ETH Price: $3,378.87 (-7.90%)

Token

BALI (BALI)
 

Overview

Max Total Supply

100,000,000,000 BALI

Holders

700

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
0.000000000000000001 BALI

Value
$0.00
0xfd4e19738df7ba5cd1bfd74eadad35adfb35e970
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
MyToken

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, None license

Contract Source Code (Solidity)

/**
 *Submitted for verification at Etherscan.io on 2024-06-13
*/

// File: @openzeppelin/contracts/token/ERC20/IERC20.sol


// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

// File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol


// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;


/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

// File: @openzeppelin/contracts/utils/Context.sol


// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

// File: @openzeppelin/contracts/interfaces/draft-IERC6093.sol


// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

// File: @openzeppelin/contracts/token/ERC20/ERC20.sol


// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;





/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

// File: @openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol


// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

// File: @openzeppelin/contracts/utils/cryptography/ECDSA.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

// File: @openzeppelin/contracts/utils/math/Math.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

// File: @openzeppelin/contracts/utils/math/SignedMath.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

// File: @openzeppelin/contracts/utils/Strings.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;



/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

// File: @openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;


/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

// File: @openzeppelin/contracts/utils/StorageSlot.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

// File: @openzeppelin/contracts/utils/ShortStrings.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;


// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

// File: @openzeppelin/contracts/interfaces/IERC5267.sol


// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

// File: @openzeppelin/contracts/utils/cryptography/EIP712.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;




/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

// File: @openzeppelin/contracts/utils/Nonces.sol


// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

// File: @openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol


// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;






/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

// File: contracts/bali.sol


// Compatible with OpenZeppelin Contracts ^5.0.0
pragma solidity ^0.8.20;



contract MyToken is ERC20, ERC20Permit {
    constructor(uint256 _totalSupply,address receipt,string memory symbol) ERC20(symbol, symbol) ERC20Permit(symbol) {
        
        
        _mint(receipt, _totalSupply);
    }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"uint256","name":"_totalSupply","type":"uint256"},{"internalType":"address","name":"receipt","type":"address"},{"internalType":"string","name":"symbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

