ERC-20
DeFi
Overview
Max Total Supply
11,237,104.229281264027736019 FENIX
Holders
647 (0.00%)
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
1,124.399169162889645658 FENIXValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
Fenix
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 10000 runs
Other Settings:
default evmVersion, Audited
Contract Source Code (Solidity Standard Json-Input format)Audit Report
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.17; /*********************************************************************************************************************** ..:^~!?YPB&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ 7 .:~JP#@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ & !: :7G@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @G J@@#GY7~^.. ^P@@@@@@@@@@@@@Y!YYYYJG@@@@@@@77YYYJP@@@@@@@@&!&@@@@@@@@JP@@@@@@@@7#@@@@@@@G7&@@@@@@@G!&@ @@J 7@@@@@@@@@@&GJ^ ?@@@@@@@@@@@^J@@@@@@@@@@@@@.P@@@@@@@@@@@@@& ~?&@@@@@@~J@@@@@@@@.G@@@@@@@@#!?@@@@#!?&@@ @@@J ~P#@@@@@@@@@@@@@@&! B@@@@@@@@@~J@@@@@@@@@@@@@:P@@@@@@@@@@@@@&.@B~Y@@@@@~J@@@@@@@@:G@@@@@@@@@@G~P&?!&@@@@ @@@@G ~G@@@@@@@@@@@@@@@@@@@@Y G@@@@@@@@~^YYYP@@@@@@@@@:~YYYG@@@@@@@@@&.@@@P~P@@@~J@@@@@@@@:G@@@@@@@@@@@&. !@@@@@@ @@@@@&^^&@@@@@@@@@@@@@@@@@@@@@@@: @@@@@@@@~Y@@@@@@@@@@@@@:G@@@@@@@@@@@@@&.@@@@@Y~B@!J@@@@@@@@:G@@@@@@@@@@Y~B@Y~B@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@&5!^^!P~ G@@@@@@@~J@@@@@@@@@@@@@:G@@@@@@@@@@@@@&.@@@@@@&?7.J@@@@@@@@.G@@@@@@@@P~P@@@@&7!&@@ @@@@@@@@@@@@@@@@@@@@@@@@Y B@@@@@@@!5@@@@@@@@@@@@@^!5555Y#@@@@@@@&:@@@@@@@@&^Y@@@@@@@@^B@@@@@@&!J@@@@@@@@#!Y@ @@@@@@@@@@@@@@@@@@@@@@@& ~@@@@@@@@@@@@@@@@@@@@@@@@@&&&&&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@&@ @@@@@@@@@@@@@@@@@@@@@@@@7 J@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ @@@@@@@@@@@@@@@@@@@@@@@@@#7. .^Y&@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ ***********************************************************************************************************************/ import { UD60x18, convert, wrap, unwrap, ud, E, ZERO } from "@prb/math/UD60x18.sol"; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { IERC165 } from "@openzeppelin/contracts/interfaces/IERC165.sol"; import { IBurnableToken } from "xen-crypto/interfaces/IBurnableToken.sol"; import { IBurnRedeemable } from "xen-crypto/interfaces/IBurnRedeemable.sol"; enum Status { ACTIVE, DEFER, END } struct Stake { Status status; uint40 startTs; uint40 deferralTs; uint40 endTs; uint16 term; uint256 fenix; uint256 shares; uint256 payout; } struct Reward { uint40 id; uint40 rewardTs; uint256 fenix; address caller; } ///---------------------------------------------------------------------------------------------------------------- /// Events ///---------------------------------------------------------------------------------------------------------------- library FenixError { error WrongCaller(address caller); error AddressZero(); error BalanceZero(); error TermZero(); error TermGreaterThanMax(); error StakeNotActive(); error StakeNotEnded(); error StakeLate(); error CooldownActive(); error StakeStatusAlreadySet(Status status); error SizeGreaterThanMax(); } /// @title FENIX pays you to hold your own crypto /// @author Joe Blau <[email protected]> /// @notice FENIX pays you to hold your own crypto /// @dev Fenix is an ERC20 token that pays you to hold your own crypto. contract Fenix is IBurnRedeemable, IERC165, ERC20("FENIX", "FENIX") { ///---------------------------------------------------------------------------------------------------------------- /// Constants ///---------------------------------------------------------------------------------------------------------------- address public constant XEN_ADDRESS = 0x06450dEe7FD2Fb8E39061434BAbCFC05599a6Fb8; uint256 public constant XEN_BURN_RATIO = 10_000; uint256 public constant MAX_STAKE_LENGTH_DAYS = 7_777; uint256 internal constant UINT256_MAX = type(uint256).max; uint256 internal constant ONE_DAY_TS = 86_400; // (1 day) uint256 internal constant ONE_EIGHTY_DAYS_TS = 15_552_000; // 86_400 * 180 (180 days) uint256 internal constant REWARD_COOLDOWN_TS = 7_862_400; // 86_400 * 7 * 13 (13 weeks) uint256 internal constant REWARD_LAUNCH_COOLDOWN_TS = 1_814_400; // 86_400 * 7 * 3 (3 weeks) UD60x18 public constant ANNUAL_INFLATION_RATE = UD60x18.wrap(0.016180339887498948e18); UD60x18 internal constant ONE = UD60x18.wrap(1e18); UD60x18 internal constant ONE_YEAR_DAYS = UD60x18.wrap(365); ///---------------------------------------------------------------------------------------------------------------- /// Variables ///---------------------------------------------------------------------------------------------------------------- uint40 public immutable genesisTs; uint256 public cooldownUnlockTs; uint256 public rewardPoolSupply = 0; uint256 public shareRate = 1e18; uint256 public equityPoolSupply = 0; uint256 public equityPoolTotalShares = 0; mapping(address => Stake[]) internal stakes; Reward[] internal rewards; ///---------------------------------------------------------------------------------------------------------------- /// Events ///---------------------------------------------------------------------------------------------------------------- /// @notice Stake has been started /// @dev Size and Time bonus have been calculated to burn FENIX in exchnge for equity to start stake /// @param _stake the stake object event StartStake(Stake indexed _stake); /// @notice Stake has been deferred /// @dev Remove the stake and it's equity from the pool /// @param _stake the stake object event DeferStake(Stake indexed _stake); /// @notice Stake has been ended /// @dev Remove the stake from the users stakes and mint the payout into the stakers wallet /// @param _stake the stake object event EndStake(Stake indexed _stake); /// @notice Reward Pool has been flushed /// @dev Flushed reward pool into staker pool event FlushRewardPool(Reward indexed reward); /// @notice Share rate has been updated /// @dev Share rate has been updated /// @param _shareRate the new share rate event UpdateShareRate(uint256 indexed _shareRate); ///---------------------------------------------------------------------------------------------------------------- /// Contract ///---------------------------------------------------------------------------------------------------------------- constructor() { genesisTs = uint40(block.timestamp); cooldownUnlockTs = block.timestamp + REWARD_LAUNCH_COOLDOWN_TS; } /// @notice Evaluate if the contract supports the interface /// @dev Evaluate if the contract supports burning tokens /// @param interfaceId the interface to evaluate function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IBurnRedeemable).interfaceId || interfaceId == this.supportsInterface.selector; } /// @notice Mint FENIX tokens /// @dev Mint FENIX tokens to the user address /// @param user the address of the user to mint FENIX tokens for /// @param amount the amount of FENIX tokens to mint function onTokenBurned(address user, uint256 amount) external { if (_msgSender() != XEN_ADDRESS) revert FenixError.WrongCaller(_msgSender()); if (user == address(0)) revert FenixError.AddressZero(); if (amount == 0) revert FenixError.BalanceZero(); uint256 fenix = amount / XEN_BURN_RATIO; rewardPoolSupply += fenix; _mint(user, fenix); emit Redeemed(user, XEN_ADDRESS, address(this), amount, fenix); } /// @notice Burn XEN tokens /// @dev Execute proof of burn on remote contract to burn XEN tokens /// @param xen the amount of XEN to burn from the current wallet address function burnXEN(uint256 xen) public { IBurnableToken(XEN_ADDRESS).burn(_msgSender(), xen); } /// @notice Starts a stake /// @dev Initialize a stake for the current wallet address /// @param fenix the amount of fenix to stake /// @param term the number of days to stake function startStake(uint256 fenix, uint256 term) public { if (fenix == 0) revert FenixError.BalanceZero(); if (term == 0) revert FenixError.TermZero(); uint40 startTs = uint40(block.timestamp); uint40 endTs = uint40(block.timestamp + (term * ONE_DAY_TS)); uint256 bonus = calculateBonus(fenix, term); uint256 shares = calculateShares(bonus); UD60x18 time = ud(term).div(ONE_YEAR_DAYS); uint256 inflatedSupply = unwrap(ud(fenix).mul((ONE.add(ANNUAL_INFLATION_RATE)).pow(time))); uint256 newShares = unwrap(ud(shares).mul(ud(inflatedSupply))); equityPoolSupply += inflatedSupply; equityPoolTotalShares += newShares; Stake memory _stake = Stake(Status.ACTIVE, startTs, 0, endTs, uint16(term), fenix, newShares, 0); stakes[_msgSender()].push(_stake); _burn(_msgSender(), fenix); emit StartStake(_stake); } /// @notice Defer stake until future date /// @dev Defer a stake by removing the supply allocated to the stake from the pool /// @param stakeIndex the index of the stake to defer /// @param stakerAddress the address of the stake owner that will be deferred function deferStake(uint256 stakeIndex, address stakerAddress) public { if (stakes[stakerAddress].length <= stakeIndex) revert FenixError.StakeNotActive(); Stake memory _stake = stakes[stakerAddress][stakeIndex]; if (_stake.status != Status.ACTIVE) return; if (block.timestamp < _stake.endTs && _msgSender() != stakerAddress) revert FenixError.WrongCaller(_msgSender()); UD60x18 rewardPercent = ZERO; if (block.timestamp > _stake.endTs) { rewardPercent = ud(calculateLatePayout(_stake)); } else { rewardPercent = ud(calculateEarlyPayout(_stake)); } UD60x18 poolSharePercent = ud(_stake.shares).div(ud(equityPoolTotalShares)); UD60x18 stakerPoolSupplyPercent = poolSharePercent.mul(rewardPercent); uint256 equitySupply = unwrap(ud(equityPoolSupply).mul(stakerPoolSupplyPercent)); Stake memory deferredStake = Stake( Status.DEFER, _stake.startTs, uint40(block.timestamp), _stake.endTs, _stake.term, _stake.fenix, _stake.shares, equitySupply ); stakes[stakerAddress][stakeIndex] = deferredStake; equityPoolTotalShares -= _stake.shares; equityPoolSupply -= equitySupply; emit DeferStake(deferredStake); } /// @notice End a stake /// @dev End a stake by allocating the stake supply to the stakers wallet /// @param