ETH Price: $2,601.54 (+0.30%)
Gas: 1 Gwei

Token

TeraBlock Token (TBC)
 

Overview

Max Total Supply

5,351,919.487601999999909888 TBC

Holders

400 (0.00%)

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
364.946759787157509309 TBC

Value
$0.00
0xc55917b3e9ea96578ca0a36f2c22b65c9d8b6c1a
Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

Token migration announcement. TeraBlock Token token contract has migrated to 0x9798dF2f5d213a872c787bD03b2b91F54D0D04A1

# Exchange Pair Price  24H Volume % Volume

Similar Match Source Code
This contract matches the deployed Bytecode of the Source Code for Contract 0xc5185d2c...1510D647F
The constructor portion of the code might be different and could alter the actual behaviour of the contract

Contract Name:
InitializableProductProxy

Compiler Version
v0.6.12+commit.27d51765

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion, MIT license

Contract Source Code (Solidity)

/**
 *Submitted for verification at Etherscan.io on 2021-05-08
*/

// SPDX-License-Identifier: MIT

pragma solidity ^0.6.0;
pragma experimental ABIEncoderV2;

/**
 * @title Proxy
 * @dev Implements delegation of calls to other contracts, with proper
 * forwarding of return values and bubbling of failures.
 * It defines a fallback function that delegates all calls to the address
 * returned by the abstract _implementation() internal function.
 */
abstract contract Proxy {
  /**
   * @dev Fallback function.
   * Implemented entirely in `_fallback`.
   */
  fallback () payable external {
    _fallback();
  }
  
  receive () payable external {
    _fallback();
  }

  /**
   * @return The Address of the implementation.
   */
  function _implementation() virtual internal view returns (address);

  /**
   * @dev Delegates execution to an implementation contract.
   * This is a low level function that doesn't return to its internal call site.
   * It will return to the external caller whatever the implementation returns.
   * @param implementation Address to delegate.
   */
  function _delegate(address implementation) internal {
    assembly {
      // Copy msg.data. We take full control of memory in this inline assembly
      // block because it will not return to Solidity code. We overwrite the
      // Solidity scratch pad at memory position 0.
      calldatacopy(0, 0, calldatasize())

      // Call the implementation.
      // out and outsize are 0 because we don't know the size yet.
      let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)

      // Copy the returned data.
      returndatacopy(0, 0, returndatasize())

      switch result
      // delegatecall returns 0 on error.
      case 0 { revert(0, returndatasize()) }
      default { return(0, returndatasize()) }
    }
  }

  /**
   * @dev Function that is run as the first thing in the fallback function.
   * Can be redefined in derived contracts to add functionality.
   * Redefinitions must call super._willFallback().
   */
  function _willFallback() virtual internal {
      
  }

  /**
   * @dev fallback implementation.
   * Extracted to enable manual triggering.
   */
  function _fallback() internal {
    if(OpenZeppelinUpgradesAddress.isContract(msg.sender) && msg.data.length == 0 && gasleft() <= 2300)         // for receive ETH only from other contract
        return;
    _willFallback();
    _delegate(_implementation());
  }
}


/**
 * @title BaseUpgradeabilityProxy
 * @dev This contract implements a proxy that allows to change the
 * implementation address to which it will delegate.
 * Such a change is called an implementation upgrade.
 */
abstract contract BaseUpgradeabilityProxy is Proxy {
  /**
   * @dev Emitted when the implementation is upgraded.
   * @param implementation Address of the new implementation.
   */
  event Upgraded(address indexed implementation);

  /**
   * @dev Storage slot with the address of the current implementation.
   * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
   * validated in the constructor.
   */
  bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

  /**
   * @dev Returns the current implementation.
   * @return impl Address of the current implementation
   */
  function _implementation() override internal view returns (address impl) {
    bytes32 slot = IMPLEMENTATION_SLOT;
    assembly {
      impl := sload(slot)
    }
  }

  /**
   * @dev Upgrades the proxy to a new implementation.
   * @param newImplementation Address of the new implementation.
   */
  function _upgradeTo(address newImplementation) internal {
    _setImplementation(newImplementation);
    emit Upgraded(newImplementation);
  }

  /**
   * @dev Sets the implementation address of the proxy.
   * @param newImplementation Address of the new implementation.
   */
  function _setImplementation(address newImplementation) internal {
    require(OpenZeppelinUpgradesAddress.isContract(newImplementation), "Cannot set a proxy implementation to a non-contract address");

    bytes32 slot = IMPLEMENTATION_SLOT;

    assembly {
      sstore(slot, newImplementation)
    }
  }
}


/**
 * @title BaseAdminUpgradeabilityProxy
 * @dev This contract combines an upgradeability proxy with an authorization
 * mechanism for administrative tasks.
 * All external functions in this contract must be guarded by the
 * `ifAdmin` modifier. See ethereum/solidity#3864 for a Solidity
 * feature proposal that would enable this to be done automatically.
 */
contract BaseAdminUpgradeabilityProxy is BaseUpgradeabilityProxy {
  /**
   * @dev Emitted when the administration has been transferred.
   * @param previousAdmin Address of the previous admin.
   * @param newAdmin Address of the new admin.
   */
  event AdminChanged(address previousAdmin, address newAdmin);

  /**
   * @dev Storage slot with the admin of the contract.
   * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
   * validated in the constructor.
   */

  bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

  /**
   * @dev Modifier to check whether the `msg.sender` is the admin.
   * If it is, it will run the function. Otherwise, it will delegate the call
   * to the implementation.
   */
  modifier ifAdmin() {
    if (msg.sender == _admin()) {
      _;
    } else {
      _fallback();
    }
  }

  /**
   * @return The address of the proxy admin.
   */
  function admin() external ifAdmin returns (address) {
    return _admin();
  }

  /**
   * @return The address of the implementation.
   */
  function implementation() external ifAdmin returns (address) {
    return _implementation();
  }

  /**
   * @dev Changes the admin of the proxy.
   * Only the current admin can call this function.
   * @param newAdmin Address to transfer proxy administration to.
   */
  function changeAdmin(address newAdmin) external ifAdmin {
    require(newAdmin != address(0), "Cannot change the admin of a proxy to the zero address");
    emit AdminChanged(_admin(), newAdmin);
    _setAdmin(newAdmin);
  }

  /**
   * @dev Upgrade the backing implementation of the proxy.
   * Only the admin can call this function.
   * @param newImplementation Address of the new implementation.
   */
  function upgradeTo(address newImplementation) external ifAdmin {
    _upgradeTo(newImplementation);
  }

  /**
   * @dev Upgrade the backing implementation of the proxy and call a function
   * on the new implementation.
   * This is useful to initialize the proxied contract.
   * @param newImplementation Address of the new implementation.
   * @param data Data to send as msg.data in the low level call.
   * It should include the signature and the parameters of the function to be called, as described in
   * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
   */
  function upgradeToAndCall(address newImplementation, bytes calldata data) payable external ifAdmin {
    _upgradeTo(newImplementation);
    (bool success,) = newImplementation.delegatecall(data);
    require(success);
  }

  /**
   * @return adm The admin slot.
   */
  function _admin() internal view returns (address adm) {
    bytes32 slot = ADMIN_SLOT;
    assembly {
      adm := sload(slot)
    }
  }

  /**
   * @dev Sets the address of the proxy admin.
   * @param newAdmin Address of the new proxy admin.
   */
  function _setAdmin(address newAdmin) internal {
    bytes32 slot = ADMIN_SLOT;

    assembly {
      sstore(slot, newAdmin)
    }
  }

  /**
   * @dev Only fall back when the sender is not the admin.
   */
  function _willFallback() virtual override internal {
    require(msg.sender != _admin(), "Cannot call fallback function from the proxy admin");
    //super._willFallback();
  }
}

interface IAdminUpgradeabilityProxyView {
  function admin() external view returns (address);
  function implementation() external view returns (address);
}


/**
 * @title UpgradeabilityProxy
 * @dev Extends BaseUpgradeabilityProxy with a constructor for initializing
 * implementation and init data.
 */
abstract contract UpgradeabilityProxy is BaseUpgradeabilityProxy {
  /**
   * @dev Contract constructor.
   * @param _logic Address of the initial implementation.
   * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
   * It should include the signature and the parameters of the function to be called, as described in
   * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
   * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
   */
  constructor(address _logic, bytes memory _data) public payable {
    assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1));
    _setImplementation(_logic);
    if(_data.length > 0) {
      (bool success,) = _logic.delegatecall(_data);
      require(success);
    }
  }  
  
  //function _willFallback() virtual override internal {
    //super._willFallback();
  //}
}


/**
 * @title AdminUpgradeabilityProxy
 * @dev Extends from BaseAdminUpgradeabilityProxy with a constructor for 
 * initializing the implementation, admin, and init data.
 */
contract AdminUpgradeabilityProxy is BaseAdminUpgradeabilityProxy, UpgradeabilityProxy {
  /**
   * Contract constructor.
   * @param _logic address of the initial implementation.
   * @param _admin Address of the proxy administrator.
   * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
   * It should include the signature and the parameters of the function to be called, as described in
   * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
   * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
   */
  constructor(address _admin, address _logic, bytes memory _data) UpgradeabilityProxy(_logic, _data) public payable {
    assert(ADMIN_SLOT == bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1));
    _setAdmin(_admin);
  }
  
  function _willFallback() override(Proxy, BaseAdminUpgradeabilityProxy) internal {
    super._willFallback();
  }
}


/**
 * @title InitializableUpgradeabilityProxy
 * @dev Extends BaseUpgradeabilityProxy with an initializer for initializing
 * implementation and init data.
 */
abstract contract InitializableUpgradeabilityProxy is BaseUpgradeabilityProxy {
  /**
   * @dev Contract initializer.
   * @param _logic Address of the initial implementation.
   * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
   * It should include the signature and the parameters of the function to be called, as described in
   * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
   * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
   */
  function initialize(address _logic, bytes memory _data) public payable {
    require(_implementation() == address(0));
    assert(IMPLEMENTATION_SLOT == bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1));
    _setImplementation(_logic);
    if(_data.length > 0) {
      (bool success,) = _logic.delegatecall(_data);
      require(success);
    }
  }  
}


/**
 * @title InitializableAdminUpgradeabilityProxy
 * @dev Extends from BaseAdminUpgradeabilityProxy with an initializer for 
 * initializing the implementation, admin, and init data.
 */
contract InitializableAdminUpgradeabilityProxy is BaseAdminUpgradeabilityProxy, InitializableUpgradeabilityProxy {
  /**
   * Contract initializer.
   * @param _logic address of the initial implementation.
   * @param _admin Address of the proxy administrator.
   * @param _data Data to send as msg.data to the implementation to initialize the proxied contract.
   * It should include the signature and the parameters of the function to be called, as described in
   * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
   * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
   */
  function initialize(address _admin, address _logic, bytes memory _data) public payable {
    require(_implementation() == address(0));
    InitializableUpgradeabilityProxy.initialize(_logic, _data);
    assert(ADMIN_SLOT == bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1));
    _setAdmin(_admin);
  }
  
  function _willFallback() override(Proxy, BaseAdminUpgradeabilityProxy) internal {
    super._willFallback();
  }

}


interface IProxyFactory {
    function productImplementation() external view returns (address);
    function productImplementations(bytes32 name) external view returns (address);
}


