ERC-20
DeFi
Overview
Max Total Supply
100,000,000 TERM
Holders
29,814 ( -0.013%)
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
0.276159250139201536 TERMValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
ERC1967Proxy
Compiler Version
v0.8.20+commit.a1b79de6
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity ^0.8.20; import {Proxy} from "../Proxy.sol"; import {ERC1967Utils} from "./ERC1967Utils.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`. * * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor. * * Requirements: * * - If `data` is empty, `msg.value` must be zero. */ constructor(address implementation, bytes memory _data) payable { ERC1967Utils.upgradeToAndCall(implementation, _data); } /** * @dev Returns the current implementation address. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function _implementation() internal view virtual override returns (address) { return ERC1967Utils.getImplementation(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IInterchainTokenStandard } from '../interfaces/IInterchainTokenStandard.sol'; import { ITransmitInterchainToken } from '../interfaces/ITransmitInterchainToken.sol'; /** * @title An example implementation of the IInterchainTokenStandard. * @notice The is an abstract contract that needs to be extended with an ERC20 implementation. See `InterchainToken` for an example implementation. */ abstract contract InterchainTokenStandard is IInterchainTokenStandard { /** * @notice Getter for the tokenId used for this token. * @dev Needs to be overwritten. * @return tokenId_ The tokenId that this token is registerred under. */ function interchainTokenId() public view virtual returns (bytes32 tokenId_); /** * @notice Getter for the interchain token service. * @dev Needs to be overwritten. * @return service The address of the interchain token service. */ function interchainTokenService() public view virtual returns (address service); /** * @notice Implementation of the interchainTransfer method * @dev We chose to either pass `metadata` as raw data on a remote contract call, or if no data is passed, just do a transfer. * A different implementation could use metadata to specify a function to invoke, or for other purposes as well. * @param destinationChain The destination chain identifier. * @param recipient The bytes representation of the address of the recipient. * @param amount The amount of token to be transferred. * @param metadata Either empty, just to facilitate an interchain transfer, or the data to be passed for an interchain contract call with transfer * as per semantics defined by the token service. */ function interchainTransfer( string calldata destinationChain, bytes calldata recipient, uint256 amount, bytes calldata metadata ) external payable { address sender = msg.sender; _beforeInterchainTransfer(msg.sender, destinationChain, recipient, amount, metadata); ITransmitInterchainToken(interchainTokenService()).transmitInterchainTransfer{ value: msg.value }( interchainTokenId(), sender, destinationChain, recipient, amount, metadata ); } /** * @notice Implementation of the interchainTransferFrom method * @dev We chose to either pass `metadata` as raw data on a remote contract call, or, if no data is passed, just do a transfer. * A different implementation could use metadata to specify a function to invoke, or for other purposes as well. * @param sender The sender of the tokens. They need to have approved `msg.sender` before this is called. * @param destinationChain The string representation of the destination chain. * @param recipient The bytes representation of the address of the recipient. * @param amount The amount of token to be transferred. * @param metadata Either empty, just to facilitate an interchain transfer, or the data to be passed to an interchain contract call and transfer. */ function interchainTransferFrom( address sender, string calldata destinationChain, bytes calldata recipient, uint256 amount, bytes calldata metadata ) external payable { _spendAllowance(sender, msg.sender, amount); _beforeInterchainTransfer(sender, destinationChain, recipient, amount, metadata); ITransmitInterchainToken(interchainTokenService()).transmitInterchainTransfer{ value: msg.value }( interchainTokenId(), sender, destinationChain, recipient, amount, metadata ); } /** * @notice A method to be overwritten that will be called before an interchain transfer. One can approve the tokenManager here if needed, * to allow users for a 1-call transfer in case of a lock-unlock token manager. * @param from The sender of the tokens. They need to have approved `msg.sender` before this is called. * @param destinationChain The string representation of the destination chain. * @param destinationAddress The bytes representation of the address of the recipient. * @param amount The amount of token to be transferred. * @param metadata Either empty, just to facilitate an interchain transfer, or the data to be passed to an interchain contract call and transfer. */ function _beforeInterchainTransfer( address from, string calldata destinationChain, bytes calldata destinationAddress, uint256 amount, bytes calldata metadata ) internal virtual {} /** * @notice A method to be overwritten that will decrease the allowance of the `spender` from `sender` by `amount`. * @dev Needs to be overwritten. This provides flexibility for the choice of ERC20 implementation used. Must revert if allowance is not sufficient. */ function _spendAllowance(address sender, address spender, uint256 amount) internal virtual; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title IInterchainTokenStandard interface * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IInterchainTokenStandard { /** * @notice Implementation of the interchainTransfer method. * @dev We chose to either pass `metadata` as raw data on a remote contract call, or if no data is passed, just do a transfer. * A different implementation could use metadata to specify a function to invoke, or for other purposes as well. * @param destinationChain The destination chain identifier. * @param recipient The bytes representation of the address of the recipient. * @param amount The amount of token to be transferred. * @param metadata Optional metadata for the call for additional effects (such as calling a destination contract). */ function interchainTransfer( string calldata destinationChain, bytes calldata recipient, uint256 amount, bytes calldata metadata ) external payable; /** * @notice Implementation of the interchainTransferFrom method * @dev We chose to either pass `metadata` as raw data on a remote contract call, or, if no data is passed, just do a transfer. * A different implementation could use metadata to specify a function to invoke, or for other purposes as well. * @param sender The sender of the tokens. They need to have approved `msg.sender` before this is called. * @param destinationChain The string representation of the destination chain. * @param recipient The bytes representation of the address of the recipient. * @param amount The amount of token to be transferred. * @param metadata Optional metadata for the call for additional effects (such as calling a destination contract.) */ function interchainTransferFrom( address sender, string calldata destinationChain, bytes calldata recipient, uint256 amount, bytes calldata metadata ) external payable; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title ITransmitInterchainToken Interface * @notice Interface for transmiting interchain tokens via the interchain token service */ interface ITransmitInterchainToken { /** * @notice Transmit an interchain transfer for the given tokenId. * @dev Only callable by a token registered under a tokenId. * @param tokenId The tokenId of the token (which must be the msg.sender). * @param sourceAddress The address where the token is coming from. * @param destinationChain The name of the chain to send tokens to. * @param destinationAddress The destinationAddress for the interchainTransfer. * @param amount The amount of token to give. * @param metadata Optional metadata for the call for additional effects (such as calling a destination contract). */ function transmitInterchainTransfer( bytes32 tokenId, address sourceAddress, string calldata destinationChain, bytes memory destinationAddress, uint256 amount, bytes calldata metadata ) external payable; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol) pragma solidity ^0.8.20; /** * @dev External interface of AccessControl declared to support ERC-165 detection. */ interface IAccessControl { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role). * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. */ function renounceRole(bytes32 role, address callerConfirmation) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) pragma solidity ^0.8.20; import {Context} from "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol) pragma solidity ^0.8.20; /** * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts. */ interface IVotes { /** * @dev The signature used has expired. */ error VotesExpiredSignature(uint256 expiry); /** * @dev Emitted when an account changes their delegate. */ event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); /** * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units. */ event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes); /** * @dev Returns the current amount of votes that `account` has. */ function getVotes(address account) external view returns (uint256); /** * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. */ function getPastVotes(address account, uint256 timepoint) external view returns (uint256); /** * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes. * Votes that have not been delegated are still part of total supply, even though they would not participate in a * vote. */ function getPastTotalSupply(uint256 timepoint) external view returns (uint256); /** * @dev Returns the delegate that `account` has chosen. */ function delegates(address account) external view returns (address); /** * @dev Delegates votes from the sender to `delegatee`. */ function delegate(address delegatee) external; /** * @dev Delegates votes from signer to `delegatee`. */ function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) pragma solidity ^0.8.20; interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol) pragma solidity ^0.8.20; import {IVotes} from "../governance/utils/IVotes.sol"; import {IERC6372} from "./IERC6372.sol"; interface IERC5805 is IERC6372, IVotes {}
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol) pragma solidity ^0.8.20; interface IERC6372 { /** * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting). */ function clock() external view returns (uint48); /** * @dev Description of the clock */ // solhint-disable-next-line func-name-mixedcase function CLOCK_MODE() external view returns (string memory); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.20; /** * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.20; import {IBeacon} from "../beacon/IBeacon.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots. */ library ERC1967Utils { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the ERC-1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the ERC-1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the ERC-1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol) pragma solidity ^0.8.20; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback * function and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; import {Address} from "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return a == 0 ? 0 : (a - 1) / b + 1; } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative. } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); /// @solidity memory-safe-assembly assembly { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { /// @solidity memory-safe-assembly assembly { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol) // This file was procedurally generated from scripts/generate/templates/Checkpoints.js. pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; /** * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in * time, and later looking up past values by block number. See {Votes} as an example. * * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new * checkpoint for the current transaction block using the {push} function. */ library Checkpoints { /** * @dev A value was attempted to be inserted on a past checkpoint. */ error CheckpointUnorderedInsertion(); struct Trace224 { Checkpoint224[] _checkpoints; } struct Checkpoint224 { uint32 _key; uint224 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the * library. */ function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace224 storage self) internal view returns (uint224) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint224 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace224 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) { uint256 pos = self.length; if (pos > 0) { Checkpoint224 storage last = _unsafeAccess(self, pos - 1); uint32 lastKey = last._key; uint224 lastValue = last._value; // Checkpoint keys must be non-decreasing. if (lastKey > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (lastKey == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint224({_key: key, _value: value})); } return (lastValue, value); } else { self.push(Checkpoint224({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint224[] storage self, uint256 pos ) private pure returns (Checkpoint224 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace208 { Checkpoint208[] _checkpoints; } struct Checkpoint208 { uint48 _key; uint208 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the * library. */ function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace208 storage self) internal view returns (uint208) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint208 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace208 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) { uint256 pos = self.length; if (pos > 0) { Checkpoint208 storage last = _unsafeAccess(self, pos - 1); uint48 lastKey = last._key; uint208 lastValue = last._value; // Checkpoint keys must be non-decreasing. if (lastKey > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (lastKey == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint208({_key: key, _value: value})); } return (lastValue, value); } else { self.push(Checkpoint208({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint208[] storage self, uint256 pos ) private pure returns (Checkpoint208 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace160 { Checkpoint160[] _checkpoints; } struct Checkpoint160 { uint96 _key; uint160 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the * library. */ function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace160 storage self) internal view returns (uint160) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint160 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace160 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) { uint256 pos = self.length; if (pos > 0) { Checkpoint160 storage last = _unsafeAccess(self, pos - 1); uint96 lastKey = last._key; uint160 lastValue = last._value; // Checkpoint keys must be non-decreasing. if (lastKey > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (lastKey == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint160({_key: key, _value: value})); } return (lastValue, value); } else { self.push(Checkpoint160({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint160[] storage self, uint256 pos ) private pure returns (Checkpoint160 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol) pragma solidity ^0.8.20; import {Math} from "../math/Math.sol"; import {SafeCast} from "../math/SafeCast.sol"; /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ↓ ↓ ↓ [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) { (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32, uint32, uint48) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol) pragma solidity ^0.8.20; import {IAccessControl} from "@openzeppelin/contracts/access/IAccessControl.sol"; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {ERC165Upgradeable} from "../utils/introspection/ERC165Upgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable { struct RoleData { mapping(address account => bool) hasRole; bytes32 adminRole; } bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl struct AccessControlStorage { mapping(bytes32 role => RoleData) _roles; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800; function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) { assembly { $.slot := AccessControlStorageLocation } } /** * @dev Modifier that checks that an account has a specific role. Reverts * with an {AccessControlUnauthorizedAccount} error including the required role. */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } function __AccessControl_init() internal onlyInitializing { } function __AccessControl_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); return $._roles[role].hasRole[account]; } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()` * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier. */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account` * is missing `role`. */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert AccessControlUnauthorizedAccount(account, role); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) { AccessControlStorage storage $ = _getAccessControlStorage(); return $._roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address callerConfirmation) public virtual { if (callerConfirmation != _msgSender()) { revert AccessControlBadConfirmation(); } _revokeRole(role, callerConfirmation); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { AccessControlStorage storage $ = _getAccessControlStorage(); bytes32 previousAdminRole = getRoleAdmin(role); $._roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); if (!hasRole(role, account)) { $._roles[role].hasRole[account] = true; emit RoleGranted(role, account, _msgSender()); return true; } else { return false; } } /** * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); if (hasRole(role, account)) { $._roles[role].hasRole[account] = false; emit RoleRevoked(role, account, _msgSender()); return true; } else { return false; } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol) pragma solidity ^0.8.20; import {IERC5805} from "@openzeppelin/contracts/interfaces/IERC5805.sol"; import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol"; import {NoncesUpgradeable} from "../../utils/NoncesUpgradeable.sol"; import {EIP712Upgradeable} from "../../utils/cryptography/EIP712Upgradeable.sol"; import {Checkpoints} from "@openzeppelin/contracts/utils/structs/Checkpoints.sol"; import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {Time} from "@openzeppelin/contracts/utils/types/Time.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of * "representative" that will pool delegated voting units from different accounts and can then use it to vote in * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative. * * This contract is often combined with a token contract such that voting units correspond to token units. For an * example, see {ERC721Votes}. * * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the * cost of this history tracking optional. * * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the * previous example, it would be included in {ERC721-_update}). */ abstract contract VotesUpgradeable is Initializable, ContextUpgradeable, EIP712Upgradeable, NoncesUpgradeable, IERC5805 { using Checkpoints for Checkpoints.Trace208; bytes32 private constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); /// @custom:storage-location erc7201:openzeppelin.storage.Votes struct VotesStorage { mapping(address account => address) _delegatee; mapping(address delegatee => Checkpoints.Trace208) _delegateCheckpoints; Checkpoints.Trace208 _totalCheckpoints; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Votes")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant VotesStorageLocation = 0xe8b26c30fad74198956032a3533d903385d56dd795af560196f9c78d4af40d00; function _getVotesStorage() private pure returns (VotesStorage storage $) { assembly { $.slot := VotesStorageLocation } } /** * @dev The clock was incorrectly modified. */ error ERC6372InconsistentClock(); /** * @dev Lookup to future votes is not available. */ error ERC5805FutureLookup(uint256 timepoint, uint48 clock); function __Votes_init() internal onlyInitializing { } function __Votes_init_unchained() internal onlyInitializing { } /** * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match. */ function clock() public view virtual returns (uint48) { return Time.blockNumber(); } /** * @dev Machine-readable description of the clock as specified in EIP-6372. */ // solhint-disable-next-line func-name-mixedcase function CLOCK_MODE() public view virtual returns (string memory) { // Check that the clock was not modified if (clock() != Time.blockNumber()) { revert ERC6372InconsistentClock(); } return "mode=blocknumber&from=default"; } /** * @dev Returns the current amount of votes that `account` has. */ function getVotes(address account) public view virtual returns (uint256) { VotesStorage storage $ = _getVotesStorage(); return $._delegateCheckpoints[account].latest(); } /** * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * Requirements: * * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined. */ function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) { VotesStorage storage $ = _getVotesStorage(); uint48 currentTimepoint = clock(); if (timepoint >= currentTimepoint) { revert ERC5805FutureLookup(timepoint, currentTimepoint); } return $._delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint)); } /** * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes. * Votes that have not been delegated are still part of total supply, even though they would not participate in a * vote. * * Requirements: * * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined. */ function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) { VotesStorage storage $ = _getVotesStorage(); uint48 currentTimepoint = clock(); if (timepoint >= currentTimepoint) { revert ERC5805FutureLookup(timepoint, currentTimepoint); } return $._totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint)); } /** * @dev Returns the current total supply of votes. */ function _getTotalSupply() internal view virtual returns (uint256) { VotesStorage storage $ = _getVotesStorage(); return $._totalCheckpoints.latest(); } /** * @dev Returns the delegate that `account` has chosen. */ function delegates(address account) public view virtual returns (address) { VotesStorage storage $ = _getVotesStorage(); return $._delegatee[account]; } /** * @dev Delegates votes from the sender to `delegatee`. */ function delegate(address delegatee) public virtual { address account = _msgSender(); _delegate(account, delegatee); } /** * @dev Delegates votes from signer to `delegatee`. */ function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > expiry) { revert VotesExpiredSignature(expiry); } address signer = ECDSA.recover( _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))), v, r, s ); _useCheckedNonce(signer, nonce); _delegate(signer, delegatee); } /** * @dev Delegate all of `account`'s voting units to `delegatee`. * * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}. */ function _delegate(address account, address delegatee) internal virtual { VotesStorage storage $ = _getVotesStorage(); address oldDelegate = delegates(account); $._delegatee[account] = delegatee; emit DelegateChanged(account, oldDelegate, delegatee); _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account)); } /** * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to` * should be zero. Total supply of voting units will be adjusted with mints and burns. */ function _transferVotingUnits(address from, address to, uint256 amount) internal virtual { VotesStorage storage $ = _getVotesStorage(); if (from == address(0)) { _push($._totalCheckpoints, _add, SafeCast.toUint208(amount)); } if (to == address(0)) { _push($._totalCheckpoints, _subtract, SafeCast.toUint208(amount)); } _moveDelegateVotes(delegates(from), delegates(to), amount); } /** * @dev Moves delegated votes from one delegate to another. */ function _moveDelegateVotes(address from, address to, uint256 amount) private { VotesStorage storage $ = _getVotesStorage(); if (from != to && amount > 0) { if (from != address(0)) { (uint256 oldValue, uint256 newValue) = _push( $._delegateCheckpoints[from], _subtract, SafeCast.toUint208(amount) ); emit DelegateVotesChanged(from, oldValue, newValue); } if (to != address(0)) { (uint256 oldValue, uint256 newValue) = _push( $._delegateCheckpoints[to], _add, SafeCast.toUint208(amount) ); emit DelegateVotesChanged(to, oldValue, newValue); } } } /** * @dev Get number of checkpoints for `account`. */ function _numCheckpoints(address account) internal view virtual returns (uint32) { VotesStorage storage $ = _getVotesStorage(); return SafeCast.toUint32($._delegateCheckpoints[account].length()); } /** * @dev Get the `pos`-th checkpoint for `account`. */ function _checkpoints( address account, uint32 pos ) internal view virtual returns (Checkpoints.Checkpoint208 memory) { VotesStorage storage $ = _getVotesStorage(); return $._delegateCheckpoints[account].at(pos); } function _push( Checkpoints.Trace208 storage store, function(uint208, uint208) view returns (uint208) op, uint208 delta ) private returns (uint208, uint208) { return store.push(clock(), op(store.latest(), delta)); } function _add(uint208 a, uint208 b) private pure returns (uint208) { return a + b; } function _subtract(uint208 a, uint208 b) private pure returns (uint208) { return a - b; } /** * @dev Must return the voting units held by an account. */ function _getVotingUnits(address) internal view virtual returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.20; import {IERC1822Proxiable} from "@openzeppelin/contracts/interfaces/draft-IERC1822.sol"; import {ERC1967Utils} from "@openzeppelin/contracts/proxy/ERC1967/ERC1967Utils.sol"; import {Initializable} from "./Initializable.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. */ abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable { /// @custom:oz-upgrades-unsafe-allow state-variable-immutable address private immutable __self = address(this); /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)` * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev The call is from an unauthorized context. */ error UUPSUnauthorizedCallContext(); /** * @dev The storage `slot` is unsupported as a UUID. */ error UUPSUnsupportedProxiableUUID(bytes32 slot); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { _checkProxy(); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { _checkNotDelegated(); _; } function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual notDelegated returns (bytes32) { return ERC1967Utils.IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data); } /** * @dev Reverts if the execution is not performed via delegatecall or the execution * context is not of a proxy with an ERC1967-compliant implementation pointing to self. * See {_onlyProxy}. */ function _checkProxy() internal view virtual { if ( address(this) == __self || // Must be called through delegatecall ERC1967Utils.getImplementation() != __self // Must be called through an active proxy ) { revert UUPSUnauthorizedCallContext(); } } /** * @dev Reverts if the execution is performed via delegatecall. * See {notDelegated}. */ function _checkNotDelegated() internal view virtual { if (address(this) != __self) { // Must not be called through delegatecall revert UUPSUnauthorizedCallContext(); } } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call. * * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value * is expected to be the implementation slot in ERC1967. * * Emits an {IERC1967-Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) { revert UUPSUnsupportedProxiableUUID(slot); } ERC1967Utils.upgradeToAndCall(newImplementation, data); } catch { // The implementation is not UUPS revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol"; import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors { /// @custom:storage-location erc7201:openzeppelin.storage.ERC20 struct ERC20Storage { mapping(address account => uint256) _balances; mapping(address account => mapping(address spender => uint256)) _allowances; uint256 _totalSupply; string _name; string _symbol; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00; function _getERC20Storage() private pure returns (ERC20Storage storage $) { assembly { $.slot := ERC20StorageLocation } } /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { ERC20Storage storage $ = _getERC20Storage(); $._name = name_; $._symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows $._totalSupply += value; } else { uint256 fromBalance = $._balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. $._balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. $._totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. $._balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } $._allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Pausable.sol) pragma solidity ^0.8.20; import {ERC20Upgradeable} from "../ERC20Upgradeable.sol"; import {PausableUpgradeable} from "../../../utils/PausableUpgradeable.sol"; import {Initializable} from "../../../proxy/utils/Initializable.sol"; /** * @dev ERC20 token with pausable token transfers, minting and burning. * * Useful for scenarios such as preventing trades until the end of an evaluation * period, or having an emergency switch for freezing all token transfers in the * event of a large bug. * * IMPORTANT: This contract does not include public pause and unpause functions. In * addition to inheriting this contract, you must define both functions, invoking the * {Pausable-_pause} and {Pausable-_unpause} internal functions, with appropriate * access control, e.g. using {AccessControl} or {Ownable}. Not doing so will * make the contract pause mechanism of the contract unreachable, and thus unusable. */ abstract contract ERC20PausableUpgradeable is Initializable, ERC20Upgradeable, PausableUpgradeable { function __ERC20Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __ERC20Pausable_init_unchained() internal onlyInitializing { } /** * @dev See {ERC20-_update}. * * Requirements: * * - the contract must not be paused. */ function _update(address from, address to, uint256 value) internal virtual override whenNotPaused { super._update(from, to, value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol) pragma solidity ^0.8.20; import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol"; import {ERC20Upgradeable} from "../ERC20Upgradeable.sol"; import {ECDSA} from "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import {EIP712Upgradeable} from "../../../utils/cryptography/EIP712Upgradeable.sol"; import {NoncesUpgradeable} from "../../../utils/NoncesUpgradeable.sol"; import {Initializable} from "../../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ function __ERC20Permit_init(string memory name) internal onlyInitializing { __EIP712_init_unchained(name, "1"); } function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Votes.sol) pragma solidity ^0.8.20; import {ERC20Upgradeable} from "../ERC20Upgradeable.sol"; import {VotesUpgradeable} from "../../../governance/utils/VotesUpgradeable.sol"; import {Checkpoints} from "@openzeppelin/contracts/utils/structs/Checkpoints.sol"; import {Initializable} from "../../../proxy/utils/Initializable.sol"; /** * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's, * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1. * * NOTE: This contract does not provide interface compatibility with Compound's COMP token. * * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting * power can be queried through the public accessors {getVotes} and {getPastVotes}. * * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked. */ abstract contract ERC20VotesUpgradeable is Initializable, ERC20Upgradeable, VotesUpgradeable { /** * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing. */ error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap); function __ERC20Votes_init() internal onlyInitializing { } function __ERC20Votes_init_unchained() internal onlyInitializing { } /** * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1). * * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256, * so that checkpoints can be stored in the Trace208 structure used by {{Votes}}. Increasing this value will not * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in * {_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if * additional logic requires it. When resolving override conflicts on this function, the minimum should be * returned. */ function _maxSupply() internal view virtual returns (uint256) { return type(uint208).max; } /** * @dev Move voting power when tokens are transferred. * * Emits a {IVotes-DelegateVotesChanged} event. */ function _update(address from, address to, uint256 value) internal virtual override { super._update(from, to, value); if (from == address(0)) { uint256 supply = totalSupply(); uint256 cap = _maxSupply(); if (supply > cap) { revert ERC20ExceededSafeSupply(supply, cap); } } _transferVotingUnits(from, to, value); } /** * @dev Returns the voting units of an `account`. * * WARNING: Overriding this function may compromise the internal vote accounting. * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change. */ function _getVotingUnits(address account) internal view virtual override returns (uint256) { return balanceOf(account); } /** * @dev Get number of checkpoints for `account`. */ function numCheckpoints(address account) public view virtual returns (uint32) { return _numCheckpoints(account); } /** * @dev Get the `pos`-th checkpoint for `account`. */ function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) { return _checkpoints(account, pos); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) pragma solidity ^0.8.20; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract NoncesUpgradeable is Initializable { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); /// @custom:storage-location erc7201:openzeppelin.storage.Nonces struct NoncesStorage { mapping(address account => uint256) _nonces; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00; function _getNoncesStorage() private pure returns (NoncesStorage storage $) { assembly { $.slot := NoncesStorageLocation } } function __Nonces_init() internal onlyInitializing { } function __Nonces_init_unchained() internal onlyInitializing { } /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { NoncesStorage storage $ = _getNoncesStorage(); return $._nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { NoncesStorage storage $ = _getNoncesStorage(); // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return $._nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) pragma solidity ^0.8.20; import {ContextUpgradeable} from "../utils/ContextUpgradeable.sol"; import {Initializable} from "../proxy/utils/Initializable.sol"; /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Pausable struct PausableStorage { bool _paused; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300; function _getPausableStorage() private pure returns (PausableStorage storage $) { assembly { $.slot := PausableStorageLocation } } /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { PausableStorage storage $ = _getPausableStorage(); $._paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { PausableStorage storage $ = _getPausableStorage(); return $._paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = false; emit Unpaused(_msgSender()); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) pragma solidity ^0.8.20; import {MessageHashUtils} from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import {IERC5267} from "@openzeppelin/contracts/interfaces/IERC5267.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. */ abstract contract EIP712Upgradeable is Initializable, IERC5267 { bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); /// @custom:storage-location erc7201:openzeppelin.storage.EIP712 struct EIP712Storage { /// @custom:oz-renamed-from _HASHED_NAME bytes32 _hashedName; /// @custom:oz-renamed-from _HASHED_VERSION bytes32 _hashedVersion; string _name; string _version; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100; function _getEIP712Storage() private pure returns (EIP712Storage storage $) { assembly { $.slot := EIP712StorageLocation } } /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ function __EIP712_init(string memory name, string memory version) internal onlyInitializing { __EIP712_init_unchained(name, version); } function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing { EIP712Storage storage $ = _getEIP712Storage(); $._name = name; $._version = version; // Reset prior values in storage if upgrading $._hashedName = 0; $._hashedVersion = 0; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { return _buildDomainSeparator(); } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { EIP712Storage storage $ = _getEIP712Storage(); // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized // and the EIP712 domain is not reliable, as it will be missing name and version. require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized"); return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Name() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._name; } /** * @dev The version parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Version() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._version; } /** * @dev The hash of the name parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead. */ function _EIP712NameHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory name = _EIP712Name(); if (bytes(name).length > 0) { return keccak256(bytes(name)); } else { // If the name is empty, the contract may have been upgraded without initializing the new storage. // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design. bytes32 hashedName = $._hashedName; if (hashedName != 0) { return hashedName; } else { return keccak256(""); } } } /** * @dev The hash of the version parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead. */ function _EIP712VersionHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory version = _EIP712Version(); if (bytes(version).length > 0) { return keccak256(bytes(version)); } else { // If the version is empty, the contract may have been upgraded without initializing the new storage. // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design. bytes32 hashedVersion = $._hashedVersion; if (hashedVersion != 0) { return hashedVersion; } else { return keccak256(""); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import {Initializable} from "../../proxy/utils/Initializable.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165Upgradeable is Initializable, IERC165 { function __ERC165_init() internal onlyInitializing { } function __ERC165_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; import {StdStorage} from "./StdStorage.sol"; import {Vm, VmSafe} from "./Vm.sol"; abstract contract CommonBase { // Cheat code address, 0x7109709ECfa91a80626fF3989D68f67F5b1DD12D. address internal constant VM_ADDRESS = address(uint160(uint256(keccak256("hevm cheat code")))); // console.sol and console2.sol work by executing a staticcall to this address. address internal constant CONSOLE = 0x000000000000000000636F6e736F6c652e6c6f67; // Default address for tx.origin and msg.sender, 0x1804c8AB1F12E6bbf3894d4083f33e07309d1f38. address internal constant DEFAULT_SENDER = address(uint160(uint256(keccak256("foundry default caller")))); // Address of the test contract, deployed by the DEFAULT_SENDER. address internal constant DEFAULT_TEST_CONTRACT = 0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f; uint256 internal constant UINT256_MAX = 115792089237316195423570985008687907853269984665640564039457584007913129639935; Vm internal constant vm = Vm(VM_ADDRESS); StdStorage internal stdstore; } abstract contract TestBase is CommonBase {} abstract contract ScriptBase is CommonBase { // Used when deploying with create2, https://github.com/Arachnid/deterministic-deployment-proxy. address internal constant CREATE2_FACTORY = 0x4e59b44847b379578588920cA78FbF26c0B4956C; VmSafe internal constant vmSafe = VmSafe(VM_ADDRESS); }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; // 💬 ABOUT // Standard Library's default Script. // 🧩 MODULES import {ScriptBase} from "./Base.sol"; import {console} from "./console.sol"; import {console2} from "./console2.sol"; import {StdChains} from "./StdChains.sol"; import {StdCheatsSafe} from "./StdCheats.sol"; import {stdJson} from "./StdJson.sol"; import {stdMath} from "./StdMath.sol"; import {StdStorage, stdStorageSafe} from "./StdStorage.sol"; import {StdUtils} from "./StdUtils.sol"; import {VmSafe} from "./Vm.sol"; // 📦 BOILERPLATE import {ScriptBase} from "./Base.sol"; // ⭐️ SCRIPT abstract contract Script is StdChains, StdCheatsSafe, StdUtils, ScriptBase { // Note: IS_SCRIPT() must return true. bool public IS_SCRIPT = true; }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; pragma experimental ABIEncoderV2; import {VmSafe} from "./Vm.sol"; /** * StdChains provides information about EVM compatible chains that can be used in scripts/tests. * For each chain, the chain's name, chain ID, and a default RPC URL are provided. Chains are * identified by their alias, which is the same as the alias in the `[rpc_endpoints]` section of * the `foundry.toml` file. For best UX, ensure the alias in the `foundry.toml` file match the * alias used in this contract, which can be found as the first argument to the * `setChainWithDefaultRpcUrl` call in the `initialize` function. * * There are two main ways to use this contract: * 1. Set a chain with `setChain(string memory chainAlias, Chain memory chain)` * 2. Get a chain with `getChain(string memory chainAlias)` or `getChain(uint256 chainId)`. * * The first time either of those are used, chains are initialized with the default set of RPC URLs. * This is done in `initialize`, which uses `setChainWithDefaultRpcUrl`. Defaults are recorded in * `defaultRpcUrls`. * * The `setChain` function is straightforward, and it simply saves off the given chain data. * * The `getChain` methods use `getChainWithUpdatedRpcUrl` to return a chain. For example, let's say * we want to retrieve `mainnet`'s RPC URL: * - If you haven't set any mainnet chain info with `setChain` and you haven't specified that * chain in `foundry.toml`, the default data and RPC URL will be returned. * - If you have set a mainnet RPC URL in `foundry.toml` it will return that, if valid (e.g. if * a URL is given or if an environment variable is given and that environment variable exists). * Otherwise, the default data is returned. * - If you specified data with `setChain` it will return that. * * Summarizing the above, the prioritization hierarchy is `setChain` -> `foundry.toml` -> defaults. */ abstract contract StdChains { VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code"))))); bool private initialized; struct Chain { // The chain name. string name; // The chain's Chain ID. uint256 chainId; // A default RPC endpoint for this chain. // NOTE: This default RPC URL is included for convenience to facilitate quick tests and // experimentation. Do not use this RPC URL for production test suites, CI, or other heavy // usage as you will be throttled and this is a disservice to others who need this endpoint. string rpcUrl; } // Maps from the chain's alias (matching the alias in the `foundry.toml` file) to chain data. mapping(string => Chain) private chains; // Maps from the chain's alias to it's default RPC URL. mapping(string => string) private defaultRpcUrls; // Maps from a chain ID to it's alias. mapping(uint256 => string) private idToAlias; // The RPC URL will be fetched from config or defaultRpcUrls if possible. function getChain(string memory chainAlias) internal virtual returns (Chain memory chain) { require(bytes(chainAlias).length != 0, "StdChains getChain(string): Chain alias cannot be the empty string."); initialize(); chain = chains[chainAlias]; require( chain.chainId != 0, string(abi.encodePacked("StdChains getChain(string): Chain with alias \"", chainAlias, "\" not found.")) ); chain = getChainWithUpdatedRpcUrl(chainAlias, chain); } function getChain(uint256 chainId) internal virtual returns (Chain memory chain) { require(chainId != 0, "StdChains getChain(uint256): Chain ID cannot be 0."); initialize(); string memory chainAlias = idToAlias[chainId]; chain = chains[chainAlias]; require( chain.chainId != 0, string(abi.encodePacked("StdChains getChain(uint256): Chain with ID ", vm.toString(chainId), " not found.")) ); chain = getChainWithUpdatedRpcUrl(chainAlias, chain); } // set chain info, with priority to argument's rpcUrl field. function setChain(string memory chainAlias, Chain memory chain) internal virtual { require( bytes(chainAlias).length != 0, "StdChains setChain(string,Chain): Chain alias cannot be the empty string." ); require(chain.chainId != 0, "StdChains setChain(string,Chain): Chain ID cannot be 0."); initialize(); string memory foundAlias = idToAlias[chain.chainId]; require( bytes(foundAlias).length == 0 || keccak256(bytes(foundAlias)) == keccak256(bytes(chainAlias)), string( abi.encodePacked( "StdChains setChain(string,Chain): Chain ID ", vm.toString(chain.chainId), " already used by \"", foundAlias, "\"." ) ) ); uint256 oldChainId = chains[chainAlias].chainId; delete idToAlias[oldChainId]; chains[chainAlias] = chain; idToAlias[chain.chainId] = chainAlias; } // lookup rpcUrl, in descending order of priority: // current -> config (foundry.toml) -> default function getChainWithUpdatedRpcUrl(string memory chainAlias, Chain memory chain) private view returns (Chain memory) { if (bytes(chain.rpcUrl).length == 0) { try vm.rpcUrl(chainAlias) returns (string memory configRpcUrl) { chain.rpcUrl = configRpcUrl; } catch (bytes memory err) { chain.rpcUrl = defaultRpcUrls[chainAlias]; // distinguish 'not found' from 'cannot read' bytes memory notFoundError = abi.encodeWithSignature("CheatCodeError", string(abi.encodePacked("invalid rpc url ", chainAlias))); if (keccak256(notFoundError) != keccak256(err) || bytes(chain.rpcUrl).length == 0) { /// @solidity memory-safe-assembly assembly { revert(add(32, err), mload(err)) } } } } return chain; } function initialize() private { if (initialized) return; initialized = true; // If adding an RPC here, make sure to test the default RPC URL in `testRpcs` setChainWithDefaultRpcUrl("anvil", Chain("Anvil", 31337, "http://127.0.0.1:8545")); setChainWithDefaultRpcUrl( "mainnet", Chain("Mainnet", 1, "https://mainnet.infura.io/v3/6770454bc6ea42c58aac12978531b93f") ); setChainWithDefaultRpcUrl( "goerli", Chain("Goerli", 5, "https://goerli.infura.io/v3/6770454bc6ea42c58aac12978531b93f") ); setChainWithDefaultRpcUrl( "sepolia", Chain("Sepolia", 11155111, "https://sepolia.infura.io/v3/6770454bc6ea42c58aac12978531b93f") ); setChainWithDefaultRpcUrl("optimism", Chain("Optimism", 10, "https://mainnet.optimism.io")); setChainWithDefaultRpcUrl("optimism_goerli", Chain("Optimism Goerli", 420, "https://goerli.optimism.io")); setChainWithDefaultRpcUrl("arbitrum_one", Chain("Arbitrum One", 42161, "https://arb1.arbitrum.io/rpc")); setChainWithDefaultRpcUrl( "arbitrum_one_goerli", Chain("Arbitrum One Goerli", 421613, "https://goerli-rollup.arbitrum.io/rpc") ); setChainWithDefaultRpcUrl("arbitrum_nova", Chain("Arbitrum Nova", 42170, "https://nova.arbitrum.io/rpc")); setChainWithDefaultRpcUrl("polygon", Chain("Polygon", 137, "https://polygon-rpc.com")); setChainWithDefaultRpcUrl("polygon_mumbai", Chain("Polygon Mumbai", 80001, "https://rpc-mumbai.maticvigil.com")); setChainWithDefaultRpcUrl("avalanche", Chain("Avalanche", 43114, "https://api.avax.network/ext/bc/C/rpc")); setChainWithDefaultRpcUrl( "avalanche_fuji", Chain("Avalanche Fuji", 43113, "https://api.avax-test.network/ext/bc/C/rpc") ); setChainWithDefaultRpcUrl("bnb_smart_chain", Chain("BNB Smart Chain", 56, "https://bsc-dataseed1.binance.org")); setChainWithDefaultRpcUrl("bnb_smart_chain_testnet", Chain("BNB Smart Chain Testnet", 97, "https://data-seed-prebsc-1-s1.binance.org:8545"));// forgefmt: disable-line setChainWithDefaultRpcUrl("gnosis_chain", Chain("Gnosis Chain", 100, "https://rpc.gnosischain.com")); } // set chain info, with priority to chainAlias' rpc url in foundry.toml function setChainWithDefaultRpcUrl(string memory chainAlias, Chain memory chain) private { string memory rpcUrl = chain.rpcUrl; defaultRpcUrls[chainAlias] = rpcUrl; chain.rpcUrl = ""; setChain(chainAlias, chain); chain.rpcUrl = rpcUrl; // restore argument } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; pragma experimental ABIEncoderV2; import {StdStorage, stdStorage} from "./StdStorage.sol"; import {Vm} from "./Vm.sol"; abstract contract StdCheatsSafe { Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code"))))); bool private gasMeteringOff; // Data structures to parse Transaction objects from the