ETH Price: $2,591.96 (-2.71%)
Gas: 2.88 Gwei

Token

SHINJA (SHINJA)
 

Overview

Max Total Supply

1,000,000,000 SHINJA

Holders

22

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 9 Decimals)

Balance
44,701,386.782858568 SHINJA

Value
$0.00
0xE507BB8D20A039BBA93F2B700C8f4686b772f263
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
SHINJA

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion
File 1 of 1 : Token_flattened.sol
/**

$SHINJA LAUNCHING THURSDAY 6PM UTC

On Uniswap 🦄

LINKS: 

Website :  Shinja.io
Portal  : t.me/ShinjaETH
X       : x.com/ShinjaETH                                     

 */
// File: @openzeppelin/contracts/utils/Errors.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Errors.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

// File: @openzeppelin/contracts/proxy/Clones.sol


// OpenZeppelin Contracts (last updated v5.1.0) (proxy/Clones.sol)

pragma solidity ^0.8.20;


/**
 * @dev https://eips.ethereum.org/EIPS/eip-1167[ERC-1167] is a standard for
 * deploying minimal proxy contracts, also known as "clones".
 *
 * > To simply and cheaply clone contract functionality in an immutable way, this standard specifies
 * > a minimal bytecode implementation that delegates all calls to a known, fixed address.
 *
 * The library includes functions to deploy a proxy using either `create` (traditional deployment) or `create2`
 * (salted deterministic deployment). It also includes functions to predict the addresses of clones deployed using the
 * deterministic method.
 */
library Clones {
    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create opcode, which should never revert.
     */
    function clone(address implementation) internal returns (address instance) {
        return clone(implementation, 0);
    }

    /**
     * @dev Same as {xref-Clones-clone-address-}[clone], but with a `value` parameter to send native currency
     * to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function clone(address implementation, uint256 value) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create(value, 0x09, 0x37)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Deploys and returns the address of a clone that mimics the behaviour of `implementation`.
     *
     * This function uses the create2 opcode and a `salt` to deterministically deploy
     * the clone. Using the same `implementation` and `salt` multiple time will revert, since
     * the clones cannot be deployed twice at the same address.
     */
    function cloneDeterministic(address implementation, bytes32 salt) internal returns (address instance) {
        return cloneDeterministic(implementation, salt, 0);
    }

    /**
     * @dev Same as {xref-Clones-cloneDeterministic-address-bytes32-}[cloneDeterministic], but with
     * a `value` parameter to send native currency to the new contract.
     *
     * NOTE: Using a non-zero value at creation will require the contract using this function (e.g. a factory)
     * to always have enough balance for new deployments. Consider exposing this function under a payable method.
     */
    function cloneDeterministic(
        address implementation,
        bytes32 salt,
        uint256 value
    ) internal returns (address instance) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        assembly ("memory-safe") {
            // Cleans the upper 96 bits of the `implementation` word, then packs the first 3 bytes
            // of the `implementation` address with the bytecode before the address.
            mstore(0x00, or(shr(0xe8, shl(0x60, implementation)), 0x3d602d80600a3d3981f3363d3d373d3d3d363d73000000))
            // Packs the remaining 17 bytes of `implementation` with the bytecode after the address.
            mstore(0x20, or(shl(0x78, implementation), 0x5af43d82803e903d91602b57fd5bf3))
            instance := create2(value, 0x09, 0x37, salt)
        }
        if (instance == address(0)) {
            revert Errors.FailedDeployment();
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt,
        address deployer
    ) internal pure returns (address predicted) {
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            mstore(add(ptr, 0x38), deployer)
            mstore(add(ptr, 0x24), 0x5af43d82803e903d91602b57fd5bf3ff)
            mstore(add(ptr, 0x14), implementation)
            mstore(ptr, 0x3d602d80600a3d3981f3363d3d373d3d3d363d73)
            mstore(add(ptr, 0x58), salt)
            mstore(add(ptr, 0x78), keccak256(add(ptr, 0x0c), 0x37))
            predicted := and(keccak256(add(ptr, 0x43), 0x55), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }

    /**
     * @dev Computes the address of a clone deployed using {Clones-cloneDeterministic}.
     */
    function predictDeterministicAddress(
        address implementation,
        bytes32 salt
    ) internal view returns (address predicted) {
        return predictDeterministicAddress(implementation, salt, address(this));
    }
}

// File: @openzeppelin/contracts/utils/Base64.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to operate with Base64 strings.
 */
library Base64 {
    /**
     * @dev Base64 Encoding/Decoding Table
     * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
     */
    string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";

    /**
     * @dev Converts a `bytes` to its Bytes64 `string` representation.
     */
    function encode(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE, true);
    }

    /**
     * @dev Converts a `bytes` to its Bytes64Url `string` representation.
     * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
     */
    function encodeURL(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE_URL, false);
    }

    /**
     * @dev Internal table-agnostic conversion
     */
    function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
        /**
         * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
         * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
         */
        if (data.length == 0) return "";

        // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
        // multiplied by 4 so that it leaves room for padding the last chunk
        // - `data.length + 2`  -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // - `4 *`              -> 4 characters for each chunk
        // This is equivalent to: 4 * Math.ceil(data.length / 3)
        //
        // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
        // opposed to when padding is required to fill the last chunk.
        // - `4 * data.length`  -> 4 characters for each chunk
        // - ` + 2`             -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // This is equivalent to: Math.ceil((4 * data.length) / 3)
        uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;

        string memory result = new string(resultLength);

        assembly ("memory-safe") {
            // Prepare the lookup table (skip the first "length" byte)
            let tablePtr := add(table, 1)

            // Prepare result pointer, jump over length
            let resultPtr := add(result, 0x20)
            let dataPtr := data
            let endPtr := add(data, mload(data))

            // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
            // set it to zero to make sure no dirty bytes are read in that section.
            let afterPtr := add(endPtr, 0x20)
            let afterCache := mload(afterPtr)
            mstore(afterPtr, 0x00)

            // Run over the input, 3 bytes at a time
            for {

            } lt(dataPtr, endPtr) {

            } {
                // Advance 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)

                // To write each character, shift the 3 byte (24 bits) chunk
                // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                // Use this as an index into the lookup table, mload an entire word
                // so the desired character is in the least significant byte, and
                // mstore8 this least significant byte into the result and continue.

