 64) { bytes32 r; bytes32 vs; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly { r := mload(add(signature, 0x20)) vs := mload(add(signature, 0x40)) } return tryRecover(hash, r, vs); } else { return (address(0), RecoverError.InvalidSignatureLength); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, signature); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] * * _Available since v4.3._ */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address, RecoverError) { bytes32 s; uint8 v; assembly { s := and(vs, 0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) v := add(shr(255, vs), 27) } return tryRecover(hash, v, r, s); } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. * * _Available since v4.2._ */ function recover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, r, vs); _throwError(error); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. * * _Available since v4.3._ */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS); } if (v != 27 && v != 28) { return (address(0), RecoverError.InvalidSignatureV); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature); } return (signer, RecoverError.NoError); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address) { (address recovered, RecoverError error) = tryRecover(hash, v, r, s); _throwError(error); return recovered; } /** * @dev Returns an Ethereum Signed Message, created from a `hash`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) { // 32 is the length in bytes of hash, // enforced by the type signature above return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)); } /** * @dev Returns an Ethereum Signed Message, created from `s`. This * produces hash corresponding to the one signed with the * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] * JSON-RPC method as part of EIP-191. * * See {recover}. */ function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s)); } /** * @dev Returns an Ethereum Signed Typed Data, created from a * `domainSeparator` and a `structHash`. This produces hash corresponding * to the one signed with the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] * JSON-RPC method as part of EIP-712. * * See {recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) { return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash)); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import "./ShackledUtils.sol"; import "./ShackledMath.sol"; library ShackledCoords { /** @dev scale and translate the verts this can be effectively disabled with a scale of 1 and translate of [0, 0, 0] */ function convertToWorldSpaceWithModelTransform( int256[3][3][] memory tris, int256 scale, int256[3] memory position ) external view returns (int256[3][] memory) { int256[3][] memory verts = ShackledUtils.flattenTris(tris); // Scale model matrices are easy, just multiply through by the scale value int256[3][] memory scaledVerts = new int256[3][](verts.length); for (uint256 i = 0; i < verts.length; i++) { scaledVerts[i][0] = verts[i][0] * scale + position[0]; scaledVerts[i][1] = verts[i][1] * scale + position[1]; scaledVerts[i][2] = verts[i][2] * scale + position[2]; } return scaledVerts; } /** @dev run backfaceCulling to save future operations on faces that aren't seen by the camera*/ function backfaceCulling( int256[3][3][] memory trisWorldSpace, int256[3][3][] memory trisCols ) external view returns ( int256[3][3][] memory culledTrisWorldSpace, int256[3][3][] memory culledTrisCols ) { culledTrisWorldSpace = new int256[3][3][](trisWorldSpace.length); culledTrisCols = new int256[3][3][](trisCols.length); uint256 nextIx; for (uint256 i = 0; i < trisWorldSpace.length; i++) { int256[3] memory v1 = trisWorldSpace[i][0]; int256[3] memory v2 = trisWorldSpace[i][1]; int256[3] memory v3 = trisWorldSpace[i][2]; int256[3] memory norm = ShackledMath.crossProduct( ShackledMath.vector3Sub(v1, v2), ShackledMath.vector3Sub(v2, v3) ); /// since shackled has a static positioned camera at the origin, /// the points are already in view space, relaxing the backfaceCullingCond int256 backfaceCullingCond = ShackledMath.vector3Dot(v1, norm); if (backfaceCullingCond < 0) { culledTrisWorldSpace[nextIx] = trisWorldSpace[i]; culledTrisCols[nextIx] = trisCols[i]; nextIx++; } } /// remove any empty slots uint256 nToCull = culledTrisWorldSpace.length - nextIx; /// cull uneeded tris assembly { mstore( culledTrisWorldSpace, sub(mload(culledTrisWorldSpace), nToCull) ) } /// cull uneeded cols assembly { mstore(culledTrisCols, sub(mload(culledTrisCols), nToCull)) } } /**@dev calculate verts in camera space */ function convertToCameraSpaceViaVertexShader( int256[3][] memory vertsWorldSpace, int256 canvasDim, bool perspCamera ) external view returns (int256[3][] memory) { // get the camera matrix as a numerator and denominator int256[4][4][2] memory cameraMatrix; if (perspCamera) { cameraMatrix = getCameraMatrixPersp(); } else { cameraMatrix = getCameraMatrixOrth(canvasDim); } int256[4][4] memory nM = cameraMatrix[0]; // camera matrix numerator int256[4][4] memory dM = cameraMatrix[1]; // camera matrix denominator int256[3][] memory verticesCameraSpace = new int256[3][]( vertsWorldSpace.length ); for (uint256 i = 0; i < vertsWorldSpace.length; i++) { // Convert from 3D to 4D homogenous coordinate system int256[3] memory vert = vertsWorldSpace[i]; // Make a copy of vert ("homoVertex") int256[] memory hv = new int256[](vert.length + 1); for (uint256 j = 0; j < vert.length; j++) { hv[j] = vert[j]; } // Insert 1 at final position in copy of vert hv[hv.length - 1] = 1; int256 x = ((hv[0] * nM[0][0]) / dM[0][0]) + ((hv[1] * nM[0][1]) / dM[0][1]) + ((hv[2] * nM[0][2]) / dM[0][2]) + (nM[0][3] / dM[0][3]); int256 y = ((hv[0] * nM[1][0]) / dM[1][0]) + ((hv[1] * nM[1][1]) / dM[1][1]) + ((hv[2] * nM[1][2]) / dM[1][2]) + (nM[1][3] / dM[1][0]); int256 z = ((hv[0] * nM[2][0]) / dM[2][0]) + ((hv[1] * nM[2][1]) / dM[2][1]) + ((hv[2] * nM[2][2]) / dM[2][2]) + (nM[2][3] / dM[2][3]); int256 w = ((hv[0] * nM[3][0]) / dM[3][0]) + ((hv[1] * nM[3][1]) / dM[3][1]) + ((hv[2] * nM[3][2]) / dM[3][2]) + (nM[3][3] / dM[3][3]); if (w != 1) { x = (x * 1e3) / w; y = (y * 1e3) / w; z = (z * 1e3) / w; } // Turn it back into a 3-vector // Add it to the ordered list verticesCameraSpace[i] = [x, y, z]; } return verticesCameraSpace; } /** @dev generate an orthographic camera matrix */ function getCameraMatrixOrth(int256 canvasDim) internal pure returns (int256[4][4][2] memory) { int256 canvasHalf = canvasDim / 2; // Left, right, top, bottom int256 r = ShackledMath.abs(canvasHalf); int256 l = -canvasHalf; int256 t = ShackledMath.abs(canvasHalf); int256 b = -canvasHalf; // Z settings (near and far) /// multiplied by 1e3 int256 n = 1; int256 f = 1024; // Get the orthographic transform matrix // as a numerator and denominator int256[4][4] memory cameraMatrixNum = [ [int256(2), 0, 0, -(r + l)], [int256(0), 2, 0, -(t + b)], [int256(0), 0, -2, -(f + n)], [int256(0), 0, 0, 1] ]; int256[4][4] memory cameraMatrixDen = [ [int256(r - l), 1, 1, (r - l)], [int256(1), (t - b), 1, (t - b)], [int256(1), 1, (f - n), (f - n)], [int256(1), 1, 1, 1] ]; int256[4][4][2] memory cameraMatrix = [ cameraMatrixNum, cameraMatrixDen ]; return cameraMatrix; } /** @dev generate a perspective camera matrix */ function getCameraMatrixPersp() internal pure returns (int256[4][4][2] memory) { // Z settings (near and far) /// multiplied by 1e3 int256 n = 500; int256 f = 501; // Get the perspective transform matrix // as a numerator and denominator // parameter = 1 / tan(fov in degrees / 2) // 0.1763 = 1 / tan(160 / 2) // 1.428 = 1 / tan(70 / 2) // 1.732 = 1 / tan(60 / 2) // 2.145 = 1 / tan(50 / 2) int256[4][4] memory cameraMatrixNum = [ [int256(2145), 0, 0, 0], [int256(0), 2145, 0, 0], [int256(0), 0, f, -f * n], [int256(0), 0, 1, 0] ]; int256[4][4] memory cameraMatrixDen = [ [int256(1000), 1, 1, 1], [int256(1), 1000, 1, 1], [int256(1), 1, f - n, f - n], [int256(1), 1, 1, 1] ]; int256[4][4][2] memory cameraMatrix = [ cameraMatrixNum, cameraMatrixDen ]; return cameraMatrix; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import "./ShackledUtils.sol"; import "./ShackledMath.sol"; import "./ShackledStructs.sol"; library ShackledRasteriser { /// define some constant lighting parameters int256 constant fidelity = int256(100); /// an extra paramater to improve numeric resolution int256 constant lightAmbiPower = int256(1); // Base light colour // was 0.5 int256 constant lightDiffPower = int256(3e9); // Diffused light on surface relative strength int256 constant lightSpecPower = int256(1e7); // Specular reflection on surface relative strength uint256 constant inverseShininess = 10; // 'sharpness' of specular light on surface /// define a scale factor to use in lerp to avoid rounding errors int256 constant lerpScaleFactor = 1e3; /// storing variables used in the fragment lighting struct LightingVars { int256[3] fragCol; int256[3] fragNorm; int256[3] fragPos; int256[3] V; int256 vMag; int256[3] N; int256 nMag; int256[3] L; int256 lMag; int256 falloff; int256 lnDot; int256 lambertian; } /// store variables used in Bresenham's line algorithm struct BresenhamsVars { int256 x; int256 y; int256 dx; int256 dy; int256 sx; int256 sy; int256 err; int256 e2; } /// store variables used when running the scanline algorithm struct ScanlineVars { int256 left; int256 right; int256[12] leftFrag; int256[12] rightFrag; int256 dx; int256 ir; int256 newFragRow; int256 newFragCol; } /** @dev initialise the fragments fragments are defined as: [ canvas_x, canvas_y, depth, col_x, col_y, col_z, normal_x, normal_y, normal_z, world_x, world_y, world_z ] */ function initialiseFragments( int256[3][3][] memory trisCameraSpace, int256[3][3][] memory trisWorldSpace, int256[3][3][] memory trisCols, int256 canvasDim ) external view returns (int256[12][3][] memory) { /// make an array containing the fragments of each triangle (groups of 3 frags) int256[12][3][] memory trisFragments = new int256[12][3][]( trisCameraSpace.length ); // First convert from camera space to screen space within each triangle for (uint256 t = 0; t < trisCameraSpace.length; t++) { int256[3][3] memory tri = trisCameraSpace[t]; /// initialise an array for three fragments, each of len 9 int256[12][3] memory triFragments; // First calculate the fragments that belong to defined vertices for (uint256 v = 0; v < 3; v++) { int256[12] memory fragment; // first convert to screen space // mapping from -1e3 -> 1e3 to account for the original geom being on order of 1e3 fragment[0] = ShackledMath.mapRangeToRange( tri[v][0], -1e3, 1e3, 0, canvasDim ); fragment[1] = ShackledMath.mapRangeToRange( tri[v][1], -1e3, 1e3, 0, canvasDim ); fragment[2] = tri[v][2]; // Now calculate the normal using the cross product of the edge vectors. This needs to be // done in world space coordinates int256[3] memory thisV = trisWorldSpace[t][(v + 0) % 3]; int256[3] memory nextV = trisWorldSpace[t][(v + 1) % 3]; int256[3] memory prevV = trisWorldSpace[t][(v + 2) % 3]; int256[3] memory norm = ShackledMath.crossProduct( ShackledMath.vector3Sub(prevV, thisV), ShackledMath.vector3Sub(thisV, nextV) ); // Now attach the colour (in 0 -> 255 space) fragment[3] = (trisCols[t][v][0]); fragment[4] = (trisCols[t][v][1]); fragment[5] = (trisCols[t][v][2]); // And the normal (inverted) fragment[6] = -norm[0]; fragment[7] = -norm[1]; fragment[8] = -norm[2]; // And the world position of this vertex to the frag fragment[9] = thisV[0]; fragment[10] = thisV[1]; fragment[11] = thisV[2]; // These are just the fragments attached to // the given vertices triFragments[v] = fragment; } trisFragments[t] = triFragments; } return trisFragments; } /** @dev rasterize fragments onto a canvas */ function rasterise( int256[12][3][] memory trisFragments, int256 canvasDim, bool wireframe ) external view returns (int256[12][] memory) { /// determine the upper limits of the inner Bresenham's result uint256 canvasHypot = uint256(ShackledMath.hypot(canvasDim, canvasDim)); /// initialise a new array /// for each trisFragments we will get 3 results from bresenhams /// maximum of 1 per pixel (canvasDim**2) int256[12][] memory fragments = new int256[12][]( 3 * uint256(canvasDim)**2 ); uint256 nextFragmentsIx = 0; for (uint256 t = 0; t < trisFragments.length; t++) { // prepare the variables required int256[12] memory fa; int256[12] memory fb; uint256 nextBresTriFragmentIx = 0; /// create an array to hold the bresenham results /// this may cause an out of bounds error if there are a very large number of fragments /// (e.g. many that are 'off screen') int256[12][] memory bresTriFragments = new int256[12][]( canvasHypot * 10 ); // for each pair of fragments, run bresenhams and extend bresTriFragments with the output // this replaces the three push(...modified_bresenhams_algorhtm) statements in JS for (uint256 i = 0; i < 3; i++) { if (i == 0) { fa = trisFragments[t][0]; fb = trisFragments[t][1]; } else if (i == 1) { fa = trisFragments[t][1]; fb = trisFragments[t][2]; } else { fa = trisFragments[t][2]; fb = trisFragments[t][0]; } // run the bresenhams algorithm ( bresTriFragments, nextBresTriFragmentIx ) = runBresenhamsAlgorithm( fa, fb, canvasDim, bresTriFragments, nextBresTriFragmentIx ); } bresTriFragments = ShackledUtils.clipArray12ToLength( bresTriFragments, nextBresTriFragmentIx ); if (wireframe) { /// only store the edges for (uint256 j = 0; j < bresTriFragments.length; j++) { fragments[nextFragmentsIx] = bresTriFragments[j]; nextFragmentsIx++; } } else { /// fill the triangle (fragments, nextFragmentsIx) = runScanline( bresTriFragments, fragments, nextFragmentsIx, canvasDim ); } } fragments = ShackledUtils.clipArray12ToLength( fragments, nextFragmentsIx ); return fragments; } /** @dev run Bresenham's line algorithm on a pair of fragments */ function runBresenhamsAlgorithm( int256[12] memory f1, int256[12] memory f2, int256 canvasDim, int256[12][] memory bresTriFragments, uint256 nextBresTriFragmentIx ) internal view returns (int256[12][] memory, uint256) { /// initiate a new set of vars BresenhamsVars memory vars; int256[12] memory fa; int256[12] memory fb; /// determine which fragment has a greater magnitude /// and set it as the destination (always order a given pair of edges the same) if ( (f1[0]**2 + f1[1]**2 + f1[2]**2) < (f2[0]**2 + f2[1]**2 + f2[2]**2) ) { fa = f1; fb = f2; } else { fa = f2; fb = f1; } vars.x = fa[0]; vars.y = fa[1]; vars.dx = ShackledMath.abs(fb[0] - fa[0]); vars.dy = -ShackledMath.abs(fb[1] - fa[1]); int256 mag = ShackledMath.hypot(vars.dx, -vars.dy); if (fa[0] < fb[0]) { vars.sx = 1; } else { vars.sx = -1; } if (fa[1] < fb[1]) { vars.sy = 1; } else { vars.sy = -1; } vars.err = vars.dx + vars.dy; vars.e2 = 0; // get the bresenhams output for this fragment pair (fa & fb) if (mag == 0) { bresTriFragments[nextBresTriFragmentIx] = fa; bresTriFragments[nextBresTriFragmentIx + 1] = fb; nextBresTriFragmentIx += 2; } else { // when mag is not 0, // the length of the result will be max of upperLimitInner // but will be clipped to remove any empty slots (bresTriFragments, nextBresTriFragmentIx) = bresenhamsInner( vars, mag, fa, fb, canvasDim, bresTriFragments, nextBresTriFragmentIx ); } return (bresTriFragments, nextBresTriFragmentIx); } /** @dev run the inner loop of Bresenham's line algorithm on a pair of fragments * (preventing stack too deep) */ function bresenhamsInner( BresenhamsVars memory vars, int256 mag, int256[12] memory fa, int256[12] memory fb, int256 canvasDim, int256[12][] memory bresTriFragments, uint256 nextBresTriFragmentIx ) internal view returns (int256[12][] memory, uint256) { // define variables to be used in the inner loop int256 ir; int256 h; /// loop through all fragments while (!(vars.x == fb[0] && vars.y == fb[1])) { /// get hypotenuse length of fragment a h = ShackledMath.hypot(fa[0] - vars.x, fa[1] - vars.y); assembly { ir := div(mul(lerpScaleFactor, h), mag) } // only add the fragment if it falls within the canvas /// create a new fragment by linear interpolation between a and b int256[12] memory newFragment = ShackledMath.vector12Lerp( fa, fb, ir, lerpScaleFactor ); newFragment[0] = vars.x; newFragment[1] = vars.y; /// save this fragment bresTriFragments[nextBresTriFragmentIx] = newFragment; ++nextBresTriFragmentIx; /// update variables to use in next iteration vars.e2 = 2 * vars.err; if (vars.e2 >= vars.dy) { vars.err += vars.dy; vars.x += vars.sx; } if (vars.e2 <= vars.dx) { vars.err += vars.dx; vars.y += vars.sy; } } /// save fragment 2 bresTriFragments[nextBresTriFragmentIx] = fb; ++nextBresTriFragmentIx; return (bresTriFragments, nextBresTriFragmentIx); } /** @dev run the scan line algorithm to fill the raster */ function runScanline( int256[12][] memory bresTriFragments, int256[12][] memory fragments, uint256 nextFragmentsIx, int256 canvasDim ) internal view returns (int256[12][] memory, uint256) { /// make a 2d array with length = num of output rows ( int256[][] memory rowFragIndices, uint256[] memory nextIxFragRows ) = getRowFragIndices(bresTriFragments, canvasDim); /// initialise a struct to hold the scanline vars ScanlineVars memory slVars; // Now iterate through the list of fragments that live in a single row for (uint256 i = 0; i < rowFragIndices.length; i++) { /// Get the left most fragment slVars.left = 4096; /// Get the right most fragment slVars.right = -4096; /// loop through the fragments in this row /// and check that a fragment was written to this row for (uint256 j = 0; j < nextIxFragRows[i]; j++) { /// What's the current fragment that we're looking at int256 fragX = bresTriFragments[uint256(rowFragIndices[i][j])][ 0 ]; // if it's lefter than our current most left frag then its the new left frag if (fragX < slVars.left) { slVars.left = fragX; slVars.leftFrag = bresTriFragments[ uint256(rowFragIndices[i][j]) ]; } // if it's righter than our current most right frag then its the new right frag if (fragX > slVars.right) { slVars.right = fragX; slVars.rightFrag = bresTriFragments[ uint256(rowFragIndices[i][j]) ]; } } /// now we need to scan from the left to the right fragment /// and interpolate as we go slVars.dx = slVars.right - slVars.left + 1; /// get the row that we're on slVars.newFragRow = slVars.leftFrag[1]; /// check that the new frag's row will be in the canvas bounds if (slVars.newFragRow >= 0 && slVars.newFragRow < canvasDim) { if (slVars.dx > int256(0)) { for (int256 j = 0; j < slVars.dx; j++) { /// calculate the column of the new fragment (its position in the scan) slVars.newFragCol = slVars.leftFrag[0] + j; /// check that the new frag's column will be in the canvas bounds if ( slVars.newFragCol >= 0 && slVars.newFragCol < canvasDim ) { slVars.ir = (j * lerpScaleFactor) / slVars.dx; /// make a new fragment by linear interpolation between left and right frags fragments[nextFragmentsIx] = ShackledMath .vector12Lerp( slVars.leftFrag, slVars.rightFrag, slVars.ir, lerpScaleFactor ); /// update its position fragments[nextFragmentsIx][0] = slVars.newFragCol; fragments[nextFragmentsIx][1] = slVars.newFragRow; nextFragmentsIx++; } } } } } return (fragments, nextFragmentsIx); } /** @dev get the row indices of each fragment in preparation for the scanline alg */ function