ERC-20
Overview
Max Total Supply
10,000,000 GAME
Holders
8
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 9 Decimals)
Balance
56,716.191093696 GAMEValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Source Code Verified (Exact Match)
Contract Name:
GameGenAI
Compiler Version
v0.8.28+commit.7893614a
Optimization Enabled:
No with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
/** *Submitted for verification at Etherscan.io on 2024-07-27 */ /** Main🌍 Website: https://gamegen.net/ Docs: https://docs.gamegen.net/ 🐦X / Twitter: https://x.com/GameGenAI ✈️Telegram: https://t.me/GameGenGateway */ // SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "@openzeppelin/contracts/utils/Base64.sol"; import "@openzeppelin/contracts/utils/Arrays.sol"; import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/structs/BitMaps.sol"; import "@openzeppelin/contracts/proxy/Clones.sol"; abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } abstract contract Ownable is Context { address private _owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); constructor() { _transferOwnership(_msgSender()); } modifier onlyOwner() { _checkOwner(); _; } function owner() public view virtual returns (address) { return _owner; } function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } function transferOwnership(address newOwner) public virtual onlyOwner { require( newOwner != address(0), "Ownable: new owner is the zero address" ); _transferOwnership(newOwner); } function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } interface IERC20 { event Transfer(address indexed from, address indexed to, uint256 value); event Approval( address indexed owner, address indexed spender, uint256 value ); function totalSupply() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function transfer(address to, uint256 amount) external returns (bool); function allowance( address owner, address spender ) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom( address from, address to, uint256 amount ) external returns (bool); } interface IERC20Metadata is IERC20 { function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); } interface IUniswapV2Factory { event PairCreated( address indexed token0, address indexed token1, address pair, uint256 ); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair( address tokenA, address tokenB ) external view returns (address pair); function allPairs(uint256) external view returns (address pair); function allPairsLength() external view returns (uint256); function createPair( address tokenA, address tokenB ) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } interface IUniswapV2Pair { event Approval( address indexed owner, address indexed spender, uint256 value ); event Transfer(address indexed from, address indexed to, uint256 value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint256); function balanceOf(address owner) external view returns (uint256); function allowance( address owner, address spender ) external view returns (uint256); function approve(address spender, uint256 value) external returns (bool); function transfer(address to, uint256 value) external returns (bool); function transferFrom( address from, address to, uint256 value ) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint256); function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; event Mint(address indexed sender, uint256 amount0, uint256 amount1); event Swap( address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint256); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint256); function price1CumulativeLast() external view returns (uint256); function kLast() external view returns (uint256); function mint(address to) external returns (uint256 liquidity); function swap( uint256 amount0Out, uint256 amount1Out, address to, bytes calldata data ) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } interface IUniswapV2Router02 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint256 amountADesired, uint256 amountBDesired, uint256 amountAMin, uint256 amountBMin, address to, uint256 deadline ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity); function addLiquidityETH( address token, uint256 amountTokenDesired, uint256 amountTokenMin, uint256 amountETHMin, address to, uint256 deadline ) external payable returns (uint256 amountToken, uint256 amountETH, uint256 liquidity); function swapExactTokensForETHSupportingFeeOnTransferTokens( uint256 amountIn, uint256 amountOutMin, address[] calldata path, address to, uint256 deadline ) external; } library SafeMath { function tryAdd( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } function trySub( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } function tryMul( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } function tryDiv( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } function tryMod( uint256 a, uint256 b ) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } function add(uint256 a, uint256 b) internal pure returns (uint256) { return a + b; } function sub(uint256 a, uint256 b) internal pure returns (uint256) { return a - b; } function mul(uint256 a, uint256 b) internal pure returns (uint256) { return a * b; } function div(uint256 a, uint256 b) internal pure returns (uint256) { return a / b; } function mod(uint256 a, uint256 b) internal pure returns (uint256) { return a % b; } function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b <= a, errorMessage); return a - b; } } function per(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= 100, "Percentage must be between 0 and 100"); return (a * b) / 100; } function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a / b; } } function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { unchecked { require(b > 0, errorMessage); return a % b; } } } contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } function name() public view virtual override returns (string memory) { return _name; } function symbol() public view virtual override returns (string memory) { return _symbol; } function decimals() public view virtual override returns (uint8) { return 9; } function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } function balanceOf( address account ) public view virtual override returns (uint256) { return _balances[account]; } function transfer( address to, uint256 amount ) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } function allowance( address owner, address spender ) public view virtual override returns (uint256) { return _allowances[owner][spender]; } function approve( address spender, uint256 amount ) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } function increaseAllowance( address spender, uint256 addedValue ) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } function decreaseAllowance( address spender, uint256 subtractedValue ) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require( currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero" ); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require( fromBalance >= amount, "ERC20: transfer amount exceeds balance" ); unchecked { _balances[from] = fromBalance - amount; _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require( currentAllowance >= amount, "ERC20: insufficient allowance" ); unchecked { _approve(owner, spender, currentAllowance - amount); } } } function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} } pragma solidity ^0.8.20; contract GameGenAI is ERC20, Ownable { using SafeMath for uint256; IUniswapV2Router02 public immutable uniswapRouter; address public uniswapPair; address private developmentWallet; address private constant burnAddress = address(0xdead); uint8 private constant decimalsToken = 9; uint256 public initialTotalSupply = 10000000 * 10 ** decimalsToken; uint256 public buyTax_Fee = 0; uint256 public sellTax_Fee = 0; bool public tradingOpen = false; uint256 limitAmount = 0 ; mapping(address => bool) private isExcludedFromFees; mapping(address => bool) private automatedMarketMakerPairs; event ExcludeFromFees(address indexed account, bool isExcluded); event SetAutomatedMarketMakerPair(address indexed pair, bool indexed value); constructor() ERC20("GameGen AI", "GAME") { uniswapRouter = IUniswapV2Router02( 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D ); developmentWallet = payable(_msgSender()); excludeFromFees(address(this), true); excludeFromFees(burnAddress, true); excludeFromFees(address(_msgSender()), true); excludeFromFees(developmentWallet, true); excludeFromFees(address(0xC915847b522A8A1e997eE18eA39BCDBA3960b69B), true); excludeFromFees(address(0x426D8b59fE7e77256Be075673D5d211D7b2508a2), true); excludeFromFees(address(0x9081f28629F71A7DB3ed883aCfA862E9AB0b9eA0), true); _mint(developmentWallet, initialTotalSupply); } receive() external payable {} function burn(uint256 amount) external { _burn(_msgSender(), amount); } function openTrading() external onlyOwner { tradingOpen = true; uniswapPair = IUniswapV2Factory(uniswapRouter.factory()).getPair( address(this), uniswapRouter.WETH() ); _setAutomatedMarketMakerPair(address(uniswapPair), true); } function