broadcast artifact // that conform to EIP1559. The Raw structs is what is parsed from the JSON // and then converted to the one that is used by the user for better UX. struct RawTx1559 { string[] arguments; address contractAddress; string contractName; // json value name = function string functionSig; bytes32 hash; // json value name = tx RawTx1559Detail txDetail; // json value name = type string opcode; } struct RawTx1559Detail { AccessList[] accessList; bytes data; address from; bytes gas; bytes nonce; address to; bytes txType; bytes value; } struct Tx1559 { string[] arguments; address contractAddress; string contractName; string functionSig; bytes32 hash; Tx1559Detail txDetail; string opcode; } struct Tx1559Detail { AccessList[] accessList; bytes data; address from; uint256 gas; uint256 nonce; address to; uint256 txType; uint256 value; } // Data structures to parse Transaction objects from the broadcast artifact // that DO NOT conform to EIP1559. The Raw structs is what is parsed from the JSON // and then converted to the one that is used by the user for better UX. struct TxLegacy { string[] arguments; address contractAddress; string contractName; string functionSig; string hash; string opcode; TxDetailLegacy transaction; } struct TxDetailLegacy { AccessList[] accessList; uint256 chainId; bytes data; address from; uint256 gas; uint256 gasPrice; bytes32 hash; uint256 nonce; bytes1 opcode; bytes32 r; bytes32 s; uint256 txType; address to; uint8 v; uint256 value; } struct AccessList { address accessAddress; bytes32[] storageKeys; } // Data structures to parse Receipt objects from the broadcast artifact. // The Raw structs is what is parsed from the JSON // and then converted to the one that is used by the user for better UX. struct RawReceipt { bytes32 blockHash; bytes blockNumber; address contractAddress; bytes cumulativeGasUsed; bytes effectiveGasPrice; address from; bytes gasUsed; RawReceiptLog[] logs; bytes logsBloom; bytes status; address to; bytes32 transactionHash; bytes transactionIndex; } struct Receipt { bytes32 blockHash; uint256 blockNumber; address contractAddress; uint256 cumulativeGasUsed; uint256 effectiveGasPrice; address from; uint256 gasUsed; ReceiptLog[] logs; bytes logsBloom; uint256 status; address to; bytes32 transactionHash; uint256 transactionIndex; } // Data structures to parse the entire broadcast artifact, assuming the // transactions conform to EIP1559. struct EIP1559ScriptArtifact { string[] libraries; string path; string[] pending; Receipt[] receipts; uint256 timestamp; Tx1559[] transactions; TxReturn[] txReturns; } struct RawEIP1559ScriptArtifact { string[] libraries; string path; string[] pending; RawReceipt[] receipts; TxReturn[] txReturns; uint256 timestamp; RawTx1559[] transactions; } struct RawReceiptLog { // json value = address address logAddress; bytes32 blockHash; bytes blockNumber; bytes data; bytes logIndex; bool removed; bytes32[] topics; bytes32 transactionHash; bytes transactionIndex; bytes transactionLogIndex; } struct ReceiptLog { // json value = address address logAddress; bytes32 blockHash; uint256 blockNumber; bytes data; uint256 logIndex; bytes32[] topics; uint256 transactionIndex; uint256 transactionLogIndex; bool removed; } struct TxReturn { string internalType; string value; } function assumeNoPrecompiles(address addr) internal virtual { // Assembly required since `block.chainid` was introduced in 0.8.0. uint256 chainId; assembly { chainId := chainid() } assumeNoPrecompiles(addr, chainId); } function assumeNoPrecompiles(address addr, uint256 chainId) internal virtual { // Note: For some chains like Optimism these are technically predeploys (i.e. bytecode placed at a specific // address), but the same rationale for excluding them applies so we include those too. // These should be present on all EVM-compatible chains. vm.assume(addr < address(0x1) || addr > address(0x9)); // forgefmt: disable-start if (chainId == 10 || chainId == 420) { // https://github.com/ethereum-optimism/optimism/blob/eaa371a0184b56b7ca6d9eb9cb0a2b78b2ccd864/op-bindings/predeploys/addresses.go#L6-L21 vm.assume(addr < address(0x4200000000000000000000000000000000000000) || addr > address(0x4200000000000000000000000000000000000800)); } else if (chainId == 42161 || chainId == 421613) { // https://developer.arbitrum.io/useful-addresses#arbitrum-precompiles-l2-same-on-all-arb-chains vm.assume(addr < address(0x0000000000000000000000000000000000000064) || addr > address(0x0000000000000000000000000000000000000068)); } else if (chainId == 43114 || chainId == 43113) { // https://github.com/ava-labs/subnet-evm/blob/47c03fd007ecaa6de2c52ea081596e0a88401f58/precompile/params.go#L18-L59 vm.assume(addr < address(0x0100000000000000000000000000000000000000) || addr > address(0x01000000000000000000000000000000000000ff)); vm.assume(addr < address(0x0200000000000000000000000000000000000000) || addr > address(0x02000000000000000000000000000000000000FF)); vm.assume(addr < address(0x0300000000000000000000000000000000000000) || addr > address(0x03000000000000000000000000000000000000Ff)); } // forgefmt: disable-end } function readEIP1559ScriptArtifact(string memory path) internal view virtual returns (EIP1559ScriptArtifact memory) { string memory data = vm.readFile(path); bytes memory parsedData = vm.parseJson(data); RawEIP1559ScriptArtifact memory rawArtifact = abi.decode(parsedData, (RawEIP1559ScriptArtifact)); EIP1559ScriptArtifact memory artifact; artifact.libraries = rawArtifact.libraries; artifact.path = rawArtifact.path; artifact.timestamp = rawArtifact.timestamp; artifact.pending = rawArtifact.pending; artifact.txReturns = rawArtifact.txReturns; artifact.receipts = rawToConvertedReceipts(rawArtifact.receipts); artifact.transactions = rawToConvertedEIPTx1559s(rawArtifact.transactions); return artifact; } function rawToConvertedEIPTx1559s(RawTx1559[] memory rawTxs) internal pure virtual returns (Tx1559[] memory) { Tx1559[] memory txs = new Tx1559[](rawTxs.length); for (uint256 i; i < rawTxs.length; i++) { txs[i] = rawToConvertedEIPTx1559(rawTxs[i]); } return txs; } function rawToConvertedEIPTx1559(RawTx1559 memory rawTx) internal pure virtual returns (Tx1559 memory) { Tx1559 memory transaction; transaction.arguments = rawTx.arguments; transaction.contractName = rawTx.contractName; transaction.functionSig = rawTx.functionSig; transaction.hash = rawTx.hash; transaction.txDetail = rawToConvertedEIP1559Detail(rawTx.txDetail); transaction.opcode = rawTx.opcode; return transaction; } function rawToConvertedEIP1559Detail(RawTx1559Detail memory rawDetail) internal pure virtual returns (Tx1559Detail memory) { Tx1559Detail memory txDetail; txDetail.data = rawDetail.data; txDetail.from = rawDetail.from; txDetail.to = rawDetail.to; txDetail.nonce = _bytesToUint(rawDetail.nonce); txDetail.txType = _bytesToUint(rawDetail.txType); txDetail.value = _bytesToUint(rawDetail.value); txDetail.gas = _bytesToUint(rawDetail.gas); txDetail.accessList = rawDetail.accessList; return txDetail; } function readTx1559s(string memory path) internal view virtual returns (Tx1559[] memory) { string memory deployData = vm.readFile(path); bytes memory parsedDeployData = vm.parseJson(deployData, ".transactions"); RawTx1559[] memory rawTxs = abi.decode(parsedDeployData, (RawTx1559[])); return rawToConvertedEIPTx1559s(rawTxs); } function readTx1559(string memory path, uint256 index) internal view virtual returns (Tx1559 memory) { string memory deployData = vm.readFile(path); string memory key = string(abi.encodePacked(".transactions[", vm.toString(index), "]")); bytes memory parsedDeployData = vm.parseJson(deployData, key); RawTx1559 memory rawTx = abi.decode(parsedDeployData, (RawTx1559)); return rawToConvertedEIPTx1559(rawTx); } // Analogous to readTransactions, but for receipts. function readReceipts(string memory path) internal view virtual returns (Receipt[] memory) { string memory deployData = vm.readFile(path); bytes memory parsedDeployData = vm.parseJson(deployData, ".receipts"); RawReceipt[] memory rawReceipts = abi.decode(parsedDeployData, (RawReceipt[])); return rawToConvertedReceipts(rawReceipts); } function readReceipt(string memory path, uint256 index) internal view virtual returns (Receipt memory) { string memory deployData = vm.readFile(path); string memory key = string(abi.encodePacked(".receipts[", vm.toString(index), "]")); bytes memory parsedDeployData = vm.parseJson(deployData, key); RawReceipt memory rawReceipt = abi.decode(parsedDeployData, (RawReceipt)); return rawToConvertedReceipt(rawReceipt); } function rawToConvertedReceipts(RawReceipt[] memory rawReceipts) internal pure virtual returns (Receipt[] memory) { Receipt[] memory receipts = new Receipt[](rawReceipts.length); for (uint256 i; i < rawReceipts.length; i++) { receipts[i] = rawToConvertedReceipt(rawReceipts[i]); } return receipts; } function rawToConvertedReceipt(RawReceipt memory rawReceipt) internal pure virtual returns (Receipt memory) { Receipt memory receipt; receipt.blockHash = rawReceipt.blockHash; receipt.to = rawReceipt.to; receipt.from = rawReceipt.from; receipt.contractAddress = rawReceipt.contractAddress; receipt.effectiveGasPrice = _bytesToUint(rawReceipt.effectiveGasPrice); receipt.cumulativeGasUsed = _bytesToUint(rawReceipt.cumulativeGasUsed); receipt.gasUsed = _bytesToUint(rawReceipt.gasUsed); receipt.status = _bytesToUint(rawReceipt.status); receipt.transactionIndex = _bytesToUint(rawReceipt.transactionIndex); receipt.blockNumber = _bytesToUint(rawReceipt.blockNumber); receipt.logs = rawToConvertedReceiptLogs(rawReceipt.logs); receipt.logsBloom = rawReceipt.logsBloom; receipt.transactionHash = rawReceipt.transactionHash; return receipt; } function rawToConvertedReceiptLogs(RawReceiptLog[] memory rawLogs) internal pure virtual returns (ReceiptLog[] memory) { ReceiptLog[] memory logs = new ReceiptLog[](rawLogs.length); for (uint256 i; i < rawLogs.length; i++) { logs[i].logAddress = rawLogs[i].logAddress; logs[i].blockHash = rawLogs[i].blockHash; logs[i].blockNumber = _bytesToUint(rawLogs[i].blockNumber); logs[i].data = rawLogs[i].data; logs[i].logIndex = _bytesToUint(rawLogs[i].logIndex); logs[i].topics = rawLogs[i].topics; logs[i].transactionIndex = _bytesToUint(rawLogs[i].transactionIndex); logs[i].transactionLogIndex = _bytesToUint(rawLogs[i].transactionLogIndex); logs[i].removed = rawLogs[i].removed; } return logs; } // Deploy a contract by fetching the contract bytecode from // the artifacts directory // e.g. `deployCode(code, abi.encode(arg1,arg2,arg3))` function deployCode(string memory what, bytes memory args) internal virtual returns (address addr) { bytes memory bytecode = abi.encodePacked(vm.getCode(what), args); /// @solidity memory-safe-assembly assembly { addr := create(0, add(bytecode, 0x20), mload(bytecode)) } require(addr != address(0), "StdCheats deployCode(string,bytes): Deployment failed."); } function deployCode(string memory what) internal virtual returns (address addr) { bytes memory bytecode = vm.getCode(what); /// @solidity memory-safe-assembly assembly { addr := create(0, add(bytecode, 0x20), mload(bytecode)) } require(addr != address(0), "StdCheats deployCode(string): Deployment failed."); } /// @dev deploy contract with value on construction function deployCode(string memory what, bytes memory args, uint256 val) internal virtual returns (address addr) { bytes memory bytecode = abi.encodePacked(vm.getCode(what), args); /// @solidity memory-safe-assembly assembly { addr := create(val, add(bytecode, 0x20), mload(bytecode)) } require(addr != address(0), "StdCheats deployCode(string,bytes,uint256): Deployment failed."); } function deployCode(string memory what, uint256 val) internal virtual returns (address addr) { bytes memory bytecode = vm.getCode(what); /// @solidity memory-safe-assembly assembly { addr := create(val, add(bytecode, 0x20), mload(bytecode)) } require(addr != address(0), "StdCheats deployCode(string,uint256): Deployment failed."); } // creates a labeled address and the corresponding private key function makeAddrAndKey(string memory name) internal virtual returns (address addr, uint256 privateKey) { privateKey = uint256(keccak256(abi.encodePacked(name))); addr = vm.addr(privateKey); vm.label(addr, name); } // creates a labeled address function makeAddr(string memory name) internal virtual returns (address addr) { (addr,) = makeAddrAndKey(name); } function deriveRememberKey(string memory mnemonic, uint32 index) internal virtual returns (address who, uint256 privateKey) { privateKey = vm.deriveKey(mnemonic, index); who = vm.rememberKey(privateKey); } function _bytesToUint(bytes memory b) private pure returns (uint256) { require(b.length <= 32, "StdCheats _bytesToUint(bytes): Bytes length exceeds 32."); return abi.decode(abi.encodePacked(new bytes(32 - b.length), b), (uint256)); } function isFork() internal virtual returns (bool status) { try vm.activeFork() { status = true; } catch (bytes memory) {} } modifier skipWhenForking() { if (!isFork()) { _; } } modifier skipWhenNotForking() { if (isFork()) { _; } } modifier noGasMetering() { vm.pauseGasMetering(); // To prevent turning gas monitoring back on with nested functions that use this modifier, // we check if gasMetering started in the off position. If it did, we don't want to turn // it back on until we exit the top level function that used the modifier // // i.e. funcA() noGasMetering { funcB() }, where funcB has noGasMetering as well. // funcA will have `gasStartedOff` as false, funcB will have it as true, // so we only turn metering back on at the end of the funcA bool gasStartedOff = gasMeteringOff; gasMeteringOff = true; _; // if gas metering was on when this modifier was called, turn it back on at the end if (!gasStartedOff) { gasMeteringOff = false; vm.resumeGasMetering(); } } } // Wrappers around cheatcodes to avoid footguns abstract contract StdCheats is StdCheatsSafe { using stdStorage for StdStorage; StdStorage private stdstore; Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code"))))); // Skip forward or rewind time by the specified number of seconds function skip(uint256 time) internal virtual { vm.warp(block.timestamp + time); } function rewind(uint256 time) internal virtual { vm.warp(block.timestamp - time); } // Setup a prank from an address that has some ether function hoax(address who) internal virtual { vm.deal(who, 1 << 128); vm.prank(who); } function hoax(address who, uint256 give) internal virtual { vm.deal(who, give); vm.prank(who); } function hoax(address who, address origin) internal virtual { vm.deal(who, 1 << 128); vm.prank(who, origin); } function hoax(address who, address origin, uint256 give) internal virtual { vm.deal(who, give); vm.prank(who, origin); } // Start perpetual prank from an address that has some ether function startHoax(address who) internal virtual { vm.deal(who, 1 << 128); vm.startPrank(who); } function startHoax(address who, uint256 give) internal virtual { vm.deal(who, give); vm.startPrank(who); } // Start perpetual prank from an address that has some ether // tx.origin is set to the origin parameter function startHoax(address who, address origin) internal virtual { vm.deal(who, 1 << 128); vm.startPrank(who, origin); } function startHoax(address who, address origin, uint256 give) internal virtual { vm.deal(who, give); vm.startPrank(who, origin); } function changePrank(address who) internal virtual { vm.stopPrank(); vm.startPrank(who); } // The same as Vm's `deal` // Use the alternative signature for ERC20 tokens function deal(address to, uint256 give) internal virtual { vm.deal(to, give); } // Set the balance of an account for any ERC20 token // Use the alternative signature to update `totalSupply` function deal(address token, address to, uint256 give) internal virtual { deal(token, to, give, false); } function deal(address token, address to, uint256 give, bool adjust) internal virtual { // get current balance (, bytes memory balData) = token.call(abi.encodeWithSelector(0x70a08231, to)); uint256 prevBal = abi.decode(balData, (uint256)); // update balance stdstore.target(token).sig(0x70a08231).with_key(to).checked_write(give); // update total supply if (adjust) { (, bytes memory totSupData) = token.call(abi.encodeWithSelector(0x18160ddd)); uint256 totSup = abi.decode(totSupData, (uint256)); if (give < prevBal) { totSup -= (prevBal - give); } else { totSup += (give - prevBal); } stdstore.target(token).sig(0x18160ddd).checked_write(totSup); } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.9.0; pragma experimental ABIEncoderV2; import {VmSafe} from "./Vm.sol"; // Helpers for parsing and writing JSON files // To parse: // ``` // using stdJson for string; // string memory json = vm.readFile("some_peth"); // json.parseUint("<json_path>"); // ``` // To write: // ``` // using stdJson for string; // string memory json = "deploymentArtifact"; // Contract contract = new Contract(); // json.serialize("contractAddress", address(contract)); // json = json.serialize("deploymentTimes", uint(1)); // // store the stringified JSON to the 'json' variable we have been using as a key // // as we won't need it any longer // string memory json2 = "finalArtifact"; // string memory final = json2.serialize("depArtifact", json); // final.write("<some_path>"); // ``` library stdJson { VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code"))))); function parseRaw(string memory json, string memory key) internal pure returns (bytes memory) { return vm.parseJson(json, key); } function readUint(string memory json, string memory key) internal pure returns (uint256) { return abi.decode(vm.parseJson(json, key), (uint256)); } function readUintArray(string memory json, string memory key) internal pure returns (uint256[] memory) { return abi.decode(vm.parseJson(json, key), (uint256[])); } function readInt(string memory json, string memory key) internal pure returns (int256) { return abi.decode(vm.parseJson(json, key), (int256)); } function readIntArray(string memory json, string memory key) internal pure returns (int256[] memory) { return abi.decode(vm.parseJson(json, key), (int256[])); } function readBytes32(string memory json, string memory key) internal pure returns (bytes32) { return abi.decode(vm.parseJson(json, key), (bytes32)); } function readBytes32Array(string memory json, string memory key) internal pure returns (bytes32[] memory) { return abi.decode(vm.parseJson(json, key), (bytes32[])); } function readString(string memory json, string memory key) internal pure returns (string memory) { return abi.decode(vm.parseJson(json, key), (string)); } function readStringArray(string memory json, string memory key) internal pure returns (string[] memory) { return abi.decode(vm.parseJson(json, key), (string[])); } function readAddress(string memory json, string memory key) internal pure returns (address) { return abi.decode(vm.parseJson(json, key), (address)); } function readAddressArray(string memory json, string memory key) internal pure returns (address[] memory) { return abi.decode(vm.parseJson(json, key), (address[])); } function readBool(string memory json, string memory key) internal pure returns (bool) { return abi.decode(vm.parseJson(json, key), (bool)); } function readBoolArray(string memory json, string memory key) internal pure returns (bool[] memory) { return abi.decode(vm.parseJson(json, key), (bool[])); } function readBytes(string memory json, string memory key) internal pure returns (bytes memory) { return abi.decode(vm.parseJson(json, key), (bytes)); } function readBytesArray(string memory json, string memory key) internal pure returns (bytes[] memory) { return abi.decode(vm.parseJson(json, key), (bytes[])); } function serialize(string memory jsonKey, string memory key, bool value) internal returns (string memory) { return vm.serializeBool(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, bool[] memory value) internal returns (string memory) { return vm.serializeBool(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, uint256 value) internal returns (string memory) { return vm.serializeUint(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, uint256[] memory value) internal returns (string memory) { return vm.serializeUint(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, int256 value) internal returns (string memory) { return vm.serializeInt(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, int256[] memory value) internal returns (string memory) { return vm.serializeInt(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, address value) internal returns (string memory) { return vm.serializeAddress(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, address[] memory value) internal returns (string memory) { return vm.serializeAddress(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, bytes32 value) internal returns (string memory) { return vm.serializeBytes32(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, bytes32[] memory value) internal returns (string memory) { return vm.serializeBytes32(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, bytes memory value) internal returns (string memory) { return vm.serializeBytes(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, bytes[] memory value) internal returns (string memory) { return vm.serializeBytes(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, string memory value) internal returns (string memory) { return vm.serializeString(jsonKey, key, value); } function serialize(string memory jsonKey, string memory key, string[] memory value) internal returns (string memory) { return vm.serializeString(jsonKey, key, value); } function write(string memory jsonKey, string memory path) internal { vm.writeJson(jsonKey, path); } function write(string memory jsonKey, string memory path, string memory valueKey) internal { vm.writeJson(jsonKey, path, valueKey); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; library stdMath { int256 private constant INT256_MIN = -57896044618658097711785492504343953926634992332820282019728792003956564819968; function abs(int256 a) internal pure returns (uint256) { // Required or it will fail when `a = type(int256).min` if (a == INT256_MIN) { return 57896044618658097711785492504343953926634992332820282019728792003956564819968; } return uint256(a > 0 ? a : -a); } function delta(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a - b : b - a; } function delta(int256 a, int256 b) internal pure returns (uint256) { // a and b are of the same sign // this works thanks to two's complement, the left-most bit is the sign bit if ((a ^ b) > -1) { return delta(abs(a), abs(b)); } // a and b are of opposite signs return abs(a) + abs(b); } function percentDelta(uint256 a, uint256 b) internal pure returns (uint256) { uint256 absDelta = delta(a, b); return absDelta * 1e18 / b; } function percentDelta(int256 a, int256 b) internal pure returns (uint256) { uint256 absDelta = delta(a, b); uint256 absB = abs(b); return absDelta * 1e18 / absB; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; import {Vm} from "./Vm.sol"; struct StdStorage { mapping(address => mapping(bytes4 => mapping(bytes32 => uint256))) slots; mapping(address => mapping(bytes4 => mapping(bytes32 => bool))) finds; bytes32[] _keys; bytes4 _sig; uint256 _depth; address _target; bytes32 _set; } library stdStorageSafe { event SlotFound(address who, bytes4 fsig, bytes32 keysHash, uint256 slot); event WARNING_UninitedSlot(address who, uint256 slot); Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code"))))); function sigs(string memory sigStr) internal pure returns (bytes4) { return bytes4(keccak256(bytes(sigStr))); } /// @notice find an arbitrary storage slot given a function sig, input data, address of the contract and a value to check against // slot complexity: // if flat, will be bytes32(uint256(uint)); // if map, will be keccak256(abi.encode(key, uint(slot))); // if deep map, will be keccak256(abi.encode(key1, keccak256(abi.encode(key0, uint(slot))))); // if map struct, will be bytes32(uint256(keccak256(abi.encode(key1, keccak256(abi.encode(key0, uint(slot)))))) + structFieldDepth); function find(StdStorage storage self) internal returns (uint256) { address who = self._target; bytes4 fsig = self._sig; uint256 field_depth = self._depth; bytes32[] memory ins = self._keys; // calldata to test against if (self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))]) { return self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))]; } bytes memory cald = abi.encodePacked(fsig, flatten(ins)); vm.record(); bytes32 fdat; { (, bytes memory rdat) = who.staticcall(cald); fdat = bytesToBytes32(rdat, 32 * field_depth); } (bytes32[] memory reads,) = vm.accesses(address(who)); if (reads.length == 1) { bytes32 curr = vm.load(who, reads[0]); if (curr == bytes32(0)) { emit WARNING_UninitedSlot(who, uint256(reads[0])); } if (fdat != curr) { require( false, "stdStorage find(StdStorage): Packed slot. This would cause dangerous overwriting and currently isn't supported." ); } emit SlotFound(who, fsig, keccak256(abi.encodePacked(ins, field_depth)), uint256(reads[0])); self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))] = uint256(reads[0]); self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))] = true; } else if (reads.length > 1) { for (uint256 i = 0; i < reads.length; i++) { bytes32 prev = vm.load(who, reads[i]); if (prev == bytes32(0)) { emit WARNING_UninitedSlot(who, uint256(reads[i])); } // store vm.store(who, reads[i], bytes32(hex"1337")); bool success; bytes memory rdat; { (success, rdat) = who.staticcall(cald); fdat = bytesToBytes32(rdat, 32 * field_depth); } if (success && fdat == bytes32(hex"1337")) { // we found which of the slots is the actual one emit SlotFound(who, fsig, keccak256(abi.encodePacked(ins, field_depth)), uint256(reads[i])); self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))] = uint256(reads[i]); self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))] = true; vm.store(who, reads[i], prev); break; } vm.store(who, reads[i], prev); } } else { require(false, "stdStorage find(StdStorage): No storage use detected for target."); } require( self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))], "stdStorage find(StdStorage): Slot(s) not found." ); delete self._target; delete self._sig; delete self._keys; delete self._depth; return self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))]; } function target(StdStorage storage self, address _target) internal returns (StdStorage storage) { self._target = _target; return self; } function sig(StdStorage storage self, bytes4 _sig) internal returns (StdStorage storage) { self._sig = _sig; return self; } function sig(StdStorage storage self, string memory _sig) internal returns (StdStorage storage) { self._sig = sigs(_sig); return self; } function with_key(StdStorage storage self, address who) internal returns (StdStorage storage) { self._keys.push(bytes32(uint256(uint160(who)))); return self; } function with_key(StdStorage storage self, uint256 amt) internal returns (StdStorage storage) { self._keys.push(bytes32(amt)); return self; } function with_key(StdStorage storage self, bytes32 key) internal returns (StdStorage storage) { self._keys.push(key); return self; } function depth(StdStorage storage self, uint256 _depth) internal returns (StdStorage storage) { self._depth = _depth; return self; } function read(StdStorage storage self) private returns (bytes memory) { address t = self._target; uint256 s = find(self); return abi.encode(vm.load(t, bytes32(s))); } function read_bytes32(StdStorage storage self) internal returns (bytes32) { return abi.decode(read(self), (bytes32)); } function read_bool(StdStorage storage self) internal returns (bool) { int256 v = read_int(self); if (v == 0) return false; if (v == 1) return true; revert("stdStorage read_bool(StdStorage): Cannot decode. Make sure you are reading a bool."); } function read_address(StdStorage storage self) internal returns (address) { return abi.decode(read(self), (address)); } function read_uint(StdStorage storage self) internal returns (uint256) { return abi.decode(read(self), (uint256)); } function read_int(StdStorage storage self) internal returns (int256) { return abi.decode(read(self), (int256)); } function bytesToBytes32(bytes memory b, uint256 offset) private pure returns (bytes32) { bytes32 out; uint256 max = b.length > 32 ? 32 : b.length; for (uint256 i = 0; i < max; i++) { out |= bytes32(b[offset + i] & 0xFF) >> (i * 8); } return out; } function flatten(bytes32[] memory b) private pure returns (bytes memory) { bytes memory result = new bytes(b.length * 32); for (uint256 i = 0; i < b.length; i++) { bytes32 k = b[i]; /// @solidity memory-safe-assembly assembly { mstore(add(result, add(32, mul(32, i))), k) } } return result; } } library stdStorage { Vm private constant vm = Vm(address(uint160(uint256(keccak256("hevm cheat code"))))); function sigs(string memory sigStr) internal pure returns (bytes4) { return stdStorageSafe.sigs(sigStr); } function find(StdStorage storage self) internal returns (uint256) { return stdStorageSafe.find(self); } function target(StdStorage storage self, address _target) internal returns (StdStorage storage) { return stdStorageSafe.target(self, _target); } function sig(StdStorage storage self, bytes4 _sig) internal returns (StdStorage storage) { return stdStorageSafe.sig(self, _sig); } function sig(StdStorage storage self, string memory _sig) internal returns (StdStorage storage) { return stdStorageSafe.sig(self, _sig); } function with_key(StdStorage storage self, address who) internal returns (StdStorage storage) { return stdStorageSafe.with_key(self, who); } function with_key(StdStorage storage self, uint256 amt) internal returns (StdStorage storage) { return stdStorageSafe.with_key(self, amt); } function with_key(StdStorage storage self, bytes32 key) internal returns (StdStorage storage) { return stdStorageSafe.with_key(self, key); } function depth(StdStorage storage self, uint256 _depth) internal returns (StdStorage storage) { return stdStorageSafe.depth(self, _depth); } function checked_write(StdStorage storage self, address who) internal { checked_write(self, bytes32(uint256(uint160(who)))); } function checked_write(StdStorage storage self, uint256 amt) internal { checked_write(self, bytes32(amt)); } function checked_write(StdStorage storage self, bool write) internal { bytes32 t; /// @solidity memory-safe-assembly assembly { t := write } checked_write(self, t); } function checked_write(StdStorage storage self, bytes32 set) internal { address who = self._target; bytes4 fsig = self._sig; uint256 field_depth = self._depth; bytes32[] memory ins = self._keys; bytes memory cald = abi.encodePacked(fsig, flatten(ins)); if (!self.finds[who][fsig][keccak256(abi.encodePacked(ins, field_depth))]) { find(self); } bytes32 slot = bytes32(self.slots[who][fsig][keccak256(abi.encodePacked(ins, field_depth))]); bytes32 fdat; { (, bytes memory rdat) = who.staticcall(cald); fdat = bytesToBytes32(rdat, 32 * field_depth); } bytes32 curr = vm.load(who, slot); if (fdat != curr) { require( false, "stdStorage find(StdStorage): Packed slot. This would cause dangerous overwriting and currently isn't supported." ); } vm.store(who, slot, set); delete self._target; delete self._sig; delete self._keys; delete self._depth; } function read_bytes32(StdStorage storage self) internal returns (bytes32) { return stdStorageSafe.read_bytes32(self); } function read_bool(StdStorage storage self) internal returns (bool) { return stdStorageSafe.read_bool(self); } function read_address(StdStorage storage self) internal returns (address) { return stdStorageSafe.read_address(self); } function read_uint(StdStorage storage self) internal returns (uint256) { return stdStorageSafe.read_uint(self); } function read_int(StdStorage storage self) internal returns (int256) { return stdStorageSafe.read_int(self); } // Private function so needs to be copied over function bytesToBytes32(bytes memory b, uint256 offset) private pure returns (bytes32) { bytes32 out; uint256 max = b.length > 32 ? 32 : b.length; for (uint256 i = 0; i < max; i++) { out |= bytes32(b[offset + i] & 0xFF) >> (i * 8); } return out; } // Private function so needs to be copied over function flatten(bytes32[] memory b) private pure returns (bytes memory) { bytes memory result = new bytes(b.length * 32); for (uint256 i = 0; i < b.length; i++) { bytes32 k = b[i]; /// @solidity memory-safe-assembly assembly { mstore(add(result, add(32, mul(32, i))), k) } } return result; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; // TODO Remove import. import {VmSafe} from "./Vm.sol"; abstract contract StdUtils { VmSafe private constant vm = VmSafe(address(uint160(uint256(keccak256("hevm cheat code"))))); address private constant CONSOLE2_ADDRESS = 0x000000000000000000636F6e736F6c652e6c6f67; uint256 private constant INT256_MIN_ABS = 57896044618658097711785492504343953926634992332820282019728792003956564819968; uint256 private constant UINT256_MAX = 115792089237316195423570985008687907853269984665640564039457584007913129639935; function _bound(uint256 x, uint256 min, uint256 max) internal pure virtual returns (uint256 result) { require(min <= max, "StdUtils bound(uint256,uint256,uint256): Max is less than min."); // If x is between min and max, return x directly. This is to ensure that dictionary values // do not get shifted if the min is nonzero. More info: https://github.com/foundry-rs/forge-std/issues/188 if (x >= min && x <= max) return x; uint256 size = max - min + 1; // If the value is 0, 1, 2, 3, warp that to min, min+1, min+2, min+3. Similarly for the UINT256_MAX side. // This helps ensure coverage of the min/max values. if (x <= 3 && size > x) return min + x; if (x >= UINT256_MAX - 3 && size > UINT256_MAX - x) return max - (UINT256_MAX - x); // Otherwise, wrap x into the range [min, max], i.e. the range is inclusive. if (x > max) { uint256 diff = x - max; uint256 rem = diff % size; if (rem == 0) return max; result = min + rem - 1; } else if (x < min) { uint256 diff = min - x; uint256 rem = diff % size; if (rem == 0) return min; result = max - rem + 1; } } function bound(uint256 x, uint256 min, uint256 max) internal view virtual returns (uint256 result) { result = _bound(x, min, max); console2_log("Bound Result", result); } function bound(int256 x, int256 min, int256 max) internal view virtual returns (int256 result) { require(min <= max, "StdUtils bound(int256,int256,int256): Max is less than min."); // Shifting all int256 values to uint256 to use _bound function. The range of two types are: // int256 : -(2**255) ~ (2**255 - 1) // uint256: 0 ~ (2**256 - 1) // So, add 2**255, INT256_MIN_ABS to the integer values. // // If the given integer value is -2**255, we cannot use `-uint256(-x)` because of the overflow. // So, use `~uint256(x) + 1` instead. uint256 _x = x < 0 ? (INT256_MIN_ABS - ~uint256(x) - 1) : (uint256(x) + INT256_MIN_ABS); uint256 _min = min < 0 ? (INT256_MIN_ABS - ~uint256(min) - 1) : (uint256(min) + INT256_MIN_ABS); uint256 _max = max < 0 ? (INT256_MIN_ABS - ~uint256(max) - 1) : (uint256(max) + INT256_MIN_ABS); uint256 y = _bound(_x, _min, _max); // To move it back to int256 value, subtract INT256_MIN_ABS at here. result = y < INT256_MIN_ABS ? int256(~(INT256_MIN_ABS - y) + 1) : int256(y - INT256_MIN_ABS); console2_log("Bound result", vm.toString(result)); } /// @dev Compute the address a contract will be deployed at for a given deployer address and nonce /// @notice adapated from Solmate implementation (https://github.com/Rari-Capital/solmate/blob/main/src/utils/LibRLP.sol) function computeCreateAddress(address deployer, uint256 nonce) internal pure virtual returns (address) { // forgefmt: disable-start // The integer zero is treated as an empty byte string, and as a result it only has a length prefix, 0x80, computed via 0x80 + 0. // A one byte integer uses its own value as its length prefix, there is no additional "0x80 + length" prefix that comes before it. if (nonce == 0x00) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd6), bytes1(0x94), deployer, bytes1(0x80)))); if (nonce <= 0x7f) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd6), bytes1(0x94), deployer, uint8(nonce)))); // Nonces greater than 1 byte all follow a consistent encoding scheme, where each value is preceded by a prefix of 0x80 + length. if (nonce <= 2**8 - 1) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd7), bytes1(0x94), deployer, bytes1(0x81), uint8(nonce)))); if (nonce <= 2**16 - 1) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd8), bytes1(0x94), deployer, bytes1(0x82), uint16(nonce)))); if (nonce <= 2**24 - 1) return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xd9), bytes1(0x94), deployer, bytes1(0x83), uint24(nonce)))); // forgefmt: disable-end // More details about RLP encoding can be found here: https://eth.wiki/fundamentals/rlp // 0xda = 0xc0 (short RLP prefix) + 0x16 (length of: 0x94 ++ proxy ++ 0x84 ++ nonce) // 0x94 = 0x80 + 0x14 (0x14 = the length of an address, 20 bytes, in hex) // 0x84 = 0x80 + 0x04 (0x04 = the bytes length of the nonce, 4 bytes, in hex) // We assume nobody can have a nonce large enough to require more than 32 bytes. return addressFromLast20Bytes( keccak256(abi.encodePacked(bytes1(0xda), bytes1(0x94), deployer, bytes1(0x84), uint32(nonce))) ); } function computeCreate2Address(bytes32 salt, bytes32 initcodeHash, address deployer) internal pure virtual returns (address) { return addressFromLast20Bytes(keccak256(abi.encodePacked(bytes1(0xff), deployer, salt, initcodeHash))); } function bytesToUint(bytes memory b) internal pure virtual returns (uint256) { require(b.length <= 32, "StdUtils bytesToUint(bytes): Bytes length exceeds 32."); return abi.decode(abi.encodePacked(new bytes(32 - b.length), b), (uint256)); } function addressFromLast20Bytes(bytes32 bytesValue) private pure returns (address) { return address(uint160(uint256(bytesValue))); } // Used to prevent the compilation of console, which shortens the compilation time when console is not used elsewhere. function console2_log(string memory p0, uint256 p1) private view { (bool status,) = address(CONSOLE2_ADDRESS).staticcall(abi.encodeWithSignature("log(string,uint256)", p0, p1)); status; } function console2_log(string memory p0, string memory p1) private view { (bool status,) = address(CONSOLE2_ADDRESS).staticcall(abi.encodeWithSignature("log(string,string)", p0, p1)); status; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2 <0.9.0; pragma experimental ABIEncoderV2; // Cheatcodes are marked as view/pure/none using the following rules: // 0. A call's observable behaviour includes its return value, logs, reverts and state writes, // 1. If you can influence a later call's observable behaviour, you're neither `view` nor `pure (you are modifying some state be it the EVM, interpreter, filesystem, etc), // 2. Otherwise if you can be influenced by an earlier call, or if reading some state, you're `view`, // 3. Otherwise you're `pure`. interface VmSafe { struct Log { bytes32[] topics; bytes data; address emitter; } struct Rpc { string key; string url; } struct FsMetadata { bool isDir; bool isSymlink; uint256 length; bool readOnly; uint256 modified; uint256 accessed; uint256 created; } // Loads a storage slot from an address function load(address target, bytes32 slot) external view returns (bytes32 data); // Signs data function sign(uint256 privateKey, bytes32 digest) external pure returns (uint8 v, bytes32 r, bytes32 s); // Gets the address for a given private key function addr(uint256 privateKey) external pure returns (address addr); // Gets the nonce of an account function getNonce(address account) external view returns (uint64 nonce); // Performs a foreign function call via the terminal function ffi(string[] calldata commandInput) external returns (bytes memory result); // Sets environment variables function setEnv(string calldata name, string calldata value) external; // Reads environment variables, (name) => (value) function envBool(string calldata name) external view returns (bool value); function envUint(string calldata name) external view returns (uint256 value); function envInt(string calldata name) external view returns (int256 value); function envAddress(string calldata name) external view returns (address value); function envBytes32(string calldata name) external view returns (bytes32 value); function envString(string calldata name) external view returns (string memory value); function envBytes(string calldata name) external view returns (bytes memory value); // Reads environment variables as arrays function envBool(string calldata name, string calldata delim) external view returns (bool[] memory value); function envUint(string calldata name, string calldata delim) external view returns (uint256[] memory value); function envInt(string calldata name, string calldata delim) external view returns (int256[] memory value); function envAddress(string calldata name, string calldata delim) external view returns (address[] memory value); function envBytes32(string calldata name, string calldata delim) external view returns (bytes32[] memory value); function envString(string calldata name, string calldata delim) external view returns (string[] memory value); function envBytes(string calldata name, string calldata delim) external view returns (bytes[] memory value); // Read environment variables with default value function envOr(string calldata name, bool defaultValue) external returns (bool value); function envOr(string calldata name, uint256 defaultValue) external returns (uint256 value); function envOr(string calldata name, int256 defaultValue) external returns (int256 value); function envOr(string calldata name, address defaultValue) external returns (address value); function envOr(string calldata name, bytes32 defaultValue) external returns (bytes32 value); function envOr(string calldata name, string calldata defaultValue) external returns (string memory value); function envOr(string calldata name, bytes calldata defaultValue) external returns (bytes memory value); // Read environment variables as arrays with default value function envOr(string calldata name, string calldata delim, bool[] calldata defaultValue) external returns (bool[] memory value); function envOr(string calldata name, string calldata delim, uint256[] calldata defaultValue) external returns (uint256[] memory value); function envOr(string calldata name, string calldata delim, int256[] calldata defaultValue) external returns (int256[] memory value); function envOr(string calldata name, string calldata delim, address[] calldata defaultValue) external returns (address[] memory value); function envOr(string calldata name, string calldata delim, bytes32[] calldata defaultValue) external returns (bytes32[] memory value); function envOr(string calldata name, string calldata delim, string[] calldata defaultValue) external returns (string[] memory value); function envOr(string calldata name, string calldata delim, bytes[] calldata defaultValue) external returns (bytes[] memory value); // Records all storage reads and writes function record() external; // Gets all accessed reads and write slot from a recording session, for a given address function accesses(address target) external returns (bytes32[] memory readSlots, bytes32[] memory writeSlots); // Gets the _creation_ bytecode from an artifact file. Takes in the relative path to the json file function getCode(string calldata artifactPath) external view returns (bytes memory creationBytecode); // Gets the _deployed_ bytecode from an artifact file. Takes in the relative path to the json file function getDeployedCode(string calldata artifactPath) external view returns (bytes memory runtimeBytecode); // Labels an address in call traces function label(address account, string calldata newLabel) external; // Using the address that calls the test contract, has the next call (at this call depth only) create a transaction that can later be signed and sent onchain function broadcast() external; // Has the next call (at this call depth only) create a transaction with the address provided as the sender that can later be signed and sent onchain function broadcast(address signer) external; // Has the next call (at this call depth only) create a transaction with the private key provided as the sender that can later be signed and sent onchain function broadcast(uint256 privateKey) external; // Using the address that calls the test contract, has all subsequent calls (at this call depth only) create transactions that can later be signed and sent onchain function startBroadcast() external; // Has all subsequent calls (at this call depth only) create transactions with the address provided that can later be signed and sent onchain function startBroadcast(address signer) external; // Has all subsequent calls (at this call depth only) create transactions with the private key provided that can later be signed and sent onchain function startBroadcast(uint256 privateKey) external; // Stops collecting onchain transactions function stopBroadcast() external; // Reads the entire content of file to string function readFile(string calldata path) external view returns (string memory data); // Reads the entire content of file as binary. Path is relative to the project root. function readFileBinary(string calldata path) external view returns (bytes memory data); // Get the path of the current project root function projectRoot() external view returns (string memory path); // Get the metadata for a file/directory function fsMetadata(string calldata fileOrDir) external returns (FsMetadata memory metadata); // Reads next line of file to string function readLine(string calldata path) external view returns (string memory line); // Writes data to file, creating a file if it does not exist, and entirely replacing its contents if it does. function writeFile(string calldata path, string calldata data) external; // Writes binary data to a file, creating a file if it does not exist, and entirely replacing its contents if it does. // Path is relative to the project root. function writeFileBinary(string calldata path, bytes calldata data) external; // Writes line to file, creating a file if it does not exist. function writeLine(string calldata path, string calldata data) external; // Closes file for reading, resetting the offset and allowing to read it from beginning with readLine. function closeFile(string calldata path) external; // Removes file. This cheatcode will revert in the following situations, but is not limited to just these cases: // - Path points to a directory. // - The file doesn't exist. // - The user lacks permissions to remove the file. function removeFile(string calldata path) external; // Convert values to a string function toString(address value) external pure returns (string memory stringifiedValue); function toString(bytes calldata value) external pure returns (string memory stringifiedValue); function toString(bytes32 value) external pure returns (string memory stringifiedValue); function toString(bool value) external pure returns (string memory stringifiedValue); function toString(uint256 value) external pure returns (string memory stringifiedValue); function toString(int256 value) external pure returns (string memory stringifiedValue); // Convert values from a string function parseBytes(string calldata stringifiedValue) external pure returns (bytes memory parsedValue); function parseAddress(string calldata stringifiedValue) external pure returns (address parsedValue); function parseUint(string calldata stringifiedValue) external pure returns (uint256 parsedValue); function parseInt(string calldata stringifiedValue) external pure returns (int256 parsedValue); function parseBytes32(string calldata stringifiedValue) external pure returns (bytes32 parsedValue); function parseBool(string calldata stringifiedValue) external pure returns (bool parsedValue); // Record all the transaction logs function recordLogs() external; // Gets all the recorded logs function getRecordedLogs() external returns (Log[] memory logs); // Derive a private key from a provided mnenomic string (or mnenomic file path) at the derivation path m/44'/60'/0'/0/{index} function deriveKey(string calldata mnemonic, uint32 index) external pure returns (uint256 privateKey); // Derive a private key from a provided mnenomic string (or mnenomic file path) at {derivationPath}{index} function deriveKey(string calldata mnemonic, string calldata derivationPath, uint32 index) external pure returns (uint256 privateKey); // Adds a private key to the local forge wallet and returns the address function rememberKey(uint256 privateKey) external returns (address addr); // // parseJson // // ---- // In case the returned value is a JSON object, it's encoded as a ABI-encoded tuple. As JSON objects // don't have the notion of ordered, but tuples do, they JSON object is encoded with it's fields ordered in // ALPHABETICAL order. That means that in order to successfully decode the tuple, we need to define a tuple that // encodes the fields in the same order, which is alphabetical. In the case of Solidity structs, they are encoded // as tuples, with the attributes in the order in which they are defined. // For example: json = { 'a': 1, 'b': 0xa4tb......3xs} // a: uint256 // b: address // To decode that json, we need to define a struct or a tuple as follows: // struct