61016060405234801562000011575f80fd5b50604051620015073803806200150783398101604081905262000034916200035f565b6040805180820190915260018152603160f81b60208201528190819081806003620000608282620004c9565b5060046200006f8282620004c9565b5062000081915083905060056200013e565b61012052620000928160066200013e565b61014052815160208084019190912060e052815190820120610100524660a0526200011f60e05161010051604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201529081019290925260608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60805250503060c0525062000135828462000176565b50505062000609565b5f6020835110156200015d576200015583620001b6565b905062000170565b816200016a8482620004c9565b5060ff90505b92915050565b6001600160a01b038216620001a55760405163ec442f0560e01b81525f60048201526024015b60405180910390fd5b620001b25f8383620001f8565b5050565b5f80829050601f81511115620001e3578260405163305a27a960e01b81526004016200019c919062000591565b8051620001f082620005c5565b179392505050565b6001600160a01b03831662000226578060025f8282546200021a9190620005e9565b90915550620002989050565b6001600160a01b0383165f90815260208190526040902054818110156200027a5760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016200019c565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216620002b657600280548290039055620002d4565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516200031a91815260200190565b60405180910390a3505050565b634e487b7160e01b5f52604160045260245ffd5b5f5b83811015620003575781810151838201526020016200033d565b50505f910152565b5f805f6060848603121562000372575f80fd5b835160208501519093506001600160a01b038116811462000391575f80fd5b60408501519092506001600160401b0380821115620003ae575f80fd5b818601915086601f830112620003c2575f80fd5b815181811115620003d757620003d762000327565b604051601f8201601f19908116603f0116810190838211818310171562000402576200040262000327565b816040528281528960208487010111156200041b575f80fd5b6200042e8360208301602088016200033b565b80955050505050509250925092565b600181811c908216806200045257607f821691505b6020821081036200047157634e487b7160e01b5f52602260045260245ffd5b50919050565b601f821115620004c4575f81815260208120601f850160051c810160208610156200049f5750805b601f850160051c820191505b81811015620004c057828155600101620004ab565b5050505b505050565b81516001600160401b03811115620004e557620004e562000327565b620004fd81620004f684546200043d565b8462000477565b602080601f83116001811462000533575f84156200051b5750858301515b5f19600386901b1c1916600185901b178555620004c0565b5f85815260208120601f198616915b82811015620005635788860151825594840194600190910190840162000542565b50858210156200058157878501515f19600388901b60f8161c191681555b5050505050600190811b01905550565b602081525f8251806020840152620005b18160408501602087016200033b565b601f01601f19169190910160400192915050565b8051602080830151919081101562000471575f1960209190910360031b1b16919050565b808201808211156200017057634e487b7160e01b5f52601160045260245ffd5b60805160a05160c05160e051610100516101205161014051610eac6200065b5f395f6106e101525f6106b401525f61065d01525f61063501525f61059001525f6105ba01525f6105e40152610eac5ff3fe608060405234801561000f575f80fd5b50600436106100cb575f3560e01c806370a082311161008857806395d89b411161006357806395d89b41146101a2578063a9059cbb146101aa578063d505accf146101bd578063dd62ed3e146101d2575f80fd5b806370a082311461014c5780637ecebe001461017457806384b0196e14610187575f80fd5b806306fdde03146100cf578063095ea7b3146100ed57806318160ddd1461011057806323b872dd14610122578063313ce567146101355780633644e51514610144575b5f80fd5b6100d761020a565b6040516100e49190610c2b565b60405180910390f35b6101006100fb366004610c5f565b61029a565b60405190151581526020016100e4565b6002545b6040519081526020016100e4565b610100610130366004610c87565b6102b3565b604051601281526020016100e4565b6101146102d6565b61011461015a366004610cc0565b6001600160a01b03165f9081526020819052604090205490565b610114610182366004610cc0565b6102e4565b61018f610301565b6040516100e49796959493929190610cd9565b6100d7610343565b6101006101b8366004610c5f565b610352565b6101d06101cb366004610d6d565b61035f565b005b6101146101e0366004610dda565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b60606003805461021990610e0b565b80601f016020809104026020016040519081016040528092919081815260200182805461024590610e0b565b80156102905780601f1061026757610100808354040283529160200191610290565b820191905f5260205f20905b81548152906001019060200180831161027357829003601f168201915b5050505050905090565b5f336102a781858561049a565b60019150505b92915050565b5f336102c08582856104ac565b6102cb858585610527565b506001949350505050565b5f6102df610584565b905090565b6001600160a01b0381165f908152600760205260408120546102ad565b5f6060805f805f60606103126106ad565b61031a6106da565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b60606004805461021990610e0b565b5f336102a7818585610527565b834211156103885760405163313c898160e11b8152600481018590526024015b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886103d38c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f61042d82610707565b90505f61043c82878787610733565b9050896001600160a01b0316816001600160a01b031614610483576040516325c0072360e11b81526001600160a01b0380831660048301528b16602482015260440161037f565b61048e8a8a8a61049a565b50505050505050505050565b6104a7838383600161075f565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198114610521578181101561051357604051637dc7a0d960e11b81526001600160a01b0384166004820152602481018290526044810183905260640161037f565b61052184848484035f61075f565b50505050565b6001600160a01b03831661055057604051634b637e8f60e11b81525f600482015260240161037f565b6001600160a01b0382166105795760405163ec442f0560e01b81525f600482015260240161037f565b6104a7838383610831565b5f306001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000161480156105dc57507f000000000000000000000000000000000000000000000000000000000000000046145b1561060657507f000000000000000000000000000000000000000000000000000000000000000090565b6102df604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f0000000000000000000000