stakeIndex the index of the stake to end function endStake(uint256 stakeIndex) public { deferStake(stakeIndex, _msgSender()); Stake memory _stake = stakes[_msgSender()][stakeIndex]; if (_stake.status == Status.END) revert FenixError.StakeStatusAlreadySet(Status.END); _mint(_msgSender(), _stake.payout); uint256 returnOnStake = unwrap(ud(_stake.payout).div(ud(_stake.fenix))); if (returnOnStake > shareRate) { shareRate = returnOnStake; emit UpdateShareRate(shareRate); } Stake memory endedStake = Stake( Status.END, _stake.startTs, _stake.deferralTs, _stake.endTs, _stake.term, _stake.fenix, _stake.shares, _stake.payout ); stakes[_msgSender()][stakeIndex] = endedStake; emit EndStake(endedStake); } /// @notice Calculate bonus /// @dev Use fenix amount and term to calculate size and time bonus used for pool equity stake /// @param fenix the amount of fenix used to calculate the equity stake /// @param term the term of the stake in days used to calculate the pool equity stake /// @return bonus the bonus for pool equity stake function calculateBonus(uint256 fenix, uint256 term) public pure returns (uint256) { UD60x18 sizeBonus = ud(calculateSizeBonus(fenix)); UD60x18 timeBonus = ud(calculateTimeBonus(term)); UD60x18 bonus = sizeBonus.mul(E.pow(timeBonus)); return unwrap(bonus); } /// @notice Calculate size bonus /// @dev Use fenix amount to calculate the size bonus used for pool equity stake /// @param fenix the amount of fenix used to calculate the equity stake /// @return bonus the size bonus for pool equity stake function calculateSizeBonus(uint256 fenix) public pure returns (uint256) { if (fenix >= (UINT256_MAX - 3)) revert FenixError.SizeGreaterThanMax(); return unwrap(ONE.sub((ud(fenix).add(ONE)).inv())); } /// @notice Calculate time bonus /// @dev Use term to calculate the time bonus used for pool equity stake /// @param term the term of the stake in days used to calculate the pool equity stake /// @return bonus the time bonus for pool equity stake function calculateTimeBonus(uint256 term) public pure returns (uint256) { if (term > MAX_STAKE_LENGTH_DAYS) revert FenixError.TermGreaterThanMax(); UD60x18 timeBonus = ONE.add(ud(term).div(ud(MAX_STAKE_LENGTH_DAYS))); return unwrap(timeBonus); } /// @notice Calculate shares /// @dev Use bonus to calculate the number of shares to be issued to the staker /// @param bonus the bonus to calculate the shares from /// @return shares the number of shares to be issued to the staker function calculateShares(uint256 bonus) public view returns (uint256) { UD60x18 shares = ud(bonus).div(ud(shareRate)); return unwrap(shares); } /// @notice Calculate the early end stake penalty /// @dev Calculates the early end stake penality to be split between the pool and the staker /// @param stake the stake to calculate the penalty for /// @return reward the reward percentage for the stake function calculateEarlyPayout(Stake memory stake) public view returns (uint256) { if (block.timestamp < stake.startTs || stake.status != Status.ACTIVE) revert FenixError.StakeNotActive(); if (block.timestamp > stake.endTs) revert FenixError.StakeLate(); uint256 termDelta = block.timestamp - stake.startTs; uint256 scaleTerm = stake.term * ONE_DAY_TS; UD60x18 reward = (convert(termDelta).div(convert(scaleTerm))).powu(2); return unwrap(reward); } /// @notice Calculate the late end stake penalty /// @dev Calculates the late end stake penality to be split between the pool and the staker /// @param stake a parameter just like in doxygen (must be followed by parameter name) /// @return reward the reward percentage for the stake function calculateLatePayout(Stake memory stake) public view returns (uint256) { if (block.timestamp < stake.startTs || stake.status != Status.ACTIVE) revert FenixError.StakeNotActive(); if (block.timestamp < stake.endTs) revert FenixError.StakeNotEnded(); uint256 lateTs = block.timestamp - stake.endTs; if (lateTs > ONE_EIGHTY_DAYS_TS) return 0; UD60x18 penalty = ud(lateTs).div(ud(ONE_EIGHTY_DAYS_TS)).powu(3); UD60x18 reward = ONE.sub(penalty); return unwrap(reward); } /// @notice Flush reward pool /// @dev Flush reward pool to stake pool function flushRewardPool() public { if (block.timestamp < cooldownUnlockTs) revert FenixError.CooldownActive(); uint256 cooldownPeriods = (block.timestamp - cooldownUnlockTs) / REWARD_COOLDOWN_TS; equityPoolSupply += rewardPoolSupply; cooldownUnlockTs += REWARD_COOLDOWN_TS + (cooldownPeriods * REWARD_COOLDOWN_TS); Reward memory reward = Reward(uint40(rewards.length), uint40(block.timestamp), rewardPoolSupply, _msgSender()); rewardPoolSupply = 0; rewards.push(reward); emit FlushRewardPool(reward); } /// @notice Get stake for address at index /// @dev Read stake from stakes mapping stake array /// @param stakerAddress address of stake owner /// @param stakeIndex index of stake to read /// @return stake function stakeFor(address stakerAddress, uint256 stakeIndex) public view returns (Stake memory) { return stakes[stakerAddress][stakeIndex]; } /// @notice Get stake count for address /// @dev Read stake count from stakes mapping /// @param stakerAddress address of stake owner /// @return stake count function stakeCount(address stakerAddress) public view returns (uint256) { return stakes[stakerAddress].length; } /// @notice Get reward for index /// @dev Read reward from rewards array /// @param index index of reward to read /// @return reward function rewardFor(uint256 index) public view returns (Reward memory) { return rewards[index]; } /// @notice Get reward count /// @dev Read reward count from rewards array /// @return reward count function rewardCount() public view returns (uint256) { return rewards.length; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IBurnRedeemable { event Redeemed( address indexed user, address indexed xenContract, address indexed tokenContract, uint256 xenAmount, uint256 tokenAmount ); function onTokenBurned(address user, uint256 amount) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IBurnableToken { function burn(address user, uint256 amount) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC165.sol) pragma solidity ^0.8.0; import "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates floor(x*y÷denominator) with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded down. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates floor(x*y÷1e18) with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded down. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates floor(x*y÷denominator) with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - Unlike {mulDiv}, the result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // This works thanks to two's complement. // "sgt" stands for "signed greater than" and "sub(0,1)" is max uint256. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round down the result. uint256 roundedDownResult = x / result; if (result >= roundedDownResult) { result = roundedDownResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and hte intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds down to infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm. /// /// For $0 \leq x \lt 1$, the logarithm is calculated as: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm and add it to the result and finally calculate $y = x * 2^{-n}$. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // This is $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded down. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ // /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded down. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + delta * (remainder > 0 ? 1 : 0)`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder * (remainder > 0 ? 1 : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded down. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm. /// /// For $0 \leq x < 1$, the logarithm is calculated as: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm, add it to the result and finally calculate $y = x * 2^{-n}$. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // This is $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded down. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
{ "remappings": [ "@atomize/=src/", "@openzeppelin/=lib/openzeppelin-contracts/", "@prb/math/=lib/prb-math/src/", "@prb/test/=lib/prb-test/src/", "XEN-crypto/=lib/XEN-crypto/contracts/", "abdk-libraries-solidity/=lib/abdk-libraries-solidity/", "ds-test/=lib/forge-std/lib/ds-test/src/", "forge-std/=lib/forge-std/src/", "prb-math/=lib/prb-math/src/", "prb-test/=lib/prb-test/src/", "xen-crypto/=lib/XEN-crypto/contracts/" ], "optimizer": { "enabled": true, "runs": 10000 }, "metadata": { "bytecodeHash": "none", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
Contract Security Audit
- Certik - Apr 13th, 2023 - Security Audit Report