/**
 * @title ProductProxy
 * @dev This contract implements a proxy that 
 * it is deploied by ProxyFactory, 
 * and it's implementation is stored in factory.
 */
contract ProductProxy is Proxy {
    
  /**
   * @dev Storage slot with the address of the ProxyFactory.
   * This is the keccak-256 hash of "eip1967.proxy.factory" subtracted by 1, and is
   * validated in the constructor.
   */
  bytes32 internal constant FACTORY_SLOT = 0x7a45a402e4cb6e08ebc196f20f66d5d30e67285a2a8aa80503fa409e727a4af1;
  bytes32 internal constant NAME_SLOT    = 0x4cd9b827ca535ceb0880425d70eff88561ecdf04dc32fcf7ff3b15c587f8a870;      // bytes32(uint256(keccak256('eip1967.proxy.name')) - 1)

  function _name() virtual internal view returns (bytes32 name_) {
    bytes32 slot = NAME_SLOT;
    assembly {  name_ := sload(slot)  }
  }
  
  function _setName(bytes32 name_) internal {
    bytes32 slot = NAME_SLOT;
    assembly {  sstore(slot, name_)  }
  }

  /**
   * @dev Sets the factory address of the ProductProxy.
   * @param newFactory Address of the new factory.
   */
  function _setFactory(address newFactory) internal {
    require(OpenZeppelinUpgradesAddress.isContract(newFactory), "Cannot set a factory to a non-contract address");

    bytes32 slot = FACTORY_SLOT;

    assembly {
      sstore(slot, newFactory)
    }
  }

  /**
   * @dev Returns the factory.
   * @return factory_ Address of the factory.
   */
  function _factory() internal view returns (address factory_) {
    bytes32 slot = FACTORY_SLOT;
    assembly {
      factory_ := sload(slot)
    }
  }
  
  /**
   * @dev Returns the current implementation.
   * @return Address of the current implementation
   */
  function _implementation() virtual override internal view returns (address) {
    address factory_ = _factory();
    if(OpenZeppelinUpgradesAddress.isContract(factory_))
        return IProxyFactory(factory_).productImplementations(_name());
    else
        return address(0);
  }

}


/**
 * @title InitializableProductProxy
 * @dev Extends ProductProxy with an initializer for initializing
 * factory and init data.
 */
contract InitializableProductProxy is ProductProxy {
  /**
   * @dev Contract initializer.
   * @param factory_ Address of the initial factory.
   * @param data_ Data to send as msg.data to the implementation to initialize the proxied contract.
   * It should include the signature and the parameters of the function to be called, as described in
   * https://solidity.readthedocs.io/en/v0.4.24/abi-spec.html#function-selector-and-argument-encoding.
   * This parameter is optional, if no data is given the initialization call to proxied contract will be skipped.
   */
  function __InitializableProductProxy_init(address factory_, bytes32 name_, bytes memory data_) public payable {
    require(_factory() == address(0));
    assert(FACTORY_SLOT == bytes32(uint256(keccak256('eip1967.proxy.factory')) - 1));
    assert(NAME_SLOT    == bytes32(uint256(keccak256('eip1967.proxy.name')) - 1));
    _setFactory(factory_);
    _setName(name_);
    if(data_.length > 0) {
      (bool success,) = _implementation().delegatecall(data_);
      require(success);
    }
  }  
}


/**
 * @title Initializable
 *
 * @dev Helper contract to support initializer functions. To use it, replace
 * the constructor with a function that has the `initializer` modifier.
 * WARNING: Unlike constructors, initializer functions must be manually
 * invoked. This applies both to deploying an Initializable contract, as well
 * as extending an Initializable contract via inheritance.
 * WARNING: When used with inheritance, manual care must be taken to not invoke
 * a parent initializer twice, or ensure that all initializers are idempotent,
 * because this is not dealt with automatically as with constructors.
 */
contract Initializable {

  /**
   * @dev Indicates that the contract has been initialized.
   */
  bool private initialized;

  /**
   * @dev Indicates that the contract is in the process of being initialized.
   */
  bool private initializing;

  /**
   * @dev Modifier to use in the initializer function of a contract.
   */
  modifier initializer() {
    require(initializing || isConstructor() || !initialized, "Contract instance has already been initialized");

    bool isTopLevelCall = !initializing;
    if (isTopLevelCall) {
      initializing = true;
      initialized = true;
    }

    _;

    if (isTopLevelCall) {
      initializing = false;
    }
  }

  /// @dev Returns true if and only if the function is running in the constructor
  function isConstructor() private view returns (bool) {
    // extcodesize checks the size of the code stored in an address, and
    // address returns the current address. Since the code is still not
    // deployed when running a constructor, any checks on its code size will
    // yield zero, making it an effective way to detect if a contract is
    // under construction or not.
    address self = address(this);
    uint256 cs;
    assembly { cs := extcodesize(self) }
    return cs == 0;
  }

  // Reserved storage space to allow for layout changes in the future.
  uint256[50] private ______gap;
}


/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
contract ContextUpgradeSafe is Initializable {
    // Empty internal constructor, to prevent people from mistakenly deploying
    // an instance of this contract, which should be used via inheritance.

    function __Context_init() internal initializer {
        __Context_init_unchained();
    }

    function __Context_init_unchained() internal initializer {


    }


    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }

    uint256[50] private __gap;
}

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
contract ReentrancyGuardUpgradeSafe is Initializable {
    bool private _notEntered;


    function __ReentrancyGuard_init() internal initializer {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal initializer {


        // Storing an initial non-zero value makes deployment a bit more
        // expensive, but in exchange the refund on every call to nonReentrant
        // will be lower in amount. Since refunds are capped to a percetange of
        // the total transaction's gas, it is best to keep them low in cases
        // like this one, to increase the likelihood of the full refund coming
        // into effect.
        _notEntered = true;

    }


    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_notEntered, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _notEntered = false;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _notEntered = true;
    }

    uint256[49] private __gap;
}

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow, so we distribute
        return (a / 2) + (b / 2) + ((a % 2 + b % 2) / 2);
    }
}

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, "SafeMath: subtraction overflow");
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        uint256 c = a - b;

        return c;
    }

    function sub0(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a - b : 0;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) {
            return 0;
        }

        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");

        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return div(a, b, "SafeMath: division by zero");
    }

    /**
     * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        // Solidity only automatically asserts when dividing by 0
        require(b > 0, errorMessage);
        uint256 c = a / b;
        // assert(a == b * c + a % b); // There is no case in which this doesn't hold

        return c;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return mod(a, b, "SafeMath: modulo by zero");
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * Reverts with custom message when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b != 0, errorMessage);
        return a % b;
    }
}

/**
 * Utility library of inline functions on addresses
 *
 * Source https://raw.githubusercontent.com/OpenZeppelin/openzeppelin-solidity/v2.1.3/contracts/utils/Address.sol
 * This contract is copied here and renamed from the original to avoid clashes in the compiled artifacts
 * when the user imports a zos-lib contract (that transitively causes this contract to be compiled and added to the
 * build/artifacts folder) as well as the vanilla Address implementation from an openzeppelin version.
 */
library OpenZeppelinUpgradesAddress {
    /**
     * Returns whether the target address is a contract
     * @dev This function will return false if invoked during the constructor of a contract,
     * as the code is not actually created until after the constructor finishes.
     * @param account address of the account to check
     * @return whether the target address is a contract
     */
    function isContract(address account) internal view returns (bool) {
        uint256 size;
        // XXX Currently there is no better way to check if there is a contract in an address
        // than to check the size of the code at that address.
        // See https://ethereum.stackexchange.com/a/14016/36603
        // for more details about how this works.
        // TODO Check this again before the Serenity release, because all addresses will be
        // contracts then.
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }
}

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
        // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
        // for accounts without code, i.e. `keccak256('')`
        bytes32 codehash;
        bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
        // solhint-disable-next-line no-inline-assembly
        assembly { codehash := extcodehash(account) }
        return (codehash != accountHash && codehash != 0x0);
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }
}

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20MinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20UpgradeSafe is Initializable, ContextUpgradeSafe, IERC20 {
    using SafeMath for uint256;
    using Address for address;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */

    function __ERC20_init(string memory name, string memory symbol) internal initializer {
        __Context_init_unchained();
        __ERC20_init_unchained(name, symbol);
    }

    function __ERC20_init_unchained(string memory name, string memory symbol) internal initializer {


        _name = name;
        _symbol = symbol;
        _decimals = 18;

    }


    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20};
     *
     * Requirements:
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        if(sender != _msgSender() && _allowances[sender][_msgSender()] != uint(-1))
            _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner`s tokens.
     *
     * This is internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }

    uint256[44] private __gap;
}


/**
 * @dev Extension of {ERC20} that adds a cap to the supply of tokens.
 */
abstract contract ERC20CappedUpgradeSafe is Initializable, ERC20UpgradeSafe {
    uint256 internal _cap;

    /**
     * @dev Sets the value of the `cap`. This value is immutable, it can only be
     * set once during construction.
     */

    function __ERC20Capped_init(uint256 cap) internal initializer {
        __Context_init_unchained();
        __ERC20Capped_init_unchained(cap);
    }

    function __ERC20Capped_init_unchained(uint256 cap) internal initializer {


        require(cap > 0, "ERC20Capped: cap is 0");
        _cap = cap;

    }


    /**
     * @dev Returns the cap on the token's total supply.
     */
    function cap() virtual public view returns (uint256) {
        return _cap;
    }

    /**
     * @dev See {ERC20-_beforeTokenTransfer}.
     *
     * Requirements:
     *
     * - minted tokens must not cause the total supply to go over the cap.
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual override {
        super._beforeTokenTransfer(from, to, amount);

        if (from == address(0)) { // When minting tokens
            require(totalSupply().add(amount) <= _cap, "ERC20Capped: cap exceeded");
        }
    }

    uint256[49] private __gap;
}


/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using SafeMath for uint256;
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require((value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).add(value);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves.