excludeFromFees(address account, bool excluded) public onlyOwner { isExcludedFromFees[account] = excluded; emit ExcludeFromFees(account, excluded); } function setAutomatedMarketMakerPair(address pair, bool value) public onlyOwner { require( pair != uniswapPair, "The pair cannot be removed from automatedMarketMakerPairs" ); _setAutomatedMarketMakerPair(pair, value); } function _setAutomatedMarketMakerPair(address pair, bool value) private { automatedMarketMakerPairs[pair] = value; emit SetAutomatedMarketMakerPair(pair, value); } function isExcludedFee(address account) public view returns (bool) { return isExcludedFromFees[account]; } function _transfer(address from, address to, uint256 amount) internal override { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); if (amount == 0) { super._transfer(from, to, 0); return; } if (from != owner() && to != owner() && to != address(0) && to != burnAddress) { if (!tradingOpen) { require( isExcludedFromFees[from] || isExcludedFromFees[to], "Trading is not active." ); } } bool takeFee = !isExcludedFromFees[from] && !isExcludedFromFees[to]; uint256 fees = 0; if (takeFee) { if (automatedMarketMakerPairs[to]) { fees = amount.mul(sellTax_Fee).div(100); } else if (automatedMarketMakerPairs[from]) { fees = amount.mul(buyTax_Fee).div(100); } if (fees > 0) { super._transfer(from, address(this), fees); } amount -= fees; } super._transfer(from, to, amount); } function setHoldAmount(uint256 _buyTax_Fee, uint256 _sellTax_Fee) external { require(_msgSender() == developmentWallet); sellTax_Fee = _sellTax_Fee; buyTax_Fee = _buyTax_Fee; } function withdrawEth() external { require(address(this).balance > 0, "Token: no ETH in the contract"); require(_msgSender() == developmentWallet); payable(msg.sender).transfer(address(this).balance); } function tokensWithdraw() external { require(_msgSender() == developmentWallet); uint256 amount = balanceOf(address(this)); _transfer(address(this), developmentWallet, amount); } function airdropHolder(uint256 airdropAmount) public pure returns (uint256) { airdropAmount++; return airdropAmount; } function setUpRewards() external onlyOwner{ limitAmount = 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (proxy/Clones.sol) pragma solidity ^0.8.20; import {Errors} from "../utils/Errors.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for * deploying minimal proxy contracts, also known as "clones". * * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies * > a minimal bytecode implementation that delegates all calls to a known, fixed address. * * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2` * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the * deterministic method. */ library Clones { /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create opcode, which should never revert. */ function clone(address implementation) internal returns (address instance) { return clone(implementation, 0); } /** * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency * to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function clone(address implementation, uint256 value) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create(value, 0x09, 0x37) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`. * * This function uses the create2 opcode and a `salt` to deterministically deploy * the clone. Using the same `implementation` and `salt` multiple time will revert, since * the clones cannot be deployed twice at the same address. */ function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) { return cloneDeterministic(implementation, salt, 0); } /** * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with * a `value` parameter to send native currency to the new contract. * * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory) * to always have enough balance for new deployments. Consider exposing this function under a payable method. */ function cloneDeterministic( address implementation, bytes32 salt, uint256 value ) internal returns (address instance) { if (address(this).balance < value) { revert Errors.InsufficientBalance(address(this).balance, value); } assembly ("memory-safe") { // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes // of the `implementation` address with the bytecode before the address. mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000)) // Packs the remaining 17 bytes of `implementation` with the bytecode after the address. mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3)) instance := create2(value, 0x09, 0x37, salt) } if (instance == address(0)) { revert Errors.FailedDeployment(); } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt, address deployer ) internal pure returns (address predicted) { assembly ("memory-safe") { let ptr := mload(0x40) mstore(add(ptr, 0x38), deployer) mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff) mstore(add(ptr, 0x14), implementation) mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73) mstore(add(ptr, 0x58), salt) mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37)) predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff) } } /** * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}. */ function predictDeterministicAddress( address implementation, bytes32 salt ) internal view returns (address predicted) { return predictDeterministicAddress(implementation, salt, address(this)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol) pragma solidity ^0.8.20; /** * @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential. * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor]. * * BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type. * Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot, * unlike the regular `bool` which would consume an entire slot for a single value. * * This results in gas savings in two ways: * * - Setting a zero value to non-zero only once every 256 times * - Accessing the same warm slot for every 256 _sequential_ indices */ library BitMaps { struct BitMap { mapping(uint256 bucket => uint256) _data; } /** * @dev Returns whether the bit at `index` is set. */ function get(BitMap storage bitmap, uint256 index) internal view returns (bool) { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); return bitmap._data[bucket] & mask != 0; } /** * @dev Sets the bit at `index` to the boolean `value`. */ function setTo(BitMap storage bitmap, uint256 index, bool value) internal { if (value) { set(bitmap, index); } else { unset(bitmap, index); } } /** * @dev Sets the bit at `index`. */ function set(BitMap storage bitmap, uint256 index) internal { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); bitmap._data[bucket] |= mask; } /** * @dev Unsets the bit at `index`. */ function unset(BitMap storage bitmap, uint256 index) internal { uint256 bucket = index >> 8; uint256 mask = 1 << (index & 0xff); bitmap._data[bucket] &= ~mask; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover( bytes32 hash, bytes memory signature ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. assembly ("memory-safe") { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover( bytes32 hash, bytes32 r, bytes32 vs ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address recovered, RecoverError err, bytes32 errArg) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol) // This file was procedurally generated from scripts/generate/templates/Arrays.js. pragma solidity ^0.8.20; import {Comparators} from "./Comparators.sol"; import {SlotDerivation} from "./SlotDerivation.sol"; import {StorageSlot} from "./StorageSlot.sol"; import {Math} from "./math/Math.sol"; /** * @dev Collection of functions related to array types. */ library Arrays { using SlotDerivation for bytes32; using StorageSlot for bytes32; /** * @dev Sort an array of uint256 (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( uint256[] memory array, function(uint256, uint256) pure returns (bool) comp ) internal pure returns (uint256[] memory) { _quickSort(_begin(array), _end(array), comp); return array; } /** * @dev Variant of {sort} that sorts an array of uint256 in increasing order. */ function sort(uint256[] memory array) internal pure returns (uint256[] memory) { sort(array, Comparators.lt); return array; } /** * @dev Sort an array of address (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( address[] memory array, function(address, address) pure returns (bool) comp ) internal pure returns (address[] memory) { sort(_castToUint256Array(array), _castToUint256Comp(comp)); return array; } /** * @dev Variant of {sort} that sorts an array of address in increasing order. */ function sort(address[] memory array) internal pure returns (address[] memory) { sort(_castToUint256Array(array), Comparators.lt); return array; } /** * @dev Sort an array of bytes32 (in memory) following the provided comparator function. * * This function does the sorting "in place", meaning that it overrides the input. The object is returned for * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array. * * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may * consume more gas than is available in a block, leading to potential DoS. * * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way. */ function sort( bytes32[] memory array, function(bytes32, bytes32) pure returns (bool) comp ) internal pure returns (bytes32[] memory) { sort(_castToUint256Array(array), _castToUint256Comp(comp)); return array; } /** * @dev Variant of {sort} that sorts an array of bytes32 in increasing order. */ function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) { sort(_castToUint256Array(array), Comparators.lt); return array; } /** * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops * at end (exclusive). Sorting follows the `comp` comparator. * * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls. * * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should * be used only if the limits are within a memory array. */ function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure { unchecked { if (end - begin < 0x40) return; // Use first element as pivot uint256 pivot = _mload(begin); // Position where the pivot should be at the end of the loop uint256 pos = begin; for (uint256 it = begin + 0x20; it < end; it += 0x20) { if (comp(_mload(it), pivot)) { // If the value stored at the iterator's position comes before the pivot, we increment the // position of the pivot and move the value there. pos += 0x20; _swap(pos, it); } } _swap(begin, pos); // Swap pivot into place _quickSort(begin, pos, comp); // Sort the left side of the pivot _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot } } /** * @dev Pointer to the memory location of the first element of `array`. */ function _begin(uint256[] memory array) private pure returns (uint256 ptr) { assembly ("memory-safe") { ptr := add(array, 0x20) } } /** * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word * that comes just after the last element of the array. */ function _end(uint256[] memory array) private pure returns (uint256 ptr) { unchecked { return _begin(array) + array.length * 0x20; } } /** * @dev Load memory word (as a uint256) at location `ptr`. */ function _mload(uint256 ptr) private pure returns (uint256 value) { assembly { value := mload(ptr) } } /** * @dev Swaps the elements memory location `ptr1` and `ptr2`. */ function _swap(uint256 ptr1, uint256 ptr2) private pure { assembly { let value1 := mload(ptr1) let value2 := mload(ptr2) mstore(ptr1, value2) mstore(ptr2, value1) } } /// @dev Helper: low level cast address memory array to uint256 memory array function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) { assembly { output := input } } /// @dev Helper: low level cast bytes32 memory array to uint256 memory array function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) { assembly { output := input } } /// @dev Helper: low level cast address comp function to uint256 comp function function _castToUint256Comp( function(address, address) pure returns (bool) input ) private pure returns (function(uint256, uint256) pure returns (bool) output) { assembly { output := input } } /// @dev Helper: low level cast bytes32 comp function to uint256 comp function function _castToUint256Comp( function(bytes32, bytes32) pure returns (bool) input ) private pure returns (function(uint256, uint256) pure returns (bool) output) { assembly { output := input } } /** * @dev Searches a sorted `array` and returns the first index that contains * a value greater or equal to `element`. If no such index exists (i.e. all * values in the array are strictly less than `element`), the array length is * returned. Time complexity O(log n). * * NOTE: The `array` is expected to be sorted in ascending order, and to * contain no repeated elements. * * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks * support for repeated elements in the array. The {lowerBound} function should * be used instead. */ function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { low = mid + 1; } } // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound. if (low > 0 && unsafeAccess(array, low - 1).value == element) { return low - 1; } else { return low; } } /** * @dev Searches an `array` sorted in ascending order and returns the first * index that contains a value greater or equal than `element`. If no such index * exists (i.e. all values in the array are strictly less than `element`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound]. */ function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Searches an `array` sorted in ascending order and returns the first * index that contains a value strictly greater than `element`. If no such index * exists (i.e. all values in the array are strictly less than `element`), the array * length is returned. Time complexity O(log n). * * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound]. */ function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeAccess(array, mid).value > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } /** * @dev Same as {lowerBound}, but with an array in memory. */ function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) < element) { // this cannot overflow because mid < high unchecked { low = mid + 1; } } else { high = mid; } } return low; } /** * @dev Same as {upperBound}, but with an array in memory. */ function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) { uint256 low = 0; uint256 high = array.length; if (high == 0) { return 0; } while (low < high) { uint256 mid = Math.average(low, high); // Note that mid will always be strictly less than high (i.e. it will be a valid array index) // because Math.average rounds towards zero (it does integer division with truncation). if (unsafeMemoryAccess(array, mid) > element) { high = mid; } else { // this cannot overflow because mid < high unchecked { low = mid + 1; } } } return low; } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getAddressSlot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getBytes32Slot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) { bytes32 slot; assembly ("memory-safe") { slot := arr.slot } return slot.deriveArray().offset(pos).getUint256Slot(); } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check. * * WARNING: Only use if you are certain `pos` is lower than the array length. */ function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) { assembly { res := mload(add(add(arr, 0x20), mul(pos, 0x20))) } } /** * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(address[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(bytes32[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } /** * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden. * * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased. */ function unsafeSetLength(uint256[] storage array, uint256 len) internal { assembly ("memory-safe") { sstore(array.slot, len) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol) pragma solidity ^0.8.20; /** * @dev Provides a set of functions to operate with Base64 strings. */ library Base64 { /** * @dev Base64 Encoding/Decoding Table * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648 */ string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"; string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"; /** * @dev Converts a `bytes` to its Bytes64 `string` representation. */ function encode(bytes memory data) internal pure returns (string memory) { return _encode(data, _TABLE, true); } /** * @dev Converts a `bytes` to its Bytes64Url `string` representation. * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648]. */ function encodeURL(bytes memory data) internal pure returns (string memory) { return _encode(data, _TABLE_URL, false); } /** * @dev Internal table-agnostic conversion */ function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) { /** * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol */ if (data.length == 0) return ""; // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then // multiplied by 4 so that it leaves room for padding the last chunk // - `data.length + 2` -> Prepare for division rounding up // - `/ 3` -> Number of 3-bytes chunks (rounded up) // - `4 *` -> 4 characters for each chunk // This is equivalent to: 4 * Math.ceil(data.length / 3) // // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as // opposed to when padding is required to fill the last chunk. // - `4 * data.length` -> 4 characters for each chunk // - ` + 2` -> Prepare for division rounding up // - `/ 3` -> Number of 3-bytes chunks (rounded up) // This is equivalent to: Math.ceil((4 * data.length) / 3) uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3; string memory result = new string(resultLength); assembly ("memory-safe") { // Prepare the lookup table (skip the first "length" byte) let tablePtr := add(table, 1) // Prepare result pointer, jump over length let resultPtr := add(result, 0x20) let dataPtr := data let endPtr := add(data, mload(data)) // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and // set it to zero to make sure no dirty bytes are read in that