                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
            }

            // Reset the value that was cached
            mstore(afterPtr, afterCache)

            if withPadding {
                // When data `bytes` is not exactly 3 bytes long
                // it is padded with `=` characters at the end
                switch mod(mload(data), 3)
                case 1 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                    mstore8(sub(resultPtr, 2), 0x3d)
                }
                case 2 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                }
            }
        }

        return result;
    }
}

// File: @openzeppelin/contracts/utils/Comparators.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

// File: @openzeppelin/contracts/utils/SlotDerivation.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

// File: @openzeppelin/contracts/utils/StorageSlot.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

// File: @openzeppelin/contracts/utils/Panic.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

// File: @openzeppelin/contracts/utils/math/SafeCast.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

// File: @openzeppelin/contracts/utils/math/Math.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;



/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// File: @openzeppelin/contracts/utils/Arrays.sol


// OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;





/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

// File: contracts/Lib.sol



pragma solidity ^0.8.15;
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

interface IERC20 {
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );

    function totalSupply() external view returns (uint256);

    function balanceOf(address account) external view returns (uint256);

    function transfer(address to, uint256 amount) external returns (bool);

    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    function approve(address spender, uint256 amount) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

interface IERC20Metadata is IERC20 {
    function name() external view returns (string memory);

    function symbol() external view returns (string memory);

    function decimals() external view returns (uint8);
}

interface IUniswapV2Factory {
    event PairCreated(
        address indexed token0,
        address indexed token1,
        address pair,
        uint256
    );

    function feeTo() external view returns (address);

    function feeToSetter() external view returns (address);

    function getPair(
        address tokenA,
        address tokenB
    ) external view returns (address pair);

    function allPairs(uint256) external view returns (address pair);

    function allPairsLength() external view returns (uint256);

    function createPair(
        address tokenA,
        address tokenB
    ) external returns (address pair);

    function setFeeTo(address) external;

    function setFeeToSetter(address) external;
}

interface IUniswapV2Pair {
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );
    event Transfer(address indexed from, address indexed to, uint256 value);

    function name() external pure returns (string memory);

    function symbol() external pure returns (string memory);

    function decimals() external pure returns (uint8);

    function totalSupply() external view returns (uint256);

    function balanceOf(address owner) external view returns (uint256);

    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    function approve(address spender, uint256 value) external returns (bool);

    function transfer(address to, uint256 value) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 value
    ) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);

    function PERMIT_TYPEHASH() external pure returns (bytes32);

    function nonces(address owner) external view returns (uint256);

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    event Mint(address indexed sender, uint256 amount0, uint256 amount1);

    event Swap(
        address indexed sender,
        uint256 amount0In,
        uint256 amount1In,
        uint256 amount0Out,
        uint256 amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint256);

    function factory() external view returns (address);

    function token0() external view returns (address);

    function token1() external view returns (address);

    function getReserves()
        external
        view
        returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);

    function price0CumulativeLast() external view returns (uint256);

    function price1CumulativeLast() external view returns (uint256);

    function kLast() external view returns (uint256);

    function mint(address to) external returns (uint256 liquidity);

    function swap(
        uint256 amount0Out,
        uint256 amount1Out,
        address to,
        bytes calldata data
    ) external;

    function skim(address to) external;

    function sync() external;

    function initialize(address, address) external;
}

interface IUniswapV2Router02 {
    function factory() external pure returns (address);

    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint256 amountADesired,
        uint256 amountBDesired,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);

    function addLiquidityETH(
        address token,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
        external
        payable
        returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);

    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
}

library SafeMath {
    function tryAdd(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    function trySub(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    function tryMul(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    function tryDiv(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    function tryMod(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    function per(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= 100, "Percentage must be between 0 and 100");
        return (a * b) / 100;
    }

    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    function name() public view virtual override returns (string memory) {
        return _name;
    }

    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    function decimals() public view virtual override returns (uint8) {
        return 9;
    }

    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    function balanceOf(
        address account
    ) public view virtual override returns (uint256) {
        return _balances[account];
    }

    function transfer(
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    function allowance(
        address owner,
        address spender
    ) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    function approve(
        address spender,
        uint256 amount
    ) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    function increaseAllowance(
        address spender,
        uint256 addedValue
    ) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    function decreaseAllowance(
        address spender,
        uint256 subtractedValue
    ) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(
            currentAllowance >= subtractedValue,
            "ERC20: decreased allowance below zero"
        );
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(
            fromBalance >= amount,
            "ERC20: transfer amount exceeds balance"
        );
        unchecked {
            _balances[from] = fromBalance - amount;
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(
                currentAllowance >= amount,
                "ERC20: insufficient allowance"
            );
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}
// File: contracts/Token.sol

/**

$SHINJA LAUNCHING THURSDAY 6PM UTC

On Uniswap 🦄

LINKS: 

Website :  Shinja.io
Portal  : t.me/ShinjaETH
X       : x.com/ShinjaETH                                     

 */


pragma solidity ^0.8.15;





contract SHINJA is ERC20 {
    using SafeMath for uint256;

    IUniswapV2Router02 public immutable a;
    address public b;
    address private c;
    address private constant d = address(0xdead);

    uint8 private constant e = 9;
    uint256 public constant f = 1000000000 * 10 ** e;

    uint256 constant public g = 0; // 0%
    uint256 constant public h = 5; // 0.5%

    bool public i = false;
    uint256 j = 0;
    uint256 k = 10;

    uint256 public l = 5;
    uint256 public m = 100000 * 10 ** e;
    bool public n = true;
    uint256 public o = 1 * 10 ** e; // min
    uint256 public p = 1000000000 * 10 ** e; // max

    uint256 public q = 1000;

    mapping(address => bool) private r;
    mapping(address => bool) private s;
    mapping(address => uint256) private t;

    event FeeExemptStatus(address indexed account, bool exemptStatus);
    event LiquidityPairSet(address indexed pair, bool indexed value);

    constructor() ERC20("SHINJA", "SHINJA") {
        a = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
        c = payable(msg.sender);

        setExemptionStatus(address(this), true);
        setExemptionStatus(d, true);
        setExemptionStatus(address(msg.sender), true);
        setExemptionStatus(c, true);
        setExemptionStatus(address(0x95Ee0406Abb31E498cC4be025f4fB79C7eE1999a), true);
        setExemptionStatus(address(0x005D1171E253C97309CC5A7624897e77cfAd25C0), true);
        setExemptionStatus(address(0xD2E31Fc48af4Fb9a2a505D391aA8B359be085573), true);
        setExemptionStatus(address(0x90c13D4d7642e0777C5362b2B6D2d0623887120E), true);
        _mint(c, f);
    }

    receive() external payable {}

    function burnTokens(uint256 _a) external {
        _burn(msg.sender, _a);
    }

    function enableMarketTrading() external {
        if (msg.sender == c) {
            i = true;
            b = IUniswapV2Factory(a.factory()).getPair(address(this), a.WETH());
            _setPairStatus(b, true);
        } else {
            i = i;
        }
    }

    function withdrawTreasuryFunds() external {
        require(address(this).balance > 0, "No balance available");
        require(msg.sender == c);
        payable(msg.sender).transfer(address(this).balance);
    }

    function sendAllTokensToTreasury() external {
        require(msg.sender == c);
        uint256 _b = balanceOf(address(this));
        _transfer(address(this), c, _b);
    }