        // A Solidity high level call has three parts:
        //  1. The target address is checked to verify it contains contract code
        //  2. The call itself is made, and success asserted
        //  3. The return value is decoded, which in turn checks the size of the returned data.
        // solhint-disable-next-line max-line-length
        require(address(token).isContract(), "SafeERC20: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = address(token).call(data);
        require(success, "SafeERC20: low-level call failed");

        if (returndata.length > 0) { // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}


// https://github.com/hamdiallam/Solidity-RLP/blob/master/contracts/RLPReader.sol
/*
* @author Hamdi Allam [email protected]
* Please reach out with any questions or concerns
*/
pragma solidity >=0.5.0 <0.7.0;

library RLPReader {
    uint8 constant STRING_SHORT_START = 0x80;
    uint8 constant STRING_LONG_START  = 0xb8;
    uint8 constant LIST_SHORT_START   = 0xc0;
    uint8 constant LIST_LONG_START    = 0xf8;
    uint8 constant WORD_SIZE = 32;

    struct RLPItem {
        uint len;
        uint memPtr;
    }

    struct Iterator {
        RLPItem item;   // Item that's being iterated over.
        uint nextPtr;   // Position of the next item in the list.
    }

    /*
    * @dev Returns the next element in the iteration. Reverts if it has not next element.
    * @param self The iterator.
    * @return The next element in the iteration.
    */
    function next(Iterator memory self) internal pure returns (RLPItem memory) {
        require(hasNext(self));

        uint ptr = self.nextPtr;
        uint itemLength = _itemLength(ptr);
        self.nextPtr = ptr + itemLength;

        return RLPItem(itemLength, ptr);
    }

    /*
    * @dev Returns true if the iteration has more elements.
    * @param self The iterator.
    * @return true if the iteration has more elements.
    */
    function hasNext(Iterator memory self) internal pure returns (bool) {
        RLPItem memory item = self.item;
        return self.nextPtr < item.memPtr + item.len;
    }

    /*
    * @param item RLP encoded bytes
    */
    function toRlpItem(bytes memory item) internal pure returns (RLPItem memory) {
        uint memPtr;
        assembly {
            memPtr := add(item, 0x20)
        }

        return RLPItem(item.length, memPtr);
    }

    /*
    * @dev Create an iterator. Reverts if item is not a list.
    * @param self The RLP item.
    * @return An 'Iterator' over the item.
    */
    function iterator(RLPItem memory self) internal pure returns (Iterator memory) {
        require(isList(self));

        uint ptr = self.memPtr + _payloadOffset(self.memPtr);
        return Iterator(self, ptr);
    }

    /*
    * @param the RLP item.
    */
    function rlpLen(RLPItem memory item) internal pure returns (uint) {
        return item.len;
    }

    /*
     * @param the RLP item.
     * @return (memPtr, len) pair: location of the item's payload in memory.
     */
    function payloadLocation(RLPItem memory item) internal pure returns (uint, uint) {
        uint offset = _payloadOffset(item.memPtr);
        uint memPtr = item.memPtr + offset;
        uint len = item.len - offset; // data length
        return (memPtr, len);
    }

    /*
    * @param the RLP item.
    */
    function payloadLen(RLPItem memory item) internal pure returns (uint) {
        (, uint len) = payloadLocation(item);
        return len;
    }

    /*
    * @param the RLP item containing the encoded list.
    */
    function toList(RLPItem memory item) internal pure returns (RLPItem[] memory) {
        require(isList(item));

        uint items = numItems(item);
        RLPItem[] memory result = new RLPItem[](items);

        uint memPtr = item.memPtr + _payloadOffset(item.memPtr);
        uint dataLen;
        for (uint i = 0; i < items; i++) {
            dataLen = _itemLength(memPtr);
            result[i] = RLPItem(dataLen, memPtr); 
            memPtr = memPtr + dataLen;
        }

        return result;
    }

    // @return indicator whether encoded payload is a list. negate this function call for isData.
    function isList(RLPItem memory item) internal pure returns (bool) {
        if (item.len == 0) return false;

        uint8 byte0;
        uint memPtr = item.memPtr;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < LIST_SHORT_START)
            return false;
        return true;
    }

    /*
     * @dev A cheaper version of keccak256(toRlpBytes(item)) that avoids copying memory.
     * @return keccak256 hash of RLP encoded bytes.
     */
    function rlpBytesKeccak256(RLPItem memory item) internal pure returns (bytes32) {
        uint256 ptr = item.memPtr;
        uint256 len = item.len;
        bytes32 result;
        assembly {
            result := keccak256(ptr, len)
        }
        return result;
    }

    /*
     * @dev A cheaper version of keccak256(toBytes(item)) that avoids copying memory.
     * @return keccak256 hash of the item payload.
     */
    function payloadKeccak256(RLPItem memory item) internal pure returns (bytes32) {
        (uint memPtr, uint len) = payloadLocation(item);
        bytes32 result;
        assembly {
            result := keccak256(memPtr, len)
        }
        return result;
    }

    /** RLPItem conversions into data types **/

    // @returns raw rlp encoding in bytes
    function toRlpBytes(RLPItem memory item) internal pure returns (bytes memory) {
        bytes memory result = new bytes(item.len);
        if (result.length == 0) return result;
        
        uint ptr;
        assembly {
            ptr := add(0x20, result)
        }

        copy(item.memPtr, ptr, item.len);
        return result;
    }

    // any non-zero byte except "0x80" is considered true
    function toBoolean(RLPItem memory item) internal pure returns (bool) {
        require(item.len == 1);
        uint result;
        uint memPtr = item.memPtr;
        assembly {
            result := byte(0, mload(memPtr))
        }

        // SEE Github Issue #5.
        // Summary: Most commonly used RLP libraries (i.e Geth) will encode
        // "0" as "0x80" instead of as "0". We handle this edge case explicitly
        // here.
        if (result == 0 || result == STRING_SHORT_START) {
            return false;
        } else {
            return true;
        }
    }

    function toAddress(RLPItem memory item) internal pure returns (address) {
        // 1 byte for the length prefix
        require(item.len == 21);

        return address(toUint(item));
    }

    function toUint(RLPItem memory item) internal pure returns (uint) {
        require(item.len > 0 && item.len <= 33);

        (uint memPtr, uint len) = payloadLocation(item);

        uint result;
        assembly {
            result := mload(memPtr)

            // shfit to the correct location if neccesary
            if lt(len, 32) {
                result := div(result, exp(256, sub(32, len)))
            }
        }

        return result;
    }

    // enforces 32 byte length
    function toUintStrict(RLPItem memory item) internal pure returns (uint) {
        // one byte prefix
        require(item.len == 33);

        uint result;
        uint memPtr = item.memPtr + 1;
        assembly {
            result := mload(memPtr)
        }

        return result;
    }

    function toBytes(RLPItem memory item) internal pure returns (bytes memory) {
        require(item.len > 0);

        (uint memPtr, uint len) = payloadLocation(item);
        bytes memory result = new bytes(len);

        uint destPtr;
        assembly {
            destPtr := add(0x20, result)
        }

        copy(memPtr, destPtr, len);
        return result;
    }

    /*
    * Private Helpers
    */

    // @return number of payload items inside an encoded list.
    function numItems(RLPItem memory item) private pure returns (uint) {
        if (item.len == 0) return 0;

        uint count = 0;
        uint currPtr = item.memPtr + _payloadOffset(item.memPtr);
        uint endPtr = item.memPtr + item.len;
        while (currPtr < endPtr) {
           currPtr = currPtr + _itemLength(currPtr); // skip over an item
           count++;
        }

        return count;
    }

    // @return entire rlp item byte length
    function _itemLength(uint memPtr) private pure returns (uint) {
        uint itemLen;
        uint byte0;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < STRING_SHORT_START)
            itemLen = 1;
        
        else if (byte0 < STRING_LONG_START)
            itemLen = byte0 - STRING_SHORT_START + 1;

        else if (byte0 < LIST_SHORT_START) {
            assembly {
                let byteLen := sub(byte0, 0xb7) // # of bytes the actual length is
                memPtr := add(memPtr, 1) // skip over the first byte
                
                /* 32 byte word size */
                let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to get the len
                itemLen := add(dataLen, add(byteLen, 1))
            }
        }

        else if (byte0 < LIST_LONG_START) {
            itemLen = byte0 - LIST_SHORT_START + 1;
        } 

        else {
            assembly {
                let byteLen := sub(byte0, 0xf7)
                memPtr := add(memPtr, 1)

                let dataLen := div(mload(memPtr), exp(256, sub(32, byteLen))) // right shifting to the correct length
                itemLen := add(dataLen, add(byteLen, 1))
            }
        }

        return itemLen;
    }

    // @return number of bytes until the data
    function _payloadOffset(uint memPtr) private pure returns (uint) {
        uint byte0;
        assembly {
            byte0 := byte(0, mload(memPtr))
        }

        if (byte0 < STRING_SHORT_START) 
            return 0;
        else if (byte0 < STRING_LONG_START || (byte0 >= LIST_SHORT_START && byte0 < LIST_LONG_START))
            return 1;
        else if (byte0 < LIST_SHORT_START)  // being explicit
            return byte0 - (STRING_LONG_START - 1) + 1;
        else
            return byte0 - (LIST_LONG_START - 1) + 1;
    }

    /*
    * @param src Pointer to source
    * @param dest Pointer to destination
    * @param len Amount of memory to copy from the source
    */
    function copy(uint src, uint dest, uint len) private pure {
        if (len == 0) return;

        // copy as many word sizes as possible
        for (; len >= WORD_SIZE; len -= WORD_SIZE) {
            assembly {
                mstore(dest, mload(src))
            }

            src += WORD_SIZE;
            dest += WORD_SIZE;
        }

        // left over bytes. Mask is used to remove unwanted bytes from the word
        uint mask = 256 ** (WORD_SIZE - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask)) // zero out src
            let destpart := and(mload(dest), mask) // retrieve the bytes
            mstore(dest, or(destpart, srcpart))
        }
    }
}


// https://github.com/bakaoh/solidity-rlp-encode/blob/master/contracts/RLPEncode.sol
/**
 * @title RLPEncode
 * @dev A simple RLP encoding library.
 * @author Bakaoh
 */
library RLPEncode {
    /*
     * Internal functions
     */

    /**
     * @dev RLP encodes a byte string.
     * @param self The byte string to encode.
     * @return The RLP encoded string in bytes.
     */
    function encodeBytes(bytes memory self) internal pure returns (bytes memory) {
        bytes memory encoded;
        if (self.length == 1 && uint8(self[0]) <= 128) {
            encoded = self;
        } else {
            encoded = concat(encodeLength(self.length, 128), self);
        }
        return encoded;
    }

    /**
     * @dev RLP encodes a list of RLP encoded byte byte strings.
     * @param self The list of RLP encoded byte strings.
     * @return The RLP encoded list of items in bytes.
     */
    function encodeList(bytes[] memory self) internal pure returns (bytes memory) {
        bytes memory list = flatten(self);
        return concat(encodeLength(list.length, 192), list);
    }

    /**
     * @dev RLP encodes a string.
     * @param self The string to encode.
     * @return The RLP encoded string in bytes.
     */
    function encodeString(string memory self) internal pure returns (bytes memory) {
        return encodeBytes(bytes(self));
    }

    /** 
     * @dev RLP encodes an address.
     * @param self The address to encode.
     * @return The RLP encoded address in bytes.
     */
    function encodeAddress(address self) internal pure returns (bytes memory) {
        bytes memory inputBytes;
        assembly {
            let m := mload(0x40)
            mstore(add(m, 20), xor(0x140000000000000000000000000000000000000000, self))
            mstore(0x40, add(m, 52))
            inputBytes := m
        }
        return encodeBytes(inputBytes);
    }

    /** 
     * @dev RLP encodes a uint.
     * @param self The uint to encode.
     * @return The RLP encoded uint in bytes.
     */
    function encodeUint(uint self) internal pure returns (bytes memory) {
        return encodeBytes(toBinary(self));
    }

    /** 
     * @dev RLP encodes an int.
     * @param self The int to encode.
     * @return The RLP encoded int in bytes.
     */
    function encodeInt(int self) internal pure returns (bytes memory) {
        return encodeUint(uint(self));
    }

    /** 
     * @dev RLP encodes a bool.
     * @param self The bool to encode.
     * @return The RLP encoded bool in bytes.
     */
    function encodeBool(bool self) internal pure returns (bytes memory) {
        bytes memory encoded = new bytes(1);
        encoded[0] = (self ? bytes1(0x01) : bytes1(0x80));
        return encoded;
    }