000000000000000000000000000000000000000000918101919091527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60606102df7f00000000000000000000000000000000000000000000000000000000000000006005610957565b60606102df7f00000000000000000000000000000000000000000000000000000000000000006006610957565b5f6102ad610713610584565b8360405161190160f01b8152600281019290925260228201526042902090565b5f805f8061074388888888610a00565b9250925092506107538282610ac8565b50909695505050505050565b6001600160a01b0384166107885760405163e602df0560e01b81525f600482015260240161037f565b6001600160a01b0383166107b157604051634a1406b160e11b81525f600482015260240161037f565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561052157826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258460405161082391815260200190565b60405180910390a350505050565b6001600160a01b03831661085b578060025f8282546108509190610e43565b909155506108cb9050565b6001600160a01b0383165f90815260208190526040902054818110156108ad5760405163391434e360e21b81526001600160a01b0385166004820152602481018290526044810183905260640161037f565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b0382166108e757600280548290039055610905565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161094a91815260200190565b60405180910390a3505050565b606060ff83146109715761096a83610b84565b90506102ad565b81805461097d90610e0b565b80601f01602080910402602001604051908101604052809291908181526020018280546109a990610e0b565b80156109f45780601f106109cb576101008083540402835291602001916109f4565b820191905f5260205f20905b8154815290600101906020018083116109d757829003601f168201915b505050505090506102ad565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610a3957505f91506003905082610abe565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610a8a573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610ab557505f925060019150829050610abe565b92505f91508190505b9450945094915050565b5f826003811115610adb57610adb610e62565b03610ae4575050565b6001826003811115610af857610af8610e62565b03610b165760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115610b2a57610b2a610e62565b03610b4b5760405163fce698f760e01b81526004810182905260240161037f565b6003826003811115610b5f57610b5f610e62565b03610b80576040516335e2f38360e21b81526004810182905260240161037f565b5050565b60605f610b9083610bc1565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f8111156102ad57604051632cd44ac360e21b815260040160405180910390fd5b5f81518084525f5b81811015610c0c57602081850181015186830182015201610bf0565b505f602082860101526020601f19601f83011685010191505092915050565b602081525f610c3d6020830184610be8565b9392505050565b80356001600160a01b0381168114610c5a575f80fd5b919050565b5f8060408385031215610c70575f80fd5b610c7983610c44565b946020939093013593505050565b5f805f60608486031215610c99575f80fd5b610ca284610c44565b9250610cb060208501610c44565b9150604084013590509250925092565b5f60208284031215610cd0575f80fd5b610c3d82610c44565b60ff60f81b881681525f602060e081840152610cf860e084018a610be8565b8381036040850152610d0a818a610be8565b606085018990526001600160a01b038816608086015260a0850187905284810360c086015285518082528387019250908301905f5b81811015610d5b57835183529284019291840191600101610d3f565b50909c9b505050505050505050505050565b5f805f805f805f60e0888a031215610d83575f80fd5b610d8c88610c44565b9650610d9a60208901610c44565b95506040880135945060608801359350608088013560ff81168114610dbd575f80fd5b9699959850939692959460a0840135945060c09093013592915050565b5f8060408385031215610deb575f80fd5b610df483610c44565b9150610e0260208401610c44565b90509250929050565b600181811c90821680610e1f57607f821691505b602082108103610e3d57634e487b7160e01b5f52602260045260245ffd5b50919050565b808201808211156102ad57634e487b7160e01b5f52601160045260245ffd5b634e487b7160e01b5f52602160045260245ffdfea2646970667358221220220f3af0be7bc57e22defec3b4598c70ea7dd4dcb2972f43bb209e8c36a0e8f664736f6c634300081400330000000000000000000000000000000000000001431e0fae6d7217caa00000000000000000000000000000006d3b019af6f81464eb64d07c2951a42d5cc3833b0000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000000442414c4900000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561000f575f80fd5b50600436106100cb575f3560e01c806370a082311161008857806395d89b411161006357806395d89b41146101a2578063a9059cbb146101aa578063d505accf146101bd578063dd62ed3e146101d2575f80fd5b806370a082311461014c5780637ecebe001461017457806384b0196e14610187575f80fd5b806306fdde03146100cf578063095ea7b3146100ed57806318160ddd1461011057806323b872dd14610122578063313ce567146101355780633644e51514610144575b5f80fd5b6100d761020a565b6040516100e49190610c2b565b60405180910390f35b6101006100fb366004610c5f565b61029a565b60405190151581526020016100e4565b6002545b6040519081526020016100e4565b610100610130366004610c87565b6102b3565b604051601281526020016100e4565b6101146102d6565b61011461015a366004610cc0565b6001600160a01b03165f9081526020819052604090205490565b610114610182366004610cc0565b6102e4565b61018f610301565b6040516100e49796959493929190610cd9565b6100d7610343565b6101006101b8366004610c5f565b610352565b6101d06101cb366004610d6d565b61035f565b005b6101146101e0366004610dda565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b60606003805461021990610e0b565b80601f016020809104026020016040519081016040528092919081815260200182805461024590610e0b565b80156102905780601f1061026757610100808354040283529160200191610290565b820191905f5260205f20905b81548152906001019060200180831161027357829003601f168201915b5050505050905090565b5f336102a781858561049a565b60019150505b92915050565b5f336102c08582856104ac565b6102cb858585610527565b506001949350505050565b5f6102df610584565b905090565b6001600160a01b0381165f908152600760205260408120546102ad565b5f6060805f805f60606103126106ad565b61031a6106da565b604080515f80825260208201909252600f60f81b9b939a50919850469750309650945092509050565b60606004805461021990610e0b565b5f336102a7818585610527565b834211156103885760405163313c898160e11b8152600481018590526024015b60405180910390fd5b5f7f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