getRowFragIndices( int256[12][] memory bresTriFragments, int256 canvasDim ) internal view returns (int256[][] memory, uint256[] memory nextIxFragRows) { uint256 canvasDimUnsigned = uint256(canvasDim); // define the length of each outer array so we can push items into it using nextIxFragRows int256[][] memory rowFragIndices = new int256[][](canvasDimUnsigned); // the inner rows can't be longer than bresTriFragments for (uint256 i = 0; i < canvasDimUnsigned; i++) { rowFragIndices[i] = new int256[](bresTriFragments.length); } // make an array the tracks for each row how many items have been pushed into it uint256[] memory nextIxFragRows = new uint256[](canvasDimUnsigned); for (uint256 f = 0; f < bresTriFragments.length; f++) { // get the row index uint256 rowIx = uint256(bresTriFragments[f][1]); // canvas_y if (rowIx >= 0 && rowIx < canvasDimUnsigned) { // get the ix of the next item to be added to the row rowFragIndices[rowIx][nextIxFragRows[rowIx]] = int256(f); ++nextIxFragRows[rowIx]; } } return (rowFragIndices, nextIxFragRows); } /** @dev run depth-testing on all fragments */ function depthTesting(int256[12][] memory fragments, int256 canvasDim) external view returns (int256[12][] memory) { uint256 canvasDimUnsigned = uint256(canvasDim); /// create a 2d array to hold the zValues of the fragments int256[][] memory zValues = ShackledMath.get2dArray( canvasDimUnsigned, canvasDimUnsigned, 0 ); /// create a 2d array to hold the fragIndex of the fragments /// as their depth is compared int256[][] memory fragIndex = ShackledMath.get2dArray( canvasDimUnsigned, canvasDimUnsigned, -1 /// -1 so we can check if a fragment was written to this location ); int256[12][] memory culledFrags = new int256[12][](fragments.length); uint256 nextFragIx = 0; /// iterate through all fragments /// and store the index of the fragment with the largest z value /// at each x, y coordinate for (uint256 i = 0; i < fragments.length; i++) { int256[12] memory frag = fragments[i]; /// x and y must be uint for indexing uint256 fragX = uint256(frag[0]); uint256 fragY = uint256(frag[1]); // console.log("checking frag", i, "z:"); // console.logInt(frag[2]); if ( (fragX < canvasDimUnsigned) && (fragY < canvasDimUnsigned) && fragX >= 0 && fragY >= 0 ) { // if this is the first fragment seen at (fragX, fragY), ie if fragIndex == 0, add it // or if this frag is closer (lower z value) than the current frag at (fragX, fragY), add it if ( fragIndex[fragX][fragY] == -1 || frag[2] >= zValues[fragX][fragY] ) { zValues[fragX][fragY] = frag[2]; fragIndex[fragX][fragY] = int256(i); } } } /// save only the fragments with prefered z values for (uint256 x = 0; x < canvasDimUnsigned; x++) { for (uint256 y = 0; y < canvasDimUnsigned; y++) { int256 fragIx = fragIndex[x][y]; /// ensure we have a valid index if (fragIndex[x][y] != -1) { culledFrags[nextFragIx] = fragments[uint256(fragIx)]; nextFragIx++; } } } return ShackledUtils.clipArray12ToLength(culledFrags, nextFragIx); } /** @dev apply lighting to the scene and update fragments accordingly */ function lightScene( int256[12][] memory fragments, ShackledStructs.LightingParams memory lp ) external view returns (int256[12][] memory) { /// create a struct for the variables to prevent stack too deep LightingVars memory lv; // calculate a constant lighting vector and its magniture lv.L = lp.lightPos; lv.lMag = ShackledMath.vector3Len(lv.L); for (uint256 f = 0; f < fragments.length; f++) { /// get the fragment's color, norm and position lv.fragCol = [fragments[f][3], fragments[f][4], fragments[f][5]]; lv.fragNorm = [fragments[f][6], fragments[f][7], fragments[f][8]]; lv.fragPos = [fragments[f][9], fragments[f][10], fragments[f][11]]; /// calculate the direction to camera / viewer and its magnitude lv.V = ShackledMath.vector3MulScalar(lv.fragPos, -1); lv.vMag = ShackledMath.vector3Len(lv.V); /// calculate the direction of the fragment normaland its magnitude lv.N = lv.fragNorm; lv.nMag = ShackledMath.vector3Len(lv.N); /// calculate the light vector per-fragment // lv.L = ShackledMath.vector3Sub(lp.lightPos, lv.fragPos); // lv.lMag = ShackledMath.vector3Len(lv.L); lv.falloff = lv.lMag**2; /// lighting intensity fall over the scene lv.lnDot = ShackledMath.vector3Dot(lv.L, lv.N); /// implement double-side rendering to account for flipped normals lv.lambertian = ShackledMath.abs(lv.lnDot); int256 specular; if (lv.lambertian > 0) { int256[3] memory normedL = ShackledMath.vector3NormX( lv.L, fidelity ); int256[3] memory normedV = ShackledMath.vector3NormX( lv.V, fidelity ); int256[3] memory H = ShackledMath.vector3Add(normedL, normedV); int256 hnDot = int256( ShackledMath.vector3Dot( ShackledMath.vector3NormX(H, fidelity), ShackledMath.vector3NormX(lv.N, fidelity) ) ); specular = calculateSpecular( lp.lightSpecPower, hnDot, fidelity, lp.inverseShininess ); } // Calculate the colour and write it into the fragment int256[3] memory colAmbi = ShackledMath.vector3Add( lv.fragCol, ShackledMath.vector3MulScalar( lp.lightColAmbi, lp.lightAmbiPower ) ); /// finalise and color the diffuse lighting int256[3] memory colDiff = ShackledMath.vector3MulScalar( lp.lightColDiff, ((lp.lightDiffPower * lv.lambertian) / (lv.lMag * lv.nMag)) / lv.falloff ); /// finalise and color the specular lighting int256[3] memory colSpec = ShackledMath.vector3DivScalar( ShackledMath.vector3MulScalar(lp.lightColSpec, specular), lv.falloff ); // add up the colour components int256[3] memory col = ShackledMath.vector3Add( ShackledMath.vector3Add(colAmbi, colDiff), colSpec ); /// update the fragment's colour in place fragments[f][3] = col[0]; fragments[f][4] = col[1]; fragments[f][5] = col[2]; } return fragments; } /** @dev calculate the specular lighting parameter */ function calculateSpecular( int256 lightSpecPower, int256 hnDot, int256 fidelity, uint256 inverseShininess ) internal pure returns (int256 specular) { int256 specAngle = hnDot > int256(0) ? hnDot : int256(0); assembly { specular := sdiv( mul(lightSpecPower, exp(specAngle, inverseShininess)), exp(fidelity, mul(inverseShininess, 2)) ) } } /** @dev get background gradient that fills the canvas */ function getBackground( int256 canvasDim, int256[3][2] memory backgroundColor ) external view returns (int256[5][] memory) { int256[5][] memory background = new int256[5][](uint256(canvasDim**2)); int256 w = canvasDim; uint256 nextIx = 0; for (int256 i = 0; i < canvasDim; i++) { for (int256 j = 0; j < canvasDim; j++) { // / write coordinates of background pixel background[nextIx][0] = j; /// x background[nextIx][1] = i; /// y // / write colours of background pixel // / get weighted average of top and bottom color according to row (i) background[nextIx][2] = /// r ((backgroundColor[0][0] * i) + (backgroundColor[1][0] * (w - i))) / w; background[nextIx][3] = /// g ((backgroundColor[0][1] * i) + (backgroundColor[1][1] * (w - i))) / w; background[nextIx][4] = /// b ((backgroundColor[0][2] * i) + (backgroundColor[1][2] * (w - i))) / w; ++nextIx; } } return background; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; library ShackledMath { /** @dev Get the minimum of two numbers */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** @dev Get the maximum of two numbers */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** @dev perform a modulo operation, with support for negative numbers */ function mod(int256 n, int256 m) internal pure returns (int256) { if (n < 0) { return ((n % m) + m) % m; } else { return n % m; } } /** @dev 'randomly' select n numbers between 0 and m (useful for getting a randomly sampled index) */ function randomIdx( bytes32 seedModifier, uint256 n, // number of elements to select uint256 m // max value of elements ) internal pure returns (uint256[] memory) { uint256[] memory result = new uint256[](n); for (uint256 i = 0; i < n; i++) { result[i] = uint256(keccak256(abi.encodePacked(seedModifier, i))) % m; } return result; } /** @dev create a 2d array and fill with a single value */ function get2dArray( uint256 m, uint256 q, int256 value ) internal pure returns (int256[][] memory) { /// Create a matrix of values with dimensions (m, q) int256[][] memory rows = new int256[][](m); for (uint256 i = 0; i < m; i++) { int256[] memory row = new int256[](q); for (uint256 j = 0; j < q; j++) { row[j] = value; } rows[i] = row; } return rows; } /** @dev get the absolute of a number */ function abs(int256 x) internal pure returns (int256) { assembly { if slt(x, 0) { x := sub(0, x) } } return x; } /** @dev get the square root of a number */ function sqrt(int256 y) internal pure returns (int256 z) { assembly { if sgt(y, 3) { z := y let x := add(div(y, 2), 1) for { } slt(x, z) { } { z := x x := div(add(div(y, x), x), 2) } } if and(slt(y, 4), sgt(y, 0)) { z := 1 } } } /** @dev get the hypotenuse of a triangle given the length of 2 sides */ function hypot(int256 x, int256 y) internal pure returns (int256) { int256 sumsq; assembly { let xsq := mul(x, x) let ysq := mul(y, y) sumsq := add(xsq, ysq) } return sqrt(sumsq); } /** @dev addition between two vectors (size 3) */ function vector3Add(int256[3] memory v1, int256[3] memory v2) internal pure returns (int256[3] memory result) { assembly { mstore(result, add(mload(v1), mload(v2))) mstore( add(result, 0x20), add(mload(add(v1, 0x20)), mload(add(v2, 0x20))) ) mstore( add(result, 0x40), add(mload(add(v1, 0x40)), mload(add(v2, 0x40))) ) } } /** @dev subtraction between two vectors (size 3) */ function vector3Sub(int256[3] memory v1, int256[3] memory v2) internal pure returns (int256[3] memory result) { assembly { mstore(result, sub(mload(v1), mload(v2))) mstore( add(result, 0x20), sub(mload(add(v1, 0x20)), mload(add(v2, 0x20))) ) mstore( add(result, 0x40), sub(mload(add(v1, 0x40)), mload(add(v2, 0x40))) ) } } /** @dev multiply a vector (size 3) by a constant */ function vector3MulScalar(int256[3] memory v, int256 a) internal pure returns (int256[3] memory result) { assembly { mstore(result, mul(mload(v), a)) mstore(add(result, 0x20), mul(mload(add(v, 0x20)), a)) mstore(add(result, 0x40), mul(mload(add(v, 0x40)), a)) } } /** @dev divide a vector (size 3) by a constant */ function vector3DivScalar(int256[3] memory v, int256 a) internal pure returns (int256[3] memory result) { assembly { mstore(result, sdiv(mload(v), a)) mstore(add(result, 0x20), sdiv(mload(add(v, 0x20)), a)) mstore(add(result, 0x40), sdiv(mload(add(v, 0x40)), a)) } } /** @dev get the length of a vector (size 3) */ function vector3Len(int256[3] memory v) internal pure returns (int256) { int256 res; assembly { let x := mload(v) let y := mload(add(v, 0x20)) let z := mload(add(v, 0x40)) res := add(add(mul(x, x), mul(y, y)), mul(z, z)) } return sqrt(res); } /** @dev scale and then normalise a vector (size 3) */ function vector3NormX(int256[3] memory v, int256 fidelity) internal pure returns (int256[3] memory result) { int256 l = vector3Len(v); assembly { mstore(result, sdiv(mul(fidelity, mload(add(v, 0x40))), l)) mstore( add(result, 0x20), sdiv(mul(fidelity, mload(add(v, 0x20))), l) ) mstore(add(result, 0x40), sdiv(mul(fidelity, mload(v)), l)) } } /** @dev get the dot-product of two vectors (size 3) */ function vector3Dot(int256[3] memory v1, int256[3] memory v2) internal view returns (int256 result) { assembly { result := add( add( mul(mload(v1), mload(v2)), mul(mload(add(v1, 0x20)), mload(add(v2, 0x20))) ), mul(mload(add(v1, 0x40)), mload(add(v2, 0x40))) ) } } /** @dev get the cross product of two vectors (size 3) */ function crossProduct(int256[3] memory v1, int256[3] memory v2) internal pure returns (int256[3] memory result) { assembly { mstore( result, sub( mul(mload(add(v1, 0x20)), mload(add(v2, 0x40))), mul(mload(add(v1, 0x40)), mload(add(v2, 0x20))) ) ) mstore( add(result, 0x20), sub( mul(mload(add(v1, 0x40)), mload(v2)), mul(mload(v1), mload(add(v2, 0x40))) ) ) mstore( add(result, 0x40), sub( mul(mload(v1), mload(add(v2, 0x20))), mul(mload(add(v1, 0x20)), mload(v2)) ) ) } } /** @dev linearly interpolate between two vectors (size 12) */ function vector12Lerp( int256[12] memory v1, int256[12] memory v2, int256 ir, int256 scaleFactor ) internal view returns (int256[12] memory result) { int256[12] memory vd = vector12Sub(v2, v1); // loop through all 12 items assembly { let ix for { let i := 0 } lt(i, 0xC) { // (i < 12) i := add(i, 1) } { /// get index of the next element ix := mul(i, 0x20) /// store into the result array mstore( add(result, ix), add( // v1[i] + (ir * vd[i]) / 1e3 mload(add(v1, ix)), sdiv(mul(ir, mload(add(vd, ix))), 1000) ) ) } } } /** @dev subtraction between two vectors (size 12) */ function vector12Sub(int256[12] memory v1, int256[12] memory v2) internal view returns (int256[12] memory result) { // loop through all 12 items assembly { let ix for { let i := 0 } lt(i, 0xC) { // (i < 12) i := add(i, 1) } { /// get index of the next element ix := mul(i, 0x20) /// store into the result array mstore( add(result, ix), sub( // v1[ix] - v2[ix] mload(add(v1, ix)), mload(add(v2, ix)) ) ) } } } /** @dev map a number from one range into another */ function mapRangeToRange( int256 num, int256 inMin, int256 inMax, int256 outMin, int256 outMax ) internal pure returns (int256 res) { assembly { res := add( sdiv( mul(sub(outMax, outMin), sub(num, inMin)), sub(inMax, inMin) ), outMin ) } } }
// SPDX-License-Identifier: MIT /** * @notice Solidity library offering basic trigonometry functions where inputs and outputs are * integers. Inputs are specified in radians scaled by 1e18, and similarly outputs are scaled by 1e18. * * This implementation is based off the Solidity trigonometry library written by Lefteris Karapetsas * which can be found here: https://github.com/Sikorkaio/sikorka/blob/e75c91925c914beaedf4841c0336a806f2b5f66d/contracts/trigonometry.sol * * Compared to Lefteris' implementation, this version makes the following changes: * - Uses a 32 bits instead of 16 bits for improved accuracy * - Updated for Solidity 0.8.x * - Various gas optimizations * - Change inputs/outputs to standard trig format (scaled by 1e18) instead of requiring the * integer format used by the algorithm * * Lefertis' implementation is based off Dave Dribin's trigint C library * http://www.dribin.org/dave/trigint/ * * Which in turn is based from a now deleted article which can be found in the Wayback Machine: * http://web.archive.org/web/20120301144605/http://www.dattalo.com/technical/software/pic/picsine.html */ pragma solidity ^0.8.0; library Trigonometry { // Table index into the trigonometric table uint256 constant INDEX_WIDTH = 8; // Interpolation between successive entries in the table uint256 constant INTERP_WIDTH = 16; uint256 constant INDEX_OFFSET = 28 - INDEX_WIDTH; uint256 constant INTERP_OFFSET = INDEX_OFFSET - INTERP_WIDTH; uint32 constant ANGLES_IN_CYCLE = 1073741824; uint32 constant QUADRANT_HIGH_MASK = 536870912; uint32 constant QUADRANT_LOW_MASK = 268435456; uint256 constant SINE_TABLE_SIZE = 256; // Pi as an 18 decimal value, which is plenty of accuracy: "For JPL's highest accuracy calculations, which are for // interplanetary navigation, we use 3.141592653589793: https://www.jpl.nasa.gov/edu/news/2016/3/16/how-many-decimals-of-pi-do-we-really-need/ uint256 constant PI = 3141592653589793238; uint256 constant TWO_PI = 2 * PI; uint256 constant PI_OVER_TWO = PI / 2; // The constant sine lookup table was generated by generate_trigonometry.py. We must use a constant // bytes array because constant arrays are not supported in Solidity. Each entry in the lookup // table is 4 bytes. Since we're using 32-bit parameters for the lookup table, we get a table size // of 2^(32/4) + 1 = 257, where the first and last entries are equivalent (hence the table size of // 256 defined above) uint8 constant entry_bytes = 4; // each entry in the lookup table is 4 bytes uint256 constant entry_mask = ((1 << (8 * entry_bytes)) - 1); // mask used to cast bytes32 -> lookup table entry bytes constant sin_table = hex"00_00_00_00_00_c9_0f_88_01_92_1d_20_02_5b_26_d7_03_24_2a_bf_03_ed_26_e6_04_b6_19_5d_05_7f_00_35_06_47_d9_7c_07_10_a3_45_07_d9_5b_9e_08_a2_00_9a_09_6a_90_49_0a_33_08_bc_0a_fb_68_05_0b_c3_ac_35_0c_8b_d3_5e_0d_53_db_92_0e_1b_c2_e4_0e_e3_87_66_0f_ab_27_2b_10_72_a0_48_11_39_f0_cf_12_01_16_d5_12_c8_10_6e_13_8e_db_b1_14_55_76_b1_15_1b_df_85_15_e2_14_44_16_a8_13_05_17_6d_d9_de_18_33_66_e8_18_f8_b8_3c_19_bd_cb_f3_1a_82_a0_25_1b_47_32_ef_1c_0b_82_6a_1c_cf_8c_b3_1d_93_4f_e5_1e_56_ca_1e_1f_19_f9_7b_1f_dc_dc_1b_20_9f_70_1c_21_61_b3_9f_22_23_a4_c5_22_e5_41_af_23_a6_88_7e_24_67_77_57_25_28_0c_5d_25_e8_45_b6_26_a8_21_85_27_67_9d_f4_28_26_b9_28_28_e5_71_4a_29_a3_c4_85_2a_61_b1_01_2b_1f_34_eb_2b_dc_4e_6f_2c_98_fb_ba_2d_55_3a_fb_2e_11_0a_62_2e_cc_68_1e_2f_87_52_62_30_41_c7_60_30_fb_c5_4d_31_b5_4a_5d_32_6e_54_c7_33_26_e2_c2_33_de_f2_87_34_96_82_4f_35_4d_90_56_36_04_1a_d9_36_ba_20_13_37_6f_9e_46_38_24_93_b0_38_d8_fe_93_39_8c_dd_32_3a_40_2d_d1_3a_f2_ee_b7_3b_a5_1e_29_3c_56_ba_70_3d_07_c1_d5_3d_b8_32_a5_3e_68_0b_2c_3f_17_49_b7_3f_c5_ec_97_40_73_f2_1d_41_21_58_9a_41_ce_1e_64_42_7a_41_d0_43_25_c1_35_43_d0_9a_ec_44_7a_cd_50_45_24_56_bc_45_cd_35_8f_46_75_68_27_47_1c_ec_e6_47_c3_c2_2e_48_69_e6_64_49_0f_57_ee_49_b4_15_33_4a_58_1c_9d_4a_fb_6c_97_4b_9e_03_8f_4c_3f_df_f3_4c_e1_00_34_4d_81_62_c3_4e_21_06_17_4e_bf_e8_a4_4f_5e_08_e2_4f_fb_65_4c_50_97_fc_5e_51_33_cc_94_51_ce_d4_6e_52_69_12_6e_53_02_85_17_53_9b_2a_ef_54_33_02_7d_54_ca_0a_4a_55_60_40_e2_55_f5_a4_d2_56_8a_34_a9_57_1d_ee_f9_57_b0_d2_55_58_42_dd_54_58_d4_0e_8c_59_64_64_97_59_f3_de_12_5a_82_79_99_5b_10_35_ce_5b_9d_11_53_5c_29_0a_cc_5c_b4_20_df_5d_3e_52_36_5d_c7_9d_7b_5e_50_01_5d_5e_d7_7c_89_5f_5e_0d_b2_5f_e3_b3_8d_60_68_6c_ce_60_ec_38_2f_61_6f_14_6b_61_f1_00_3e_62_71_fa_68_62_f2_01_ac_63_71_14_cc_63_ef_32_8f_64_6c_59_bf_64_e8_89_25_65_63_bf_91_65_dd_fb_d2_66_57_3c_bb_66_cf_81_1f_67_46_c7_d7_67_bd_0f_bc_68_32_57_aa_68_a6_9e_80_69_19_e3_1f_69_8c_24_6b_69_fd_61_4a_6a_6d_98_a3_6a_dc_c9_64_6b_4a_f2_78_6b_b8_12_d0_6c_24_29_5f_6c_8f_35_1b_6c_f9_34_fb_6d_62_27_f9_6d_ca_0d_14_6e_30_e3_49_6e_96_a9_9c_6e_fb_5f_11_6f_5f_02_b1_6f_c1_93_84_70_23_10_99_70_83_78_fe_70_e2_cb_c5_71_41_08_04_71_9e_2c_d1_71_fa_39_48_72_55_2c_84_72_af_05_a6_73_07_c3_cf_73_5f_66_25_73_b5_eb_d0_74_0b_53_fa_74_5f_9d_d0_74_b2_c8_83_75_04_d3_44_75_55_bd_4b_75_a5_85_ce_75_f4_2c_0a_76_41_af_3c_76_8e_0e_a5_76_d9_49_88_77_23_5f_2c_77_6c_4e_da_77_b4_17_df_77_fa_b9_88_78_40_33_28_78_84_84_13_78_c7_ab_a1_79_09_a9_2c_79_4a_7c_11_79_8a_23_b0_79_c8_9f_6d_7a_05_ee_ac_7a_42_10_d8_7a_7d_05_5a_7a_b6_cb_a3_7a_ef_63_23_7b_26_cb_4e_7b_5d_03_9d_7b_92_0b_88_7b_c5_e2_8f_7b_f8_88_2f_7c_29_fb_ed_7c_5a_3d_4f_7c_89_4b_dd_7c_b7_27_23_7c_e3_ce_b1_7d_0f_42_17_7d_39_80_eb_7d_62_8a_c5_7d_8a_5f_3f_7d_b0_fd_f7_7d_d6_66_8e_7d_fa_98_a7_7e_1d_93_e9_7e_3f_57_fe_7e_5f_e4_92_7e_7f_39_56_7e_9d_55_fb_7e_ba_3a_38_7e_d5_e5_c5_7e_f0_58_5f_7f_09_91_c3_7f_21_91_b3_7f_38_57_f5_7f_4d_e4_50_7f_62_36_8e_7f_75_4e_7f_7f_87_2b_f2_7f_97_ce_bc_7f_a7_36_b3_7f_b5_63_b2_7f_c2_55_95_7f_ce_0c_3d_7f_d8_87_8d_7f_e1_c7_6a_7f_e9_cb_bf_7f_f0_94_77_7f_f6_21_81_7f_fa_72_d0_7f_fd_88_59_7f_ff_62_15_7f_ff_ff_ff"; /** * @notice Return the sine of a value, specified in radians scaled by 1e18 * @dev This algorithm for converting sine only uses integer values, and it works