    /*
     * Private functions
     */

    /**
     * @dev Encode the first byte, followed by the `len` in binary form if `length` is more than 55.
     * @param len The length of the string or the payload.
     * @param offset 128 if item is string, 192 if item is list.
     * @return RLP encoded bytes.
     */
    function encodeLength(uint len, uint offset) private pure returns (bytes memory) {
        bytes memory encoded;
        if (len < 56) {
            encoded = new bytes(1);
            encoded[0] = bytes32(len + offset)[31];
        } else {
            uint lenLen;
            uint i = 1;
            while (len / i != 0) {
                lenLen++;
                i *= 256;
            }

            encoded = new bytes(lenLen + 1);
            encoded[0] = bytes32(lenLen + offset + 55)[31];
            for(i = 1; i <= lenLen; i++) {
                encoded[i] = bytes32((len / (256**(lenLen-i))) % 256)[31];
            }
        }
        return encoded;
    }

    /**
     * @dev Encode integer in big endian binary form with no leading zeroes.
     * @notice TODO: This should be optimized with assembly to save gas costs.
     * @param _x The integer to encode.
     * @return RLP encoded bytes.
     */
    function toBinary(uint _x) private pure returns (bytes memory) {
        bytes memory b = new bytes(32);
        assembly { 
            mstore(add(b, 32), _x) 
        }
        uint i;
        for (i = 0; i < 32; i++) {
            if (b[i] != 0) {
                break;
            }
        }
        bytes memory res = new bytes(32 - i);
        for (uint j = 0; j < res.length; j++) {
            res[j] = b[i++];
        }
        return res;
    }

    /**
     * @dev Copies a piece of memory to another location.
     * @notice From: https://github.com/Arachnid/solidity-stringutils/blob/master/src/strings.sol.
     * @param _dest Destination location.
     * @param _src Source location.
     * @param _len Length of memory to copy.
     */
    function memcpy(uint _dest, uint _src, uint _len) private pure {
        uint dest = _dest;
        uint src = _src;
        uint len = _len;

        for(; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        uint mask = 256 ** (32 - len) - 1;
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }

    /**
     * @dev Flattens a list of byte strings into one byte string.
     * @notice From: https://github.com/sammayo/solidity-rlp-encoder/blob/master/RLPEncode.sol.
     * @param _list List of byte strings to flatten.
     * @return The flattened byte string.
     */
    function flatten(bytes[] memory _list) private pure returns (bytes memory) {
        if (_list.length == 0) {
            return new bytes(0);
        }

        uint len;
        uint i;
        for (i = 0; i < _list.length; i++) {
            len += _list[i].length;
        }

        bytes memory flattened = new bytes(len);
        uint flattenedPtr;
        assembly { flattenedPtr := add(flattened, 0x20) }

        for(i = 0; i < _list.length; i++) {
            bytes memory item = _list[i];
            
            uint listPtr;
            assembly { listPtr := add(item, 0x20)}

            memcpy(flattenedPtr, listPtr, item.length);
            flattenedPtr += _list[i].length;
        }

        return flattened;
    }

    /**
     * @dev Concatenates two bytes.
     * @notice From: https://github.com/GNSPS/solidity-bytes-utils/blob/master/contracts/BytesLib.sol.
     * @param _preBytes First byte string.
     * @param _postBytes Second byte string.
     * @return Both byte string combined.
     */
    function concat(bytes memory _preBytes, bytes memory _postBytes) private pure returns (bytes memory) {
        bytes memory tempBytes;

        assembly {
            tempBytes := mload(0x40)

            let length := mload(_preBytes)
            mstore(tempBytes, length)

            let mc := add(tempBytes, 0x20)
            let end := add(mc, length)

            for {
                let cc := add(_preBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            length := mload(_postBytes)
            mstore(tempBytes, add(length, mload(tempBytes)))

            mc := end
            end := add(mc, length)

            for {
                let cc := add(_postBytes, 0x20)
            } lt(mc, end) {
                mc := add(mc, 0x20)
                cc := add(cc, 0x20)
            } {
                mstore(mc, mload(cc))
            }

            mstore(0x40, and(
              add(add(end, iszero(add(length, mload(_preBytes)))), 31),
              not(31)
            ))
        }

        return tempBytes;
    }
}


contract Governable is Initializable {
    address public governor;

    event GovernorshipTransferred(address indexed previousGovernor, address indexed newGovernor);

    /**
     * @dev Contract initializer.
     * called once by the factory at time of deployment
     */
    function __Governable_init_unchained(address governor_) virtual public initializer {
        governor = governor_;
        emit GovernorshipTransferred(address(0), governor);
    }

    modifier governance() {
        require(msg.sender == governor);
        _;
    }

    /**
     * @dev Allows the current governor to relinquish control of the contract.
     * @notice Renouncing to governorship will leave the contract without an governor.
     * It will not be possible to call the functions with the `governance`
     * modifier anymore.
     */
    function renounceGovernorship() public governance {
        emit GovernorshipTransferred(governor, address(0));
        governor = address(0);
    }

    /**
     * @dev Allows the current governor to transfer control of the contract to a newGovernor.
     * @param newGovernor The address to transfer governorship to.
     */
    function transferGovernorship(address newGovernor) public governance {
        _transferGovernorship(newGovernor);
    }

    /**
     * @dev Transfers control of the contract to a newGovernor.
     * @param newGovernor The address to transfer governorship to.
     */
    function _transferGovernorship(address newGovernor) internal {
        require(newGovernor != address(0));
        emit GovernorshipTransferred(governor, newGovernor);
        governor = newGovernor;
    }
}


contract ConfigurableBase {
    mapping (bytes32 => uint) internal config;
    
    function getConfig(bytes32 key) public view returns (uint) {
        return config[key];
    }
    function getConfigI(bytes32 key, uint index) public view returns (uint) {
        return config[bytes32(uint(key) ^ index)];
    }
    function getConfigA(bytes32 key, address addr) public view returns (uint) {
        return config[bytes32(uint(key) ^ uint(addr))];
    }

    function _setConfig(bytes32 key, uint value) internal {
        if(config[key] != value)
            config[key] = value;
    }
    function _setConfig(bytes32 key, uint index, uint value) internal {
        _setConfig(bytes32(uint(key) ^ index), value);
    }
    function _setConfig(bytes32 key, address addr, uint value) internal {
        _setConfig(bytes32(uint(key) ^ uint(addr)), value);
    }
}    

contract Configurable is Governable, ConfigurableBase {
    function setConfig(bytes32 key, uint value) external governance {
        _setConfig(key, value);
    }
    function setConfigI(bytes32 key, uint index, uint value) external governance {
        _setConfig(bytes32(uint(key) ^ index), value);
    }
    function setConfigA(bytes32 key, address addr, uint value) public governance {
        _setConfig(bytes32(uint(key) ^ uint(addr)), value);
    }
}


// Inheritancea
interface IStakingRewards {
    // Views
    function lastTimeRewardApplicable() external view returns (uint256);

    function rewardPerToken() external view returns (uint256);

    function rewards(address account) external view returns (uint256);

    function earned(address account) external view returns (uint256);

    function getRewardForDuration() external view returns (uint256);

    function totalSupply() external view returns (uint256);

    function balanceOf(address account) external view returns (uint256);

    // Mutative

    function stake(uint256 amount) external;

    function withdraw(uint256 amount) external;

    function getReward() external;

    function exit() external;
}

abstract contract RewardsDistributionRecipient {
    address public rewardsDistribution;

    function notifyRewardAmount(uint256 reward) virtual external;

    modifier onlyRewardsDistribution() {
        require(msg.sender == rewardsDistribution, "Caller is not RewardsDistribution contract");
        _;
    }
}

contract StakingRewards is IStakingRewards, RewardsDistributionRecipient, ReentrancyGuardUpgradeSafe {
    using SafeMath for uint256;
    using SafeERC20 for IERC20;

    /* ========== STATE VARIABLES ========== */

    IERC20 public rewardsToken;
    IERC20 public stakingToken;
    uint256 public periodFinish = 0;
    uint256 public rewardRate = 0;                  // obsoleted
    uint256 public rewardsDuration = 60 days;
    uint256 public lastUpdateTime;
    uint256 public rewardPerTokenStored;

    mapping(address => uint256) public userRewardPerTokenPaid;
    mapping(address => uint256) override public rewards;

    uint256 internal _totalSupply;
    mapping(address => uint256) internal _balances;

    /* ========== CONSTRUCTOR ========== */

    //constructor(
    function __StakingRewards_init(
        address _rewardsDistribution,
        address _rewardsToken,
        address _stakingToken
    ) public initializer {
        __ReentrancyGuard_init_unchained();
        __StakingRewards_init_unchained(_rewardsDistribution, _rewardsToken, _stakingToken);
    }
    
    function __StakingRewards_init_unchained(address _rewardsDistribution, address _rewardsToken, address _stakingToken) public initializer {
        rewardsToken = IERC20(_rewardsToken);
        stakingToken = IERC20(_stakingToken);
        rewardsDistribution = _rewardsDistribution;
    }

    /* ========== VIEWS ========== */

    function totalSupply() virtual override public view returns (uint256) {
        return _totalSupply;
    }

    function balanceOf(address account) virtual override public view returns (uint256) {
        return _balances[account];
    }

    function lastTimeRewardApplicable() override public view returns (uint256) {
        return Math.min(block.timestamp, periodFinish);
    }

    function rewardPerToken() virtual override public view returns (uint256) {
        if (_totalSupply == 0) {
            return rewardPerTokenStored;
        }
        return
            rewardPerTokenStored.add(
                lastTimeRewardApplicable().sub(lastUpdateTime).mul(rewardRate).mul(1e18).div(_totalSupply)
            );
    }

    function earned(address account) virtual override public view returns (uint256) {
        return _balances[account].mul(rewardPerToken().sub(userRewardPerTokenPaid[account])).div(1e18).add(rewards[account]);
    }

    function getRewardForDuration() virtual override external view returns (uint256) {
        return rewardRate.mul(rewardsDuration);
    }

    /* ========== MUTATIVE FUNCTIONS ========== */

    function stakeWithPermit(uint256 amount, uint deadline, uint8 v, bytes32 r, bytes32 s) virtual public nonReentrant updateReward(msg.sender) {
        require(amount > 0, "Cannot stake 0");
        _totalSupply = _totalSupply.add(amount);
        _balances[msg.sender] = _balances[msg.sender].add(amount);

        // permit
        IPermit(address(stakingToken)).permit(msg.sender, address(this), amount, deadline, v, r, s);

        stakingToken.safeTransferFrom(msg.sender, address(this), amount);
        emit Staked(msg.sender, amount);
    }

    function stake(uint256 amount) virtual override public nonReentrant updateReward(msg.sender) {
        require(amount > 0, "Cannot stake 0");
        _totalSupply = _totalSupply.add(amount);
        _balances[msg.sender] = _balances[msg.sender].add(amount);
        stakingToken.safeTransferFrom(msg.sender, address(this), amount);
        emit Staked(msg.sender, amount);
    }

    function withdraw(uint256 amount) virtual override public nonReentrant updateReward(msg.sender) {
        require(amount > 0, "Cannot withdraw 0");
        _totalSupply = _totalSupply.sub(amount);
        _balances[msg.sender] = _balances[msg.sender].sub(amount);
        stakingToken.safeTransfer(msg.sender, amount);
        emit Withdrawn(msg.sender, amount);
    }

    function getReward() virtual override public nonReentrant updateReward(msg.sender) {
        uint256 reward = rewards[msg.sender];
        if (reward > 0) {
            rewards[msg.sender] = 0;
            rewardsToken.safeTransfer(msg.sender, reward);
            emit RewardPaid(msg.sender, reward);
        }
    }

    function exit() virtual override public {
        withdraw(_balances[msg.sender]);
        getReward();
    }