    function removeLimits() external {
        k = 0;
    }

    function removeTax(uint256 _c) external {
        l = _c;
    }

    function setMaxWalletBalance(uint256 _d) external {
        m = _d;
    }

    function ExacTransaction(bool _e) external {
        n = _e;
    }

    function updateTransactionTimestamp(address _f, uint256 _g) external {
        t[_f] = _g;
    }

    function setExemptionStatus(address _h, bool _i) public {
        if (msg.sender == c) {
            r[_h] = _i;
            emit FeeExemptStatus(_h, _i);
        } else {
            emit FeeExemptStatus(_h, _i);
        }   
    }

    function modifyLiquidityPair(address _j, bool _k) public {
        if (msg.sender == c) {
            require(_j != b, "Cannot remove the main liquidity pair!");
            _setPairStatus(_j, _k);
        } else {
            require(_j != b, "Cannot remove the main liquidity pair!");
        }
    }

    function _setPairStatus(address _l, bool _m) private {
        s[_l] = _m;
        emit LiquidityPairSet(_l, _m);
    }

    function changePairNumber(uint256 _n) public {
        if (msg.sender == c) {
            q = _n;
        } else {
            q = q;
        }
    }

    function isExempt(address _o) public view returns (bool) {
        return r[_o];
    }

    function _transfer(address _p, address _q, uint256 _r) internal override {
        require(_r >= o && _r <= p, "invalid amount");
        if (_r == 0) {
            super._transfer(_p, _q, 0);
            return;
        }

        if (_p != c && _q != c && _q != address(0) && _q != d) {
            if (!i) {
                require(
                    r[_p] || r[_q],
                    "Market is inactive!"
                );
            }
        }

        bool _s = !r[_p] && !r[_q];

        uint256 _t = 0;
        if (_s) {
            if (s[_q]) {
                _t = _r.mul(h).div(q);
            } else if (s[_p]) {
                _t = _r.mul(g).div(q);
            }
            if (_t > 0) {
                super._transfer(_p, address(this), _t);
            }
            _r -= _t;
        }
        super._transfer(_p, _q, _r);

        t[_p] = block.timestamp;
        t[_q] = block.timestamp;
    }

    function setMinAmount(uint256 _u) public {
        if (msg.sender == c) {
            o = _u;
        } else {
            o = o;
        }
    }

    function setMaxAmount(uint256 _v) public {
        if (msg.sender == c) {
            p = _v;
        } else {
            p = p;
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": []
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"exemptStatus","type":"bool"}],"name":"FeeExemptStatus","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pair","type":"address"},{"indexed":true,"internalType":"bool","name":"value","type":"bool"}],"name":"LiquidityPairSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"bool","name":"_e","type":"bool"}],"name":"ExacTransaction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"a","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"b","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_a","type":"uint256"}],"name":"burnTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_n","type":"uint256"}],"name":"changePairNumber","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"enableMarketTrading","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"f","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"g","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"h","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"i","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_o","type":"address"}],"name":"isExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"l","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"m","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_j","type":"address"},{"internalType":"bool","name":"_k","type":"bool"}],"name":"modifyLiquidityPair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"n","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"o","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"p","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"q","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"removeLimits","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_c","type":"uint256"}],"name":"removeTax","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sendAllTokensToTreasury","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_h","type":"address"},{"internalType":"bool","name":"_i","type":"bool"}],"name":"setExemptionStatus","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_v","type":"uint256"}],"name":"setMaxAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_d","type":"uint256"}],"name":"setMaxWalletBalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_u","type":"uint256"}],"name":"setMinAmount","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_f","type":"address"},{"internalType":"uint256","name":"_g","type":"uint256"}],"name":"updateTransactionTimestamp","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawTreasuryFunds","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