by dividing the * circle into 30 bit angles, i.e. there are 1,073,741,824 (2^30) angle units, instead of the * standard 360 degrees (2pi radians). From there, we get an output in range -2,147,483,647 to * 2,147,483,647, (which is the max value of an int32) which is then converted back to the standard * range of -1 to 1, again scaled by 1e18 * @param _angle Angle to convert * @return Result scaled by 1e18 */ function sin(uint256 _angle) internal pure returns (int256) { unchecked { // Convert angle from from arbitrary radian value (range of 0 to 2pi) to the algorithm's range // of 0 to 1,073,741,824 _angle = (ANGLES_IN_CYCLE * (_angle % TWO_PI)) / TWO_PI; // Apply a mask on an integer to extract a certain number of bits, where angle is the integer // whose bits we want to get, the width is the width of the bits (in bits) we want to extract, // and the offset is the offset of the bits (in bits) we want to extract. The result is an // integer containing _width bits of _value starting at the offset bit uint256 interp = (_angle >> INTERP_OFFSET) & ((1 << INTERP_WIDTH) - 1); uint256 index = (_angle >> INDEX_OFFSET) & ((1 << INDEX_WIDTH) - 1); // The lookup table only contains data for one quadrant (since sin is symmetric around both // axes), so here we figure out which quadrant we're in, then we lookup the values in the // table then modify values accordingly bool is_odd_quadrant = (_angle & QUADRANT_LOW_MASK) == 0; bool is_negative_quadrant = (_angle & QUADRANT_HIGH_MASK) != 0; if (!is_odd_quadrant) { index = SINE_TABLE_SIZE - 1 - index; } bytes memory table = sin_table; // We are looking for two consecutive indices in our lookup table // Since EVM is left aligned, to read n bytes of data from idx i, we must read from `i * data_len` + `n` // therefore, to read two entries of size entry_bytes `index * entry_bytes` + `entry_bytes * 2` uint256 offset1_2 = (index + 2) * entry_bytes; // This following snippet will function for any entry_bytes <= 15 uint256 x1_2; assembly { // mload will grab one word worth of bytes (32), as that is the minimum size in EVM x1_2 := mload(add(table, offset1_2)) } // We now read the last two numbers of size entry_bytes from x1_2 // in example: entry_bytes = 4; x1_2 = 0x00...12345678abcdefgh // therefore: entry_mask = 0xFFFFFFFF // 0x00...12345678abcdefgh >> 8*4 = 0x00...12345678 // 0x00...12345678 & 0xFFFFFFFF = 0x12345678 uint256 x1 = (x1_2 >> (8 * entry_bytes)) & entry_mask; // 0x00...12345678abcdefgh & 0xFFFFFFFF = 0xabcdefgh uint256 x2 = x1_2 & entry_mask; // Approximate angle by interpolating in the table, accounting for the quadrant uint256 approximation = ((x2 - x1) * interp) >> INTERP_WIDTH; int256 sine = is_odd_quadrant ? int256(x1) + int256(approximation) : int256(x2) - int256(approximation); if (is_negative_quadrant) { sine *= -1; } // Bring result from the range of -2,147,483,647 through 2,147,483,647 to -1e18 through 1e18. // This can never overflow because sine is bounded by the above values return (sine * 1e18) / 2_147_483_647; } } /** * @notice Return the cosine of a value, specified in radians scaled by 1e18 * @dev This is identical to the sin() method, and just computes the value by delegating to the * sin() method using the identity cos(x) = sin(x + pi/2) * @dev Overflow when `angle + PI_OVER_TWO > type(uint256).max` is ok, results are still accurate * @param _angle Angle to convert * @return Result scaled by 1e18 */ function cos(uint256 _angle) internal pure returns (int256) { unchecked { return sin(_angle + PI_OVER_TWO); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/ERC721.sol) pragma solidity ^0.8.0; import "./IERC721.sol"; import "./IERC721Receiver.sol"; import "./extensions/IERC721Metadata.sol"; import "../../utils/Address.sol"; import "../../utils/Context.sol"; import "../../utils/Strings.sol"; import "../../utils/introspection/ERC165.sol"; /** * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including * the Metadata extension, but not including the Enumerable extension, which is available separately as * {ERC721Enumerable}. */ contract ERC721 is Context, ERC165, IERC721, IERC721Metadata { using Address for address; using Strings for uint256; // Token name string private _name; // Token symbol string private _symbol; // Mapping from token ID to owner address mapping(uint256 => address) private _owners; // Mapping owner address to token count mapping(address => uint256) private _balances; // Mapping from token ID to approved address mapping(uint256 => address) private _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) private _operatorApprovals; /** * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) { return interfaceId == type(IERC721).interfaceId || interfaceId == type(IERC721Metadata).interfaceId || super.supportsInterface(interfaceId); } /** * @dev See {IERC721-balanceOf}. */ function balanceOf(address owner) public view virtual override returns (uint256) { require(owner != address(0), "ERC721: balance query for the zero address"); return _balances[owner]; } /** * @dev See {IERC721-ownerOf}. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { address owner = _owners[tokenId]; require(owner != address(0), "ERC721: owner query for nonexistent token"); return owner; } /** * @dev See {IERC721Metadata-name}. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev See {IERC721Metadata-symbol}. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev See {IERC721Metadata-tokenURI}. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { require(_exists(tokenId), "ERC721Metadata: URI query for nonexistent token"); string memory baseURI = _baseURI(); return bytes(baseURI).length > 0 ? string(abi.encodePacked(baseURI, tokenId.toString())) : ""; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, can be overriden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ""; } /** * @dev See {IERC721-approve}. */ function approve(address to, uint256 tokenId) public virtual override { address owner = ERC721.ownerOf(tokenId); require(to != owner, "ERC721: approval to current owner"); require( _msgSender() == owner || isApprovedForAll(owner, _msgSender()), "ERC721: approve caller is not owner nor approved for all" ); _approve(to, tokenId); } /** * @dev See {IERC721-getApproved}. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { require(_exists(tokenId), "ERC721: approved query for nonexistent token"); return _tokenApprovals[tokenId]; } /** * @dev See {IERC721-setApprovalForAll}. */ function setApprovalForAll(address operator, bool approved) public virtual override { _setApprovalForAll(_msgSender(), operator, approved); } /** * @dev See {IERC721-isApprovedForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return _operatorApprovals[owner][operator]; } /** * @dev See {IERC721-transferFrom}. */ function transferFrom( address from, address to, uint256 tokenId ) public virtual override { //solhint-disable-next-line max-line-length require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _transfer(from, to, tokenId); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public virtual override { safeTransferFrom(from, to, tokenId, ""); } /** * @dev See {IERC721-safeTransferFrom}. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public virtual override { require(_isApprovedOrOwner(_msgSender(), tokenId), "ERC721: transfer caller is not owner nor approved"); _safeTransfer(from, to, tokenId, _data); } /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * `_data` is additional data, it has no specified format and it is sent in call to `to`. * * This internal function is equivalent to {safeTransferFrom}, and can be used to e.g. * implement alternative mechanisms to perform token transfer, such as signature-based. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeTransfer( address from, address to, uint256 tokenId, bytes memory _data ) internal virtual { _transfer(from, to, tokenId); require(_checkOnERC721Received(from, to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer"); } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted (`_mint`), * and stop existing when they are burned (`_burn`). */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _owners[tokenId] != address(0); } /** * @dev Returns whether `spender` is allowed to manage `tokenId`. * * Requirements: * * - `tokenId` must exist. */ function _isApprovedOrOwner(address spender, uint256 tokenId) internal view virtual returns (bool) { require(_exists(tokenId), "ERC721: operator query for nonexistent token"); address owner = ERC721.ownerOf(tokenId); return (spender == owner || getApproved(tokenId) == spender || isApprovedForAll(owner, spender)); } /** * @dev Safely mints `tokenId` and transfers it to `to`. * * Requirements: * * - `tokenId` must not exist. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function _safeMint(address to, uint256 tokenId) internal virtual { _safeMint(to, tokenId, ""); } /** * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is * forwarded in {IERC721Receiver-onERC721Received} to contract recipients. */ function _safeMint( address to, uint256 tokenId, bytes memory _data ) internal virtual { _mint(to, tokenId); require( _checkOnERC721Received(address(0), to, tokenId, _data), "ERC721: transfer to non ERC721Receiver implementer" ); } /** * @dev Mints `tokenId` and transfers it to `to`. * * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible * * Requirements: * * - `tokenId` must not exist. * - `to` cannot be the zero address. * * Emits a {Transfer} event. */ function _mint(address to, uint256 tokenId) internal virtual { require(to != address(0), "ERC721: mint to the zero address"); require(!_exists(tokenId), "ERC721: token already minted"); _beforeTokenTransfer(address(0), to, tokenId); _balances[to] += 1; _owners[tokenId] = to; emit Transfer(address(0), to, tokenId); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId) internal virtual { address owner = ERC721.ownerOf(tokenId); _beforeTokenTransfer(owner, address(0), tokenId); // Clear approvals _approve(address(0), tokenId); _balances[owner] -= 1; delete _owners[tokenId]; emit Transfer(owner, address(0), tokenId); } /** * @dev Transfers `tokenId` from `from` to `to`. * As opposed to {transferFrom}, this imposes no restrictions on msg.sender. * * Requirements: * * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * * Emits a {Transfer} event. */ function _transfer( address from, address to, uint256 tokenId ) internal virtual { require(ERC721.ownerOf(tokenId) == from, "ERC721: transfer of token that is not own"); require(to != address(0), "ERC721: transfer to the zero address"); _beforeTokenTransfer(from, to, tokenId); // Clear approvals from the previous owner _approve(address(0), tokenId); _balances[from] -= 1; _balances[to] += 1; _owners[tokenId] = to; emit Transfer(from, to, tokenId); } /** * @dev Approve `to` to operate on `tokenId` * * Emits a {Approval} event. */ function _approve(address to, uint256 tokenId) internal virtual { _tokenApprovals[tokenId] = to; emit Approval(ERC721.ownerOf(tokenId), to, tokenId); } /** * @dev Approve `operator` to operate on all of `owner` tokens * * Emits a {ApprovalForAll} event. */ function _setApprovalForAll( address owner, address operator, bool approved ) internal virtual { require(owner != operator, "ERC721: approve to caller"); _operatorApprovals[owner][operator] = approved; emit ApprovalForAll(owner, operator, approved); } /** * @dev Internal function to invoke {IERC721Receiver-onERC721Received} on a target address. * The call is not executed if the target address is not a contract. * * @param from address representing the previous owner of the given token ID * @param to target address that will receive the tokens * @param tokenId uint256 ID of the token to be transferred * @param _data bytes optional data to send along with the call * @return bool whether the call correctly returned the expected magic value */ function _checkOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { if (to.isContract()) { try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, _data) returns (bytes4 retval) { return retval == IERC721Receiver.onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert("ERC721: transfer to non ERC721Receiver implementer"); } else { assembly { revert(add(32, reason), mload(reason)) } } } } else { return true; } } /** * @dev Hook that is called before any token transfer. This includes minting * and burning. * * Calling conditions: * * - When `from` and `to` are both non-zero, ``from``'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, ``from``'s `tokenId` will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 tokenId ) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Enumerable.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Enumerable is IERC721 { /** * @dev Returns the total amount of tokens stored by the contract. */ function totalSupply() external view returns (uint256); /** * @dev Returns a token ID owned by `owner` at a given `index` of its token list. * Use along with {balanceOf} to enumerate all of ``owner``'s tokens. */ function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256 tokenId); /** * @dev Returns a token ID at a given `index` of all the tokens stored by the contract. * Use along with {totalSupply} to enumerate all tokens. */ function tokenByIndex(uint256 index) external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; import "../../utils/introspection/IERC165.sol"; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC721/extensions/IERC721Metadata.sol) pragma solidity ^0.8.0; import "../IERC721.sol"; /** * @title ERC-721 Non-Fungible Token Standard, optional metadata extension * @dev See https://eips.ethereum.org/EIPS/eip-721 */ interface IERC721Metadata is IERC721 { /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Address.sol) pragma solidity ^0.8.0; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize, which returns 0 for contracts in // construction, since the code is only stored at the end of the // constructor execution. uint256 size; assembly { size := extcodesize(account) } return size > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../contracts/Shackled.sol"; contract XShackled is Shackled { constructor() {} function xstoreSeedHash(uint256 tokenId) external { return super.storeSeedHash(tokenId); } function x_transferOwnership(address newOwner) external { return super._transferOwnership(newOwner); } function x_beforeTokenTransfer(address from,address to,uint256 tokenId) external { return super._beforeTokenTransfer(from,to,tokenId); } function x_baseURI() external view returns (string memory) { return super._baseURI(); } function x_safeTransfer(address from,address to,uint256 tokenId,bytes calldata _data) external { return super._safeTransfer(from,to,tokenId,_data); } function x_exists(uint256 tokenId) external view returns (bool) { return super._exists(tokenId); } function x_isApprovedOrOwner(address spender,uint256 tokenId) external view returns (bool) { return super._isApprovedOrOwner(spender,tokenId); } function x_safeMint(address to,uint256 tokenId) external { return super._safeMint(to,tokenId); } function x_safeMint(address to,uint256 tokenId,bytes calldata _data) external { return super._safeMint(to,tokenId,_data); } function x_mint(address to,uint256 tokenId) external { return super._mint(to,tokenId); } function x_burn(uint256 tokenId) external { return super._burn(tokenId); } function x_transfer(address from,address to,uint256 tokenId) external { return super._transfer(from,to,tokenId); } function x_approve(address to,uint256 tokenId) external { return super._approve(to,tokenId); } function x_setApprovalForAll(address owner,address operator,bool approved) external { return super._setApprovalForAll(owner,operator,approved); } function x_msgSender() external view returns (address) { return super._msgSender(); } function x_msgData() external view returns (bytes memory) { return super._msgData(); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../contracts/ShackledCoords.sol"; contract XShackledCoords { constructor() {} function xconvertToWorldSpaceWithModelTransform(int256[3][3][] calldata tris,int256 scale,int256[3] calldata position) external view returns (int256[3][] memory) { return ShackledCoords.convertToWorldSpaceWithModelTransform(tris,scale,position); } function xbackfaceCulling(int256[3][3][] calldata trisWorldSpace,int256[3][3][] calldata trisCols) external view returns (int256[3][3][] memory, int256[3][3][] memory) { return ShackledCoords.backfaceCulling(trisWorldSpace,trisCols); } function xconvertToCameraSpaceViaVertexShader(int256[3][] calldata vertsWorldSpace,int256 canvasDim,bool perspCamera) external view returns (int256[3][] memory) { return ShackledCoords.convertToCameraSpaceViaVertexShader(vertsWorldSpace,canvasDim,perspCamera); } function xgetCameraMatrixOrth(int256 canvasDim) external pure returns (int256[4][4][2] memory) { return ShackledCoords.getCameraMatrixOrth(canvasDim); } function xgetCameraMatrixPersp() external pure returns (int256[4][4][2] memory) { return ShackledCoords.getCameraMatrixPersp(); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../contracts/ShackledGenesis.sol"; contract XShackledGenesis { constructor() {} function xgenerateGenesisPiece(bytes32 tokenHash) external view returns (ShackledStructs.RenderParams memory, ShackledStructs.Metadata memory) { return ShackledGenesis.generateGenesisPiece(tokenHash); } function xgenerateGeometryAndColors(bytes32 tokenHash,int256[3] calldata objPosition) external view returns (ShackledGenesis.FacesVertsCols memory, ColorUtils.ColScheme memory, GeomUtils.GeomSpec memory, GeomUtils.GeomVars memory) { return ShackledGenesis.generateGeometryAndColors(tokenHash,objPosition); } function xcreate2dTris(bytes32 tokenHash,GeomUtils.GeomSpec calldata geomSpec) external view returns (int256[3][3][] memory, int256[] memory, int256[] memory) { return ShackledGenesis.create2dTris(tokenHash,geomSpec); } function xprismify(bytes32 tokenHash,int256[3][3][] calldata tris,int256[] calldata zFronts,int256[] calldata zBacks) external view returns (GeomUtils.GeomVars memory) { return ShackledGenesis.prismify(tokenHash,tris,zFronts,zBacks); } function xmakeFacesVertsCols(bytes32 tokenHash,int256[3][3][] calldata tris,GeomUtils.GeomVars calldata geomVars,ColorUtils.ColScheme calldata scheme,int256[3] calldata objPosition) external view returns (ShackledGenesis.FacesVertsCols memory) { return ShackledGenesis.makeFacesVertsCols(tokenHash,tris,geomVars,scheme,objPosition); } } contract XColorUtils { constructor() {} function xgetColForPrism(bytes32 tokenHash,int256[3][3] calldata triFront,ColorUtils.SubScheme calldata subScheme,int256[3][2] calldata extents) external view returns (int256[3][6] memory) { return ColorUtils.getColForPrism(tokenHash,triFront,subScheme,extents); } function xgetSchemeId(bytes32 tokenHash,int256[2][10] calldata weightings) external view returns (uint256) { return ColorUtils.getSchemeId(tokenHash,weightings); } function xcopyColor(int256[3] calldata c) external view returns (int256[3] memory) { return ColorUtils.copyColor(c); } function xgetScheme(bytes32 