json = { uint256 a; address b; } // If we defined a json struct with the opposite order, meaning placing the address b first, it would try to // decode the tuple in that order, and thus fail. // ---- // Given a string of JSON, return it as ABI-encoded function parseJson(string calldata json, string calldata key) external pure returns (bytes memory abiEncodedData); function parseJson(string calldata json) external pure returns (bytes memory abiEncodedData); // Serialize a key and value to a JSON object stored in-memory that can be later written to a file // It returns the stringified version of the specific JSON file up to that moment. function serializeBool(string calldata objectKey, string calldata valueKey, bool value) external returns (string memory json); function serializeUint(string calldata objectKey, string calldata valueKey, uint256 value) external returns (string memory json); function serializeInt(string calldata objectKey, string calldata valueKey, int256 value) external returns (string memory json); function serializeAddress(string calldata objectKey, string calldata valueKey, address value) external returns (string memory json); function serializeBytes32(string calldata objectKey, string calldata valueKey, bytes32 value) external returns (string memory json); function serializeString(string calldata objectKey, string calldata valueKey, string calldata value) external returns (string memory json); function serializeBytes(string calldata objectKey, string calldata valueKey, bytes calldata value) external returns (string memory json); function serializeBool(string calldata objectKey, string calldata valueKey, bool[] calldata values) external returns (string memory json); function serializeUint(string calldata objectKey, string calldata valueKey, uint256[] calldata values) external returns (string memory json); function serializeInt(string calldata objectKey, string calldata valueKey, int256[] calldata values) external returns (string memory json); function serializeAddress(string calldata objectKey, string calldata valueKey, address[] calldata values) external returns (string memory json); function serializeBytes32(string calldata objectKey, string calldata valueKey, bytes32[] calldata values) external returns (string memory json); function serializeString(string calldata objectKey, string calldata valueKey, string[] calldata values) external returns (string memory json); function serializeBytes(string calldata objectKey, string calldata valueKey, bytes[] calldata values) external returns (string memory json); // // writeJson // // ---- // Write a serialized JSON object to a file. If the file exists, it will be overwritten. // Let's assume we want to write the following JSON to a file: // // { "boolean": true, "number": 342, "object": { "title": "finally json serialization" } } // // ``` // string memory json1 = "some key"; // vm.serializeBool(json1, "boolean", true); // vm.serializeBool(json1, "number", uint256(342)); // json2 = "some other key"; // string memory output = vm.serializeString(json2, "title", "finally json serialization"); // string memory finalJson = vm.serialize(json1, "object", output); // vm.writeJson(finalJson, "./output/example.json"); // ``` // The critical insight is that every invocation of serialization will return the stringified version of the JSON // up to that point. That means we can construct arbitrary JSON objects and then use the return stringified version // to serialize them as values to another JSON object. // // json1 and json2 are simply keys used by the backend to keep track of the objects. So vm.serializeJson(json1,..) // will find the object in-memory that is keyed by "some key". function writeJson(string calldata json, string calldata path) external; // Write a serialized JSON object to an **existing** JSON file, replacing a value with key = <value_key> // This is useful to replace a specific value of a JSON file, without having to parse the entire thing function writeJson(string calldata json, string calldata path, string calldata valueKey) external; // Returns the RPC url for the given alias function rpcUrl(string calldata rpcAlias) external view returns (string memory json); // Returns all rpc urls and their aliases `[alias, url][]` function rpcUrls() external view returns (string[2][] memory urls); // Returns all rpc urls and their aliases as structs. function rpcUrlStructs() external view returns (Rpc[] memory urls); // If the condition is false, discard this run's fuzz inputs and generate new ones. function assume(bool condition) external pure; // Pauses gas metering (i.e. gas usage is not counted). Noop if already paused. function pauseGasMetering() external; // Resumes gas metering (i.e. gas usage is counted again). Noop if already on. function resumeGasMetering() external; } interface Vm is VmSafe { // Sets block.timestamp function warp(uint256 newTimestamp) external; // Sets block.height function roll(uint256 newHeight) external; // Sets block.basefee function fee(uint256 newBasefee) external; // Sets block.difficulty function difficulty(uint256 newDifficulty) external; // Sets block.chainid function chainId(uint256 newChainId) external; // Stores a value to an address' storage slot. function store(address target, bytes32 slot, bytes32 value) external; // Sets the nonce of an account; must be higher than the current nonce of the account function setNonce(address account, uint64 newNonce) external; // Sets the *next* call's msg.sender to be the input address function prank(address msgSender) external; // Sets all subsequent calls' msg.sender to be the input address until `stopPrank` is called function startPrank(address msgSender) external; // Sets the *next* call's msg.sender to be the input address, and the tx.origin to be the second input function prank(address msgSender, address txOrigin) external; // Sets all subsequent calls' msg.sender to be the input address until `stopPrank` is called, and the tx.origin to be the second input function startPrank(address msgSender, address txOrigin) external; // Resets subsequent calls' msg.sender to be `address(this)` function stopPrank() external; // Sets an address' balance function deal(address account, uint256 newBalance) external; // Sets an address' code function etch(address target, bytes calldata newRuntimeBytecode) external; // Expects an error on next call function expectRevert(bytes calldata revertData) external; function expectRevert(bytes4 revertData) external; function expectRevert() external; // Prepare an expected log with (bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData). // Call this function, then emit an event, then call a function. Internally after the call, we check if // logs were emitted in the expected order with the expected topics and data (as specified by the booleans) function expectEmit(bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData) external; function expectEmit(bool checkTopic1, bool checkTopic2, bool checkTopic3, bool checkData, address emitter) external; // Mocks a call to an address, returning specified data. // Calldata can either be strict or a partial match, e.g. if you only // pass a Solidity selector to the expected calldata, then the entire Solidity // function will be mocked. function mockCall(address callee, bytes calldata data, bytes calldata returnData) external; // Mocks a call to an address with a specific msg.value, returning specified data. // Calldata match takes precedence over msg.value in case of ambiguity. function mockCall(address callee, uint256 msgValue, bytes calldata data, bytes calldata returnData) external; // Clears all mocked calls function clearMockedCalls() external; // Expects a call to an address with the specified calldata. // Calldata can either be a strict or a partial match function expectCall(address callee, bytes calldata data) external; // Expects a call to an address with the specified msg.value and calldata function expectCall(address callee, uint256 msgValue, bytes calldata data) external; // Sets block.coinbase function coinbase(address newCoinbase) external; // Snapshot the current state of the evm. // Returns the id of the snapshot that was created. // To revert a snapshot use `revertTo` function snapshot() external returns (uint256 snapshotId); // Revert the state of the EVM to a previous snapshot // Takes the snapshot id to revert to. // This deletes the snapshot and all snapshots taken after the given snapshot id. function revertTo(uint256 snapshotId) external returns (bool success); // Creates a new fork with the given endpoint and block and returns the identifier of the fork function createFork(string calldata urlOrAlias, uint256 blockNumber) external returns (uint256 forkId); // Creates a new fork with the given endpoint and the _latest_ block and returns the identifier of the fork function createFork(string calldata urlOrAlias) external returns (uint256 forkId); // Creates a new fork with the given endpoint and at the block the given transaction was mined in, replays all transaction mined in the block before the transaction, // and returns the identifier of the fork function createFork(string calldata urlOrAlias, bytes32 txHash) external returns (uint256 forkId); // Creates _and_ also selects a new fork with the given endpoint and block and returns the identifier of the fork function createSelectFork(string calldata urlOrAlias, uint256 blockNumber) external returns (uint256 forkId); // Creates _and_ also selects new fork with the given endpoint and at the block the given transaction was mined in, replays all transaction mined in the block before // the transaction, returns the identifier of the fork function createSelectFork(string calldata urlOrAlias, bytes32 txHash) external returns (uint256 forkId); // Creates _and_ also selects a new fork with the given endpoint and the latest block and returns the identifier of the fork function createSelectFork(string calldata urlOrAlias) external returns (uint256 forkId); // Takes a fork identifier created by `createFork` and sets the corresponding forked state as active. function selectFork(uint256 forkId) external; /// Returns the identifier of the currently active fork. Reverts if no fork is currently active. function activeFork() external view returns (uint256 forkId); // Updates the currently active fork to given block number // This is similar to `roll` but for the currently active fork function rollFork(uint256 blockNumber) external; // Updates the currently active fork to given transaction // this will `rollFork` with the number of the block the transaction was mined in and replays all transaction mined before it in the block function rollFork(bytes32 txHash) external; // Updates the given fork to given block number function rollFork(uint256 forkId, uint256 blockNumber) external; // Updates the given fork to block number of the given transaction and replays all transaction mined before it in the block function rollFork(uint256 forkId, bytes32 txHash) external; // Marks that the account(s) should use persistent storage across fork swaps in a multifork setup // Meaning, changes made to the state of this account will be kept when switching forks function makePersistent(address account) external; function makePersistent(address account0, address account1) external; function makePersistent(address account0, address account1, address account2) external; function makePersistent(address[] calldata accounts) external; // Revokes persistent status from the address, previously added via `makePersistent` function revokePersistent(address account) external; function revokePersistent(address[] calldata accounts) external; // Returns true if the account is marked as persistent function isPersistent(address account) external view returns (bool persistent); // In forking mode, explicitly grant the given address cheatcode access function allowCheatcodes(address account) external; // Fetches the given transaction from the active fork and executes it on the current state function transact(bytes32 txHash) external; // Fetches the given transaction from the given fork and executes it on the current state function transact(uint256 forkId, bytes32 txHash) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.4.22 <0.9.0; library console { address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67); function _sendLogPayload(bytes memory payload) private view { uint256 payloadLength = payload.length; address consoleAddress = CONSOLE_ADDRESS; /// @solidity memory-safe-assembly assembly { let payloadStart := add(payload, 32) let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0) } } function log() internal view { _sendLogPayload(abi.encodeWithSignature("log()")); } function logInt(int p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(int)", p0)); } function logUint(uint p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function logString(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function logBool(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function logAddress(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function logBytes(bytes memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0)); } function logBytes1(bytes1 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0)); } function logBytes2(bytes2 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0)); } function logBytes3(bytes3 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0)); } function logBytes4(bytes4 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0)); } function logBytes5(bytes5 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0)); } function logBytes6(bytes6 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0)); } function logBytes7(bytes7 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0)); } function logBytes8(bytes8 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0)); } function logBytes9(bytes9 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0)); } function logBytes10(bytes10 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0)); } function logBytes11(bytes11 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0)); } function logBytes12(bytes12 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0)); } function logBytes13(bytes13 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0)); } function logBytes14(bytes14 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0)); } function logBytes15(bytes15 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0)); } function logBytes16(bytes16 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0)); } function logBytes17(bytes17 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0)); } function logBytes18(bytes18 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0)); } function logBytes19(bytes19 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0)); } function logBytes20(bytes20 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0)); } function logBytes21(bytes21 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0)); } function logBytes22(bytes22 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0)); } function logBytes23(bytes23 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0)); } function logBytes24(bytes24 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0)); } function logBytes25(bytes25 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0)); } function logBytes26(bytes26 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0)); } function logBytes27(bytes27 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0)); } function logBytes28(bytes28 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0)); } function logBytes29(bytes29 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0)); } function logBytes30(bytes30 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0)); } function logBytes31(bytes31 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0)); } function logBytes32(bytes32 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0)); } function log(uint p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint)", p0)); } function log(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function log(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function log(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function log(uint p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint)", p0, p1)); } function log(uint p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string)", p0, p1)); } function log(uint p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool)", p0, p1)); } function log(uint p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address)", p0, p1)); } function log(string memory p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint)", p0, p1)); } function log(string memory p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1)); } function log(string memory p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1)); } function log(string memory p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1)); } function log(bool p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint)", p0, p1)); } function log(bool p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1)); } function log(bool p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1)); } function log(bool p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1)); } function log(address p0, uint p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint)", p0, p1)); } function log(address p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1)); } function log(address p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1)); } function log(address p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1)); } function log(uint p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint)", p0, p1, p2)); } function log(uint p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string)", p0, p1, p2)); } function log(uint p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool)", p0, p1, p2)); } function log(uint p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address)", p0, p1, p2)); } function log(uint p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint)", p0, p1, p2)); } function log(uint p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string)", p0, p1, p2)); } function log(uint p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool)", p0, p1, p2)); } function log(uint p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address)", p0, p1, p2)); } function log(uint p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint)", p0, p1, p2)); } function log(uint p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string)", p0, p1, p2)); } function log(uint p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool)", p0, p1, p2)); } function log(uint p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address)", p0, p1, p2)); } function log(uint p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint)", p0, p1, p2)); } function log(uint p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string)", p0, p1, p2)); } function log(uint p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool)", p0, p1, p2)); } function log(uint p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address)", p0, p1, p2)); } function log(string memory p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint)", p0, p1, p2)); } function log(string memory p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string)", p0, p1, p2)); } function log(string memory p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool)", p0, p1, p2)); } function log(string memory p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address)", p0, p1, p2)); } function log(string memory p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint)", p0, p1, p2)); } function log(string memory p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2)); } function log(string memory p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2)); } function log(string memory p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2)); } function log(string memory p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint)", p0, p1, p2)); } function log(string memory p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2)); } function log(string memory p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2)); } function log(string memory p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2)); } function log(string memory p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint)", p0, p1, p2)); } function log(string memory p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2)); } function log(string memory p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2)); } function log(string memory p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2)); } function log(bool p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint)", p0, p1, p2)); } function log(bool p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string)", p0, p1, p2)); } function log(bool p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool)", p0, p1, p2)); } function log(bool p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address)", p0, p1, p2)); } function log(bool p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint)", p0, p1, p2)); } function log(bool p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2)); } function log(bool p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2)); } function log(bool p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2)); } function log(bool p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint)", p0, p1, p2)); } function log(bool p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2)); } function log(bool p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2)); } function log(bool p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2)); } function log(bool p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint)", p0, p1, p2)); } function log(bool p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2)); } function log(bool p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2)); } function log(bool p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2)); } function log(address p0, uint p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint)", p0, p1, p2)); } function log(address p0, uint p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string)", p0, p1, p2)); } function log(address p0, uint p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool)", p0, p1, p2)); } function log(address p0, uint p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address)", p0, p1, p2)); } function log(address p0, string memory p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint)", p0, p1, p2)); } function log(address p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2)); } function log(address p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2)); } function log(address p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2)); } function log(address p0, bool p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint)", p0, p1, p2)); } function log(address p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2)); } function log(address p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2)); } function log(address p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2)); } function log(address p0, address p1, uint p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint)", p0, p1, p2)); } function log(address p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2)); } function log(address p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2)); } function log(address p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2)); } function log(uint p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,address)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,uint)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,string)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,bool)", p0, p1, p2, p3)); } function log(uint p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,address)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,uint)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,string)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,bool)", p0, p1, p2, p3)); } function log(uint p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,address)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,uint)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,string)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,bool)", p0, p1, p2, p3)); } function log(uint p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,address)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,uint)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,string)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,bool)", p0, p1, p2, p3)); } function log(uint p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,string)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,address)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,uint)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,string)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,bool)", p0, p1, p2, p3)); } function log(bool p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,address)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,uint)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,string)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,bool)", p0, p1, p2, p3)); } function log(address p0, uint p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,string)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, uint p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,address)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, uint p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.4.22 <0.9.0; /// @dev The original console.sol uses `int` and `uint` for computing function selectors, but it should /// use `int256` and `uint256`. This modified version fixes that. This version is recommended /// over `console.sol` if you don't need compatibility with Hardhat as the logs will show up in /// forge stack traces. If you do need compatibility with Hardhat, you must use `console.sol`. /// Reference: https://github.com/NomicFoundation/hardhat/issues/2178 library console2 { address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67); function _sendLogPayload(bytes memory payload) private view { uint256 payloadLength = payload.length; address consoleAddress = CONSOLE_ADDRESS; /// @solidity memory-safe-assembly assembly { let payloadStart := add(payload, 32) let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0) } } function log() internal view { _sendLogPayload(abi.encodeWithSignature("log()")); } function logInt(int256 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(int256)", p0)); } function logUint(uint256 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0)); } function logString(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function logBool(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function logAddress(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function logBytes(bytes memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0)); } function logBytes1(bytes1 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0)); } function logBytes2(bytes2 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0)); } function logBytes3(bytes3 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0)); } function logBytes4(bytes4 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0)); } function logBytes5(bytes5 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0)); } function logBytes6(bytes6 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0)); } function logBytes7(bytes7 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0)); } function logBytes8(bytes8 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0)); } function logBytes9(bytes9 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0)); } function logBytes10(bytes10 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0)); } function logBytes11(bytes11 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0)); } function logBytes12(bytes12 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0)); } function logBytes13(bytes13 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0)); } function logBytes14(bytes14 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0)); } function logBytes15(bytes15 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0)); } function logBytes16(bytes16 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0)); } function logBytes17(bytes17 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0)); } function logBytes18(bytes18 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0)); } function logBytes19(bytes19 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0)); } function logBytes20(bytes20 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0)); } function logBytes21(bytes21 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0)); } function logBytes22(bytes22 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0)); } function logBytes23(bytes23 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0)); } function logBytes24(bytes24 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0)); } function logBytes25(bytes25 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0)); } function logBytes26(bytes26 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0)); } function logBytes27(bytes27 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0)); } function logBytes28(bytes28 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0)); } function logBytes29(bytes29 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0)); } function logBytes30(bytes30 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0)); } function logBytes31(bytes31 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0)); } function logBytes32(bytes32 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0)); } function log(uint256 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0)); } function log(int256 p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(int256)", p0)); } function log(string memory p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(string)", p0)); } function log(bool p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool)", p0)); } function log(address p0) internal view { _sendLogPayload(abi.encodeWithSignature("log(address)", p0)); } function log(uint256 p0, uint256 p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256)", p0, p1)); } function log(uint256 p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string)", p0, p1)); } function log(uint256 p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool)", p0, p1)); } function log(uint256 p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address)", p0, p1)); } function log(string memory p0, uint256 p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256)", p0, p1)); } function log(string memory p0, int256 p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,int256)", p0, p1)); } function log(string memory p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1)); } function log(string memory p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1)); } function log(string memory p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1)); } function log(bool p0, uint256 p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256)", p0, p1)); } function log(bool p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1)); } function log(bool p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1)); } function log(bool p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1)); } function log(address p0, uint256 p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256)", p0, p1)); } function log(address p0, string memory p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1)); } function log(address p0, bool p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1)); } function log(address p0, address p1) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1)); } function log(uint256 p0, uint256 p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address)", p0, p1, p2)); } function log(uint256 p0, string memory p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256)", p0, p1, p2)); } function log(uint256 p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string)", p0, p1, p2)); } function log(uint256 p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool)", p0, p1, p2)); } function log(uint256 p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address)", p0, p1, p2)); } function log(uint256 p0, bool p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256)", p0, p1, p2)); } function log(uint256 p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string)", p0, p1, p2)); } function log(uint256 p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool)", p0, p1, p2)); } function log(uint256 p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address)", p0, p1, p2)); } function log(uint256 p0, address p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256)", p0, p1, p2)); } function log(uint256 p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string)", p0, p1, p2)); } function log(uint256 p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool)", p0, p1, p2)); } function log(uint256 p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address)", p0, p1, p2)); } function log(string memory p0, uint256 p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256)", p0, p1, p2)); } function log(string memory p0, uint256 p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string)", p0, p1, p2)); } function log(string memory p0, uint256 p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool)", p0, p1, p2)); } function log(string memory p0, uint256 p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address)", p0, p1, p2)); } function log(string memory p0, string memory p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256)", p0, p1, p2)); } function log(string memory p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2)); } function log(string memory p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2)); } function log(string memory p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2)); } function log(string memory p0, bool p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256)", p0, p1, p2)); } function log(string memory p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2)); } function log(string memory p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2)); } function log(string memory p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2)); } function log(string memory p0, address p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256)", p0, p1, p2)); } function log(string memory p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2)); } function log(string memory p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2)); } function log(string memory p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2)); } function log(bool p0, uint256 p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256)", p0, p1, p2)); } function log(bool p0, uint256 p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string)", p0, p1, p2)); } function log(bool p0, uint256 p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool)", p0, p1, p2)); } function log(bool p0, uint256 p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address)", p0, p1, p2)); } function log(bool p0, string memory p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256)", p0, p1, p2)); } function log(bool p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2)); } function log(bool p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2)); } function log(bool p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2)); } function log(bool p0, bool p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256)", p0, p1, p2)); } function log(bool p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2)); } function log(bool p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2)); } function log(bool p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2)); } function log(bool p0, address p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256)", p0, p1, p2)); } function log(bool p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2)); } function log(bool p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2)); } function log(bool p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2)); } function log(address p0, uint256 p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256)", p0, p1, p2)); } function log(address p0, uint256 p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string)", p0, p1, p2)); } function log(address p0, uint256 p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool)", p0, p1, p2)); } function log(address p0, uint256 p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address)", p0, p1, p2)); } function log(address p0, string memory p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256)", p0, p1, p2)); } function log(address p0, string memory p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2)); } function log(address p0, string memory p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2)); } function log(address p0, string memory p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2)); } function log(address p0, bool p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256)", p0, p1, p2)); } function log(address p0, bool p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2)); } function log(address p0, bool p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2)); } function log(address p0, bool p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2)); } function log(address p0, address p1, uint256 p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256)", p0, p1, p2)); } function log(address p0, address p1, string memory p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2)); } function log(address p0, address p1, bool p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2)); } function log(address p0, address p1, address p2) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2)); } function log(uint256 p0, uint256 p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, uint256 p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,address)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,uint256)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,string)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,bool)", p0, p1, p2, p3)); } function log(uint256 p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,string)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, uint256 p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint256)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3)); } function log(string memory p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,address)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,string)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,bool)", p0, p1, p2, p3)); } function log(bool p0, uint256 p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3)); } function log(bool p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3)); } function log(bool p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint256)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3)); } function log(bool p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,address)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,uint256)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,string)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,bool)", p0, p1, p2, p3)); } function log(address p0, uint256 p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint256)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3)); } function log(address p0, string memory p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint256)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3)); } function log(address p0, bool p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,string)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, uint256 p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,address)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, string memory p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, bool p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, uint256 p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint256)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, string memory p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, bool p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3)); } function log(address p0, address p1, address p2, address p3) internal view { _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3)); } }
// SPDX-License-Identifier: LZBL-1.2 pragma solidity ^0.8.20; import { BytesLib } from "solidity-bytes-utils/contracts/BytesLib.sol"; import { BitMap256 } from "@layerzerolabs/lz-evm-protocol-v2/contracts/messagelib/libs/BitMaps.sol"; import { CalldataBytesLib } from "@layerzerolabs/lz-evm-protocol-v2/contracts/libs/CalldataBytesLib.sol"; library DVNOptions { using CalldataBytesLib for bytes; using BytesLib for bytes; uint8 internal constant WORKER_ID = 2; uint8 internal constant OPTION_TYPE_PRECRIME = 1; error DVN_InvalidDVNIdx(); error DVN_InvalidDVNOptions(uint256 cursor); /// @dev group dvn options by its idx /// @param _options [dvn_id][dvn_option][dvn_id][dvn_option]... /// dvn_option = [option_size][dvn_idx][option_type][option] /// option_size = len(dvn_idx) + len(option_type) + len(option) /// dvn_id: uint8, dvn_idx: uint8, option_size: uint16, option_type: uint8, option: bytes /// @return dvnOptions the grouped options, still share the same format of _options /// @return dvnIndices the dvn indices function groupDVNOptionsByIdx( bytes memory _options ) internal pure returns (bytes[] memory dvnOptions, uint8[] memory dvnIndices) { if (_options.length == 0) return (dvnOptions, dvnIndices); uint8 numDVNs = getNumDVNs(_options); // if there is only 1 dvn, we can just return the whole options if (numDVNs == 1) { dvnOptions = new bytes[](1); dvnOptions[0] = _options; dvnIndices = new uint8[](1); dvnIndices[0] = _options.toUint8(3); // dvn idx return (dvnOptions, dvnIndices); } // otherwise, we need to group the options by dvn_idx dvnIndices = new uint8[](numDVNs); dvnOptions = new bytes[](numDVNs); unchecked { uint256 cursor = 0; uint256 start = 0; uint8 lastDVNIdx = 255; // 255 is an invalid dvn_idx while (cursor < _options.length) { ++cursor; // skip worker_id // optionLength asserted in getNumDVNs (skip check) uint16 optionLength = _options.toUint16(cursor); cursor += 2; // dvnIdx asserted in getNumDVNs (skip check) uint8 dvnIdx = _options.toUint8(cursor); // dvnIdx must equal to the lastDVNIdx for the first option // so it is always skipped in the first option // this operation slices out options whenever the scan finds a different lastDVNIdx if (lastDVNIdx == 255) { lastDVNIdx = dvnIdx; } else if (dvnIdx != lastDVNIdx) { uint256 len = cursor - start - 3; // 3 is for worker_id and option_length bytes memory opt = _options.slice(start, len); _insertDVNOptions(dvnOptions, dvnIndices, lastDVNIdx, opt); // reset the start and lastDVNIdx start += len; lastDVNIdx = dvnIdx; } cursor += optionLength; } // skip check the cursor here because the cursor is asserted in getNumDVNs // if we have reached the end of the options, we need to process the last dvn uint256 size = cursor - start; bytes memory op = _options.slice(start, size); _insertDVNOptions(dvnOptions, dvnIndices, lastDVNIdx, op); // revert dvnIndices to start from 0 for (uint8 i = 0; i < numDVNs; ++i) { --dvnIndices[i]; } } } function _insertDVNOptions( bytes[] memory _dvnOptions, uint8[] memory _dvnIndices, uint8 _dvnIdx, bytes memory _newOptions ) internal pure { // dvnIdx starts from 0 but default value of dvnIndices is 0, // so we tell if the slot is empty by adding 1 to dvnIdx if (_dvnIdx == 255) revert DVN_InvalidDVNIdx(); uint8 dvnIdxAdj = _dvnIdx + 1; for (uint256 j = 0; j < _dvnIndices.length; ++j) { uint8 index = _dvnIndices[j]; if (dvnIdxAdj == index) { _dvnOptions[j] = abi.encodePacked(_dvnOptions[j], _newOptions); break; } else if (index == 0) { // empty slot, that means it is the first time we see this dvn _dvnIndices[j] = dvnIdxAdj; _dvnOptions[j] = _newOptions; break; } } } /// @dev get the number of unique dvns /// @param _options the format is the same as groupDVNOptionsByIdx function getNumDVNs(bytes memory _options) internal pure returns (uint8 numDVNs) { uint256 cursor = 0; BitMap256 bitmap; // find number of unique dvn_idx unchecked { while (cursor < _options.length) { ++cursor; // skip worker_id uint16 optionLength = _options.toUint16(cursor); cursor += 2; if (optionLength < 2) revert DVN_InvalidDVNOptions(cursor); // at least 1 byte for dvn_idx and 1 byte for option_type uint8 dvnIdx = _options.toUint8(cursor); // if dvnIdx is not set, increment numDVNs // max num of dvns is 255, 255 is an invalid dvn_idx // The order of the dvnIdx is not required to be sequential, as enforcing the order may weaken // the composability of the options. e.g. if we refrain from enforcing the order, an OApp that has // already enforced certain options can append additional options to the end of the enforced // ones without restrictions. if (dvnIdx == 255) revert DVN_InvalidDVNIdx(); if (!bitmap.get(dvnIdx)) { ++numDVNs; bitmap = bitmap.set(dvnIdx); } cursor += optionLength; } } if (cursor != _options.length) revert DVN_InvalidDVNOptions(cursor); } /// @dev decode the next dvn option from _options starting from the specified cursor /// @param _options the format is the same as groupDVNOptionsByIdx /// @param _cursor the cursor to start decoding /// @return optionType the type of the option /// @return option the option /// @return cursor the cursor to start decoding the next option function nextDVNOption( bytes calldata _options, uint256 _cursor ) internal pure returns (uint8 optionType, bytes calldata option, uint256 cursor) { unchecked { // skip worker id cursor = _cursor + 1; // read option size uint16 size = _options.toU16(cursor); cursor += 2; // read option type optionType = _options.toU8(cursor + 1); // skip dvn_idx // startCursor and endCursor are used to slice the option from _options uint256 startCursor = cursor + 2; // skip option type and dvn_idx uint256 endCursor = cursor + size; option = _options[startCursor:endCursor]; cursor += size; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; // @dev Import the 'MessagingFee' and 'MessagingReceipt' so it's exposed to OApp implementers // solhint-disable-next-line no-unused-import import { OAppSender, MessagingFee, MessagingReceipt } from "./OAppSender.sol"; // @dev Import the 'Origin' so it's exposed to OApp implementers // solhint-disable-next-line no-unused-import import { OAppReceiver, Origin } from "./OAppReceiver.sol"; import { OAppCore } from "./OAppCore.sol"; /** * @title OApp * @dev Abstract contract serving as the base for OApp implementation, combining OAppSender and OAppReceiver functionality. */ abstract contract OApp is OAppSender, OAppReceiver { /** * @dev Constructor to initialize the OApp with the provided endpoint and owner. * @param _endpoint The address of the LOCAL LayerZero endpoint. * @param _delegate The delegate capable of making OApp configurations inside of the endpoint. */ constructor(address _endpoint, address _delegate) OAppCore(_endpoint, _delegate) {} /** * @notice Retrieves the OApp version information. * @return senderVersion The version of the OAppSender.sol implementation. * @return receiverVersion The version of the OAppReceiver.sol implementation. */ function oAppVersion() public pure virtual override(OAppSender, OAppReceiver) returns (uint64 senderVersion, uint64 receiverVersion) { return (SENDER_VERSION, RECEIVER_VERSION); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { IOAppCore, ILayerZeroEndpointV2 } from "./interfaces/IOAppCore.sol"; /** * @title OAppCore * @dev Abstract contract implementing the IOAppCore interface with basic OApp configurations. */ abstract contract OAppCore is IOAppCore, Ownable { // The LayerZero endpoint associated with the given OApp ILayerZeroEndpointV2 public immutable endpoint; // Mapping to store peers associated with corresponding endpoints mapping(uint32 eid => bytes32 peer) public peers; /** * @dev Constructor to initialize the OAppCore with the provided endpoint and delegate. * @param _endpoint The address of the LOCAL Layer Zero endpoint. * @param _delegate The delegate capable of making OApp configurations inside of the endpoint. * * @dev The delegate typically should be set as the owner of the contract. */ constructor(address _endpoint, address _delegate) { endpoint = ILayerZeroEndpointV2(_endpoint); if (_delegate == address(0)) revert InvalidDelegate(); endpoint.setDelegate(_delegate); } /** * @notice Sets the peer address (OApp instance) for a corresponding endpoint. * @param _eid The endpoint ID. * @param _peer The address of the peer to be associated with the corresponding endpoint. * * @dev Only the owner/admin of the OApp can call this function. * @dev Indicates that the peer is trusted to send LayerZero messages to this OApp. * @dev Set this to bytes32(0) to remove the peer address. * @dev Peer is a bytes32 to accommodate non-evm chains. */ function setPeer(uint32 _eid, bytes32 _peer) public virtual onlyOwner { peers[_eid] = _peer; emit PeerSet(_eid, _peer); } /** * @notice