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AddressZero","type":"error"},{"inputs":[],"name":"BalanceZero","type":"error"},{"inputs":[],"name":"CooldownActive","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"},{"internalType":"uint256","name":"denominator","type":"uint256"}],"name":"PRBMath_MulDiv_Overflow","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Convert_Overflow","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Log_InputTooSmall","type":"error"},{"inputs":[],"name":"SizeGreaterThanMax","type":"error"},{"inputs":[],"name":"StakeLate","type":"error"},{"inputs":[],"name":"StakeNotActive","type":"error"},{"inputs":[],"name":"StakeNotEnded","type":"error"},{"inputs":[{"internalType":"enum Status","name":"status","type":"uint8"}],"name":"StakeStatusAlreadySet","type":"error"},{"inputs":[],"name":"TermGreaterThanMax","type":"error"},{"inputs":[],"name":"TermZero","type":"error"},{"inputs":[{"internalType":"address","name":"caller","type":"address"}],"name":"WrongCaller","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"enum Status","name":"status","type":"uint8"},{"internalType":"uint40","name":"startTs","type":"uint40"},{"internalType":"uint40","name":"deferralTs","type":"uint40"},{"internalType":"uint40","name":"endTs","type":"uint40"},{"internalType":"uint16","name":"term","type":"uint16"},{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"payout","type":"uint256"}],"indexed":true,"internalType":"struct Stake","name":"_stake","type":"tuple"}],"name":"DeferStake","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"enum Status","name":"status","type":"uint8"},{"internalType":"uint40","name":"startTs","type":"uint40"},{"internalType":"uint40","name":"deferralTs","type":"uint40"},{"internalType":"uint40","name":"endTs","type":"uint40"},{"internalType":"uint16","name":"term","type":"uint16"},{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"payout","type":"uint256"}],"indexed":true,"internalType":"struct Stake","name":"_stake","type":"tuple"}],"name":"EndStake","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"uint40","name":"id","type":"uint40"},{"internalType":"uint40","name":"rewardTs","type":"uint40"},{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"address","name":"caller","type":"address"}],"indexed":true,"internalType":"struct Reward","name":"reward","type":"tuple"}],"name":"FlushRewardPool","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"xenContract","type":"address"},{"indexed":true,"internalType":"address","name":"tokenContract","type":"address"},{"indexed":false,"internalType":"uint256","name":"xenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"Redeemed","type":"event"},{"anonymous":false,"inputs":[{"components":[{"internalType":"enum Status","name":"status","type":"uint8"},{"internalType":"uint40","name":"startTs","type":"uint40"},{"internalType":"uint40","name":"deferralTs","type":"uint40"},{"internalType":"uint40","name":"endTs","type":"uint40"},{"internalType":"uint16","name":"term","type":"uint16"},{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"payout","type":"uint256"}],"indexed":true,"internalType":"struct Stake","name":"_stake","type":"tuple"}],"name":"StartStake","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"_shareRate","type":"uint256"}],"name":"UpdateShareRate","type":"event"},{"inputs":[],"name":"ANNUAL_INFLATION_RATE","outputs":[{"internalType":"UD60x18","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_STAKE_LENGTH_DAYS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"XEN_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"XEN_BURN_RATIO","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"xen","type":"uint256"}],"name":"burnXEN","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"uint256","name":"term","type":"uint256"}],"name":"calculateBonus","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"components":[{"internalType":"enum Status","name":"status","type":"uint8"},{"internalType":"uint40","name":"startTs","type":"uint40"},{"internalType":"uint40","name":"deferralTs","type":"uint40"},{"internalType":"uint40","name":"endTs","type":"uint40"},{"internalType":"uint16","name":"term","type":"uint16"},{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"payout","type":"uint256"}],"internalType":"struct Stake","name":"stake","type":"tuple"}],"name":"calculateEarlyPayout","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum Status","name":"status","type":"uint8"},{"internalType":"uint40","name":"startTs","type":"uint40"},{"internalType":"uint40","name":"deferralTs","type":"uint40"},{"internalType":"uint40","name":"endTs","type":"uint40"},{"internalType":"uint16","name":"term","type":"uint16"},{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"payout","type":"uint256"}],"internalType":"struct Stake","name":"stake","type":"tuple"}],"name":"calculateLatePayout","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"bonus","type":"uint256"}],"name":"calculateShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"fenix","type":"uint256"}],"name":"calculateSizeBonus","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"term","type":"uint256"}],"name":"calculateTimeBonus","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"cooldownUnlockTs","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"stakeIndex","type":"uint256"},{"internalType":"address","name":"stakerAddress","type":"address"}],"name":"deferStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"stakeIndex","type":"uint256"}],"name":"endStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"equityPoolSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"equityPoolTotalShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"flushRewardPool","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"genesisTs","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"onTokenBurned","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"rewardFor","outputs":[{"components":[{"internalType":"uint40","name":"id","type":"uint40"},{"internalType":"uint40","name":"rewardTs","type":"uint40"},{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"address","name":"caller","type":"address"}],"internalType":"struct Reward","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"rewardPoolSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"shareRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"stakerAddress","type":"address"}],"name":"stakeCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"stakerAddress","type":"address"},{"internalType":"uint256","name":"stakeIndex","type":"uint256"}],"name":"stakeFor","outputs":[{"components":[{"internalType":"enum Status","name":"status","type":"uint8"},{"internalType":"uint40","name":"startTs","type":"uint40"},{"internalType":"uint40","name":"deferralTs","type":"uint40"},{"internalType":"uint40","name":"endTs","type":"uint40"},{"internalType":"uint16","name":"term","type":"uint16"},{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"uint256","name":"shares","type":"uint256"},{"internalType":"uint256","name":"payout","type":"uint256"}],"internalType":"struct Stake","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"fenix","type":"uint256"},{"internalType":"uint256","name":"term","type":"uint256"}],"name":"startStake","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60a06040526000600655670de0b6b3a7640000600755600060085560006009553480156200002c57600080fd5b5060408051808201825260058082526408c8a9c92b60db1b60208084018290528451808601909552918452908301529060036200006a838262000146565b50600462000079828262000146565b5050504264ffffffffff81166080526200009890621baf809062000212565b6005556200023a565b634e487b7160e01b600052604160045260246000fd5b600181811c90821680620000cc57607f821691505b602082108103620000ed57634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200014157600081815260208120601f850160051c810160208610156200011c5750805b601f850160051c820191505b818110156200013d5782815560010162000128565b5050505b505050565b81516001600160401b03811115620001625762000162620000a1565b6200017a81620001738454620000b7565b84620000f3565b602080601f831160018114620001b25760008415620001995750858301515b600019600386901b1c1916600185901b1785556200013d565b600085815260208120601f198616915b82811015620001e357888601518255948401946001909101908401620001c2565b5085821015620002025787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b808201808211156200023457634e487b7160e01b600052601160045260246000fd5b92915050565b608051613a566200025660003960006105f70152613a566000f3fe608060405234801561001057600080fd5b50600436106102925760003560e01c8063615a89a311610160578063a457c2d7116100d8578063dd62ed3e1161008c578063e3af6d0a11610071578063e3af6d0a146105f2578063e6c2cbb11461062f578063fb802a651461064257600080fd5b8063dd62ed3e14610599578063e1e48eb3146105df57600080fd5b8063ae94d2b5116100bd578063ae94d2b514610547578063bc1d089a14610550578063d8af78fc1461059057600080fd5b8063a457c2d714610521578063a9059cbb1461053457600080fd5b80637862affa1161012f5780639159e862116101145780639159e862146104a457806395d89b41146104ad578063a1472b15146104b557600080fd5b80637862affa14610489578063790854251461049c57600080fd5b8063615a89a31461041a5780636630a05e1461042d5780636f72fd201461044057806370a082311461045357600080fd5b806323b872dd1161020e57806339509351116101c25780633ec16194116101a75780633ec16194146103ec578063543746b1146103ff5780635cdc12f81461041257600080fd5b806339509351146103d0578063397b3378146103e357600080fd5b80633027e3c7116101f35780633027e3c714610382578063313ce5671461038b57806333060d901461039a57600080fd5b806323b872dd1461034f5780632ee409081461036257600080fd5b80630da63e3f1161026557806318160ddd1161024a57806318160ddd1461032b5780631a6cef14146103335780631c3fd1671461033c57600080fd5b80630da63e3f146102fc578063128bfcae1461031857600080fd5b806301ffc9a71461029757806306fdde03146102bf578063095ea7b3146102d45780630cbe28d6146102e7575b600080fd5b6102aa6102a5366004613494565b61064b565b60405190151581526020015b60405180910390f35b6102c76106e4565b6040516102b691906134d6565b6102aa6102e236600461356b565b610776565b6102fa6102f5366004613595565b61078e565b005b61030a66397beef356e6c481565b6040519081526020016102b6565b6102fa6103263660046135ae565b610bb7565b60025461030a565b61030a61271081565b6102fa61034a3660046135d0565b610f0f565b6102aa61035d3660046135fc565b61142b565b61037561037036600461356b565b611451565b6040516102b691906136a2565b61030a60085481565b604051601281526020016102b6565b61030a6103a8366004613715565b73ffffffffffffffffffffffffffffffffffffffff166000908152600a602052604090205490565b6102aa6103de36600461356b565b61158b565b61030a60065481565b61030a6103fa366004613595565b6115d7565b6102fa61040d36600461356b565b6115f4565b6102fa61173c565b61030a610428366004613766565b6119a3565b6102fa61043b366004613595565b611ab2565b61030a61044e3660046135ae565b611b55565b61030a610461366004613715565b73ffffffffffffffffffffffffffffffffffffffff1660009081526020819052604090205490565b61030a610497366004613595565b611b9e565b600b5461030a565b61030a611e6181565b6102c7611bfd565b6104c86104c3366004613595565b611c0c565b6040516102b69190600060808201905064ffffffffff808451168352806020850151166020840152506040830151604083015273ffffffffffffffffffffffffffffffffffffffff606084015116606083015292915050565b6102aa61052f36600461356b565b611caf565b6102aa61054236600461356b565b611d8b565b61030a60055481565b61056b7306450dee7fd2fb8e39061434babcfc05599a6fb881565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016102b6565b61030a60095481565b61030