tokenHash,int256[3][3][] calldata tris) external view returns (ColorUtils.ColScheme memory) { return ColorUtils.getScheme(tokenHash,tris); } function xhsv2rgb(int256 h,int256 s,int256 v) external view returns (int256[3] memory) { return ColorUtils.hsv2rgb(h,s,v); } function xrgb2hsv(int256 r,int256 g,int256 b) external view returns (int256[3] memory) { return ColorUtils.rgb2hsv(r,g,b); } function xgetJiggle(int256[3] calldata jiggle,bytes32 randomSeed,int256 seedModifier) external view returns (int256[3] memory) { return ColorUtils.getJiggle(jiggle,randomSeed,seedModifier); } function xinArray(uint256[] calldata array,uint256 value) external view returns (bool) { return ColorUtils.inArray(array,value); } function xapplyDirHelp(int256[3][3] calldata triFront,int256[3] calldata colA,int256[3] calldata colB,int256 dirCode,bool isInnerGradient,int256[3][2] calldata extents) external view returns (int256[3][3] memory) { return ColorUtils.applyDirHelp(triFront,colA,colB,dirCode,isInnerGradient,extents); } function xgetOrderedPointIdxsInDir(int256[3][3] calldata tri,int256 dirCode) external view returns (uint256[3] memory) { return ColorUtils.getOrderedPointIdxsInDir(tri,dirCode); } function xinterpColHelp(int256[3] calldata colA,int256[3] calldata colB,int256 low,int256 high,int256 val) external view returns (int256[3] memory) { return ColorUtils.interpColHelp(colA,colB,low,high,val); } function xgetHighlightPrismIdxs(int256[3][3][] calldata tris,bytes32 tokenHash,uint256 nHighlights,int256 varCode,int256 selCode) external view returns (uint256[] memory) { return ColorUtils.getHighlightPrismIdxs(tris,tokenHash,nHighlights,varCode,selCode); } function xgetSortedTrisIdxs(int256[3][3][] calldata tris,uint256 nHighlights,int256 varCode,int256 selCode) external view returns (uint256[] memory) { return ColorUtils.getSortedTrisIdxs(tris,nHighlights,varCode,selCode); } } contract XGeomUtils { constructor() {} function xgenerateSpec(bytes32 tokenHash) external view returns (GeomUtils.GeomSpec memory) { return GeomUtils.generateSpec(tokenHash); } function xmakeAdjacentTriangles(bytes32 tokenHash,uint256 attemptNum,uint256 refIdx,GeomUtils.TriVars calldata triVars,GeomUtils.GeomSpec calldata geomSpec,int256 overrideSideIdx,int256 overrideScale,int256 depth) external view returns (GeomUtils.TriVars memory) { return GeomUtils.makeAdjacentTriangles(tokenHash,attemptNum,refIdx,triVars,geomSpec,overrideSideIdx,overrideScale,depth); } function xmakeVerticallyOppositeTriangles(bytes32 tokenHash,uint256 attemptNum,uint256 refIdx,GeomUtils.TriVars calldata triVars,GeomUtils.GeomSpec calldata geomSpec,int256 overrideSideIdx,int256 overrideScale,int256 depth) external view returns (GeomUtils.TriVars memory) { return GeomUtils.makeVerticallyOppositeTriangles(tokenHash,attemptNum,refIdx,triVars,geomSpec,overrideSideIdx,overrideScale,depth); } function xmakeTriVertOpp(int256[3][3] calldata refTri,GeomUtils.GeomSpec calldata geomSpec,int256 sideIdx,int256 scale) external view returns (int256[3][3] memory) { return GeomUtils.makeTriVertOpp(refTri,geomSpec,sideIdx,scale); } function xmakeTriAdjacent(bytes32 tokenHash,GeomUtils.GeomSpec calldata geomSpec,uint256 attemptNum,int256[3][3] calldata refTri,int256 sideIdx,int256 scale,int256 depth) external view returns (int256[3][3] memory) { return GeomUtils.makeTriAdjacent(tokenHash,geomSpec,attemptNum,refTri,sideIdx,scale,depth); } function xmakeTri(int256[3] calldata centre,int256 radius,int256 angle) external view returns (int256[3][3] memory) { return GeomUtils.makeTri(centre,radius,angle); } function xvector3RotateX(int256[3] calldata v,int256 deg) external view returns (int256[3] memory) { return GeomUtils.vector3RotateX(v,deg); } function xvector3RotateY(int256[3] calldata v,int256 deg) external view returns (int256[3] memory) { return GeomUtils.vector3RotateY(v,deg); } function xvector3RotateZ(int256[3] calldata v,int256 deg) external view returns (int256[3] memory) { return GeomUtils.vector3RotateZ(v,deg); } function xtrigHelper(int256 deg) external view returns (int256, int256) { return GeomUtils.trigHelper(deg); } function xgetCenterVec(int256[3][3] calldata tri) external view returns (int256[3] memory) { return GeomUtils.getCenterVec(tri); } function xgetRadiusLen(int256[3][3] calldata tri) external view returns (int256) { return GeomUtils.getRadiusLen(tri); } function xgetSideLen(int256[3][3] calldata tri) external view returns (int256) { return GeomUtils.getSideLen(tri); } function xgetPerpLen(int256[3][3] calldata tri) external view returns (int256) { return GeomUtils.getPerpLen(tri); } function xisTriPointingUp(int256[3][3] calldata tri) external view returns (bool) { return GeomUtils.isTriPointingUp(tri); } function xareTrisClose(int256[3][3] calldata tri1,int256[3][3] calldata tri2) external view returns (bool) { return GeomUtils.areTrisClose(tri1,tri2); } function xareTrisPointsOverlapping(int256[3][3] calldata tri1,int256[3][3] calldata tri2) external view returns (bool) { return GeomUtils.areTrisPointsOverlapping(tri1,tri2); } function xisPointInTri(int256[3][3] calldata tri,int256[3] calldata p) external view returns (bool) { return GeomUtils.isPointInTri(tri,p); } function xisTriOverlappingWithTris(int256[3][3] calldata tri,int256[3][3][] calldata tris,uint256 nextTriIdx) external view returns (bool) { return GeomUtils.isTriOverlappingWithTris(tri,tris,nextTriIdx); } function xisPointCloseToLine(int256[3] calldata p,int256[3] calldata l1,int256[3] calldata l2) external view returns (bool) { return GeomUtils.isPointCloseToLine(p,l1,l2); } function xisTrisPointsCloseToLines(int256[3][3] calldata tri,int256[3][3][] calldata tris,uint256 nextTriIdx) external view returns (bool) { return GeomUtils.isTrisPointsCloseToLines(tri,tris,nextTriIdx); } function xisTriLegal(int256[3][3] calldata tri,int256[3][3][] calldata tris,uint256 nextTriIdx,int256 minTriRad) external view returns (bool) { return GeomUtils.isTriLegal(tri,tris,nextTriIdx,minTriRad); } function xattemptToAddTri(int256[3][3] calldata tri,bytes32 tokenHash,GeomUtils.TriVars calldata triVars,GeomUtils.GeomSpec calldata geomSpec) external view returns (bool) { return GeomUtils.attemptToAddTri(tri,tokenHash,triVars,geomSpec); } function xtriRotHelp(int256 axis,int256[3][3] calldata tri,int256 rot) external view returns (int256[3][3] memory) { return GeomUtils.triRotHelp(axis,tri,rot); } function xtriBfHelp(int256 axis,int256[3][3][] calldata trisBack,int256[3][3][] calldata trisFront,int256 rot) external view returns (int256[3][3][] memory, int256[3][3][] memory) { return GeomUtils.triBfHelp(axis,trisBack,trisFront,rot); } function xgetExtents(int256[3][3][] calldata tris) external view returns (int256[3][2] memory) { return GeomUtils.getExtents(tris); } function xcalculateZ(int256[3][3] calldata tri,bytes32 tokenHash,uint256 nextTriIdx,GeomUtils.GeomSpec calldata geomSpec,bool front) external view returns (int256) { return GeomUtils.calculateZ(tri,tokenHash,nextTriIdx,geomSpec,front); } function xgetSpecId(bytes32 tokenHash,int256[2][7] calldata weightings) external view returns (uint256) { return GeomUtils.getSpecId(tokenHash,weightings); } function xrandN(bytes32 randomSeed,string calldata seedModifier,int256 min,int256 max) external view returns (int256) { return GeomUtils.randN(randomSeed,seedModifier,min,max); } function xclipTrisToLength(int256[3][3][] calldata arr,uint256 desiredLen) external view returns (int256[3][3][] memory) { return GeomUtils.clipTrisToLength(arr,desiredLen); } function xclipZsToLength(int256[] calldata arr,uint256 desiredLen) external view returns (int256[] memory) { return GeomUtils.clipZsToLength(arr,desiredLen); } function xcopyTri(int256[3][3] calldata tri) external view returns (int256[3][3] memory) { return GeomUtils.copyTri(tri); } function xcopyTris(int256[3][3][] calldata tris) external view returns (int256[3][3][] memory) { return GeomUtils.copyTris(tris); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../contracts/ShackledMath.sol"; contract XShackledMath { constructor() {} function xmin(int256 a,int256 b) external pure returns (int256) { return ShackledMath.min(a,b); } function xmax(int256 a,int256 b) external pure returns (int256) { return ShackledMath.max(a,b); } function xmod(int256 n,int256 m) external pure returns (int256) { return ShackledMath.mod(n,m); } function xrandomIdx(bytes32 seedModifier,uint256 n,uint256 m) external pure returns (uint256[] memory) { return ShackledMath.randomIdx(seedModifier,n,m); } function xget2dArray(uint256 m,uint256 q,int256 value) external pure returns (int256[][] memory) { return ShackledMath.get2dArray(m,q,value); } function xabs(int256 x) external pure returns (int256) { return ShackledMath.abs(x); } function xsqrt(int256 y) external pure returns (int256) { return ShackledMath.sqrt(y); } function xhypot(int256 x,int256 y) external pure returns (int256) { return ShackledMath.hypot(x,y); } function xvector3Add(int256[3] calldata v1,int256[3] calldata v2) external pure returns (int256[3] memory) { return ShackledMath.vector3Add(v1,v2); } function xvector3Sub(int256[3] calldata v1,int256[3] calldata v2) external pure returns (int256[3] memory) { return ShackledMath.vector3Sub(v1,v2); } function xvector3MulScalar(int256[3] calldata v,int256 a) external pure returns (int256[3] memory) { return ShackledMath.vector3MulScalar(v,a); } function xvector3DivScalar(int256[3] calldata v,int256 a) external pure returns (int256[3] memory) { return ShackledMath.vector3DivScalar(v,a); } function xvector3Len(int256[3] calldata v) external pure returns (int256) { return ShackledMath.vector3Len(v); } function xvector3NormX(int256[3] calldata v,int256 fidelity) external pure returns (int256[3] memory) { return ShackledMath.vector3NormX(v,fidelity); } function xvector3Dot(int256[3] calldata v1,int256[3] calldata v2) external view returns (int256) { return ShackledMath.vector3Dot(v1,v2); } function xcrossProduct(int256[3] calldata v1,int256[3] calldata v2) external pure returns (int256[3] memory) { return ShackledMath.crossProduct(v1,v2); } function xvector12Lerp(int256[12] calldata v1,int256[12] calldata v2,int256 ir,int256 scaleFactor) external view returns (int256[12] memory) { return ShackledMath.vector12Lerp(v1,v2,ir,scaleFactor); } function xvector12Sub(int256[12] calldata v1,int256[12] calldata v2) external view returns (int256[12] memory) { return ShackledMath.vector12Sub(v1,v2); } function xmapRangeToRange(int256 num,int256 inMin,int256 inMax,int256 outMin,int256 outMax) external pure returns (int256) { return ShackledMath.mapRangeToRange(num,inMin,inMax,outMin,outMax); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../contracts/ShackledRasteriser.sol"; contract XShackledRasteriser { constructor() {} function xinitialiseFragments(int256[3][3][] calldata trisCameraSpace,int256[3][3][] calldata trisWorldSpace,int256[3][3][] calldata trisCols,int256 canvasDim) external view returns (int256[12][3][] memory) { return ShackledRasteriser.initialiseFragments(trisCameraSpace,trisWorldSpace,trisCols,canvasDim); } function xrasterise(int256[12][3][] calldata trisFragments,int256 canvasDim,bool wireframe) external view returns (int256[12][] memory) { return ShackledRasteriser.rasterise(trisFragments,canvasDim,wireframe); } function xrunBresenhamsAlgorithm(int256[12] calldata f1,int256[12] calldata f2,int256 canvasDim,int256[12][] calldata bresTriFragments,uint256 nextBresTriFragmentIx) external view returns (int256[12][] memory, uint256) { return ShackledRasteriser.runBresenhamsAlgorithm(f1,f2,canvasDim,bresTriFragments,nextBresTriFragmentIx); } function xbresenhamsInner(ShackledRasteriser.BresenhamsVars calldata vars,int256 mag,int256[12] calldata fa,int256[12] calldata fb,int256 canvasDim,int256[12][] calldata bresTriFragments,uint256 nextBresTriFragmentIx) external view returns (int256[12][] memory, uint256) { return ShackledRasteriser.bresenhamsInner(vars,mag,fa,fb,canvasDim,bresTriFragments,nextBresTriFragmentIx); } function xrunScanline(int256[12][] calldata bresTriFragments,int256[12][] calldata fragments,uint256 nextFragmentsIx,int256 canvasDim) external view returns (int256[12][] memory, uint256) { return ShackledRasteriser.runScanline(bresTriFragments,fragments,nextFragmentsIx,canvasDim); } function xgetRowFragIndices(int256[12][] calldata bresTriFragments,int256 canvasDim) external view returns (int256[][] memory, uint256[] memory) { return ShackledRasteriser.getRowFragIndices(bresTriFragments,canvasDim); } function xdepthTesting(int256[12][] calldata fragments,int256 canvasDim) external view returns (int256[12][] memory) { return ShackledRasteriser.depthTesting(fragments,canvasDim); } function xlightScene(int256[12][] calldata fragments,ShackledStructs.LightingParams calldata lp) external view returns (int256[12][] memory) { return ShackledRasteriser.lightScene(fragments,lp); } function xcalculateSpecular(int256 lightSpecPower,int256 hnDot,int256 fidelity,uint256 inverseShininess) external pure returns (int256) { return ShackledRasteriser.calculateSpecular(lightSpecPower,hnDot,fidelity,inverseShininess); } function xgetBackground(int256 canvasDim,int256[3][2] calldata backgroundColor) external view returns (int256[5][] memory) { return ShackledRasteriser.getBackground(canvasDim,backgroundColor); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../contracts/ShackledRenderer.sol"; contract XShackledRenderer { constructor() {} function xrender(ShackledStructs.RenderParams calldata renderParams,int256 canvasDim,bool returnSVG) external view returns (string memory) { return ShackledRenderer.render(renderParams,canvasDim,returnSVG); } function xprepareGeometryForRender(ShackledStructs.RenderParams calldata renderParams,int256 canvasDim) external view returns (int256[12][3][] memory) { return ShackledRenderer.prepareGeometryForRender(renderParams,canvasDim); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../contracts/ShackledStructs.sol"; contract XShackledStructs { constructor() {} }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../contracts/ShackledUtils.sol"; contract XShackledUtils { constructor() {} function xflattenTris(int256[3][3][] calldata tris) external pure returns (int256[3][] memory) { return ShackledUtils.flattenTris(tris); } function xunflattenVertsToTris(int256[3][] calldata verts) external pure returns (int256[3][3][] memory) { return ShackledUtils.unflattenVertsToTris(verts); } function xclipArray12ToLength(int256[12][] calldata arr,uint256 desiredLen) external pure returns (int256[12][] memory) { return ShackledUtils.clipArray12ToLength(arr,desiredLen); } function xuint2str(uint256 _i) external pure returns (string memory) { return ShackledUtils.uint2str(_i); } function xgetHex(uint256 _i) external pure returns (bytes memory) { return ShackledUtils.getHex(_i); } function xgetSVGContainer(string calldata encodedBitmap,int256 canvasDim,uint256 outputHeight,uint256 outputWidth) external view returns (string memory) { return ShackledUtils.getSVGContainer(encodedBitmap,canvasDim,outputHeight,outputWidth); } function xgetAttributes(ShackledStructs.Metadata calldata metadata) external pure returns (bytes memory) { return ShackledUtils.getAttributes(metadata); } function xgetEncodedMetadata(string calldata image,ShackledStructs.Metadata calldata metadata,uint256 tokenId) external view returns (string memory) { return ShackledUtils.getEncodedMetadata(image,metadata,tokenId); } function xgetEncodedBitmap(int256[12][] calldata fragments,int256[5][] calldata background,int256 canvasDim,bool invert) external view returns (string memory) { return ShackledUtils.getEncodedBitmap(fragments,background,canvasDim,invert); } function xwriteFragmentsToBytesArray(int256[12][] calldata fragments,bytes calldata bytesArray,uint256 canvasDimUnsigned,bool invert) external pure returns (bytes memory) { return ShackledUtils.writeFragmentsToBytesArray(fragments,bytesArray,canvasDimUnsigned,invert); } function xwriteBackgroundToBytesArray(int256[5][] calldata background,bytes calldata bytesArray,uint256 canvasDimUnsigned,bool invert) external pure returns (bytes memory) { return ShackledUtils.writeBackgroundToBytesArray(background,bytesArray,canvasDimUnsigned,invert); } } contract XBase64 { constructor() {} function xencode(bytes calldata data) external view returns (string memory) { return Base64.encode(data); } } contract XBytesUtils { constructor() {} function xchar(bytes1 b) external view returns (bytes1) { return BytesUtils.char(b); } function xbytes32string(bytes32 b32) external view returns (string memory) { return BytesUtils.bytes32string(b32); } function xhach(string calldata value) external view returns (string memory) { return BytesUtils.hach(value); } function xMergeBytes(bytes calldata a,bytes calldata b) external pure returns (bytes memory) { return BytesUtils.MergeBytes(a,b); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.6.0; import "../contracts/Trigonometry.sol"; contract XTrigonometry { constructor() {} function xsin(uint256 _angle) external pure returns (int256) { return Trigonometry.sin(_angle); } function xcos(uint256 _angle) external pure returns (int256) { return Trigonometry.cos(_angle); } }