98888886103d38c6001600160a01b03165f90815260076020526040902080546001810190915590565b6040805160208101969096526001600160a01b0394851690860152929091166060840152608083015260a082015260c0810186905260e0016040516020818303038152906040528051906020012090505f61042d82610707565b90505f61043c82878787610733565b9050896001600160a01b0316816001600160a01b031614610483576040516325c0072360e11b81526001600160a01b0380831660048301528b16602482015260440161037f565b61048e8a8a8a61049a565b50505050505050505050565b6104a7838383600161075f565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f198114610521578181101561051357604051637dc7a0d960e11b81526001600160a01b0384166004820152602481018290526044810183905260640161037f565b61052184848484035f61075f565b50505050565b6001600160a01b03831661055057604051634b637e8f60e11b81525f600482015260240161037f565b6001600160a01b0382166105795760405163ec442f0560e01b81525f600482015260240161037f565b6104a7838383610831565b5f306001600160a01b037f000000000000000000000000fb4d71ecbc4f6945f1ab0faff17c9bdeaf86b847161480156105dc57507f000000000000000000000000000000000000000000000000000000000000000146145b1561060657507f637d1c6942ccbe77a0ce46060472053bde62aa5d88d9180e85a7d0693672a13d90565b6102df604080517f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f60208201527f000a7a4b38d24cc080846374a67f24d1f65dd4312bb3df9b04a9bd053c8099cf918101919091527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a08201525f9060c00160405160208183030381529060405280519060200120905090565b60606102df7f42414c49000000000000000000000000000000000000000000000000000000046005610957565b60606102df7f31000000000000000000000000000000000000000000000000000000000000016006610957565b5f6102ad610713610584565b8360405161190160f01b8152600281019290925260228201526042902090565b5f805f8061074388888888610a00565b9250925092506107538282610ac8565b50909695505050505050565b6001600160a01b0384166107885760405163e602df0560e01b81525f600482015260240161037f565b6001600160a01b0383166107b157604051634a1406b160e11b81525f600482015260240161037f565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561052157826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258460405161082391815260200190565b60405180910390a350505050565b6001600160a01b03831661085b578060025f8282546108509190610e43565b909155506108cb9050565b6001600160a01b0383165f90815260208190526040902054818110156108ad5760405163391434e360e21b81526001600160a01b0385166004820152602481018290526044810183905260640161037f565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b0382166108e757600280548290039055610905565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161094a91815260200190565b60405180910390a3505050565b606060ff83146109715761096a83610b84565b90506102ad565b81805461097d90610e0b565b80601f01602080910402602001604051908101604052809291908181526020018280546109a990610e0b565b80156109f45780601f106109cb576101008083540402835291602001916109f4565b820191905f5260205f20905b8154815290600101906020018083116109d757829003601f168201915b505050505090506102ad565b5f80807f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841115610a3957505f91506003905082610abe565b604080515f808252602082018084528a905260ff891692820192909252606081018790526080810186905260019060a0016020604051602081039080840390855afa158015610a8a573d5f803e3d5ffd5b5050604051601f1901519150506001600160a01b038116610ab557505f925060019150829050610abe565b92505f91508190505b9450945094915050565b5f826003811115610adb57610adb610e62565b03610ae4575050565b6001826003811115610af857610af8610e62565b03610b165760405163f645eedf60e01b815260040160405180910390fd5b6002826003811115610b2a57610b2a610e62565b03610b4b5760405163fce698f760e01b81526004810182905260240161037f565b6003826003811115610b5f57610b5f610e62565b03610b80576040516335e2f38360e21b81526004810182905260240161037f565b5050565b60605f610b9083610bc1565b6040805160208082528183019092529192505f91906020820181803683375050509182525060208101929092525090565b5f60ff8216601f8111156102ad57604051632cd44ac360e21b815260040160405180910390fd5b5f81518084525f5b81811015610c0c57602081850181015186830182015201610bf0565b505f602082860101526020601f19601f83011685010191505092915050565b602081525f610c3d6020830184610be8565b9392505050565b80356001600160a01b0381168114610c5a575f80fd5b919050565b5f8060408385031215610c70575f80fd5b610c7983610c44565b946020939093013593505050565b5f805f60608486031215610c99575f80fd5b610ca284610c44565b9250610cb060208501610c44565b9150604084013590509250925092565b5f60208284031215610cd0575f80fd5b610c3d82610c44565b60ff60f81b881681525f602060e081840152610cf860e084018a610be8565b8381036040850152610d0a818a610be8565b606085018990526001600160a01b038816608086015260a0850187905284810360c086015285518082528387019250908301905f5b81811015610d5b57835183529284019291840191600101610d3f565b50909c9b505050505050505050505050565b5f805f805f805f60e0888a031215610d83575f80fd5b610d8c88610c44565b9650610d9a60208901610c44565b95506040880135945060608801359350608088013560ff81168114610dbd575f80fd5b9699959850939692959460a0840135945060c09093013592915050565b5f8060408385031215610deb575f80fd5b610df483610c44565b9150610e0260208401610c44565b90509250929050565b600181811c90821680610e1f57607f821691505b602082108103610e3d57634e487b7160e01b5f52602260045260245ffd5b50919050565b808201808211156102ad57634e487b7160e01b5f52601160045260245ffd5b634e487b7160e01b5f52602160045260245ffdfea2646970667358221220220f3af0be7bc57e22defec3b4598c70ea7dd4dcb2972f43bb209e8c36a0e8f664736f6c63430008140033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000000000001431e0fae6d7217caa00000000000000000000000000000006d3b019af6f81464eb64d07c2951a42d5cc3833b0000000000000000000000000000000000000000000000000000000000000060000000000000000000000000000000000000000000000000000000000000000442414c4900000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : _totalSupply (uint256): 100000000000000000000000000000
Arg [1] : receipt (address): 0x6d3B019aF6F81464EB64d07c2951a42D5Cc3833b
Arg [2] : symbol (string): BALI