a6105a7366004613840565b73ffffffffffffffffffffffffffffffffffffffff918216600090815260016020908152604080832093909416825291909152205490565b61030a6105ed366004613595565b611d99565b6106197f000000000000000000000000000000000000000000000000000000000000000081565b60405164ffffffffff90911681526020016102b6565b61030a61063d366004613766565b611e2d565b61030a60075481565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f543746b10000000000000000000000000000000000000000000000000000000014806106de57507fffffffff0000000000000000000000000000000000000000000000000000000082167f01ffc9a700000000000000000000000000000000000000000000000000000000145b92915050565b6060600380546106f39061386a565b80601f016020809104026020016040519081016040528092919081815260200182805461071f9061386a565b801561076c5780601f106107415761010080835404028352916020019161076c565b820191906000526020600020905b81548152906001019060200180831161074f57829003601f168201915b5050505050905090565b600033610784818585611f2f565b5060019392505050565b6107988133610f0f565b336000908152600a602052604081208054839081106107b9576107b96138bd565b600091825260209091206040805161010081019091526004909202018054829060ff1660028111156107ed576107ed613638565b60028111156107fe576107fe613638565b8152815464ffffffffff61010082048116602084015266010000000000008204811660408401526b010000000000000000000000820416606083015261ffff700100000000000000000000000000000000909104166080820152600182015460a082015260028083015460c083015260039092015460e0909101529091508151600281111561088f5761088f613638565b036108d25760026040517fe04981d90000000000000000000000000000000000000000000000000000000081526004016108c991906138ec565b60405180910390fd5b6108e0338260e001516120e3565b60006109026108ff6108f38460a0015190565b60e08501515b906121d6565b90565b905060075481111561093f57600781905560405181907f371aff3c55ca45101819dbd6486bc608c1fe30cd77bd8ffef45a5429b024576090600090a25b6040805161010081019091526000908060028152602001846020015164ffffffffff168152602001846040015164ffffffffff168152602001846060015164ffffffffff168152602001846080015161ffff1681526020018460a0015181526020018460c0015181526020018460e00151815250905080600a60006109c13390565b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020016000208581548110610a0c57610a0c6138bd565b600091825260209091208251600490920201805490919082907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001836002811115610a5b57610a5b613638565b0217905550602082015181546040808501516060860151608087015161ffff16700100000000000000000000000000000000027fffffffffffffffffffffffffffff0000ffffffffffffffffffffffffffffffff64ffffffffff9283166b01000000000000000000000002167fffffffffffffffffffffffffffff00000000000000ffffffffffffffffffffff9383166601000000000000027fffffffffffffffffffffffffffffffffffffffffff0000000000ffffffffffff9390971661010002929092167fffffffffffffffffffffffffffffffffffffffffff00000000000000000000ff9095169490941794909417169290921717825560a0830151600183015560c0830151600283015560e09092015160039091015551610b819082906138fa565b604051908190038120907fd862f5fdbfa9636a4c1666d8348a7ae982c2350cc4c2894d901687f57c59c75b90600090a250505050565b81600003610bf1576040517f836fd8a700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80600003610c2b576040517fb38ff31300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b426000610c3b62015180846139a2565b610c4590426139b9565b90506000610c538585611b55565b90506000610c60826115d7565b90506000610c7061016d876108f9565b90506000610ca56108ff610c9d84610c97670de0b6b3a764000066397beef356e6c46121ee565b906121fd565b8a5b9061230f565b90506000610cb66108ff8386610c9f565b90508160086000828254610cca91906139b9565b925050819055508060096000828254610ce391906139b9565b90915550506040805161010081018252600080825264ffffffffff8a8116602080850191909152838501839052908a16606084015261ffff8c16608084015260a083018d905260c0830185905260e08301829052338252600a81529281208054600180820183559183529390912082516004909402018054929384939192909183917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0090911690836002811115610d9c57610d9c613638565b02179055506020820151815460408401516060850151608086015161ffff16700100000000000000000000000000000000027fffffffffffffffffffffffffffff0000ffffffffffffffffffffffffffffffff64ffffffffff9283166b01000000000000000000000002167fffffffffffffffffffffffffffff00000000000000ffffffffffffffffffffff9383166601000000000000027fffffffffffffffffffffffffffffffffffffffffff0000000000ffffffffffff9390961661010002929092167fffffffffffffffffffffffffffffffffffffffffff00000000000000000000ff9094169390931793909317169190911717815560a0820151600182015560c0820151600282015560e090910151600390910155610ec5610ebf3390565b8b61231e565b80604051610ed391906138fa565b604051908190038120907f49735babbf75685a1d5f3d305826f3c9df6d8cc12b0f9de5867f95675ac38c3a90600090a250505050505050505050565b73ffffffffffffffffffffffffffffffffffffffff81166000908152600a60205260409020548210610f6d576040517fb0dd466e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff81166000908152600a60205260408120805484908110610fa457610fa46138bd565b600091825260209091206040805161010081019091526004909202018054829060ff166002811115610fd857610fd8613638565b6002811115610fe957610fe9613638565b8152815464ffffffffff61010082048116602084015266010000000000008204811660408401526b010000000000000000000000820416606083015261ffff700100000000000000000000000000000000909104166080820152600182015460a0820152600282015460c082015260039091015460e090910152905060008151600281111561107a5761107a613638565b1461108457505050565b806060015164ffffffffff16421080156110b457503373ffffffffffffffffffffffffffffffffffffffff831614155b1561110657335b6040517f29507dbf00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff90911660048201526024016108c9565b6000816060015164ffffffffff1642111561112e576111276108ff83611e2d565b905061113d565b61113a6108ff836119a3565b90505b600061115561114b60095490565b60c08501516108f9565b90506000611163828461230f565b905060006111776108ff83610c9f60085490565b905060006040518061010001604052806001600281111561119a5761119a613638565b8152602001876020015164ffffffffff1681526020014264ffffffffff168152602001876060015164ffffffffff168152602001876080015161ffff1681526020018760a0015181526020018760c00151815260200183815250905080600a60008973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020016000208981548110611247576112476138bd565b600091825260209091208251600490920201805490919082907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016600183600281111561129657611296613638565b02179055506020820151815460408401516060850151608086015161ffff16700100000000000000000000000000000000027fffffffffffffffffffffffffffff0000ffffffffffffffffffffffffffffffff64ffffffffff9283166b01000000000000000000000002167fffffffffffffffffffffffffffff00000000000000ffffffffffffffffffffff9383166601000000000000027fffffffffffffffffffffffffffffffffffffffffff0000000000ffffffffffff9390961661010002929092167fffffffffffffffffffffffffffffffffffffffffff00000000000000000000ff9094169390931793909317169190911717815560a0820151600182015560c080830151600283015560e090920151600390910155860151600980546000906113c59084906139cc565b9250508190555081600860008282546113de91906139cc565b90915550506040516113f19082906138fa565b604051908190038120907f9e6e56d0de3dd1d5b1ecba216b5e45e232e331aafcec0799fe0221b2b4e0ec6790600090a25050505050505050565b6000336114398582856124da565b6114448585856125b1565b60019150505b9392505050565b604080516101008101825260008082526020808301829052828401829052606083018290526080830182905260a0830182905260c0830182905260e0830182905273ffffffffffffffffffffffffffffffffffffffff86168252600a9052919091208054839081106114c5576114c56138bd565b600091825260209091206040805161010081019091526004909202018054829060ff1660028111156114f9576114f9613638565b600281111561150a5761150a613638565b81528154610100810464ffffffffff908116602084015266010000000000008204811660408401526b0100000000000000000000008204166060830152700100000000000000000000000000000000900461ffff166080820152600182015460a0820152600282015460c082015260039091015460e0909101529392505050565b33600081815260016020908152604080832073ffffffffffffffffffffffffffffffffffffffff8716845290915281205490919061078490829086906115d29087906139b9565b611f2f565b6000806115ec6115e660075490565b846108f9565b90508061144a565b337306450dee7fd2fb8e39061434babcfc05599a6fb81461161557336110bb565b73ffffffffffffffffffffffffffffffffffffffff8216611662576040517f9fabe1c100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8060000361169c576040517f836fd8a700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60006116aa61271083613a0e565b905080600660008282546116be91906139b9565b909155506116ce905083826120e3565b604080518381526020810183905230917306450dee7fd2fb8e39061434babcfc05599a6fb89173ffffffffffffffffffffffffffffffffffffffff8716917fda4c370e4f539b8e19d66144cad73d70fbf440a544e56ff38e28e38ed47801a8910160405180910390a4505050565b600554421015611778576040517faa9a98df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60006277f8806005544261178c91906139cc565b6117969190613a0e565b9050600654600860008282546117ac91906139b9565b909155506117bf90506277f880826139a2565b6117cc906277f8806139b9565b600560008282546117dd91906139b9565b9250508190555060006040518060800160405280600b8054905064ffffffffff1681526020014264ffffffffff168152602001600654815260200161181f3390565b73ffffffffffffffffffffffffffffffffffffffff90811690915260006006819055600b8054600181018255915282517f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01db9600390920291820180546020808701805164ffffffffff9586167fffffffffffffffffffffffffffffffffffffffffffff000000000000000000009094168417650100000000009187169190910217909355604080880180517f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01dba8801556060808a0180517f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01dbb90990180547fffffffffffffffffffffffff000000000000000000000000000000000000000016998b16999099179098558251948552945190951691830191909152925192810192909252915190921690820152909150608001604051908190038120907f4d21482c1d529d00b9e27bc6452492f43bb15630fbb706690945731858edae0f90600090a25050565b6000816020015164ffffffffff164210806119d157506000825160028111156119ce576119ce613638565b14155b15611a08576040517fb0dd466e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b816060015164ffffffffff16421115611a4d576040517fe3b243e200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000