{ "optimizer": { "enabled": true, "runs": 1 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "metadata": { "useLiteralContent": true }, "libraries": { "contracts/ShackledGenesis.sol": { "ShackledGenesis": "0xf30168b5983ea80007bf973b501cdd30b535a7de" }, "contracts/ShackledRenderer.sol": { "ShackledRenderer": "0x2221aab4a036dc5605c18c9cba4b947cf01995ce" } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"","type":"address"},{"indexed":false,"internalType":"uint256","name":"","type":"uint256"}],"name":"Received","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"canvasDim","outputs":[{"internalType":"int256","name":"","type":"int256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"signature","type":"bytes"},{"internalType":"uint256[]","name":"allowlistMintIds","type":"uint256[]"},{"internalType":"uint256[]","name":"dawnKeyMintIds","type":"uint256[]"}],"name":"checkSignature","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"tokenHash","type":"bytes32"}],"name":"generateGenesisPiece","outputs":[{"components":[{"internalType":"uint256[3][]","name":"faces","type":"uint256[3][]"},{"internalType":"int256[3][]","name":"verts","type":"int256[3][]"},{"internalType":"int256[3][]","name":"cols","type":"int256[3][]"},{"internalType":"int256[3]","name":"objPosition","type":"int256[3]"},{"internalType":"int256","name":"objScale","type":"int256"},{"internalType":"int256[3][2]","name":"backgroundColor","type":"int256[3][2]"},{"components":[{"internalType":"bool","name":"applyLighting","type":"bool"},{"internalType":"int256","name":"lightAmbiPower","type":"int256"},{"internalType":"int256","name":"lightDiffPower","type":"int256"},{"internalType":"int256","name":"lightSpecPower","type":"int256"},{"internalType":"uint256","name":"inverseShininess","type":"uint256"},{"internalType":"int256[3]","name":"lightPos","type":"int256[3]"},{"internalType":"int256[3]","name":"lightColSpec","type":"int256[3]"},{"internalType":"int256[3]","name":"lightColDiff","type":"int256[3]"},{"internalType":"int256[3]","name":"lightColAmbi","type":"int256[3]"}],"internalType":"struct ShackledStructs.LightingParams","name":"lightingParams","type":"tuple"},{"internalType":"bool","name":"perspCamera","type":"bool"},{"internalType":"bool","name":"backfaceCulling","type":"bool"},{"internalType":"bool","name":"invert","type":"bool"},{"internalType":"bool","name":"wireframe","type":"bool"}],"internalType":"struct ShackledStructs.RenderParams","name":"","type":"tuple"},{"components":[{"internalType":"string","name":"colorScheme","type":"string"},{"internalType":"string","name":"geomSpec","type":"string"},{"internalType":"uint256","name":"nPrisms","type":"uint256"},{"internalType":"string","name":"pseudoSymmetry","type":"string"},{"internalType":"string","name":"wireframe","type":"string"},{"internalType":"string","name":"inversion","type":"string"}],"internalType":"struct ShackledStructs.Metadata","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintState","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"outputHeight","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"outputWidth","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"},{"internalType":"uint256[]","name":"allowlistMintIds","type":"uint256[]"},{"internalType":"uint256[]","name":"dawnKeyMintIds","type":"uint256[]"},{"internalType":"bytes","name":"signature","type":"bytes"}],"name":"presaleMint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"presaleMintState","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"publicMint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"publicMintState","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"uint256[3][]","name":"faces","type":"uint256[3][]"},{"internalType":"int256[3][]","name":"verts","type":"int256[3][]"},{"internalType":"int256[3][]","name":"cols","type":"int256[3][]"},{"internalType":"int256[3]","name":"objPosition","type":"int256[3]"},{"internalType":"int256","name":"objScale","type":"int256"},{"internalType":"int256[3][2]","name":"backgroundColor","type":"int256[3][2]"},{"components":[{"internalType":"bool","name":"applyLighting","type":"bool"},{"internalType":"int256","name":"lightAmbiPower","type":"int256"},{"internalType":"int256","name":"lightDiffPower","type":"int256"},{"internalType":"int256","name":"lightSpecPower","type":"int256"},{"internalType":"uint256","name":"inverseShininess","type":"uint256"},{"internalType":"int256[3]","name":"lightPos","type":"int256[3]"},{"internalType":"int256[3]","name":"lightColSpec","type":"int256[3]"},{"internalType":"int256[3]","name":"lightColDiff","type":"int256[3]"},{"internalType":"int256[3]","name":"lightColAmbi","type":"int256[3]"}],"internalType":"struct ShackledStructs.LightingParams","name":"lightingParams","type":"tuple"},{"internalType":"bool","name":"perspCamera","type":"bool"},{"internalType":"bool","name":"backfaceCulling","type":"bool"},{"internalType":"bool","name":"invert","type":"bool"},{"internalType":"bool","name":"wireframe","type":"bool"}],"internalType":"struct ShackledStructs.RenderParams","name":"renderParams","type":"tuple"},{"internalType":"int256","name":"canvasDim_","type":"int256"},{"internalType":"bool","name":"returnSVG","type":"bool"}],"name":"render","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"int256","name":"canvasDim_","type":"int256"}],"name":"renderGenesis","outputs":[{"internalType":"string","name":"","type":"string"},{"components":[{"internalType":"uint256[3][]","name":"faces","type":"uint256[3][]"},{"internalType":"int256[3][]","name":"verts","type":"int256[3][]"},{"internalType":"int256[3][]","name":"cols","type":"int256[3][]"},{"internalType":"int256[3]","name":"objPosition","type":"int256[3]"},{"internalType":"int256","name":"objScale","type":"int256"},{"internalType":"int256[3][2]","name":"backgroundColor","type":"int256[3][2]"},{"components":[{"internalType":"bool","name":"applyLighting","type":"bool"},{"internalType":"int256","name":"lightAmbiPower","type":"int256"},{"internalType":"int256","name":"lightDiffPower","type":"int256"},{"internalType":"int256","name":"lightSpecPower","type":"int256"},{"internalType":"uint256","name":"inverseShininess","type":"uint256"},{"internalType":"int256[3]","name":"lightPos","type":"int256[3]"},{"internalType":"int256[3]","name":"lightColSpec","type":"int256[3]"},{"internalType":"int256[3]","name":"lightColDiff","type":"int256[3]"},{"internalType":"int256[3]","name":"lightColAmbi","type":"int256[3]"}],"internalType":"struct ShackledStructs.LightingParams","name":"lightingParams","type":"tuple"},{"internalType":"bool","name":"perspCamera","type":"bool"},{"internalType":"bool","name":"backfaceCulling","type":"bool"},{"internalType":"bool","name":"invert","type":"bool"},{"internalType":"bool","name":"wireframe","type":"bool"}],"internalType":"struct ShackledStructs.RenderParams","name":"","type":"tuple"},{"components":[{"internalType":"string","name":"colorScheme","type":"string"},{"internalType":"string","name":"geomSpec","type":"string"},{"internalType":"uint256","name":"nPrisms","type":"uint256"},{"internalType":"string","name":"pseudoSymmetry","type":"string"},{"internalType":"string","name":"wireframe","type":"string"},{"internalType":"string","name":"inversion","type":"string"}],"internalType":"struct ShackledStructs.Metadata","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reserveTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"reservedTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"returnSVG","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newMintState","type":"string"}],"name":"setMintState","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"tokenOfOwnerByIndex","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"tokenSeedHashes","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"txnQtyLimit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"int256","name":"_canvasDim","type":"int256"}],"name":"updateCanvasDim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_outputHeight","type":"uint256"}],"name":"updateOutputHeight","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_outputWidth","type":"uint256"}],"name":"updateOutputWidth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6a1c1d589b1a58d7db5a5b9d60aa1b60a052600b60809081527fcdd7d061e49016e1abc8da550a7215ed1e2e2a022a5343d4cc76543f22722f90600c556670726573616c6560c81b60cb52600760ab5260d26040527ffce1f8023251ee9a58cde326b283d0e49836b5014750b2675f70be773cc85351600d55610400600e55670214e8348c4f0000600f55601460108190556005601155601391909155610200908190556015556016805460ff19166001179055348015620000c057600080fd5b506040518060400160405280600881526020016714da1858dadb195960c21b8152506040518060400160405280600881526020016714d21050d2d3115160c21b81525081600090805190602001906200011b929190620001aa565b50805162000131906001906020840190620001aa565b5050506200014e620001486200015460201b60201c565b62000158565b6200028d565b3390565b600a80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b828054620001b89062000250565b90600052602060002090601f016020900481019282620001dc576000855562000227565b82601f10620001f757805160ff191683800117855562000227565b8280016001018555821562000227579182015b82811115620002275782518255916020019190600101906200020a565b506200023592915062000239565b5090565b5b808211156200023557600081556001016200023a565b600181811c908216806200026557607f821691505b602082108114156200028757634e487b7160e01b600052602260045260246000fd5b50919050565b6144e0806200029d6000396000f3fe6080604052600436106101f05760003560e01c806301ffc9a714610234578063040fc8831461026957806306fdde031461028d578063081812fc146102af57806308fc550e146102e7578063095ea7b3146103095780630a786354146103295780630e19bf381461033f5780631073ba181461035257806315a553471461037257806318160ddd1461038857806322ab47a11461039d57806323b872dd146103b357806327ac36c4146103d35780632db11544146103e85780632f745c59146103fb5780633e63166e1461041b578063407670021461043b57806342842e0e146104685780634f065fd8146104885780634f6ccce71461049e5780635a3805a9146104be5780635d854cfd146104ed5780636352211e1461050d5780636817c76c1461052d57806370a0823114610543578063715018a61461056357806385177e62146105785780638da5cb5b1461058e57806395d89b41146105a3578063a0ef91df146105b8578063a22cb465146105cd578063b88d4fde146105ed578063b94d530e1461060d578063c051e38a14610627578063c87b56dd1461063d578063cfa077db1461065d578063d5abeb0114610673578063e599844714610689578063e985e9c5146106a9578063ee66290c146106c9578063f2fde38b146106e9578063ff1ad4321461070957600080fd5b3661022f57604080513381523460208201527f88a5966d370b9919b20f3e2c13ff65706f196a4e32cc2c12bf57088f88525874910160405180910390a1005b600080fd5b34801561024057600080fd5b5061025461024f366004612a8d565b610737565b60405190151581526020015b60405180910390f35b34801561027557600080fd5b5061027f60135481565b604051908152602001610260565b34801561029957600080fd5b506102a2610762565b6040516102609190612b09565b3480156102bb57600080fd5b506102cf6102ca366004612b1c565b6107f4565b6040516001600160a01b039091168152602001610260565b3480156102f357600080fd5b50610307610302366004612c92565b610881565b005b34801561031557600080fd5b50610307610324366004612cf6565b6108df565b34801561033557600080fd5b5061027f60145481565b61030761034d366004612d64565b6109f0565b34801561035e57600080fd5b5061025461036d366004612e54565b610ce4565b34801561037e57600080fd5b5061027f60105481565b34801561039457600080fd5b5060085461027f565b3480156103a957600080fd5b5061027f600c5481565b3480156103bf57600080fd5b506103076103ce366004612ee8565b610da4565b3480156103df57600080fd5b50610307610dd5565b6103076103f6366004612b1c565b610e47565b34801561040757600080fd5b5061027f610416366004612cf6565b610fd2565b34801561042757600080fd5b50610307610436366004612b1c565b611068565b34801561044757600080fd5b5061027f610456366004612b1c565b60126020526000908152604090205481565b34801561047457600080fd5b50610307610483366004612ee8565b61109c565b34801561049457600080fd5b5061027f60155481565b3480156104aa57600080fd5b5061027f6104b9366004612b1c565b6110b7565b3480156104ca57600080fd5b506104de6104d9366004612f24565b61114a565b60405161026093929190613212565b3480156104f957600080fd5b506102a26105083660046134ee565b6112a7565b34801561051957600080fd5b506102cf610528366004612b1c565b611341565b34801561053957600080fd5b5061027f600f5481565b34801561054f57600080fd5b5061027f61055e366004613649565b6113b8565b34801561056f57600080fd5b5061030761143f565b34801561058457600080fd5b5061027f600d5481565b34801561059a57600080fd5b506102cf61147a565b3480156105af57600080fd5b506102a2611489565b3480156105c457600080fd5b50610307611498565b3480156105d957600080fd5b506103076105e8366004613664565b611557565b3480156105f957600080fd5b5061030761060836600461369b565b611562565b34801561061957600080fd5b506016546102549060ff1681565b34801561063357600080fd5b5061027f600b5481565b34801561064957600080fd5b506102a2610658366004612b1c565b61159a565b34801561066957600080fd5b5061027f60115481565b34801561067f57600080fd5b5061027f600e5481565b34801561069557600080fd5b506103076106a4366004612b1c565b611634565b3480156106b557600080fd5b506102546106c4366004613702565b611668565b3480156106d557600080fd5b506103076106e4366004612b1c565b611696565b3480156106f557600080fd5b50610307610704366004613649565b6116ca565b34801561071557600080fd5b50610729610724366004612b1c565b611767565b604051610260929190613735565b60006001600160e01b0319821663780e9d6360e01b148061075c575061075c8261180a565b92915050565b6060600080546107719061375a565b80601f016020809104026020016040519081016040528092919081815260200182805461079d9061375a565b80156107ea5780601f106107bf576101008083540402835291602001916107ea565b820191906000526020600020905b8154815290600101906020018083116107cd57829003601f168201915b5050505050905090565b60006107ff8261185a565b6108655760405162461bcd60e51b815260206004820152602c60248201527f4552433732313a20617070726f76656420717565727920666f72206e6f6e657860448201526b34b9ba32b73a103a37b5b2b760a11b60648201526084015b60405180910390fd5b506000908152600460205260409020546001600160a01b031690565b3361088a61147a565b6001600160a01b0316146108b05760405162461bcd60e51b815260040161085c90613795565b806040516020016108c191906137e6565b60408051601f198184030181529190528051602090910120600b5550565b60006108ea82611341565b9050806001600160a01b0316836001600160a01b031614156109585760405162461bcd60e51b815260206004820152602160248201527f4552433732313a20617070726f76616c20746f2063757272656e74206f776e656044820152603960f91b606482015260840161085c565b336001600160a01b038216148061097457506109748133611668565b6109e15760405162461bcd60e51b815260206004820152603860248201527f4552433732313a20617070726f76652063616c6c6572206973206e6f74206f776044820152771b995c881b9bdc88185c1c1c9bdd995908199bdc88185b1b60421b606482015260840161085c565b6109eb8383611877565b505050565b600b54600d5414610a405760405162461bcd60e51b815260206004820152601a60248201527950726573616c65206d696e74206973206e6f742061637469766560301b604482015260640161085c565b610a8582828080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152508a925089915088905087610ce4565b610ac55760405162461bcd60e51b8152602060048201526011602482015270496e76616c6964207369676e617475726560781b604482015260640161085c565b6000610ad18487613818565b905080610add336113b8565b610ae7908a613818565b1115610b355760405162461bcd60e51b815260206004820152601e60248201527f5175616e746974792072657175657374656420697320746f6f20686967680000604482015260640161085c565b6000805b85811015610b9757610b62878783818110610b5657610b56613830565b9050602002013561185a565b610b855789821015610b805781610b7881613846565b925050610b85565b610b97565b80610b8f81613846565b915050610b39565b506000610ba4828b613861565b905080600f54610bb49190613878565b341015610bd35760405162461bcd60e51b815260040161085c90613897565b6000805b84811015610c83578b8261ffff161415610bf057610c83565b878110600081610c21578c8c610c068c86613861565b818110610c1557610c15613830565b90506020020135610c3b565b8a8a84818110610c3357610c33613830565b905060200201355b9050610c468161185a565b15610c52575050610c73565b610c5c33826118e5565b610c65816118ff565b610c6e846138cb565b935050505b610c7c81613846565b9050610bd7565b508a8161ffff1614610cd75760405162461bcd60e51b815260206004820152601d60248201527f526571756573746564207175616e74697479206e6f74206d696e746564000000604482015260640161085c565b5050505050505050505050565b600080303387878787604051602001610d0296959493929190613923565b6040516020818303038152906040528051906020012090506000610d7b610d75836040517b0ca2ba3432b932bab69029b4b3b732b21026b2b9b9b0b3b29d05199960211b6020820152603c8101829052600090605c01604051602081830303815290604052805190602001209050919050565b89611a03565b90506000610d8761147a565b6001600160a01b0390811692169190911498975050505050505050565b610dae3382611a27565b610dca5760405162461bcd60e51b815260040161085c90613970565b6109eb838383611ae9565b33610dde61147a565b6001600160a01b031614610e045760405162461bcd60e51b815260040161085c90613795565b60005b601054811015610e44576000610e1c60085490565b9050610e2833826118e5565b610e31816118ff565b5080610e3c81613846565b915050610e07565b50565b600c54600b5414610e965760405162461bcd60e51b81526020600482015260196024820152785075626c6963206d696e74206973206e6f742061637469766560381b604482015260640161085c565b601154811115610ee55760405162461bcd60e51b815260206004820152601a602482015279145d585b9d1a5d1e48195e18d959591cc81d1e1b881b1a5b5a5d60321b604482015260640161085c565b80600f54610ef39190613878565b341015610f125760405162461bcd60e51b815260040161085c90613897565b600e5481610f1f60085490565b610f299190613818565b1115610f775760405162461bcd60e51b815260206004820152601d60248201527f496e73756666696369656e7420737570706c792072656d61696e696e67000000604482015260640161085c565b6000805b600e548110156109eb57610f8e8161185a565b610fb357610f9c33826118e5565b610fa5816118ff565b81610faf81613846565b9250505b82821415610fc057505050565b80610fca81613846565b915050610f7b565b6000610fdd836113b8565b821061103f5760405162461bcd60e51b815260206004820152602b60248201527f455243373231456e756d657261626c653a206f776e657220696e646578206f7560448201526a74206f6620626f756e647360a81b606482015260840161085c565b506001600160a01b03919091166000908152600660209081526040808320938352929052205490565b3361107161147a565b6001600160a01b0316146110975760405162461bcd60e51b815260040161085c90613795565b601455565b6109eb83838360405180602001604052806000815250611562565b60006110c260085490565b82106111255760405162461bcd60e51b815260206004820152602c60248201527f455243373231456e756d657261626c653a20676c6f62616c20696e646578206f60448201526b7574206f6620626f756e647360a01b606482015260840161085c565b6008828154811061113857611138613830565b90600052602060002001549050919050565b6060611154612925565b61115c612991565b6000858152601260205260408082205490516001627295e760e11b0319815260048101829052909190819073f30168b5983ea80007bf973b501cdd30b535a7de9063ff1ad4329060240160006040518083038186803b1580156111be57600080fd5b505af41580156111d2573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526111fa9190810190613d26565b60165460405163fafbbc1560e01b8152929450909250600091732221aab4a036dc5605c18c9cba4b947cf01995ce9163fafbbc15916112439187918d9160ff1690600401613ee2565b60006040518083038186803b15801561125b57600080fd5b505af415801561126f573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526112979190810190613fd4565b9650919450925050509250925092565b60405163fafbbc1560e01b8152606090732221aab4a036dc5605c18c9cba4b947cf01995ce9063fafbbc15906112e590879087908790600401613ee2565b60006040518083038186803b1580156112fd57600080fd5b505af4158015611311573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526113399190810190613fd4565b949350505050565b6000818152600260205260408120546001600160a01b03168061075c5760405162461bcd60e51b815260206004820152602960248201527f4552433732313a206f776e657220717565727920666f72206e6f6e657869737460448201526832b73a103a37b5b2b760b91b606482015260840161085c565b60006001600160a01b0382166114235760405162461bcd60e51b815260206004820152602a60248201527f4552433732313a2062616c616e636520717565727920666f7220746865207a65604482015269726f206164647265737360b01b606482015260840161085c565b506001600160a01b031660009081526003602052604090205490565b3361144861147a565b6001600160a01b03161461146e5760405162461bcd60e51b815260040161085c90613795565b6114786000611c82565b565b600a546001600160a01b031690565b6060600180546107719061375a565b336114a161147a565b6001600160a01b0316146114c75760405162461bcd60e51b815260040161085c90613795565b6040514790600090339083908381818185875af1925050503d806000811461150b576040519150601f19603f3d011682016040523d82523d6000602084013e611510565b606091505b50509050806115535760405162461bcd60e51b815260206004820152600f60248201526e15da5d1a191c985dc819985a5b1959608a1b604482015260640161085c565b5050565b611553338383611cd4565b61156c3383611a27565b6115885760405162461bcd60e51b815260040161085c90613970565b61159484848484611d9f565b50505050565b60606115a58261185a565b6116095760405162461bcd60e51b815260206004820152602f60248201527f4552433732314d657461646174613a2055524920717565727920666f72206e6f60448201526e3732bc34b9ba32b73a103a37b5b2b760891b606482015260840161085c565b600080600061161a8560135461114a565b92509250925061162b838287611dd2565b95945050505050565b3361163d61147a565b6001600160a01b0316146116635760405162461bcd60e51b815260040161085c90613795565b601355565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b3361169f61147a565b6001600160a01b0316146116c55760405162461bcd60e51b815260040161085c90613795565b601555565b336116d361147a565b6001600160a01b0316146116f95760405162461bcd60e51b815260040161085c90613