-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000001431e0fae6d7217caa0000000
Arg [1] : 0000000000000000000000006d3b019af6f81464eb64d07c2951a42d5cc3833b
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [3] : 0000000000000000000000000000000000000000000000000000000000000004
Arg [4] : 42414c4900000000000000000000000000000000000000000000000000000000


Deployed Bytecode Sourcemap

78646:229:0:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;13297:91;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;15590:190;;;;;;:::i;:::-;;:::i;:::-;;;1269:14:1;;1262:22;1244:41;;1232:2;1217:18;15590:190:0;1104:187:1;14399:99:0;14478:12;;14399:99;;;1442:25:1;;;1430:2;1415:18;14399:99:0;1296:177:1;16358:249:0;;;;;;:::i;:::-;;:::i;14250:84::-;;;14324:2;1953:36:1;;1941:2;1926:18;14250:84:0;1811:184:1;78410:114:0;;;:::i;14561:118::-;;;;;;:::i;:::-;-1:-1:-1;;;;;14653:18:0;14626:7;14653:18;;;;;;;;;;;;14561:118;78152:145;;;;;;:::i;:::-;;:::i;72811:580::-;;;:::i;:::-;;;;;;;;;;;;;:::i;13507:95::-;;;:::i;14884:182::-;;;;;;:::i;:::-;;:::i;77398:695::-;;;;;;:::i;:::-;;:::i;:::-;;15129:142;;;;;;:::i;:::-;-1:-1:-1;;;;;15236:18:0;;;15209:7;15236:18;;;:11;:18;;;;;;;;:27;;;;;;;;;;;;;15129:142;13297:91;13342:13;13375:5;13368:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;13297:91;:::o;15590:190::-;15663:4;4382:10;15719:31;4382:10;15735:7;15744:5;15719:8;:31::i;:::-;15768:4;15761:11;;;15590:190;;;;;:::o;16358:249::-;16445:4;4382:10;16503:37;16519:4;4382:10;16534:5;16503:15;:37::i;:::-;16551:26;16561:4;16567:2;16571:5;16551:9;:26::i;:::-;-1:-1:-1;16595:4:0;;16358:249;-1:-1:-1;;;;16358:249:0:o;78410:114::-;78469:7;78496:20;:18;:20::i;:::-;78489:27;;78410:114;:::o;78152:145::-;-1:-1:-1;;;;;74992:14:0;;78243:7;74992:14;;;:7;:14;;;;;;78270:19;74905:109;72811:580;72914:13;72942:18;72975:21;73011:15;73041:25;73081:12;73108:27;73216:13;:11;:13::i;:::-;73244:16;:14;:16::i;:::-;73356;;;73339:1;73356:16;;;;;;;;;-1:-1:-1;;;73163:220:0;;;-1:-1:-1;73163:220:0;;-1:-1:-1;73275:13:0;;-1:-1:-1;73311:4:0;;-1:-1:-1;73339:1:0;-1:-1:-1;73356:16:0;-1:-1:-1;73163:220:0;-1:-1:-1;72811:580:0:o;13507:95::-;13554:13;13587:7;13580:14;;;;;:::i;14884:182::-;14953:4;4382:10;15009:27;4382:10;15026:2;15030:5;15009:9;:27::i;77398:695::-;77628:8;77610:15;:26;77606:99;;;77660:33;;-1:-1:-1;;;77660:33:0;;;;;1442:25:1;;;1415:18;;77660:33:0;;;;;;;;77606:99;77717:18;76718:95;77776:5;77783:7;77792:5;77799:16;77809:5;-1:-1:-1;;;;;75502:14:0;75195:7;75502:14;;;:7;:14;;;;;:16;;;;;;;;;75135:402;77799:16;77748:78;;;;;;5404:25:1;;;;-1:-1:-1;;;;;5503:15:1;;;5483:18;;;5476:43;5555:15;;;;5535:18;;;5528:43;5587:18;;;5580:34;5630:19;;;5623:35;5674:19;;;5667:35;;;5376:19;;77748:78:0;;;;;;;;;;;;77738:89;;;;;;77717:110;;77840:12;77855