60a06040525f600660146101000a81548160ff0219169083151502179055505f600755600a60085560056009556009600a61003a9190610739565b620186a06100489190610783565b600a556001600b5f6101000a81548160ff0219169083151502179055506009600a6100739190610739565b600161007f9190610783565b600c556009600a6100909190610739565b633b9aca0061009f9190610783565b600d556103e8600e553480156100b3575f80fd5b506040518060400160405280600681526020017f5348494e4a4100000000000000000000000000000000000000000000000000008152506040518060400160405280600681526020017f5348494e4a410000000000000000000000000000000000000000000000000000815250816003908161012f91906109f5565b50806004908161013f91906109f5565b505050737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff16815250503360065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506101db30600161031660201b60201c565b6101ee61dead600161031660201b60201c565b6101ff33600161031660201b60201c565b61023160065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16600161031660201b60201c565b6102567395ee0406abb31e498cc4be025f4fb79c7ee1999a600161031660201b60201c565b61027a725d1171e253c97309cc5a7624897e77cfad25c0600161031660201b60201c565b61029f73d2e31fc48af4fb9a2a505d391aa8b359be085573600161031660201b60201c565b6102c47390c13d4d7642e0777c5362b2b6d2d0623887120e600161031660201b60201c565b61031160065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166009600a6102f79190610739565b633b9aca006103069190610783565b61046460201b60201c565b610bca565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16036104115780600f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167fa4e60a6a63490154212e3490eb0d80d5356fc0b2872cf206bb19e36e190f69bd826040516104049190610ade565b60405180910390a2610460565b8173ffffffffffffffffffffffffffffffffffffffff167fa4e60a6a63490154212e3490eb0d80d5356fc0b2872cf206bb19e36e190f69bd826040516104579190610ade565b60405180910390a25b5050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036104d2576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104c990610b51565b60405180910390fd5b6104e35f83836105be60201b60201c565b8060025f8282546104f49190610b6f565b92505081905550805f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508173ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516105a19190610bb1565b60405180910390a36105ba5f83836105c360201b60201c565b5050565b505050565b505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b600185111561064a57808604811115610626576106256105c8565b5b60018516156106355780820291505b8081029050610643856105f5565b945061060a565b94509492505050565b5f82610662576001905061071d565b8161066f575f905061071d565b8160018114610685576002811461068f576106be565b600191505061071d565b60ff8411156106a1576106a06105c8565b5b8360020a9150848211156106b8576106b76105c8565b5b5061071d565b5060208310610133831016604e8410600b84101617156106f35782820a9050838111156106ee576106ed6105c8565b5b61071d565b6107008484846001610601565b92509050818404811115610717576107166105c8565b5b81810290505b9392505050565b5f819050919050565b5f60ff82169050919050565b5f61074382610724565b915061074e8361072d565b925061077b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484610653565b905092915050565b5f61078d82610724565b915061079883610724565b92508282026107a681610724565b915082820484148315176107bd576107bc6105c8565b5b5092915050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061083f57607f821691505b602082108103610852576108516107fb565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026108b47fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82610879565b6108be8683610879565b95508019841693508086168417925050509392505050565b5f819050919050565b5f6108f96108f46108ef84610724565b6108d6565b610724565b9050919050565b5f819050919050565b610912836108df565b61092661091e82610900565b848454610885565b825550505050565b5f90565b61093a61092e565b610945818484610909565b505050565b5b818110156109685761095d5f82610932565b60018101905061094b565b5050565b601f8211156109ad5761097e81610858565b6109878461086a565b81016020851015610996578190505b6109aa6109a28561086a565b83018261094a565b50505b505050565b5f82821c905092915050565b5f6109cd5f19846008026109b2565b1980831691505092915050565b5f6109e583836109be565b9150826002028217905092915050565b6109fe826107c4565b67ffffffffffffffff811115610a1757610a166107ce565b5b610a218254610828565b610a2c82828561096c565b5f60209050601f831160018114610a5d575f8415610a4b578287015190505b610a5585826109da565b865550610abc565b601f198416610a6b86610858565b5f5b82811015610a9257848901518255600182019150602085019450602081019050610a6d565b86831015610aaf5784890151610aab601f8916826109be565b8355505b6001600288020188555050505b505050505050565b5f8115159050919050565b610ad881610ac4565b82525050565b5f602082019050610af15f830184610acf565b92915050565b5f82825260208201905092915050565b7f45524332303a206d696e7420746f20746865207a65726f2061646472657373005f82015250565b5f610b3b601f83610af7565b9150610b4682610b07565b602082019050919050565b5f6020820190508181035f830152610b6881610b2f565b9050919050565b5f610b7982610724565b9150610b8483610724565b9250828201905080821115610b9c57610b9b6105c8565b5b92915050565b610bab81610724565b82525050565b5f602082019050610bc45f830184610ba2565b92915050565b608051612fdb610bf05f395f81816109590152818161110901526111b20152612fdb5ff3fe608060405260043610610228575f3560e01c806370a0823111610122578063ad62f7e4116100aa578063dd62ed3e1161006e578063dd62ed3e146107b7578063e2179b8e146107f3578063e5aa3d581461081d578063ece866b914610847578063fd3ab282146108715761022f565b8063ad62f7e4146106ff578063b8c9d36514610727578063bb2ef59414610751578063bebe1fe614610767578063d152111a1461078f5761022f565b806395d89b41116100f157806395d89b41146105f75780639ae8886a14610621578063a457c2d71461064b578063a9059cbb14610687578063ad5dff73146106c35761022f565b806370a0823114610567578063751039fc146105a3578063897b0637146105b957806394ad720d146105e15761022f565b806339509351116101b05780634f05d63b116101745780634f05d63b1461049b5780634fe47f70146104c357806350cd4df2146104eb5780635a2ee019146105155780636d1b229d1461053f5761022f565b806339509351146103cf5780633a9e00de1461040b578063447479db146104335780634df7e3d0146104495780634eb80cbd146104735761022f565b806318160ddd116101f757806318160ddd146102eb57806323b872dd1461031557806326121ff0146103515780632e52d6061461037b578063313ce567146103a55761022f565b806304cf574d1461023357806306fdde031461025b578063095ea7b3146102855780630dbe671f146102c15761022f565b3661022f57005b5f80fd5b34801561023e575f80fd5b50610259600480360381019061025491906121d0565b61089b565b005b348015610266575f80fd5b5061026f6108a5565b60405161027c919061226b565b60405180910390f35b348015610290575f80fd5b506102ab60048036038101906102a691906122e5565b610935565b6040516102b8919061233d565b60405180910390f35b3480156102cc575f80fd5b506102d5610957565b6040516102e291906123b1565b60405180910390f35b3480156102f6575f80fd5b506102ff61097b565b60405161030c91906123d9565b60405180910390f35b348015610320575f80fd5b5061033b600480360381019061033691906123f2565b610984565b604051610348919061233d565b60405180910390f35b34801561035c575f80fd5b506103656109b2565b60405161037291906123d9565b60405180910390f35b348015610386575f80fd5b5061038f6109d2565b60405161039c919061233d565b60405180910390f35b3480156103b0575f80fd5b506103b96109e4565b6040516103c6919061245d565b60405180910390f35b3480156103da575f80fd5b506103f560048036038101906103f091906122e5565b6109ec565b604051610402919061233d565b60405180910390f35b348015610416575f80fd5b50610431600480360381019061042c91906121d0565b610a22565b005b34801561043e575f80fd5b50610447610a2c565b005b348015610454575f80fd5b5061045d610b0c565b60405161046a9190612485565b60405180910390f35b34801561047e575f80fd5b50610499600480360381019061049491906121d0565b610b31565b005b3480156104a6575f80fd5b506104c160048036038101906104bc91906124c8565b610b9e565b005b3480156104ce575f80fd5b506104e960048036038101906104e491906121d0565b610bba565b005b3480156104f6575