795565b6001600160a01b03811661175e5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161085c565b610e4481611c82565b61176f612925565b611777612991565b6040516001627295e760e11b031981526004810184905273f30168b5983ea80007bf973b501cdd30b535a7de9063ff1ad4329060240160006040518083038186803b1580156117c557600080fd5b505af41580156117d9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526118019190810190613d26565b91509150915091565b60006001600160e01b031982166380ac58cd60e01b148061183b57506001600160e01b03198216635b5e139f60e01b145b8061075c57506301ffc9a760e01b6001600160e01b031983161461075c565b6000908152600260205260409020546001600160a01b0316151590565b600081815260046020526040902080546001600160a01b0319166001600160a01b03841690811790915581906118ac82611341565b6001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45050565b611553828260405180602001604052806000815250611e59565b6119088161185a565b61194d5760405162461bcd60e51b8152602060048201526016602482015275151bdad95b925908191bd95cc81b9bdd08195e1a5cdd60521b604482015260640161085c565b600081815260126020526040902054156119a15760405162461bcd60e51b815260206004820152601560248201527414d95959081a185cda08185b1c9958591e481cd95d605a1b604482015260640161085c565b424433836040516020016119db9493929190938452602084019290925260601b6001600160601b0319166040830152605482015260740190565b60408051601f1981840301815291815281516020928301206000938452601290925290912055565b6000806000611a128585611e8c565b91509150611a1f81611efc565b509392505050565b6000611a328261185a565b611a935760405162461bcd60e51b815260206004820152602c60248201527f4552433732313a206f70657261746f7220717565727920666f72206e6f6e657860448201526b34b9ba32b73a103a37b5b2b760a11b606482015260840161085c565b6000611a9e83611341565b9050806001600160a01b0316846001600160a01b03161480611ad95750836001600160a01b0316611ace846107f4565b6001600160a01b0316145b8061133957506113398185611668565b826001600160a01b0316611afc82611341565b6001600160a01b031614611b645760405162461bcd60e51b815260206004820152602960248201527f4552433732313a207472616e73666572206f6620746f6b656e2074686174206960448201526839903737ba1037bbb760b91b606482015260840161085c565b6001600160a01b038216611bc65760405162461bcd60e51b8152602060048201526024808201527f4552433732313a207472616e7366657220746f20746865207a65726f206164646044820152637265737360e01b606482015260840161085c565b611bd18383836120b2565b611bdc600082611877565b6001600160a01b0383166000908152600360205260408120805460019290611c05908490613861565b90915550506001600160a01b0382166000908152600360205260408120805460019290611c33908490613818565b909155505060008181526002602052604080822080546001600160a01b0319166001600160a01b0386811691821790925591518493918716916000805160206143b683398151915291a4505050565b600a80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b816001600160a01b0316836001600160a01b03161415611d325760405162461bcd60e51b815260206004820152601960248201527822a9219b99189d1030b8383937bb32903a379031b0b63632b960391b604482015260640161085c565b6001600160a01b03838116600081815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b611daa848484611ae9565b611db68484848461216a565b6115945760405162461bcd60e51b815260040161085c90614008565b6060600060405180610100016040528060d581526020016143d660d591399050611e30611dfe84612277565b82611e088761239f565b88604051602001611e1c949392919061405a565b6040516020818303038152906040526123f2565b604051602001611e40919061412e565b6040516020818303038152906040529150509392505050565b611e638383612557565b611e70600084848461216a565b6109eb5760405162461bcd60e51b815260040161085c90614008565b600080825160411415611ec35760208301516040840151606085015160001a611eb787828585612683565b94509450505050611ef5565b825160401415611eed5760208301516040840151611ee2868383612766565b935093505050611ef5565b506000905060025b9250929050565b6000816004811115611f1057611f10614173565b1415611f195750565b6001816004811115611f2d57611f2d614173565b1415611f765760405162461bcd60e51b815260206004820152601860248201527745434453413a20696e76616c6964207369676e617475726560401b604482015260640161085c565b6002816004811115611f8a57611f8a614173565b1415611fd85760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161085c565b6003816004811115611fec57611fec614173565b14156120455760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161085c565b600481600481111561205957612059614173565b1415610e445760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202776272076616c604482015261756560f01b606482015260840161085c565b6001600160a01b03831661210d5761210881600880546000838152600960205260408120829055600182018355919091527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee30155565b612130565b816001600160a01b0316836001600160a01b031614612130576121308382612795565b6001600160a01b038216612147576109eb81612832565b826001600160a01b0316826001600160a01b0316146109eb576109eb82826128e1565b60006001600160a01b0384163b1561226c57604051630a85bd0160e11b81526001600160a01b0385169063150b7a02906121ae903390899088908890600401614189565b602060405180830381600087803b1580156121c857600080fd5b505af19250505080156121f8575060408051601f3d908101601f191682019092526121f5918101906141bc565b60015b612252573d808015612226576040519150601f19603f3d011682016040523d82523d6000602084013e61222b565b606091505b50805161224a5760405162461bcd60e51b815260040161085c90614008565b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050611339565b506001949350505050565b60608161229b5750506040805180820190915260018152600360fc1b602082015290565b8160005b81156122c557806122af81613846565b91506122be9050600a836141d9565b915061229f565b6000816001600160401b038111156122df576122df612b35565b6040519080825280601f01601f191660200182016040528015612309576020820181803683370190505b509050815b85156123965761231f600182613861565b9050600061232e600a886141d9565b61233990600a613878565b6123439088613861565b61234e9060306141fb565b905060008160f81b90508084848151811061236b5761236b613830565b60200101906001600160f81b031916908160001a90535061238d600a896141d9565b9750505061230e565b50949350505050565b606081602001518260000151836060015184608001518560a001516123c78760400151612277565b6040516020016123dc96959493929190614220565b6040516020818303038152906040529050919050565b805160609080612412575050604080516020810190915260008152919050565b60006003612421836002613818565b61242b91906141d9565b612436906004613878565b90506000612445826020613818565b6001600160401b0381111561245c5761245c612b35565b6040519080825280601f01601f191660200182016040528015612486576020820181803683370190505b5090506000604051806060016040528060408152602001614376604091399050600181016020830160005b86811015612512576003818a01810151603f601282901c8116860151600c83901c8216870151600684901c831688015192909316870151600891821b60ff94851601821b92841692909201901b91160160e01b8352600490920191016124b1565b50600386066001811461252c576002811461253d57612549565b613d3d60f01b600119830152612549565b603d60f81b6000198301525b505050918152949350505050565b6001600160a01b0382166125ad5760405162461bcd60e51b815260206004820181905260248201527f4552433732313a206d696e7420746f20746865207a65726f2061646472657373604482015260640161085c565b6125b68161185a565b156126025760405162461bcd60e51b815260206004820152601c60248201527b115490cdcc8c4e881d1bdad95b88185b1c9958591e481b5a5b9d195960221b604482015260640161085c565b61260e600083836120b2565b6001600160a01b0382166000908152600360205260408120805460019290612637908490613818565b909155505060008181526002602052604080822080546001600160a01b0319166001600160a01b03861690811790915590518392906000805160206143b6833981519152908290a45050565b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b038311156126b0575060009050600361275d565b8460ff16601b141580156126c857508460ff16601c14155b156126d9575060009050600461275d565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561272d573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166127565760006001925092505061275d565b9150600090505b94509492505050565b6000806001600160ff1b03831660ff84901c601b0161278787828885612683565b935093505050935093915050565b600060016127a2846113b8565b6127ac9190613861565b6000838152600760205260409020549091508082146127ff576001600160a01b03841660009081526006602090815260408083208584528252808320548484528184208190558352600790915290208190555b5060009182526007602090815260408084208490556001600160a01b039094168352600681528383209183525290812055565b60085460009061284490600190613861565b6000838152600960205260408120546008805493945090928490811061286c5761286c613830565b90600052602060002001549050806008838154811061288d5761288d613830565b60009182526020808320909101929092558281526009909152604080822084905585825281205560088054806128c5576128c561435f565b6001900381819060005260206000200160009055905550505050565b60006128ec836113b8565b6001600160a01b039093166000908152600660209081526040808320868452825280832085905593825260079052919091209190915550565b60405180610160016040528060608152602001606081526020016060815260200161294e6129c7565b8152602001600081526020016129626129e5565b815260200161296f612a12565b8152600060208201819052604082018190526060820181905260809091015290565b6040518060c001604052806060815260200160608152602001600081526020016060815260200160608152602001606081525090565b60405180606001604052806003906020820280368337509192915050565b60405180604001604052806002905b6129fc6129c7565b8152602001906001900390816129f45790505090565b60405180610120016040528060001515815260200160008152602001600081526020016000815260200160008152602001612a4b6129c7565b8152602001612a586129c7565b8152602001612a656129c7565b8152602001612a726129c7565b905290565b6001600160e01b031981168114610e4457600080fd5b600060208284031215612a9f57600080fd5b8135612aaa81612a77565b9392505050565b60005b83811015612acc578181015183820152602001612ab4565b838111156115945750506000910152565b60008151808452612af5816020860160208601612ab1565b601f01601f19169290920160200192915050565b602081526000612aaa6020830184612add565b600060208284031215612b2e57600080fd5b5035919050565b634e487b7160e01b600052604160045260246000fd5b60405161012081016001600160401b0381118282101715612b6e57612b6e612b35565b60405290565b60405161016081016001600160401b0381118282101715612b6e57612b6e612b35565b60405160c081016001600160401b0381118282101715612b6e57612b6e612b35565b604051606081016001600160401b0381118282101715612b6e57612b6e612b35565b604080519081016001600160401b0381118282101715612b6e57612b6e612b35565b604051601f8201601f191681016001600160401b0381118282101715612c2557612c25612b35565b604052919050565b60006001600160401b03821115612c4657612c46612b35565b50601f01601f191660200190565b6000612c67612c6284612c2d565b612bfd565b9050828152838383011115612c7b57600080fd5b828260208301376000602084830101529392505050565b600060208284031215612ca457600080fd5b81356001600160401b03811115612cba57600080fd5b8201601f81018413612ccb57600080fd5b61133984823560208401612c54565b80356001600160a01b0381168114612cf157600080fd5b919050565b60008060408385031215612d0957600080fd5b612d1283612cda565b946020939093013593505050565b60008083601f840112612d3257600080fd5b5081356001600160401b03811115612d4957600080fd5b6020830191508360208260051b8501011115611ef557600080fd5b60008060008060008060006080888a031215612d7f57600080fd5b8735965060208801356001600160401b0380821115612d9d57600080fd5b612da98b838c01612d20565b909850965060408a0135915080821115612dc257600080fd5b612dce8b838c01612d20565b909650945060608a0135915080821115612de757600080fd5b818a0191508a601f830112612dfb57600080fd5b813581811115612e0a57600080fd5b8b6020828501011115612e1c57600080fd5b60208301945080935050505092959891949750929550565b600082601f830112612e4557600080fd5b612aaa83833560208501612c54565b600080600080600060608688031215612e6c57600080fd5b85356001600160401b0380821115612e8357600080fd5b612e8f89838a01612e34565b96506020880135915080821115612ea557600080fd5b612eb189838a01612d20565b90965094506040880135915080821115612eca57600080fd5b50612ed788828901612d20565b969995985093965092949392505050565b600080600060608486031215612efd57600080fd5b612f0684612cda565b9250612f1460208501612cda565b9150604084013590509250925092565b60008060408385031215612f3757600080fd5b50508035926020909101359150565b60008151808452602080850194508084016000805b84811015612f9b57825188835b6003811015612f8557825182529186019190860190600101612f68565b5050506060979097019691830191600101612f5b565b50959695505050505050565b8060005b6003811015611594578151845260209384019390910190600101612fab565b600081518084526020808501945080840160005b8381101561300457612ff1878351612fa7565b6060969096019590820190600101612fde565b509495945050505050565b8060005b600281101561159457613027848351612fa7565b6060939093019260209190910190600101613013565b8051151582526020810151602083015260408101516040830152606081015160608301526080810151608083015260a081015161307d60a0840182612fa7565b5060c081015161010061309281850183612fa7565b60e083015191506130a7610160850183612fa7565b82015190506109eb6101c0840182612fa7565b600061044082518185526130d082860182612f46565b915050602083015184820360208601526130ea8282612fca565b915050604083015184820360408601526131048282612fca565b91505060608301516131196060860182612fa7565b50608083015160c085015260a083015161313660e086018261300f565b5060c083015161314a6101a086018261303d565b5060e083015115156103c085015261010083015115156103e0850152610120830151151561040085015261014090920151151561042090930192909252919050565b6000815160c084526131a160c0850182612add565b9050602083015184820360208601526131ba8282612add565b91505060408301516040850152606083015184820360608601526131de8282612add565b915050608083015184820360808601526131f88282612add565b91505060a083015184820360a086015261162b8282612add565b6060815260006132256060830186612add565b828103602084015261323781866130ba565b9050828103604084015261324b818561318c565b9695505050505050565b60006001600160401b0382111561326e5761326e612b35565b5060051b60200190565b6000601f838184011261328a57600080fd5b8235602061329a612c6283613255565b828152606092830286018201928282019190888511156132b957600080fd5b8388015b858110156133175789878201126132d45760008081fd5b6132dc612bb9565b808383018c8111156132ee5760008081fd5b835b8181101561330757803584529288019288016132f0565b50508552509284019281016132bd565b509098975050505050505050565b600082601f83011261333657600080fd5b61333e612bb9565b80606084018581111561335057600080fd5b845b8181101561336a578035845260209384019301613352565b509095945050505050565b600082601f83011261338657600080fd5b81356020613396612c6283613255565b828152606092830285018201928282019190878511156133b557600080fd5b8387015b858110156133d8576133cb8982613325565b84529284019281016133b9565b5090979650505050505050565b600082601f8301126133f657600080fd5b6133fe612bdb565b8060c084018581111561341057600080fd5b845b8181101561336a576134248782613325565b8452602090930192606001613412565b8015158114610e4457600080fd5b8035612cf181613434565b6000610220828403121561346057600080fd5b613468612b4b565b905061347382613442565b8152602082013560208201526040820135604082015260608201356060820152608082013560808201526134aa8360a08401613325565b60a08201526101006134be84828501613325565b60c08301526134d1846101608501613325565b60e08301526134e4846101c08501613325565b9082015292915050565b60008060006060848603121561350357600080fd5b83356001600160401b038082111561351a57600080fd5b90850190610440828803121561352f57600080fd5b613537612b74565b82358281111561354657600080fd5b61355289828601613278565b82525060208301358281111561356757600080fd5b61357389828601613375565b60208301525060408301358281111561358b57600080fd5b61359789828601613375565b6040830152506135aa8860608501613325565b606082015260c083013560808201526135c68860e085016133e5565b60a08201526135d9886101a0850161344d565b60c08201526135eb6103c08401613442565b60e08201526135fd6103e08401613442565b6101008201526136106104008401613442565b6101208201526136236104208401613442565b610140820152945050506020840135915061364060408501613442565b90509250925092565b60006020828403121561365b57600080fd5b612aaa82612cda565b6000806040838503121561367757600080fd5b61368083612cda565b9150602083013561369081613434565b809150509250929050565b600080600080608085870312156136b157600080fd5b6136ba85612cda565b93506136c860208601612cda565b92506040850135915060608501356001600160401b038111156136ea57600080fd5b6136f687828801612e34565b91505092959194509250565b6000806040838503121561371557600080fd5b61371e83612cda565b915061372c60208401612cda565b90509250929050565b60408152600061374860408301856130ba565b828103602084015261162b818561318c565b600181811c9082168061376e57607f821691505b6020821081141561378f57634e487b7160e01b600052602260045260246000fd5b50919050565b6020808252818101527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604082015260600190565b600081516137dc818560208601612ab1565b9290920192915050565b600082516137f8818460208701612ab1565b9190910192915050565b634e487b7160e01b600052601160045260246000fd5b6000821982111561382b5761382b613802565b500190565b634e487b7160e01b600052603260045260246000fd5b600060001982141561385a5761385a613802565b5060010190565b60008282101561387357613873613802565b500390565b600081600019048311821515161561389257613892613802565b500290565b6020808252601a9082015279125b9cdd59999a58da595b9d081d985b1d59481d1bc81b5a5b9d60321b604082015260600190565b600061ffff808316818114156138e3576138e3613802565b6001019392505050565b81835260006001600160fb1b0383111561390657600080fd5b8260051b8083602087013760009401602001938452509192915050565b6001600160a01b0387811682528616602082015260806040820181905260009061395090830186886138ed565b82810360608401526139638185876138ed565b9998505050505050505050565b60208082526031908201527f4552433732313a207472616e736665722063616c6c6572206973206e6f74206f6040820152701ddb995c881b9bdc88185c1c1c9bdd9959607a1b606082015260800190565b6000601f83818401126139d357600080fd5b825160206139e3612c6283613255565b82815260609283028601820192828201919088851115613a0257600080fd5b8388015b85811015613317578987820112613a1d5760008081fd5b613a25612bb9565b808383018c811115613a375760008081fd5b835b81811015613a505780518452928801928801613a39565b5050855250928401928101613a06565b600082601f830112613a7157600080fd5b613a79612bb9565b806060840185811115613a8b57600080fd5b845b8181101561336a578051845260209384019301613a8d565b600082601f830112613ab657600080fd5b81516020613ac6612c6283613255565b82815260609283028501820192828201919087851115613ae557600080fd5b8387015b858110156133d857613afb8982613a60565b8452928401928101613ae9565b600082601f830112613b1957600080fd5b613b21612bdb565b8060c0840185811115613b3357600080fd5b845b8181101561336a57613b478782613a60565b8452602090930192606001613b35565b8051612cf181613434565b60006102208284031215613b7557600080fd5b613b7d612b4b565b9050613b8882613b57565b815260208201516020820152604082015160408201526060820151606082015260808201516080820152613bbf8360a08401613a60565b60a0820152610100613bd384828501613a60565b60c0830152613be6846101608501613a60565b60e08301526134e4846101c08501613a60565b600082601f830112613c0a57600080fd5b8151613c18612c6282612c2d565b818152846020838601011115613c2d57600080fd5b611339826020830160208701612ab1565b600060c08284031215613c5057600080fd5b613c58612b97565b82519091506001600160401b0380821115613c7257600080fd5b613c7e85838601613bf9565b83526020840151915080821115613c9457600080fd5b613ca085838601613bf9565b6020840152604084015160408401526060840151915080821115613cc357600080fd5b613ccf85838601613bf9565b60608401526080840151915080821115613ce857600080fd5b613cf485838601613bf9565b608084015260a0840151915080821115613d0d57600080fd5b50613d1a84828501613bf9565b60a08301525092915050565b60008060408385031215613d3957600080fd5b82516001600160401b0380821115613d5057600080fd5b908401906104408287031215613d6557600080fd5b613d6d612b74565b825182811115613d7c57600080fd5b613d88888286016139c1565b825250602083015182811115613d9d57600080fd5b613da988828601613aa5565b602083015250604083015182811115613dc157600080fd5b613dcd88828601613aa5565b604083015250613de08760