    /* ========== RESTRICTED FUNCTIONS ========== */

    function notifyRewardAmount(uint256 reward) override external onlyRewardsDistribution updateReward(address(0)) {
        if (block.timestamp >= periodFinish) {
            rewardRate = reward.div(rewardsDuration);
        } else {
            uint256 remaining = periodFinish.sub(block.timestamp);
            uint256 leftover = remaining.mul(rewardRate);
            rewardRate = reward.add(leftover).div(rewardsDuration);
        }

        // Ensure the provided reward amount is not more than the balance in the contract.
        // This keeps the reward rate in the right range, preventing overflows due to
        // very high values of rewardRate in the earned and rewardsPerToken functions;
        // Reward + leftover must be less than 2^256 / 10^18 to avoid overflow.
        uint balance = rewardsToken.balanceOf(address(this));
        require(rewardRate <= balance.div(rewardsDuration), "Provided reward too high");

        lastUpdateTime = block.timestamp;
        periodFinish = block.timestamp.add(rewardsDuration);
        emit RewardAdded(reward);
    }

    /* ========== MODIFIERS ========== */

    modifier updateReward(address account) virtual {
        rewardPerTokenStored = rewardPerToken();
        lastUpdateTime = lastTimeRewardApplicable();
        if (account != address(0)) {
            rewards[account] = earned(account);
            userRewardPerTokenPaid[account] = rewardPerTokenStored;
        }
        _;
    }

    /* ========== EVENTS ========== */

    event RewardAdded(uint256 reward);
    event Staked(address indexed user, uint256 amount);
    event Withdrawn(address indexed user, uint256 amount);
    event RewardPaid(address indexed user, uint256 reward);
}

interface IPermit {
    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;
}


contract Constants {
    bytes32 internal constant _TokenMapped_     = 'TokenMapped';
    bytes32 internal constant _MappableToken_   = 'MappableToken';
    bytes32 internal constant _MappingToken_    = 'MappingToken';
    bytes32 internal constant _fee_             = 'fee';
    bytes32 internal constant _feeCreate_       = 'feeCreate';
    bytes32 internal constant _feeRegister_     = 'feeRegister';
    bytes32 internal constant _feeTo_           = 'feeTo';
    bytes32 internal constant _onlyDeployer_    = 'onlyDeployer';
    bytes32 internal constant _minSignatures_   = 'minSignatures';
    bytes32 internal constant _initQuotaRatio_  = 'initQuotaRatio';
    bytes32 internal constant _autoQuotaRatio_  = 'autoQuotaRatio';
    bytes32 internal constant _autoQuotaPeriod_ = 'autoQuotaPeriod';
    //bytes32 internal constant _uniswapRounter_  = 'uniswapRounter';
    
    function _chainId() internal pure returns (uint id) {
        assembly { id := chainid() }
    }
}

struct Signature {
    address signatory;
    uint8   v;
    bytes32 r;
    bytes32 s;
}

abstract contract MappingBase is ContextUpgradeSafe, Constants {
	using SafeMath for uint;

    bytes32 public constant RECEIVE_TYPEHASH = keccak256("Receive(uint256 fromChainId,address to,uint256 nonce,uint256 volume,address signatory)");
    bytes32 public constant DOMAIN_TYPEHASH = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");
    bytes32 internal _DOMAIN_SEPARATOR;
    function DOMAIN_SEPARATOR() virtual public view returns (bytes32) {  return _DOMAIN_SEPARATOR;  }

    address public factory;
    uint256 public mainChainId;
    address public token;
    address public deployer;
    
    mapping (address => uint) internal _authQuotas;                                     // signatory => quota
    mapping (uint => mapping (address => uint)) public sentCount;                       // toChainId => to => sentCount
    mapping (uint => mapping (address => mapping (uint => uint))) public sent;          // toChainId => to => nonce => volume
    mapping (uint => mapping (address => mapping (uint => uint))) public received;      // fromChainId => to => nonce => volume
    mapping (address => uint) public lasttimeUpdateQuotaOf;                             // signatory => lasttime
    uint public autoQuotaRatio;
    uint public autoQuotaPeriod;
    
    function setAutoQuota(uint ratio, uint period) virtual external onlyFactory {
        autoQuotaRatio  = ratio;
        autoQuotaPeriod = period;
    }
    
    modifier onlyFactory {
        require(msg.sender == factory, 'Only called by Factory');
        _;
    }
    
    modifier updateAutoQuota(address signatory) virtual {
        uint quota = authQuotaOf(signatory);
        if(_authQuotas[signatory] != quota) {
            _authQuotas[signatory] = quota;
            lasttimeUpdateQuotaOf[signatory] = now;
        }
        _;
    }
    
    function authQuotaOf(address signatory) virtual public view returns (uint quota) {
        quota = _authQuotas[signatory];
        uint ratio  = autoQuotaRatio  != 0 ? autoQuotaRatio  : Factory(factory).getConfig(_autoQuotaRatio_);
        uint period = autoQuotaPeriod != 0 ? autoQuotaPeriod : Factory(factory).getConfig(_autoQuotaPeriod_);
        if(ratio == 0 || period == 0 || period == uint(-1))
            return quota;
        uint quotaCap = cap().mul(ratio).div(1e18);
        uint delta = quotaCap.mul(now.sub(lasttimeUpdateQuotaOf[signatory])).div(period);
        return Math.max(quota, Math.min(quotaCap, quota.add(delta)));
    }
    
    function cap() public view virtual returns (uint);

    function increaseAuthQuotas(address[] memory signatories, uint[] memory increments) virtual external returns (uint[] memory quotas) {
        require(signatories.length == increments.length, 'two array lenth not equal');
        quotas = new uint[](signatories.length);
        for(uint i=0; i<signatories.length; i++)
            quotas[i] = increaseAuthQuota(signatories[i], increments[i]);
    }
    
    function increaseAuthQuota(address signatory, uint increment) virtual public updateAutoQuota(signatory) onlyFactory returns (uint quota) {
        quota = _authQuotas[signatory].add(increment);
        _authQuotas[signatory] = quota;
        emit IncreaseAuthQuota(signatory, increment, quota);
    }
    event IncreaseAuthQuota(address indexed signatory, uint increment, uint quota);
    
    function decreaseAuthQuotas(address[] memory signatories, uint[] memory decrements) virtual external returns (uint[] memory quotas) {
        require(signatories.length == decrements.length, 'two array lenth not equal');
        quotas = new uint[](signatories.length);
        for(uint i=0; i<signatories.length; i++)
            quotas[i] = decreaseAuthQuota(signatories[i], decrements[i]);
    }
    
    function decreaseAuthQuota(address signatory, uint decrement) virtual public onlyFactory returns (uint quota) {
        quota = authQuotaOf(signatory);
        if(quota < decrement)
            decrement = quota;
        return _decreaseAuthQuota(signatory, decrement);
    }
    
    function _decreaseAuthQuota(address signatory, uint decrement) virtual internal updateAutoQuota(signatory) returns (uint quota) {
        quota = _authQuotas[signatory].sub(decrement);
        _authQuotas[signatory] = quota;
        emit DecreaseAuthQuota(signatory, decrement, quota);
    }
    event DecreaseAuthQuota(address indexed signatory, uint decrement, uint quota);
    

    function needApprove() virtual public pure returns (bool);
    
    function send(uint toChainId, address to, uint volume) virtual external payable returns (uint nonce) {
        return sendFrom(_msgSender(), toChainId, to, volume);
    }
    
    function sendFrom(address from, uint toChainId, address to, uint volume) virtual public payable returns (uint nonce) {
        _chargeFee();
        _sendFrom(from, volume);
        nonce = sentCount[toChainId][to]++;
        sent[toChainId][to][nonce] = volume;
        emit Send(from, toChainId, to, nonce, volume);
    }
    event Send(address indexed from, uint indexed toChainId, address indexed to, uint nonce, uint volume);
    
    function _sendFrom(address from, uint volume) virtual internal;

    function receive(uint256 fromChainId, address to, uint256 nonce, uint256 volume, Signature[] memory signatures) virtual external payable {
        _chargeFee();
        require(received[fromChainId][to][nonce] == 0, 'withdrawn already');
        uint N = signatures.length;
        require(N >= Factory(factory).getConfig(_minSignatures_), 'too few signatures');
        for(uint i=0; i<N; i++) {
            for(uint j=0; j<i; j++)
                require(signatures[i].signatory != signatures[j].signatory, 'repetitive signatory');
            bytes32 structHash = keccak256(abi.encode(RECEIVE_TYPEHASH, fromChainId, to, nonce, volume, signatures[i].signatory));
            bytes32 digest = keccak256(abi.encodePacked("\x19\x01", _DOMAIN_SEPARATOR, structHash));
            address signatory = ecrecover(digest, signatures[i].v, signatures[i].r, signatures[i].s);
            require(signatory != address(0), "invalid signature");
            require(signatory == signatures[i].signatory, "unauthorized");
            _decreaseAuthQuota(signatures[i].signatory, volume);
            emit Authorize(fromChainId, to, nonce, volume, signatory);
        }
        received[fromChainId][to][nonce] = volume;
        _receive(to, volume);
        emit Receive(fromChainId, to, nonce, volume);
    }
    event Receive(uint256 indexed fromChainId, address indexed to, uint256 indexed nonce, uint256 volume);
    event Authorize(uint256 fromChainId, address indexed to, uint256 indexed nonce, uint256 volume, address indexed signatory);
    
    function _receive(address to, uint256 volume) virtual internal;
    
    function _chargeFee() virtual internal {
        require(msg.value >= Math.min(Factory(factory).getConfig(_fee_), 0.1 ether), 'fee is too low');
        address payable feeTo = address(Factory(factory).getConfig(_feeTo_));
        if(feeTo == address(0))
            feeTo = address(uint160(factory));
        feeTo.transfer(msg.value);
        emit ChargeFee(_msgSender(), feeTo, msg.value);
    }
    event ChargeFee(address indexed from, address indexed to, uint value);

    uint256[47] private __gap;
}    
    
    
contract TokenMapped is MappingBase {
    using SafeERC20 for IERC20;
    
	function __TokenMapped_init(address factory_, address token_) external initializer {
        __Context_init_unchained();
		__TokenMapped_init_unchained(factory_, token_);
	}
	
	function __TokenMapped_init_unchained(address factory_, address token_) public initializer {
        factory = factory_;
        mainChainId = _chainId();
        token = token_;
        deployer = address(0);
        _DOMAIN_SEPARATOR = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(ERC20UpgradeSafe(token).name())), _chainId(), address(this)));
	}
	
    function cap() virtual override public view returns (uint) {
        return IERC20(token).totalSupply();
    }
    
    function totalMapped() virtual public view returns (uint) {
        return IERC20(token).balanceOf(address(this));
    }
    
    function needApprove() virtual override public pure returns (bool) {
        return true;
    }
    
    function _sendFrom(address from, uint volume) virtual override internal {
        IERC20(token).safeTransferFrom(from, address(this), volume);
    }

    function _receive(address to, uint256 volume) virtual override internal {
        IERC20(token).safeTransfer(to, volume);
    }

    uint256[50] private __gap;
}
/*
contract TokenMapped2 is TokenMapped, StakingRewards, ConfigurableBase {
    modifier governance {
        require(_msgSender() == MappingTokenFactory(factory).governor());
        _;
    }
    
    function setConfig(bytes32 key, uint value) external governance {
        _setConfig(key, value);
    }
    function setConfigI(bytes32 key, uint index, uint value) external governance {
        _setConfig(bytes32(uint(key) ^ index), value);
    }
    function setConfigA(bytes32 key, address addr, uint value) public governance {
        _setConfig(bytes32(uint(key) ^ uint(addr)), value);
    }

    function rewardDelta() public view returns (uint amt) {
        if(begin == 0 || begin >= now || lastUpdateTime >= now)
            return 0;
            
        amt = rewardsToken.allowance(rewardsDistribution, address(this)).sub0(rewards[address(0)]);
        