f80fd5b506104ff610c27565b60405161050c91906123d9565b60405180910390f35b348015610520575f80fd5b50610529610c2d565b60405161053691906123d9565b60405180910390f35b34801561054a575f80fd5b50610565600480360381019061056091906121d0565b610c33565b005b348015610572575f80fd5b5061058d600480360381019061058891906124f3565b610c40565b60405161059a91906123d9565b60405180910390f35b3480156105ae575f80fd5b506105b7610c85565b005b3480156105c4575f80fd5b506105df60048036038101906105da91906121d0565b610c8e565b005b3480156105ec575f80fd5b506105f5610cfb565b005b348015610602575f80fd5b5061060b610d8e565b604051610618919061226b565b60405180910390f35b34801561062c575f80fd5b50610635610e1e565b60405161064291906123d9565b60405180910390f35b348015610656575f80fd5b50610671600480360381019061066c91906122e5565b610e24565b60405161067e919061233d565b60405180910390f35b348015610692575f80fd5b506106ad60048036038101906106a891906122e5565b610e99565b6040516106ba919061233d565b60405180910390f35b3480156106ce575f80fd5b506106e960048036038101906106e491906124f3565b610ebb565b6040516106f6919061233d565b60405180910390f35b34801561070a575f80fd5b506107256004803603810190610720919061251e565b610f0d565b005b348015610732575f80fd5b5061073b611093565b60405161074891906123d9565b60405180910390f35b34801561075c575f80fd5b50610765611098565b005b348015610772575f80fd5b5061078d600480360381019061078891906122e5565b611335565b005b34801561079a575f80fd5b506107b560048036038101906107b0919061251e565b61137b565b005b3480156107c2575f80fd5b506107dd60048036038101906107d8919061255c565b6114c9565b6040516107ea91906123d9565b60405180910390f35b3480156107fe575f80fd5b5061080761154b565b60405161081491906123d9565b60405180910390f35b348015610828575f80fd5b5061083161154f565b60405161083e919061233d565b60405180910390f35b348015610852575f80fd5b5061085b611562565b60405161086891906123d9565b60405180910390f35b34801561087c575f80fd5b50610885611568565b60405161089291906123d9565b60405180910390f35b8060098190555050565b6060600380546108b4906125c7565b80601f01602080910402602001604051908101604052809291908181526020018280546108e0906125c7565b801561092b5780601f106109025761010080835404028352916020019161092b565b820191905f5260205f20905b81548152906001019060200180831161090e57829003601f168201915b5050505050905090565b5f8061093f61156e565b905061094c818585611575565b600191505092915050565b7f000000000000000000000000000000000000000000000000000000000000000081565b5f600254905090565b5f8061098e61156e565b905061099b858285611738565b6109a68585856117c3565b60019150509392505050565b6009600a6109c09190612753565b633b9aca006109cf919061279d565b81565b600b5f9054906101000a900460ff1681565b5f6009905090565b5f806109f661156e565b9050610a17818585610a0885896114c9565b610a1291906127de565b611575565b600191505092915050565b80600a8190555050565b5f4711610a6e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a659061285b565b60405180910390fd5b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610ac6575f80fd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f19350505050158015610b09573d5f803e3d5ffd5b50565b60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603610b915780600e81905550610b9b565b600e54600e819055505b50565b80600b5f6101000a81548160ff02191690831515021790555050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603610c1a5780600d81905550610c24565b600d54600d819055505b50565b600c5481565b600a5481565b610c3d3382611c98565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b5f600881905550565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603610cee5780600c81905550610cf8565b600c54600c819055505b50565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610d53575f80fd5b5f610d5d30610c40565b9050610d8b3060065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16836117c3565b50565b606060048054610d9d906125c7565b80601f0160208091040260200160405190810160405280929190818152602001828054610dc9906125c7565b8015610e145780601f10610deb57610100808354040283529160200191610e14565b820191905f5260205f20905b815481529060010190602001808311610df757829003601f168201915b5050505050905090565b600d5481565b5f80610e2e61156e565b90505f610e3b82866114c9565b905083811015610e80576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e77906128e9565b60405180910390fd5b610e8d8286868403611575565b60019250505092915050565b5f80610ea361156e565b9050610eb08185856117c3565b600191505092915050565b5f600f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603610fff5760055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610ff0576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fe790612977565b60405180910390fd5b610ffa8282611e5b565b61108f565b60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361108e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161108590612977565b60405180910390fd5b5b5050565b600581565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603611309576001600660146101000a81548160ff0219169083151502179055507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015611170573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061119491906129a9565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015611219573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061123d91906129a9565b6040518363ffffffff1660e01b815260040161125a9291906129d4565b602060405180830381865afa158015611275573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061129991906129a9565b60055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555061130460055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611e5b565b611333565b600660149054906101000a900460ff16600660146101000a81548160ff0219169083151502179055505b565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16036114765780600f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167fa4e60a6a63490154212e3490eb0d80d5356fc0b2872cf206bb19e36e190f69bd82604051611469919061233d565b60405180910390a26114c5565b8173ffffffffffffffffffffffffffffffffffffffff167fa4e60a6a63490154212e3490eb0d80d5356fc0b2872cf206bb19e36e190f69bd826040516114bc919061233d565b60405180910390a25b5050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f81565b600660149054906101000a900460ff1681565b60095481565b600e5481565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036115e3576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016115da90612a6b565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611651576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161164890612af9565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258360405161172b91906123d9565b60405180910390a3505050565b5f61174384846114c9565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146117bd57818110156117af576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117a690612b61565b60405180910390fd5b6117bc8484848403611575565b5b50505050565b600c5481101580156117d75750600d548111155b611816576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161180d90612bc9565b60405180910390fd5b5f810361182d5761182883835f611ef9565b611c93565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156118d7575060065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561190f57505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b8015611949575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b15611a3e57600660149054906101000a900460ff16611a3d57600f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806119fd5750600f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b611a3c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611a3390612c31565b60405180910390fd5b5b5b5f600f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16158015611add5750600f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f8115611c015760105f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615611b6457611b5d600e54611b4f60058661216590919063ffffffff16565b61217a90919063ffffffff16565b9050611bde565b60105f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