826020015164ffffffffff1642611a6691906139cc565b9050600062015180846080015161ffff16611a8191906139a2565b90506000611aa56002611a9f611a9685612820565b6108f987612820565b9061289e565b9050805b95945050505050565b7306450dee7fd2fb8e39061434babcfc05599a6fb8639dc29fac336040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff909116600482015260248101849052604401600060405180830381600087803b158015611b3a57600080fd5b505af1158015611b4e573d6000803e3d6000fd5b5050505050565b600080611b646108ff85611d99565b90506000611b746108ff85611b9e565b90506000611b94611b8d6725b946ebc0b36173846121fd565b849061230f565b9695505050505050565b6000611e61821115611bdc576040517fe44ae5b500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60006115ec611bee611e615b856108f9565b670de0b6b3a7640000906121ee565b6060600480546106f39061386a565b604080516080810182526000808252602082018190529181018290526060810191909152600b8281548110611c4357611c436138bd565b6000918252602091829020604080516080810182526003909302909101805464ffffffffff808216855265010000000000909104169383019390935260018301549082015260029091015473ffffffffffffffffffffffffffffffffffffffff16606082015292915050565b33600081815260016020908152604080832073ffffffffffffffffffffffffffffffffffffffff8716845290915281205490919083811015611d73576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f7760448201527f207a65726f00000000000000000000000000000000000000000000000000000060648201526084016108c9565b611d808286868403611f2f565b506001949350505050565b6000336107848185856125b1565b6000611dc660037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6139cc565b8210611dfe576040517f2d493f1300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6106de6108ff611e1e611e1985670de0b6b3a76400006121ee565b6128fe565b670de0b6b3a764000090612925565b6000816020015164ffffffffff16421080611e5b5750600082516002811115611e5857611e58613638565b14155b15611e92576040517fb0dd466e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b816060015164ffffffffff16421015611ed7576040517f0f3f8ebf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000826060015164ffffffffff1642611ef091906139cc565b905062ed4e00811115611f065750600092915050565b6000611f196003611a9f62ed4e00611be8565b90506000611aa5670de0b6b3a764000083612925565b73ffffffffffffffffffffffffffffffffffffffff8316611fd1576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f2061646460448201527f726573730000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff8216612074576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f20616464726560448201527f737300000000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff83811660008181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b73ffffffffffffffffffffffffffffffffffffffff8216612160576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f20616464726573730060448201526064016108c9565b806002600082825461217291906139b9565b909155505073ffffffffffffffffffffffffffffffffffffffff8216600081815260208181526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b600061144a6108ff84670de0b6b3a764000085612934565b600061144a6108ff83856139b9565b6000828281830361222857801561221557600061221f565b670de0b6b3a76400005b925050506106de565b670de0b6b3a7640000820361224957670de0b6b3a7640000925050506106de565b8060000361226357670de0b6b3a7640000925050506106de565b670de0b6b3a7640000810361227c5784925050506106de565b670de0b6b3a76400008211156122ad576122a66122a161229b87612a3f565b8661230f565b612ba2565b9250612307565b60006122cb6108ff846ec097ce7bc90715b34b9f1000000000613a0e565b905060006122e46122a16122de84612a3f565b8861230f565b90506123026108ff826ec097ce7bc90715b34b9f1000000000613a0e565b945050505b505092915050565b600061144a6108ff8484612c19565b73ffffffffffffffffffffffffffffffffffffffff82166123c1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f2061646472657360448201527f730000000000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff821660009081526020819052604090205481811015612477576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e60448201527f636500000000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff83166000818152602081815260408083208686039055600280548790039055518581529192917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91016120d6565b73ffffffffffffffffffffffffffffffffffffffff8381166000908152600160209081526040808320938616835292905220547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146125ab578181101561259e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e636500000060448201526064016108c9565b6125ab8484848403611f2f565b50505050565b73ffffffffffffffffffffffffffffffffffffffff8316612654576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f20616460448201527f647265737300000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff82166126f7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201527f657373000000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff8316600090815260208190526040902054818110156127ad576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e742065786365656473206260448201527f616c616e6365000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff848116600081815260208181526040808320878703905593871680835291849020805487019055925185815290927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a36125ab565b6000612854670de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff613a0e565b821115612890576040517f1cd951a7000000000000000000000000000000000000000000000000000000008152600481018390526024016108c9565b50670de0b6b3a76400000290565b60008281600184166128b857670de0b6b3a76400006128ba565b815b9050600184901c93505b83156128f8576128d48283612c19565b915060018416156128ec576128e98183612c19565b90505b600184901c93506128c4565b80611aa9565b60006106de826ec097ce7bc90715b34b9f100000000081612921576129216139df565b0490565b600061144a6108ff83856139cc565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8587098587029250828110838203039150508060000361298c57838281612982576129826139df565b049250505061144a565b8381106129d6576040517f63a057780000000000000000000000000000000000000000000000000000000081526004810187905260248101869052604481018590526064016108c9565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b600081670de0b6b3a7640000811015612a87576040517f36d32ef0000000000000000000000000000000000000000000000000000000008152600481018490526024016108c9565b6000612b13670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008101612b535750949350505050565b671bc16d674ec800006706f05b59d3b200005b8015612b9657670de0b6b3a7640000838002049250818310612b8e579283019260019290921c915b60011c612b66565b50919695505050505050565b600081680a688906bd8affffff811115612beb576040517fb3b6ba1f000000000000000000000000000000000000000000000000000000008152600481018490526024016108c9565b6000612c03670de0b6b3a7640000604084901b613a0e565b9050612c116108ff82612d20565b949350505050565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff84860984860292508281108382030391505080600003612c6b5750670de0b6b3a7640000900490506106de565b670de0b6b3a76400008110612cb6576040517f5173648d00000000000000000000000000000000000000000000000000000000815260048101869052602481018590526044016108c9565b6000670de0b6b3a7640000858709620400008185030493109091037d40000000000000000000000000000000000000000000000000000000000002919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b7780000000000000000000000000000000000000000000000067ff00000000000000821615612e4157678000000000000000821615612d685768016a09e667f3bcc9090260401c5b674000000000000000821615612d87576801306fe0a31b7152df0260401c5b672000000000000000821615612da6576801172b83c7d517adce0260401c5b671000000000000000821615612dc55768010b5586cf9890f62a0260401c5b670800000000000000821615612de4576801059b0d31585743ae0260401c5b670400000000000000821615612e0357680102c9a3e778060ee70260401c5b670200000000000000821615612e225768010163da9fb33356d80260401c5b670100000000000000821615612e4157680100b1afa5abcbed610260401c5b66ff000000000000821615612f40576680000000000000821615612e6e5768010058c86da1c09ea20260401c5b6640000000000000821615612e8c576801002c605e2e8cec500260401c5b6620000000000000821615612eaa57680100162f3904051fa10260401c5b6610000000000000821615612ec8576801000b175effdc76ba0260401c5b6608000000000000821615612ee657680100058ba01fb9f96d0260401c5b6604000000000000821615612f045768010002c5cc37da94920260401c5b6602000000000000821615612f22576801000162e525ee05470260401c5b6601000000000000821615612f405768010000b17255775c040260401c5b65ff00000000008216156130365765800000000000821615612f6b576801000058b91b5bc9ae0260401c5b65400000000000821615612f8857680100002c5c89d5ec6d0260401c5b65200000000000821615612fa55768010000162e43f4f8310260401c5b65100000000000821615612fc257680100000b1721bcfc9a0260401c5b65080000000000821615612fdf5768010000058b90cf1e6e0260401c5b65040000000000821615612ffc576801000002c5c863b73f0260401c5b6502000000000082161561301957680100000162e430e5a20260401c5b65010000000000821615613036576801000000b1721835510260401c5b64ff000000008216156131235764800000000082161561305f57680100000058b90c0b490260401c5b64400000000082161561307b5768010000002c5c8601cc0260401c5b642000000000821615613097576801000000162e42fff00260401c5b6410000000008216156130b35768010000000b17217fbb0260401c5b6408000000008216156130cf576801000000058b90bfce0260401c5b6404000000008216156130eb57680100000002c5c85fe30260401c5b6402000000008216156131075768010000000162e42ff10260401c5b64010000000082161561312357680100000000b17217f80260401c5b63ff00000082161561320757638000000082161561314a5768010000000058b90bfc0260401c5b6340000000821615613165576801000000002c5c85fe0260401c5b632000000082161561318057680100000000162e42ff0260401c5b631000000082161561319b576801000000000b17217f0260401c5b63080000008216156131b657680100000000058b90c00260401c5b63040000008216156131d15768010000000002c5c8600260401c5b63020000008216156131ec576801000000000162e4300260401c5b63010000008216156132075768010000000000b172180260401c5b62ff00008216156132e2576280000082161561322c576801000000000058b90c0260401c5b6240000082161561324657680100000000002c5c860260401c5b622000008216156132605768010000000000162e430260401c5b6210000082161561327a57680100000000000b17210260401c5b620800008216156132945768010000000000058b910260401c5b620400008216156132ae576801000000000002c5c80260401c5b620200008216156132c857680100000000000162e40260401c5b620100008216156132e2576801000000000000b1720260401c5b61ff008216156133b45761800082161561330557680