608501613a60565b606082015260c08301516080820152613dfc8760e08501613b08565b60a0820152613e0f876101a08501613b62565b60c0820152613e216103c08401613b57565b60e0820152613e336103e08401613b57565b610100820152613e466104008401613b57565b610120820152613e596104208401613b57565b6101408201526020860151909450915080821115613e7657600080fd5b50613e8385828601613c3e565b9150509250929050565b60008151808452602080850194508084016000805b84811015612f9b57825188835b6003811015613ecc57825182529186019190860190600101613eaf565b5050506060979097019691830191600101613ea2565b6060815260008451610440806060850152613f016104a0850183613e8d565b91506020870151605f1980868503016080870152613f1f8483612fca565b935060408901519150808685030160a087015250613f3d8382612fca565b9250506060870151613f5260c0860182612fa7565b506080870151610120818187015260a08901519150610140613f768188018461300f565b60c08a01519250613f8b61020088018461303d565b60e08a015115156104208801526101008a015115159387019390935288015115156104608601525086015115156104808401526020830185905283151560408401529050611339565b600060208284031215613fe657600080fd5b81516001600160401b03811115613ffc57600080fd5b61133984828501613bf9565b60208082526032908201527f4552433732313a207472616e7366657220746f206e6f6e20455243373231526560408201527131b2b4bb32b91034b6b83632b6b2b73a32b960711b606082015260800190565b7b7b226e616d65223a2022536861636b6c65642047656e65736973202360201b8152845160009061409281601c850160208a01612ab1565b6201116160ed1b601c9184019182015285516140b581601f840160208a01612ab1565b6e16101130ba3a3934b13aba32b9911d60891b601f929091019182015284516140e581602e840160208901612ab1565b6a16101134b6b0b3b2911d1160a91b602e92909101918201528351614111816039840160208801612ab1565b61227d60f01b60399290910191820152603b019695505050505050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081526000825161416681601d850160208701612ab1565b91909101601d0192915050565b634e487b7160e01b600052602160045260246000fd5b6001600160a01b038581168252841660208201526040810183905260806060820181905260009061324b90830184612add565b6000602082840312156141ce57600080fd5b8151612aaa81612a77565b6000826141f657634e487b7160e01b600052601260045260246000fd5b500490565b600060ff821660ff84168060ff0382111561421857614218613802565b019392505050565b607b60f81b81526d1129ba393ab1ba3ab932911d101160911b6001820152865160009061425481600f850160208c01612ab1565b6d1116101121b43937b6b0911d101160911b600f91840191820152875161428281601d840160208c01612ab1565b75111610112839b2bab237b9bcb6b6b2ba393c911d101160511b601d929091019182015286516142b9816033840160208b01612ab1565b70111610112bb4b932b33930b6b2911d101160791b6033929091019182015285516142eb816044840160208a01612ab1565b61435161434361433d61432361431d604486880101701116101124b73b32b939b4b7b7111d101160791b815260110190565b8a6137ca565b6d11161011283934b9b6b9911d101160911b8152600e0190565b876137ca565b61227d60f01b815260020190565b9a9950505050505050505050565b634e487b7160e01b600052603160045260246000fdfe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef226465736372697074696f6e223a2022536861636b6c6564206973207468652066697273742067656e6572616c2d707572706f73652033442072656e64657265722072756e6e696e67206f6e2074686520457468657265756d20626c6f636b636861696e2e204561636820706965636520726570726573656e74732061206c65617020666f727761726420696e206f6e2d636861696e20636f6d70757465722067726170686963732c20616e642074686520636f6c6c656374696f6e20697473656c6620697320616e204e46542066697273742e22a2646970667358221220141f0e3ac6c8490da19c1ffddf0956ac930bdc179e08205ae2f2b03101d2555c64736f6c63430008090033
Deployed Bytecode
0x6080604052600436106101f05760003560e01c806301ffc9a714610234578063040fc8831461026957806306fdde031461028d578063081812fc146102af57806308fc550e146102e7578063095ea7b3146103095780630a786354146103295780630e19bf381461033f5780631073ba181461035257806315a553471461037257806318160ddd1461038857806322ab47a11461039d57806323b872dd146103b357806327ac36c4146103d35780632db11544146103e85780632f745c59146103fb5780633e63166e1461041b578063407670021461043b57806342842e0e146104685780634f065fd8146104885780634f6ccce71461049e5780635a3805a9146104be5780635d854cfd146104ed5780636352211e1461050d5780636817c76c1461052d57806370a0823114610543578063715018a61461056357806385177e62146105785780638da5cb5b1461058e57806395d89b41146105a3578063a0ef91df146105b8578063a22cb465146105cd578063b88d4fde146105ed578063b94d530e1461060d578063c051e38a14610627578063c87b56dd1461063d578063cfa077db1461065d578063d5abeb0114610673578063e599844714610689578063e985e9c5146106a9578063ee66290c146106c9578063f2fde38b146106e9578063ff1ad4321461070957600080fd5b3661022f57604080513381523460208201527f88a5966d370b9919b20f3e2c13ff65706f196a4e32cc2c12bf57088f88525874910160405180910390a1005b600080fd5b34801561024057600080fd5b5061025461024f366004612a8d565b610737565b60405190151581526020015b60405180910390f35b34801561027557600080fd5b5061027f60135481565b604051908152602001610260565b34801561029957600080fd5b506102a2610762565b6040516102609190612b09565b3480156102bb57600080fd5b506102cf6102ca366004612b1c565b6107f4565b6040516001600160a01b039091168152602001610260565b3480156102f357600080fd5b50610307610302366004612c92565b610881565b005b34801561031557600080fd5b50610307610324366004612cf6565b6108df565b34801561033557600080fd5b5061027f60145481565b61030761034d366004612d64565b6109f0565b34801561035e57600080fd5b5061025461036d366004612e54565b610ce4565b34801561037e57600080fd5b5061027f60105481565b34801561039457600080fd5b5060085461027f565b3480156103a957600080fd5b5061027f600c5481565b3480156103bf57600080fd5b506103076103ce366004612ee8565b610da4565b3480156103df57600080fd5b50610307610dd5565b6103076103f6366004612b1c565b610e47565b34801561040757600080fd5b5061027f610416366004612cf6565b610fd2565b34801561042757600080fd5b50610307610436366004612b1c565b611068565b34801561044757600080fd5b5061027f610456366004612b1c565b60126020526000908152604090205481565b34801561047457600080fd5b50610307610483366004612ee8565b61109c565b34801561049457600080fd5b5061027f60155481565b3480156104aa57600080fd5b5061027f6104b9366004612b1c565b6110b7565b3480156104ca57600080fd5b506104de6104d9366004612f24565b61114a565b60405161026093929190613212565b3480156104f957600080fd5b506102a26105083660046134ee565b6112a7565b34801561051957600080fd5b506102cf610528366004612b1c565b611341565b34801561053957600080fd5b5061027f600f5481565b34801561054f57600080fd5b5061027f61055e366004613649565b6113b8565b34801561056f57600080fd5b5061030761143f565b34801561058457600080fd5b5061027f600d5481565b34801561059a57600080fd5b506102cf61147a565b3480156105af57600080fd5b506102a2611489565b3480156105c457600080fd5b50610307611498565b3480156105d957600080fd5b506103076105e8366004613664565b611557565b3480156105f957600080fd5b5061030761060836600461369b565b611562565b34801561061957600080fd5b506016546102549060ff1681565b34801561063357600080fd5b5061027f600b5481565b34801561064957600080fd5b506102a2610658366004612b1c565b61159a565b34801561066957600080fd5b5061027f60115481565b34801561067f57600080fd5b5061027f600e5481565b34801561069557600080fd5b506103076106a4366004612b1c565b611634565b3480156106b557600080fd5b506102546106c4366004613702565b611668565b3480156106d557600080fd5b506103076106e4366004612b1c565b611696565b3480156106f557600080fd5b50610307610704366004613649565b6116ca565b34801561071557600080fd5b50610729610724366004612b1c565b611767565b604051610260929190613735565b60006001600160e01b0319821663780e9d6360e01b148061075c575061075c8261180a565b92915050565b6060600080546107719061375a565b80601f016020809104026020016040519081016040528092919081815260200182805461079d9061375a565b80156107ea5780601f106107bf576101008083540402835291602001916107ea565b820191906000526020600020905b8154815290600101906020018083116107cd57829003601f168201915b5050505050905090565b60006107ff8261185a565b6108655760405162461bcd60e51b815260206004820152602c60248201527f4552433732313a20617070726f76656420717565727920666f72206e6f6e657860448201526b34b9ba32b73a103a37b5b2b760a11b60648201526084015b60405180910390fd5b506000908152600460205260409020546001600160a01b031690565b3361088a61147a565b6001600160a01b0316146108b05760405162461bcd60e51b815260040161085c90613795565b806040516020016108c191906137e6565b60408051601f198184030181529190528051602090910120600b5550565b60006108ea82611341565b9050806001600160a01b0316836001600160a01b031614156109585760405162461bcd60e51b815260206004820152602160248201527f4552433732313a20617070726f76616c20746f2063757272656e74206f776e656044820152603960f91b606482015260840161085c565b336001600160a01b038216148061097457506109748133611668565b6109e15760405162461bcd60e51b815260206004820152603860248201527f4552433732313a20617070726f76652063616c6c6572206973206e6f74206f776044820152771b995c881b9bdc88185c1c1c9bdd995908199bdc88185b1b60421b606482015260840161085c565b6109eb8383611877565b505050565b600b54600d5414610a405760405162461bcd60e51b815260206004820152601a60248201527950726573616c65206d696e74206973206e6f742061637469766560301b604482015260640161085c565b610a8582828080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152508a925089915088905087610ce4565b610ac55760405162461bcd60e51b8152602060048201526011602482015270496e76616c6964207369676e617475726560781b604482015260640161085c565b6000610ad18487613818565b905080610add336113b8565b610ae7908a613818565b1115610b355760405162461bcd60e51b815260206004820152601e60248201527f5175616e746974792072657175657374656420697320746f6f20686967680000604482015260640161085c565b6000805b85811015610b9757610b62878783818110610b5657610b56613830565b9050602002013561185a565b610b855789821015610b805781610b7881613846565b925050610b85565b610b97565b80610b8f81613846565b915050610b39565b506000610ba4828b613861565b905080600f54610bb49190613878565b341015610bd35760405162461bcd60e51b815260040161085c90613897565b6000805b84811015610c83578b8261ffff161415610bf057610c83565b878110600081610c21578c8c610c068c86613861565b818110610c1557610c15613830565b90506020020135610c3b565b8a8a84818110610c3357610c33613830565b905060200201355b9050610c468161185a565b15610c52575050610c73565b610c5c33826118e5565b610c65816118ff565b610c6e846138cb565b935050505b610c7c81613846565b9050610bd7565b508a8161ffff1614610cd75760405162461bcd60e51b815260206004820152601d60248201527f526571756573746564207175616e74697479206e6f74206d696e746564000000604482015260640161085c565b5050505050505050505050565b600080303387878787604051602001610d0296959493929190613923565b6040516020818303038152906040528051906020012090506000610d7b610d75836040517b0ca2ba3432b932bab69029b4b3b732b21026b2b9b9b0b3b29d05199960211b6020820152603c8101829052600090605c01604051602081830303815290604052805190602001209050919050565b89611a03565b90506000610d8761147a565b6001600160a01b0390811692169190911498975050505050505050565b610dae3382611a27565b610dca5760405162461bcd60e51b815260040161085c90613970565b6109eb838383611ae9565b33610dde61147a565b6001600160a01b031614610e045760405162461bcd60e51b815260040161085c90613795565b60005b601054811015610e44576000610e1c60085490565b9050610e2833826118e5565b610e31816118ff565b5080610e3c81613846565b915050610e07565b50565b600c54600b5414610e965760405162461bcd60e51b81526020600482015260196024820152785075626c6963206d696e74206973206e6f742061637469766560381b604482015260640161085c565b601154811115610ee55760405162461bcd60e51b815260206004820152601a602482015279145d585b9d1a5d1e48195e18d959591cc81d1e1b881b1a5b5a5d60321b604482015260640161085c565b80600f54610ef39190613878565b341015610f125760405162461bcd60e51b815260040161085c90613897565b600e5481610f1f60085490565b610f299190613818565b1115610f775760405162461bcd60e51b815260206004820152601d60248201527f496e73756666696369656e7420737570706c792072656d61696e696e67000000604482015260640161085c565b6000805b600e548110156109eb57610f8e8161185a565b610fb357610f9c33826118e5565b610fa5816118ff565b81610faf81613846565b9250505b82821415610fc057505050565b80610fca81613846565b915050610f7b565b6000610fdd836113b8565b821061103f5760405162461bcd60e51b815260206004820152602b60248201527f455243373231456e756d657261626c653a206f776e657220696e646578206f7560448201526a74206f6620626f756e647360a81b606482015260840161085c565b506001600160a01b03919091166000908152600660209081526040808320938352929052205490565b3361107161147a565b6001600160a01b0316146110975760405162461bcd60e51b815260040161085c90613795565b601455565b6109eb83838360405180602001604052806000815250611562565b60006110c260085490565b82106111255760405162461bcd60e51b815260206004820152602c60248201527f455243373231456e756d657261626c653a20676c6f62616c20696e646578206f60448201526b7574206f6620626f756e647360a01b606482015260840161085c565b6008828154811061113857611138613830565b90600052602060002001549050919050565b6060611154612925565b61115c612991565b6000858152601260205260408082205490516001627295e760e11b0319815260048101829052909190819073f30168b5983ea80007bf973b501cdd30b535a7de9063ff1ad4329060240160006040518083038186803b1580156111be57600080fd5b505af41580156111d2573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526111fa9190810190613d26565b60165460405163fafbbc1560e01b8152929450909250600091732221aab4a036dc5605c18c9cba4b947cf01995ce9163fafbbc15916112439187918d9160ff1690600401613ee2565b60006040518083038186803b15801561125b57600080fd5b505af415801561126f573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526112979190810190613fd4565b9650919450925050509250925092565b60405163fafbbc1560e01b8152606090732221aab4a036dc5605c18c9cba4b947cf01995ce9063fafbbc15906112e590879087908790600401613ee2565b60006040518083038186803b1580156112fd57600080fd5b505af4158015611311573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526113399190810190613fd4565b949350505050565b6000818152600260205260408120546001600160a01b03168061075c5760405162461bcd60e51b815260206004820152602960248201527f4552433732313a206f776e657220717565727920666f72206e6f6e657869737460448201526832b73a103a37b5b2b760b91b606482015260840161085c565b60006001600160a01b0382166114235760405162461bcd60e51b815260206004820152602a60248201527f4552433732313a2062616c616e636520717565727920666f7220746865207a65604482015269726f206164647265737360b01b606482015260840161085c565b506001600160a01b031660009081526003602052604090205490565b3361144861147a565b6001600160a01b03161461146e5760405162461bcd60e51b815260040161085c90613795565b6114786000611c82565b565b600a546001600160a01b031690565b6060600180546107719061375a565b336114a161147a565b6001600160a01b0316146114c75760405162461bcd60e51b815260040161085c90613795565b6040514790600090339083908381818185875af1925050503d806000811461150b576040519150601f19603f3d011682016040523d82523d6000602084013e611510565b606091505b50509050806115535760405162461bcd60e51b815260206004820152600f60248201526e15da5d1a191c985dc819985a5b1959608a1b604482015260640161085c565b5050565b611553338383611cd4565b61156c3383611a27565b6115885760405162461bcd60e51b815260040161085c90613970565b61159484848484611d9f565b50505050565b60606115a58261185a565b6116095760405162461bcd60e51b815260206004820152602f60248201527f4552433732314d657461646174613a2055524920717565727920666f72206e6f60448201526e3732bc34b9ba32b73a103a37b5b2b760891b606482015260840161085c565b600080600061161a8560135461114a565b92509250925061162b838287611dd2565b95945050505050565b3361163d61147a565b6001600160a01b0316146116635760405162461bcd60e51b815260040161085c90613795565b601355565b6001600160a01b03918216600090815260056020908152604080832093909416825291909152205460ff1690565b3361169f61147a565b6001600160a01b0316146116c55760405162461bcd60e51b815260040161085c90613795565b601555565b336116d361147a565b6001600160a01b0316146116f95760405162461bcd60e51b815260040161085c90613795565b6001600160a01b03811661175e5760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b606482015260840161085c565b610e4481611c82565b61176f612925565b611777612991565b6040516001627295e760e11b031981526004810184905273f30168b5983ea80007bf973b501cdd30b535a7de9063ff1ad4329060240160006040518083038186803b1580156117c557600080fd5b505af41580156117d9573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f191682016040526118019190810190613d26565b91509150915091565b60006001600160e01b031982166380ac58cd60e01b148061183b57506001600160e01b03198216635b5e139f60e01b145b8061075c57506301ffc9a760e01b6001600160e01b031983161461075c565b6000908152600260205260409020546001600160a01b0316151590565b600081815260046020526040902080546001600160a01b0319166001600160a01b03841690811790915581906118ac82611341565b6001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92560405160405180910390a45050565b611553828260405180602001604052806000815250611e59565b6119088161185a565b61194d5760405162461bcd60e51b8152602060048201526016602482015275151bdad95b925908191bd95cc81b9bdd08195e1a5cdd60521b604482015260640161085c565b600081815260126020526040902054156119a15760405162461bcd60e51b815260206004820152601560248201527414d95959081a185cda08185b1c9958591e481cd95d605a1b604482015260640161085c565b424433836040516020016119db9493929190938452602084019290925260601b6001600160601b0319166040830152605482015260740190565b60408051601f1981840301815291815281516020928301206000938452601290925290912055565b6000806000611a128585611e8c565b91509150611a1f81611efc565b509392505050565b6000611a328261185a565b611a935760405162461bcd60e51b815260206004820152602c60248201527f4552433732313a206f70657261746f7220717565727920666f72206e6f6e657860448201526b34b9ba32b73a103a37b5b2b760a11b606482015260840161085c565b6000611a9e83611341565b9050806001600160a01b0316846001600160a01b03161480611ad95750836001600160a01b0316611ace846107f4565b6001600160a01b0316145b8061133957506113398185611668565b826001600160a01b0316611afc82611341565b6001600160a01b031614611b645760405162461bcd60e51b815260206004820152602960248201527f4552433732313a207472616e73666572206f6620746f6b656e2074686174206960448201526839903737ba1037bbb760b91b606482015260840161085c565b6001600160a01b038216611bc65760405162461bcd60e51b8152602060048201526024808201527f4552433732313a207472616e7366657220746f20746865207a65726f206164646044820152637265737360e01b606482015260840161085c565b611bd18383836120b2565b611bdc600082611877565b6001600160a01b0383166000908152600360205260408120805460019290611c05908490613861565b90915550506001600160a01b0382166000908152600360205260408120805460019290611c33908490613818565b909155505060008181526002602052604080822080546001600160a01b0319166001600160a01b0386811691821790925591518493918716916000805160206143b683398151915291a4505050565b600a80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b816001600160a01b0316836001600160a01b03161415611d325760405162461bcd60e51b815260206004820152601960248201527822a9219b99189d1030b8383937bb32903a379031b0b63632b960391b604482015260640161085c565b6001600160a01b03838116600081815260056020908152604080832094871680845294825291829020805460ff191686151590811790915591519182527f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a3505050565b611daa848484611ae9565b611db68484848461216a565b6115945760405162461bcd60e51b815260040161085c90614008565b6060600060405180610100016040528060d581526020016143d660d591399050611e30611dfe84612277565b82611e088761239f565b88604051602001611e1c949392919061405a565b6040516020818303038152906040526123f2565b604051602001611e40919061412e565b6040516020818303038152906040529150509392505050565b611e638383612557565b611e70600084848461216a565b6109eb5760405162461bcd60e51b815260040161085c90614008565b600080825160411415611ec35760208301516040840151606085015160001a611eb787828585612683565b94509450505050611ef5565b825160401415611eed5760208301516040840151611ee2868383612766565b935093505050611ef5565b506000905060025b9250929050565b6000816004811115611f1057611f10614173565b1415611f195750565b6001816004811115611f2d57611f2d614173565b1415611f765760405162461bcd60e51b815260206004820152601860248201527