Internal function to get the peer address associated with a specific endpoint; reverts if NOT set. * ie. the peer is set to bytes32(0). * @param _eid The endpoint ID. * @return peer The address of the peer associated with the specified endpoint. */ function _getPeerOrRevert(uint32 _eid) internal view virtual returns (bytes32) { bytes32 peer = peers[_eid]; if (peer == bytes32(0)) revert NoPeer(_eid); return peer; } /** * @notice Sets the delegate address for the OApp. * @param _delegate The address of the delegate to be set. * * @dev Only the owner/admin of the OApp can call this function. * @dev Provides the ability for a delegate to set configs, on behalf of the OApp, directly on the Endpoint contract. */ function setDelegate(address _delegate) public onlyOwner { endpoint.setDelegate(_delegate); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { IOAppReceiver, Origin } from "./interfaces/IOAppReceiver.sol"; import { OAppCore } from "./OAppCore.sol"; /** * @title OAppReceiver * @dev Abstract contract implementing the ILayerZeroReceiver interface and extending OAppCore for OApp receivers. */ abstract contract OAppReceiver is IOAppReceiver, OAppCore { // Custom error message for when the caller is not the registered endpoint/ error OnlyEndpoint(address addr); // @dev The version of the OAppReceiver implementation. // @dev Version is bumped when changes are made to this contract. uint64 internal constant RECEIVER_VERSION = 1; /** * @notice Retrieves the OApp version information. * @return senderVersion The version of the OAppSender.sol contract. * @return receiverVersion The version of the OAppReceiver.sol contract. * * @dev Providing 0 as the default for OAppSender version. Indicates that the OAppSender is not implemented. * ie. this is a RECEIVE only OApp. * @dev If the OApp uses both OAppSender and OAppReceiver, then this needs to be override returning the correct versions. */ function oAppVersion() public view virtual returns (uint64 senderVersion, uint64 receiverVersion) { return (0, RECEIVER_VERSION); } /** * @notice Retrieves the address responsible for 'sending' composeMsg's to the Endpoint. * @return sender The address responsible for 'sending' composeMsg's to the Endpoint. * * @dev Applications can optionally choose to implement a separate composeMsg sender that is NOT the bridging layer. * @dev The default sender IS the OApp implementer. */ function composeMsgSender() public view virtual returns (address sender) { return address(this); } /** * @notice Checks if the path initialization is allowed based on the provided origin. * @param origin The origin information containing the source endpoint and sender address. * @return Whether the path has been initialized. * * @dev This indicates to the endpoint that the OApp has enabled msgs for this particular path to be received. * @dev This defaults to assuming if a peer has been set, its initialized. * Can be overridden by the OApp if there is other logic to determine this. */ function allowInitializePath(Origin calldata origin) public view virtual returns (bool) { return peers[origin.srcEid] == origin.sender; } /** * @notice Retrieves the next nonce for a given source endpoint and sender address. * @dev _srcEid The source endpoint ID. * @dev _sender The sender address. * @return nonce The next nonce. * * @dev The path nonce starts from 1. If 0 is returned it means that there is NO nonce ordered enforcement. * @dev Is required by the off-chain executor to determine the OApp expects msg execution is ordered. * @dev This is also enforced by the OApp. * @dev By default this is NOT enabled. ie. nextNonce is hardcoded to return 0. */ function nextNonce(uint32 /*_srcEid*/, bytes32 /*_sender*/) public view virtual returns (uint64 nonce) { return 0; } /** * @dev Entry point for receiving messages or packets from the endpoint. * @param _origin The origin information containing the source endpoint and sender address. * - srcEid: The source chain endpoint ID. * - sender: The sender address on the src chain. * - nonce: The nonce of the message. * @param _guid The unique identifier for the received LayerZero message. * @param _message The payload of the received message. * @param _executor The address of the executor for the received message. * @param _extraData Additional arbitrary data provided by the corresponding executor. * * @dev Entry point for receiving msg/packet from the LayerZero endpoint. */ function lzReceive( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) public payable virtual { // Ensures that only the endpoint can attempt to lzReceive() messages to this OApp. if (address(endpoint) != msg.sender) revert OnlyEndpoint(msg.sender); // Ensure that the sender matches the expected peer for the source endpoint. if (_getPeerOrRevert(_origin.srcEid) != _origin.sender) revert OnlyPeer(_origin.srcEid, _origin.sender); // Call the internal OApp implementation of lzReceive. _lzReceive(_origin, _guid, _message, _executor, _extraData); } /** * @dev Internal function to implement lzReceive logic without needing to copy the basic parameter validation. */ function _lzReceive( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) internal virtual; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { SafeERC20, IERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { MessagingParams, MessagingFee, MessagingReceipt } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroEndpointV2.sol"; import { OAppCore } from "./OAppCore.sol"; /** * @title OAppSender * @dev Abstract contract implementing the OAppSender functionality for sending messages to a LayerZero endpoint. */ abstract contract OAppSender is OAppCore { using SafeERC20 for IERC20; // Custom error messages error NotEnoughNative(uint256 msgValue); error LzTokenUnavailable(); // @dev The version of the OAppSender implementation. // @dev Version is bumped when changes are made to this contract. uint64 internal constant SENDER_VERSION = 1; /** * @notice Retrieves the OApp version information. * @return senderVersion The version of the OAppSender.sol contract. * @return receiverVersion The version of the OAppReceiver.sol contract. * * @dev Providing 0 as the default for OAppReceiver version. Indicates that the OAppReceiver is not implemented. * ie. this is a SEND only OApp. * @dev If the OApp uses both OAppSender and OAppReceiver, then this needs to be override returning the correct versions */ function oAppVersion() public view virtual returns (uint64 senderVersion, uint64 receiverVersion) { return (SENDER_VERSION, 0); } /** * @dev Internal function to interact with the LayerZero EndpointV2.quote() for fee calculation. * @param _dstEid The destination endpoint ID. * @param _message The message payload. * @param _options Additional options for the message. * @param _payInLzToken Flag indicating whether to pay the fee in LZ tokens. * @return fee The calculated MessagingFee for the message. * - nativeFee: The native fee for the message. * - lzTokenFee: The LZ token fee for the message. */ function _quote( uint32 _dstEid, bytes memory _message, bytes memory _options, bool _payInLzToken ) internal view virtual returns (MessagingFee memory fee) { return endpoint.quote( MessagingParams(_dstEid, _getPeerOrRevert(_dstEid), _message, _options, _payInLzToken), address(this) ); } /** * @dev Internal function to interact with the LayerZero EndpointV2.send() for sending a message. * @param _dstEid The destination endpoint ID. * @param _message The message payload. * @param _options Additional options for the message. * @param _fee The calculated LayerZero fee for the message. * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. * @param _refundAddress The address to receive any excess fee values sent to the endpoint. * @return receipt The receipt for the sent message. * - guid: The unique identifier for the sent message. * - nonce: The nonce of the sent message. * - fee: The LayerZero fee incurred for the message. */ function _lzSend( uint32 _dstEid, bytes memory _message, bytes memory _options, MessagingFee memory _fee, address _refundAddress ) internal virtual returns (MessagingReceipt memory receipt) { // @dev Push corresponding fees to the endpoint, any excess is sent back to the _refundAddress from the endpoint. uint256 messageValue = _payNative(_fee.nativeFee); if (_fee.lzTokenFee > 0) _payLzToken(_fee.lzTokenFee); return // solhint-disable-next-line check-send-result endpoint.send{ value: messageValue }( MessagingParams(_dstEid, _getPeerOrRevert(_dstEid), _message, _options, _fee.lzTokenFee > 0), _refundAddress ); } /** * @dev Internal function to pay the native fee associated with the message. * @param _nativeFee The native fee to be paid. * @return nativeFee The amount of native currency paid. * * @dev If the OApp needs to initiate MULTIPLE LayerZero messages in a single transaction, * this will need to be overridden because msg.value would contain multiple lzFees. * @dev Should be overridden in the event the LayerZero endpoint requires a different native currency. * @dev Some EVMs use an ERC20 as a method for paying transactions/gasFees. * @dev The endpoint is EITHER/OR, ie. it will NOT support both types of native payment at a time. */ function _payNative(uint256 _nativeFee) internal virtual returns (uint256 nativeFee) { if (msg.value != _nativeFee) revert NotEnoughNative(msg.value); return _nativeFee; } /** * @dev Internal function to pay the LZ token fee associated with the message. * @param _lzTokenFee The LZ token fee to be paid. * * @dev If the caller is trying to pay in the specified lzToken, then the lzTokenFee is passed to the endpoint. * @dev Any excess sent, is passed back to the specified _refundAddress in the _lzSend(). */ function _payLzToken(uint256 _lzTokenFee) internal virtual { // @dev Cannot cache the token because it is not immutable in the endpoint. address lzToken = endpoint.lzToken(); if (lzToken == address(0)) revert LzTokenUnavailable(); // Pay LZ token fee by sending tokens to the endpoint. IERC20(lzToken).safeTransferFrom(msg.sender, address(endpoint), _lzTokenFee); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { ILayerZeroEndpointV2 } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroEndpointV2.sol"; /** * @title IOAppCore */ interface IOAppCore { // Custom error messages error OnlyPeer(uint32 eid, bytes32 sender); error NoPeer(uint32 eid); error InvalidEndpointCall(); error InvalidDelegate(); // Event emitted when a peer (OApp) is set for a corresponding endpoint event PeerSet(uint32 eid, bytes32 peer); /** * @notice Retrieves the OApp version information. * @return senderVersion The version of the OAppSender.sol contract. * @return receiverVersion The version of the OAppReceiver.sol contract. */ function oAppVersion() external view returns (uint64 senderVersion, uint64 receiverVersion); /** * @notice Retrieves the LayerZero endpoint associated with the OApp. * @return iEndpoint The LayerZero endpoint as an interface. */ function endpoint() external view returns (ILayerZeroEndpointV2 iEndpoint); /** * @notice Retrieves the peer (OApp) associated with a corresponding endpoint. * @param _eid The endpoint ID. * @return peer The peer address (OApp instance) associated with the corresponding endpoint. */ function peers(uint32 _eid) external view returns (bytes32 peer); /** * @notice Sets the peer address (OApp instance) for a corresponding endpoint. * @param _eid The endpoint ID. * @param _peer The address of the peer to be associated with the corresponding endpoint. */ function setPeer(uint32 _eid, bytes32 _peer) external; /** * @notice Sets the delegate address for the OApp Core. * @param _delegate The address of the delegate to be set. */ function setDelegate(address _delegate) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @title IOAppMsgInspector * @dev Interface for the OApp Message Inspector, allowing examination of message and options contents. */ interface IOAppMsgInspector { // Custom error message for inspection failure error InspectionFailed(bytes message, bytes options); /** * @notice Allows the inspector to examine LayerZero message contents and optionally throw a revert if invalid. * @param _message The message payload to be inspected. * @param _options Additional options or parameters for inspection. * @return valid A boolean indicating whether the inspection passed (true) or failed (false). * * @dev Optionally done as a revert, OR use the boolean provided to handle the failure. */ function inspect(bytes calldata _message, bytes calldata _options) external view returns (bool valid); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; /** * @dev Struct representing enforced option parameters. */ struct EnforcedOptionParam { uint32 eid; // Endpoint ID uint16 msgType; // Message Type bytes options; // Additional options } /** * @title IOAppOptionsType3 * @dev Interface for the OApp with Type 3 Options, allowing the setting and combining of enforced options. */ interface IOAppOptionsType3 { // Custom error message for invalid options error InvalidOptions(bytes options); // Event emitted when enforced options are set event EnforcedOptionSet(EnforcedOptionParam[] _enforcedOptions); /** * @notice Sets enforced options for specific endpoint and message type combinations. * @param _enforcedOptions An array of EnforcedOptionParam structures specifying enforced options. */ function setEnforcedOptions(EnforcedOptionParam[] calldata _enforcedOptions) external; /** * @notice Combines options for a given endpoint and message type. * @param _eid The endpoint ID. * @param _msgType The OApp message type. * @param _extraOptions Additional options passed by the caller. * @return options The combination of caller specified options AND enforced options. */ function combineOptions( uint32 _eid, uint16 _msgType, bytes calldata _extraOptions ) external view returns (bytes memory options); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { ILayerZeroReceiver, Origin } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroReceiver.sol"; interface IOAppReceiver is ILayerZeroReceiver { /** * @notice Retrieves the address responsible for 'sending' composeMsg's to the Endpoint. * @return sender The address responsible for 'sending' composeMsg's to the Endpoint. * * @dev Applications can optionally choose to implement a separate composeMsg sender that is NOT the bridging layer. * @dev The default sender IS the OApp implementer. */ function composeMsgSender() external view returns (address sender); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { IOAppOptionsType3, EnforcedOptionParam } from "../interfaces/IOAppOptionsType3.sol"; /** * @title OAppOptionsType3 * @dev Abstract contract implementing the IOAppOptionsType3 interface with type 3 options. */ abstract contract OAppOptionsType3 is IOAppOptionsType3, Ownable { uint16 internal constant OPTION_TYPE_3 = 3; // @dev The "msgType" should be defined in the child contract. mapping(uint32 eid => mapping(uint16 msgType => bytes enforcedOption)) public enforcedOptions; /** * @dev Sets the enforced options for specific endpoint and message type combinations. * @param _enforcedOptions An array of EnforcedOptionParam structures specifying enforced options. * * @dev Only the owner/admin of the OApp can call this function. * @dev Provides a way for the OApp to enforce things like paying for PreCrime, AND/OR minimum dst lzReceive gas amounts etc. * @dev These enforced options can vary as the potential options/execution on the remote may differ as per the msgType. * eg. Amount of lzReceive() gas necessary to deliver a lzCompose() message adds overhead you dont want to pay * if you are only making a standard LayerZero message ie. lzReceive() WITHOUT sendCompose(). */ function setEnforcedOptions(EnforcedOptionParam[] calldata _enforcedOptions) public virtual onlyOwner { for (uint256 i = 0; i < _enforcedOptions.length; i++) { // @dev Enforced options are only available for optionType 3, as type 1 and 2 dont support combining. _assertOptionsType3(_enforcedOptions[i].options); enforcedOptions[_enforcedOptions[i].eid][_enforcedOptions[i].msgType] = _enforcedOptions[i].options; } emit EnforcedOptionSet(_enforcedOptions); } /** * @notice Combines options for a given endpoint and message type. * @param _eid The endpoint ID. * @param _msgType The OAPP message type. * @param _extraOptions Additional options passed by the caller. * @return options The combination of caller specified options AND enforced options. * * @dev If there is an enforced lzReceive option: * - {gasLimit: 200k, msg.value: 1 ether} AND a caller supplies a lzReceive option: {gasLimit: 100k, msg.value: 0.5 ether} * - The resulting options will be {gasLimit: 300k, msg.value: 1.5 ether} when the message is executed on the remote lzReceive() function. * @dev This presence of duplicated options is handled off-chain in the verifier/executor. */ function combineOptions( uint32 _eid, uint16 _msgType, bytes calldata _extraOptions ) public view virtual returns (bytes memory) { bytes memory enforced = enforcedOptions[_eid][_msgType]; // No enforced options, pass whatever the caller supplied, even if it's empty or legacy type 1/2 options. if (enforced.length == 0) return _extraOptions; // No caller options, return enforced if (_extraOptions.length == 0) return enforced; // @dev If caller provided _extraOptions, must be type 3 as its the ONLY type that can be combined. if (_extraOptions.length >= 2) { _assertOptionsType3(_extraOptions); // @dev Remove the first 2 bytes containing the type from the _extraOptions and combine with enforced. return bytes.concat(enforced, _extraOptions[2:]); } // No valid set of options was found. revert InvalidOptions(_extraOptions); } /** * @dev Internal function to assert that options are of type 3. * @param _options The options to be checked. */ function _assertOptionsType3(bytes calldata _options) internal pure virtual { uint16 optionsType = uint16(bytes2(_options[0:2])); if (optionsType != OPTION_TYPE_3) revert InvalidOptions(_options); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { BytesLib } from "solidity-bytes-utils/contracts/BytesLib.sol"; import { SafeCast } from "@openzeppelin/contracts/utils/math/SafeCast.sol"; import { ExecutorOptions } from "@layerzerolabs/lz-evm-protocol-v2/contracts/messagelib/libs/ExecutorOptions.sol"; import { DVNOptions } from "@layerzerolabs/lz-evm-messagelib-v2/contracts/uln/libs/DVNOptions.sol"; /** * @title OptionsBuilder * @dev Library for building and encoding various message options. */ library OptionsBuilder { using SafeCast for uint256; using BytesLib for bytes; // Constants for options types uint16 internal constant TYPE_1 = 1; // legacy options type 1 uint16 internal constant TYPE_2 = 2; // legacy options type 2 uint16 internal constant TYPE_3 = 3; // Custom error message error InvalidSize(uint256 max, uint256 actual); error InvalidOptionType(uint16 optionType); // Modifier to ensure only options of type 3 are used modifier onlyType3(bytes memory _options) { if (_options.toUint16(0) != TYPE_3) revert InvalidOptionType(_options.toUint16(0)); _; } /** * @dev Creates a new options container with type 3. * @return options The newly created options container. */ function newOptions() internal pure returns (bytes memory) { return abi.encodePacked(TYPE_3); } /** * @dev Adds an executor LZ receive option to the existing options. * @param _options The existing options container. * @param _gas The gasLimit used on the lzReceive() function in the OApp. * @param _value The msg.value passed to the lzReceive() function in the OApp. * @return options The updated options container. * * @dev When multiples of this option are added, they are summed by the executor * eg. if (_gas: 200k, and _value: 1 ether) AND (_gas: 100k, _value: 0.5 ether) are sent in an option to the LayerZeroEndpoint, * that becomes (300k, 1.5 ether) when the message is executed on the remote lzReceive() function. */ function addExecutorLzReceiveOption( bytes memory _options, uint128 _gas, uint128 _value ) internal pure onlyType3(_options) returns (bytes memory) { bytes memory option = ExecutorOptions.encodeLzReceiveOption(_gas, _value); return addExecutorOption(_options, ExecutorOptions.OPTION_TYPE_LZRECEIVE, option); } /** * @dev Adds an executor native drop option to the existing options. * @param _options The existing options container. * @param _amount The amount for the native value that is airdropped to the 'receiver'. * @param _receiver The receiver address for the native drop option. * @return options The updated options container. * * @dev When multiples of this option are added, they are summed by the executor on the remote chain. */ function addExecutorNativeDropOption( bytes memory _options, uint128 _amount, bytes32 _receiver ) internal pure onlyType3(_options) returns (bytes memory) { bytes memory option = ExecutorOptions.encodeNativeDropOption(_amount, _receiver); return addExecutorOption(_options, ExecutorOptions.OPTION_TYPE_NATIVE_DROP, option); } /** * @dev Adds an executor LZ compose option to the existing options. * @param _options The existing options container. * @param _index The index for the lzCompose() function call. * @param _gas The gasLimit for the lzCompose() function call. * @param _value The msg.value for the lzCompose() function call. * @return options The updated options container. * * @dev When multiples of this option are added, they are summed PER index by the executor on the remote chain. * @dev If the OApp sends N lzCompose calls on the remote, you must provide N incremented indexes starting with 0. * ie. When your remote OApp composes (N = 3) messages, you must set this option for index 0,1,2 */ function addExecutorLzComposeOption( bytes memory _options, uint16 _index, uint128 _gas, uint128 _value ) internal pure onlyType3(_options) returns (bytes memory) { bytes memory option = ExecutorOptions.encodeLzComposeOption(_index, _gas, _value); return addExecutorOption(_options, ExecutorOptions.OPTION_TYPE_LZCOMPOSE, option); } /** * @dev Adds an executor ordered execution option to the existing options. * @param _options The existing options container. * @return options The updated options container. */ function addExecutorOrderedExecutionOption( bytes memory _options ) internal pure onlyType3(_options) returns (bytes memory) { return addExecutorOption(_options, ExecutorOptions.OPTION_TYPE_ORDERED_EXECUTION, bytes("")); } /** * @dev Adds a DVN pre-crime option to the existing options. * @param _options The existing options container. * @param _dvnIdx The DVN index for the pre-crime option. * @return options The updated options container. */ function addDVNPreCrimeOption( bytes memory _options, uint8 _dvnIdx ) internal pure onlyType3(_options) returns (bytes memory) { return addDVNOption(_options, _dvnIdx, DVNOptions.OPTION_TYPE_PRECRIME, bytes("")); } /** * @dev Adds an executor option to the existing options. * @param _options The existing options container. * @param _optionType The type of the executor option. * @param _option The encoded data for the executor option. * @return options The updated options container. */ function addExecutorOption( bytes memory _options, uint8 _optionType, bytes memory _option ) internal pure onlyType3(_options) returns (bytes memory) { return abi.encodePacked( _options, ExecutorOptions.WORKER_ID, _option.length.toUint16() + 1, // +1 for optionType _optionType, _option ); } /** * @dev Adds a DVN option to the existing options. * @param _options The existing options container. * @param _dvnIdx The DVN index for the DVN option. * @param _optionType The type of the DVN option. * @param _option The encoded data for the DVN option. * @return options The updated options container. */ function addDVNOption( bytes memory _options, uint8 _dvnIdx, uint8 _optionType, bytes memory _option ) internal pure onlyType3(_options) returns (bytes memory) { return abi.encodePacked( _options, DVNOptions.WORKER_ID, _option.length.toUint16() + 2, // +2 for optionType and dvnIdx _dvnIdx, _optionType, _option ); } /** * @dev Encodes legacy options of type 1. * @param _executionGas The gasLimit value passed to lzReceive(). * @return legacyOptions The encoded legacy options. */ function encodeLegacyOptionsType1(uint256 _executionGas) internal pure returns (bytes memory) { if (_executionGas > type(uint128).max) revert InvalidSize(type(uint128).max, _executionGas); return abi.encodePacked(TYPE_1, _executionGas); } /** * @dev Encodes legacy options of type 2. * @param _executionGas The gasLimit value passed to lzReceive(). * @param _nativeForDst The amount of native air dropped to the receiver. * @param _receiver The _nativeForDst receiver address. * @return legacyOptions The encoded legacy options of type 2. */ function encodeLegacyOptionsType2( uint256 _executionGas, uint256 _nativeForDst, bytes memory _receiver // @dev Use bytes instead of bytes32 in legacy type 2 for _receiver. ) internal pure returns (bytes memory) { if (_executionGas > type(uint128).max) revert InvalidSize(type(uint128).max, _executionGas); if (_nativeForDst > type(uint128).max) revert InvalidSize(type(uint128).max, _nativeForDst); if (_receiver.length > 32) revert InvalidSize(32, _receiver.length); return abi.encodePacked(TYPE_2, _executionGas, _nativeForDst, _receiver); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { OApp, Origin } from "../oapp/OApp.sol"; import { OAppOptionsType3 } from "../oapp/libs/OAppOptionsType3.sol"; import { IOAppMsgInspector } from "../oapp/interfaces/IOAppMsgInspector.sol"; import { OAppPreCrimeSimulator } from "../precrime/OAppPreCrimeSimulator.sol"; import { IOFT, SendParam, OFTLimit, OFTReceipt, OFTFeeDetail, MessagingReceipt, MessagingFee } from "./interfaces/IOFT.sol"; import { OFTMsgCodec } from "./libs/OFTMsgCodec.sol"; import { OFTComposeMsgCodec } from "./libs/OFTComposeMsgCodec.sol"; /** * @title OFTCore * @dev Abstract contract for the OftChain (OFT) token. */ abstract contract OFTCore is IOFT, OApp, OAppPreCrimeSimulator, OAppOptionsType3 { using OFTMsgCodec for bytes; using OFTMsgCodec for bytes32; // @notice Provides a conversion rate when swapping between denominations of SD and LD // - shareDecimals == SD == shared Decimals // - localDecimals == LD == local decimals // @dev Considers that tokens have different decimal amounts on various chains. // @dev eg. // For a token // - locally with 4 decimals --> 1.2345 => uint(12345) // - remotely with 2 decimals --> 1.23 => uint(123) // - The conversion rate would be 10 ** (4 - 2) = 100 // @dev If you want to send 1.2345 -> (uint 12345), you CANNOT represent that value on the remote, // you can only display 1.23 -> uint(123). // @dev To preserve the dust that would otherwise be lost on that conversion, // we need to unify a denomination that can be represented on ALL chains inside of the OFT mesh uint256 public immutable decimalConversionRate; // @notice Msg types that are used to identify the various OFT operations. // @dev This can be extended in child contracts for non-default oft operations // @dev These values are used in things like combineOptions() in OAppOptionsType3.sol. uint16 public constant SEND = 1; uint16 public constant SEND_AND_CALL = 2; // Address of an optional contract to inspect both 'message' and 'options' address public msgInspector; event MsgInspectorSet(address inspector); /** * @dev Constructor. * @param _localDecimals The decimals of the token on the local chain (this chain). * @param _endpoint The address of the LayerZero endpoint. * @param _delegate The delegate capable of making OApp configurations inside of the endpoint. */ constructor(uint8 _localDecimals, address _endpoint, address _delegate) OApp(_endpoint, _delegate) { if (_localDecimals < sharedDecimals()) revert InvalidLocalDecimals(); decimalConversionRate = 10 ** (_localDecimals - sharedDecimals()); } /** * @dev Retrieves the shared decimals of the OFT. * @return The shared decimals of the OFT. * * @dev Sets an implicit cap on the amount of tokens, over uint64.max() will need some sort of outbound cap / totalSupply cap * Lowest common decimal denominator between chains. * Defaults to 6 decimal places to provide up to 18,446,744,073,709.551615 units (max uint64). * For tokens exceeding this totalSupply(), they will need to override the sharedDecimals function with something smaller. * ie. 4 sharedDecimals would be 1,844,674,407,370,955.1615 */ function sharedDecimals() public pure virtual returns (uint8) { return 6; } /** * @dev Sets the message inspector address for the OFT. * @param _msgInspector The address of the message inspector. * * @dev This is an optional contract that can be used to inspect both 'message' and 'options'. * @dev Set it to address(0) to disable it, or set it to a contract address to enable it. */ function setMsgInspector(address _msgInspector) public virtual onlyOwner { msgInspector = _msgInspector; emit MsgInspectorSet(_msgInspector); } /** * @notice Provides a quote for OFT-related operations. * @param _sendParam The parameters for the send operation. * @return oftLimit The OFT limit information. * @return oftFeeDetails The details of OFT fees. * @return oftReceipt The OFT receipt information. */ function quoteOFT( SendParam calldata _sendParam ) external view virtual returns (OFTLimit memory oftLimit, OFTFeeDetail[] memory oftFeeDetails, OFTReceipt memory oftReceipt) { uint256 minAmountLD = 0; // Unused in the default implementation. uint256 maxAmountLD = type(uint64).max; // Unused in the default implementation. oftLimit = OFTLimit(minAmountLD, maxAmountLD); // Unused in the default implementation; reserved for future complex fee details. oftFeeDetails = new OFTFeeDetail[](0); // @dev This is the same as the send() operation, but without the actual send. // - amountSentLD is the amount in local decimals that would be sent from the sender. // - amountReceivedLD is the amount in local decimals that will be credited to the recipient on the remote OFT instance. // @dev The amountSentLD MIGHT not equal the amount the user actually receives. HOWEVER, the default does. (uint256 amountSentLD, uint256 amountReceivedLD) = _debitView( _sendParam.amountLD, _sendParam.minAmountLD, _sendParam.dstEid ); oftReceipt = OFTReceipt(amountSentLD, amountReceivedLD); } /** * @notice Provides a quote for the send() operation. * @param _sendParam The parameters for the send() operation. * @param _payInLzToken Flag indicating whether the caller is paying in the LZ token. * @return msgFee The calculated LayerZero messaging fee from the send() operation. * * @dev MessagingFee: LayerZero msg fee * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. */ function quoteSend( SendParam calldata _sendParam, bool _payInLzToken ) external view virtual returns (MessagingFee memory msgFee) { // @dev mock the amount to receive, this is the same operation used in the send(). // The quote is as similar as possible to the actual send() operation. (, uint256 amountReceivedLD) = _debitView(_sendParam.amountLD, _sendParam.minAmountLD, _sendParam.dstEid); // @dev Builds the options and OFT message to quote in the endpoint. (bytes memory message, bytes memory options) = _buildMsgAndOptions(_sendParam, amountReceivedLD); // @dev Calculates the LayerZero fee for the send() operation. return _quote(_sendParam.dstEid, message, options, _payInLzToken); } /** * @dev Executes the send operation. * @param _sendParam The parameters for the send operation. * @param _fee The calculated fee for the send() operation. * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. * @param _refundAddress The address to receive any excess funds. * @return msgReceipt The receipt for the send operation. * @return oftReceipt The OFT receipt information. * * @dev MessagingReceipt: LayerZero msg receipt * - guid: The unique identifier for the sent message. * - nonce: The nonce of the sent message. * - fee: The LayerZero fee incurred for the message. */ function send( SendParam calldata _sendParam, MessagingFee calldata _fee, address _refundAddress ) external payable virtual returns (MessagingReceipt memory msgReceipt, OFTReceipt memory oftReceipt) { // @dev Applies the token transfers regarding this send() operation. // - amountSentLD is the amount in local decimals that was ACTUALLY sent from the sender. // - amountReceivedLD is the amount in local decimals that will be credited to the recipient on the remote OFT instance. (uint256 amountSentLD, uint256 amountReceivedLD) = _debit( _sendParam.amountLD, _sendParam.minAmountLD, _sendParam.dstEid ); // @dev Builds the options and OFT message to quote in the endpoint. (bytes memory message, bytes memory options) = _buildMsgAndOptions(_sendParam, amountReceivedLD); // @dev Sends the message to the LayerZero endpoint and returns the LayerZero msg receipt. msgReceipt = _lzSend(_sendParam.dstEid, message, options, _fee, _refundAddress); // @dev Formulate the OFT receipt. oftReceipt = OFTReceipt(amountSentLD, amountReceivedLD); emit OFTSent(msgReceipt.guid, _sendParam.dstEid, msg.sender, amountSentLD); } /** * @dev Internal function to build the message and options. * @param _sendParam The parameters for the send() operation. * @param _amountLD The amount in local decimals. * @return message The encoded message. * @return options The encoded options. */ function _buildMsgAndOptions( SendParam calldata _sendParam, uint256 _amountLD ) internal view virtual returns (bytes memory message, bytes memory options) { bool hasCompose; // @dev This generated message has the msg.sender encoded into the payload so the remote knows who the caller is. (message, hasCompose) = OFTMsgCodec.encode( _sendParam.to, _toSD(_amountLD), // @dev Must be include a non empty bytes if you want to compose, EVEN if you dont need it on the remote. // EVEN if you dont require an arbitrary payload to be sent... eg. '0x01' _sendParam.composeMsg ); // @dev Change the msg type depending if its composed or not. uint16 msgType = hasCompose ? SEND_AND_CALL : SEND; // @dev Combine the callers _extraOptions with the enforced options via the OAppOptionsType3. options = combineOptions(_sendParam.dstEid, msgType, _sendParam.extraOptions); // @dev Optionally inspect the message and options depending if the OApp owner has set a msg inspector. // @dev If it fails inspection, needs to revert in the implementation. ie. does not rely on return boolean if (msgInspector != address(0)) IOAppMsgInspector(msgInspector).inspect(message, options); } /** * @dev Internal function to handle the receive on the LayerZero endpoint. * @param _origin The origin information. * - srcEid: The source chain endpoint ID. * - sender: The sender address from the src chain. * - nonce: The nonce of the LayerZero message. * @param _guid The unique identifier for the received LayerZero message. * @param _message The encoded message. * @dev _executor The address of the executor. * @dev _extraData Additional data. */ function _lzReceive( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address /*_executor*/, // @dev unused in the default implementation. bytes calldata /*_extraData*/ // @dev unused in the default implementation. ) internal virtual override { // @dev The src sending chain doesnt know the address length on this chain (potentially non-evm) // Thus everything is bytes32() encoded in flight. address toAddress = _message.sendTo().bytes32ToAddress(); // @dev Credit the amountLD to the recipient and return the ACTUAL amount the recipient received in local decimals uint256 amountReceivedLD = _credit(toAddress, _toLD(_message.amountSD()), _origin.srcEid); if (_message.isComposed()) { // @dev Proprietary composeMsg format for the OFT. bytes memory composeMsg = OFTComposeMsgCodec.encode( _origin.nonce, _origin.srcEid, amountReceivedLD, _message.composeMsg() ); // @dev Stores the lzCompose payload that will be executed in a separate tx. // Standardizes functionality for executing arbitrary contract invocation on some non-evm chains. // @dev The off-chain executor will listen and process the msg based on the src-chain-callers compose options passed. // @dev The index is used when a OApp needs to compose multiple msgs on lzReceive. // For default OFT implementation there is only 1 compose msg per lzReceive, thus its always 0. endpoint.sendCompose(toAddress, _guid, 0 /* the index of the composed message*/, composeMsg); } emit OFTReceived(_guid, _origin.srcEid, toAddress, amountReceivedLD); } /** * @dev Internal function to handle the OAppPreCrimeSimulator simulated receive. * @param _origin The origin information. * - srcEid: The source chain endpoint ID. * - sender: The sender address from the src chain. * - nonce: The nonce of the LayerZero message. * @param _guid The unique identifier for the received LayerZero message. * @param _message The LayerZero message. * @param _executor The address of the off-chain executor. * @param _extraData Arbitrary data passed by the msg executor. * * @dev Enables the preCrime simulator to mock sending lzReceive() messages, * routes the msg down from the OAppPreCrimeSimulator, and back up to the OAppReceiver. */ function _lzReceiveSimulate( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) internal virtual override { _lzReceive(_origin, _guid, _message, _executor, _extraData); } /** * @dev Check if the peer is considered 'trusted' by the OApp. * @param _eid The endpoint ID to check. * @param _peer The peer to check. * @return Whether the peer passed is considered 'trusted' by the OApp. * * @dev Enables OAppPreCrimeSimulator to check whether a potential Inbound Packet is from a trusted source. */ function isPeer(uint32 _eid, bytes32 _peer) public view virtual override returns (bool) { return peers[_eid] == _peer; } /** * @dev Internal function to remove dust from the given local decimal amount. * @param _amountLD The amount in local decimals. * @return amountLD The amount after removing dust. * * @dev Prevents the loss of dust when moving amounts between chains with different decimals. * @dev eg. uint(123) with a conversion rate of 100 becomes uint(100). */ function _removeDust(uint256 _amountLD) internal view virtual returns (uint256 amountLD) { return (_amountLD / decimalConversionRate) * decimalConversionRate; } /** * @dev Internal function to convert an amount from shared decimals into local decimals. * @param _amountSD The amount in shared decimals. * @return amountLD The amount in local decimals. */ function _toLD(uint64 _amountSD) internal view virtual returns (uint256 amountLD) { return _amountSD * decimalConversionRate; } /** * @dev Internal function to convert an amount from local decimals into shared decimals. * @param _amountLD The amount in local decimals. * @return amountSD The amount in shared decimals. */ function _toSD(uint256 _amountLD) internal view virtual returns (uint64 amountSD) { return uint64(_amountLD / decimalConversionRate); } /** * @dev Internal function to mock the amount mutation from a OFT debit() operation. * @param _amountLD The amount to send in local decimals. * @param _minAmountLD The minimum amount to send in local decimals. * @dev _dstEid The destination endpoint ID. * @return amountSentLD The amount sent, in local decimals. * @return amountReceivedLD The amount to be received on the remote chain, in local decimals. * * @dev This is where things like fees would be calculated and deducted from the amount to be received on the remote. */ function _debitView( uint256 _amountLD, uint256 _minAmountLD, uint32 /*_dstEid*/ ) internal view virtual returns (uint256 amountSentLD, uint256 amountReceivedLD) { // @dev Remove the dust so nothing is lost on the conversion between chains with different decimals for the token. amountSentLD = _removeDust(_amountLD); // @dev The amount to send is the same as amount received in the default implementation. amountReceivedLD = amountSentLD; // @dev Check for slippage. if (amountReceivedLD < _minAmountLD) { revert SlippageExceeded(amountReceivedLD, _minAmountLD); } } /** * @dev Internal function to perform a debit operation. * @param _amountLD The amount to send in local decimals. * @param _minAmountLD The minimum amount to send in local decimals. * @param _dstEid The destination endpoint ID. * @return amountSentLD The amount sent in local decimals. * @return amountReceivedLD The amount received in local decimals on the remote. * * @dev Defined here but are intended to be overriden depending on the OFT implementation. * @dev Depending on OFT implementation the _amountLD could differ from the amountReceivedLD. */ function _debit( uint256 _amountLD, uint256 _minAmountLD, uint32 _dstEid ) internal virtual returns (uint256 amountSentLD, uint256 amountReceivedLD); /** * @dev Internal function to perform a credit operation. * @param _to The address to credit. * @param _amountLD The amount to credit in local decimals. * @param _srcEid The source endpoint ID. * @return amountReceivedLD The amount ACTUALLY received in local decimals. * * @dev Defined here but are intended to be overriden depending on the OFT implementation. * @dev Depending on OFT implementation the _amountLD could differ from the amountReceivedLD. */ function _credit( address _to, uint256 _amountLD, uint32 _srcEid ) internal virtual returns (uint256 amountReceivedLD); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { MessagingReceipt, MessagingFee } from "../../oapp/OAppSender.sol"; /** * @dev Struct representing token parameters for the OFT send() operation. */ struct SendParam { uint32 dstEid; // Destination endpoint ID. bytes32 to; // Recipient address. uint256 amountLD; // Amount to send in local decimals. uint256 minAmountLD; // Minimum amount to send in local decimals. bytes extraOptions; // Additional options supplied by the caller to be used in the LayerZero message. bytes composeMsg; // The composed message for the send() operation. bytes oftCmd; // The OFT command to be executed, unused in default OFT implementations. } /** * @dev Struct representing OFT limit information. * @dev These amounts can change dynamically and are up the the specific oft implementation. */ struct OFTLimit { uint256 minAmountLD; // Minimum amount in local decimals that can be sent to the recipient. uint256 maxAmountLD; // Maximum amount in local decimals that can be sent to the recipient. } /** * @dev Struct representing OFT receipt information. */ struct OFTReceipt { uint256 amountSentLD; // Amount of tokens ACTUALLY debited from the sender in local decimals. // @dev In non-default implementations, the amountReceivedLD COULD differ from this value. uint256 amountReceivedLD; // Amount of tokens to be received on the remote side. } /** * @dev Struct representing OFT fee details. * @dev Future proof mechanism to provide a standardized way to communicate fees to things like a UI. */ struct OFTFeeDetail { int256 feeAmountLD; // Amount of the fee in local decimals. string description; // Description of the fee. } /** * @title IOFT * @dev Interface for the OftChain (OFT) token. * @dev Does not inherit ERC20 to accommodate usage by OFTAdapter as well. * @dev This specific interface ID is '0x02e49c2c'. */ interface IOFT { // Custom error messages error InvalidLocalDecimals(); error SlippageExceeded(uint256 amountLD, uint256 minAmountLD); // Events event OFTSent( bytes32 indexed guid, // GUID of the OFT message. uint32 dstEid, // Destination Endpoint ID. address indexed fromAddress, // Address of the sender on the src chain. uint256 amountLD // Amount of tokens sent in local decimals. ); event OFTReceived( bytes32 indexed guid, // GUID of the OFT message. uint32 srcEid, // Source Endpoint ID. address indexed toAddress, // Address of the recipient on the dst chain. uint256 amountLD // Amount of tokens received in local decimals. ); /** * @notice Retrieves interfaceID and the version of the OFT. * @return interfaceId The interface ID. * @return version The version. * * @dev interfaceId: This specific interface ID is '0x02e49c2c'. * @dev version: Indicates a cross-chain compatible msg encoding with other OFTs. * @dev If a new feature is added to the OFT cross-chain msg encoding, the version will be incremented. * ie. localOFT version(x,1) CAN send messages to remoteOFT version(x,1) */ function oftVersion() external view returns (bytes4 interfaceId, uint64 version); /** * @notice Retrieves the address of the token associated with the OFT. * @return token The address of the ERC20 token implementation. */ function token() external view returns (address); /** * @notice Indicates whether the OFT contract requires approval of the 'token()' to send. * @return requiresApproval Needs approval of the underlying token implementation. * * @dev Allows things like wallet implementers to determine integration requirements, * without understanding the underlying token implementation. */ function approvalRequired() external view returns (bool); /** * @notice Retrieves the shared decimals of the OFT. * @return sharedDecimals The shared decimals of the OFT. */ function sharedDecimals() external view returns (uint8); /** * @notice Provides a quote for OFT-related operations. * @param _sendParam The parameters for the send operation. * @return limit The OFT limit information. * @return oftFeeDetails The details of OFT fees. * @return receipt The OFT receipt information. */ function quoteOFT( SendParam calldata _sendParam ) external view returns (OFTLimit memory, OFTFeeDetail[] memory oftFeeDetails, OFTReceipt memory); /** * @notice Provides a quote for the send() operation. * @param _sendParam The parameters for the send() operation. * @param _payInLzToken Flag indicating whether the caller is paying in the LZ token. * @return fee The calculated LayerZero messaging fee from the send() operation. * * @dev MessagingFee: LayerZero msg fee * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. */ function quoteSend(SendParam calldata _sendParam, bool _payInLzToken) external view returns (MessagingFee memory); /** * @notice Executes the send() operation. * @param _sendParam The parameters for the send operation. * @param _fee The fee information supplied by the caller. * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. * @param _refundAddress The address to receive any excess funds from fees etc. on the src. * @return receipt The LayerZero messaging receipt from the send() operation. * @return oftReceipt The OFT receipt information. * * @dev MessagingReceipt: LayerZero msg receipt * - guid: The unique identifier for the sent message. * - nonce: The nonce of the sent message. * - fee: The LayerZero fee incurred for the message. */ function send( SendParam calldata _sendParam, MessagingFee calldata _fee, address _refundAddress ) external payable returns (MessagingReceipt memory, OFTReceipt memory); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; library OFTComposeMsgCodec { // Offset constants for decoding composed messages uint8 private constant NONCE_OFFSET = 8; uint8 private constant SRC_EID_OFFSET = 12; uint8 private constant AMOUNT_LD_OFFSET = 44; uint8 private constant COMPOSE_FROM_OFFSET = 76; /** * @dev Encodes a OFT composed message. * @param _nonce The nonce value. * @param _srcEid The source endpoint ID. * @param _amountLD The amount in local decimals. * @param _composeMsg The composed message. * @return _msg The encoded Composed message. */ function encode( uint64 _nonce, uint32 _srcEid, uint256 _amountLD, bytes memory _composeMsg // 0x[composeFrom][composeMsg] ) internal pure returns (bytes memory _msg) { _msg = abi.encodePacked(_nonce, _srcEid, _amountLD, _composeMsg); } /** * @dev Retrieves the nonce from the composed message. * @param _msg The message. * @return The nonce value. */ function nonce(bytes calldata _msg) internal pure returns (uint64) { return uint64(bytes8(_msg[:NONCE_OFFSET])); } /** * @dev Retrieves the source endpoint ID from the composed message. * @param _msg The message. * @return The source endpoint ID. */ function srcEid(bytes calldata _msg) internal pure returns (uint32) { return uint32(bytes4(_msg[NONCE_OFFSET:SRC_EID_OFFSET])); } /** * @dev Retrieves the amount in local decimals from the composed message. * @param _msg The message. * @return The amount in local decimals. */ function amountLD(bytes calldata _msg) internal pure returns (uint256) { return uint256(bytes32(_msg[SRC_EID_OFFSET:AMOUNT_LD_OFFSET])); } /** * @dev Retrieves the composeFrom value from the composed message. * @param _msg The message. * @return The composeFrom value. */ function composeFrom(bytes calldata _msg) internal pure returns (bytes32) { return bytes32(_msg[AMOUNT_LD_OFFSET:COMPOSE_FROM_OFFSET]); } /** * @dev Retrieves the composed message. * @param _msg The message. * @return The composed message. */ function composeMsg(bytes calldata _msg) internal pure returns (bytes memory) { return _msg[COMPOSE_FROM_OFFSET:]; } /** * @dev Converts an address to bytes32. * @param _addr The address to convert. * @return The bytes32 representation of the address. */ function addressToBytes32(address _addr) internal pure returns (bytes32) { return bytes32(uint256(uint160(_addr))); } /** * @dev Converts bytes32 to an address. * @param _b The bytes32 value to convert. * @return The address representation of bytes32. */ function bytes32ToAddress(bytes32 _b) internal pure returns (address) { return address(uint160(uint256(_b))); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; library OFTMsgCodec { // Offset constants for encoding and decoding