100000000000058b90260401c5b61400082161561331e5768010000000000002c5d0260401c5b612000821615613337576801000000000000162e0260401c5b6110008216156133505768010000000000000b170260401c5b610800821615613369576801000000000000058c0260401c5b61040082161561338257680100000000000002c60260401c5b61020082161561339b57680100000000000001630260401c5b6101008216156133b457680100000000000000b10260401c5b60ff82161561347d5760808216156133d557680100000000000000590260401c5b60408216156133ed576801000000000000002c0260401c5b602082161561340557680100000000000000160260401c5b601082161561341d576801000000000000000b0260401c5b600882161561343557680100000000000000060260401c5b600482161561344d57680100000000000000030260401c5b600282161561346557680100000000000000010260401c5b600182161561347d57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000602082840312156134a657600080fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461144a57600080fd5b600060208083528351808285015260005b81811015613503578581018301518582016040015282016134e7565b5060006040828601015260407fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8301168501019250505092915050565b803573ffffffffffffffffffffffffffffffffffffffff8116811461356657600080fd5b919050565b6000806040838503121561357e57600080fd5b61358783613542565b946020939093013593505050565b6000602082840312156135a757600080fd5b5035919050565b600080604083850312156135c157600080fd5b50508035926020909101359150565b600080604083850312156135e357600080fd5b823591506135f360208401613542565b90509250929050565b60008060006060848603121561361157600080fd5b61361a84613542565b925061362860208501613542565b9150604084013590509250925092565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b6003811061369e577f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b9052565b6000610100820190506136b6828451613667565b602083015164ffffffffff8082166020850152806040860151166040850152806060860151166060850152505061ffff608084015116608083015260a083015160a083015260c083015160c083015260e083015160e083015292915050565b60006020828403121561372757600080fd5b61144a82613542565b80356003811061356657600080fd5b803564ffffffffff8116811461356657600080fd5b803561ffff8116811461356657600080fd5b600061010080838503121561377a57600080fd5b6040519081019067ffffffffffffffff821181831017156137c4577f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b816040526137d184613730565b81526137df6020850161373f565b60208201526137f06040850161373f565b60408201526138016060850161373f565b606082015261381260808501613754565b608082015260a084013560a082015260c084013560c082015260e084013560e0820152809250505092915050565b6000806040838503121561385357600080fd5b61385c83613542565b91506135f360208401613542565b600181811c9082168061387e57607f821691505b6020821081036138b7577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b50919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b602081016106de8284613667565b613905818351613667565b600064ffffffffff8060208501511660208401528060408501511660408401528060608501511660608401525061ffff608084015116608083015260a083015160a083015260c083015160c083015261396860e0830160e0850151815260200190565b505061010001919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b80820281158282048414176106de576106de613973565b808201808211156106de576106de613973565b818103818111156106de576106de613973565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082613a44577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b50049056fea164736f6c6343000813000a
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106102925760003560e01c8063615a89a311610160578063a457c2d7116100d8578063dd62ed3e1161008c578063e3af6d0a11610071578063e3af6d0a146105f2578063e6c2cbb11461062f578063fb802a651461064257600080fd5b8063dd62ed3e14610599578063e1e48eb3146105df57600080fd5b8063ae94d2b5116100bd578063ae94d2b514610547578063bc1d089a14610550578063d8af78fc1461059057600080fd5b8063a457c2d714610521578063a9059cbb1461053457600080fd5b80637862affa1161012f5780639159e862116101145780639159e862146104a457806395d89b41146104ad578063a1472b15146104b557600080fd5b80637862affa14610489578063790854251461049c57600080fd5b8063615a89a31461041a5780636630a05e1461042d5780636f72fd201461044057806370a082311461045357600080fd5b806323b872dd1161020e57806339509351116101c25780633ec16194116101a75780633ec16194146103ec578063543746b1146103ff5780635cdc12f81461041257600080fd5b806339509351146103d0578063397b3378146103e357600080fd5b80633027e3c7116101f35780633027e3c714610382578063313ce5671461038b57806333060d901461039a57600080fd5b806323b872dd1461034f5780632ee409081461036257600080fd5b80630da63e3f1161026557806318160ddd1161024a57806318160ddd1461032b5780631a6cef14146103335780631c3fd1671461033c57600080fd5b80630da63e3f146102fc578063128bfcae1461031857600080fd5b806301ffc9a71461029757806306fdde03146102bf578063095ea7b3146102d45780630cbe28d6146102e7575b600080fd5b6102aa6102a5366004613494565b61064b565b60405190151581526020015b60405180910390f35b6102c76106e4565b6040516102b691906134d6565b6102aa6102e236600461356b565b610776565b6102fa6102f5366004613595565b61078e565b005b61030a66397beef356e6c481565b6040519081526020016102b6565b6102fa6103263660046135ae565b610bb7565b60025461030a565b61030a61271081565b6102fa61034a3660046135d0565b610f0f565b6102aa61035d3660046135fc565b61142b565b61037561037036600461356b565b611451565b6040516102b691906136a2565b61030a60085481565b604051601281526020016102b6565b61030a6103a8366004613715565b73ffffffffffffffffffffffffffffffffffffffff166000908152600a602052604090205490565b6102aa6103de36600461356b565b61158b565b61030a60065481565b61030a6103fa366004613595565b6115d7565b6102fa61040d36600461356b565b6115f4565b6102fa61173c565b61030a610428366004613766565b6119a3565b6102fa61043b366004613595565b611ab2565b61030a61044e3660046135ae565b611b55565b61030a610461366004613715565b73ffffffffffffffffffffffffffffffffffffffff1660009081526020819052604090205490565b61030a610497366004613595565b611b9e565b600b5461030a565b61030a611e6181565b6102c7611bfd565b6104c86104c3366004613595565b611c0c565b6040516102b69190600060808201905064ffffffffff808451168352806020850151166020840152506040830151604083015273ffffffffffffffffffffffffffffffffffffffff606084015116606083015292915050565b6102aa61052f36600461356b565b611caf565b6102aa61054236600461356b565b611d8b565b61030a60055481565b61056b7306450dee7fd2fb8e39061434babcfc05599a6fb881565b60405173ffffffffffffffffffffffffffffffffffffffff90911681526020016102b6565b61030a60095481565b61030a6105a7366004613840565b73ffffffffffffffffffffffffffffffffffffffff918216600090815260016020908152604080832093909416825291909152205490565b61030a6105ed366004613595565b611d99565b6106197f00000000000000000000000000000000000000000000000000000000645fc30b81565b60405164ffffffffff90911681526020016102b6565b61030a61063d366004613766565b611e2d565b61030a60075481565b60007fffffffff0000000000000000000000000000000000000000000000000000000082167f543746b10000000000000000000000000000000000000000000000000000000014806106de57507fffffffff0000000000000000000000000000000000000000000000000000000082167f01ffc9a700000000000000000000000000000000000000000000000000000000145b92915050565b6060600380546106f39061386a565b80601f016020809104026020016040519081016040528092919081815260200182805461071f9061386a565b801561076c5780601f106107415761010080835404028352916020019161076c565b820191906000526020600020905b81548152906001019060200180831161074f57829003601f168201915b5050505050905090565b600033610784818585611f2f565b5060019392505050565b6107988133610f0f565b336000908152600a602052604081208054839081106107b9576107b96138bd565b600091825260209091206040805161010081019091526004909202018054829060ff1660028111156107ed576107ed613638565b60028111156107fe576107fe613638565b8152815464ffffffffff61010082048116602084015266010000000000008204811660408401526b010000000000000000000000820416606083015261ffff700100000000000000000000000000000000909104166080820152600182015460a082015260028083015460c083015260039092015460e0909101529091508151600281111561088f5761088f613638565b036108d25760026040517fe04981d90000000000000000000000000000000000000000000000000000000081526004016108c991906138ec565b60405180910390fd5b6108e0338260e001516120e3565b60006109026108ff6108f38460a0015190565b60e08501515b906121d6565b90565b905060075481111561093f57600781905560405181907f371aff3c55ca45101819dbd6486bc608c1fe30cd77bd8ffef45a5429b024576090600090a25b6040805161010081019091526000908060028152602001846020015164ffffffffff168152602001846040015164ffffffffff168152602001846060015164ffffffffff168152602001846080015161ffff1681526020018460a0015181526020018460c0015181526020018460e00151815250905080600a60006109c13390565b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020016000208581548110610a0c57610a0c6138bd565b600091825260209091208251600490920201805490919082907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00166001836002811115610a5b57610a5b613638565b0217905550602082015181546040808501516060860151608087015161ffff16700100000000000000000000000000000000027fffffffffffffffffffffffffffff0000ffffffffffffffffffffffffffffffff64ffffffffff9283166b01000000000000000000000002167fffffffffffffffffffffffffffff00000000000000ffffffffffffffffffffff9383166601000000000000027fffffffffffffffffffffffffffffffffffffffffff0000000000ffffffffffff9390971661010002929092167fffffffffffffffffffffffffffffffffffffffffff00000000000000000000ff9095169490941794909417169290921717825560a0830151600183015560c0830151600283015560e09092015160039091015551610b819082906138fa565b604051908190038120907fd862f5fdbfa9636a4c1666d8348a7ae982c2350cc4c2894d901687f57c59c75b90600090a250505050565b81600003610bf1576040517f836fd8a700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b80600003610c2b576040517fb38ff31300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b426000610c3b62015180846139a2565b610c4590426139b9565b90506000610c538585611b55565b90506000610c60826115d7565b90506000610c7061016d876108f9565b90506000610ca56108ff610c9d84610c97670de0b6b3a764000066397beef356e6c46121ee565b906121fd565b8a5b9061230f565b90506000610cb66108ff8386610c9f565b90508160086000828254610cca91906139b9565b925050819055508060096000828254610ce391906139b9565b90915550506040805161010081018252600080825264ffffffffff8a8116602080850191909152838501839052908a16606084015261ffff8c16608084015260a083018d905260c0830185905260e08301829052338252600a81529281208054600180820183559183529390912082516004909