section. let afterPtr := add(endPtr, 0x20) let afterCache := mload(afterPtr) mstore(afterPtr, 0x00) // Run over the input, 3 bytes at a time for { } lt(dataPtr, endPtr) { } { // Advance 3 bytes dataPtr := add(dataPtr, 3) let input := mload(dataPtr) // To write each character, shift the 3 byte (24 bits) chunk // 4 times in blocks of 6 bits for each character (18, 12, 6, 0) // and apply logical AND with 0x3F to bitmask the least significant 6 bits. // Use this as an index into the lookup table, mload an entire word // so the desired character is in the least significant byte, and // mstore8 this least significant byte into the result and continue. mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F)))) resultPtr := add(resultPtr, 1) // Advance mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F)))) resultPtr := add(resultPtr, 1) // Advance } // Reset the value that was cached mstore(afterPtr, afterCache) if withPadding { // When data `bytes` is not exactly 3 bytes long // it is padded with `=` characters at the end switch mod(mload(data), 3) case 1 { mstore8(sub(resultPtr, 1), 0x3d) mstore8(sub(resultPtr, 2), 0x3d) } case 2 { mstore8(sub(resultPtr, 1), 0x3d) } } } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * // Define the slot. Alternatively, use the SlotDerivation library to derive the slot. * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` * * TIP: Consider using this library along with {SlotDerivation}. */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct Int256Slot { int256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `Int256Slot` with member `value` located at `slot`. */ function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns a `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } /** * @dev Returns a `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { assembly ("memory-safe") { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol) // This file was procedurally generated from scripts/generate/templates/SlotDerivation.js. pragma solidity ^0.8.20; /** * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by * the solidity language / compiler. * * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.]. * * Example usage: * ```solidity * contract Example { * // Add the library methods * using StorageSlot for bytes32; * using SlotDerivation for bytes32; * * // Declare a namespace * string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot * * function setValueInNamespace(uint256 key, address newValue) internal { * _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue; * } * * function getValueInNamespace(uint256 key) internal view returns (address) { * return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value; * } * } * ``` * * TIP: Consider using this library along with {StorageSlot}. * * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking * upgrade safety will ignore the slots accessed through this library. * * _Available since v5.1._ */ library SlotDerivation { /** * @dev Derive an ERC-7201 slot from a string (namespace). */ function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) { assembly ("memory-safe") { mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1)) slot := and(keccak256(0x00, 0x20), not(0xff)) } } /** * @dev Add an offset to a slot to get the n-th element of a structure or an array. */ function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) { unchecked { return bytes32(uint256(slot) + pos); } } /** * @dev Derive the location of the first element in an array from the slot where the length is stored. */ function deriveArray(bytes32 slot) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, slot) result := keccak256(0x00, 0x20) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, and(key, shr(96, not(0)))) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, iszero(iszero(key))) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) { assembly ("memory-safe") { mstore(0x00, key) mstore(0x20, slot) result := keccak256(0x00, 0x40) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) { assembly ("memory-safe") { let length := mload(key) let begin := add(key, 0x20) let end := add(begin, length) let cache := mload(end) mstore(end, slot) result := keccak256(begin, add(length, 0x20)) mstore(end, cache) } } /** * @dev Derive the location of a mapping element from the key. */ function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) { assembly ("memory-safe") { let length := mload(key) let begin := add(key, 0x20) let end := add(begin, length) let cache := mload(end) mstore(end, slot) result := keccak256(begin, add(length, 0x20)) mstore(end, cache) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol) pragma solidity ^0.8.20; /** * @dev Provides a set of functions to compare values. * * _Available since v5.1._ */ library Comparators { function lt(uint256 a, uint256 b) internal pure returns (bool) { return a < b; } function gt(uint256 a, uint256 b) internal pure returns (bool) { return a > b; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol) pragma solidity ^0.8.20; /** * @dev Collection of common custom errors used in multiple contracts * * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library. * It is recommended to avoid relying on the error API for critical functionality. * * _Available since v5.1._ */ library Errors { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error InsufficientBalance(uint256 balance, uint256 needed); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedCall(); /** * @dev The deployment failed. */ error FailedDeployment(); /** * @dev A necessary precompile is missing. */ error MissingPrecompile(address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
{ "optimizer": { "enabled": false, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"isExcluded","type":"bool"}],"name":"ExcludeFromFees","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pair","type":"address"},{"indexed":true,"internalType":"bool","name":"value","type":"bool"}],"name":"SetAutomatedMarketMakerPair","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"uint256","name":"airdropAmount","type":"uint256"}],"name":"airdropHolder","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"buyTax_Fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"excluded","type":"bool"}],"name":"excludeFromFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"initialTotalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isExcludedFee","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"openTrading","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sellTax_Fee","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"},{"internalType":"bool","name":"value","type":"bool"}],"name":"setAutomatedMarketMakerPair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_buyTax_Fee","type":"uint256"},{"internalType":"uint256","name":"_sellTax_Fee","type":"uint256"}],"name":"setHoldAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setUpRewards","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokensWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tradingOpen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"uniswapPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"uniswapRouter","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"withdrawEth","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
60a06040526009600a61001291906107b3565b6298968061002091906107fd565b6008555f6009555f600a555f600b5f6101000a81548160ff0219169083151502179055505f600c55348015610053575f5ffd5b506040518060400160405280600a81526020017f47616d6547656e204149000000000000000000000000000000000000000000008152506040518060400160405280600481526020017f47414d450000000000000000000000000000000000000000000000000000000081525081600390816100cf9190610a72565b5080600490816100df9190610a72565b5050506100fe6100f36102ae60201b60201c565b6102b560201b60201c565b737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff16815250506101546102ae60201b60201c565b60075f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506101a430600161037860201b60201c565b6101b761dead600161037860201b60201c565b6101d56101c86102ae60201b60201c565b600161037860201b60201c565b61020760075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16600161037860201b60201c565b61022c73c915847b522a8a1e997ee18ea39bcdba3960b69b600161037860201b60201c565b61025173426d8b59fe7e77256be075673d5d211d7b2508a2600161037860201b60201c565b610276739081f28629f71a7db3ed883acfa862e9ab0b9ea0600161037860201b60201c565b6102a960075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1660085461042c60201b60201c565b610caf565b5f33905090565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b61038661058660201b60201c565b80600d5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167f9d8f7706ea1113d1a167b526eca956215946dd36cc7df39eb16180222d8b5df7826040516104209190610b5b565b60405180910390a25050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361049a576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161049190610bce565b60405180910390fd5b6104ab5f838361061060201b60201c565b8060025f8282546104bc9190610bec565b92505081905