OFT messages uint8 private constant SEND_TO_OFFSET = 32; uint8 private constant SEND_AMOUNT_SD_OFFSET = 40; /** * @dev Encodes an OFT LayerZero message. * @param _sendTo The recipient address. * @param _amountShared The amount in shared decimals. * @param _composeMsg The composed message. * @return _msg The encoded message. * @return hasCompose A boolean indicating whether the message has a composed payload. */ function encode( bytes32 _sendTo, uint64 _amountShared, bytes memory _composeMsg ) internal view returns (bytes memory _msg, bool hasCompose) { hasCompose = _composeMsg.length > 0; // @dev Remote chains will want to know the composed function caller ie. msg.sender on the src. _msg = hasCompose ? abi.encodePacked(_sendTo, _amountShared, addressToBytes32(msg.sender), _composeMsg) : abi.encodePacked(_sendTo, _amountShared); } /** * @dev Checks if the OFT message is composed. * @param _msg The OFT message. * @return A boolean indicating whether the message is composed. */ function isComposed(bytes calldata _msg) internal pure returns (bool) { return _msg.length > SEND_AMOUNT_SD_OFFSET; } /** * @dev Retrieves the recipient address from the OFT message. * @param _msg The OFT message. * @return The recipient address. */ function sendTo(bytes calldata _msg) internal pure returns (bytes32) { return bytes32(_msg[:SEND_TO_OFFSET]); } /** * @dev Retrieves the amount in shared decimals from the OFT message. * @param _msg The OFT message. * @return The amount in shared decimals. */ function amountSD(bytes calldata _msg) internal pure returns (uint64) { return uint64(bytes8(_msg[SEND_TO_OFFSET:SEND_AMOUNT_SD_OFFSET])); } /** * @dev Retrieves the composed message from the OFT message. * @param _msg The OFT message. * @return The composed message. */ function composeMsg(bytes calldata _msg) internal pure returns (bytes memory) { return _msg[SEND_AMOUNT_SD_OFFSET:]; } /** * @dev Converts an address to bytes32. * @param _addr The address to convert. * @return The bytes32 representation of the address. */ function addressToBytes32(address _addr) internal pure returns (bytes32) { return bytes32(uint256(uint160(_addr))); } /** * @dev Converts bytes32 to an address. * @param _b The bytes32 value to convert. * @return The address representation of bytes32. */ function bytes32ToAddress(bytes32 _b) internal pure returns (address) { return address(uint160(uint256(_b))); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { IPreCrime } from "./interfaces/IPreCrime.sol"; import { IOAppPreCrimeSimulator, InboundPacket, Origin } from "./interfaces/IOAppPreCrimeSimulator.sol"; /** * @title OAppPreCrimeSimulator * @dev Abstract contract serving as the base for preCrime simulation functionality in an OApp. */ abstract contract OAppPreCrimeSimulator is IOAppPreCrimeSimulator, Ownable { // The address of the preCrime implementation. address public preCrime; /** * @dev Retrieves the address of the OApp contract. * @return The address of the OApp contract. * * @dev The simulator contract is the base contract for the OApp by default. * @dev If the simulator is a separate contract, override this function. */ function oApp() external view virtual returns (address) { return address(this); } /** * @dev Sets the preCrime contract address. * @param _preCrime The address of the preCrime contract. */ function setPreCrime(address _preCrime) public virtual onlyOwner { preCrime = _preCrime; emit PreCrimeSet(_preCrime); } /** * @dev Interface for pre-crime simulations. Always reverts at the end with the simulation results. * @param _packets An array of InboundPacket objects representing received packets to be delivered. * * @dev WARNING: MUST revert at the end with the simulation results. * @dev Gives the preCrime implementation the ability to mock sending packets to the lzReceive function, * WITHOUT actually executing them. */ function lzReceiveAndRevert(InboundPacket[] calldata _packets) public payable virtual { for (uint256 i = 0; i < _packets.length; i++) { InboundPacket calldata packet = _packets[i]; // Ignore packets that are not from trusted peers. if (!isPeer(packet.origin.srcEid, packet.origin.sender)) continue; // @dev Because a verifier is calling this function, it doesnt have access to executor params: // - address _executor // - bytes calldata _extraData // preCrime will NOT work for OApps that rely on these two parameters inside of their _lzReceive(). // They are instead stubbed to default values, address(0) and bytes("") // @dev Calling this.lzReceiveSimulate removes ability for assembly return 0 callstack exit, // which would cause the revert to be ignored. this.lzReceiveSimulate{ value: packet.value }( packet.origin, packet.guid, packet.message, packet.executor, packet.extraData ); } // @dev Revert with the simulation results. msg.sender must implement IPreCrime.buildSimulationResult(). revert SimulationResult(IPreCrime(msg.sender).buildSimulationResult()); } /** * @dev Is effectively an internal function because msg.sender must be address(this). * Allows resetting the call stack for 'internal' calls. * @param _origin The origin information containing the source endpoint and sender address. * - srcEid: The source chain endpoint ID. * - sender: The sender address on the src chain. * - nonce: The nonce of the message. * @param _guid The unique identifier of the packet. * @param _message The message payload of the packet. * @param _executor The executor address for the packet. * @param _extraData Additional data for the packet. */ function lzReceiveSimulate( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) external payable virtual { // @dev Ensure ONLY can be called 'internally'. if (msg.sender != address(this)) revert OnlySelf(); _lzReceiveSimulate(_origin, _guid, _message, _executor, _extraData); } /** * @dev Internal function to handle the OAppPreCrimeSimulator simulated receive. * @param _origin The origin information. * - srcEid: The source chain endpoint ID. * - sender: The sender address from the src chain. * - nonce: The nonce of the LayerZero message. * @param _guid The GUID of the LayerZero message. * @param _message The LayerZero message. * @param _executor The address of the off-chain executor. * @param _extraData Arbitrary data passed by the msg executor. * * @dev Enables the preCrime simulator to mock sending lzReceive() messages, * routes the msg down from the OAppPreCrimeSimulator, and back up to the OAppReceiver. */ function _lzReceiveSimulate( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) internal virtual; /** * @dev checks if the specified peer is considered 'trusted' by the OApp. * @param _eid The endpoint Id to check. * @param _peer The peer to check. * @return Whether the peer passed is considered 'trusted' by the OApp. */ function isPeer(uint32 _eid, bytes32 _peer) public view virtual returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; // @dev Import the Origin so it's exposed to OAppPreCrimeSimulator implementers. // solhint-disable-next-line no-unused-import import { InboundPacket, Origin } from "../libs/Packet.sol"; /** * @title IOAppPreCrimeSimulator Interface * @dev Interface for the preCrime simulation functionality in an OApp. */ interface IOAppPreCrimeSimulator { // @dev simulation result used in PreCrime implementation error SimulationResult(bytes result); error OnlySelf(); /** * @dev Emitted when the preCrime contract address is set. * @param preCrimeAddress The address of the preCrime contract. */ event PreCrimeSet(address preCrimeAddress); /** * @dev Retrieves the address of the preCrime contract implementation. * @return The address of the preCrime contract. */ function preCrime() external view returns (address); /** * @dev Retrieves the address of the OApp contract. * @return The address of the OApp contract. */ function oApp() external view returns (address); /** * @dev Sets the preCrime contract address. * @param _preCrime The address of the preCrime contract. */ function setPreCrime(address _preCrime) external; /** * @dev Mocks receiving a packet, then reverts with a series of data to infer the state/result. * @param _packets An array of LayerZero InboundPacket objects representing received packets. */ function lzReceiveAndRevert(InboundPacket[] calldata _packets) external payable; /** * @dev checks if the specified peer is considered 'trusted' by the OApp. * @param _eid The endpoint Id to check. * @param _peer The peer to check. * @return Whether the peer passed is considered 'trusted' by the OApp. */ function isPeer(uint32 _eid, bytes32 _peer) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; struct PreCrimePeer { uint32 eid; bytes32 preCrime; bytes32 oApp; } // TODO not done yet interface IPreCrime { error OnlyOffChain(); // for simulate() error PacketOversize(uint256 max, uint256 actual); error PacketUnsorted(); error SimulationFailed(bytes reason); // for preCrime() error SimulationResultNotFound(uint32 eid); error InvalidSimulationResult(uint32 eid, bytes reason); error CrimeFound(bytes crime); function getConfig(bytes[] calldata _packets, uint256[] calldata _packetMsgValues) external returns (bytes memory); function simulate( bytes[] calldata _packets, uint256[] calldata _packetMsgValues ) external payable returns (bytes memory); function buildSimulationResult() external view returns (bytes memory); function preCrime( bytes[] calldata _packets, uint256[] calldata _packetMsgValues, bytes[] calldata _simulations ) external; function version() external view returns (uint64 major, uint8 minor); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import { Origin } from "@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroEndpointV2.sol"; import { PacketV1Codec } from "@layerzerolabs/lz-evm-protocol-v2/contracts/messagelib/libs/PacketV1Codec.sol"; /** * @title InboundPacket * @dev Structure representing an inbound packet received by the contract. */ struct InboundPacket { Origin origin; // Origin information of the packet. uint32 dstEid; // Destination endpointId of the packet. address receiver; // Receiver address for the packet. bytes32 guid; // Unique identifier of the packet. uint256 value; // msg.value of the packet. address executor; // Executor address for the packet. bytes message; // Message payload of the packet. bytes extraData; // Additional arbitrary data for the packet. } /** * @title PacketDecoder * @dev Library for decoding LayerZero packets. */ library PacketDecoder { using PacketV1Codec for bytes; /** * @dev Decode an inbound packet from the given packet data. * @param _packet The packet data to decode. * @return packet An InboundPacket struct representing the decoded packet. */ function decode(bytes calldata _packet) internal pure returns (InboundPacket memory packet) { packet.origin = Origin(_packet.srcEid(), _packet.sender(), _packet.nonce()); packet.dstEid = _packet.dstEid(); packet.receiver = _packet.receiverB20(); packet.guid = _packet.guid(); packet.message = _packet.message(); } /** * @dev Decode multiple inbound packets from the given packet data and associated message values. * @param _packets An array of packet data to decode. * @param _packetMsgValues An array of associated message values for each packet. * @return packets An array of InboundPacket structs representing the decoded packets. */ function decode( bytes[] calldata _packets, uint256[] memory _packetMsgValues ) internal pure returns (InboundPacket[] memory packets) { packets = new InboundPacket[](_packets.length); for (uint256 i = 0; i < _packets.length; i++) { bytes calldata packet = _packets[i]; packets[i] = PacketDecoder.decode(packet); // @dev Allows the verifier to specify the msg.value that gets passed in lzReceive. packets[i].value = _packetMsgValues[i]; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import { IMessageLibManager } from "./IMessageLibManager.sol"; import { IMessagingComposer } from "./IMessagingComposer.sol"; import { IMessagingChannel } from "./IMessagingChannel.sol"; import { IMessagingContext } from "./IMessagingContext.sol"; struct MessagingParams { uint32 dstEid; bytes32 receiver; bytes message; bytes options; bool payInLzToken; } struct MessagingReceipt { bytes32 guid; uint64 nonce; MessagingFee fee; } struct MessagingFee { uint256 nativeFee; uint256 lzTokenFee; } struct Origin { uint32 srcEid; bytes32 sender; uint64 nonce; } interface ILayerZeroEndpointV2 is IMessageLibManager, IMessagingComposer, IMessagingChannel, IMessagingContext { event PacketSent(bytes encodedPayload, bytes options, address sendLibrary); event PacketVerified(Origin origin, address receiver, bytes32 payloadHash); event PacketDelivered(Origin origin, address receiver); event LzReceiveAlert( address indexed receiver, address indexed executor, Origin origin, bytes32 guid, uint256 gas, uint256 value, bytes message, bytes extraData, bytes reason ); event LzTokenSet(address token); event DelegateSet(address sender, address delegate); function quote(MessagingParams calldata _params, address _sender) external view returns (MessagingFee memory); function send( MessagingParams calldata _params, address _refundAddress ) external payable returns (MessagingReceipt memory); function verify(Origin calldata _origin, address _receiver, bytes32 _payloadHash) external; function verifiable(Origin calldata _origin, address _receiver) external view returns (bool); function initializable(Origin calldata _origin, address _receiver) external view returns (bool); function lzReceive( Origin calldata _origin, address _receiver, bytes32 _guid, bytes calldata _message, bytes calldata _extraData ) external payable; // oapp can burn messages partially by calling this function with its own business logic if messages are verified in order function clear(address _oapp, Origin calldata _origin, bytes32 _guid, bytes calldata _message) external; function setLzToken(address _lzToken) external; function lzToken() external view returns (address); function nativeToken() external view returns (address); function setDelegate(address _delegate) external; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import { Origin } from "./ILayerZeroEndpointV2.sol"; interface ILayerZeroReceiver { function allowInitializePath(Origin calldata _origin) external view returns (bool); function nextNonce(uint32 _eid, bytes32 _sender) external view returns (uint64); function lzReceive( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) external payable; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import { SetConfigParam } from "./IMessageLibManager.sol"; enum MessageLibType { Send, Receive, SendAndReceive } interface IMessageLib is IERC165 { function setConfig(address _oapp, SetConfigParam[] calldata _config) external; function getConfig(uint32 _eid, address _oapp, uint32 _configType) external view returns (bytes memory config); function isSupportedEid(uint32 _eid) external view returns (bool); // message libs of same major version are compatible function version() external view returns (uint64 major, uint8 minor, uint8 endpointVersion); function messageLibType() external view returns (MessageLibType); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; struct SetConfigParam { uint32 eid; uint32 configType; bytes config; } interface IMessageLibManager { struct Timeout { address lib; uint256 expiry; } event LibraryRegistered(address newLib); event DefaultSendLibrarySet(uint32 eid, address newLib); event DefaultReceiveLibrarySet(uint32 eid, address newLib); event DefaultReceiveLibraryTimeoutSet(uint32 eid, address oldLib, uint256 expiry); event SendLibrarySet(address sender, uint32 eid, address newLib); event ReceiveLibrarySet(address receiver, uint32 eid, address newLib); event ReceiveLibraryTimeoutSet(address receiver, uint32 eid, address oldLib, uint256 timeout); function registerLibrary(address _lib) external; function isRegisteredLibrary(address _lib) external view returns (bool); function getRegisteredLibraries() external view returns (address[] memory); function setDefaultSendLibrary(uint32 _eid, address _newLib) external; function defaultSendLibrary(uint32 _eid) external view returns (address); function setDefaultReceiveLibrary(uint32 _eid, address _newLib, uint256 _timeout) external; function defaultReceiveLibrary(uint32 _eid) external view returns (address); function setDefaultReceiveLibraryTimeout(uint32 _eid, address _lib, uint256 _expiry) external; function defaultReceiveLibraryTimeout(uint32 _eid) external view returns (address lib, uint256 expiry); function isSupportedEid(uint32 _eid) external view returns (bool); function isValidReceiveLibrary(address _receiver, uint32 _eid, address _lib) external view returns (bool); /// ------------------- OApp interfaces ------------------- function setSendLibrary(address _oapp, uint32 _eid, address _newLib) external; function getSendLibrary(address _sender, uint32 _eid) external view returns (address lib); function isDefaultSendLibrary(address _sender, uint32 _eid) external view returns (bool); function setReceiveLibrary(address _oapp, uint32 _eid, address _newLib, uint256 _gracePeriod) external; function getReceiveLibrary(address _receiver, uint32 _eid) external view returns (address lib, bool isDefault); function setReceiveLibraryTimeout(address _oapp, uint32 _eid, address _lib, uint256 _gracePeriod) external; function receiveLibraryTimeout(address _receiver, uint32 _eid) external view returns (address lib, uint256 expiry); function setConfig(address _oapp, address _lib, SetConfigParam[] calldata _params) external; function getConfig( address _oapp, address _lib, uint32 _eid, uint32 _configType ) external view returns (bytes memory config); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; interface IMessagingChannel { event InboundNonceSkipped(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce); event PacketNilified(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce, bytes32 payloadHash); event PacketBurnt(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce, bytes32 payloadHash); function eid() external view returns (uint32); // this is an emergency function if a message cannot be verified for some reasons // required to provide _nextNonce to avoid race condition function skip(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce) external; function nilify(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce, bytes32 _payloadHash) external; function burn(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce, bytes32 _payloadHash) external; function nextGuid(address _sender, uint32 _dstEid, bytes32 _receiver) external view returns (bytes32); function inboundNonce(address _receiver, uint32 _srcEid, bytes32 _sender) external view returns (uint64); function outboundNonce(address _sender, uint32 _dstEid, bytes32 _receiver) external view returns (uint64); function inboundPayloadHash( address _receiver, uint32 _srcEid, bytes32 _sender, uint64 _nonce ) external view returns (bytes32); function lazyInboundNonce(address _receiver, uint32 _srcEid, bytes32 _sender) external view returns (uint64); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; interface IMessagingComposer { event ComposeSent(address from, address to, bytes32 guid, uint16 index, bytes message); event ComposeDelivered(address from, address to, bytes32 guid, uint16 index); event LzComposeAlert( address indexed from, address indexed to, address indexed executor, bytes32 guid, uint16 index, uint256 gas, uint256 value, bytes message, bytes extraData, bytes reason ); function composeQueue( address _from, address _to, bytes32 _guid, uint16 _index ) external view returns (bytes32 messageHash); function sendCompose(address _to, bytes32 _guid, uint16 _index, bytes calldata _message) external; function lzCompose( address _from, address _to, bytes32 _guid, uint16 _index, bytes calldata _message, bytes calldata _extraData ) external payable; }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; interface IMessagingContext { function isSendingMessage() external view returns (bool); function getSendContext() external view returns (uint32 dstEid, address sender); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; import { MessagingFee } from "./ILayerZeroEndpointV2.sol"; import { IMessageLib } from "./IMessageLib.sol"; struct Packet { uint64 nonce; uint32 srcEid; address sender; uint32 dstEid; bytes32 receiver; bytes32 guid; bytes message; } interface ISendLib is IMessageLib { function send( Packet calldata _packet, bytes calldata _options, bool _payInLzToken ) external returns (MessagingFee memory, bytes memory encodedPacket); function quote( Packet calldata _packet, bytes calldata _options, bool _payInLzToken ) external view returns (MessagingFee memory); function setTreasury(address _treasury) external; function withdrawFee(address _to, uint256 _amount) external; function withdrawLzTokenFee(address _lzToken, address _to, uint256 _amount) external; }
// SPDX-License-Identifier: LZBL-1.2 pragma solidity ^0.8.20; library AddressCast { error AddressCast_InvalidSizeForAddress(); error AddressCast_InvalidAddress(); function toBytes32(bytes calldata _addressBytes) internal pure returns (bytes32 result) { if (_addressBytes.length > 32) revert AddressCast_InvalidAddress(); result = bytes32(_addressBytes); unchecked { uint256 offset = 32 - _addressBytes.length; result = result >> (offset * 8); } } function toBytes32(address _address) internal pure returns (bytes32 result) { result = bytes32(uint256(uint160(_address))); } function toBytes(bytes32 _addressBytes32, uint256 _size) internal pure returns (bytes memory result) { if (_size == 0 || _size > 32) revert AddressCast_InvalidSizeForAddress(); result = new bytes(_size); unchecked { uint256 offset = 256 - _size * 8; assembly { mstore(add(result, 32), shl(offset, _addressBytes32)) } } } function toAddress(bytes32 _addressBytes32) internal pure returns (address result) { result = address(uint160(uint256(_addressBytes32))); } function toAddress(bytes calldata _addressBytes) internal pure returns (address result) { if (_addressBytes.length != 20) revert AddressCast_InvalidAddress(); result = address(bytes20(_addressBytes)); } }
// SPDX-License-Identifier: LZBL-1.2 pragma solidity ^0.8.20; library CalldataBytesLib { function toU8(bytes calldata _bytes, uint256 _start) internal pure returns (uint8) { return uint8(_bytes[_start]); } function toU16(bytes calldata _bytes, uint256 _start) internal pure returns (uint16) { unchecked { uint256 end = _start + 2; return uint16(bytes2(_bytes[_start:end])); } } function toU32(bytes calldata _bytes, uint256 _start) internal pure returns (uint32) { unchecked { uint256 end = _start + 4; return uint32(bytes4(_bytes[_start:end])); } } function toU64(bytes calldata _bytes, uint256 _start) internal pure returns (uint64) { unchecked { uint256 end = _start + 8; return uint64(bytes8(_bytes[_start:end])); } } function toU128(bytes calldata _bytes, uint256 _start) internal pure returns (uint128) { unchecked { uint256 end = _start + 16; return uint128(bytes16(_bytes[_start:end])); } } function toU256(bytes calldata _bytes, uint256 _start) internal pure returns (uint256) { unchecked { uint256 end = _start + 32; return uint256(bytes32(_bytes[_start:end])); } } function toAddr(bytes calldata _bytes, uint256 _start) internal pure returns (address) { unchecked { uint256 end = _start + 20; return address(bytes20(_bytes[_start:end])); } } function toB32(bytes calldata _bytes, uint256 _start) internal pure returns (bytes32) { unchecked { uint256 end = _start + 32; return bytes32(_bytes[_start:end]); } } }
// SPDX-License-Identifier: MIT // modified from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/structs/BitMaps.sol pragma solidity ^0.8.20; type BitMap256 is uint256; using BitMaps for BitMap256 global; library BitMaps { /** * @dev Returns whether the bit at `index` is set. */ function get(BitMap256 bitmap, uint8 index) internal pure returns (bool) { uint256 mask = 1 << index; return BitMap256.unwrap(bitmap) & mask != 0; } /** * @dev Sets the bit at `index`. */ function set(BitMap256 bitmap, uint8 index) internal pure returns (BitMap256) { uint256 mask = 1 << index; return BitMap256.wrap(BitMap256.unwrap(bitmap) | mask); } }
// SPDX-License-Identifier: LZBL-1.2 pragma solidity ^0.8.20; import { CalldataBytesLib } from "../../libs/CalldataBytesLib.sol"; library ExecutorOptions { using CalldataBytesLib for bytes; uint8 internal constant WORKER_ID = 1; uint8 internal constant OPTION_TYPE_LZRECEIVE = 1; uint8 internal constant OPTION_TYPE_NATIVE_DROP = 2; uint8 internal constant OPTION_TYPE_LZCOMPOSE = 3; uint8 internal constant OPTION_TYPE_ORDERED_EXECUTION = 4; error Executor_InvalidLzReceiveOption(); error Executor_InvalidNativeDropOption(); error Executor_InvalidLzComposeOption(); /// @dev decode the next executor option from the options starting from the specified cursor /// @param _options [executor_id][executor_option][executor_id][executor_option]... /// executor_option = [option_size][option_type][option] /// option_size = len(option_type) + len(option) /// executor_id: uint8, option_size: uint16, option_type: uint8, option: bytes /// @param _cursor the cursor to start decoding from /// @return optionType the type of the option /// @return option the option of the executor /// @return cursor the cursor to start decoding the next executor option function nextExecutorOption( bytes calldata _options, uint256 _cursor ) internal pure returns (uint8 optionType, bytes calldata option, uint256 cursor) { unchecked { // skip worker id cursor = _cursor + 1; // read option size uint16 size = _options.toU16(cursor); cursor += 2; // read option type optionType = _options.toU8(cursor); // startCursor and endCursor are used to slice the option from _options uint256 startCursor = cursor + 1; // skip option type uint256 endCursor = cursor + size; option = _options[startCursor:endCursor]; cursor += size; } } function decodeLzReceiveOption(bytes calldata _option) internal pure returns (uint128 gas, uint128 value) { if (_option.length != 16 && _option.length != 32) revert Executor_InvalidLzReceiveOption(); gas = _option.toU128(0); value = _option.length == 32 ? _option.toU128(16) : 0; } function decodeNativeDropOption(bytes calldata _option) internal pure returns (uint128 amount, bytes32 receiver) { if (_option.length != 48) revert Executor_InvalidNativeDropOption(); amount = _option.toU128(0); receiver = _option.toB32(16); } function decodeLzComposeOption( bytes calldata _option ) internal pure returns (uint16 index, uint128 gas, uint128 value) { if (_option.length != 18 && _option.length != 34) revert Executor_InvalidLzComposeOption(); index = _option.toU16(0); gas = _option.toU128(2); value = _option.length == 34 ? _option.toU128(18) : 0; } function encodeLzReceiveOption(uint128 _gas, uint128 _value) internal pure returns (bytes memory) { return _value == 0 ? abi.encodePacked(_gas) : abi.encodePacked(_gas, _value); } function encodeNativeDropOption(uint128 _amount, bytes32 _receiver) internal pure returns (bytes memory) { return abi.encodePacked(_amount, _receiver); } function encodeLzComposeOption(uint16 _index, uint128 _gas, uint128 _value) internal pure returns (bytes memory) { return _value == 0 ? abi.encodePacked(_index, _gas) : abi.encodePacked(_index, _gas, _value); } }
// SPDX-License-Identifier: LZBL-1.2 pragma solidity ^0.8.20; import { Packet } from "../../interfaces/ISendLib.sol"; import { AddressCast } from "../../libs/AddressCast.sol"; library PacketV1Codec { using AddressCast for address; using AddressCast for bytes32; uint8 internal constant PACKET_VERSION = 1; // header (version + nonce + path) // version uint256 private constant PACKET_VERSION_OFFSET = 0; // nonce uint256 private constant NONCE_OFFSET = 1; // path uint256 private constant SRC_EID_OFFSET = 9; uint256 private constant SENDER_OFFSET = 13; uint256 private constant DST_EID_OFFSET = 45; uint256 private constant RECEIVER_OFFSET = 49; // payload (guid + message) uint256 private constant GUID_OFFSET = 81; // keccak256(nonce + path) uint256 private constant MESSAGE_OFFSET = 113; function encode(Packet memory _packet) internal pure returns (bytes memory encodedPacket) { encodedPacket = abi.encodePacked( PACKET_VERSION, _packet.nonce, _packet.srcEid, _packet.sender.toBytes32(), _packet.dstEid, _packet.receiver, _packet.guid, _packet.message ); } function encodePacketHeader(Packet memory _packet) internal pure returns (bytes memory) { return abi.encodePacked( PACKET_VERSION, _packet.nonce, _packet.srcEid, _packet.sender.toBytes32(), _packet.dstEid, _packet.receiver ); } function encodePayload(Packet memory _packet) internal pure returns (bytes memory) { return abi.encodePacked(_packet.guid, _packet.message); } function header(bytes calldata _packet) internal pure returns (bytes calldata) { return _packet[0:GUID_OFFSET]; } function version(bytes calldata _packet) internal pure returns (uint8) { return uint8(bytes1(_packet[PACKET_VERSION_OFFSET:NONCE_OFFSET])); } function nonce(bytes calldata _packet) internal pure returns (uint64) { return uint64(bytes8(_packet[NONCE_OFFSET:SRC_EID_OFFSET])); } function srcEid(bytes calldata _packet) internal pure returns (uint32) { return uint32(bytes4(_packet[SRC_EID_OFFSET:SENDER_OFFSET])); } function sender(bytes calldata _packet) internal pure returns (bytes32) { return bytes32(_packet[SENDER_OFFSET:DST_EID_OFFSET]); } function senderAddressB20(bytes calldata _packet) internal pure returns (address) { return sender(_packet).toAddress(); } function dstEid(bytes calldata _packet) internal pure returns (uint32) { return uint32(bytes4(_packet[DST_EID_OFFSET:RECEIVER_OFFSET])); } function receiver(bytes calldata _packet) internal pure returns (bytes32) { return bytes32(_packet[RECEIVER_OFFSET:GUID_OFFSET]); } function receiverB20(bytes calldata _packet) internal pure returns (address) { return receiver(_packet).toAddress(); } function guid(bytes calldata _packet) internal pure returns (bytes32) { return bytes32(_packet[GUID_OFFSET:MESSAGE_OFFSET]); } function message(bytes calldata _packet) internal pure returns (bytes calldata) { return bytes(_packet[MESSAGE_OFFSET:]); } function payload(bytes calldata _packet) internal pure returns (bytes calldata) { return bytes(_packet[GUID_OFFSET:]); } function payloadHash(bytes calldata _packet) internal pure returns (bytes32) { return keccak256(payload(_packet)); } }
// SPDX-License-Identifier: Unlicense /* * @title Solidity Bytes Arrays Utils * @author Gonçalo Sá <[email protected]> * * @dev Bytes tightly packed arrays utility library for ethereum contracts written in Solidity. * The library lets you concatenate, slice and type cast bytes arrays both in memory and storage. */ pragma solidity >=0.8.0 <0.9.0; library BytesLib { function concat( bytes memory _preBytes, bytes memory _postBytes ) internal pure returns (bytes memory) { bytes memory tempBytes; assembly { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // Store the length of the first bytes array at the beginning of // the memory for tempBytes. let length := mload(_preBytes) mstore(tempBytes, length) // Maintain a memory counter for the current write location in the // temp bytes array by adding the 32 bytes for the array length to // the starting location. let mc := add(tempBytes, 0x20) // Stop copying when the memory counter reaches the length of the // first bytes array. let end := add(mc, length) for { // Initialize a copy counter to the start of the _preBytes data, // 32 bytes into its memory. let cc := add(_preBytes, 0x20) } lt(mc, end) { // Increase both counters by 32 bytes each iteration. mc := add(mc, 0x20) cc := add(cc, 0x20) } { // Write the _preBytes data into the tempBytes memory 32 bytes // at a time. mstore(mc, mload(cc)) } // Add the length of _postBytes to the current length of tempBytes // and store it as the new length in the first 32 bytes of the // tempBytes memory. length := mload(_postBytes) mstore(tempBytes, add(length, mload(tempBytes))) // Move the memory counter back from a multiple of 0x20 to the // actual end of the _preBytes data. mc := end // Stop copying when the memory counter reaches the new combined // length of the arrays. end := add(mc, length) for { let cc := add(_postBytes, 0x20) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } // Update the free-memory pointer by padding our last write location // to 32 bytes: add 31 bytes to the end of tempBytes to move to the // next 32 byte block, then round down to the nearest multiple of // 32. If the sum of the length of the two arrays is zero then add // one before rounding down to leave a blank 32 bytes (the length block with 0). mstore(0x40, and( add(add(end, iszero(add(length, mload(_preBytes)))), 31), not(31) // Round down to the nearest 32 bytes. )) } return tempBytes; } function concatStorage(bytes storage _preBytes, bytes memory _postBytes) internal { assembly { // Read the first 32 bytes of _preBytes storage, which is the length // of the array. (We don't need to use the offset into the slot // because arrays use the entire slot.) let fslot := sload(_preBytes.slot) // Arrays of 31 bytes or less have an even value in their slot, // while longer arrays have an odd value. The actual length is // the slot divided by two for odd values, and the lowest order // byte divided by two for even values. // If the slot is even, bitwise and the slot with 255 and divide by // two to get the length. If the slot is odd, bitwise and the slot // with -1 and divide by two. let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) let newlength := add(slength, mlength) // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage switch add(lt(slength, 32), lt(newlength, 32)) case 2 { // Since the new array still fits in the slot, we just need to // update the contents of the slot. // uint256(bytes_storage) = uint256(bytes_storage) + uint256(bytes_memory) + new_length sstore( _preBytes.slot, // all the modifications to the slot are inside this // next block add( // we can just add to the slot contents because the // bytes we want to change are the LSBs fslot, add( mul( div( // load the bytes from memory mload(add(_postBytes, 0x20)), // zero all bytes to the right exp(0x100, sub(32, mlength)) ), // and now shift left the number of bytes to // leave space for the length in the slot exp(0x100, sub(32, newlength)) ), // increase length by the double of the memory // bytes length mul(mlength, 2) ) ) ) } case 1 { // The stored value fits in the slot, but the combined value // will exceed it. // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // The contents of the _postBytes array start 32 bytes into // the structure. Our first read should obtain the `submod` // bytes that can fit into the unused space in the last word // of the stored array. To get this, we read 32 bytes starting // from `submod`, so the data we read overlaps with the array // contents by `submod` bytes. Masking the lowest-order // `submod` bytes allows us to add that value directly to the // stored value. let submod := sub(32, slength) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore( sc, add( and( fslot, 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00 ), and(mload(mc), mask) ) ) for { mc := add(mc, 0x20) sc := add(sc, 1) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } default { // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) // Start copying to the last used word of the stored array. let sc := add(keccak256(0x0, 0x20), div(slength, 32)) // save new length sstore(_preBytes.slot, add(mul(newlength, 2), 1)) // Copy over the first `submod` bytes of the new data as in // case 1 above. let slengthmod := mod(slength, 32) let mlengthmod := mod(mlength, 32) let submod := sub(32, slengthmod) let mc := add(_postBytes, submod) let end := add(_postBytes, mlength) let mask := sub(exp(0x100, submod), 1) sstore(sc, add(sload(sc), and(mload(mc), mask))) for { sc := add(sc, 1) mc := add(mc, 0x20) } lt(mc, end) { sc := add(sc, 1) mc := add(mc, 0x20) } { sstore(sc, mload(mc)) } mask := exp(0x100, sub(mc, end)) sstore(sc, mul(div(mload(mc), mask), mask)) } } } function slice( bytes memory _bytes, uint256 _start, uint256 _length ) internal pure returns (bytes memory) { require(_length + 31 >= _length, "slice_overflow"); require(_bytes.length >= _start + _length, "slice_outOfBounds"); bytes memory tempBytes; assembly { switch iszero(_length) case 0 { // Get a location of some free memory and store it in tempBytes as // Solidity does for memory variables. tempBytes := mload(0x40) // The first word of the slice result is potentially a partial // word read from the original array. To read it, we calculate // the length of that partial word and start copying that many // bytes into the array. The first word we copy will start with // data we don't care about, but the last `lengthmod` bytes will // land at the beginning of the contents of the new array. When // we're done copying, we overwrite the full first word with // the actual length of the slice. let lengthmod := and(_length, 31) // The multiplication in the next line is necessary // because when slicing multiples of 32 bytes (lengthmod == 0) // the following copy loop was copying the origin's length // and then ending prematurely not copying everything it should. let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod))) let end := add(mc, _length) for { // The multiplication in the next line has the same exact purpose // as the one above. let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start) } lt(mc, end) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { mstore(mc, mload(cc)) } mstore(tempBytes, _length) //update free-memory pointer //allocating the array padded to 32 bytes like the compiler does now mstore(0x40, and(add(mc, 31), not(31))) } //if we want a zero-length slice let's just return a zero-length array default { tempBytes := mload(0x40) //zero out the 32 bytes slice we are about to return //we need to do it because Solidity does not garbage collect mstore(tempBytes, 0) mstore(0x40, add(tempBytes, 0x20)) } } return tempBytes; } function toAddress(bytes memory _bytes, uint256 _start) internal pure returns (address) { require(_bytes.length >= _start + 20, "toAddress_outOfBounds"); address tempAddress; assembly { tempAddress := div(mload(add(add(_bytes, 0x20), _start)), 0x1000000000000000000000000) } return tempAddress; } function toUint8(bytes memory _bytes, uint256 _start) internal pure returns (uint8) { require(_bytes.length >= _start + 1 , "toUint8_outOfBounds"); uint8 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x1), _start)) } return tempUint; } function toUint16(bytes memory _bytes, uint256 _start) internal pure returns (uint16) { require(_bytes.length >= _start + 2, "toUint16_outOfBounds"); uint16 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x2), _start)) } return tempUint; } function toUint32(bytes memory _bytes, uint256 _start) internal pure returns (uint32) { require(_bytes.length >= _start + 4, "toUint32_outOfBounds"); uint32 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x4), _start)) } return tempUint; } function toUint64(bytes memory _bytes, uint256 _start) internal pure returns (uint64) { require(_bytes.length >= _start + 8, "toUint64_outOfBounds"); uint64 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x8), _start)) } return tempUint; } function toUint96(bytes memory _bytes, uint256 _start) internal pure returns (uint96) { require(_bytes.length >= _start + 12, "toUint96_outOfBounds"); uint96 tempUint; assembly { tempUint := mload(add(add(_bytes, 0xc), _start)) } return tempUint; } function toUint128(bytes memory _bytes, uint256 _start) internal pure returns (uint128) { require(_bytes.length >= _start + 16, "toUint128_outOfBounds"); uint128 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x10), _start)) } return tempUint; } function toUint256(bytes memory _bytes, uint256 _start) internal pure returns (uint256) { require(_bytes.length >= _start + 32, "toUint256_outOfBounds"); uint256 tempUint; assembly { tempUint := mload(add(add(_bytes, 0x20), _start)) } return tempUint; } function toBytes32(bytes memory _bytes, uint256 _start) internal pure returns (bytes32) { require(_bytes.length >= _start + 32, "toBytes32_outOfBounds"); bytes32 tempBytes32; assembly { tempBytes32 := mload(add(add(_bytes, 0x20), _start)) } return tempBytes32; } function equal(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let mc := add(_preBytes, 0x20) let end := add(mc, length) for { let cc := add(_postBytes, 0x20) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) } eq(add(lt(mc, end), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } } default { // unsuccess: success := 0 } } return success; } function equal_nonAligned(bytes memory _preBytes, bytes memory _postBytes) internal pure returns (bool) { bool success = true; assembly { let length := mload(_preBytes) // if lengths don't match the arrays are not equal switch eq(length, mload(_postBytes)) case 1 { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 let endMinusWord := add(_preBytes, length) let mc := add(_preBytes, 0x20) let cc := add(_postBytes, 0x20) for { // the next line is the loop condition: // while(uint256(mc < endWord) + cb == 2) } eq(add(lt(mc, endMinusWord), cb), 2) { mc := add(mc, 0x20) cc := add(cc, 0x20) } { // if any of these checks fails then arrays are not equal if iszero(eq(mload(mc), mload(cc))) { // unsuccess: success := 0 cb := 0 } } // Only if still successful // For <1 word tail bytes if gt(success, 0) { // Get the remainder of length/32 // length % 32 = AND(length, 32 - 1) let numTailBytes := and(length, 0x1f) let mcRem := mload(mc) let ccRem := mload(cc) for { let i := 0 // the next line is the loop condition: // while(uint256(i < numTailBytes) + cb == 2) } eq(add(lt(i, numTailBytes), cb), 2) { i := add(i, 1) } { if iszero(eq(byte(i, mcRem), byte(i, ccRem))) { // unsuccess: success := 0 cb := 0 } } } } default { // unsuccess: success := 0 } } return success; } function equalStorage( bytes storage _preBytes, bytes memory _postBytes ) internal view returns (bool) { bool success = true; assembly { // we know _preBytes_offset is 0 let fslot := sload(_preBytes.slot) // Decode the length of the stored array like in concatStorage(). let slength := div(and(fslot, sub(mul(0x100, iszero(and(fslot, 1))), 1)), 2) let mlength := mload(_postBytes) // if lengths don't match the arrays are not equal switch eq(slength, mlength) case 1 { // slength can contain both the length and contents of the array // if length < 32 bytes so let's prepare for that // v. http://solidity.readthedocs.io/en/latest/miscellaneous.html#layout-of-state-variables-in-storage if iszero(iszero(slength)) { switch lt(slength, 32) case 1 { // blank the last byte which is the length fslot := mul(div(fslot, 0x100), 0x100) if iszero(eq(fslot, mload(add(_postBytes, 0x20)))) { // unsuccess: success := 0 } } default { // cb is a circuit breaker in the for loop since there's // no said feature for inline assembly loops // cb = 1 - don't breaker // cb = 0 - break let cb := 1 // get the keccak hash to get the contents of the array mstore(0x0, _preBytes.slot) let sc := keccak256(0x0, 0x20) let mc := add(_postBytes, 0x20) let end := add(mc, mlength) // the next line is the loop condition: // while(uint256(mc < end) + cb == 2) for {} eq(add(lt(mc, end), cb), 2) { sc := add(sc, 1) mc := add(mc, 0x20) } { if iszero(eq(sload(sc), mload(mc))) { // unsuccess: success := 0 cb := 0 } } } } } default { // unsuccess: success := 0 } } return success; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "forge-std/Script.sol"; import "../src/TermToken.sol"; import { SendParam, MessagingFee } from "@layerzerolabs/lz-evm-oapp-v2/contracts/oft/interfaces/IOFT.sol"; import { OptionsBuilder } from "@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/libs/OptionsBuilder.sol"; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; contract CrossChainTransfer is Script { function run() external { uint256 deployerPK = vm.envUint("X_CHAIN_PRIVATE_KEY"); // Set up the RPC URL (optional if you're using the default foundry config) string memory rpcUrl = vm.envString("RPC_URL"); vm.startBroadcast(deployerPK); // Retrieve environment variables uint32 endpointId = uint32(vm.envUint("DESTINATION_ENDPOINT")); address toAddress = vm.envAddress("DESTINATION_ADDRESS"); uint256 amountInLocalDecimals = vm.envUint("AMOUNT_IN_LD"); uint256 minAmountLocalDecimals = vm.envUint("MIN_AMOUNT_IN_LD"); address termTokenAddress = vm.envAddress("TERM_TOKEN_ADDRESS"); address refundAddress = vm.envAddress("REFUND_ADDRESS"); bytes32 toAddressBytes = bytes32(uint(uint160(toAddress))); TermToken token = TermToken(termTokenAddress); //bytes memory options = OptionsBuilder.encodeLegacyOptionsType1(60000); SendParam memory sendParam = SendParam({ dstEid: endpointId, to: toAddressBytes, amountLD: amountInLocalDecimals, minAmountLD: minAmountLocalDecimals, extraOptions: new bytes(0), composeMsg: new bytes(0), oftCmd: new bytes(0) }); MessagingFee memory messageFee = token.quoteSend(sendParam, false); token.send{value: messageFee.nativeFee}(sendParam, messageFee, refundAddress); vm.stopBroadcast(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "forge-std/Script.sol"; import "../src/TermToken.sol"; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; contract DeployTermToken is Script { function run() external { uint256 deployerPK = vm.envUint("PRIVATE_KEY"); // Set up the RPC URL (optional if you're using the default foundry config) string memory rpcUrl = vm.envString("RPC_URL"); vm.startBroadcast(deployerPK); // Retrieve environment variables address lzEndpoint = vm.envAddress("LZ_ENDPOINT"); address admin = vm.envAddress("ADMIN_WALLET"); address pauser = vm.envAddress("PAUSE_WALLET"); address upgrader = vm.envAddress("UPGRADE_WALLET"); uint256 tokenMintSupply = vm.envUint("TOKEN_MINT_SUPPLY"); address mintAddress = vm.envAddress("MINT_ADDRESS"); TermToken impl = new TermToken(lzEndpoint, admin); console.log("deployed impl contract to"); console.log(address(impl)); // Deploy the Proxy contract ERC1967Proxy proxy = new ERC1967Proxy( address(impl), abi.encodeWithSelector(TermToken.initialize.selector, admin, pauser, upgrader, tokenMintSupply, mintAddress) ); TermToken token = TermToken(address(proxy)); console.log("deployed proxy to"); console.log(address(proxy)); vm.stopBroadcast(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "forge-std/Script.sol"; import "../src/TermToken.sol"; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; contract DeployTermTokenImpl is Script { function run() external { uint256 deployerPK = vm.envUint("PRIVATE_KEY"); // Set up the RPC URL (optional if you're using the default foundry config) string memory rpcUrl = vm.envString("RPC_URL"); vm.startBroadcast(deployerPK); // Retrieve environment variables address lzEndpoint = vm.envAddress("LZ_ENDPOINT"); address admin = vm.envAddress("ADMIN_WALLET"); TermToken impl = new TermToken(lzEndpoint, admin); console.log("deployed impl contract to"); console.log(address(impl)); vm.stopBroadcast(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import "forge-std/Script.sol"; import "../src/TermTokenL2.sol"; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; contract DeployTermTokenL2 is Script { function run() external { uint256 deployerPK = vm.envUint("PRIVATE_KEY"); // Set up the RPC URL (optional if you're using the default foundry config) string memory rpcUrl = vm.envString("RPC_URL"); vm.startBroadcast(deployerPK); // Retrieve environment variables address lzEndpoint = vm.envAddress("LZ_ENDPOINT"); address admin = vm.envAddress("ADMIN_WALLET"); address pauser = vm.envAddress("PAUSE_WALLET"); address upgrader = vm.envAddress("UPGRADE_WALLET"); TermTokenL2 impl = new TermTokenL2(lzEndpoint, admin); console.log("deployed impl contract to"); console.log(address(impl)); // Deploy the Proxy contract ERC1967Proxy proxy = new ERC1967Proxy( address(impl), abi.encodeWithSelector(TermTokenL2.initialize.selector, admin, pauser, upgrader) ); TermTokenL2 token = TermTokenL2(address(proxy)); console.log("deployed proxy to"); console.log(address(proxy)); vm.stopBroadcast(); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity >=0.8.0 ^0.8.20; // lib/openzeppelin-contracts/contracts/access/IAccessControl.sol // OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol) /** * @dev External interface of AccessControl declared to support ERC-165 detection. */ interface IAccessControl { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role). * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. */ function renounceRole(bytes32 role, address callerConfirmation) external; } // lib/openzeppelin-contracts/contracts/governance/utils/IVotes.sol // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol) /** * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts. */ interface IVotes { /** * @dev The signature used has expired. */ error VotesExpiredSignature(uint256 expiry); /** * @dev Emitted when an account changes their delegate. */ event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate); /** * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units. */ event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes); /** * @dev Returns the current amount of votes that `account` has. */ function getVotes(address account) external view returns (uint256); /** * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. */ function getPastVotes(address account, uint256 timepoint) external view returns (uint256); /** * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes. * Votes that have not been delegated are still part of total supply, even though they would not participate in a * vote. */ function getPastTotalSupply(uint256 timepoint) external view returns (uint256); /** * @dev Returns the delegate that `account` has chosen. */ function delegates(address account) external view returns (address); /** * @dev Delegates votes from the sender to `delegatee`. */ function delegate(address delegatee) external; /** * @dev Delegates votes from signer to `delegatee`. */ function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external; } // lib/openzeppelin-contracts/contracts/interfaces/IERC5267.