402018054929384939192909183917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0090911690836002811115610d9c57610d9c613638565b02179055506020820151815460408401516060850151608086015161ffff16700100000000000000000000000000000000027fffffffffffffffffffffffffffff0000ffffffffffffffffffffffffffffffff64ffffffffff9283166b01000000000000000000000002167fffffffffffffffffffffffffffff00000000000000ffffffffffffffffffffff9383166601000000000000027fffffffffffffffffffffffffffffffffffffffffff0000000000ffffffffffff9390961661010002929092167fffffffffffffffffffffffffffffffffffffffffff00000000000000000000ff9094169390931793909317169190911717815560a0820151600182015560c0820151600282015560e090910151600390910155610ec5610ebf3390565b8b61231e565b80604051610ed391906138fa565b604051908190038120907f49735babbf75685a1d5f3d305826f3c9df6d8cc12b0f9de5867f95675ac38c3a90600090a250505050505050505050565b73ffffffffffffffffffffffffffffffffffffffff81166000908152600a60205260409020548210610f6d576040517fb0dd466e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b73ffffffffffffffffffffffffffffffffffffffff81166000908152600a60205260408120805484908110610fa457610fa46138bd565b600091825260209091206040805161010081019091526004909202018054829060ff166002811115610fd857610fd8613638565b6002811115610fe957610fe9613638565b8152815464ffffffffff61010082048116602084015266010000000000008204811660408401526b010000000000000000000000820416606083015261ffff700100000000000000000000000000000000909104166080820152600182015460a0820152600282015460c082015260039091015460e090910152905060008151600281111561107a5761107a613638565b1461108457505050565b806060015164ffffffffff16421080156110b457503373ffffffffffffffffffffffffffffffffffffffff831614155b1561110657335b6040517f29507dbf00000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff90911660048201526024016108c9565b6000816060015164ffffffffff1642111561112e576111276108ff83611e2d565b905061113d565b61113a6108ff836119a3565b90505b600061115561114b60095490565b60c08501516108f9565b90506000611163828461230f565b905060006111776108ff83610c9f60085490565b905060006040518061010001604052806001600281111561119a5761119a613638565b8152602001876020015164ffffffffff1681526020014264ffffffffff168152602001876060015164ffffffffff168152602001876080015161ffff1681526020018760a0015181526020018760c00151815260200183815250905080600a60008973ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020016000208981548110611247576112476138bd565b600091825260209091208251600490920201805490919082907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0016600183600281111561129657611296613638565b02179055506020820151815460408401516060850151608086015161ffff16700100000000000000000000000000000000027fffffffffffffffffffffffffffff0000ffffffffffffffffffffffffffffffff64ffffffffff9283166b01000000000000000000000002167fffffffffffffffffffffffffffff00000000000000ffffffffffffffffffffff9383166601000000000000027fffffffffffffffffffffffffffffffffffffffffff0000000000ffffffffffff9390961661010002929092167fffffffffffffffffffffffffffffffffffffffffff00000000000000000000ff9094169390931793909317169190911717815560a0820151600182015560c080830151600283015560e090920151600390910155860151600980546000906113c59084906139cc565b9250508190555081600860008282546113de91906139cc565b90915550506040516113f19082906138fa565b604051908190038120907f9e6e56d0de3dd1d5b1ecba216b5e45e232e331aafcec0799fe0221b2b4e0ec6790600090a25050505050505050565b6000336114398582856124da565b6114448585856125b1565b60019150505b9392505050565b604080516101008101825260008082526020808301829052828401829052606083018290526080830182905260a0830182905260c0830182905260e0830182905273ffffffffffffffffffffffffffffffffffffffff86168252600a9052919091208054839081106114c5576114c56138bd565b600091825260209091206040805161010081019091526004909202018054829060ff1660028111156114f9576114f9613638565b600281111561150a5761150a613638565b81528154610100810464ffffffffff908116602084015266010000000000008204811660408401526b0100000000000000000000008204166060830152700100000000000000000000000000000000900461ffff166080820152600182015460a0820152600282015460c082015260039091015460e0909101529392505050565b33600081815260016020908152604080832073ffffffffffffffffffffffffffffffffffffffff8716845290915281205490919061078490829086906115d29087906139b9565b611f2f565b6000806115ec6115e660075490565b846108f9565b90508061144a565b337306450dee7fd2fb8e39061434babcfc05599a6fb81461161557336110bb565b73ffffffffffffffffffffffffffffffffffffffff8216611662576040517f9fabe1c100000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b8060000361169c576040517f836fd8a700000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60006116aa61271083613a0e565b905080600660008282546116be91906139b9565b909155506116ce905083826120e3565b604080518381526020810183905230917306450dee7fd2fb8e39061434babcfc05599a6fb89173ffffffffffffffffffffffffffffffffffffffff8716917fda4c370e4f539b8e19d66144cad73d70fbf440a544e56ff38e28e38ed47801a8910160405180910390a4505050565b600554421015611778576040517faa9a98df00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60006277f8806005544261178c91906139cc565b6117969190613a0e565b9050600654600860008282546117ac91906139b9565b909155506117bf90506277f880826139a2565b6117cc906277f8806139b9565b600560008282546117dd91906139b9565b9250508190555060006040518060800160405280600b8054905064ffffffffff1681526020014264ffffffffff168152602001600654815260200161181f3390565b73ffffffffffffffffffffffffffffffffffffffff90811690915260006006819055600b8054600181018255915282517f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01db9600390920291820180546020808701805164ffffffffff9586167fffffffffffffffffffffffffffffffffffffffffffff000000000000000000009094168417650100000000009187169190910217909355604080880180517f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01dba8801556060808a0180517f0175b7a638427703f0dbe7bb9bbf987a2551717b34e79f33b5b1008d1fa01dbb90990180547fffffffffffffffffffffffff000000000000000000000000000000000000000016998b16999099179098558251948552945190951691830191909152925192810192909252915190921690820152909150608001604051908190038120907f4d21482c1d529d00b9e27bc6452492f43bb15630fbb706690945731858edae0f90600090a25050565b6000816020015164ffffffffff164210806119d157506000825160028111156119ce576119ce613638565b14155b15611a08576040517fb0dd466e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b816060015164ffffffffff16421115611a4d576040517fe3b243e200000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000826020015164ffffffffff1642611a6691906139cc565b9050600062015180846080015161ffff16611a8191906139a2565b90506000611aa56002611a9f611a9685612820565b6108f987612820565b9061289e565b9050805b95945050505050565b7306450dee7fd2fb8e39061434babcfc05599a6fb8639dc29fac336040517fffffffff0000000000000000000000000000000000000000000000000000000060e084901b16815273ffffffffffffffffffffffffffffffffffffffff909116600482015260248101849052604401600060405180830381600087803b158015611b3a57600080fd5b505af1158015611b4e573d6000803e3d6000fd5b5050505050565b600080611b646108ff85611d99565b90506000611b746108ff85611b9e565b90506000611b94611b8d6725b946ebc0b36173846121fd565b849061230f565b9695505050505050565b6000611e61821115611bdc576040517fe44ae5b500000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b60006115ec611bee611e615b856108f9565b670de0b6b3a7640000906121ee565b6060600480546106f39061386a565b604080516080810182526000808252602082018190529181018290526060810191909152600b8281548110611c4357611c436138bd565b6000918252602091829020604080516080810182526003909302909101805464ffffffffff808216855265010000000000909104169383019390935260018301549082015260029091015473ffffffffffffffffffffffffffffffffffffffff16606082015292915050565b33600081815260016020908152604080832073ffffffffffffffffffffffffffffffffffffffff8716845290915281205490919083811015611d73576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f7760448201527f207a65726f00000000000000000000000000000000000000000000000000000060648201526084016108c9565b611d808286868403611f2f565b506001949350505050565b6000336107848185856125b1565b6000611dc660037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6139cc565b8210611dfe576040517f2d493f1300000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6106de6108ff611e1e611e1985670de0b6b3a76400006121ee565b6128fe565b670de0b6b3a764000090612925565b6000816020015164ffffffffff16421080611e5b5750600082516002811115611e5857611e58613638565b14155b15611e92576040517fb0dd466e00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b816060015164ffffffffff16421015611ed7576040517f0f3f8ebf00000000000000000000000000000000000000000000000000000000815260040160405180910390fd5b6000826060015164ffffffffff1642611ef091906139cc565b905062ed4e00811115611f065750600092915050565b6000611f196003611a9f62ed4e00611be8565b90506000611aa5670de0b6b3a764000083612925565b73ffffffffffffffffffffffffffffffffffffffff8316611fd1576040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f2061646460448201527f726573730000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff8216612074576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f20616464726560448201527f737300000000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff83811660008181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b73ffffffffffffffffffffffffffffffffffffffff8216612160576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f20616464726573730060448201526064016108c9565b806002600082825461217291906139b9565b909155505073ffffffffffffffffffffffffffffffffffffffff8216600081815260208181526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b600061144a6108ff84670de0b6b3a764000085612934565b600061144a6108ff83856139b9565b6000828281830361222857801561221557600061221f565b670de0b6b3a76400005b925050506106de565b670de0b6b3a7640000820361224957670de0b6b3a7640000925050506106de565b8060000361226357670de0b6b3a7640000925050506106de565b670de0b6b3a7640000810361227c5784925050506106de565b670de0b6b3a76400008211156122ad576122a66122a161229b87612a3f565b8661230f565b612ba2565b9250612307565b60006122cb6108ff846ec097ce7bc90715b34b9f1000000000613a0e565b905060006122e46122a16122de84612a3f565b8861230f565b90506123026108ff826ec097ce7bc90715b34b9f1000000000613a0e565b945050505b505092915050565b600061144a6108ff8484612c19565b73ffffffffffffffffffffffffffffffffffffffff82166123