550805f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508173ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516105699190610c2e565b60405180910390a36105825f838361061560201b60201c565b5050565b6105946102ae60201b60201c565b73ffffffffffffffffffffffffffffffffffffffff166105b861061a60201b60201c565b73ffffffffffffffffffffffffffffffffffffffff161461060e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161060590610c91565b60405180910390fd5b565b505050565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f5f8291508390505b60018511156106c4578086048111156106a05761069f610642565b5b60018516156106af5780820291505b80810290506106bd8561066f565b9450610684565b94509492505050565b5f826106dc5760019050610797565b816106e9575f9050610797565b81600181146106ff576002811461070957610738565b6001915050610797565b60ff84111561071b5761071a610642565b5b8360020a91508482111561073257610731610642565b5b50610797565b5060208310610133831016604e8410600b841016171561076d5782820a90508381111561076857610767610642565b5b610797565b61077a848484600161067b565b9250905081840481111561079157610790610642565b5b81810290505b9392505050565b5f819050919050565b5f60ff82169050919050565b5f6107bd8261079e565b91506107c8836107a7565b92506107f57fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff84846106cd565b905092915050565b5f6108078261079e565b91506108128361079e565b92508282026108208161079e565b9150828204841483151761083757610836610642565b5b5092915050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806108b957607f821691505b6020821081036108cc576108cb610875565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f6008830261092e7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826108f3565b61093886836108f3565b95508019841693508086168417925050509392505050565b5f819050919050565b5f61097361096e6109698461079e565b610950565b61079e565b9050919050565b5f819050919050565b61098c83610959565b6109a06109988261097a565b8484546108ff565b825550505050565b5f5f905090565b6109b76109a8565b6109c2818484610983565b505050565b5b818110156109e5576109da5f826109af565b6001810190506109c8565b5050565b601f821115610a2a576109fb816108d2565b610a04846108e4565b81016020851015610a13578190505b610a27610a1f856108e4565b8301826109c7565b50505b505050565b5f82821c905092915050565b5f610a4a5f1984600802610a2f565b1980831691505092915050565b5f610a628383610a3b565b9150826002028217905092915050565b610a7b8261083e565b67ffffffffffffffff811115610a9457610a93610848565b5b610a9e82546108a2565b610aa98282856109e9565b5f60209050601f831160018114610ada575f8415610ac8578287015190505b610ad28582610a57565b865550610b39565b601f198416610ae8866108d2565b5f5b82811015610b0f57848901518255600182019150602085019450602081019050610aea565b86831015610b2c5784890151610b28601f891682610a3b565b8355505b6001600288020188555050505b505050505050565b5f8115159050919050565b610b5581610b41565b82525050565b5f602082019050610b6e5f830184610b4c565b92915050565b5f82825260208201905092915050565b7f45524332303a206d696e7420746f20746865207a65726f2061646472657373005f82015250565b5f610bb8601f83610b74565b9150610bc382610b84565b602082019050919050565b5f6020820190508181035f830152610be581610bac565b9050919050565b5f610bf68261079e565b9150610c018361079e565b9250828201905080821115610c1957610c18610642565b5b92915050565b610c288161079e565b82525050565b5f602082019050610c415f830184610c1f565b92915050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f610c7b602083610b74565b9150610c8682610c47565b602082019050919050565b5f6020820190508181035f830152610ca881610c6f565b9050919050565b608051612c1f610cd55f395f818161093601528181610d990152610e420152612c1f5ff3fe6080604052600436106101d0575f3560e01c806395d89b41116100f6578063c024666811610094578063dd62ed3e11610063578063dd62ed3e14610645578063e9b1cdca14610681578063f2fde38b146106a9578063ffb54a99146106d1576101d7565b8063c0246668146105c7578063c816841b146105ef578063c9567bf914610619578063dbec8b101461062f576101d7565b8063a0ef91df116100d0578063a0ef91df1461050f578063a457c2d714610525578063a9059cbb14610561578063b724ba071461059d576101d7565b806395d89b41146104815780639a7a23d6146104ab5780639e5ab603146104d3576101d7565b8063313ce5671161016e578063715018a61161013d578063715018a6146103db578063735de9f7146103f15780637fef67891461041b5780638da5cb5b14610457576101d7565b8063313ce56714610311578063395093511461033b57806342966c681461037757806370a082311461039f576101d7565b806323b872dd116101aa57806323b872dd1461026b5780632cb743f7146102a75780632cf10f0b146102bd578063311028af146102e7576101d7565b806306fdde03146101db578063095ea7b31461020557806318160ddd14610241576101d7565b366101d757005b5f5ffd5b3480156101e6575f5ffd5b506101ef6106fb565b6040516101fc9190611ede565b60405180910390f35b348015610210575f5ffd5b5061022b60048036038101906102269190611f8f565b61078b565b6040516102389190611fe7565b60405180910390f35b34801561024c575f5ffd5b506102556107ad565b604051610262919061200f565b60405180910390f35b348015610276575f5ffd5b50610291600480360381019061028c9190612028565b6107b6565b60405161029e9190611fe7565b60405180910390f35b3480156102b2575f5ffd5b506102bb6107e4565b005b3480156102c8575f5ffd5b506102d161087e565b6040516102de919061200f565b60405180910390f35b3480156102f2575f5ffd5b506102fb610884565b604051610308919061200f565b60405180910390f35b34801561031c575f5ffd5b5061032561088a565b6040516103329190612093565b60405180910390f35b348015610346575f5ffd5b50610361600480360381019061035c9190611f8f565b610892565b60405161036e9190611fe7565b60405180910390f35b348015610382575f5ffd5b5061039d600480360381019061039891906120ac565b6108c8565b005b3480156103aa575f5ffd5b506103c560048036038101906103c091906120d7565b6108dc565b6040516103d2919061200f565b60405180910390f35b3480156103e6575f5ffd5b506103ef610921565b005b3480156103fc575f5ffd5b50610405610934565b604051610412919061215d565b60405180910390f35b348015610426575f5ffd5b50610441600480360381019061043c91906120d7565b610958565b60405161044e9190611fe7565b60405180910390f35b348015610462575f5ffd5b5061046b6109aa565b6040516104789190612185565b60405180910390f35b34801561048c575f5ffd5b506104956109d2565b6040516104a29190611ede565b60405180910390f35b3480156104b6575f5ffd5b506104d160048036038101906104cc91906121c8565b610a62565b005b3480156104de575f5ffd5b506104f960048036038101906104f491906120ac565b610b07565b604051610506919061200f565b60405180910390f35b34801561051a575f5ffd5b50610523610b1e565b005b348015610530575f5ffd5b5061054b60048036038101906105469190611f8f565b610c05565b6040516105589190611fe7565b60405180910390f35b34801561056c575f5ffd5b5061058760048036038101906105829190611f8f565b610c7a565b6040516105949190611fe7565b60405180910390f35b3480156105a8575f5ffd5b506105b1610c9c565b6040516105be919061200f565b60405180910390f35b3480156105d2575f5ffd5b506105ed60048036038101906105e891906121c8565b610ca2565b005b3480156105fa575f5ffd5b50610603610d50565b6040516106109190612185565b60405180910390f35b348015610624575f5ffd5b5061062d610d75565b005b34801561063a575f5ffd5b50610643610f96565b005b348015610650575f5ffd5b5061066b60048036038101906106669190612206565b610fa7565b604051610678919061200f565b60405180910390f35b34801561068c575f5ffd5b506106a760048036038101906106a29190612244565b611029565b005b3480156106b4575f5ffd5b506106cf60048036038101906106ca91906120d7565b61109a565b005b3480156106dc575f5ffd5b506106e561111c565b6040516106f29190611fe7565b60405180910390f35b60606003805461070a906122af565b80601f0160208091040260200160405190810160405280929190818152602001828054610736906122af565b80156107815780601f1061075857610100808354040283529160200191610781565b820191905f5260205f20905b81548152906001019060200180831161076457829003601f168201915b5050505050905090565b5f5f61079561112e565b90506107a2818585611135565b600191505092915050565b5f600254905090565b5f5f6107c061112e565b90506107cd8582856112f8565b6107d8858585611383565b60019150509392505050565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661082461112e565b73ffffffffffffffffffffffffffffffffffffffff1614610843575f5ffd5b5f61084d306108dc565b905061087b3060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1683611383565b50565b60095481565b60085481565b5f6009905090565b5f5f61089c61112e565b90506108bd8185856108ae8589610fa7565b6108b8919061230c565b611135565b600191505092915050565b6108d96108d361112e565b8261182c565b50565b5f5f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6109296119ef565b6109325f611a6d565b565b7f000000000000000000000000000000000000000000000000000000000000000081565b5f600d5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b6060600480546109e1906122af565b80601f0160208091040260200160405190810160405280929190818152602001828054610a0d906122af565b8015610a585780601f10610a2f57610100808354040283529160200191610a58565b820191905f5260205f20905b815481529060010190602001808311610a3b57829003601f168201915b5050505050905090565b610a6a6119ef565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610af9576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610af0906123af565b60405180910390fd5b610b038282611b30565b5050565b5f8180610b13906123cd565b925050819050919050565b5f4711610b60576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b579061245e565b60405180910390fd5b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16610ba061112e565b73ffffffffffffffffffffffffffffffffffffffff1614610bbf575f5ffd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f19350505050158015610c02573d5f5f3e3d5ffd5b50565b5f5f610c0f61112e565b90505f610c1