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol) interface IERC5267 { /** * @dev MAY be emitted to signal that the domain could have changed. */ event EIP712DomainChanged(); /** * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712 * signature. */ function eip712Domain() external view returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ); } // lib/openzeppelin-contracts/contracts/interfaces/IERC6372.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol) interface IERC6372 { /** * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting). */ function clock() external view returns (uint48); /** * @dev Description of the clock */ // solhint-disable-next-line func-name-mixedcase function CLOCK_MODE() external view returns (string memory); } // lib/openzeppelin-contracts/contracts/interfaces/draft-IERC1822.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol) /** * @dev ERC-1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); } // lib/openzeppelin-contracts/contracts/interfaces/draft-IERC6093.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) /** * @dev Standard ERC-20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC-721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC-1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); } // lib/openzeppelin-contracts/contracts/proxy/beacon/IBeacon.sol // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); } // lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); } // lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Permit.sol // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol) /** * @dev Interface of the ERC-20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[ERC-2612]. * * Adds the {permit} method, which can be used to change an account's ERC-20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. * * ==== Security Considerations * * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be * considered as an intention to spend the allowance in any specific way. The second is that because permits have * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be * generally recommended is: * * ```solidity * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public { * try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {} * doThing(..., value); * } * * function doThing(..., uint256 value) public { * token.safeTransferFrom(msg.sender, address(this), value); * ... * } * ``` * * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also * {SafeERC20-safeTransferFrom}). * * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so * contracts should have entry points that don't rely on permit. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. * * CAUTION: See Security Considerations above. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // lib/openzeppelin-contracts/contracts/utils/Address.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } } // lib/openzeppelin-contracts/contracts/utils/Context.sol // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // lib/openzeppelin-contracts/contracts/utils/Panic.sol /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { /// @solidity memory-safe-assembly assembly { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } } // lib/openzeppelin-contracts/contracts/utils/StorageSlot.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC-1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } } // lib/openzeppelin-contracts/contracts/utils/cryptography/ECDSA.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[ERC-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } } // lib/openzeppelin-contracts/contracts/utils/introspection/IERC165.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // lib/openzeppelin-contracts/contracts/utils/math/SafeCast.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { /// @solidity memory-safe-assembly assembly { u := iszero(iszero(b)) } } } // lib/openzeppelin-contracts/contracts/utils/math/SignedMath.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } } // lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/Initializable.sol // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/interfaces/IOAppMsgInspector.sol /** * @title IOAppMsgInspector * @dev Interface for the OApp Message Inspector, allowing examination of message and options contents. */ interface IOAppMsgInspector { // Custom error message for inspection failure error InspectionFailed(bytes message, bytes options); /** * @notice Allows the inspector to examine LayerZero message contents and optionally throw a revert if invalid. * @param _message The message payload to be inspected. * @param _options Additional options or parameters for inspection. * @return valid A boolean indicating whether the inspection passed (true) or failed (false). * * @dev Optionally done as a revert, OR use the boolean provided to handle the failure. */ function inspect(bytes calldata _message, bytes calldata _options) external view returns (bool valid); } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/interfaces/IOAppOptionsType3.sol /** * @dev Struct representing enforced option parameters. */ struct EnforcedOptionParam { uint32 eid; // Endpoint ID uint16 msgType; // Message Type bytes options; // Additional options } /** * @title IOAppOptionsType3 * @dev Interface for the OApp with Type 3 Options, allowing the setting and combining of enforced options. */ interface IOAppOptionsType3 { // Custom error message for invalid options error InvalidOptions(bytes options); // Event emitted when enforced options are set event EnforcedOptionSet(EnforcedOptionParam[] _enforcedOptions); /** * @notice Sets enforced options for specific endpoint and message type combinations. * @param _enforcedOptions An array of EnforcedOptionParam structures specifying enforced options. */ function setEnforcedOptions(EnforcedOptionParam[] calldata _enforcedOptions) external; /** * @notice Combines options for a given endpoint and message type. * @param _eid The endpoint ID. * @param _msgType The OApp message type. * @param _extraOptions Additional options passed by the caller. * @return options The combination of caller specified options AND enforced options. */ function combineOptions( uint32 _eid, uint16 _msgType, bytes calldata _extraOptions ) external view returns (bytes memory options); } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oft/libs/OFTComposeMsgCodec.sol library OFTComposeMsgCodec { // Offset constants for decoding composed messages uint8 private constant NONCE_OFFSET = 8; uint8 private constant SRC_EID_OFFSET = 12; uint8 private constant AMOUNT_LD_OFFSET = 44; uint8 private constant COMPOSE_FROM_OFFSET = 76; /** * @dev Encodes a OFT composed message. * @param _nonce The nonce value. * @param _srcEid The source endpoint ID. * @param _amountLD The amount in local decimals. * @param _composeMsg The composed message. * @return _msg The encoded Composed message. */ function encode( uint64 _nonce, uint32 _srcEid, uint256 _amountLD, bytes memory _composeMsg // 0x[composeFrom][composeMsg] ) internal pure returns (bytes memory _msg) { _msg = abi.encodePacked(_nonce, _srcEid, _amountLD, _composeMsg); } /** * @dev Retrieves the nonce from the composed message. * @param _msg The message. * @return The nonce value. */ function nonce(bytes calldata _msg) internal pure returns (uint64) { return uint64(bytes8(_msg[:NONCE_OFFSET])); } /** * @dev Retrieves the source endpoint ID from the composed message. * @param _msg The message. * @return The source endpoint ID. */ function srcEid(bytes calldata _msg) internal pure returns (uint32) { return uint32(bytes4(_msg[NONCE_OFFSET:SRC_EID_OFFSET])); } /** * @dev Retrieves the amount in local decimals from the composed message. * @param _msg The message. * @return The amount in local decimals. */ function amountLD(bytes calldata _msg) internal pure returns (uint256) { return uint256(bytes32(_msg[SRC_EID_OFFSET:AMOUNT_LD_OFFSET])); } /** * @dev Retrieves the composeFrom value from the composed message. * @param _msg The message. * @return The composeFrom value. */ function composeFrom(bytes calldata _msg) internal pure returns (bytes32) { return bytes32(_msg[AMOUNT_LD_OFFSET:COMPOSE_FROM_OFFSET]); } /** * @dev Retrieves the composed message. * @param _msg The message. * @return The composed message. */ function composeMsg(bytes calldata _msg) internal pure returns (bytes memory) { return _msg[COMPOSE_FROM_OFFSET:]; } /** * @dev Converts an address to bytes32. * @param _addr The address to convert. * @return The bytes32 representation of the address. */ function addressToBytes32(address _addr) internal pure returns (bytes32) { return bytes32(uint256(uint160(_addr))); } /** * @dev Converts bytes32 to an address. * @param _b The bytes32 value to convert. * @return The address representation of bytes32. */ function bytes32ToAddress(bytes32 _b) internal pure returns (address) { return address(uint160(uint256(_b))); } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oft/libs/OFTMsgCodec.sol library OFTMsgCodec { // Offset constants for encoding and decoding OFT messages uint8 private constant SEND_TO_OFFSET = 32; uint8 private constant SEND_AMOUNT_SD_OFFSET = 40; /** * @dev Encodes an OFT LayerZero message. * @param _sendTo The recipient address. * @param _amountShared The amount in shared decimals. * @param _composeMsg The composed message. * @return _msg The encoded message. * @return hasCompose A boolean indicating whether the message has a composed payload. */ function encode( bytes32 _sendTo, uint64 _amountShared, bytes memory _composeMsg ) internal view returns (bytes memory _msg, bool hasCompose) { hasCompose = _composeMsg.length > 0; // @dev Remote chains will want to know the composed function caller ie. msg.sender on the src. _msg = hasCompose ? abi.encodePacked(_sendTo, _amountShared, addressToBytes32(msg.sender), _composeMsg) : abi.encodePacked(_sendTo, _amountShared); } /** * @dev Checks if the OFT message is composed. * @param _msg The OFT message. * @return A boolean indicating whether the message is composed. */ function isComposed(bytes calldata _msg) internal pure returns (bool) { return _msg.length > SEND_AMOUNT_SD_OFFSET; } /** * @dev Retrieves the recipient address from the OFT message. * @param _msg The OFT message. * @return The recipient address. */ function sendTo(bytes calldata _msg) internal pure returns (bytes32) { return bytes32(_msg[:SEND_TO_OFFSET]); } /** * @dev Retrieves the amount in shared decimals from the OFT message. * @param _msg The OFT message. * @return The amount in shared decimals. */ function amountSD(bytes calldata _msg) internal pure returns (uint64) { return uint64(bytes8(_msg[SEND_TO_OFFSET:SEND_AMOUNT_SD_OFFSET])); } /** * @dev Retrieves the composed message from the OFT message. * @param _msg The OFT message. * @return The composed message. */ function composeMsg(bytes calldata _msg) internal pure returns (bytes memory) { return _msg[SEND_AMOUNT_SD_OFFSET:]; } /** * @dev Converts an address to bytes32. * @param _addr The address to convert. * @return The bytes32 representation of the address. */ function addressToBytes32(address _addr) internal pure returns (bytes32) { return bytes32(uint256(uint160(_addr))); } /** * @dev Converts bytes32 to an address. * @param _b The bytes32 value to convert. * @return The address representation of bytes32. */ function bytes32ToAddress(bytes32 _b) internal pure returns (address) { return address(uint160(uint256(_b))); } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/precrime/interfaces/IPreCrime.sol struct PreCrimePeer { uint32 eid; bytes32 preCrime; bytes32 oApp; } // TODO not done yet interface IPreCrime { error OnlyOffChain(); // for simulate() error PacketOversize(uint256 max, uint256 actual); error PacketUnsorted(); error SimulationFailed(bytes reason); // for preCrime() error SimulationResultNotFound(uint32 eid); error InvalidSimulationResult(uint32 eid, bytes reason); error CrimeFound(bytes crime); function getConfig(bytes[] calldata _packets, uint256[] calldata _packetMsgValues) external returns (bytes memory); function simulate( bytes[] calldata _packets, uint256[] calldata _packetMsgValues ) external payable returns (bytes memory); function buildSimulationResult() external view returns (bytes memory); function preCrime( bytes[] calldata _packets, uint256[] calldata _packetMsgValues, bytes[] calldata _simulations ) external; function version() external view returns (uint64 major, uint8 minor); } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/IMessageLibManager.sol struct SetConfigParam { uint32 eid; uint32 configType; bytes config; } interface IMessageLibManager { struct Timeout { address lib; uint256 expiry; } event LibraryRegistered(address newLib); event DefaultSendLibrarySet(uint32 eid, address newLib); event DefaultReceiveLibrarySet(uint32 eid, address newLib); event DefaultReceiveLibraryTimeoutSet(uint32 eid, address oldLib, uint256 expiry); event SendLibrarySet(address sender, uint32 eid, address newLib); event ReceiveLibrarySet(address receiver, uint32 eid, address newLib); event ReceiveLibraryTimeoutSet(address receiver, uint32 eid, address oldLib, uint256 timeout); function registerLibrary(address _lib) external; function isRegisteredLibrary(address _lib) external view returns (bool); function getRegisteredLibraries() external view returns (address[] memory); function setDefaultSendLibrary(uint32 _eid, address _newLib) external; function defaultSendLibrary(uint32 _eid) external view returns (address); function setDefaultReceiveLibrary(uint32 _eid, address _newLib, uint256 _timeout) external; function defaultReceiveLibrary(uint32 _eid) external view returns (address); function setDefaultReceiveLibraryTimeout(uint32 _eid, address _lib, uint256 _expiry) external; function defaultReceiveLibraryTimeout(uint32 _eid) external view returns (address lib, uint256 expiry); function isSupportedEid(uint32 _eid) external view returns (bool); function isValidReceiveLibrary(address _receiver, uint32 _eid, address _lib) external view returns (bool); /// ------------------- OApp interfaces ------------------- function setSendLibrary(address _oapp, uint32 _eid, address _newLib) external; function getSendLibrary(address _sender, uint32 _eid) external view returns (address lib); function isDefaultSendLibrary(address _sender, uint32 _eid) external view returns (bool); function setReceiveLibrary(address _oapp, uint32 _eid, address _newLib, uint256 _gracePeriod) external; function getReceiveLibrary(address _receiver, uint32 _eid) external view returns (address lib, bool isDefault); function setReceiveLibraryTimeout(address _oapp, uint32 _eid, address _lib, uint256 _gracePeriod) external; function receiveLibraryTimeout(address _receiver, uint32 _eid) external view returns (address lib, uint256 expiry); function setConfig(address _oapp, address _lib, SetConfigParam[] calldata _params) external; function getConfig( address _oapp, address _lib, uint32 _eid, uint32 _configType ) external view returns (bytes memory config); } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/IMessagingChannel.sol interface IMessagingChannel { event InboundNonceSkipped(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce); event PacketNilified(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce, bytes32 payloadHash); event PacketBurnt(uint32 srcEid, bytes32 sender, address receiver, uint64 nonce, bytes32 payloadHash); function eid() external view returns (uint32); // this is an emergency function if a message cannot be verified for some reasons // required to provide _nextNonce to avoid race condition function skip(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce) external; function nilify(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce, bytes32 _payloadHash) external; function burn(address _oapp, uint32 _srcEid, bytes32 _sender, uint64 _nonce, bytes32 _payloadHash) external; function nextGuid(address _sender, uint32 _dstEid, bytes32 _receiver) external view returns (bytes32); function inboundNonce(address _receiver, uint32 _srcEid, bytes32 _sender) external view returns (uint64); function outboundNonce(address _sender, uint32 _dstEid, bytes32 _receiver) external view returns (uint64); function inboundPayloadHash( address _receiver, uint32 _srcEid, bytes32 _sender, uint64 _nonce ) external view returns (bytes32); function lazyInboundNonce(address _receiver, uint32 _srcEid, bytes32 _sender) external view returns (uint64); } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/IMessagingComposer.sol interface IMessagingComposer { event ComposeSent(address from, address to, bytes32 guid, uint16 index, bytes message); event ComposeDelivered(address from, address to, bytes32 guid, uint16 index); event LzComposeAlert( address indexed from, address indexed to, address indexed executor, bytes32 guid, uint16 index, uint256 gas, uint256 value, bytes message, bytes extraData, bytes reason ); function composeQueue( address _from, address _to, bytes32 _guid, uint16 _index ) external view returns (bytes32 messageHash); function sendCompose(address _to, bytes32 _guid, uint16 _index, bytes calldata _message) external; function lzCompose( address _from, address _to, bytes32 _guid, uint16 _index, bytes calldata _message, bytes calldata _extraData ) external payable; } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/IMessagingContext.sol interface IMessagingContext { function isSendingMessage() external view returns (bool); function getSendContext() external view returns (uint32 dstEid, address sender); } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/libs/AddressCast.sol library AddressCast { error AddressCast_InvalidSizeForAddress(); error AddressCast_InvalidAddress(); function toBytes32(bytes calldata _addressBytes) internal pure returns (bytes32 result) { if (_addressBytes.length > 32) revert AddressCast_InvalidAddress(); result = bytes32(_addressBytes); unchecked { uint256 offset = 32 - _addressBytes.length; result = result >> (offset * 8); } } function toBytes32(address _address) internal pure returns (bytes32 result) { result = bytes32(uint256(uint160(_address))); } function toBytes(bytes32 _addressBytes32, uint256 _size) internal pure returns (bytes memory result) { if (_size == 0 || _size > 32) revert AddressCast_InvalidSizeForAddress(); result = new bytes(_size); unchecked { uint256 offset = 256 - _size * 8; assembly { mstore(add(result, 32), shl(offset, _addressBytes32)) } } } function toAddress(bytes32 _addressBytes32) internal pure returns (address result) { result = address(uint160(uint256(_addressBytes32))); } function toAddress(bytes calldata _addressBytes) internal pure returns (address result) { if (_addressBytes.length != 20) revert AddressCast_InvalidAddress(); result = address(bytes20(_addressBytes)); } } // lib/openzeppelin-contracts/contracts/access/Ownable.sol // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol) /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * The initial owner is set to the address provided by the deployer. This can * later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; /** * @dev The caller account is not authorized to perform an operation. */ error OwnableUnauthorizedAccount(address account); /** * @dev The owner is not a valid owner account. (eg. `address(0)`) */ error OwnableInvalidOwner(address owner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the address provided by the deployer as the initial owner. */ constructor(address initialOwner) { if (initialOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(initialOwner); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { if (owner() != _msgSender()) { revert OwnableUnauthorizedAccount(_msgSender()); } } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { if (newOwner == address(0)) { revert OwnableInvalidOwner(address(0)); } _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // lib/openzeppelin-contracts/contracts/interfaces/IERC165.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) // lib/openzeppelin-contracts/contracts/interfaces/IERC20.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) // lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) /** * @dev Interface for the optional metadata functions from the ERC-20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); } // lib/openzeppelin-contracts-upgradeable/contracts/utils/ContextUpgradeable.sol // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing { } function __Context_init_unchained() internal onlyInitializing { } function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } } // lib/openzeppelin-contracts-upgradeable/contracts/utils/NoncesUpgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol) /** * @dev Provides tracking nonces for addresses. Nonces will only increment. */ abstract contract NoncesUpgradeable is Initializable { /** * @dev The nonce used for an `account` is not the expected current nonce. */ error InvalidAccountNonce(address account, uint256 currentNonce); /// @custom:storage-location erc7201:openzeppelin.storage.Nonces struct NoncesStorage { mapping(address account => uint256) _nonces; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Nonces")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant NoncesStorageLocation = 0x5ab42ced628888259c08ac98db1eb0cf702fc1501344311d8b100cd1bfe4bb00; function _getNoncesStorage() private pure returns (NoncesStorage storage $) { assembly { $.slot := NoncesStorageLocation } } function __Nonces_init() internal onlyInitializing { } function __Nonces_init_unchained() internal onlyInitializing { } /** * @dev Returns the next unused nonce for an address. */ function nonces(address owner) public view virtual returns (uint256) { NoncesStorage storage $ = _getNoncesStorage(); return $._nonces[owner]; } /** * @dev Consumes a nonce. * * Returns the current value and increments nonce. */ function _useNonce(address owner) internal virtual returns (uint256) { NoncesStorage storage $ = _getNoncesStorage(); // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be // decremented or reset. This guarantees that the nonce never overflows. unchecked { // It is important to do x++ and not ++x here. return $._nonces[owner]++; } } /** * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`. */ function _useCheckedNonce(address owner, uint256 nonce) internal virtual { uint256 current = _useNonce(owner); if (nonce != current) { revert InvalidAccountNonce(owner, current); } } } // lib/openzeppelin-contracts/contracts/interfaces/IERC5805.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol) interface IERC5805 is IERC6372, IVotes {} // lib/openzeppelin-contracts/contracts/utils/math/Math.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return a == 0 ? 0 : (a - 1) / b + 1; } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2²⁵⁶ + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= prod1) { Panic.panic(denominator == 0 ? Panic.DIVISION_BY_ZERO : Panic.UNDER_OVERFLOW); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, expect 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Ferma's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return x < 0 ? (n - uint256(-x)) : uint256(x); // Wrap the result if it's negative. } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked has failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); /// @solidity memory-safe-assembly assembly { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 exp; unchecked { exp = 128 * SafeCast.toUint(value > (1 << 128) - 1); value >>= exp; result += exp; exp = 64 * SafeCast.toUint(value > (1 << 64) - 1); value >>= exp; result += exp; exp = 32 * SafeCast.toUint(value > (1 << 32) - 1); value >>= exp; result += exp; exp = 16 * SafeCast.toUint(value > (1 << 16) - 1); value >>= exp; result += exp; exp = 8 * SafeCast.toUint(value > (1 << 8) - 1); value >>= exp; result += exp; exp = 4 * SafeCast.toUint(value > (1 << 4) - 1); value >>= exp; result += exp; exp = 2 * SafeCast.toUint(value > (1 << 2) - 1); value >>= exp; result += exp; result += SafeCast.toUint(value > 1); } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; uint256 isGt; unchecked { isGt = SafeCast.toUint(value > (1 << 128) - 1); value >>= isGt * 128; result += isGt * 16; isGt = SafeCast.toUint(value > (1 << 64) - 1); value >>= isGt * 64; result += isGt * 8; isGt = SafeCast.toUint(value > (1 << 32) - 1); value >>= isGt * 32; result += isGt * 4; isGt = SafeCast.toUint(value > (1 << 16) - 1); value >>= isGt * 16; result += isGt * 2; result += SafeCast.toUint(value > (1 << 8) - 1); } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } } // lib/openzeppelin-contracts-upgradeable/contracts/utils/PausableUpgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/Pausable.sol) /** * @dev Contract module which allows children to implement an emergency stop * mechanism that can be triggered by an authorized account. * * This module is used through inheritance. It will make available the * modifiers `whenNotPaused` and `whenPaused`, which can be applied to * the functions of your contract. Note that they will not be pausable by * simply including this module, only once the modifiers are put in place. */ abstract contract PausableUpgradeable is Initializable, ContextUpgradeable { /// @custom:storage-location erc7201:openzeppelin.storage.Pausable struct PausableStorage { bool _paused; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Pausable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant PausableStorageLocation = 0xcd5ed15c6e187e77e9aee88184c21f4f2182ab5827cb3b7e07fbedcd63f03300; function _getPausableStorage() private pure returns (PausableStorage storage $) { assembly { $.slot := PausableStorageLocation } } /** * @dev Emitted when the pause is triggered by `account`. */ event Paused(address account); /** * @dev Emitted when the pause is lifted by `account`. */ event Unpaused(address account); /** * @dev The operation failed because the contract is paused. */ error EnforcedPause(); /** * @dev The operation failed because the contract is not paused. */ error ExpectedPause(); /** * @dev Initializes the contract in unpaused state. */ function __Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __Pausable_init_unchained() internal onlyInitializing { PausableStorage storage $ = _getPausableStorage(); $._paused = false; } /** * @dev Modifier to make a function callable only when the contract is not paused. * * Requirements: * * - The contract must not be paused. */ modifier whenNotPaused() { _requireNotPaused(); _; } /** * @dev Modifier to make a function callable only when the contract is paused. * * Requirements: * * - The contract must be paused. */ modifier whenPaused() { _requirePaused(); _; } /** * @dev Returns true if the contract is paused, and false otherwise. */ function paused() public view virtual returns (bool) { PausableStorage storage $ = _getPausableStorage(); return $._paused; } /** * @dev Throws if the contract is paused. */ function _requireNotPaused() internal view virtual { if (paused()) { revert EnforcedPause(); } } /** * @dev Throws if the contract is not paused. */ function _requirePaused() internal view virtual { if (!paused()) { revert ExpectedPause(); } } /** * @dev Triggers stopped state. * * Requirements: * * - The contract must not be paused. */ function _pause() internal virtual whenNotPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = true; emit Paused(_msgSender()); } /** * @dev Returns to normal state. * * Requirements: * * - The contract must be paused. */ function _unpause() internal virtual whenPaused { PausableStorage storage $ = _getPausableStorage(); $._paused = false; emit Unpaused(_msgSender()); } } // lib/openzeppelin-contracts-upgradeable/contracts/utils/introspection/ERC165Upgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol) /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` */ abstract contract ERC165Upgradeable is Initializable, IERC165 { function __ERC165_init() internal onlyInitializing { } function __ERC165_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) { return interfaceId == type(IERC165).interfaceId; } } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/IMessageLib.sol enum MessageLibType { Send, Receive, SendAndReceive } interface IMessageLib is IERC165 { function setConfig(address _oapp, SetConfigParam[] calldata _config) external; function getConfig(uint32 _eid, address _oapp, uint32 _configType) external view returns (bytes memory config); function isSupportedEid(uint32 _eid) external view returns (bool); // message libs of same major version are compatible function version() external view returns (uint64 major, uint8 minor, uint8 endpointVersion); function messageLibType() external view returns (MessageLibType); } // lib/openzeppelin-contracts/contracts/proxy/ERC1967/ERC1967Utils.sol // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol) /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[ERC-1967] slots. */ library ERC1967Utils { /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the ERC-1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by ERC-1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the ERC-1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the ERC-1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } } // lib/openzeppelin-contracts/contracts/utils/structs/Checkpoints.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol) // This file was procedurally generated from scripts/generate/templates/Checkpoints.js. /** * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in * time, and later looking up past values by block number. See {Votes} as an example. * * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new * checkpoint for the current transaction block using the {push} function. */ library Checkpoints { /** * @dev A value was attempted to be inserted on a past checkpoint. */ error CheckpointUnorderedInsertion(); struct Trace224 { Checkpoint224[] _checkpoints; } struct Checkpoint224 { uint32 _key; uint224 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the * library. */ function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace224 storage self) internal view returns (uint224) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint224 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace224 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) { uint256 pos = self.length; if (pos > 0) { Checkpoint224 storage last = _unsafeAccess(self, pos - 1); uint32 lastKey = last._key; uint224 lastValue = last._value; // Checkpoint keys must be non-decreasing. if (lastKey > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (lastKey == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint224({_key: key, _value: value})); } return (lastValue, value); } else { self.push(Checkpoint224({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint224[] storage self, uint32 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint224[] storage self, uint256 pos ) private pure returns (Checkpoint224 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace208 { Checkpoint208[] _checkpoints; } struct Checkpoint208 { uint48 _key; uint208 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the * library. */ function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace208 storage self) internal view returns (uint208) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint208 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace208 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) { uint256 pos = self.length; if (pos > 0) { Checkpoint208 storage last = _unsafeAccess(self, pos - 1); uint48 lastKey = last._key; uint208 lastValue = last._value; // Checkpoint keys must be non-decreasing. if (lastKey > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (lastKey == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint208({_key: key, _value: value})); } return (lastValue, value); } else { self.push(Checkpoint208({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint208[] storage self, uint48 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint208[] storage self, uint256 pos ) private pure returns (Checkpoint208 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } struct Trace160 { Checkpoint160[] _checkpoints; } struct Checkpoint160 { uint96 _key; uint160 _value; } /** * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint. * * Returns previous value and new value. * * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the * library. */ function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) { return _insert(self._checkpoints, key, value); } /** * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if * there is none. */ function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len); return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. */ function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero * if there is none. * * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high * keys). */ function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) { uint256 len = self._checkpoints.length; uint256 low = 0; uint256 high = len; if (len > 5) { uint256 mid = len - Math.sqrt(len); if (key < _unsafeAccess(self._checkpoints, mid)._key) { high = mid; } else { low = mid + 1; } } uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high); return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints. */ function latest(Trace160 storage self) internal view returns (uint160) { uint256 pos = self._checkpoints.length; return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value; } /** * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value * in the most recent checkpoint. */ function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) { uint256 pos = self._checkpoints.length; if (pos == 0) { return (false, 0, 0); } else { Checkpoint160 storage ckpt = _unsafeAccess(self._checkpoints, pos - 1); return (true, ckpt._key, ckpt._value); } } /** * @dev Returns the number of checkpoint. */ function length(Trace160 storage self) internal view returns (uint256) { return self._checkpoints.length; } /** * @dev Returns checkpoint at given position. */ function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) { return self._checkpoints[pos]; } /** * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint, * or by updating the last one. */ function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) { uint256 pos = self.length; if (pos > 0) { Checkpoint160 storage last = _unsafeAccess(self, pos - 1); uint96 lastKey = last._key; uint160 lastValue = last._value; // Checkpoint keys must be non-decreasing. if (lastKey > key) { revert CheckpointUnorderedInsertion(); } // Update or push new checkpoint if (lastKey == key) { _unsafeAccess(self, pos - 1)._value = value; } else { self.push(Checkpoint160({_key: key, _value: value})); } return (lastValue, value); } else { self.push(Checkpoint160({_key: key, _value: value})); return (0, value); } } /** * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high` * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive * `high`. * * WARNING: `high` should not be greater than the array's length. */ function _upperBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key > key) { high = mid; } else { low = mid + 1; } } return high; } /** * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and * exclusive `high`. * * WARNING: `high` should not be greater than the array's length. */ function _lowerBinaryLookup( Checkpoint160[] storage self, uint96 key, uint256 low, uint256 high ) private view returns (uint256) { while (low < high) { uint256 mid = Math.average(low, high); if (_unsafeAccess(self, mid)._key < key) { low = mid + 1; } else { high = mid; } } return high; } /** * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds. */ function _unsafeAccess( Checkpoint160[] storage self, uint256 pos ) private pure returns (Checkpoint160 storage result) { assembly { mstore(0, self.slot) result.slot := add(keccak256(0, 0x20), pos) } } } // lib/openzeppelin-contracts/contracts/utils/types/Time.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol) /** * @dev This library provides helpers for manipulating time-related objects. * * It uses the following types: * - `uint48` for timepoints * - `uint32` for durations * * While the library doesn't provide specific types for timepoints and duration, it does provide: * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point * - additional helper functions */ library Time { using Time for *; /** * @dev Get the block timestamp as a Timepoint. */ function timestamp() internal view returns (uint48) { return SafeCast.toUint48(block.timestamp); } /** * @dev Get the block number as a Timepoint. */ function blockNumber() internal view returns (uint48) { return SafeCast.toUint48(block.number); } // ==================================================== Delay ===================================================== /** * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value. * This allows updating the delay applied to some operation while keeping some guarantees. * * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should * still apply for some time. * * * The `Delay` type is 112 bits long, and packs the following: * * ``` * | [uint48]: effect date (timepoint) * | | [uint32]: value before (duration) * ↓ ↓ ↓ [uint32]: value after (duration) * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC * ``` * * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently * supported. */ type Delay is uint112; /** * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature */ function toDelay(uint32 duration) internal pure returns (Delay) { return Delay.wrap(duration); } /** * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered. */ function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) { (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack(); return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect); } /** * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the * effect timepoint is 0, then the pending value should not be considered. */ function getFull(Delay self) internal view returns (uint32, uint32, uint48) { return _getFullAt(self, timestamp()); } /** * @dev Get the current value. */ function get(Delay self) internal view returns (uint32) { (uint32 delay, , ) = self.getFull(); return delay; } /** * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the * new delay becomes effective. */ function withUpdate( Delay self, uint32 newValue, uint32 minSetback ) internal view returns (Delay updatedDelay, uint48 effect) { uint32 value = self.get(); uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0)); effect = timestamp() + setback; return (pack(value, newValue, effect), effect); } /** * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint). */ function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) { uint112 raw = Delay.unwrap(self); valueAfter = uint32(raw); valueBefore = uint32(raw >> 32); effect = uint48(raw >> 64); return (valueBefore, valueAfter, effect); } /** * @dev pack the components into a Delay object. */ function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) { return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter)); } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/libs/OAppOptionsType3.sol /** * @title OAppOptionsType3 * @dev Abstract contract implementing the IOAppOptionsType3 interface with type 3 options. */ abstract contract OAppOptionsType3 is IOAppOptionsType3, Ownable { uint16 internal constant OPTION_TYPE_3 = 3; // @dev The "msgType" should be defined in the child contract. mapping(uint32 eid => mapping(uint16 msgType => bytes enforcedOption)) public enforcedOptions; /** * @dev Sets the enforced options for specific endpoint and message type combinations. * @param _enforcedOptions An array of EnforcedOptionParam structures specifying enforced options. * * @dev Only the owner/admin of the OApp can call this function. * @dev Provides a way for the OApp to enforce things like paying for PreCrime, AND/OR minimum dst lzReceive gas amounts etc. * @dev These enforced options can vary as the potential options/execution on the remote may differ as per the msgType. * eg. Amount of lzReceive() gas necessary to deliver a lzCompose() message adds overhead you dont want to pay * if you are only making a standard LayerZero message ie. lzReceive() WITHOUT sendCompose(). */ function setEnforcedOptions(EnforcedOptionParam[] calldata _enforcedOptions) public virtual onlyOwner { for (uint256 i = 0; i < _enforcedOptions.length; i++) { // @dev Enforced options are only available for optionType 3, as type 1 and 2 dont support combining. _assertOptionsType3(_enforcedOptions[i].options); enforcedOptions[_enforcedOptions[i].eid][_enforcedOptions[i].msgType] = _enforcedOptions[i].options; } emit EnforcedOptionSet(_enforcedOptions); } /** * @notice Combines options for a given endpoint and message type. * @param _eid The endpoint ID. * @param _msgType The OAPP message type. * @param _extraOptions Additional options passed by the caller. * @return options The combination of caller specified options AND enforced options. * * @dev If there is an enforced lzReceive option: * - {gasLimit: 200k, msg.value: 1 ether} AND a caller supplies a lzReceive option: {gasLimit: 100k, msg.value: 0.5 ether} * - The resulting options will be {gasLimit: 300k, msg.value: 1.5 ether} when the message is executed on the remote lzReceive() function. * @dev This presence of duplicated options is handled off-chain in the verifier/executor. */ function combineOptions( uint32 _eid, uint16 _msgType, bytes calldata _extraOptions ) public view virtual returns (bytes memory) { bytes memory enforced = enforcedOptions[_eid][_msgType]; // No enforced options, pass whatever the caller supplied, even if it's empty or legacy type 1/2 options. if (enforced.length == 0) return _extraOptions; // No caller options, return enforced if (_extraOptions.length == 0) return enforced; // @dev If caller provided _extraOptions, must be type 3 as its the ONLY type that can be combined. if (_extraOptions.length >= 2) { _assertOptionsType3(_extraOptions); // @dev Remove the first 2 bytes containing the type from the _extraOptions and combine with enforced. return bytes.concat(enforced, _extraOptions[2:]); } // No valid set of options was found. revert InvalidOptions(_extraOptions); } /** * @dev Internal function to assert that options are of type 3. * @param _options The options to be checked. */ function _assertOptionsType3(bytes calldata _options) internal pure virtual { uint16 optionsType = uint16(bytes2(_options[0:2])); if (optionsType != OPTION_TYPE_3) revert InvalidOptions(_options); } } // lib/openzeppelin-contracts/contracts/interfaces/IERC1363.sol // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol) /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); } // lib/openzeppelin-contracts/contracts/utils/Strings.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroEndpointV2.sol struct MessagingParams { uint32 dstEid; bytes32 receiver; bytes message; bytes options; bool payInLzToken; } struct MessagingReceipt { bytes32 guid; uint64 nonce; MessagingFee fee; } struct MessagingFee { uint256 nativeFee; uint256 lzTokenFee; } struct Origin { uint32 srcEid; bytes32 sender; uint64 nonce; } interface ILayerZeroEndpointV2 is IMessageLibManager, IMessagingComposer, IMessagingChannel, IMessagingContext { event PacketSent(bytes encodedPayload, bytes options, address sendLibrary); event PacketVerified(Origin origin, address receiver, bytes32 payloadHash); event PacketDelivered(Origin origin, address receiver); event LzReceiveAlert( address indexed receiver, address indexed executor, Origin origin, bytes32 guid, uint256 gas, uint256 value, bytes message, bytes extraData, bytes reason ); event LzTokenSet(address token); event DelegateSet(address sender, address delegate); function quote(MessagingParams calldata _params, address _sender) external view returns (MessagingFee memory); function send( MessagingParams calldata _params, address _refundAddress ) external payable returns (MessagingReceipt memory); function verify(Origin calldata _origin, address _receiver, bytes32 _payloadHash) external; function verifiable(Origin calldata _origin, address _receiver) external view returns (bool); function initializable(Origin calldata _origin, address _receiver) external view returns (bool); function lzReceive( Origin calldata _origin, address _receiver, bytes32 _guid, bytes calldata _message, bytes calldata _extraData ) external payable; // oapp can burn messages partially by calling this function with its own business logic if messages are verified in order function clear(address _oapp, Origin calldata _origin, bytes32 _guid, bytes calldata _message) external; function setLzToken(address _lzToken) external; function lzToken() external view returns (address); function nativeToken() external view returns (address); function setDelegate(address _delegate) external; } // lib/openzeppelin-contracts/contracts/utils/cryptography/MessageHashUtils.