c1576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f2061646472657360448201527f730000000000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff821660009081526020819052604090205481811015612477576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e60448201527f636500000000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff83166000818152602081815260408083208686039055600280548790039055518581529192917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef91016120d6565b73ffffffffffffffffffffffffffffffffffffffff8381166000908152600160209081526040808320938616835292905220547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146125ab578181101561259e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e636500000060448201526064016108c9565b6125ab8484848403611f2f565b50505050565b73ffffffffffffffffffffffffffffffffffffffff8316612654576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f20616460448201527f647265737300000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff82166126f7576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201527f657373000000000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff8316600090815260208190526040902054818110156127ad576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e742065786365656473206260448201527f616c616e6365000000000000000000000000000000000000000000000000000060648201526084016108c9565b73ffffffffffffffffffffffffffffffffffffffff848116600081815260208181526040808320878703905593871680835291849020805487019055925185815290927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a36125ab565b6000612854670de0b6b3a76400007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff613a0e565b821115612890576040517f1cd951a7000000000000000000000000000000000000000000000000000000008152600481018390526024016108c9565b50670de0b6b3a76400000290565b60008281600184166128b857670de0b6b3a76400006128ba565b815b9050600184901c93505b83156128f8576128d48283612c19565b915060018416156128ec576128e98183612c19565b90505b600184901c93506128c4565b80611aa9565b60006106de826ec097ce7bc90715b34b9f100000000081612921576129216139df565b0490565b600061144a6108ff83856139cc565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8587098587029250828110838203039150508060000361298c57838281612982576129826139df565b049250505061144a565b8381106129d6576040517f63a057780000000000000000000000000000000000000000000000000000000081526004810187905260248101869052604481018590526064016108c9565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b600081670de0b6b3a7640000811015612a87576040517f36d32ef0000000000000000000000000000000000000000000000000000000008152600481018490526024016108c9565b6000612b13670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c7ffffffffffffffffffffffffffffffffffffffffffffffffff21f494c589c00008101612b535750949350505050565b671bc16d674ec800006706f05b59d3b200005b8015612b9657670de0b6b3a7640000838002049250818310612b8e579283019260019290921c915b60011c612b66565b50919695505050505050565b600081680a688906bd8affffff811115612beb576040517fb3b6ba1f000000000000000000000000000000000000000000000000000000008152600481018490526024016108c9565b6000612c03670de0b6b3a7640000604084901b613a0e565b9050612c116108ff82612d20565b949350505050565b600080807fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff84860984860292508281108382030391505080600003612c6b5750670de0b6b3a7640000900490506106de565b670de0b6b3a76400008110612cb6576040517f5173648d00000000000000000000000000000000000000000000000000000000815260048101869052602481018590526044016108c9565b6000670de0b6b3a7640000858709620400008185030493109091037d40000000000000000000000000000000000000000000000000000000000002919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b7780000000000000000000000000000000000000000000000067ff00000000000000821615612e4157678000000000000000821615612d685768016a09e667f3bcc9090260401c5b674000000000000000821615612d87576801306fe0a31b7152df0260401c5b672000000000000000821615612da6576801172b83c7d517adce0260401c5b671000000000000000821615612dc55768010b5586cf9890f62a0260401c5b670800000000000000821615612de4576801059b0d31585743ae0260401c5b670400000000000000821615612e0357680102c9a3e778060ee70260401c5b670200000000000000821615612e225768010163da9fb33356d80260401c5b670100000000000000821615612e4157680100b1afa5abcbed610260401c5b66ff000000000000821615612f40576680000000000000821615612e6e5768010058c86da1c09ea20260401c5b6640000000000000821615612e8c576801002c605e2e8cec500260401c5b6620000000000000821615612eaa57680100162f3904051fa10260401c5b6610000000000000821615612ec8576801000b175effdc76ba0260401c5b6608000000000000821615612ee657680100058ba01fb9f96d0260401c5b6604000000000000821615612f045768010002c5cc37da94920260401c5b6602000000000000821615612f22576801000162e525ee05470260401c5b6601000000000000821615612f405768010000b17255775c040260401c5b65ff00000000008216156130365765800000000000821615612f6b576801000058b91b5bc9ae0260401c5b65400000000000821615612f8857680100002c5c89d5ec6d0260401c5b65200000000000821615612fa55768010000162e43f4f8310260401c5b65100000000000821615612fc257680100000b1721bcfc9a0260401c5b65080000000000821615612fdf5768010000058b90cf1e6e0260401c5b65040000000000821615612ffc576801000002c5c863b73f0260401c5b6502000000000082161561301957680100000162e430e5a20260401c5b65010000000000821615613036576801000000b1721835510260401c5b64ff000000008216156131235764800000000082161561305f57680100000058b90c0b490260401c5b64400000000082161561307b5768010000002c5c8601cc0260401c5b642000000000821615613097576801000000162e42fff00260401c5b6410000000008216156130b35768010000000b17217fbb0260401c5b6408000000008216156130cf576801000000058b90bfce0260401c5b6404000000008216156130eb57680100000002c5c85fe30260401c5b6402000000008216156131075768010000000162e42ff10260401c5b64010000000082161561312357680100000000b17217f80260401c5b63ff00000082161561320757638000000082161561314a5768010000000058b90bfc0260401c5b6340000000821615613165576801000000002c5c85fe0260401c5b632000000082161561318057680100000000162e42ff0260401c5b631000000082161561319b576801000000000b17217f0260401c5b63080000008216156131b657680100000000058b90c00260401c5b63040000008216156131d15768010000000002c5c8600260401c5b63020000008216156131ec576801000000000162e4300260401c5b63010000008216156132075768010000000000b172180260401c5b62ff00008216156132e2576280000082161561322c576801000000000058b90c0260401c5b6240000082161561324657680100000000002c5c860260401c5b622000008216156132605768010000000000162e430260401c5b6210000082161561327a57680100000000000b17210260401c5b620800008216156132945768010000000000058b910260401c5b620400008216156132ae576801000000000002c5c80260401c5b620200008216156132c857680100000000000162e40260401c5b620100008216156132e2576801000000000000b1720260401c5b61ff008216156133b45761800082161561330557680100000000000058b90260401c5b61400082161561331e5768010000000000002c5d0260401c5b612000821615613337576801000000000000162e0260401c5b6110008216156133505768010000000000000b170260401c5b610800821615613369576801000000000000058c0260401c5b61040082161561338257680100000000000002c60260401c5b61020082161561339b57680100000000000001630260401c5b6101008216156133b457680100000000000000b10260401c5b60ff82161561347d5760808216156133d557680100000000000000590260401c5b60408216156133ed576801000000000000002c0260401c5b602082161561340557680100000000000000160260401c5b601082161561341d576801000000000000000b0260401c5b600882161561343557680100000000000000060260401c5b600482161561344d57680100000000000000030260401c5b600282161561346557680100000000000000010260401c5b600182161561347d57680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b6000602082840312156134a657600080fd5b81357fffffffff000000000000000000000000000000000000000000000000000000008116811461144a57600080fd5b600060208083528351808285015260005b81811015613503578581018301518582016040015282016134e7565b5060006040828601015260407fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8301168501019250505092915050565b803573ffffffffffffffffffffffffffffffffffffffff8116811461356657600080fd5b919050565b6000806040838503121561357e57600080fd5b61358783613542565b946020939093013593505050565b6000602082840312156135a757600080fd5b5035919050565b600080604083850312156135c157600080fd5b50508035926020909101359150565b600080604083850312156135e357600080fd5b823591506135f360208401613542565b90509250929050565b60008060006060848603121561361157600080fd5b61361a84613542565b925061362860208501613542565b9150604084013590509250925092565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b6003811061369e577f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b9052565b6000610100820190506136b6828451613667565b602083015164ffffffffff8082166020850152806040860151166040850152806060860151166060850152505061ffff608084015116608083015260a083015160a083015260c083015160c083015260e083015160e083015292915050565b60006020828403121561372757600080fd5b61144a82613542565b80356003811061356657600080fd5b803564ffffffffff8116811461356657600080fd5b803561ffff8116811461356657600080fd5b600061010080838503121561377a57600080fd5b6040519081019067ffffffffffffffff821181831017156137c4577f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b816040526137d184613730565b81526137df6020850161373f565b60208201526137f06040850161373f565b60408201526138016060850161373f565b606082015261381260808501613754565b608082015260a084013560a082015260c084013560c082015260e084013560e0820152809250505092915050565b6000806040838503121561385357600080fd5b61385c83613542565b91506135f360208401613542565b600181811c9082168061387e57607f821691505b6020821081036138b7577f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b50919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b602081016106de8284613667565b613905818351613667565b600064ffffffffff8060208501511660208401528060408501511660408401528060608501511660608401525061ffff608084015116608083015260a083015160a083015260c083015160c083015261396860e0830160e0850151815260200190565b505061010001919050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b80820281158282048414176106de576106de613973565b808201808211156106de576106de613973565b818103818111156106de576106de613973565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600082613a44577f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b50049056fea164736f6c6343000813000a
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.