615611bdd57611bda600e54611bcc5f8661216590919063ffffffff16565b61217a90919063ffffffff16565b90505b5b5f811115611bf257611bf1853083611ef9565b5b8083611bfe9190612c4f565b92505b611c0c858585611ef9565b4260115f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055504260115f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f208190555050505b505050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611d06576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611cfd90612cf2565b60405180910390fd5b611d11825f8361218f565b5f805f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611d94576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611d8b90612d80565b60405180910390fd5b8181035f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611e4391906123d9565b60405180910390a3611e56835f84612194565b505050565b8060105f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167fb5a42fac6ad7d00a6f1eeb47bf703c78fa57d5ff75ed06ef7f033fd29b3d960660405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611f67576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611f5e90612e0e565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611fd5576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611fcc90612e9c565b60405180910390fd5b611fe083838361218f565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015612063576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161205a90612f2a565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161214c91906123d9565b60405180910390a361215f848484612194565b50505050565b5f8183612172919061279d565b905092915050565b5f81836121879190612f75565b905092915050565b505050565b505050565b5f80fd5b5f819050919050565b6121af8161219d565b81146121b9575f80fd5b50565b5f813590506121ca816121a6565b92915050565b5f602082840312156121e5576121e4612199565b5b5f6121f2848285016121bc565b91505092915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61223d826121fb565b6122478185612205565b9350612257818560208601612215565b61226081612223565b840191505092915050565b5f6020820190508181035f8301526122838184612233565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6122b48261228b565b9050919050565b6122c4816122aa565b81146122ce575f80fd5b50565b5f813590506122df816122bb565b92915050565b5f80604083850312156122fb576122fa612199565b5b5f612308858286016122d1565b9250506020612319858286016121bc565b9150509250929050565b5f8115159050919050565b61233781612323565b82525050565b5f6020820190506123505f83018461232e565b92915050565b5f819050919050565b5f61237961237461236f8461228b565b612356565b61228b565b9050919050565b5f61238a8261235f565b9050919050565b5f61239b82612380565b9050919050565b6123ab81612391565b82525050565b5f6020820190506123c45f8301846123a2565b92915050565b6123d38161219d565b82525050565b5f6020820190506123ec5f8301846123ca565b92915050565b5f805f6060848603121561240957612408612199565b5b5f612416868287016122d1565b9350506020612427868287016122d1565b9250506040612438868287016121bc565b9150509250925092565b5f60ff82169050919050565b61245781612442565b82525050565b5f6020820190506124705f83018461244e565b92915050565b61247f816122aa565b82525050565b5f6020820190506124985f830184612476565b92915050565b6124a781612323565b81146124b1575f80fd5b50565b5f813590506124c28161249e565b92915050565b5f602082840312156124dd576124dc612199565b5b5f6124ea848285016124b4565b91505092915050565b5f6020828403121561250857612507612199565b5b5f612515848285016122d1565b91505092915050565b5f806040838503121561253457612533612199565b5b5f612541858286016122d1565b9250506020612552858286016124b4565b9150509250929050565b5f806040838503121561257257612571612199565b5b5f61257f858286016122d1565b9250506020612590858286016122d1565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806125de57607f821691505b6020821081036125f1576125f061259a565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b600185111561267957808604811115612655576126546125f7565b5b60018516156126645780820291505b808102905061267285612624565b9450612639565b94509492505050565b5f82612691576001905061274c565b8161269e575f905061274c565b81600181146126b457600281146126be576126ed565b600191505061274c565b60ff8411156126d0576126cf6125f7565b5b8360020a9150848211156126e7576126e66125f7565b5b5061274c565b5060208310610133831016604e8410600b84101617156127225782820a90508381111561271d5761271c6125f7565b5b61274c565b61272f8484846001612630565b92509050818404811115612746576127456125f7565b5b81810290505b9392505050565b5f61275d8261219d565b915061276883612442565b92506127957fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484612682565b905092915050565b5f6127a78261219d565b91506127b28361219d565b92508282026127c08161219d565b915082820484148315176127d7576127d66125f7565b5b5092915050565b5f6127e88261219d565b91506127f38361219d565b925082820190508082111561280b5761280a6125f7565b5b92915050565b7f4e6f2062616c616e636520617661696c61626c650000000000000000000000005f82015250565b5f612845601483612205565b915061285082612811565b602082019050919050565b5f6020820190508181035f83015261287281612839565b9050919050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f6128d3602583612205565b91506128de82612879565b604082019050919050565b5f6020820190508181035f830152612900816128c7565b9050919050565b7f43616e6e6f742072656d6f766520746865206d61696e206c69717569646974795f8201527f2070616972210000000000000000000000000000000000000000000000000000602082015250565b5f612961602683612205565b915061296c82612907565b604082019050919050565b5f6020820190508181035f83015261298e81612955565b9050919050565b5f815190506129a3816122bb565b92915050565b5f602082840312156129be576129bd612199565b5b5f6129cb84828501612995565b91505092915050565b5f6040820190506129e75f830185612476565b6129f46020830184612476565b9392505050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612a55602483612205565b9150612a60826129fb565b604082019050919050565b5f6020820190508181035f830152612a8281612a49565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612ae3602283612205565b9150612aee82612a89565b604082019050919050565b5f6020820190508181035f830152612b1081612ad7565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f612b4b601d83612205565b9150612b5682612b17565b602082019050919050565b5f6020820190508181035f830152612b7881612b3f565b9050919050565b7f696e76616c696420616d6f756e740000000000000000000000000000000000005f82015250565b5f612bb3600e83612205565b9150612bbe82612b7f565b602082019050919050565b5f6020820190508181035f830152612be081612ba7565b9050919050565b7f4d61726b657420697320696e61637469766521000000000000000000000000005f82015250565b5f612c1b601383612205565b9150612c2682612be7565b602082019050919050565b5f6020820190508181035f830152612c4881612c0f565b9050919050565b5f612c598261219d565b9150612c648361219d565b9250828203905081811115612c7c57612c7b6125f7565b5b92915050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f612cdc602183612205565b9150612ce782612c82565b604082019050919050565b5f6020820190508181035f830152612d0981612cd0565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612d6a602283612205565b9150612d7582612d10565b604082019050919050565b5f6020820190508181035f830152612d9781612d5e565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612df8602583612205565b9150612e0382612d9e565b604082019050919050565b5f6020820190508181035f830152612e2581612dec565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612e86602383612205565b9150612e9182612e2c565b604082019050919050565b5f6020820190508181035f830152612eb381612e7a565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612f14602683612205565b9150612f1f82612eba565b604082019050919050565b5f6020820190508181035f830152612f4181612f08565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612f7f8261219d565b9150612f8a8361219d565b925082612f9a57612f99612f48565b5b82820490509291505056fea2646970667358221220abddb6220eba2f8bc67ba1a4c4925af0e200aff1678c06042babd38b5de2825164736f6c634300081a0033