745434453413a20696e76616c6964207369676e617475726560401b604482015260640161085c565b6002816004811115611f8a57611f8a614173565b1415611fd85760405162461bcd60e51b815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e67746800604482015260640161085c565b6003816004811115611fec57611fec614173565b14156120455760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c604482015261756560f01b606482015260840161085c565b600481600481111561205957612059614173565b1415610e445760405162461bcd60e51b815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202776272076616c604482015261756560f01b606482015260840161085c565b6001600160a01b03831661210d5761210881600880546000838152600960205260408120829055600182018355919091527ff3f7a9fe364faab93b216da50a3214154f22a0a2b415b23a84c8169e8b636ee30155565b612130565b816001600160a01b0316836001600160a01b031614612130576121308382612795565b6001600160a01b038216612147576109eb81612832565b826001600160a01b0316826001600160a01b0316146109eb576109eb82826128e1565b60006001600160a01b0384163b1561226c57604051630a85bd0160e11b81526001600160a01b0385169063150b7a02906121ae903390899088908890600401614189565b602060405180830381600087803b1580156121c857600080fd5b505af19250505080156121f8575060408051601f3d908101601f191682019092526121f5918101906141bc565b60015b612252573d808015612226576040519150601f19603f3d011682016040523d82523d6000602084013e61222b565b606091505b50805161224a5760405162461bcd60e51b815260040161085c90614008565b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050611339565b506001949350505050565b60608161229b5750506040805180820190915260018152600360fc1b602082015290565b8160005b81156122c557806122af81613846565b91506122be9050600a836141d9565b915061229f565b6000816001600160401b038111156122df576122df612b35565b6040519080825280601f01601f191660200182016040528015612309576020820181803683370190505b509050815b85156123965761231f600182613861565b9050600061232e600a886141d9565b61233990600a613878565b6123439088613861565b61234e9060306141fb565b905060008160f81b90508084848151811061236b5761236b613830565b60200101906001600160f81b031916908160001a90535061238d600a896141d9565b9750505061230e565b50949350505050565b606081602001518260000151836060015184608001518560a001516123c78760400151612277565b6040516020016123dc96959493929190614220565b6040516020818303038152906040529050919050565b805160609080612412575050604080516020810190915260008152919050565b60006003612421836002613818565b61242b91906141d9565b612436906004613878565b90506000612445826020613818565b6001600160401b0381111561245c5761245c612b35565b6040519080825280601f01601f191660200182016040528015612486576020820181803683370190505b5090506000604051806060016040528060408152602001614376604091399050600181016020830160005b86811015612512576003818a01810151603f601282901c8116860151600c83901c8216870151600684901c831688015192909316870151600891821b60ff94851601821b92841692909201901b91160160e01b8352600490920191016124b1565b50600386066001811461252c576002811461253d57612549565b613d3d60f01b600119830152612549565b603d60f81b6000198301525b505050918152949350505050565b6001600160a01b0382166125ad5760405162461bcd60e51b815260206004820181905260248201527f4552433732313a206d696e7420746f20746865207a65726f2061646472657373604482015260640161085c565b6125b68161185a565b156126025760405162461bcd60e51b815260206004820152601c60248201527b115490cdcc8c4e881d1bdad95b88185b1c9958591e481b5a5b9d195960221b604482015260640161085c565b61260e600083836120b2565b6001600160a01b0382166000908152600360205260408120805460019290612637908490613818565b909155505060008181526002602052604080822080546001600160a01b0319166001600160a01b03861690811790915590518392906000805160206143b6833981519152908290a45050565b6000806fa2a8918ca85bafe22016d0b997e4df60600160ff1b038311156126b0575060009050600361275d565b8460ff16601b141580156126c857508460ff16601c14155b156126d9575060009050600461275d565b6040805160008082526020820180845289905260ff881692820192909252606081018690526080810185905260019060a0016020604051602081039080840390855afa15801561272d573d6000803e3d6000fd5b5050604051601f1901519150506001600160a01b0381166127565760006001925092505061275d565b9150600090505b94509492505050565b6000806001600160ff1b03831660ff84901c601b0161278787828885612683565b935093505050935093915050565b600060016127a2846113b8565b6127ac9190613861565b6000838152600760205260409020549091508082146127ff576001600160a01b03841660009081526006602090815260408083208584528252808320548484528184208190558352600790915290208190555b5060009182526007602090815260408084208490556001600160a01b039094168352600681528383209183525290812055565b60085460009061284490600190613861565b6000838152600960205260408120546008805493945090928490811061286c5761286c613830565b90600052602060002001549050806008838154811061288d5761288d613830565b60009182526020808320909101929092558281526009909152604080822084905585825281205560088054806128c5576128c561435f565b6001900381819060005260206000200160009055905550505050565b60006128ec836113b8565b6001600160a01b039093166000908152600660209081526040808320868452825280832085905593825260079052919091209190915550565b60405180610160016040528060608152602001606081526020016060815260200161294e6129c7565b8152602001600081526020016129626129e5565b815260200161296f612a12565b8152600060208201819052604082018190526060820181905260809091015290565b6040518060c001604052806060815260200160608152602001600081526020016060815260200160608152602001606081525090565b60405180606001604052806003906020820280368337509192915050565b60405180604001604052806002905b6129fc6129c7565b8152602001906001900390816129f45790505090565b60405180610120016040528060001515815260200160008152602001600081526020016000815260200160008152602001612a4b6129c7565b8152602001612a586129c7565b8152602001612a656129c7565b8152602001612a726129c7565b905290565b6001600160e01b031981168114610e4457600080fd5b600060208284031215612a9f57600080fd5b8135612aaa81612a77565b9392505050565b60005b83811015612acc578181015183820152602001612ab4565b838111156115945750506000910152565b60008151808452612af5816020860160208601612ab1565b601f01601f19169290920160200192915050565b602081526000612aaa6020830184612add565b600060208284031215612b2e57600080fd5b5035919050565b634e487b7160e01b600052604160045260246000fd5b60405161012081016001600160401b0381118282101715612b6e57612b6e612b35565b60405290565b60405161016081016001600160401b0381118282101715612b6e57612b6e612b35565b60405160c081016001600160401b0381118282101715612b6e57612b6e612b35565b604051606081016001600160401b0381118282101715612b6e57612b6e612b35565b604080519081016001600160401b0381118282101715612b6e57612b6e612b35565b604051601f8201601f191681016001600160401b0381118282101715612c2557612c25612b35565b604052919050565b60006001600160401b03821115612c4657612c46612b35565b50601f01601f191660200190565b6000612c67612c6284612c2d565b612bfd565b9050828152838383011115612c7b57600080fd5b828260208301376000602084830101529392505050565b600060208284031215612ca457600080fd5b81356001600160401b03811115612cba57600080fd5b8201601f81018413612ccb57600080fd5b61133984823560208401612c54565b80356001600160a01b0381168114612cf157600080fd5b919050565b60008060408385031215612d0957600080fd5b612d1283612cda565b946020939093013593505050565b60008083601f840112612d3257600080fd5b5081356001600160401b03811115612d4957600080fd5b6020830191508360208260051b8501011115611ef557600080fd5b60008060008060008060006080888a031215612d7f57600080fd5b8735965060208801356001600160401b0380821115612d9d57600080fd5b612da98b838c01612d20565b909850965060408a0135915080821115612dc257600080fd5b612dce8b838c01612d20565b909650945060608a0135915080821115612de757600080fd5b818a0191508a601f830112612dfb57600080fd5b813581811115612e0a57600080fd5b8b6020828501011115612e1c57600080fd5b60208301945080935050505092959891949750929550565b600082601f830112612e4557600080fd5b612aaa83833560208501612c54565b600080600080600060608688031215612e6c57600080fd5b85356001600160401b0380821115612e8357600080fd5b612e8f89838a01612e34565b96506020880135915080821115612ea557600080fd5b612eb189838a01612d20565b90965094506040880135915080821115612eca57600080fd5b50612ed788828901612d20565b969995985093965092949392505050565b600080600060608486031215612efd57600080fd5b612f0684612cda565b9250612f1460208501612cda565b9150604084013590509250925092565b60008060408385031215612f3757600080fd5b50508035926020909101359150565b60008151808452602080850194508084016000805b84811015612f9b57825188835b6003811015612f8557825182529186019190860190600101612f68565b5050506060979097019691830191600101612f5b565b50959695505050505050565b8060005b6003811015611594578151845260209384019390910190600101612fab565b600081518084526020808501945080840160005b8381101561300457612ff1878351612fa7565b6060969096019590820190600101612fde565b509495945050505050565b8060005b600281101561159457613027848351612fa7565b6060939093019260209190910190600101613013565b8051151582526020810151602083015260408101516040830152606081015160608301526080810151608083015260a081015161307d60a0840182612fa7565b5060c081015161010061309281850183612fa7565b60e083015191506130a7610160850183612fa7565b82015190506109eb6101c0840182612fa7565b600061044082518185526130d082860182612f46565b915050602083015184820360208601526130ea8282612fca565b915050604083015184820360408601526131048282612fca565b91505060608301516131196060860182612fa7565b50608083015160c085015260a083015161313660e086018261300f565b5060c083015161314a6101a086018261303d565b5060e083015115156103c085015261010083015115156103e0850152610120830151151561040085015261014090920151151561042090930192909252919050565b6000815160c084526131a160c0850182612add565b9050602083015184820360208601526131ba8282612add565b91505060408301516040850152606083015184820360608601526131de8282612add565b915050608083015184820360808601526131f88282612add565b91505060a083015184820360a086015261162b8282612add565b6060815260006132256060830186612add565b828103602084015261323781866130ba565b9050828103604084015261324b818561318c565b9695505050505050565b60006001600160401b0382111561326e5761326e612b35565b5060051b60200190565b6000601f838184011261328a57600080fd5b8235602061329a612c6283613255565b828152606092830286018201928282019190888511156132b957600080fd5b8388015b858110156133175789878201126132d45760008081fd5b6132dc612bb9565b808383018c8111156132ee5760008081fd5b835b8181101561330757803584529288019288016132f0565b50508552509284019281016132bd565b509098975050505050505050565b600082601f83011261333657600080fd5b61333e612bb9565b80606084018581111561335057600080fd5b845b8181101561336a578035845260209384019301613352565b509095945050505050565b600082601f83011261338657600080fd5b81356020613396612c6283613255565b828152606092830285018201928282019190878511156133b557600080fd5b8387015b858110156133d8576133cb8982613325565b84529284019281016133b9565b5090979650505050505050565b600082601f8301126133f657600080fd5b6133fe612bdb565b8060c084018581111561341057600080fd5b845b8181101561336a576134248782613325565b8452602090930192606001613412565b8015158114610e4457600080fd5b8035612cf181613434565b6000610220828403121561346057600080fd5b613468612b4b565b905061347382613442565b8152602082013560208201526040820135604082015260608201356060820152608082013560808201526134aa8360a08401613325565b60a08201526101006134be84828501613325565b60c08301526134d1846101608501613325565b60e08301526134e4846101c08501613325565b9082015292915050565b60008060006060848603121561350357600080fd5b83356001600160401b038082111561351a57600080fd5b90850190610440828803121561352f57600080fd5b613537612b74565b82358281111561354657600080fd5b61355289828601613278565b82525060208301358281111561356757600080fd5b61357389828601613375565b60208301525060408301358281111561358b57600080fd5b61359789828601613375565b6040830152506135aa8860608501613325565b606082015260c083013560808201526135c68860e085016133e5565b60a08201526135d9886101a0850161344d565b60c08201526135eb6103c08401613442565b60e08201526135fd6103e08401613442565b6101008201526136106104008401613442565b6101208201526136236104208401613442565b610140820152945050506020840135915061364060408501613442565b90509250925092565b60006020828403121561365b57600080fd5b612aaa82612cda565b6000806040838503121561367757600080fd5b61368083612cda565b9150602083013561369081613434565b809150509250929050565b600080600080608085870312156136b157600080fd5b6136ba85612cda565b93506136c860208601612cda565b92506040850135915060608501356001600160401b038111156136ea57600080fd5b6136f687828801612e34565b91505092959194509250565b6000806040838503121561371557600080fd5b61371e83612cda565b915061372c60208401612cda565b90509250929050565b60408152600061374860408301856130ba565b828103602084015261162b818561318c565b600181811c9082168061376e57607f821691505b6020821081141561378f57634e487b7160e01b600052602260045260246000fd5b50919050565b6020808252818101527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e6572604082015260600190565b600081516137dc818560208601612ab1565b9290920192915050565b600082516137f8818460208701612ab1565b9190910192915050565b634e487b7160e01b600052601160045260246000fd5b6000821982111561382b5761382b613802565b500190565b634e487b7160e01b600052603260045260246000fd5b600060001982141561385a5761385a613802565b5060010190565b60008282101561387357613873613802565b500390565b600081600019048311821515161561389257613892613802565b500290565b6020808252601a9082015279125b9cdd59999a58da595b9d081d985b1d59481d1bc81b5a5b9d60321b604082015260600190565b600061ffff808316818114156138e3576138e3613802565b6001019392505050565b81835260006001600160fb1b0383111561390657600080fd5b8260051b8083602087013760009401602001938452509192915050565b6001600160a01b0387811682528616602082015260806040820181905260009061395090830186886138ed565b82810360608401526139638185876138ed565b9998505050505050505050565b60208082526031908201527f4552433732313a207472616e736665722063616c6c6572206973206e6f74206f6040820152701ddb995c881b9bdc88185c1c1c9bdd9959607a1b606082015260800190565b6000601f83818401126139d357600080fd5b825160206139e3612c6283613255565b82815260609283028601820192828201919088851115613a0257600080fd5b8388015b85811015613317578987820112613a1d5760008081fd5b613a25612bb9565b808383018c811115613a375760008081fd5b835b81811015613a505780518452928801928801613a39565b5050855250928401928101613a06565b600082601f830112613a7157600080fd5b613a79612bb9565b806060840185811115613a8b57600080fd5b845b8181101561336a578051845260209384019301613a8d565b600082601f830112613ab657600080fd5b81516020613ac6612c6283613255565b82815260609283028501820192828201919087851115613ae557600080fd5b8387015b858110156133d857613afb8982613a60565b8452928401928101613ae9565b600082601f830112613b1957600080fd5b613b21612bdb565b8060c0840185811115613b3357600080fd5b845b8181101561336a57613b478782613a60565b8452602090930192606001613b35565b8051612cf181613434565b60006102208284031215613b7557600080fd5b613b7d612b4b565b9050613b8882613b57565b815260208201516020820152604082015160408201526060820151606082015260808201516080820152613bbf8360a08401613a60565b60a0820152610100613bd384828501613a60565b60c0830152613be6846101608501613a60565b60e08301526134e4846101c08501613a60565b600082601f830112613c0a57600080fd5b8151613c18612c6282612c2d565b818152846020838601011115613c2d57600080fd5b611339826020830160208701612ab1565b600060c08284031215613c5057600080fd5b613c58612b97565b82519091506001600160401b0380821115613c7257600080fd5b613c7e85838601613bf9565b83526020840151915080821115613c9457600080fd5b613ca085838601613bf9565b6020840152604084015160408401526060840151915080821115613cc357600080fd5b613ccf85838601613bf9565b60608401526080840151915080821115613ce857600080fd5b613cf485838601613bf9565b608084015260a0840151915080821115613d0d57600080fd5b50613d1a84828501613bf9565b60a08301525092915050565b60008060408385031215613d3957600080fd5b82516001600160401b0380821115613d5057600080fd5b908401906104408287031215613d6557600080fd5b613d6d612b74565b825182811115613d7c57600080fd5b613d88888286016139c1565b825250602083015182811115613d9d57600080fd5b613da988828601613aa5565b602083015250604083015182811115613dc157600080fd5b613dcd88828601613aa5565b604083015250613de08760608501613a60565b606082015260c08301516080820152613dfc8760e08501613b08565b60a0820152613e0f876101a08501613b62565b60c0820152613e216103c08401613b57565b60e0820152613e336103e08401613b57565b610100820152613e466104008401613b57565b610120820152613e596104208401613b57565b6101408201526020860151909450915080821115613e7657600080fd5b50613e8385828601613c3e565b9150509250929050565b60008151808452602080850194508084016000805b84811015612f9b57825188835b6003811015613ecc57825182529186019190860190600101613eaf565b5050506060979097019691830191600101613ea2565b6060815260008451610440806060850152613f016104a0850183613e8d565b91506020870151605f1980868503016080870152613f1f8483612fca565b935060408901519150808685030160a087015250613f3d8382612fca565b9250506060870151613f5260c0860182612fa7565b506080870151610120818187015260a08901519150610140613f768188018461300f565b60c08a01519250613f8b61020088018461303d565b60e08a015115156104208801526101008a015115159387019390935288015115156104608601525086015115156104808401526020830185905283151560408401529050611339565b600060208284031215613fe657600080fd5b81516001600160401b03811115613ffc57600080fd5b61133984828501613bf9565b60208082526032908201527f4552433732313a207472616e7366657220746f206e6f6e20455243373231526560408201527131b2b4bb32b91034b6b83632b6b2b73a32b960711b606082015260800190565b7b7b226e616d65223a2022536861636b6c65642047656e65736973202360201b8152845160009061409281601c850160208a01612ab1565b6201116160ed1b601c9184019182015285516140b581601f840160208a01612ab1565b6e16101130ba3a3934b13aba32b9911d60891b601f929091019182015284516140e581602e840160208901612ab1565b6a16101134b6b0b3b2911d1160a91b602e92909101918201528351614111816039840160208801612ab1565b61227d60f01b60399290910191820152603b019695505050505050565b7f646174613a6170706c69636174696f6e2f6a736f6e3b6261736536342c00000081526000825161416681601d850160208701612ab1565b91909101601d0192915050565b634e487b7160e01b600052602160045260246000fd5b6001600160a01b038581168252841660208201526040810183905260806060820181905260009061324b90830184612add565b6000602082840312156141ce57600080fd5b8151612aaa81612a77565b6000826141f657634e487b7160e01b600052601260045260246000fd5b500490565b600060ff821660ff84168060ff0382111561421857614218613802565b019392505050565b607b60f81b81526d1129ba393ab1ba3ab932911d101160911b6001820152865160009061425481600f850160208c01612ab1565b6d1116101121b43937b6b0911d101160911b600f91840191820152875161428281601d840160208c01612ab1565b75111610112839b2bab237b9bcb6b6b2ba393c911d101160511b601d929091019182015286516142b9816033840160208b01612ab1565b70111610112bb4b932b33930b6b2911d101160791b6033929091019182015285516142eb816044840160208a01612ab1565b61435161434361433d61432361431d604486880101701116101124b73b32b939b4b7b7111d101160791b815260110190565b8a6137ca565b6d11161011283934b9b6b9911d101160911b8152600e0190565b876137ca565b61227d60f01b815260020190565b9a9950505050505050505050565b634e487b7160e01b600052603160045260246000fdfe4142434445464748494a4b4c4d4e4f505152535455565758595a6162636465666768696a6b6c6d6e6f707172737475767778797a303132333435363738392b2fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef226465736372697074696f6e223a2022536861636b6c6564206973207468652066697273742067656e6572616c2d707572706f73652033442072656e64657265722072756e6e696e67206f6e2074686520457468657265756d20626c6f636b636861696e2e204561636820706965636520726570726573656e74732061206c65617020666f727761726420696e206f6e2d636861696e20636f6d70757465722067726170686963732c20616e642074686520636f6c6c656374696f6e20697473656c6620697320616e204e46542066697273742e22a2646970667358221220141f0e3ac6c8490da19c1ffddf0956ac930bdc179e08205ae2f2b03101d2555c64736f6c63430008090033
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.