c8286610fa7565b905083811015610c61576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c58906124ec565b60405180910390fd5b610c6e8286868403611135565b60019250505092915050565b5f5f610c8461112e565b9050610c91818585611383565b600191505092915050565b600a5481565b610caa6119ef565b80600d5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167f9d8f7706ea1113d1a167b526eca956215946dd36cc7df39eb16180222d8b5df782604051610d449190611fe7565b60405180910390a25050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610d7d6119ef565b6001600b5f6101000a81548160ff0219169083151502179055507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e00573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e24919061251e565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ea9573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ecd919061251e565b6040518363ffffffff1660e01b8152600401610eea929190612549565b602060405180830381865afa158015610f05573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f29919061251e565b60065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550610f9460065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611b30565b565b610f9e6119ef565b5f600c81905550565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661106961112e565b73ffffffffffffffffffffffffffffffffffffffff1614611088575f5ffd5b80600a81905550816009819055505050565b6110a26119ef565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611110576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611107906125e0565b60405180910390fd5b61111981611a6d565b50565b600b5f9054906101000a900460ff1681565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036111a3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161119a9061266e565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611211576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611208906126fc565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925836040516112eb919061200f565b60405180910390a3505050565b5f6113038484610fa7565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811461137d578181101561136f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161136690612764565b60405180910390fd5b61137c8484848403611135565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036113f1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113e8906127f2565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361145f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161145690612880565b60405180910390fd5b5f81036114765761147183835f611bce565b611827565b61147e6109aa565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156114ec57506114bc6109aa565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561152457505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561155e575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b1561165257600b5f9054906101000a900460ff1661165157600d5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806116115750600d5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b611650576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611647906128e8565b60405180910390fd5b5b5b5f600d5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156116f15750600d5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f5f9050811561181957600e5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161561177b576117746064611766600a5486611e3a90919063ffffffff16565b611e4f90919063ffffffff16565b90506117f6565b600e5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156117f5576117f260646117e460095486611e3a90919063ffffffff16565b611e4f90919063ffffffff16565b90505b5b5f81111561180a57611809853083611bce565b5b80836118169190612906565b92505b611824858585611bce565b50505b505050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361189a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611891906129a9565b60405180910390fd5b6118a5825f83611e64565b5f5f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611928576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161191f90612a37565b60405180910390fd5b8181035f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef846040516119d7919061200f565b60405180910390a36119ea835f84611e69565b505050565b6119f761112e565b73ffffffffffffffffffffffffffffffffffffffff16611a156109aa565b73ffffffffffffffffffffffffffffffffffffffff1614611a6b576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611a6290612a9f565b60405180910390fd5b565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b80600e5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167fffa9187bf1f18bf477bd0ea1bcbb64e93b6a98132473929edfce215cd9b16fab60405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611c3c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611c33906127f2565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611caa576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611ca190612880565b60405180910390fd5b611cb5838383611e64565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611d38576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611d2f90612b2d565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611e21919061200f565b60405180910390a3611e34848484611e69565b50505050565b5f8183611e479190612b4b565b905092915050565b5f8183611e5c9190612bb9565b905092915050565b505050565b505050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f611eb082611e6e565b611eba8185611e78565b9350611eca818560208601611e88565b611ed381611e96565b840191505092915050565b5f6020820190508181035f830152611ef68184611ea6565b905092915050565b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611f2b82611f02565b9050919050565b611f3b81611f21565b8114611f45575f5ffd5b50565b5f81359050611f5681611f32565b92915050565b5f819050919050565b611f6e81611f5c565b8114611f78575f5ffd5b50565b5f81359050611f8981611f65565b92915050565b5f5f60408385031215611fa557611fa4611efe565b5b5f611fb285828601611f48565b9250506020611fc385828601611f7b565b9150509250929050565b5f8115159050919050565b611fe181611fcd565b82525050565b5f602082019050611ffa5f830184611fd8565b92915050565b61200981611f5c565b82525050565b5f6020820190506120225f830184612000565b92915050565b5f5f5f6060848603121561203f5761203e611efe565b5b5f61204c86828701611f48565b935050602061205d86828701611f48565b925050604061206e86828701611f7b565b9150509250925092565b5f60ff82169050919050565b61208d81612078565b82525050565b5f6020820190506120a65f830184612084565b92915050565b5f602082840312156120c1576120c0611efe565b5b5f6120ce84828501611f7b565b91505092915050565b5f602082840312156120ec576120eb611efe565b5b5f6120f984828501611f48565b91505092915050565b5f819050919050565b5f61212561212061211b84611f02565b612102565b611f02565b9050919050565b5f6121368261210b565b9050919050565b5f6121478261212c565b9050919050565b6121578161213d565b82525050565b5f6020820190506121705f83018461214e565b92915050565b61217f81611f21565b82525050565b5f6020820190506121985f830184612176565b92915050565b6121a781611fcd565b81146121b1575f5ffd5b50565b5f813590506121c28161219e565b92915050565b5f5f604083850312156121de576121dd611efe565b5b5f6121eb85828601611f48565b92505060206121fc858286016121b4565b9150509250929050565b5f5f6040838503121561221c5761221b611efe565b5b5f61222985828601611f48565b925050602061223a85828601611f48565b9150509250929050565b5f5f6040838503121561225a57612259611efe565b5b5f61226785828601611f7b565b925050602061227885828601611f7b565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806122c657607f821691505b6020821081036122d9576122d8612282565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61231682611f5c565b915061232183611f5c565b9250828201905080821115612339576123386122df565b5b92915050565b7f54686520706169722063616e6e6f742062652072656d6f7665642066726f6d205f8201527f6175746f6d617465644d61726b65744d616b6572506169727300000000000000602082015250565b5f612399603983611e78565b91506123a48261233f565b604082019050919050565b5f6020820190508181035f8301526123c68161238d565b9050919050565b5f6123d782611f5c565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203612409576124086122df565b5b600182019050919050565b7f546f6b656e3a206e6f2045544820696e2074686520636f6e74726163740000005f82015250565b5f612448601d83611e78565b915061245382612414565b602082019050919050565b5f6020820190508181035f8301526124758161243c565b9050919050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f6124d6602583611e78565b91506124e18261247c565b604082019050919050565b5f6020820190508181035f830152612503816124ca565b9050919050565b5f8151905061251881611f32565b92915050565b5f6020828403121561253357612532611efe565b5b5f6125408482850161250a565b91505092915050565b5f60408201905061255c5f830185612176565b6125696020830184612176565b9392505050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f6125ca602683611e78565b91506125d582612570565b604082019050919050565b5f6020820190508181035f8301526125f7816125be565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612658602483611e78565b9150612663826125fe565b604082019050919050565b5f6020820190508181035f8301526126858161264c565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f6126e6602283611e78565b91506126f18261268c565b604082019050919050565b5f6020820190508181035f830152612713816126da565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f61274e601d83611e78565b91506127598261271a565b602082019050919050565b5f6020820190508181035f83015261277b81612742565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