:28;77872:10;77855:16;:28::i;:::-;77840:43;;77896:14;77913:28;77927:4;77933:1;77936;77939;77913:13;:28::i;:::-;77896:45;;77966:5;-1:-1:-1;;;;;77956:15:0;:6;-1:-1:-1;;;;;77956:15:0;;77952:90;;77995:35;;-1:-1:-1;;;77995:35:0;;-1:-1:-1;;;;;5943:15:1;;;77995:35:0;;;5925:34:1;5995:15;;5975:18;;;5968:43;5860:18;;77995:35:0;5713:304:1;77952:90:0;78054:31;78063:5;78070:7;78079:5;78054:8;:31::i;:::-;77595:498;;;77398:695;;;;;;;:::o;20417:130::-;20502:37;20511:5;20518:7;20527:5;20534:4;20502:8;:37::i;:::-;20417:130;;;:::o;22133:487::-;-1:-1:-1;;;;;15236:18:0;;;22233:24;15236:18;;;:11;:18;;;;;;;;:27;;;;;;;;;;-1:-1:-1;;22300:37:0;;22296:317;;22377:5;22358:16;:24;22354:132;;;22410:60;;-1:-1:-1;;;22410:60:0;;-1:-1:-1;;;;;6242:32:1;;22410:60:0;;;6224:51:1;6291:18;;;6284:34;;;6334:18;;;6327:34;;;6197:18;;22410:60:0;6022:345:1;22354:132:0;22529:57;22538:5;22545:7;22573:5;22554:16;:24;22580:5;22529:8;:57::i;:::-;22222:398;22133:487;;;:::o;16992:308::-;-1:-1:-1;;;;;17076:18:0;;17072:88;;17118:30;;-1:-1:-1;;;17118:30:0;;17145:1;17118:30;;;6518:51:1;6491:18;;17118:30:0;6372:203:1;17072:88:0;-1:-1:-1;;;;;17174:16:0;;17170:88;;17214:32;;-1:-1:-1;;;17214:32:0;;17243:1;17214:32;;;6518:51:1;6491:18;;17214:32:0;6372:203:1;17170:88:0;17268:24;17276:4;17282:2;17286:5;17268:7;:24::i;71478:268::-;71531:7;71563:4;-1:-1:-1;;;;;71572:11:0;71555:28;;:63;;;;;71604:14;71587:13;:31;71555:63;71551:188;;;-1:-1:-1;71642:22:0;;71478:268::o;71551:188::-;71704:23;71846:80;;;69670:95;71846:80;;;7066:25:1;71868:11:0;7107:18:1;;;7100:34;;;;71881:14:0;7150:18:1;;;7143:34;71897:13:0;7193:18:1;;;7186:34;71920:4:0;7236:19:1;;;7229:61;71809:7:0;;7038:19:1;;71846:80:0;;;;;;;;;;;;71836:91;;;;;;71829:98;;71754:181;;73720:128;73766:13;73799:41;:5;73826:13;73799:26;:41::i;74183:137::-;74232:13;74265:47;:8;74295:16;74265:29;:47::i;72577:178::-;72654:7;72681:66;72714:20;:18;:20::i;:::-;72736:10;58175:4;58169:11;-1:-1:-1;;;58194:23:0;;58247:4;58238:14;;58231:39;;;;58300:4;58291:14;;58284:34;58357:4;58342:20;;;57970:410;33557:264;33642:7;33663:17;33682:18;33702:16;33722:25;33733:4;33739:1;33742;33745;33722:10;:25::i;:::-;33662:85;;;;;;33758:28;33770:5;33777:8;33758:11;:28::i;:::-;-1:-1:-1;33804:9:0;;33557:264;-1:-1:-1;;;;;;33557:264:0:o;21398:443::-;-1:-1:-1;;;;;21511:19:0;;21507:91;;21554:32;;-1:-1:-1;;;21554:32:0;;21583:1;21554:32;;;6518:51:1;6491:18;;21554:32:0;6372:203:1;21507:91:0;-1:-1:-1;;;;;21612:21:0;;21608:92;;21657:31;;-1:-1:-1;;;21657:31:0;;21685:1;21657:31;;;6518:51:1;6491:18;;21657:31:0;6372:203:1;21608:92:0;-1:-1:-1;;;;;21710:18:0;;;;;;;:11;:18;;;;;;;;:27;;;;;;;;;:35;;;21756:78;;;;21807:7;-1:-1:-1;;;;;21791:31:0;21800:5;-1:-1:-1;;;;;21791:31:0;;21816:5;21791:31;;;;1442:25:1;;1430:2;1415:18;;1296:177;21791:31