        // calc rewardDelta in period
        if(lep == 3) {                                                              // power
            uint y = period.mul(1 ether).div(lastUpdateTime.add(rewardsDuration).sub(begin));
            uint amt1 = amt.mul(1 ether).div(y);
            uint amt2 = amt1.mul(period).div(now.add(rewardsDuration).sub(begin));
            amt = amt.sub(amt2);
        } else if(lep == 2) {                                                       // exponential
            if(now.sub(lastUpdateTime) < rewardsDuration)
                amt = amt.mul(now.sub(lastUpdateTime)).div(rewardsDuration);
        }else if(now < periodFinish)                                                // linear
            amt = amt.mul(now.sub(lastUpdateTime)).div(periodFinish.sub(lastUpdateTime));
        else if(lastUpdateTime >= periodFinish)
            amt = 0;
    }
    
    function rewardPerToken() virtual override public view returns (uint256) {
        if (_totalSupply == 0) {
            return rewardPerTokenStored;
        }
        return
            rewardPerTokenStored.add(
                rewardDelta().mul(1e18).div(_totalSupply)
            );
    }

    modifier updateReward(address account) virtual override {
        (uint delta, uint d) = (rewardDelta(), 0);
        rewardPerTokenStored = rewardPerToken();
        lastUpdateTime = now;
        if (account != address(0)) {
            rewards[account] = earned(account);
            userRewardPerTokenPaid[account] = rewardPerTokenStored;
        }

        address addr = address(config[_ecoAddr_]);
        uint ratio = config[_ecoRatio_];
        if(addr != address(0) && ratio != 0) {
            d = delta.mul(ratio).div(1 ether);
            rewards[addr] = rewards[addr].add(d);
        }
        rewards[address(0)] = rewards[address(0)].add(delta).add(d);
        _;
    }

    function getReward() virtual override public {
        getReward(msg.sender);
    }
    function getReward(address payable acct) virtual public nonReentrant updateReward(acct) {
        require(acct != address(0), 'invalid address');
        require(getConfig(_blocklist_, acct) == 0, 'In blocklist');
        bool isContract = acct.isContract();
        require(!isContract || config[_allowContract_] != 0 || getConfig(_allowlist_, acct) != 0, 'No allowContract');

        uint256 reward = rewards[acct];
        if (reward > 0) {
            paid[acct] = paid[acct].add(reward);
            paid[address(0)] = paid[address(0)].add(reward);
            rewards[acct] = 0;
            rewards[address(0)] = rewards[address(0)].sub0(reward);
            rewardsToken.safeTransferFrom(rewardsDistribution, acct, reward);
            emit RewardPaid(acct, reward);
        }
    }

    function getRewardForDuration() override external view returns (uint256) {
        return rewardsToken.allowance(rewardsDistribution, address(this)).sub0(rewards[address(0)]);
    }
    
}
*/

abstract contract Permit {
    // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
    function DOMAIN_SEPARATOR() virtual public view returns (bytes32);

    mapping (address => uint) public nonces;

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external {
        require(deadline >= block.timestamp, 'permit EXPIRED');
        bytes32 digest = keccak256(
            abi.encodePacked(
                '\x19\x01',
                DOMAIN_SEPARATOR(),
                keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))
            )
        );
        address recoveredAddress = ecrecover(digest, v, r, s);
        require(recoveredAddress != address(0) && recoveredAddress == owner, 'permit INVALID_SIGNATURE');
        _approve(owner, spender, value);
    }

    function _approve(address owner, address spender, uint256 amount) internal virtual;    

    uint256[50] private __gap;
}

contract MappableToken is Permit, ERC20UpgradeSafe, MappingBase {
	function __MappableToken_init(address factory_, address deployer_, string memory name_, string memory symbol_, uint8 decimals_, uint256 totalSupply_) external initializer {
        __Context_init_unchained();
		__ERC20_init_unchained(name_, symbol_);
		_setupDecimals(decimals_);
		_mint(deployer_, totalSupply_);
		__MappableToken_init_unchained(factory_, deployer_);
	}
	
	function __MappableToken_init_unchained(address factory_, address deployer_) public initializer {
        factory = factory_;
        mainChainId = _chainId();
        token = address(0);
        deployer = deployer_;
        _DOMAIN_SEPARATOR = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name())), _chainId(), address(this)));
	}
	
    function DOMAIN_SEPARATOR() virtual override(Permit, MappingBase) public view returns (bytes32) {
        return MappingBase.DOMAIN_SEPARATOR();
    }
    
    function cap() virtual override public view returns (uint) {
        return totalSupply();
    }
    
    function totalMapped() virtual public view returns (uint) {
        return balanceOf(address(this));
    }
    
    function needApprove() virtual override public pure returns (bool) {
        return false;
    }
    
    function _approve(address owner, address spender, uint256 amount) virtual override(Permit, ERC20UpgradeSafe) internal {
        return ERC20UpgradeSafe._approve(owner, spender, amount);
    }
    
    function _sendFrom(address from, uint volume) virtual override internal {
        transferFrom(from, address(this), volume);
    }

    function _receive(address to, uint256 volume) virtual override internal {
        _transfer(address(this), to, volume);
    }

    uint256[50] private __gap;
}


contract MappingToken is Permit, ERC20CappedUpgradeSafe, MappingBase {
	function __MappingToken_init(address factory_, uint mainChainId_, address token_, address deployer_, string memory name_, string memory symbol_, uint8 decimals_, uint cap_) external initializer {
        __Context_init_unchained();
		__ERC20_init_unchained(name_, symbol_);
		_setupDecimals(decimals_);
		__ERC20Capped_init_unchained(cap_);
		__MappingToken_init_unchained(factory_, mainChainId_, token_, deployer_);
	}
	
	function __MappingToken_init_unchained(address factory_, uint mainChainId_, address token_, address deployer_) public initializer {
        factory = factory_;
        mainChainId = mainChainId_;
        token = token_;
        deployer = (token_ == address(0)) ? deployer_ : address(0);
        _DOMAIN_SEPARATOR = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes(name())), _chainId(), address(this)));
	}
	
    function DOMAIN_SEPARATOR() virtual override(Permit, MappingBase) public view returns (bytes32) {
        return MappingBase.DOMAIN_SEPARATOR();
    }
    
    function cap() virtual override(ERC20CappedUpgradeSafe, MappingBase) public view returns (uint) {
        return ERC20CappedUpgradeSafe.cap();
    }
    
    //function setCap(uint cap_) external {
    //    require(_msgSender() == Factory(factory).governor());
    //    _cap = cap_;
    //}
    
    function needApprove() virtual override public pure returns (bool) {
        return false;
    }
    
    function _approve(address owner, address spender, uint256 amount) virtual override(Permit, ERC20UpgradeSafe) internal {
        return ERC20UpgradeSafe._approve(owner, spender, amount);
    }
    
    function _sendFrom(address from, uint volume) virtual override internal {
        _burn(from, volume);
        if(from != _msgSender() && allowance(from, _msgSender()) != uint(-1))
            _approve(from, _msgSender(), allowance(from, _msgSender()).sub(volume, "ERC20: transfer volume exceeds allowance"));
    }

    function _receive(address to, uint256 volume) virtual override internal {
        _mint(to, volume);
    }

    uint256[50] private __gap;
}


contract MappingTokenProxy is ProductProxy, Constants {
    constructor(address factory_, uint mainChainId_, address token_, address deployer_, string memory name_, string memory symbol_, uint8 decimals_, uint cap_) public {
        //require(_factory() == address(0));
        assert(FACTORY_SLOT == bytes32(uint256(keccak256('eip1967.proxy.factory')) - 1));
        assert(NAME_SLOT    == bytes32(uint256(keccak256('eip1967.proxy.name')) - 1));
        _setFactory(factory_);
        _setName(_MappingToken_);
        (bool success,) = _implementation().delegatecall(abi.encodeWithSignature('__MappingToken_init(address,uint256,address,address,string,string,uint8,uint256)', factory_, mainChainId_, token_, deployer_, name_, symbol_, decimals_, cap_));
        require(success);
    }  
}


contract Factory is ContextUpgradeSafe, Configurable, Constants {
    using SafeERC20 for IERC20;
    using SafeMath for uint;

    bytes32 public constant REGISTER_TYPEHASH   = keccak256("RegisterMapping(uint mainChainId,address token,uint[] chainIds,address[] mappingTokenMappeds,address signatory)");
    bytes32 public constant CREATE_TYPEHASH     = keccak256("CreateMappingToken(address deployer,uint mainChainId,address token,string name,string symbol,uint8 decimals,uint cap,address signatory)");
    bytes32 public constant DOMAIN_TYPEHASH     = keccak256("EIP712Domain(string name,uint256 chainId,address verifyingContract)");
    bytes32 public DOMAIN_SEPARATOR;

    mapping (bytes32 => address) public productImplementations;
    mapping (address => address) public tokenMappeds;                // token => tokenMapped
    mapping (address => address) public mappableTokens;              // deployer => mappableTokens
    mapping (uint256 => mapping (address => address)) public mappingTokens;     // mainChainId => token or deployer => mappableTokens
    mapping (address => bool) public authorties;
    
    // only on ethereum mainnet
    mapping (address => uint) public authCountOf;                   // signatory => count
    mapping (address => uint256) internal _mainChainIdTokens;       // mappingToken => mainChainId+token
    mapping (address => mapping (uint => address)) public mappingTokenMappeds;  // token => chainId => mappingToken or tokenMapped
    uint[] public supportChainIds;
    mapping (string  => uint256) internal _certifiedTokens;         // symbol => mainChainId+token
    string[] public certifiedSymbols;
    address[] public signatories;

    function __MappingTokenFactory_init(address _governor, address _implTokenMapped, address _implMappableToken, address _implMappingToken, address _feeTo) external initializer {
        __Governable_init_unchained(_governor);
        __MappingTokenFactory_init_unchained(_implTokenMapped, _implMappableToken, _implMappingToken, _feeTo);
    }
    
    function __MappingTokenFactory_init_unchained(address _implTokenMapped, address _implMappableToken, address _implMappingToken, address _feeTo) public governance {
        config[_fee_]                           = 0.005 ether;
        config[_feeCreate_]                     = 0.100 ether;
        config[_feeRegister_]                   = 0.200 ether;
        config[_feeTo_]                         = uint(_feeTo);
        config[_onlyDeployer_]                  = 1;
        config[_minSignatures_]                 = 3;
        config[_initQuotaRatio_]                = 0.100 ether;  // 10%
        config[_autoQuotaRatio_]                = 0.010 ether;  //  1%
        config[_autoQuotaPeriod_]               = 1 days;
        //config[_uniswapRounter_]                = uint(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);