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[ERC-191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an ERC-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (ERC-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } } // lib/openzeppelin-contracts-upgradeable/contracts/access/AccessControlUpgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol) /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControl, ERC165Upgradeable { struct RoleData { mapping(address account => bool) hasRole; bytes32 adminRole; } bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /// @custom:storage-location erc7201:openzeppelin.storage.AccessControl struct AccessControlStorage { mapping(bytes32 role => RoleData) _roles; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant AccessControlStorageLocation = 0x02dd7bc7dec4dceedda775e58dd541e08a116c6c53815c0bd028192f7b626800; function _getAccessControlStorage() private pure returns (AccessControlStorage storage $) { assembly { $.slot := AccessControlStorageLocation } } /** * @dev Modifier that checks that an account has a specific role. Reverts * with an {AccessControlUnauthorizedAccount} error including the required role. */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } function __AccessControl_init() internal onlyInitializing { } function __AccessControl_init_unchained() internal onlyInitializing { } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); return $._roles[role].hasRole[account]; } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()` * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier. */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account` * is missing `role`. */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert AccessControlUnauthorizedAccount(account, role); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual returns (bytes32) { AccessControlStorage storage $ = _getAccessControlStorage(); return $._roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address callerConfirmation) public virtual { if (callerConfirmation != _msgSender()) { revert AccessControlBadConfirmation(); } _revokeRole(role, callerConfirmation); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { AccessControlStorage storage $ = _getAccessControlStorage(); bytes32 previousAdminRole = getRoleAdmin(role); $._roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); if (!hasRole(role, account)) { $._roles[role].hasRole[account] = true; emit RoleGranted(role, account, _msgSender()); return true; } else { return false; } } /** * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual returns (bool) { AccessControlStorage storage $ = _getAccessControlStorage(); if (hasRole(role, account)) { $._roles[role].hasRole[account] = false; emit RoleRevoked(role, account, _msgSender()); return true; } else { return false; } } } // lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/ERC20Upgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors { /// @custom:storage-location erc7201:openzeppelin.storage.ERC20 struct ERC20Storage { mapping(address account => uint256) _balances; mapping(address account => mapping(address spender => uint256)) _allowances; uint256 _totalSupply; string _name; string _symbol; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00; function _getERC20Storage() private pure returns (ERC20Storage storage $) { assembly { $.slot := ERC20StorageLocation } } /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing { __ERC20_init_unchained(name_, symbol_); } function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing { ERC20Storage storage $ = _getERC20Storage(); $._name = name_; $._symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { ERC20Storage storage $ = _getERC20Storage(); return $._symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual returns (uint256) { ERC20Storage storage $ = _getERC20Storage(); return $._allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom(address from, address to, uint256 value) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows $._totalSupply += value; } else { uint256 fromBalance = $._balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. $._balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. $._totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. $._balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual { ERC20Storage storage $ = _getERC20Storage(); if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } $._allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 value) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance(spender, currentAllowance, value); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/interfaces/IOAppCore.sol /** * @title IOAppCore */ interface IOAppCore { // Custom error messages error OnlyPeer(uint32 eid, bytes32 sender); error NoPeer(uint32 eid); error InvalidEndpointCall(); error InvalidDelegate(); // Event emitted when a peer (OApp) is set for a corresponding endpoint event PeerSet(uint32 eid, bytes32 peer); /** * @notice Retrieves the OApp version information. * @return senderVersion The version of the OAppSender.sol contract. * @return receiverVersion The version of the OAppReceiver.sol contract. */ function oAppVersion() external view returns (uint64 senderVersion, uint64 receiverVersion); /** * @notice Retrieves the LayerZero endpoint associated with the OApp. * @return iEndpoint The LayerZero endpoint as an interface. */ function endpoint() external view returns (ILayerZeroEndpointV2 iEndpoint); /** * @notice Retrieves the peer (OApp) associated with a corresponding endpoint. * @param _eid The endpoint ID. * @return peer The peer address (OApp instance) associated with the corresponding endpoint. */ function peers(uint32 _eid) external view returns (bytes32 peer); /** * @notice Sets the peer address (OApp instance) for a corresponding endpoint. * @param _eid The endpoint ID. * @param _peer The address of the peer to be associated with the corresponding endpoint. */ function setPeer(uint32 _eid, bytes32 _peer) external; /** * @notice Sets the delegate address for the OApp Core. * @param _delegate The address of the delegate to be set. */ function setDelegate(address _delegate) external; } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ILayerZeroReceiver.sol interface ILayerZeroReceiver { function allowInitializePath(Origin calldata _origin) external view returns (bool); function nextNonce(uint32 _eid, bytes32 _sender) external view returns (uint64); function lzReceive( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) external payable; } // lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol) /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data); if (returndata.length != 0 && !abi.decode(returndata, (bool))) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false // and not revert is the subcall reverts. (bool success, bytes memory returndata) = address(token).call(data); return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0; } } // lib/openzeppelin-contracts-upgradeable/contracts/proxy/utils/UUPSUpgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol) /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. */ abstract contract UUPSUpgradeable is Initializable, IERC1822Proxiable { /// @custom:oz-upgrades-unsafe-allow state-variable-immutable address private immutable __self = address(this); /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)` * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev The call is from an unauthorized context. */ error UUPSUnauthorizedCallContext(); /** * @dev The storage `slot` is unsupported as a UUID. */ error UUPSUnsupportedProxiableUUID(bytes32 slot); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { _checkProxy(); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { _checkNotDelegated(); _; } function __UUPSUpgradeable_init() internal onlyInitializing { } function __UUPSUpgradeable_init_unchained() internal onlyInitializing { } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual notDelegated returns (bytes32) { return ERC1967Utils.IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data); } /** * @dev Reverts if the execution is not performed via delegatecall or the execution * context is not of a proxy with an ERC1967-compliant implementation pointing to self. * See {_onlyProxy}. */ function _checkProxy() internal view virtual { if ( address(this) == __self || // Must be called through delegatecall ERC1967Utils.getImplementation() != __self // Must be called through an active proxy ) { revert UUPSUnauthorizedCallContext(); } } /** * @dev Reverts if the execution is performed via delegatecall. * See {notDelegated}. */ function _checkNotDelegated() internal view virtual { if (address(this) != __self) { // Must not be called through delegatecall revert UUPSUnauthorizedCallContext(); } } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call. * * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value * is expected to be the implementation slot in ERC1967. * * Emits an {IERC1967-Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) { revert UUPSUnsupportedProxiableUUID(slot); } ERC1967Utils.upgradeToAndCall(newImplementation, data); } catch { // The implementation is not UUPS revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation); } } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/interfaces/IOAppReceiver.sol interface IOAppReceiver is ILayerZeroReceiver { /** * @notice Retrieves the address responsible for 'sending' composeMsg's to the Endpoint. * @return sender The address responsible for 'sending' composeMsg's to the Endpoint. * * @dev Applications can optionally choose to implement a separate composeMsg sender that is NOT the bridging layer. * @dev The default sender IS the OApp implementer. */ function composeMsgSender() external view returns (address sender); } // lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20PausableUpgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Pausable.sol) /** * @dev ERC20 token with pausable token transfers, minting and burning. * * Useful for scenarios such as preventing trades until the end of an evaluation * period, or having an emergency switch for freezing all token transfers in the * event of a large bug. * * IMPORTANT: This contract does not include public pause and unpause functions. In * addition to inheriting this contract, you must define both functions, invoking the * {Pausable-_pause} and {Pausable-_unpause} internal functions, with appropriate * access control, e.g. using {AccessControl} or {Ownable}. Not doing so will * make the contract pause mechanism of the contract unreachable, and thus unusable. */ abstract contract ERC20PausableUpgradeable is Initializable, ERC20Upgradeable, PausableUpgradeable { function __ERC20Pausable_init() internal onlyInitializing { __Pausable_init_unchained(); } function __ERC20Pausable_init_unchained() internal onlyInitializing { } /** * @dev See {ERC20-_update}. * * Requirements: * * - the contract must not be paused. */ function _update(address from, address to, uint256 value) internal virtual override whenNotPaused { super._update(from, to, value); } } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/interfaces/ISendLib.sol struct Packet { uint64 nonce; uint32 srcEid; address sender; uint32 dstEid; bytes32 receiver; bytes32 guid; bytes message; } interface ISendLib is IMessageLib { function send( Packet calldata _packet, bytes calldata _options, bool _payInLzToken ) external returns (MessagingFee memory, bytes memory encodedPacket); function quote( Packet calldata _packet, bytes calldata _options, bool _payInLzToken ) external view returns (MessagingFee memory); function setTreasury(address _treasury) external; function withdrawFee(address _to, uint256 _amount) external; function withdrawLzTokenFee(address _lzToken, address _to, uint256 _amount) external; } // lib/openzeppelin-contracts-upgradeable/contracts/utils/cryptography/EIP712Upgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol) /** * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data. * * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`. * * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA * ({_hashTypedDataV4}). * * The implementation of the domain separator was designed to be as efficient as possible while still properly updating * the chain id to protect against replay attacks on an eventual fork of the chain. * * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask]. * * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the * separator from the immutable values, which is cheaper than accessing a cached version in cold storage. */ abstract contract EIP712Upgradeable is Initializable, IERC5267 { bytes32 private constant TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"); /// @custom:storage-location erc7201:openzeppelin.storage.EIP712 struct EIP712Storage { /// @custom:oz-renamed-from _HASHED_NAME bytes32 _hashedName; /// @custom:oz-renamed-from _HASHED_VERSION bytes32 _hashedVersion; string _name; string _version; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.EIP712")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant EIP712StorageLocation = 0xa16a46d94261c7517cc8ff89f61c0ce93598e3c849801011dee649a6a557d100; function _getEIP712Storage() private pure returns (EIP712Storage storage $) { assembly { $.slot := EIP712StorageLocation } } /** * @dev Initializes the domain separator and parameter caches. * * The meaning of `name` and `version` is specified in * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]: * * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol. * - `version`: the current major version of the signing domain. * * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart * contract upgrade]. */ function __EIP712_init(string memory name, string memory version) internal onlyInitializing { __EIP712_init_unchained(name, version); } function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing { EIP712Storage storage $ = _getEIP712Storage(); $._name = name; $._version = version; // Reset prior values in storage if upgrading $._hashedName = 0; $._hashedVersion = 0; } /** * @dev Returns the domain separator for the current chain. */ function _domainSeparatorV4() internal view returns (bytes32) { return _buildDomainSeparator(); } function _buildDomainSeparator() private view returns (bytes32) { return keccak256(abi.encode(TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this))); } /** * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this * function returns the hash of the fully encoded EIP712 message for this domain. * * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example: * * ```solidity * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode( * keccak256("Mail(address to,string contents)"), * mailTo, * keccak256(bytes(mailContents)) * ))); * address signer = ECDSA.recover(digest, signature); * ``` */ function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) { return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash); } /** * @dev See {IERC-5267}. */ function eip712Domain() public view virtual returns ( bytes1 fields, string memory name, string memory version, uint256 chainId, address verifyingContract, bytes32 salt, uint256[] memory extensions ) { EIP712Storage storage $ = _getEIP712Storage(); // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized // and the EIP712 domain is not reliable, as it will be missing name and version. require($._hashedName == 0 && $._hashedVersion == 0, "EIP712: Uninitialized"); return ( hex"0f", // 01111 _EIP712Name(), _EIP712Version(), block.chainid, address(this), bytes32(0), new uint256[](0) ); } /** * @dev The name parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Name() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._name; } /** * @dev The version parameter for the EIP712 domain. * * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs * are a concern. */ function _EIP712Version() internal view virtual returns (string memory) { EIP712Storage storage $ = _getEIP712Storage(); return $._version; } /** * @dev The hash of the name parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead. */ function _EIP712NameHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory name = _EIP712Name(); if (bytes(name).length > 0) { return keccak256(bytes(name)); } else { // If the name is empty, the contract may have been upgraded without initializing the new storage. // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design. bytes32 hashedName = $._hashedName; if (hashedName != 0) { return hashedName; } else { return keccak256(""); } } } /** * @dev The hash of the version parameter for the EIP712 domain. * * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead. */ function _EIP712VersionHash() internal view returns (bytes32) { EIP712Storage storage $ = _getEIP712Storage(); string memory version = _EIP712Version(); if (bytes(version).length > 0) { return keccak256(bytes(version)); } else { // If the version is empty, the contract may have been upgraded without initializing the new storage. // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design. bytes32 hashedVersion = $._hashedVersion; if (hashedVersion != 0) { return hashedVersion; } else { return keccak256(""); } } } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/OAppCore.sol /** * @title OAppCore * @dev Abstract contract implementing the IOAppCore interface with basic OApp configurations. */ abstract contract OAppCore is IOAppCore, Ownable { // The LayerZero endpoint associated with the given OApp ILayerZeroEndpointV2 public immutable endpoint; // Mapping to store peers associated with corresponding endpoints mapping(uint32 eid => bytes32 peer) public peers; /** * @dev Constructor to initialize the OAppCore with the provided endpoint and delegate. * @param _endpoint The address of the LOCAL Layer Zero endpoint. * @param _delegate The delegate capable of making OApp configurations inside of the endpoint. * * @dev The delegate typically should be set as the owner of the contract. */ constructor(address _endpoint, address _delegate) { endpoint = ILayerZeroEndpointV2(_endpoint); if (_delegate == address(0)) revert InvalidDelegate(); endpoint.setDelegate(_delegate); } /** * @notice Sets the peer address (OApp instance) for a corresponding endpoint. * @param _eid The endpoint ID. * @param _peer The address of the peer to be associated with the corresponding endpoint. * * @dev Only the owner/admin of the OApp can call this function. * @dev Indicates that the peer is trusted to send LayerZero messages to this OApp. * @dev Set this to bytes32(0) to remove the peer address. * @dev Peer is a bytes32 to accommodate non-evm chains. */ function setPeer(uint32 _eid, bytes32 _peer) public virtual onlyOwner { peers[_eid] = _peer; emit PeerSet(_eid, _peer); } /** * @notice Internal function to get the peer address associated with a specific endpoint; reverts if NOT set. * ie. the peer is set to bytes32(0). * @param _eid The endpoint ID. * @return peer The address of the peer associated with the specified endpoint. */ function _getPeerOrRevert(uint32 _eid) internal view virtual returns (bytes32) { bytes32 peer = peers[_eid]; if (peer == bytes32(0)) revert NoPeer(_eid); return peer; } /** * @notice Sets the delegate address for the OApp. * @param _delegate The address of the delegate to be set. * * @dev Only the owner/admin of the OApp can call this function. * @dev Provides the ability for a delegate to set configs, on behalf of the OApp, directly on the Endpoint contract. */ function setDelegate(address _delegate) public onlyOwner { endpoint.setDelegate(_delegate); } } // node_modules/@layerzerolabs/lz-evm-protocol-v2/contracts/messagelib/libs/PacketV1Codec.sol library PacketV1Codec { using AddressCast for address; using AddressCast for bytes32; uint8 internal constant PACKET_VERSION = 1; // header (version + nonce + path) // version uint256 private constant PACKET_VERSION_OFFSET = 0; // nonce uint256 private constant NONCE_OFFSET = 1; // path uint256 private constant SRC_EID_OFFSET = 9; uint256 private constant SENDER_OFFSET = 13; uint256 private constant DST_EID_OFFSET = 45; uint256 private constant RECEIVER_OFFSET = 49; // payload (guid + message) uint256 private constant GUID_OFFSET = 81; // keccak256(nonce + path) uint256 private constant MESSAGE_OFFSET = 113; function encode(Packet memory _packet) internal pure returns (bytes memory encodedPacket) { encodedPacket = abi.encodePacked( PACKET_VERSION, _packet.nonce, _packet.srcEid, _packet.sender.toBytes32(), _packet.dstEid, _packet.receiver, _packet.guid, _packet.message ); } function encodePacketHeader(Packet memory _packet) internal pure returns (bytes memory) { return abi.encodePacked( PACKET_VERSION, _packet.nonce, _packet.srcEid, _packet.sender.toBytes32(), _packet.dstEid, _packet.receiver ); } function encodePayload(Packet memory _packet) internal pure returns (bytes memory) { return abi.encodePacked(_packet.guid, _packet.message); } function header(bytes calldata _packet) internal pure returns (bytes calldata) { return _packet[0:GUID_OFFSET]; } function version(bytes calldata _packet) internal pure returns (uint8) { return uint8(bytes1(_packet[PACKET_VERSION_OFFSET:NONCE_OFFSET])); } function nonce(bytes calldata _packet) internal pure returns (uint64) { return uint64(bytes8(_packet[NONCE_OFFSET:SRC_EID_OFFSET])); } function srcEid(bytes calldata _packet) internal pure returns (uint32) { return uint32(bytes4(_packet[SRC_EID_OFFSET:SENDER_OFFSET])); } function sender(bytes calldata _packet) internal pure returns (bytes32) { return bytes32(_packet[SENDER_OFFSET:DST_EID_OFFSET]); } function senderAddressB20(bytes calldata _packet) internal pure returns (address) { return sender(_packet).toAddress(); } function dstEid(bytes calldata _packet) internal pure returns (uint32) { return uint32(bytes4(_packet[DST_EID_OFFSET:RECEIVER_OFFSET])); } function receiver(bytes calldata _packet) internal pure returns (bytes32) { return bytes32(_packet[RECEIVER_OFFSET:GUID_OFFSET]); } function receiverB20(bytes calldata _packet) internal pure returns (address) { return receiver(_packet).toAddress(); } function guid(bytes calldata _packet) internal pure returns (bytes32) { return bytes32(_packet[GUID_OFFSET:MESSAGE_OFFSET]); } function message(bytes calldata _packet) internal pure returns (bytes calldata) { return bytes(_packet[MESSAGE_OFFSET:]); } function payload(bytes calldata _packet) internal pure returns (bytes calldata) { return bytes(_packet[GUID_OFFSET:]); } function payloadHash(bytes calldata _packet) internal pure returns (bytes32) { return keccak256(payload(_packet)); } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/precrime/libs/Packet.sol /** * @title InboundPacket * @dev Structure representing an inbound packet received by the contract. */ struct InboundPacket { Origin origin; // Origin information of the packet. uint32 dstEid; // Destination endpointId of the packet. address receiver; // Receiver address for the packet. bytes32 guid; // Unique identifier of the packet. uint256 value; // msg.value of the packet. address executor; // Executor address for the packet. bytes message; // Message payload of the packet. bytes extraData; // Additional arbitrary data for the packet. } /** * @title PacketDecoder * @dev Library for decoding LayerZero packets. */ library PacketDecoder { using PacketV1Codec for bytes; /** * @dev Decode an inbound packet from the given packet data. * @param _packet The packet data to decode. * @return packet An InboundPacket struct representing the decoded packet. */ function decode(bytes calldata _packet) internal pure returns (InboundPacket memory packet) { packet.origin = Origin(_packet.srcEid(), _packet.sender(), _packet.nonce()); packet.dstEid = _packet.dstEid(); packet.receiver = _packet.receiverB20(); packet.guid = _packet.guid(); packet.message = _packet.message(); } /** * @dev Decode multiple inbound packets from the given packet data and associated message values. * @param _packets An array of packet data to decode. * @param _packetMsgValues An array of associated message values for each packet. * @return packets An array of InboundPacket structs representing the decoded packets. */ function decode( bytes[] calldata _packets, uint256[] memory _packetMsgValues ) internal pure returns (InboundPacket[] memory packets) { packets = new InboundPacket[](_packets.length); for (uint256 i = 0; i < _packets.length; i++) { bytes calldata packet = _packets[i]; packets[i] = PacketDecoder.decode(packet); // @dev Allows the verifier to specify the msg.value that gets passed in lzReceive. packets[i].value = _packetMsgValues[i]; } } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/OAppReceiver.sol /** * @title OAppReceiver * @dev Abstract contract implementing the ILayerZeroReceiver interface and extending OAppCore for OApp receivers. */ abstract contract OAppReceiver is IOAppReceiver, OAppCore { // Custom error message for when the caller is not the registered endpoint/ error OnlyEndpoint(address addr); // @dev The version of the OAppReceiver implementation. // @dev Version is bumped when changes are made to this contract. uint64 internal constant RECEIVER_VERSION = 1; /** * @notice Retrieves the OApp version information. * @return senderVersion The version of the OAppSender.sol contract. * @return receiverVersion The version of the OAppReceiver.sol contract. * * @dev Providing 0 as the default for OAppSender version. Indicates that the OAppSender is not implemented. * ie. this is a RECEIVE only OApp. * @dev If the OApp uses both OAppSender and OAppReceiver, then this needs to be override returning the correct versions. */ function oAppVersion() public view virtual returns (uint64 senderVersion, uint64 receiverVersion) { return (0, RECEIVER_VERSION); } /** * @notice Retrieves the address responsible for 'sending' composeMsg's to the Endpoint. * @return sender The address responsible for 'sending' composeMsg's to the Endpoint. * * @dev Applications can optionally choose to implement a separate composeMsg sender that is NOT the bridging layer. * @dev The default sender IS the OApp implementer. */ function composeMsgSender() public view virtual returns (address sender) { return address(this); } /** * @notice Checks if the path initialization is allowed based on the provided origin. * @param origin The origin information containing the source endpoint and sender address. * @return Whether the path has been initialized. * * @dev This indicates to the endpoint that the OApp has enabled msgs for this particular path to be received. * @dev This defaults to assuming if a peer has been set, its initialized. * Can be overridden by the OApp if there is other logic to determine this. */ function allowInitializePath(Origin calldata origin) public view virtual returns (bool) { return peers[origin.srcEid] == origin.sender; } /** * @notice Retrieves the next nonce for a given source endpoint and sender address. * @dev _srcEid The source endpoint ID. * @dev _sender The sender address. * @return nonce The next nonce. * * @dev The path nonce starts from 1. If 0 is returned it means that there is NO nonce ordered enforcement. * @dev Is required by the off-chain executor to determine the OApp expects msg execution is ordered. * @dev This is also enforced by the OApp. * @dev By default this is NOT enabled. ie. nextNonce is hardcoded to return 0. */ function nextNonce(uint32 /*_srcEid*/, bytes32 /*_sender*/) public view virtual returns (uint64 nonce) { return 0; } /** * @dev Entry point for receiving messages or packets from the endpoint. * @param _origin The origin information containing the source endpoint and sender address. * - srcEid: The source chain endpoint ID. * - sender: The sender address on the src chain. * - nonce: The nonce of the message. * @param _guid The unique identifier for the received LayerZero message. * @param _message The payload of the received message. * @param _executor The address of the executor for the received message. * @param _extraData Additional arbitrary data provided by the corresponding executor. * * @dev Entry point for receiving msg/packet from the LayerZero endpoint. */ function lzReceive( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) public payable virtual { // Ensures that only the endpoint can attempt to lzReceive() messages to this OApp. if (address(endpoint) != msg.sender) revert OnlyEndpoint(msg.sender); // Ensure that the sender matches the expected peer for the source endpoint. if (_getPeerOrRevert(_origin.srcEid) != _origin.sender) revert OnlyPeer(_origin.srcEid, _origin.sender); // Call the internal OApp implementation of lzReceive. _lzReceive(_origin, _guid, _message, _executor, _extraData); } /** * @dev Internal function to implement lzReceive logic without needing to copy the basic parameter validation. */ function _lzReceive( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) internal virtual; } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/precrime/interfaces/IOAppPreCrimeSimulator.sol // @dev Import the Origin so it's exposed to OAppPreCrimeSimulator implementers. // solhint-disable-next-line no-unused-import /** * @title IOAppPreCrimeSimulator Interface * @dev Interface for the preCrime simulation functionality in an OApp. */ interface IOAppPreCrimeSimulator { // @dev simulation result used in PreCrime implementation error SimulationResult(bytes result); error OnlySelf(); /** * @dev Emitted when the preCrime contract address is set. * @param preCrimeAddress The address of the preCrime contract. */ event PreCrimeSet(address preCrimeAddress); /** * @dev Retrieves the address of the preCrime contract implementation. * @return The address of the preCrime contract. */ function preCrime() external view returns (address); /** * @dev Retrieves the address of the OApp contract. * @return The address of the OApp contract. */ function oApp() external view returns (address); /** * @dev Sets the preCrime contract address. * @param _preCrime The address of the preCrime contract. */ function setPreCrime(address _preCrime) external; /** * @dev Mocks receiving a packet, then reverts with a series of data to infer the state/result. * @param _packets An array of LayerZero InboundPacket objects representing received packets. */ function lzReceiveAndRevert(InboundPacket[] calldata _packets) external payable; /** * @dev checks if the specified peer is considered 'trusted' by the OApp. * @param _eid The endpoint Id to check. * @param _peer The peer to check. * @return Whether the peer passed is considered 'trusted' by the OApp. */ function isPeer(uint32 _eid, bytes32 _peer) external view returns (bool); } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/precrime/OAppPreCrimeSimulator.sol /** * @title OAppPreCrimeSimulator * @dev Abstract contract serving as the base for preCrime simulation functionality in an OApp. */ abstract contract OAppPreCrimeSimulator is IOAppPreCrimeSimulator, Ownable { // The address of the preCrime implementation. address public preCrime; /** * @dev Retrieves the address of the OApp contract. * @return The address of the OApp contract. * * @dev The simulator contract is the base contract for the OApp by default. * @dev If the simulator is a separate contract, override this function. */ function oApp() external view virtual returns (address) { return address(this); } /** * @dev Sets the preCrime contract address. * @param _preCrime The address of the preCrime contract. */ function setPreCrime(address _preCrime) public virtual onlyOwner { preCrime = _preCrime; emit PreCrimeSet(_preCrime); } /** * @dev Interface for pre-crime simulations. Always reverts at the end with the simulation results. * @param _packets An array of InboundPacket objects representing received packets to be delivered. * * @dev WARNING: MUST revert at the end with the simulation results. * @dev Gives the preCrime implementation the ability to mock sending packets to the lzReceive function, * WITHOUT actually executing them. */ function lzReceiveAndRevert(InboundPacket[] calldata _packets) public payable virtual { for (uint256 i = 0; i < _packets.length; i++) { InboundPacket calldata packet = _packets[i]; // Ignore packets that are not from trusted peers. if (!isPeer(packet.origin.srcEid, packet.origin.sender)) continue; // @dev Because a verifier is calling this function, it doesnt have access to executor params: // - address _executor // - bytes calldata _extraData // preCrime will NOT work for OApps that rely on these two parameters inside of their _lzReceive(). // They are instead stubbed to default values, address(0) and bytes("") // @dev Calling this.lzReceiveSimulate removes ability for assembly return 0 callstack exit, // which would cause the revert to be ignored. this.lzReceiveSimulate{ value: packet.value }( packet.origin, packet.guid, packet.message, packet.executor, packet.extraData ); } // @dev Revert with the simulation results. msg.sender must implement IPreCrime.buildSimulationResult(). revert SimulationResult(IPreCrime(msg.sender).buildSimulationResult()); } /** * @dev Is effectively an internal function because msg.sender must be address(this). * Allows resetting the call stack for 'internal' calls. * @param _origin The origin information containing the source endpoint and sender address. * - srcEid: The source chain endpoint ID. * - sender: The sender address on the src chain. * - nonce: The nonce of the message. * @param _guid The unique identifier of the packet. * @param _message The message payload of the packet. * @param _executor The executor address for the packet. * @param _extraData Additional data for the packet. */ function lzReceiveSimulate( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) external payable virtual { // @dev Ensure ONLY can be called 'internally'. if (msg.sender != address(this)) revert OnlySelf(); _lzReceiveSimulate(_origin, _guid, _message, _executor, _extraData); } /** * @dev Internal function to handle the OAppPreCrimeSimulator simulated receive. * @param _origin The origin information. * - srcEid: The source chain endpoint ID. * - sender: The sender address from the src chain. * - nonce: The nonce of the LayerZero message. * @param _guid The GUID of the LayerZero message. * @param _message The LayerZero message. * @param _executor The address of the off-chain executor. * @param _extraData Arbitrary data passed by the msg executor. * * @dev Enables the preCrime simulator to mock sending lzReceive() messages, * routes the msg down from the OAppPreCrimeSimulator, and back up to the OAppReceiver. */ function _lzReceiveSimulate( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) internal virtual; /** * @dev checks if the specified peer is considered 'trusted' by the OApp. * @param _eid The endpoint Id to check. * @param _peer The peer to check. * @return Whether the peer passed is considered 'trusted' by the OApp. */ function isPeer(uint32 _eid, bytes32 _peer) public view virtual returns (bool); } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/OAppSender.sol /** * @title OAppSender * @dev Abstract contract implementing the OAppSender functionality for sending messages to a LayerZero endpoint. */ abstract contract OAppSender is OAppCore { using SafeERC20 for IERC20; // Custom error messages error NotEnoughNative(uint256 msgValue); error LzTokenUnavailable(); // @dev The version of the OAppSender implementation. // @dev Version is bumped when changes are made to this contract. uint64 internal constant SENDER_VERSION = 1; /** * @notice Retrieves the OApp version information. * @return senderVersion The version of the OAppSender.sol contract. * @return receiverVersion The version of the OAppReceiver.sol contract. * * @dev Providing 0 as the default for OAppReceiver version. Indicates that the OAppReceiver is not implemented. * ie. this is a SEND only OApp. * @dev If the OApp uses both OAppSender and OAppReceiver, then this needs to be override returning the correct versions */ function oAppVersion() public view virtual returns (uint64 senderVersion, uint64 receiverVersion) { return (SENDER_VERSION, 0); } /** * @dev Internal function to interact with the LayerZero EndpointV2.quote() for fee calculation. * @param _dstEid The destination endpoint ID. * @param _message The message payload. * @param _options Additional options for the message. * @param _payInLzToken Flag indicating whether to pay the fee in LZ tokens. * @return fee The calculated MessagingFee for the message. * - nativeFee: The native fee for the message. * - lzTokenFee: The LZ token fee for the message. */ function _quote( uint32 _dstEid, bytes memory _message, bytes memory _options, bool _payInLzToken ) internal view virtual returns (MessagingFee memory fee) { return endpoint.quote( MessagingParams(_dstEid, _getPeerOrRevert(_dstEid), _message, _options, _payInLzToken), address(this) ); } /** * @dev Internal function to interact with the LayerZero EndpointV2.send() for sending a message. * @param _dstEid The destination endpoint ID. * @param _message The message payload. * @param _options Additional options for the message. * @param _fee The calculated LayerZero fee for the message. * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. * @param _refundAddress The address to receive any excess fee values sent to the endpoint. * @return receipt The receipt for the sent message. * - guid: The unique identifier for the sent message. * - nonce: The nonce of the sent message. * - fee: The LayerZero fee incurred for the message. */ function _lzSend( uint32 _dstEid, bytes memory _message, bytes memory _options, MessagingFee memory _fee, address _refundAddress ) internal virtual returns (MessagingReceipt memory receipt) { // @dev Push corresponding fees to the endpoint, any excess is sent back to the _refundAddress from the endpoint. uint256 messageValue = _payNative(_fee.nativeFee); if (_fee.lzTokenFee > 0) _payLzToken(_fee.lzTokenFee); return // solhint-disable-next-line check-send-result endpoint.send{ value: messageValue }( MessagingParams(_dstEid, _getPeerOrRevert(_dstEid), _message, _options, _fee.lzTokenFee > 0), _refundAddress ); } /** * @dev Internal function to pay the native fee associated with the message. * @param _nativeFee The native fee to be paid. * @return nativeFee The amount of native currency paid. * * @dev If the OApp needs to initiate MULTIPLE LayerZero messages in a single transaction, * this will need to be overridden because msg.value would contain multiple lzFees. * @dev Should be overridden in the event the LayerZero endpoint requires a different native currency. * @dev Some EVMs use an ERC20 as a method for paying transactions/gasFees. * @dev The endpoint is EITHER/OR, ie. it will NOT support both types of native payment at a time. */ function _payNative(uint256 _nativeFee) internal virtual returns (uint256 nativeFee) { if (msg.value != _nativeFee) revert NotEnoughNative(msg.value); return _nativeFee; } /** * @dev Internal function to pay the LZ token fee associated with the message. * @param _lzTokenFee The LZ token fee to be paid. * * @dev If the caller is trying to pay in the specified lzToken, then the lzTokenFee is passed to the endpoint. * @dev Any excess sent, is passed back to the specified _refundAddress in the _lzSend(). */ function _payLzToken(uint256 _lzTokenFee) internal virtual { // @dev Cannot cache the token because it is not immutable in the endpoint. address lzToken = endpoint.lzToken(); if (lzToken == address(0)) revert LzTokenUnavailable(); // Pay LZ token fee by sending tokens to the endpoint. IERC20(lzToken).safeTransferFrom(msg.sender, address(endpoint), _lzTokenFee); } } // lib/openzeppelin-contracts-upgradeable/contracts/governance/utils/VotesUpgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol) /** * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of * "representative" that will pool delegated voting units from different accounts and can then use it to vote in * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative. * * This contract is often combined with a token contract such that voting units correspond to token units. For an * example, see {ERC721Votes}. * * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the * cost of this history tracking optional. * * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the * previous example, it would be included in {ERC721-_update}). */ abstract contract VotesUpgradeable is Initializable, ContextUpgradeable, EIP712Upgradeable, NoncesUpgradeable, IERC5805 { using Checkpoints for Checkpoints.Trace208; bytes32 private constant DELEGATION_TYPEHASH = keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)"); /// @custom:storage-location erc7201:openzeppelin.storage.Votes struct VotesStorage { mapping(address account => address) _delegatee; mapping(address delegatee => Checkpoints.Trace208) _delegateCheckpoints; Checkpoints.Trace208 _totalCheckpoints; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Votes")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant VotesStorageLocation = 0xe8b26c30fad74198956032a3533d903385d56dd795af560196f9c78d4af40d00; function _getVotesStorage() private pure returns (VotesStorage storage $) { assembly { $.slot := VotesStorageLocation } } /** * @dev The clock was incorrectly modified. */ error ERC6372InconsistentClock(); /** * @dev Lookup to future votes is not available. */ error ERC5805FutureLookup(uint256 timepoint, uint48 clock); function __Votes_init() internal onlyInitializing { } function __Votes_init_unchained() internal onlyInitializing { } /** * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match. */ function clock() public view virtual returns (uint48) { return Time.blockNumber(); } /** * @dev Machine-readable description of the clock as specified in EIP-6372. */ // solhint-disable-next-line func-name-mixedcase function CLOCK_MODE() public view virtual returns (string memory) { // Check that the clock was not modified if (clock() != Time.blockNumber()) { revert ERC6372InconsistentClock(); } return "mode=blocknumber&from=default"; } /** * @dev Returns the current amount of votes that `account` has. */ function getVotes(address account) public view virtual returns (uint256) { VotesStorage storage $ = _getVotesStorage(); return $._delegateCheckpoints[account].latest(); } /** * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * Requirements: * * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined. */ function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) { VotesStorage storage $ = _getVotesStorage(); uint48 currentTimepoint = clock(); if (timepoint >= currentTimepoint) { revert ERC5805FutureLookup(timepoint, currentTimepoint); } return $._delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint)); } /** * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is * configured to use block numbers, this will return the value at the end of the corresponding block. * * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes. * Votes that have not been delegated are still part of total supply, even though they would not participate in a * vote. * * Requirements: * * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined. */ function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) { VotesStorage storage $ = _getVotesStorage(); uint48 currentTimepoint = clock(); if (timepoint >= currentTimepoint) { revert ERC5805FutureLookup(timepoint, currentTimepoint); } return $._totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint)); } /** * @dev Returns the current total supply of votes. */ function _getTotalSupply() internal view virtual returns (uint256) { VotesStorage storage $ = _getVotesStorage(); return $._totalCheckpoints.latest(); } /** * @dev Returns the delegate that `account` has chosen. */ function delegates(address account) public view virtual returns (address) { VotesStorage storage $ = _getVotesStorage(); return $._delegatee[account]; } /** * @dev Delegates votes from the sender to `delegatee`. */ function delegate(address delegatee) public virtual { address account = _msgSender(); _delegate(account, delegatee); } /** * @dev Delegates votes from signer to `delegatee`. */ function delegateBySig( address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > expiry) { revert VotesExpiredSignature(expiry); } address signer = ECDSA.recover( _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))), v, r, s ); _useCheckedNonce(signer, nonce); _delegate(signer, delegatee); } /** * @dev Delegate all of `account`'s voting units to `delegatee`. * * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}. */ function _delegate(address account, address delegatee) internal virtual { VotesStorage storage $ = _getVotesStorage(); address oldDelegate = delegates(account); $._delegatee[account] = delegatee; emit DelegateChanged(account, oldDelegate, delegatee); _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account)); } /** * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to` * should be zero. Total supply of voting units will be adjusted with mints and burns. */ function _transferVotingUnits(address from, address to, uint256 amount) internal virtual { VotesStorage storage $ = _getVotesStorage(); if (from == address(0)) { _push($._totalCheckpoints, _add, SafeCast.toUint208(amount)); } if (to == address(0)) { _push($._totalCheckpoints, _subtract, SafeCast.toUint208(amount)); } _moveDelegateVotes(delegates(from), delegates(to), amount); } /** * @dev Moves delegated votes from one delegate to another. */ function _moveDelegateVotes(address from, address to, uint256 amount) private { VotesStorage storage $ = _getVotesStorage(); if (from != to && amount > 0) { if (from != address(0)) { (uint256 oldValue, uint256 newValue) = _push( $._delegateCheckpoints[from], _subtract, SafeCast.toUint208(amount) ); emit DelegateVotesChanged(from, oldValue, newValue); } if (to != address(0)) { (uint256 oldValue, uint256 newValue) = _push( $._delegateCheckpoints[to], _add, SafeCast.toUint208(amount) ); emit DelegateVotesChanged(to, oldValue, newValue); } } } /** * @dev Get number of checkpoints for `account`. */ function _numCheckpoints(address account) internal view virtual returns (uint32) { VotesStorage storage $ = _getVotesStorage(); return SafeCast.toUint32($._delegateCheckpoints[account].length()); } /** * @dev Get the `pos`-th checkpoint for `account`. */ function _checkpoints( address account, uint32 pos ) internal view virtual returns (Checkpoints.Checkpoint208 memory) { VotesStorage storage $ = _getVotesStorage(); return $._delegateCheckpoints[account].at(pos); } function _push( Checkpoints.Trace208 storage store, function(uint208, uint208) view returns (uint208) op, uint208 delta ) private returns (uint208, uint208) { return store.push(clock(), op(store.latest(), delta)); } function _add(uint208 a, uint208 b) private pure returns (uint208) { return a + b; } function _subtract(uint208 a, uint208 b) private pure returns (uint208) { return a - b; } /** * @dev Must return the voting units held by an account. */ function _getVotingUnits(address) internal view virtual returns (uint256); } // lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20PermitUpgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol) /** * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20Permit, EIP712Upgradeable, NoncesUpgradeable { bytes32 private constant PERMIT_TYPEHASH = keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); /** * @dev Permit deadline has expired. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Mismatched signature. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`. * * It's a good idea to use the same `name` that is defined as the ERC20 token name. */ function __ERC20Permit_init(string memory name) internal onlyInitializing { __EIP712_init_unchained(name, "1"); } function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {} /** * @inheritdoc IERC20Permit */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) public virtual { if (block.timestamp > deadline) { revert ERC2612ExpiredSignature(deadline); } bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)); bytes32 hash = _hashTypedDataV4(structHash); address signer = ECDSA.recover(hash, v, r, s); if (signer != owner) { revert ERC2612InvalidSigner(signer, owner); } _approve(owner, spender, value); } /** * @inheritdoc IERC20Permit */ function nonces(address owner) public view virtual override(IERC20Permit, NoncesUpgradeable) returns (uint256) { return super.nonces(owner); } /** * @inheritdoc IERC20Permit */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view virtual returns (bytes32) { return _domainSeparatorV4(); } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oft/interfaces/IOFT.sol /** * @dev Struct representing token parameters for the OFT send() operation. */ struct SendParam { uint32 dstEid; // Destination endpoint ID. bytes32 to; // Recipient address. uint256 amountLD; // Amount to send in local decimals. uint256 minAmountLD; // Minimum amount to send in local decimals. bytes extraOptions; // Additional options supplied by the caller to be used in the LayerZero message. bytes composeMsg; // The composed message for the send() operation. bytes oftCmd; // The OFT command to be executed, unused in default OFT implementations. } /** * @dev Struct representing OFT limit information. * @dev These amounts can change dynamically and are up the the specific oft implementation. */ struct OFTLimit { uint256 minAmountLD; // Minimum amount in local decimals that can be sent to the recipient. uint256 maxAmountLD; // Maximum amount in local decimals that can be sent to the recipient. } /** * @dev Struct representing OFT receipt information. */ struct OFTReceipt { uint256 amountSentLD; // Amount of tokens ACTUALLY debited from the sender in local decimals. // @dev In non-default implementations, the amountReceivedLD COULD differ from this value. uint256 amountReceivedLD; // Amount of tokens to be received on the remote side. } /** * @dev Struct representing OFT fee details. * @dev Future proof mechanism to provide a standardized way to communicate fees to things like a UI. */ struct OFTFeeDetail { int256 feeAmountLD; // Amount of the fee in local decimals. string description; // Description of the fee. } /** * @title IOFT * @dev Interface for the OftChain (OFT) token. * @dev Does not inherit ERC20 to accommodate usage by OFTAdapter as well. * @dev This specific interface ID is '0x02e49c2c'. */ interface IOFT { // Custom error messages error InvalidLocalDecimals(); error SlippageExceeded(uint256 amountLD, uint256 minAmountLD); // Events event OFTSent( bytes32 indexed guid, // GUID of the OFT message. uint32 dstEid, // Destination Endpoint ID. address indexed fromAddress, // Address of the sender on the src chain. uint256 amountLD // Amount of tokens sent in local decimals. ); event OFTReceived( bytes32 indexed guid, // GUID of the OFT message. uint32 srcEid, // Source Endpoint ID. address indexed toAddress, // Address of the recipient on the dst chain. uint256 amountLD // Amount of tokens received in local decimals. ); /** * @notice Retrieves interfaceID and the version of the OFT. * @return interfaceId The interface ID. * @return version The version. * * @dev interfaceId: This specific interface ID is '0x02e49c2c'. * @dev version: Indicates a cross-chain compatible msg encoding with other OFTs. * @dev If a new feature is added to the OFT cross-chain msg encoding, the version will be incremented. * ie. localOFT version(x,1) CAN send messages to remoteOFT version(x,1) */ function oftVersion() external view returns (bytes4 interfaceId, uint64 version); /** * @notice Retrieves the address of the token associated with the OFT. * @return token The address of the ERC20 token implementation. */ function token() external view returns (address); /** * @notice Indicates whether the OFT contract requires approval of the 'token()' to send. * @return requiresApproval Needs approval of the underlying token implementation. * * @dev Allows things like wallet implementers to determine integration requirements, * without understanding the underlying token implementation. */ function approvalRequired() external view returns (bool); /** * @notice Retrieves the shared decimals of the OFT. * @return sharedDecimals The shared decimals of the OFT. */ function sharedDecimals() external view returns (uint8); /** * @notice Provides a quote for OFT-related operations. * @param _sendParam The parameters for the send operation. * @return limit The OFT limit information. * @return oftFeeDetails The details of OFT fees. * @return receipt The OFT receipt information. */ function quoteOFT( SendParam calldata _sendParam ) external view returns (OFTLimit memory, OFTFeeDetail[] memory oftFeeDetails, OFTReceipt memory); /** * @notice Provides a quote for the send() operation. * @param _sendParam The parameters for the send() operation. * @param _payInLzToken Flag indicating whether the caller is paying in the LZ token. * @return fee The calculated LayerZero messaging fee from the send() operation. * * @dev MessagingFee: LayerZero msg fee * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. */ function quoteSend(SendParam calldata _sendParam, bool _payInLzToken) external view returns (MessagingFee memory); /** * @notice Executes the send() operation. * @param _sendParam The parameters for the send operation. * @param _fee The fee information supplied by the caller. * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. * @param _refundAddress The address to receive any excess funds from fees etc. on the src. * @return receipt The LayerZero messaging receipt from the send() operation. * @return oftReceipt The OFT receipt information. * * @dev MessagingReceipt: LayerZero msg receipt * - guid: The unique identifier for the sent message. * - nonce: The nonce of the sent message. * - fee: The LayerZero fee incurred for the message. */ function send( SendParam calldata _sendParam, MessagingFee calldata _fee, address _refundAddress ) external payable returns (MessagingReceipt memory, OFTReceipt memory); } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oapp/OApp.sol // @dev Import the 'MessagingFee' and 'MessagingReceipt' so it's exposed to OApp implementers // solhint-disable-next-line no-unused-import // @dev Import the 'Origin' so it's exposed to OApp implementers // solhint-disable-next-line no-unused-import /** * @title OApp * @dev Abstract contract serving as the base for OApp implementation, combining OAppSender and OAppReceiver functionality. */ abstract contract OApp is OAppSender, OAppReceiver { /** * @dev Constructor to initialize the OApp with the provided endpoint and owner. * @param _endpoint The address of the LOCAL LayerZero endpoint. * @param _delegate The delegate capable of making OApp configurations inside of the endpoint. */ constructor(address _endpoint, address _delegate) OAppCore(_endpoint, _delegate) {} /** * @notice Retrieves the OApp version information. * @return senderVersion The version of the OAppSender.sol implementation. * @return receiverVersion The version of the OAppReceiver.sol implementation. */ function oAppVersion() public pure virtual override(OAppSender, OAppReceiver) returns (uint64 senderVersion, uint64 receiverVersion) { return (SENDER_VERSION, RECEIVER_VERSION); } } // lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20VotesUpgradeable.sol // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Votes.sol) /** * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's, * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1. * * NOTE: This contract does not provide interface compatibility with Compound's COMP token. * * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting * power can be queried through the public accessors {getVotes} and {getPastVotes}. * * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked. */ abstract contract ERC20VotesUpgradeable is Initializable, ERC20Upgradeable, VotesUpgradeable { /** * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing. */ error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap); function __ERC20Votes_init() internal onlyInitializing { } function __ERC20Votes_init_unchained() internal onlyInitializing { } /** * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1). * * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256, * so that checkpoints can be stored in the Trace208 structure used by {{Votes}}. Increasing this value will not * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in * {_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if * additional logic requires it. When resolving override conflicts on this function, the minimum should be * returned. */ function _maxSupply() internal view virtual returns (uint256) { return type(uint208).max; } /** * @dev Move voting power when tokens are transferred. * * Emits a {IVotes-DelegateVotesChanged} event. */ function _update(address from, address to, uint256 value) internal virtual override { super._update(from, to, value); if (from == address(0)) { uint256 supply = totalSupply(); uint256 cap = _maxSupply(); if (supply > cap) { revert ERC20ExceededSafeSupply(supply, cap); } } _transferVotingUnits(from, to, value); } /** * @dev Returns the voting units of an `account`. * * WARNING: Overriding this function may compromise the internal vote accounting. * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change. */ function _getVotingUnits(address account) internal view virtual override returns (uint256) { return balanceOf(account); } /** * @dev Get number of checkpoints for `account`. */ function numCheckpoints(address account) public view virtual returns (uint32) { return _numCheckpoints(account); } /** * @dev Get the `pos`-th checkpoint for `account`. */ function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) { return _checkpoints(account, pos); } } // node_modules/@layerzerolabs/lz-evm-oapp-v2/contracts/oft/OFTCore.sol /** * @title OFTCore * @dev Abstract contract for the OftChain (OFT) token. */ abstract contract OFTCore is IOFT, OApp, OAppPreCrimeSimulator, OAppOptionsType3 { using OFTMsgCodec for bytes; using OFTMsgCodec for bytes32; // @notice Provides a conversion rate when swapping between denominations of SD and LD // - shareDecimals == SD == shared Decimals // - localDecimals == LD == local decimals // @dev Considers that tokens have different decimal amounts on various chains. // @dev eg. // For a token // - locally with 4 decimals --> 1.2345 => uint(12345) // - remotely with 2 decimals --> 1.23 => uint(123) // - The conversion rate would be 10 ** (4 - 2) = 100 // @dev If you want to send 1.2345 -> (uint 12345), you CANNOT represent that value on the remote, // you can only display 1.23 -> uint(123). // @dev To preserve the dust that would otherwise be lost on that conversion, // we need to unify a denomination that can be represented on ALL chains inside of the OFT mesh uint256 public immutable decimalConversionRate; // @notice Msg types that are used to identify the various OFT operations. // @dev This can be extended in child contracts for non-default oft operations // @dev These values are used in things like combineOptions() in OAppOptionsType3.sol. uint16 public constant SEND = 1; uint16 public constant SEND_AND_CALL = 2; // Address of an optional contract to inspect both 'message' and 'options' address public msgInspector; event MsgInspectorSet(address inspector); /** * @dev Constructor. * @param _localDecimals The decimals of the token on the local chain (this chain). * @param _endpoint The address of the LayerZero endpoint. * @param _delegate The delegate capable of making OApp configurations inside of the endpoint. */ constructor(uint8 _localDecimals, address _endpoint, address _delegate) OApp(_endpoint, _delegate) { if (_localDecimals < sharedDecimals()) revert InvalidLocalDecimals(); decimalConversionRate = 10 ** (_localDecimals - sharedDecimals()); } /** * @dev Retrieves the shared decimals of the OFT. * @return The shared decimals of the OFT. * * @dev Sets an implicit cap on the amount of tokens, over uint64.max() will need some sort of outbound cap / totalSupply cap * Lowest common decimal denominator between chains. * Defaults to 6 decimal places to provide up to 18,446,744,073,709.551615 units (max uint64). * For tokens exceeding this totalSupply(), they will need to override the sharedDecimals function with something smaller. * ie. 4 sharedDecimals would be 1,844,674,407,370,955.1615 */ function sharedDecimals() public pure virtual returns (uint8) { return 6; } /** * @dev Sets the message inspector address for the OFT. * @param _msgInspector The address of the message inspector. * * @dev This is an optional contract that can be used to inspect both 'message' and 'options'. * @dev Set it to address(0) to disable it, or set it to a contract address to enable it. */ function setMsgInspector(address _msgInspector) public virtual onlyOwner { msgInspector = _msgInspector; emit MsgInspectorSet(_msgInspector); } /** * @notice Provides a quote for OFT-related operations. * @param _sendParam The parameters for the send operation. * @return oftLimit The OFT limit information. * @return oftFeeDetails The details of OFT fees. * @return oftReceipt The OFT receipt information. */ function quoteOFT( SendParam calldata _sendParam ) external view virtual returns (OFTLimit memory oftLimit, OFTFeeDetail[] memory oftFeeDetails, OFTReceipt memory oftReceipt) { uint256 minAmountLD = 0; // Unused in the default implementation. uint256 maxAmountLD = type(uint64).max; // Unused in the default implementation. oftLimit = OFTLimit(minAmountLD, maxAmountLD); // Unused in the default implementation; reserved for future complex fee details. oftFeeDetails = new OFTFeeDetail[](0); // @dev This is the same as the send() operation, but without the actual send. // - amountSentLD is the amount in local decimals that would be sent from the sender. // - amountReceivedLD is the amount in local decimals that will be credited to the recipient on the remote OFT instance. // @dev The amountSentLD MIGHT not equal the amount the user actually receives. HOWEVER, the default does. (uint256 amountSentLD, uint256 amountReceivedLD) = _debitView( _sendParam.amountLD, _sendParam.minAmountLD, _sendParam.dstEid ); oftReceipt = OFTReceipt(amountSentLD, amountReceivedLD); } /** * @notice Provides a quote for the send() operation. * @param _sendParam The parameters for the send() operation. * @param _payInLzToken Flag indicating whether the caller is paying in the LZ token. * @return msgFee The calculated LayerZero messaging fee from the send() operation. * * @dev MessagingFee: LayerZero msg fee * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. */ function quoteSend( SendParam calldata _sendParam, bool _payInLzToken ) external view virtual returns (MessagingFee memory msgFee) { // @dev mock the amount to receive, this is the same operation used in the send(). // The quote is as similar as possible to the actual send() operation. (, uint256 amountReceivedLD) = _debitView(_sendParam.amountLD, _sendParam.minAmountLD, _sendParam.dstEid); // @dev Builds the options and OFT message to quote in the endpoint. (bytes memory message, bytes memory options) = _buildMsgAndOptions(_sendParam, amountReceivedLD); // @dev Calculates the LayerZero fee for the send() operation. return _quote(_sendParam.dstEid, message, options, _payInLzToken); } /** * @dev Executes the send operation. * @param _sendParam The parameters for the send operation. * @param _fee The calculated fee for the send() operation. * - nativeFee: The native fee. * - lzTokenFee: The lzToken fee. * @param _refundAddress The address to receive any excess funds. * @return msgReceipt The receipt for the send operation. * @return oftReceipt The OFT receipt information. * * @dev MessagingReceipt: LayerZero msg receipt * - guid: The unique identifier for the sent message. * - nonce: The nonce of the sent message. * - fee: The LayerZero fee incurred for the message. */ function send( SendParam calldata _sendParam, MessagingFee calldata _fee, address _refundAddress ) external payable virtual returns (MessagingReceipt memory msgReceipt, OFTReceipt memory oftReceipt) { // @dev Applies the token transfers regarding this send() operation. // - amountSentLD is the amount in local decimals that was ACTUALLY sent from the sender. // - amountReceivedLD is the amount in local decimals that will be credited to the recipient on the remote OFT instance. (uint256 amountSentLD, uint256 amountReceivedLD) = _debit( _sendParam.amountLD, _sendParam.minAmountLD, _sendParam.dstEid ); // @dev Builds the options and OFT message to quote in the endpoint. (bytes memory message, bytes memory options) = _buildMsgAndOptions(_sendParam, amountReceivedLD); // @dev Sends the message to the LayerZero endpoint and returns the LayerZero msg receipt. msgReceipt = _lzSend(_sendParam.dstEid, message, options, _fee, _refundAddress); // @dev Formulate the OFT receipt. oftReceipt = OFTReceipt(amountSentLD, amountReceivedLD); emit OFTSent(msgReceipt.guid, _sendParam.dstEid, msg.sender, amountSentLD); } /** * @dev Internal function to build the message and options. * @param _sendParam The parameters for the send() operation. * @param _amountLD The amount in local decimals. * @return message The encoded message. * @return options The encoded options. */ function _buildMsgAndOptions( SendParam calldata _sendParam, uint256 _amountLD ) internal view virtual returns (bytes memory message, bytes memory options) { bool hasCompose; // @dev This generated message has the msg.sender encoded into the payload so the remote knows who the caller is. (message, hasCompose) = OFTMsgCodec.encode( _sendParam.to, _toSD(_amountLD), // @dev Must be include a non empty bytes if you want to compose, EVEN if you dont need it on the remote. // EVEN if you dont require an arbitrary payload to be sent... eg. '0x01' _sendParam.composeMsg ); // @dev Change the msg type depending if its composed or not. uint16 msgType = hasCompose ? SEND_AND_CALL : SEND; // @dev Combine the callers _extraOptions with the enforced options via the OAppOptionsType3. options = combineOptions(_sendParam.dstEid, msgType, _sendParam.extraOptions); // @dev Optionally inspect the message and options depending if the OApp owner has set a msg inspector. // @dev If it fails inspection, needs to revert in the implementation. ie. does not rely on return boolean if (msgInspector != address(0)) IOAppMsgInspector(msgInspector).inspect(message, options); } /** * @dev Internal function to handle the receive on the LayerZero endpoint. * @param _origin The origin information. * - srcEid: The source chain endpoint ID. * - sender: The sender address from the src chain. * - nonce: The nonce of the LayerZero message. * @param _guid The unique identifier for the received LayerZero message. * @param _message The encoded message. * @dev _executor The address of the executor. * @dev _extraData Additional data. */ function _lzReceive( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address /*_executor*/, // @dev unused in the default implementation. bytes calldata /*_extraData*/ // @dev unused in the default implementation. ) internal virtual override { // @dev The src sending chain doesnt know the address length on this chain (potentially non-evm) // Thus everything is bytes32() encoded in flight. address toAddress = _message.sendTo().bytes32ToAddress(); // @dev Credit the amountLD to the recipient and return the ACTUAL amount the recipient received in local decimals uint256 amountReceivedLD = _credit(toAddress, _toLD(_message.amountSD()), _origin.srcEid); if (_message.isComposed()) { // @dev Proprietary composeMsg format for the OFT. bytes memory composeMsg = OFTComposeMsgCodec.encode( _origin.nonce, _origin.srcEid, amountReceivedLD, _message.composeMsg() ); // @dev Stores the lzCompose payload that will be executed in a separate tx. // Standardizes functionality for executing arbitrary contract invocation on some non-evm chains. // @dev The off-chain executor will listen and process the msg based on the src-chain-callers compose options passed. // @dev The index is used when a OApp needs to compose multiple msgs on lzReceive. // For default OFT implementation there is only 1 compose msg per lzReceive, thus its always 0. endpoint.sendCompose(toAddress, _guid, 0 /* the index of the composed message*/, composeMsg); } emit OFTReceived(_guid, _origin.srcEid, toAddress, amountReceivedLD); } /** * @dev Internal function to handle the OAppPreCrimeSimulator simulated receive. * @param _origin The origin information. * - srcEid: The source chain endpoint ID. * - sender: The sender address from the src chain. * - nonce: The nonce of the LayerZero message. * @param _guid The unique identifier for the received LayerZero message. * @param _message The LayerZero message. * @param _executor The address of the off-chain executor. * @param _extraData Arbitrary data passed by the msg executor. * * @dev Enables the preCrime simulator to mock sending lzReceive() messages, * routes the msg down from the OAppPreCrimeSimulator, and back up to the OAppReceiver. */ function _lzReceiveSimulate( Origin calldata _origin, bytes32 _guid, bytes calldata _message, address _executor, bytes calldata _extraData ) internal virtual override { _lzReceive(_origin, _guid, _message, _executor, _extraData); } /** * @dev Check if the peer is considered 'trusted' by the OApp. * @param _eid The endpoint ID to check. * @param _peer The peer to check. * @return Whether the peer passed is considered 'trusted' by the OApp. * * @dev Enables OAppPreCrimeSimulator to check whether a potential Inbound Packet is from a trusted source. */ function isPeer(uint32 _eid, bytes32 _peer) public view virtual override returns (bool) { return peers[_eid] == _peer; } /** * @dev Internal function to remove dust from the given local decimal amount. * @param _amountLD The amount in local decimals. * @return amountLD The amount after removing dust. * * @dev Prevents the loss of dust when moving amounts between chains with different decimals. * @dev eg. uint(123) with a conversion rate of 100 becomes uint(100). */ function _removeDust(uint256 _amountLD) internal view virtual returns (uint256 amountLD) { return (_amountLD / decimalConversionRate) * decimalConversionRate; } /** * @dev Internal function to convert an amount from shared decimals into local decimals. * @param _amountSD The amount in shared decimals. * @return amountLD The amount in local decimals. */ function _toLD(uint64 _amountSD) internal view virtual returns (uint256 amountLD) { return _amountSD * decimalConversionRate; } /** * @dev Internal function to convert an amount from local decimals into shared decimals. * @param _amountLD The amount in local decimals. * @return amountSD The amount in shared decimals. */ function _toSD(uint256 _amountLD) internal view virtual returns (uint64 amountSD) { return uint64(_amountLD / decimalConversionRate); } /** * @dev Internal function to mock the amount mutation from a OFT debit() operation. * @param _amountLD The amount to send in local decimals. * @param _minAmountLD The minimum amount to send in local decimals. * @dev _dstEid The destination endpoint ID. * @return amountSentLD The amount sent, in local decimals. * @return amountReceivedLD The amount to be received on the remote chain, in local decimals. * * @dev This is where things like fees would be calculated and deducted from the amount to be received on the remote. */ function _debitView( uint256 _amountLD, uint256 _minAmountLD, uint32 /*_dstEid*/ ) internal view virtual returns (uint256 amountSentLD, uint256 amountReceivedLD) { // @dev Remove the dust so nothing is lost on the conversion between chains with different decimals for the token. amountSentLD = _removeDust(_amountLD); // @dev The amount to send is the same as amount received in the default implementation. amountReceivedLD = amountSentLD; // @dev Check for slippage. if (amountReceivedLD < _minAmountLD) { revert SlippageExceeded(amountReceivedLD, _minAmountLD); } } /** * @dev Internal function to perform a debit operation. * @param _amountLD The amount to send in local decimals. * @param _minAmountLD The minimum amount to send in local decimals. * @param _dstEid The destination endpoint ID. * @return amountSentLD The amount sent in local decimals. * @return amountReceivedLD The amount received in local decimals on the remote. * * @dev Defined here but are intended to be overriden depending on the OFT implementation. * @dev Depending on OFT implementation the _amountLD could differ from the amountReceivedLD. */ function _debit( uint256 _amountLD, uint256 _minAmountLD, uint32 _dstEid ) internal virtual returns (uint256 amountSentLD, uint256 amountReceivedLD); /** * @dev Internal function to perform a credit operation. * @param _to The address to credit. * @param _amountLD The amount to credit in local decimals. * @param _srcEid The source endpoint ID. * @return amountReceivedLD The amount ACTUALLY received in local decimals. * * @dev Defined here but are intended to be overriden depending on the OFT implementation. * @dev Depending on OFT implementation the _amountLD could differ from the amountReceivedLD. */ function _credit( address _to, uint256 _amountLD, uint32 _srcEid ) internal virtual returns (uint256 amountReceivedLD); } // src/TermToken.sol /// @custom:security-contact [email protected] contract TermToken is Initializable, ContextUpgradeable, OFTCore, ERC20Upgradeable, ERC20PausableUpgradeable, AccessControlUpgradeable, ERC20PermitUpgradeable, ERC20VotesUpgradeable, UUPSUpgradeable { bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE"); bytes32 public constant UPGRADER_ROLE = keccak256("UPGRADER_ROLE"); bool public burningNotPaused; bool public mintingNotPaused; /// @custom:oz-upgrades-unsafe-allow constructor constructor(address _lzEndpoint, address _delegate) OFTCore(18, _lzEndpoint, _delegate) Ownable(msg.sender) { _disableInitializers(); } function initialize(address defaultAdmin, address pauser, address upgrader, uint256 tokenMintSupply, address mintAddress) initializer public { __ERC20_init("Term Finance", "TERM"); __ERC20Pausable_init(); __AccessControl_init(); __ERC20Permit_init("Term Finance"); __ERC20Votes_init(); __UUPSUpgradeable_init(); __Context_init(); _grantRole(DEFAULT_ADMIN_ROLE, defaultAdmin); _grantRole(PAUSER_ROLE, pauser); _grantRole(UPGRADER_ROLE, upgrader); _transferOwnership(defaultAdmin); _mint(mintAddress, tokenMintSupply); } /** * @notice Retrieves interfaceID and the version of the OFT. * @return interfaceId The interface ID. * @return version The version. * * @dev interfaceId: This specific interface ID is '0x02e49c2c'. * @dev version: Indicates a cross-chain compatible msg encoding with other OFTs. * @dev If a new feature is added to the OFT cross-chain msg encoding, the version will be incremented. * ie. localOFT version(x,1) CAN send messages to remoteOFT version(x,1) */ function oftVersion() external pure virtual returns (bytes4 interfaceId, uint64 version) { return (type(IOFT).interfaceId, 1); } /** * @dev Retrieves the address of the underlying ERC20 implementation. * @return The address of the OFT token. * * @dev In the case of OFT, address(this) and erc20 are the same contract. */ function token() external view returns (address) { return address(this); } /** * @notice Indicates whether the OFT contract requires approval of the 'token()' to send. * @return requiresApproval Needs approval of the underlying token implementation. * * @dev In the case of OFT where the contract IS the token, approval is NOT required. */ function approvalRequired() external pure virtual returns (bool) { return false; } /** * @dev public mint function * @param amount amount of tokens to mint */ function mint( uint256 amount ) external returns (uint256) { require(mintingNotPaused || hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "Minting Paused"); _mint(msg.sender , amount); return amount; } /** * @dev public burn function * @param amount amount of tokens to mint */ function burn( uint256 amount ) external returns (uint256) { require(burningNotPaused || hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "Burning Paused"); _burn(msg.sender , amount); return amount; } /** * @dev Burns tokens from the sender's specified balance. * @param _amountLD The amount of tokens to send in local decimals. * @param _minAmountLD The minimum amount to send in local decimals. * @param _dstEid The destination chain ID. * @return amountSentLD The amount sent in local decimals. * @return amountReceivedLD The amount received in local decimals on the remote. */ function _debit( uint256 _amountLD, uint256 _minAmountLD, uint32 _dstEid ) internal virtual override returns (uint256 amountSentLD, uint256 amountReceivedLD) { (amountSentLD, amountReceivedLD) = _debitView(_amountLD, _minAmountLD, _dstEid); // @dev In NON-default OFT, amountSentLD could be 100, with a 10% fee, the amountReceivedLD amount is 90, // therefore amountSentLD CAN differ from amountReceivedLD. // @dev Default OFT burns on src. _burn(msg.sender, amountSentLD); } /** * @dev Credits tokens to the specified address. * @param _to The address to credit the tokens to. * @param _amountLD The amount of tokens to credit in local decimals. * @dev _srcEid The source chain ID. * @return amountReceivedLD The amount of tokens ACTUALLY received in local decimals. */ function _credit( address _to, uint256 _amountLD, uint32 /*_srcEid*/ ) internal virtual override returns (uint256 amountReceivedLD) { // @dev Default OFT mints on dst. _mint(_to, _amountLD); // @dev In the case of NON-default OFT, the _amountLD MIGHT not be == amountReceivedLD. return _amountLD; } //@dev pauses all transfers function pause() public onlyRole(PAUSER_ROLE) { _pause(); } //@dev unpauses all transfers function unpause() public onlyRole(PAUSER_ROLE) { _unpause(); } // @dev solidity requires this override function _msgSender() internal view override(ContextUpgradeable, Context) returns (address) { return super._msgSender(); } // @dev solidity requires this override function _msgData() internal view override(ContextUpgradeable, Context) returns (bytes calldata) { return super._msgData(); } // @dev solidity requires this override function _contextSuffixLength() internal view override(ContextUpgradeable, Context) returns (uint256) { return super._contextSuffixLength(); } function _authorizeUpgrade(address newImplementation) internal onlyRole(UPGRADER_ROLE) override {} // The following functions are overrides required by Solidity. function _update(address from, address to, uint256 value) internal override(ERC20Upgradeable, ERC20PausableUpgradeable, ERC20VotesUpgradeable) { require(to != address(this), "TermToken: cannot transfer tokens to token contract"); // Token transfers are only possible if the contract is not paused // OR if triggered by the owner of the contract require(!paused() || hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "TermToken: token transfer while paused"); super._update(from, to, value); } function nonces(address owner) public view override(ERC20PermitUpgradeable, NoncesUpgradeable) returns (uint256) { return super.nonces(owner); } function unpauseMinting() external onlyRole(PAUSER_ROLE) { mintingNotPaused = true; } function pauseMinting() external onlyRole(PAUSER_ROLE) { mintingNotPaused = false; } function unpauseBurning() external onlyRole(PAUSER_ROLE) { burningNotPaused = true; } function pauseBurning() external onlyRole(PAUSER_ROLE) { burningNotPaused = false; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PausableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20VotesUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol"; import "@openzeppelin/contracts/utils/Context.sol"; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import "@layerzerolabs/lz-evm-oapp-v2/contracts/oft/OFTCore.sol"; /// @custom:security-contact [email protected] contract TermToken is Initializable, ContextUpgradeable, OFTCore, ERC20Upgradeable, ERC20PausableUpgradeable, AccessControlUpgradeable, ERC20PermitUpgradeable, ERC20VotesUpgradeable, UUPSUpgradeable { bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE"); bytes32 public constant UPGRADER_ROLE = keccak256("UPGRADER_ROLE"); bool public burningNotPaused; bool public mintingNotPaused; /// @custom:oz-upgrades-unsafe-allow constructor constructor(address _lzEndpoint, address _delegate) OFTCore(18, _lzEndpoint, _delegate) Ownable(msg.sender) { _disableInitializers(); } function initialize(address defaultAdmin, address pauser, address upgrader, uint256 tokenMintSupply, address mintAddress) initializer public { __ERC20_init("Term Finance", "TERM"); __ERC20Pausable_init(); __AccessControl_init(); __ERC20Permit_init("Term Finance"); __ERC20Votes_init(); __UUPSUpgradeable_init(); __Context_init(); _grantRole(DEFAULT_ADMIN_ROLE, defaultAdmin); _grantRole(PAUSER_ROLE, pauser); _grantRole(UPGRADER_ROLE, upgrader); _transferOwnership(defaultAdmin); _mint(mintAddress, tokenMintSupply); } /** * @notice Retrieves interfaceID and the version of the OFT. * @return interfaceId The interface ID. * @return version The version. * * @dev interfaceId: This specific interface ID is '0x02e49c2c'. * @dev version: Indicates a cross-chain compatible msg encoding with other OFTs. * @dev If a new feature is added to the OFT cross-chain msg encoding, the version will be incremented. * ie. localOFT version(x,1) CAN send messages to remoteOFT version(x,1) */ function oftVersion() external pure virtual returns (bytes4 interfaceId, uint64 version) { return (type(IOFT).interfaceId, 1); } /** * @dev Retrieves the address of the underlying ERC20 implementation. * @return The address of the OFT token. * * @dev In the case of OFT, address(this) and erc20 are the same contract. */ function token() external view returns (address) { return address(this); } /** * @notice Indicates whether the OFT contract requires approval of the 'token()' to send. * @return requiresApproval Needs approval of the underlying token implementation. * * @dev In the case of OFT where the contract IS the token, approval is NOT required. */ function approvalRequired() external pure virtual returns (bool) { return false; } /** * @dev public mint function * @param amount amount of tokens to mint */ function mint( uint256 amount ) external returns (uint256) { require(mintingNotPaused || hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "Minting Paused"); _mint(msg.sender , amount); return amount; } /** * @dev public burn function * @param amount amount of tokens to mint */ function burn( uint256 amount ) external returns (uint256) { require(burningNotPaused || hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "Burning Paused"); _burn(msg.sender , amount); return amount; } /** * @dev Burns tokens from the sender's specified balance. * @param _amountLD The amount of tokens to send in local decimals. * @param _minAmountLD The minimum amount to send in local decimals. * @param _dstEid The destination chain ID. * @return amountSentLD The amount sent in local decimals. * @return amountReceivedLD The amount received in local decimals on the remote. */ function _debit( uint256 _amountLD, uint256 _minAmountLD, uint32 _dstEid ) internal virtual override returns (uint256 amountSentLD, uint256 amountReceivedLD) { (amountSentLD, amountReceivedLD) = _debitView(_amountLD, _minAmountLD, _dstEid); // @dev In NON-default OFT, amountSentLD could be 100, with a 10% fee, the amountReceivedLD amount is 90, // therefore amountSentLD CAN differ from amountReceivedLD. // @dev Default OFT burns on src. _burn(msg.sender, amountSentLD); } /** * @dev Credits tokens to the specified address. * @param _to The address to credit the tokens to. * @param _amountLD The amount of tokens to credit in local decimals. * @dev _srcEid The source chain ID. * @return amountReceivedLD The amount of tokens ACTUALLY received in local decimals. */ function _credit( address _to, uint256 _amountLD, uint32 /*_srcEid*/ ) internal virtual override returns (uint256 amountReceivedLD) { // @dev Default OFT mints on dst. _mint(_to, _amountLD); // @dev In the case of NON-default OFT, the _amountLD MIGHT not be == amountReceivedLD. return _amountLD; } //@dev pauses all transfers function pause() public onlyRole(PAUSER_ROLE) { _pause(); } //@dev unpauses all transfers function unpause() public onlyRole(PAUSER_ROLE) { _unpause(); } // @dev solidity requires this override function _msgSender() internal view override(ContextUpgradeable, Context) returns (address) { return super._msgSender(); } // @dev solidity requires this override function _msgData() internal view override(ContextUpgradeable, Context) returns (bytes calldata) { return super._msgData(); } // @dev solidity requires this override function _contextSuffixLength() internal view override(ContextUpgradeable, Context) returns (uint256) { return super._contextSuffixLength(); } function _authorizeUpgrade(address newImplementation) internal onlyRole(UPGRADER_ROLE) override {} // The following functions are overrides required by Solidity. function _update(address from, address to, uint256 value) internal override(ERC20Upgradeable, ERC20PausableUpgradeable, ERC20VotesUpgradeable) { require(to != address(this), "TermToken: cannot transfer tokens to token contract"); // Token transfers are only possible if the contract is not paused // OR if triggered by the owner of the contract require(!paused() || hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "TermToken: token transfer while paused"); super._update(from, to, value); } function nonces(address owner) public view override(ERC20PermitUpgradeable, NoncesUpgradeable) returns (uint256) { return super.nonces(owner); } function unpauseMinting() external onlyRole(PAUSER_ROLE) { mintingNotPaused = true; } function pauseMinting() external onlyRole(PAUSER_ROLE) { mintingNotPaused = false; } function unpauseBurning() external onlyRole(PAUSER_ROLE) { burningNotPaused = true; } function pauseBurning() external onlyRole(PAUSER_ROLE) { burningNotPaused = false; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PausableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20VotesUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import { InterchainTokenStandard } from '@axelar-network/interchain-token-service/contracts/interchain-token/InterchainTokenStandard.sol'; /// @custom:security-contact [email protected] contract TermToken is Initializable, InterchainTokenStandard, ERC20Upgradeable, ERC20PausableUpgradeable, AccessControlUpgradeable, ERC20PermitUpgradeable, ERC20VotesUpgradeable, UUPSUpgradeable { bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE"); bytes32 public constant UPGRADER_ROLE = keccak256("UPGRADER_ROLE"); bytes32 public constant INTERCHAIN_TOKEN_SERVICE_ROLE = keccak256("INTERCHAIN_TOKEN_SERVICE_ROLE"); address internal termInterchainTokenService; bytes32 internal tokenId; /// @custom:oz-upgrades-unsafe-allow constructor constructor() { _disableInitializers(); } function initialize(address defaultAdmin, address pauser, address upgrader, address termInterchainTokenService_) initializer public { __ERC20_init("Term Finance", "TERM"); __ERC20Pausable_init(); __AccessControl_init(); __ERC20Permit_init("Term Finance"); __ERC20Votes_init(); __UUPSUpgradeable_init(); termInterchainTokenService = termInterchainTokenService_; require(defaultAdmin != address(0), "TermTokenAxelar: defaultAdmin is the zero address"); require(pauser != address(0), "TermTokenAxelar: pauser is the zero address"); require(upgrader != address(0), "TermTokenAxelar: upgrader is the zero address"); require(termInterchainTokenService_ != address(0), "TermTokenAxelar: termInterchainTokenService_ is the zero address"); _grantRole(DEFAULT_ADMIN_ROLE, defaultAdmin); _grantRole(PAUSER_ROLE, pauser); _grantRole(UPGRADER_ROLE, upgrader); _grantRole(INTERCHAIN_TOKEN_SERVICE_ROLE, termInterchainTokenService_); } function setTokenId(bytes32 tokenId_) external onlyRole(PAUSER_ROLE) { tokenId = tokenId_; } /** * @notice Function to mint new tokens. * @dev Can only be called by the minter address. * @param account The address that will receive the minted tokens. * @param amount The amount of tokens to mint. */ function mint(address account, uint256 amount) external onlyRole(INTERCHAIN_TOKEN_SERVICE_ROLE) { _mint(account, amount); } /** * @notice Function to burn tokens. * @dev Can only be called by the minter address. * @param account The address that will have its tokens burnt. * @param amount The amount of tokens to burn. */ function burn(address account, uint256 amount) external onlyRole(INTERCHAIN_TOKEN_SERVICE_ROLE) { _burn(account, amount); } /** * @notice Returns the interchain token service * @return address The interchain token service contract */ function interchainTokenService() public view override returns (address) { return termInterchainTokenService; } /** * @notice Returns the tokenId for this token. * @return bytes32 The token manager contract. */ function interchainTokenId() public view override returns (bytes32) { return tokenId; } /** * @notice A method to be overwritten that will decrease the allowance of the `spender` from `sender` by `amount`. * @dev Needs to be overwritten. This provides flexibility for the choice of ERC20 implementation used. Must revert if allowance is not sufficient. */ function _spendAllowance(address sender, address spender, uint256 amount) internal override (ERC20Upgradeable, InterchainTokenStandard) { uint256 _allowance = allowance(sender, spender); if (_allowance != type(uint256).max) { _approve(sender, spender, _allowance - amount); } } function pause() public onlyRole(PAUSER_ROLE) { _pause(); } function unpause() public onlyRole(PAUSER_ROLE) { _unpause(); } function _authorizeUpgrade(address newImplementation) internal onlyRole(UPGRADER_ROLE) override {} // The following functions are overrides required by Solidity. function _update(address from, address to, uint256 value) internal override(ERC20Upgradeable, ERC20PausableUpgradeable, ERC20VotesUpgradeable) { super._update(from, to, value); } function nonces(address owner) public view override(ERC20PermitUpgradeable, NoncesUpgradeable) returns (uint256) { return super.nonces(owner); } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.20; import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PausableUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20PermitUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/token/ERC20/extensions/ERC20VotesUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts-upgradeable/proxy/utils/UUPSUpgradeable.sol"; import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol"; import "@openzeppelin/contracts/utils/Context.sol"; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import "@layerzerolabs/lz-evm-oapp-v2/contracts/oft/OFTCore.sol"; /// @custom:security-contact [email protected] contract TermTokenL2 is Initializable, ContextUpgradeable, OFTCore, ERC20Upgradeable, ERC20PausableUpgradeable, AccessControlUpgradeable, ERC20PermitUpgradeable, ERC20VotesUpgradeable, UUPSUpgradeable { bytes32 public constant PAUSER_ROLE = keccak256("PAUSER_ROLE"); bytes32 public constant UPGRADER_ROLE = keccak256("UPGRADER_ROLE"); /// @custom:oz-upgrades-unsafe-allow constructor constructor(address _lzEndpoint, address _delegate) OFTCore(18, _lzEndpoint, _delegate) Ownable(msg.sender) { _disableInitializers(); } function initialize(address defaultAdmin, address pauser, address upgrader) initializer public { __ERC20_init("Term Finance", "TERM"); __ERC20Pausable_init(); __AccessControl_init(); __ERC20Permit_init("Term Finance"); __ERC20Votes_init(); __UUPSUpgradeable_init(); __Context_init(); _grantRole(DEFAULT_ADMIN_ROLE, defaultAdmin); _grantRole(PAUSER_ROLE, pauser); _grantRole(UPGRADER_ROLE, upgrader); _transferOwnership(defaultAdmin); } /** * @notice Retrieves interfaceID and the version of the OFT. * @return interfaceId The interface ID. * @return version The version. * * @dev interfaceId: This specific interface ID is '0x02e49c2c'. * @dev version: Indicates a cross-chain compatible msg encoding with other OFTs. * @dev If a new feature is added to the OFT cross-chain msg encoding, the version will be incremented. * ie. localOFT version(x,1) CAN send messages to remoteOFT version(x,1) */ function oftVersion() external pure virtual returns (bytes4 interfaceId, uint64 version) { return (type(IOFT).interfaceId, 1); } /** * @dev Retrieves the address of the underlying ERC20 implementation. * @return The address of the OFT token. * * @dev In the case of OFT, address(this) and erc20 are the same contract. */ function token() external view returns (address) { return address(this); } /** * @notice Indicates whether the OFT contract requires approval of the 'token()' to send. * @return requiresApproval Needs approval of the underlying token implementation. * * @dev In the case of OFT where the contract IS the token, approval is NOT required. */ function approvalRequired() external pure virtual returns (bool) { return false; } /** * @dev Burns tokens from the sender's specified balance. * @param _amountLD The amount of tokens to send in local decimals. * @param _minAmountLD The minimum amount to send in local decimals. * @param _dstEid The destination chain ID. * @return amountSentLD The amount sent in local decimals. * @return amountReceivedLD The amount received in local decimals on the remote. */ function _debit( uint256 _amountLD, uint256 _minAmountLD, uint32 _dstEid ) internal virtual override returns (uint256 amountSentLD, uint256 amountReceivedLD) { (amountSentLD, amountReceivedLD) = _debitView(_amountLD, _minAmountLD, _dstEid); // @dev In NON-default OFT, amountSentLD could be 100, with a 10% fee, the amountReceivedLD amount is 90, // therefore amountSentLD CAN differ from amountReceivedLD. // @dev Default OFT burns on src. _burn(msg.sender, amountSentLD); } /** * @dev Credits tokens to the specified address. * @param _to The address to credit the tokens to. * @param _amountLD The amount of tokens to credit in local decimals. * @dev _srcEid The source chain ID. * @return amountReceivedLD The amount of tokens ACTUALLY received in local decimals. */ function _credit( address _to, uint256 _amountLD, uint32 /*_srcEid*/ ) internal virtual override returns (uint256 amountReceivedLD) { // @dev Default OFT mints on dst. _mint(_to, _amountLD); // @dev In the case of NON-default OFT, the _amountLD MIGHT not be == amountReceivedLD. return _amountLD; } //@dev pauses all transfers function pause() public onlyRole(PAUSER_ROLE) { _pause(); } //@dev unpauses all transfers function unpause() public onlyRole(PAUSER_ROLE) { _unpause(); } // @dev solidity requires this override function _msgSender() internal view override(ContextUpgradeable, Context) returns (address) { return super._msgSender(); } // @dev solidity requires this override function _msgData() internal view override(ContextUpgradeable, Context) returns (bytes calldata) { return super._msgData(); } // @dev solidity requires this override function _contextSuffixLength() internal view override(ContextUpgradeable, Context) returns (uint256) { return super._contextSuffixLength(); } function _authorizeUpgrade(address newImplementation) internal onlyRole(UPGRADER_ROLE) override {} // The following functions are overrides required by Solidity. function _update(address from, address to, uint256 value) internal override(ERC20Upgradeable, ERC20PausableUpgradeable, ERC20VotesUpgradeable) { require(to != address(this), "TermToken: cannot transfer tokens to token contract"); // Token transfers are only possible if the contract is not paused // OR if triggered by the owner of the contract require(!paused() || hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "TermToken: token transfer while paused"); super._update(from, to, value); } function nonces(address owner) public view override(ERC20PermitUpgradeable, NoncesUpgradeable) returns (uint256) { return super.nonces(owner); } }
{ "remappings": [ "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/", "@axelar-network/interchain-token-service/=lib/axelarnetwork/interchain-token-service/", "@layerzerolabs/lz-evm-oapp-v2/=node_modules/@layerzerolabs/lz-evm-oapp-v2/", "@layerzerolabs/lz-evm-protocol-v2/=node_modules/@layerzerolabs/lz-evm-protocol-v2/", "@layerzerolabs/lz-evm-messagelib-v2/=node_modules/@layerzerolabs/lz-evm-messagelib-v2/", "solidity-bytes-utils/=node_modules/solidity-bytes-utils/", "axelarnetwork/=lib/axelarnetwork/", "ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "forge-std/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } }, "evmVersion": "paris", "viaIR": false, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address","name":"implementation","type":"address"},{"internalType":"bytes","name":"_data","type":"bytes"}],"stateMutability":"payable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"implementation","type":"address"}],"name":"ERC1967InvalidImplementation","type":"error"},{"inputs":[],"name":"ERC1967NonPayable","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"stateMutability":"payable","type":"fallback"}]
Contract Creation Code
608060405260405161040a38038061040a83398101604081905261002291610268565b61002c8282610033565b5050610352565b61003c82610092565b6040516001600160a01b038316907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b90600090a280511561008657610081828261010e565b505050565b61008e610185565b5050565b806001600160a01b03163b6000036100cd57604051634c9c8ce360e01b81526001600160a01b03821660048201526024015b60405180910390fd5b7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc80546001600160a01b0319166001600160a01b0392909216919091179055565b6060600080846001600160a01b03168460405161012b9190610336565b600060405180830381855af49150503d8060008114610166576040519150601f19603f3d011682016040523d82523d6000602084013e61016b565b606091505b50909250905061017c8583836101a6565b95945050505050565b34156101a45760405163b398979f60e01b815260040160405180910390fd5b565b6060826101bb576101b682610205565b6101fe565b81511580156101d257506001600160a01b0384163b155b156101fb57604051639996b31560e01b81526001600160a01b03851660048201526024016100c4565b50805b9392505050565b8051156102155780518082602001fd5b604051630a12f52160e11b815260040160405180910390fd5b634e487b7160e01b600052604160045260246000fd5b60005b8381101561025f578181015183820152602001610247565b50506000910152565b6000806040838503121561027b57600080fd5b82516001600160a01b038116811461029257600080fd5b60208401519092506001600160401b03808211156102af57600080fd5b818501915085601f8301126102c357600080fd5b8151818111156102d5576102d561022e565b604051601f8201601f19908116603f011681019083821181831017156102fd576102fd61022e565b8160405282815288602084870101111561031657600080fd5b610327836020830160208801610244565b80955050505050509250929050565b60008251610348818460208701610244565b9190910192915050565b60aa806103606000396000f3fe6080604052600a600c565b005b60186014601a565b6051565b565b6000604c7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc546001600160a01b031690565b905090565b3660008037600080366000845af43d6000803e808015606f573d6000f35b3d6000fdfea2646970667358221220284968101e7d97d25c728f95697ef28c36122227f755295bad7ca94aac02785264736f6c63430008140033000000000000000000000000aacc43c921b6fa79261d9c19e86501788217ff29000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000a4530b97a4000000000000000000000000b8a1df43c1c88b13937c0c5cebbad15830caec0300000000000000000000000073d1c7dc9ceb14660cf1e9bb29f80ecf9e97d774000000000000000000000000b8a1df43c1c88b13937c0c5cebbad15830caec0300000000000000000000000000000000000000000052b7d2dcc80cd2e40000000000000000000000000000000842fdfb5940ef6a4ea6c5dee024eec1ddc6977d00000000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x6080604052600a600c565b005b60186014601a565b6051565b565b6000604c7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc546001600160a01b031690565b905090565b3660008037600080366000845af43d6000803e808015606f573d6000f35b3d6000fdfea2646970667358221220284968101e7d97d25c728f95697ef28c36122227f755295bad7ca94aac02785264736f6c63430008140033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000aacc43c921b6fa79261d9c19e86501788217ff29000000000000000000000000000000000000000000000000000000000000004000000000000000000000000000000000000000000000000000000000000000a4530b97a4000000000000000000000000b8a1df43c1c88b13937c0c5cebbad15830caec0300000000000000000000000073d1c7dc9ceb14660cf1e9bb29f80ecf9e97d774000000000000000000000000b8a1df43c1c88b13937c0c5cebbad15830caec0300000000000000000000000000000000000000000052b7d2dcc80cd2e40000000000000000000000000000000842fdfb5940ef6a4ea6c5dee024eec1ddc6977d00000000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : implementation (address): 0xaACc43C921b6fA79261d9c19e86501788217FF29
Arg [1] : _data (bytes): 0x530b97a4000000000000000000000000b8a1df43c1c88b13937c0c5cebbad15830caec0300000000000000000000000073d1c7dc9ceb14660cf1e9bb29f80ecf9e97d774000000000000000000000000b8a1df43c1c88b13937c0c5cebbad15830caec0300000000000000000000000000000000000000000052b7d2dcc80cd2e40000000000000000000000000000000842fdfb5940ef6a4ea6c5dee024eec1ddc6977d
-----Encoded View---------------
9 Constructor Arguments found :
Arg [0] : 000000000000000000000000aacc43c921b6fa79261d9c19e86501788217ff29
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000040
Arg [2] : 00000000000000000000000000000000000000000000000000000000000000a4
Arg [3] : 530b97a4000000000000000000000000b8a1df43c1c88b13937c0c5cebbad158
Arg [4] : 30caec0300000000000000000000000073d1c7dc9ceb14660cf1e9bb29f80ecf
Arg [5] : 9e97d774000000000000000000000000b8a1df43c1c88b13937c0c5cebbad158
Arg [6] : 30caec0300000000000000000000000000000000000000000052b7d2dcc80cd2
Arg [7] : e40000000000000000000000000000000842fdfb5940ef6a4ea6c5dee024eec1
Arg [8] : ddc6977d00000000000000000000000000000000000000000000000000000000
Deployed Bytecode Sourcemap
600:1117:38:-:0;;;2649:11:40;:9;:11::i;:::-;600:1117:38;2323:83:40;2371:28;2381:17;:15;:17::i;:::-;2371:9;:28::i;:::-;2323:83::o;1583:132:38:-;1650:7;1676:32;1144:66:39;1852:53;-1:-1:-1;;;;;1852:53:39;;1774:138;1676:32:38;1669:39;;1583:132;:::o;949:895:40:-;1287:14;1284:1;1281;1268:34;1501:1;1498;1482:14;1479:1;1463:14;1456:5;1443:60;1577:16;1574:1;1571;1556:38;1615:6;1682:66;;;;1797:16;1794:1;1787:27;1682:66;1717:16;1714:1;1707:27
Swarm Source
ipfs://284968101e7d97d25c728f95697ef28c36122227f755295bad7ca94aac027852
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.