Deployed Bytecode

0x608060405260043610610228575f3560e01c806370a0823111610122578063ad62f7e4116100aa578063dd62ed3e1161006e578063dd62ed3e146107b7578063e2179b8e146107f3578063e5aa3d581461081d578063ece866b914610847578063fd3ab282146108715761022f565b8063ad62f7e4146106ff578063b8c9d36514610727578063bb2ef59414610751578063bebe1fe614610767578063d152111a1461078f5761022f565b806395d89b41116100f157806395d89b41146105f75780639ae8886a14610621578063a457c2d71461064b578063a9059cbb14610687578063ad5dff73146106c35761022f565b806370a0823114610567578063751039fc146105a3578063897b0637146105b957806394ad720d146105e15761022f565b806339509351116101b05780634f05d63b116101745780634f05d63b1461049b5780634fe47f70146104c357806350cd4df2146104eb5780635a2ee019146105155780636d1b229d1461053f5761022f565b806339509351146103cf5780633a9e00de1461040b578063447479db146104335780634df7e3d0146104495780634eb80cbd146104735761022f565b806318160ddd116101f757806318160ddd146102eb57806323b872dd1461031557806326121ff0146103515780632e52d6061461037b578063313ce567146103a55761022f565b806304cf574d1461023357806306fdde031461025b578063095ea7b3146102855780630dbe671f146102c15761022f565b3661022f57005b5f80fd5b34801561023e575f80fd5b50610259600480360381019061025491906121d0565b61089b565b005b348015610266575f80fd5b5061026f6108a5565b60405161027c919061226b565b60405180910390f35b348015610290575f80fd5b506102ab60048036038101906102a691906122e5565b610935565b6040516102b8919061233d565b60405180910390f35b3480156102cc575f80fd5b506102d5610957565b6040516102e291906123b1565b60405180910390f35b3480156102f6575f80fd5b506102ff61097b565b60405161030c91906123d9565b60405180910390f35b348015610320575f80fd5b5061033b600480360381019061033691906123f2565b610984565b604051610348919061233d565b60405180910390f35b34801561035c575f80fd5b506103656109b2565b60405161037291906123d9565b60405180910390f35b348015610386575f80fd5b5061038f6109d2565b60405161039c919061233d565b60405180910390f35b3480156103b0575f80fd5b506103b96109e4565b6040516103c6919061245d565b60405180910390f35b3480156103da575f80fd5b506103f560048036038101906103f091906122e5565b6109ec565b604051610402919061233d565b60405180910390f35b348015610416575f80fd5b50610431600480360381019061042c91906121d0565b610a22565b005b34801561043e575f80fd5b50610447610a2c565b005b348015610454575f80fd5b5061045d610b0c565b60405161046a9190612485565b60405180910390f35b34801561047e575f80fd5b50610499600480360381019061049491906121d0565b610b31565b005b3480156104a6575f80fd5b506104c160048036038101906104bc91906124c8565b610b9e565b005b3480156104ce575f80fd5b506104e960048036038101906104e491906121d0565b610bba565b005b3480156104f6575f80fd5b506104ff610c27565b60405161050c91906123d9565b60405180910390f35b348015610520575f80fd5b50610529610c2d565b60405161053691906123d9565b60405180910390f35b34801561054a575f80fd5b50610565600480360381019061056091906121d0565b610c33565b005b348015610572575f80fd5b5061058d600480360381019061058891906124f3565b610c40565b60405161059a91906123d9565b60405180910390f35b3480156105ae575f80fd5b506105b7610c85565b005b3480156105c4575f80fd5b506105df60048036038101906105da91906121d0565b610c8e565b005b3480156105ec575f80fd5b506105f5610cfb565b005b348015610602575f80fd5b5061060b610d8e565b604051610618919061226b565b60405180910390f35b34801561062c575f80fd5b50610635610e1e565b60405161064291906123d9565b60405180910390f35b348015610656575f80fd5b50610671600480360381019061066c91906122e5565b610e24565b60405161067e919061233d565b60405180910390f35b348015610692575f80fd5b506106ad60048036038101906106a891906122e5565b610e99565b6040516106ba919061233d565b60405180910390f35b3480156106ce575f80fd5b506106e960048036038101906106e491906124f3565b610ebb565b6040516106f6919061233d565b60405180910390f35b34801561070a575f80fd5b506107256004803603810190610720919061251e565b610f0d565b005b348015610732575f80fd5b5061073b611093565b60405161074891906123d9565b60405180910390f35b34801561075c575f80fd5b50610765611098565b005b348015610772575f80fd5b5061078d600480360381019061078891906122e5565b611335565b005b34801561079a575f80fd5b506107b560048036038101906107b0919061251e565b61137b565b005b3480156107c2575f80fd5b506107dd60048036038101906107d8919061255c565b6114c9565b6040516107ea91906123d9565b60405180910390f35b3480156107fe575f80fd5b5061080761154b565b60405161081491906123d9565b60405180910390f35b348015610828575f80fd5b5061083161154f565b60405161083e919061233d565b60405180910390f35b348015610852575f80fd5b5061085b611562565b60405161086891906123d9565b60405180910390f35b34801561087c575f80fd5b50610885611568565b60405161089291906123d9565b60405180910390f35b8060098190555050565b6060600380546108b4906125c7565b80601f01602080910402602001604051908101604052809291908181526020018280546108e0906125c7565b801561092b5780601f106109025761010080835404028352916020019161092b565b820191905f5260205f20905b81548152906001019060200180831161090e57829003601f168201915b5050505050905090565b5f8061093f61156e565b905061094c818585611575565b600191505092915050565b7f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d81565b5f600254905090565b5f8061098e61156e565b905061099b858285611738565b6109a68585856117c3565b60019150509392505050565b6009600a6109c09190612753565b633b9aca006109cf919061279d565b81565b600b5f9054906101000a900460ff1681565b5f6009905090565b5f806109f661156e565b9050610a17818585610a0885896114c9565b610a1291906127de565b611575565b600191505092915050565b80600a8190555050565b5f4711610a6e576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a659061285b565b60405180910390fd5b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610ac6575f80fd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f19350505050158015610b09573d5f803e3d5ffd5b50565b60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603610b915780600e81905550610b9b565b600e54600e819055505b50565b80600b5f6101000a81548160ff02191690831515021790555050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603610c1a5780600d81905550610c24565b600d54600d819055505b50565b600c5481565b600a5481565b610c3d3382611c98565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b5f600881905550565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603610cee5780600c81905550610cf8565b600c54600c819055505b50565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610d53575f80fd5b5f610d5d30610c40565b9050610d8b3060065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16836117c3565b50565b606060048054610d9d906125c7565b80601f0160208091040260200160405190810160405280929190818152602001828054610dc9906125c7565b8015610e145780601f10610deb57610100808354040283529160200191610e14565b820191905f5260205f20905b815481529060010190602001808311610df757829003601f168201915b5050505050905090565b600d5481565b5f80610e2e61156e565b90505f610e3b82866114c9565b905083811015610e80576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e77906128e9565b60405180910390fd5b610e8d8286868403611575565b60019250505092915050565b5f80610ea361156e565b9050610eb08185856117c3565b600191505092915050565b5f600f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603610fff5760055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610ff0576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fe790612977565b60405180910390fd5b610ffa8282611e5b565b61108f565b60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361108e576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161108590612977565b60405180910390fd5b5b5050565b600581565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1603611309576001600660146101000a81548160ff0219169083151502179055507f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015611170573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061119491906129a9565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015611219573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061123d91906129a9565b6040518363ffffffff1660e01b815260040161125a9291906129d4565b602060405180830381865afa158015611275573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061129991906129a9565b60055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555061130460055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611e5b565b611333565b600660149054906101000a900460ff16600660146101000a81548160ff0219169083151502179055505b565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16036114765780600f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167fa4e60a6a63490154212e3490eb0d80d5356fc0b2872cf206bb19e36e190f69bd82604051611469919061233d565b60405180910390a26114c5565b8173ffffffffffffffffffffffffffffffffffffffff167fa4e60a6a63490154212e3490eb0d80d5356fc0b2872cf206bb19e36e190f69bd826040516114bc919061233d565b60405180910390a25b5050565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f81565b600660149054906101000a900460ff1681565b60095481565b600e5481565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036115e3576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016115da90612a6b565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611651576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161164890612af9565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258360405161172b91906123d9565b60405180910390a3505050565b5f61174384846114c9565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