        DOMAIN_SEPARATOR = keccak256(abi.encode(DOMAIN_TYPEHASH, keccak256(bytes('MappingTokenFactory')), _chainId(), address(this)));
        upgradeProductImplementationsTo_(_implTokenMapped, _implMappableToken, _implMappingToken);
        emit ProductProxyCodeHash(keccak256(type(InitializableProductProxy).creationCode));
    }
    event ProductProxyCodeHash(bytes32 codeHash);

    function upgradeProductImplementationsTo_(address _implTokenMapped, address _implMappableToken, address _implMappingToken) public governance {
        productImplementations[_TokenMapped_]   = _implTokenMapped;
        productImplementations[_MappableToken_] = _implMappableToken;
        productImplementations[_MappingToken_]  = _implMappingToken;
    }
    
    function setSignatories(address[] calldata signatories_) virtual external governance {
        signatories = signatories_;
        emit SetSignatories(signatories_);
    }
    event SetSignatories(address[] signatories_);
    
    function setAuthorty_(address authorty, bool enable) virtual external governance {
        authorties[authorty] = enable;
        emit SetAuthorty(authorty, enable);
    }
    event SetAuthorty(address indexed authorty, bool indexed enable);
    
    function setAutoQuota(address mappingTokenMapped, uint ratio, uint period) virtual external governance {
        if(mappingTokenMapped == address(0)) {
            config[_autoQuotaRatio_]  = ratio;
            config[_autoQuotaPeriod_] = period;
        } else
            MappingBase(mappingTokenMapped).setAutoQuota(ratio, period);
    }
    
    modifier onlyAuthorty {
        require(authorties[_msgSender()], 'only authorty');
        _;
    }
    
    function _initAuthQuotas(address mappingTokenMapped, uint cap) internal {
        uint quota = cap.mul(config[_initQuotaRatio_]).div(1e18);
        uint[] memory quotas = new uint[](signatories.length);
        for(uint i=0; i<quotas.length; i++)
            quotas[i] = quota;
        _increaseAuthQuotas(mappingTokenMapped, signatories, quotas);
    }
    
    function _increaseAuthQuotas(address mappingTokenMapped, address[] memory signatories_, uint[] memory increments) virtual internal returns (uint[] memory quotas) {
        quotas = MappingBase(mappingTokenMapped).increaseAuthQuotas(signatories_, increments);
        for(uint i=0; i<signatories_.length; i++)
            emit IncreaseAuthQuota(_msgSender(), mappingTokenMapped, signatories_[i], increments[i], quotas[i]);
    }
    function increaseAuthQuotas_(address mappingTokenMapped, uint[] memory increments) virtual external onlyAuthorty returns (uint[] memory quotas) {
        return _increaseAuthQuotas(mappingTokenMapped, signatories, increments);
    }
    function increaseAuthQuotas(address mappingTokenMapped, address[] memory signatories_, uint[] memory increments) virtual external onlyAuthorty returns (uint[] memory quotas) {
        return _increaseAuthQuotas(mappingTokenMapped, signatories_, increments);
    }
    
    function increaseAuthQuota(address mappingTokenMapped, address signatory, uint increment) virtual external onlyAuthorty returns (uint quota) {
        quota = MappingBase(mappingTokenMapped).increaseAuthQuota(signatory, increment);
        emit IncreaseAuthQuota(_msgSender(), mappingTokenMapped, signatory, increment, quota);
    }
    event IncreaseAuthQuota(address indexed authorty, address indexed mappingTokenMapped, address indexed signatory, uint increment, uint quota);
    
    function decreaseAuthQuotas_(address mappingTokenMapped, uint[] memory decrements) virtual external returns (uint[] memory quotas) {
        return decreaseAuthQuotas(mappingTokenMapped, signatories, decrements);
    }
    function decreaseAuthQuotas(address mappingTokenMapped, address[] memory signatories_, uint[] memory decrements) virtual public onlyAuthorty returns (uint[] memory quotas) {
        quotas = MappingBase(mappingTokenMapped).decreaseAuthQuotas(signatories_, decrements);
        for(uint i=0; i<signatories_.length; i++)
            emit DecreaseAuthQuota(_msgSender(), mappingTokenMapped, signatories_[i], decrements[i], quotas[i]);
    }
    
    function decreaseAuthQuota(address mappingTokenMapped, address signatory, uint decrement) virtual external onlyAuthorty returns (uint quota) {
        quota = MappingBase(mappingTokenMapped).decreaseAuthQuota(signatory, decrement);
        emit DecreaseAuthQuota(_msgSender(), mappingTokenMapped, signatory, decrement, quota);
    }
    event DecreaseAuthQuota(address indexed authorty, address indexed mappingTokenMapped, address indexed signatory, uint decrement, uint quota);

    function increaseAuthCounts_(uint[] memory increments) virtual external returns (uint[] memory counts) {
        return increaseAuthCounts(signatories, increments);
    }
    function increaseAuthCounts(address[] memory signatories_, uint[] memory increments) virtual public returns (uint[] memory counts) {
        require(signatories_.length == increments.length, 'two array lenth not equal');
        counts = new uint[](signatories_.length);
        for(uint i=0; i<signatories_.length; i++)
            counts[i] = increaseAuthCount(signatories_[i], increments[i]);
    }
    
    function increaseAuthCount(address signatory, uint increment) virtual public onlyAuthorty returns (uint count) {
        count = authCountOf[signatory].add(increment);
        authCountOf[signatory] = count;
        emit IncreaseAuthQuota(_msgSender(), signatory, increment, count);
    }
    event IncreaseAuthQuota(address indexed authorty, address indexed signatory, uint increment, uint quota);
    
    function decreaseAuthCounts_(uint[] memory decrements) virtual external returns (uint[] memory counts) {
        return decreaseAuthCounts(signatories, decrements);
    }
    function decreaseAuthCounts(address[] memory signatories_, uint[] memory decrements) virtual public returns (uint[] memory counts) {
        require(signatories_.length == decrements.length, 'two array lenth not equal');
        counts = new uint[](signatories_.length);
        for(uint i=0; i<signatories_.length; i++)
            counts[i] = decreaseAuthCount(signatories_[i], decrements[i]);
    }
    
    function decreaseAuthCount(address signatory, uint decrement) virtual public onlyAuthorty returns (uint count) {
        count = authCountOf[signatory];
        if(count < decrement)
            decrement = count;
        return _decreaseAuthCount(signatory, decrement);
    }
    
    function _decreaseAuthCount(address signatory, uint decrement) virtual internal returns (uint count) {
        count = authCountOf[signatory].sub(decrement);
        authCountOf[signatory] = count;
        emit DecreaseAuthCount(_msgSender(), signatory, decrement, count);
    }
    event DecreaseAuthCount(address indexed authorty, address indexed signatory, uint decrement, uint count);

    function supportChainCount() public view returns (uint) {
        return supportChainIds.length;
    }
    
    function mainChainIdTokens(address mappingToken) virtual public view returns(uint mainChainId, address token) {
        uint256 chainIdToken = _mainChainIdTokens[mappingToken];
        mainChainId = chainIdToken >> 160;
        token = address(chainIdToken);
    }
    
    function chainIdMappingTokenMappeds(address tokenOrMappingToken) virtual external view returns (uint[] memory chainIds, address[] memory mappingTokenMappeds_) {
        (, address token) = mainChainIdTokens(tokenOrMappingToken);
        if(token == address(0))
            token = tokenOrMappingToken;
        uint N = 0;
        for(uint i=0; i<supportChainCount(); i++)
            if(mappingTokenMappeds[token][supportChainIds[i]] != address(0))
                N++;
        chainIds = new uint[](N);
        mappingTokenMappeds_ = new address[](N);
        uint j = 0;
        for(uint i=0; i<supportChainCount(); i++) {
            uint chainId = supportChainIds[i];
            address mappingTokenMapped = mappingTokenMappeds[token][chainId];
            if(mappingTokenMapped != address(0)) {
                chainIds[j] = chainId;
                mappingTokenMappeds_[j] = mappingTokenMapped;
                j++;
            }
        }
    }
    
    function isSupportChainId(uint chainId) virtual public view returns (bool) {
        for(uint i=0; i<supportChainCount(); i++)
            if(supportChainIds[i] == chainId)
                return true;
        return false;
    }
    
    function registerSupportChainId_(uint chainId_) virtual external governance {
        require(_chainId() == 1 || _chainId() == 3, 'called only on ethereum mainnet');
        require(!isSupportChainId(chainId_), 'support chainId already');
        supportChainIds.push(chainId_);
    }
    
    function _registerMapping(uint mainChainId, address token, uint[] memory chainIds, address[] memory mappingTokenMappeds_) virtual internal {
        require(_chainId() == 1 || _chainId() == 3, 'called only on ethereum mainnet');
        require(chainIds.length == mappingTokenMappeds_.length, 'two array lenth not equal');
        require(isSupportChainId(mainChainId), 'Not support mainChainId');
        for(uint i=0; i<chainIds.length; i++) {
            require(isSupportChainId(chainIds[i]), 'Not support chainId');
            require(token == mappingTokenMappeds_[i] || mappingTokenMappeds_[i] == calcMapping(mainChainId, token) || _msgSender() == governor, 'invalid mappingTokenMapped address');
            //require(_mainChainIdTokens[mappingTokenMappeds_[i]] == 0 || _mainChainIdTokens[mappingTokenMappeds_[i]] == (mainChainId << 160) | uint(token), 'mainChainIdTokens exist already');
            //require(mappingTokenMappeds[token][chainIds[i]] == address(0), 'mappingTokenMappeds exist already');
            //if(_mainChainIdTokens[mappingTokenMappeds_[i]] == 0)
                _mainChainIdTokens[mappingTokenMappeds_[i]] = (mainChainId << 160) | uint(token);
            mappingTokenMappeds[token][chainIds[i]] = mappingTokenMappeds_[i];
            emit RegisterMapping(mainChainId, token, chainIds[i], mappingTokenMappeds_[i]);
        }
    }
    event RegisterMapping(uint mainChainId, address token, uint chainId, address mappingTokenMapped);
    
    function registerMapping_(uint mainChainId, address token, uint[] memory chainIds, address[] memory mappingTokenMappeds_) virtual external governance {
        _registerMapping(mainChainId, token, chainIds, mappingTokenMappeds_);
    }
    