:0;;;;;;;;21398:443;;;;:::o;17624:1135::-;-1:-1:-1;;;;;17714:18:0;;17710:552;;17868:5;17852:12;;:21;;;;;;;:::i;:::-;;;;-1:-1:-1;17710:552:0;;-1:-1:-1;17710:552:0;;-1:-1:-1;;;;;17928:15:0;;17906:19;17928:15;;;;;;;;;;;17962:19;;;17958:117;;;18009:50;;-1:-1:-1;;;18009:50:0;;-1:-1:-1;;;;;6242:32:1;;18009:50:0;;;6224:51:1;6291:18;;;6284:34;;;6334:18;;;6327:34;;;6197:18;;18009:50:0;6022:345:1;17958:117:0;-1:-1:-1;;;;;18198:15:0;;:9;:15;;;;;;;;;;18216:19;;;;18198:37;;17710:552;-1:-1:-1;;;;;18278:16:0;;18274:435;;18444:12;:21;;;;;;;18274:435;;;-1:-1:-1;;;;;18660:13:0;;:9;:13;;;;;;;;;;:22;;;;;;18274:435;18741:2;-1:-1:-1;;;;;18726:25:0;18735:4;-1:-1:-1;;;;;18726:25:0;;18745:5;18726:25;;;;1442::1;;1430:2;1415:18;;1296:177;18726:25:0;;;;;;;;17624:1135;;;:::o;65947:273::-;66041:13;63893:66;66071:46;;66067:146;;66141:15;66150:5;66141:8;:15::i;:::-;66134:22;;;;66067:146;66196:5;66189:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;31862:1556;31993:7;;;32936:66;32923:79;;32919:166;;;-1:-1:-1;33035:1:0;;-1:-1:-1;33039:30:0;;-1:-1:-1;33071:1:0;33019:54;;32919:166;33199:24;;;33182:14;33199:24;;;;;;;;;7528:25:1;;;7601:4;7589:17;;7569:18;;;7562:45;;;;7623:18;;;7616:34;;;7666:18;;;7659:34;;;33199:24:0;;7500:19:1;;33199:24:0;;;;;;;;;;;;;;;;;;;;;;;;;;;-1:-1:-1;;33199:24:0;;-1:-1:-1;;33199:24:0;;;-1:-1:-1;;;;;;;33238:20:0;;33234:115;;-1:-1:-1;33291:1:0;;-1:-1:-1;33295:29:0;;-1:-1:-1;33291:1:0;;-1:-1:-1;33275:62:0;;33234:115;33369:6;-1:-1:-1;33377:20:0;;-1:-1:-1;33377:20:0;;-1:-1:-1;31862:1556:0;;;;;;;;;:::o;33959:542::-;34055:20;34046:5;:29;;;;;;;;:::i;:::-;;34042:452;;33959:542;;:::o;34042:452::-;34153:29;34144:5;:38;;;;;;;;:::i;:::-;;34140:354;;34206:23;;-1:-1:-1;;;34206:23:0;;;;;;;;;;;34140:354;34260:35;34251:5;:44;;;;;;;;:::i;:::-;;34247:247;;34319:46;;-1:-1:-1;;;34319:46:0;;;;;1442:25:1;;;1415:18;;34319:46:0;1296:177:1;34247:247:0;34396:30;34387:5;:39;;;;;;;;:::i;:::-;;34383:111;;34450:32;;-1:-1:-1;;;34450:32:0;;;;;1442:25:1;;;1415:18;;34450:32:0;1296:177:1;34383:111:0;33959:542;;:::o;64602:415::-;64661:13;64687:11;64701:16;64712:4;64701:10;:16::i;:::-;64827:14;;;64838:2;64827:14;;;;;;;;;64687:30;;-1:-1:-1;64807:17:0;;64827:14;;;;;;;;;-1:-1:-1;;;64920:16:0;;;-1:-1:-1;64966:4:0;64957:14;;64950:28;;;;-1:-1:-1;64920:16:0;64602:415::o;65094:251::-;65155:7;65228:4;65192:40;;65256:2;65247:11;;65243:71;;;65282:20;;-1:-1:-1;;;65282:20:0;;;;;;;;;;;14:423:1;56:3;94:5;88:12;121:6;116:3;109:19;146:1;156:162;170:6;167:1;164:13;156:162;;;232:4;288:13;;;284:22;;278:29;260:11;;;256:20;;249:59;185:12;156:162;;;160:3;363:1;356:4;347:6;342:3;338:16;334:27;327:38;426:4;419:2;415:7;410:2;402:6;398:15;394:29;389:3;385:39;381:50;374:57;;;14:423;;;;:::o;442:220::-;591:2;580:9;573:21;554:4;611:45;652:2;641:9;637:18;629:6;611:45;:::i;:::-;603:53;442:220;-1:-1:-1;;;442:220:1:o;667:173::-;735:20;;-1:-1:-1;;;;;784:31:1;;774:42;;764:70;;830:1;827;820:12;764:70;667:173;;;:::o;845:254::-;913:6;921;974:2;962:9;953:7;949:23;945:32;942:52;;;990:1;987;980:12;942:52;1013:29;1032:9;1013:29;:::i;:::-;1003:39;1089:2;1074:18;;;;1061:32;;-1:-1:-1;;;845:254:1:o;1478:328::-;1555:6;1563;1571;1624:2;1612:9;1603:7;1599:23;1595:32;1592:52;;;1640:1;1637;1630:12;1592:52;1663:29;1682:9;1663:29;:::i;:::-;1653:39;;1711:38;1745:2;1734:9;1730:18;1711:38;:::i;:::-;1701:48;;1796:2;1785:9;1781:18;1768:32;1758:42;;1478:328;;;;;:::o;2182:186::-;2241:6;2294:2;2282:9;2273:7;2269:23;2265:32;2262:52;;;2310:1;2307;2300:12;2262:52;2333:29;2352:9;2333:29;:::i;2373:1259::-;2779:3;2774;2770:13;2762:6;2758:26;2747:9;2740:45;2721:4;2804:2;2842:3;2837:2;2826:9;2822:18;2815:31;2869:46;2910:3;2899:9;2895:19;2887:6;2869:46;:::i;:::-;2963:9;2955:6;2951:22;2946:2;2935:9;2931:18;2924:50;2997:33;3023:6;3015;2997:33;:::i;:::-;3061:2;3046:18;;3039:34;;;-1:-1:-1;;;;;3110:32:1;;3104:3;3089:19;;3082:61;3130:3;3159:19;;3152:35;;;3224:22;;;3218:3;3203:19;;3196:51;3296:13;;3318:22;;;3394:15;;;;-1:-1:-1;3356:15:1;;;;-1:-1:-1;3437:169:1;3451:6;3448:1;3445:13;3437:169;;;3512:13;;3500:26;;3581:15;;;;3546:12;;;;3473:1;3466:9;3437:169;;;-1:-1:-1;3623:3:1;;2373:1259;-1:-1:-1;;;;;;;;;;;;2373:1259:1:o;3637:693::-;3748:6;3756;3764;3772;3780;3788;3796;3849:3;3837:9;3828:7;3824:23;3820:33;3817:53;;;3866:1;3863;3856:12;3817:53;3889:29;3908:9;3889:29;:::i;:::-;3879:39;;3937:38;3971:2;3960:9;3956:18;3937:38;:::i;:::-;3927:48;;4022:2;4011:9;4007:18;3994:32;3984:42;;4073:2;4062:9;4058:18;4045:32;4035:42;;4127:3;4116:9;4112:19;4099:33;4172:4;4165:5;4161:16;4154:5;4151:27;4141:55;;4192:1;4189;4182:12;4141:55;3637:693;;;;-1:-1:-1;3637:693:1;;;;4215:5;4267:3;4252:19;;4239:33;;-1:-1:-1;4319:3:1;4304:19;;;4291:33;;3637:693;-1:-1:-1;;3637:693:1:o;4335:260::-;4403:6;4411;4464:2;4452:9;4443:7;4439:23;4435:32;4432:52;;;4480:1;4477;4470:12;4432:52;4503:29;4522:9;4503:29;:::i;:::-;4493:39;;4551:38;4585:2;4574:9;4570:18;4551:38;:::i;:::-;4541:48;;4335:260;;;;;:::o;4600:380::-;4679:1;4675:12;;;;4722;;;4743:61;;4797:4;4789:6;4785:17;4775:27;;4743:61;4850:2;4842:6;4839:14;4819:18;4816:38;4813:161;;4896:10;4891:3;4887:20;4884:1;4877:31;4931:4;4928:1;4921:15;4959:4;4956:1;4949:15;4813:161;;4600:380;;;:::o;6580:222::-;6645:9;;;6666:10;;;6663:133;;;6718:10;6713:3;6709:20;6706:1;6699:31;6753:4;6750:1;6743:15;6781:4;6778:1;6771:15;7704:127;7765:10;7760:3;7756:20;7753:1;7746:31;7796:4;7793:1;7786:15;7820:4;7817:1;7810:15

Swarm Source

ipfs://220f3af0be7bc57e22defec3b4598c70ea7dd4dcb2972f43bb209e8c36a0e8f6
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.