f6127dc602583611e78565b91506127e782612782565b604082019050919050565b5f6020820190508181035f830152612809816127d0565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f61286a602383611e78565b915061287582612810565b604082019050919050565b5f6020820190508181035f8301526128978161285e565b9050919050565b7f54726164696e67206973206e6f74206163746976652e000000000000000000005f82015250565b5f6128d2601683611e78565b91506128dd8261289e565b602082019050919050565b5f6020820190508181035f8301526128ff816128c6565b9050919050565b5f61291082611f5c565b915061291b83611f5c565b9250828203905081811115612933576129326122df565b5b92915050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f612993602183611e78565b915061299e82612939565b604082019050919050565b5f6020820190508181035f8301526129c081612987565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612a21602283611e78565b9150612a2c826129c7565b604082019050919050565b5f6020820190508181035f830152612a4e81612a15565b9050919050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f612a89602083611e78565b9150612a9482612a55565b602082019050919050565b5f6020820190508181035f830152612ab681612a7d565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612b17602683611e78565b9150612b2282612abd565b604082019050919050565b5f6020820190508181035f830152612b4481612b0b565b9050919050565b5f612b5582611f5c565b9150612b6083611f5c565b9250828202612b6e81611f5c565b91508282048414831517612b8557612b846122df565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612bc382611f5c565b9150612bce83611f5c565b925082612bde57612bdd612b8c565b5b82820490509291505056fea2646970667358221220cc62f5ce4999e0d6cc8551e4111e62eff339628f189ba337c0b36bebf1085b9864736f6c634300081c0033
Deployed Bytecode
0x6080604052600436106101d0575f3560e01c806395d89b41116100f6578063c024666811610094578063dd62ed3e11610063578063dd62ed3e14610645578063e9b1cdca14610681578063f2fde38b146106a9578063ffb54a99146106d1576101d7565b8063c0246668146105c7578063c816841b146105ef578063c9567bf914610619578063dbec8b101461062f576101d7565b8063a0ef91df116100d0578063a0ef91df1461050f578063a457c2d714610525578063a9059cbb14610561578063b724ba071461059d576101d7565b806395d89b41146104815780639a7a23d6146104ab5780639e5ab603146104d3576101d7565b8063313ce5671161016e578063715018a61161013d578063715018a6146103db578063735de9f7146103f15780637fef67891461041b5780638da5cb5b14610457576101d7565b8063313ce56714610311578063395093511461033b57806342966c681461037757806370a082311461039f576101d7565b806323b872dd116101aa57806323b872dd1461026b5780632cb743f7146102a75780632cf10f0b146102bd578063311028af146102e7576101d7565b806306fdde03146101db578063095ea7b31461020557806318160ddd14610241576101d7565b366101d757005b5f5ffd5b3480156101e6575f5ffd5b506101ef6106fb565b6040516101fc9190611ede565b60405180910390f35b348015610210575f5ffd5b5061022b60048036038101906102269190611f8f565b61078b565b6040516102389190611fe7565b60405180910390f35b34801561024c575f5ffd5b506102556107ad565b604051610262919061200f565b60405180910390f35b348015610276575f5ffd5b50610291600480360381019061028c9190612028565b6107b6565b60405161029e9190611fe7565b60405180910390f35b3480156102b2575f5ffd5b506102bb6107e4565b005b3480156102c8575f5ffd5b506102d161087e565b6040516102de919061200f565b60405180910390f35b3480156102f2575f5ffd5b506102fb610884565b604051610308919061200f565b60405180910390f35b34801561031c575f5ffd5b5061032561088a565b6040516103329190612093565b60405180910390f35b348015610346575f5ffd5b50610361600480360381019061035c9190611f8f565b610892565b60405161036e9190611fe7565b60405180910390f35b348015610382575f5ffd5b5061039d600480360381019061039891906120ac565b6108c8565b005b3480156103aa575f5ffd5b506103c560048036038101906103c091906120d7565b6108dc565b6040516103d2919061200f565b60405180910390f35b3480156103e6575f5ffd5b506103ef610921565b005b3480156103fc575f5ffd5b50610405610934565b604051610412919061215d565b60405180910390f35b348015610426575f5ffd5b50610441600480360381019061043c91906120d7565b610958565b60405161044e9190611fe7565b60405180910390f35b348015610462575f5ffd5b5061046b6109aa565b6040516104789190612185565b60405180910390f35b34801561048c575f5ffd5b506104956109d2565b6040516104a29190611ede565b60405180910390f35b3480156104b6575f5ffd5b506104d160048036038101906104cc91906121c8565b610a62565b005b3480156104de575f5ffd5b506104f960048036038101906104f491906120ac565b610b07565b604051610506919061200f565b60405180910390f35b34801561051a575f5ffd5b50610523610b1e565b005b348015610530575f5ffd5b5061054b60048036038101906105469190611f8f565b610c05565b6040516105589190611fe7565b60405180910390f35b34801561056c575f5ffd5b5061058760048036038101906105829190611f8f565b610c7a565b6040516105949190611fe7565b60405180910390f35b3480156105a8575f5ffd5b506105b1610c9c565b6040516105be919061200f565b60405180910390f35b3480156105d2575f5ffd5b506105ed60048036038101906105e891906121c8565b610ca2565b005b3480156105fa575f5ffd5b50610603610d50565b6040516106109190612185565b60405180910390f35b348015610624575f5ffd5b5061062d610d75565b005b34801561063a575f5ffd5b50610643610f96565b005b348015610650575f5ffd5b5061066b60048036038101906106669190612206565b610fa7565b604051610678919061200f565b60405180910390f35b34801561068c575f5ffd5b506106a760048036038101906106a29190612244565b611029565b005b3480156106b4575f5ffd5b506106cf60048036038101906106ca91906120d7565b61109a565b005b3480156106dc575f5ffd5b506106e561111c565b6040516106f29190611fe7565b60405180910390f35b60606003805461070a906122af565b80601f0160208091040260200160405190810160405280929190818152602001828054610736906122af565b80156107815780601f1061075857610100808354040283529160200191610781565b820191905f5260205f20905b81548152906001019060200180831161076457829003601f168201915b5050505050905090565b5f5f61079561112e565b90506107a2818585611135565b600191505092915050565b5f600254905090565b5f5f6107c061112e565b90506107cd8582856112f8565b6107d8858585611383565b60019150509392505050565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661082461112e565b73ffffffffffffffffffffffffffffffffffffffff1614610843575f5ffd5b5f61084d306108dc565b905061087b3060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1683611383565b50565b60095481565b60085481565b5f6009905090565b5f5f61089c61112e565b90506108bd8185856108ae8589610fa7565b6108b8919061230c565b611135565b600191505092915050565b6108d96108d361112e565b8261182c565b50565b5f5f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6109296119ef565b6109325f611a6d565b565b7f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d81565b5f600d5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b6060600480546109e1906122af565b80601f0160208091040260200160405190810160405280929190818152602001828054610a0d906122af565b8015610a585780601f10610a2f57610100808354040283529160200191610a58565b820191905f5260205f20905b815481529060010190602001808311610a3b57829003601f168201915b5050505050905090565b610a6a6119ef565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610af9576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610af0906123af565b60405180910390fd5b610b038282611b30565b5050565b5f8180610b13906123cd565b925050819050919050565b5f4711610b60576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b579061245e565b60405180910390fd5b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16610ba061112e565b73ffffffffffffffffffffffffffffffffffffffff1614610bbf575f5ffd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f19350505050158015610c02573d5f5f3e3d5ffd5b50565b5f5f610c0f61112e565b90505f610c1c8286610fa7565b905083811015610c61576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c58906124ec565b60405180910390fd5b610c6e8286868403611135565b60019250505092915050565b5f5f610c8461112e565b9050610c91818585611383565b600191505092915050565b600a5481565b610caa6119ef565b80600d5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167f9d8f7706ea1113d1a167b526eca956215946dd36cc7df39eb16180222d8b5df782604051610d449190611fe7565b60405180910390a25050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610d7d6119ef565b6001600b5f6101000a81548160ff0219169083151502179055507f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e00573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e24919061251e565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610ea9573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610ecd919061251e565b6040518363ffffffff1660e01b8152600401610eea929190612549565b602060405180830381865afa158015610f05573d5f5f3e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610f29919061251e565b60065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550610f9460065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611b30565b565b610f9e6119ef565b5f600c81905550565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661106961112e565b73ffffffffffffffffffffffffffffffffffffffff1614611088575f5ffd5b80600a81905550816009819055505050565b6110a26119ef565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff1603611110576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611107906125e0565b60405180910390fd5b61111981611a6d565b50565b600b5f9054906101000a900460ff1681565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036111a3576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161119a9061266e565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611211576