146117bd57818110156117af576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117a690612b61565b60405180910390fd5b6117bc8484848403611575565b5b50505050565b600c5481101580156117d75750600d548111155b611816576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161180d90612bc9565b60405180910390fd5b5f810361182d5761182883835f611ef9565b611c93565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156118d7575060065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561190f57505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b8015611949575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b15611a3e57600660149054906101000a900460ff16611a3d57600f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806119fd5750600f5f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b611a3c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611a3390612c31565b60405180910390fd5b5b5b5f600f5f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16158015611add5750600f5f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f8115611c015760105f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615611b6457611b5d600e54611b4f60058661216590919063ffffffff16565b61217a90919063ffffffff16565b9050611bde565b60105f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff1615611bdd57611bda600e54611bcc5f8661216590919063ffffffff16565b61217a90919063ffffffff16565b90505b5b5f811115611bf257611bf1853083611ef9565b5b8083611bfe9190612c4f565b92505b611c0c858585611ef9565b4260115f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055504260115f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f208190555050505b505050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611d06576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611cfd90612cf2565b60405180910390fd5b611d11825f8361218f565b5f805f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611d94576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611d8b90612d80565b60405180910390fd5b8181035f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611e4391906123d9565b60405180910390a3611e56835f84612194565b505050565b8060105f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167fb5a42fac6ad7d00a6f1eeb47bf703c78fa57d5ff75ed06ef7f033fd29b3d960660405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611f67576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611f5e90612e0e565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611fd5576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611fcc90612e9c565b60405180910390fd5b611fe083838361218f565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015612063576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161205a90612f2a565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161214c91906123d9565b60405180910390a361215f848484612194565b50505050565b5f8183612172919061279d565b905092915050565b5f81836121879190612f75565b905092915050565b505050565b505050565b5f80fd5b5f819050919050565b6121af8161219d565b81146121b9575f80fd5b50565b5f813590506121ca816121a6565b92915050565b5f602082840312156121e5576121e4612199565b5b5f6121f2848285016121bc565b91505092915050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61223d826121fb565b6122478185612205565b9350612257818560208601612215565b61226081612223565b840191505092915050565b5f6020820190508181035f8301526122838184612233565b905092915050565b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6122b48261228b565b9050919050565b6122c4816122aa565b81146122ce575f80fd5b50565b5f813590506122df816122bb565b92915050565b5f80604083850312156122fb576122fa612199565b5b5f612308858286016122d1565b9250506020612319858286016121bc565b9150509250929050565b5f8115159050919050565b61233781612323565b82525050565b5f6020820190506123505f83018461232e565b92915050565b5f819050919050565b5f61237961237461236f8461228b565b612356565b61228b565b9050919050565b5f61238a8261235f565b9050919050565b5f61239b82612380565b9050919050565b6123ab81612391565b82525050565b5f6020820190506123c45f8301846123a2565b92915050565b6123d38161219d565b82525050565b5f6020820190506123ec5f8301846123ca565b92915050565b5f805f6060848603121561240957612408612199565b5b5f612416868287016122d1565b9350506020612427868287016122d1565b9250506040612438868287016121bc565b9150509250925092565b5f60ff82169050919050565b61245781612442565b82525050565b5f6020820190506124705f83018461244e565b92915050565b61247f816122aa565b82525050565b5f6020820190506124985f830184612476565b92915050565b6124a781612323565b81146124b1575f80fd5b50565b5f813590506124c28161249e565b92915050565b5f602082840312156124dd576124dc612199565b5b5f6124ea848285016124b4565b91505092915050565b5f6020828403121561250857612507612199565b5b5f612515848285016122d1565b91505092915050565b5f806040838503121561253457612533612199565b5b5f612541858286016122d1565b9250506020612552858286016124b4565b9150509250929050565b5f806040838503121561257257612571612199565b5b5f61257f858286016122d1565b9250506020612590858286016122d1565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806125de57607f821691505b6020821081036125f1576125f061259a565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b600185111561267957808604811115612655576126546125f7565b5b60018516156126645780820291505b808102905061267285612624565b9450612639565b94509492505050565b5f82612691576001905061274c565b8161269e575f905061274c565b81600181146126b457600281146126be576126ed565b600191505061274c565b60ff8411156126d0576126cf6125f7565b5b8360020a9150848211156126e7576126e66125f7565b5b5061274c565b5060208310610133831016604e8410600b84101617156127225782820a90508381111561271d5761271c6125f7565b5b61274c565b61272f8484846001612630565b92509050818404811115612746576127456125f7565b5b81810290505b9392505050565b5f61275d8261219d565b915061276883612442565b92506127957fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484612682565b905092915050565b5f6127a78261219d565b91506127b28361219d565b92508282026127c08161219d565b915082820484148315176127d7576127d66125f7565b5b5092915050565b5f6127e88261219d565b91506127f38361219d565b925082820190508082111561280b5761280a6125f7565b5b92915050565b7f4e6f2062616c616e636520617661696c61626c650000000000000000000000005f82015250565b5f612845601483612205565b915061285082612811565b602082019050919050565b5f6020820190508181035f83015261287281612839565b9050919050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f6128d3602583612205565b91506128de82612879565b604082019050919050565b5f6020820190508181035f830152612900816128c7565b9050919050565b7f43616e6e6f742072656d6f766520746865206d61696e206c69717569646974795f8201527f2070616972210000000000000000000000000000000000000000000000000000602082015250565b5f612961602683612205565b915061296c82612907565b604082019050919050565b5f6020820190508181035f83015261298e81612955565b9050919050565b5f815190506129a3816122bb565b92915050565b5f602082840312156129be576129bd612199565b5b5f6129cb84828501612995565b91505092915050565b5f6040820190506129e75f830185612476565b6129f46020830184612476565b9392505050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612a55602483612205565b9150612a60826129fb565b604082019050919050565b5f6020820190508181035f830152612a8281612a49565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612ae3602283612205565b9150612aee82612a89565b604082019050919050565b5f6020820190508181035f830152612b1081612ad7565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f612b4b601d83612205565b9150612b5682612b17565b602082019050919050565b5f6020820190508181035f830152612b7881612b3f565b9050919050565b7f696e76616c696420616d6f756e740000000000000000000000000000000000005f82015250565b5f612bb3600e83612205565b9150612bbe82612b7f565b602082019050919050565b5f6020820190508181035f830152612be081612ba7565b9050919050565b7f4d61726b657420697320696e61637469766521000000000000000000000000005f82015250565b5f612c1b601383612205565b9150612c2682612be7565b602082019050919050565b5f6020820190508181035f830152612c4881612c0f565b9050919050565b5f612c598261219d565b9150612c648361219d565b9250828203905081811115612c7c57612c7b6125f7565b5b92915050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f612cdc602183612205565b9150612ce782612c82565b604082019050919050565b5f6020820190508181035f830152612d0981612cd0565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612d6a602283612205565b9150612d7582612d10565b604082019050919050565b5f6020820190508181035f830152612d9781612d5e565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612df8602583612205565b9150612e0382612d9e565b604082019050919050565b5f6020820190508181035f830152612e2581612dec565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612e86602383612205565b9150612e9182612e2c565b604082019050919050565b5f6020820190508181035f830152612eb381612e7a565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612f14602683612205565b9150612f1f82612eba565b604082019050919050565b5f6020820190508181035f830152612f4181612f08565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612f7f8261219d565b9150612f8a8361219d565b925082612f9a57612f99612f48565b5b82820490509291505056fea2646970667358221220abddb6220eba2f8bc67ba1a4c4925af0e200aff1678c06042babd38b5de2825164736f6c634300081a0033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.