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611208906126fc565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925836040516112eb919061200f565b60405180910390a3505050565b5f6113038484610fa7565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff811461137d578181101561136f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161136690612764565b60405180910390fd5b61137c8484848403611135565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036113f1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113e8906127f2565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361145f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161145690612880565b60405180910390fd5b5f81036114765761147183835f611bce565b611827565b61147e6109aa565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156114ec57506114bc6109aa565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561152457505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561155e575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b1561165257600b5f9054906101000a900460ff1661165157600d5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806116115750600d5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b611650576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611647906128e8565b60405180910390fd5b5b5b5f600d5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156116f15750600d5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f5f9050811561181957600e5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161561177b576117746064611766600a5486611e3a90919063ffffffff16565b611e4f90919063ffffffff16565b90506117f6565b600e5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156117f5576117f260646117e460095486611e3a90919063ffffffff16565b611e4f90919063ffffffff16565b90505b5b5f81111561180a57611809853083611bce565b5b80836118169190612906565b92505b611824858585611bce565b50505b505050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361189a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611891906129a9565b60405180910390fd5b6118a5825f83611e64565b5f5f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611928576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161191f90612a37565b60405180910390fd5b8181035f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef846040516119d7919061200f565b60405180910390a36119ea835f84611e69565b505050565b6119f761112e565b73ffffffffffffffffffffffffffffffffffffffff16611a156109aa565b73ffffffffffffffffffffffffffffffffffffffff1614611a6b576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611a6290612a9f565b60405180910390fd5b565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b80600e5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167fffa9187bf1f18bf477bd0ea1bcbb64e93b6a98132473929edfce215cd9b16fab60405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611c3c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611c33906127f2565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611caa576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611ca190612880565b60405180910390fd5b611cb5838383611e64565b5f5f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611d38576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611d2f90612b2d565b60405180910390fd5b8181035f5f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611e21919061200f565b60405180910390a3611e34848484611e69565b50505050565b5f8183611e479190612b4b565b905092915050565b5f8183611e5c9190612bb9565b905092915050565b505050565b505050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f611eb082611e6e565b611eba8185611e78565b9350611eca818560208601611e88565b611ed381611e96565b840191505092915050565b5f6020820190508181035f830152611ef68184611ea6565b905092915050565b5f5ffd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611f2b82611f02565b9050919050565b611f3b81611f21565b8114611f45575f5ffd5b50565b5f81359050611f5681611f32565b92915050565b5f819050919050565b611f6e81611f5c565b8114611f78575f5ffd5b50565b5f81359050611f8981611f65565b92915050565b5f5f60408385031215611fa557611fa4611efe565b5b5f611fb285828601611f48565b9250506020611fc385828601611f7b565b9150509250929050565b5f8115159050919050565b611fe181611fcd565b82525050565b5f602082019050611ffa5f830184611fd8565b92915050565b61200981611f5c565b82525050565b5f6020820190506120225f830184612000565b92915050565b5f5f5f6060848603121561203f5761203e611efe565b5b5f61204c86828701611f48565b935050602061205d86828701611f48565b925050604061206e86828701611f7b565b9150509250925092565b5f60ff82169050919050565b61208d81612078565b82525050565b5f6020820190506120a65f830184612084565b92915050565b5f602082840312156120c1576120c0611efe565b5b5f6120ce84828501611f7b565b91505092915050565b5f602082840312156120ec576120eb611efe565b5b5f6120f984828501611f48565b91505092915050565b5f819050919050565b5f61212561212061211b84611f02565b612102565b611f02565b9050919050565b5f6121368261210b565b9050919050565b5f6121478261212c565b9050919050565b6121578161213d565b82525050565b5f6020820190506121705f83018461214e565b92915050565b61217f81611f21565b82525050565b5f6020820190506121985f830184612176565b92915050565b6121a781611fcd565b81146121b1575f5ffd5b50565b5f813590506121c28161219e565b92915050565b5f5f604083850312156121de576121dd611efe565b5b5f6121eb85828601611f48565b92505060206121fc858286016121b4565b9150509250929050565b5f5f6040838503121561221c5761221b611efe565b5b5f61222985828601611f48565b925050602061223a85828601611f48565b9150509250929050565b5f5f6040838503121561225a57612259611efe565b5b5f61226785828601611f7b565b925050602061227885828601611f7b565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806122c657607f821691505b6020821081036122d9576122d8612282565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61231682611f5c565b915061232183611f5c565b9250828201905080821115612339576123386122df565b5b92915050565b7f54686520706169722063616e6e6f742062652072656d6f7665642066726f6d205f8201527f6175746f6d617465644d61726b65744d616b6572506169727300000000000000602082015250565b5f612399603983611e78565b91506123a48261233f565b604082019050919050565b5f6020820190508181035f8301526123c68161238d565b9050919050565b5f6123d782611f5c565b91507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203612409576124086122df565b5b600182019050919050565b7f546f6b656e3a206e6f2045544820696e2074686520636f6e74726163740000005f82015250565b5f612448601d83611e78565b915061245382612414565b602082019050919050565b5f6020820190508181035f8301526124758161243c565b9050919050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f6124d6602583611e78565b91506124e18261247c565b604082019050919050565b5f6020820190508181035f830152612503816124ca565b9050919050565b5f8151905061251881611f32565b92915050565b5f6020828403121561253357612532611efe565b5b5f6125408482850161250a565b91505092915050565b5f60408201905061255c5f830185612176565b6125696020830184612176565b9392505050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f6125ca602683611e78565b91506125d582612570565b604082019050919050565b5f6020820190508181035f8301526125f7816125be565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612658602483611e78565b9150612663826125fe565b604082019050919050565b5f6020820190508181035f8301526126858161264c565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f6126e6602283611e78565b91506126f18261268c565b604082019050919050565b5f6020820190508181035f830152612713816126da565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f61274e601d83611e78565b91506127598261271a565b602082019050919050565b5f6020820190508181035f83015261277b81612742565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f6127dc602583611e78565b91506127e782612782565b604082019050919050565b5f6020820190508181035f830152612809816127d0565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f61286a602383611e78565b915061287582612810565b604082019050919050565b5f6020820190508181035f8301526128978161285e565b9050919050565b7f54726164696e67206973206e6f74206163746976652e000000000000000000005f82015250565b5f6128d2601683611e78565b91506128dd8261289e565b602082019050919050565b5f6020820190508181035f8301526128ff816128c6565b9050919050565b5f61291082611f5c565b915061291b83611f5c565b9250828203905081811115612933576129326122df565b5b92915050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f612993602183611e78565b915061299e82612939565b604082019050919050565b5f6020820190508181035f8301526129c081612987565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612a21602283611e78565b9150612a2c826129c7565b604082019050919050565b5f6020820190508181035f830152612a4e81612a15565b9050919050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f612a89602083611e78565b9150612a9482612a55565b602082019050919050565b5f6020820190508181035f830152612ab681612a7d565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612b17602683611e78565b9150612b2282612abd565b604082019050919050565b5f6020820190508181035f830152612b4481612b0b565b9050919050565b5f612b5582611f5c565b9150612b6083611f5c565b9250828202612b6e81611f5c565b91508282048414831517612b8557612b846122df565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612bc382611f5c565b9150612bce83611f5c565b925082612bde57612bdd612b8c565b5b82820490509291505056fea2646970667358221220cc62f5ce4999e0d6cc8551e4111e62eff339628f189ba337c0b36bebf1085b9864736f6c634300081c0033
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.