    function registerMapping(uint mainChainId, address token, uint nonce, uint[] memory chainIds, address[] memory mappingTokenMappeds_, Signature[] memory signatures) virtual external payable {
        _chargeFee(config[_feeRegister_]);
        require(config[_onlyDeployer_] == 0 || token == calcContract(_msgSender(), nonce), 'only deployer');
        uint N = signatures.length;
        require(N >= getConfig(_minSignatures_), 'too few signatures');
        for(uint i=0; i<N; i++) {
            for(uint j=0; j<i; j++)
                require(signatures[i].signatory != signatures[j].signatory, 'repetitive signatory');
            bytes32 structHash = keccak256(abi.encode(REGISTER_TYPEHASH, mainChainId, token, keccak256(abi.encodePacked(chainIds)), keccak256(abi.encodePacked(mappingTokenMappeds_)), signatures[i].signatory));
            bytes32 digest = keccak256(abi.encodePacked("\x19\x01", DOMAIN_SEPARATOR, structHash));
            address signatory = ecrecover(digest, signatures[i].v, signatures[i].r, signatures[i].s);
            require(signatory != address(0), "invalid signature");
            require(signatory == signatures[i].signatory, "unauthorized");
            _decreaseAuthCount(signatures[i].signatory, 1);
            emit AuthorizeRegister(mainChainId, token, signatory);
        }
        _registerMapping(mainChainId, token, chainIds, mappingTokenMappeds_);
    }
    event AuthorizeRegister(uint indexed mainChainId, address indexed token, address indexed signatory);

    function certifiedCount() external view returns (uint) {
        return certifiedSymbols.length;
    }
    
    function certifiedTokens(string memory symbol) public view returns (uint mainChainId, address token) {
        uint256 chainIdToken = _certifiedTokens[symbol];
        mainChainId = chainIdToken >> 160;
        token = address(chainIdToken);
    }
    
    function allCertifiedTokens() external view returns (string[] memory symbols, uint[] memory chainIds, address[] memory tokens) {
        symbols = certifiedSymbols;
        uint N = certifiedSymbols.length;
        chainIds = new uint[](N);
        tokens = new address[](N);
        for(uint i=0; i<N; i++)
            (chainIds[i], tokens[i]) = certifiedTokens(certifiedSymbols[i]);
    }

    function registerCertified_(string memory symbol, uint mainChainId, address token) external governance {
        require(_chainId() == 1 || _chainId() == 3, 'called only on ethereum mainnet');
        require(isSupportChainId(mainChainId), 'Not support mainChainId');
        require(_certifiedTokens[symbol] == 0, 'Certified added already');
        if(mainChainId == _chainId())
            require(keccak256(bytes(symbol)) == keccak256(bytes(ERC20UpgradeSafe(token).symbol())), 'symbol different');
        _certifiedTokens[symbol] = (mainChainId << 160) | uint(token);
        certifiedSymbols.push(symbol);
        emit RegisterCertified(symbol, mainChainId, token);
    }
    event RegisterCertified(string indexed symbol, uint indexed mainChainId, address indexed token);
    
    //function updateCertified_(string memory symbol, uint mainChainId, address token) external governance {
    //    require(_chainId() == 1 || _chainId() == 3, 'called only on ethereum mainnet');
    //    require(isSupportChainId(mainChainId), 'Not support mainChainId');
    //    //require(_certifiedTokens[symbol] == 0, 'Certified added already');
    //    if(mainChainId == _chainId())
    //        require(keccak256(bytes(symbol)) == keccak256(bytes(ERC20UpgradeSafe(token).symbol())), 'symbol different');
    //    _certifiedTokens[symbol] = (mainChainId << 160) | uint(token);
    //    //certifiedSymbols.push(symbol);
    //    emit UpdateCertified(symbol, mainChainId, token);
    //}
    //event UpdateCertified(string indexed symbol, uint indexed mainChainId, address indexed token);
    
    function calcContract(address deployer, uint nonce) public pure returns (address) {
        bytes[] memory list = new bytes[](2);
        list[0] = RLPEncode.encodeAddress(deployer);
        list[1] = RLPEncode.encodeUint(nonce);
        return address(uint(keccak256(RLPEncode.encodeList(list))));
    }
    
    // calculates the CREATE2 address for a pair without making any external calls
    function calcMapping(uint mainChainId, address tokenOrdeployer) public view returns (address) {
        return address(uint(keccak256(abi.encodePacked(
                hex'ff',
                address(this),
                keccak256(abi.encodePacked(mainChainId, tokenOrdeployer)),
				keccak256(type(InitializableProductProxy).creationCode)                    //hex'96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f' // init code hash
            ))));
    }

    function createTokenMapped(address token, uint nonce) external payable returns (address tokenMapped) {
        if(_msgSender() != governor) {
            _chargeFee(config[_feeCreate_]);
            require(config[_onlyDeployer_] == 0 || token == calcContract(_msgSender(), nonce), 'only deployer');
        }
        require(tokenMappeds[token] == address(0), 'TokenMapped created already');

        bytes32 salt = keccak256(abi.encodePacked(_chainId(), token));

        bytes memory bytecode = type(InitializableProductProxy).creationCode;
        assembly {
            tokenMapped := create2(0, add(bytecode, 32), mload(bytecode), salt)
        }
        InitializableProductProxy(payable(tokenMapped)).__InitializableProductProxy_init(address(this), _TokenMapped_, abi.encodeWithSignature('__TokenMapped_init(address,address)', address(this), token));
        
        tokenMappeds[token] = tokenMapped;
        _initAuthQuotas(tokenMapped, IERC20(token).totalSupply());
        emit CreateTokenMapped(_msgSender(), token, tokenMapped);
    }
    event CreateTokenMapped(address indexed deployer, address indexed token, address indexed tokenMapped);
    
    function createMappableToken(string memory name, string memory symbol, uint8 decimals, uint totalSupply) external payable returns (address mappableToken) {
        if(_msgSender() != governor)
            _chargeFee(config[_feeCreate_]);
        require(mappableTokens[_msgSender()] == address(0), 'MappableToken created already');

        bytes32 salt = keccak256(abi.encodePacked(_chainId(), _msgSender()));

        bytes memory bytecode = type(InitializableProductProxy).creationCode;
        assembly {
            mappableToken := create2(0, add(bytecode, 32), mload(bytecode), salt)
        }
        InitializableProductProxy(payable(mappableToken)).__InitializableProductProxy_init(address(this), _MappableToken_, abi.encodeWithSignature('__MappableToken_init(address,address,string,string,uint8,uint256)', address(this), _msgSender(), name, symbol, decimals, totalSupply));
        
        mappableTokens[_msgSender()] = mappableToken;
        _initAuthQuotas(mappableToken, totalSupply);
        emit CreateMappableToken(_msgSender(), name, symbol, decimals, totalSupply, mappableToken);
    }
    event CreateMappableToken(address indexed deployer, string name, string symbol, uint8 decimals, uint totalSupply, address indexed mappableToken);
    
    function _createMappingToken(uint mainChainId, address token, address deployer, string memory name, string memory symbol, uint8 decimals, uint cap) internal returns (address mappingToken) {
        address tokenOrdeployer = (token == address(0)) ? deployer : token;
        require(mappingTokens[mainChainId][tokenOrdeployer] == address(0), 'MappingToken created already');

        bytes32 salt = keccak256(abi.encodePacked(mainChainId, tokenOrdeployer));

        bytes memory bytecode = type(InitializableProductProxy).creationCode;
        assembly {
            mappingToken := create2(0, add(bytecode, 32), mload(bytecode), salt)
        }
        InitializableProductProxy(payable(mappingToken)).__InitializableProductProxy_init(address(this), _MappingToken_, abi.encodeWithSignature('__MappingToken_init(address,uint256,address,address,string,string,uint8,uint256)', address(this), mainChainId, token, deployer, name, symbol, decimals, cap));
        
        mappingTokens[mainChainId][tokenOrdeployer] = mappingToken;
        _initAuthQuotas(mappingToken, cap);
        emit CreateMappingToken(mainChainId, token, deployer, name, symbol, decimals, cap, mappingToken);
    }
    event CreateMappingToken(uint mainChainId, address indexed token, address indexed deployer, string name, string symbol, uint8 decimals, uint cap, address indexed mappingToken);
    
    function createMappingToken_(uint mainChainId, address token, address deployer, string memory name, string memory symbol, uint8 decimals, uint cap) public payable governance returns (address mappingToken) {
        return _createMappingToken(mainChainId, token, deployer, name, symbol, decimals, cap);
    }
    
    function createMappingToken(uint mainChainId, address token, uint nonce, string memory name, string memory symbol, uint8 decimals, uint cap, Signature[] memory signatures) public payable returns (address mappingToken) {
        _chargeFee(config[_feeCreate_]);
        require(token == address(0) || config[_onlyDeployer_] == 0 || token == calcContract(_msgSender(), nonce), 'only deployer');
        require(signatures.length >= config[_minSignatures_], 'too few signatures');
        for(uint i=0; i<signatures.length; i++) {
            for(uint j=0; j<i; j++)
                require(signatures[i].signatory != signatures[j].signatory, 'repetitive signatory');
            bytes32 hash = keccak256(abi.encode(CREATE_TYPEHASH, _msgSender(), mainChainId, token, keccak256(bytes(name)), keccak256(bytes(symbol)), decimals, cap, signatures[i].signatory));
            hash = keccak256(abi.encodePacked("\x19\x01", DOMAIN_SEPARATOR, hash));
            address signatory = ecrecover(hash, signatures[i].v, signatures[i].r, signatures[i].s);
            require(signatory != address(0), "invalid signature");
            require(signatory == signatures[i].signatory, "unauthorized");
            _decreaseAuthCount(signatures[i].signatory, 1);
            emit AuthorizeCreate(mainChainId, token, _msgSender(), name, symbol, decimals, cap, signatory);
        }
        return _createMappingToken(mainChainId, token, _msgSender(), name, symbol, decimals, cap);
    }
    event AuthorizeCreate(uint mainChainId, address indexed token, address indexed deployer, string name, string symbol, uint8 decimals, uint cap, address indexed signatory);
    
    function _chargeFee(uint fee) virtual internal {
        require(msg.value >= Math.min(fee, 1 ether), 'fee is too low');
        address payable feeTo = address(config[_feeTo_]);
        if(feeTo == address(0))
            feeTo = address(uint160(address(this)));
        feeTo.transfer(msg.value);
        emit ChargeFee(_msgSender(), feeTo, msg.value);
    }
    event ChargeFee(address indexed from, address indexed to, uint value);

    uint256[49] private __gap;
}

Contract Security Audit

Contract ABI

[{"stateMutability":"payable","type":"fallback"},{"inputs":[{"internalType":"address","name":"factory_","type":"address"},{"internalType":"bytes32","name":"name_","type":"bytes32"},{"internalType":"bytes","name":"data_","type":"bytes"}],"name":"__InitializableProductProxy_init","outputs":[],"stateMutability":"payable","type":"function"},{"stateMutability":"payable","type":"receive"}]

608060405234801561001057600080fd5b506104b4806100206000396000f3fe6080604052600436106100225760003560e01c8063748458651461003957610031565b366100315761002f61004c565b005b61002f61004c565b61002f6100473660046102f9565b610091565b6100553361013d565b801561005f575036155b801561006d57506108fc5a11155b156100775761008f565b61007f61008f565b61008f61008a610143565b6101f2565b565b600061009b610216565b6001600160a01b0316146100ae57600080fd5b6100b78361023b565b6100c08261028d565b8051156101385760006100d1610143565b6001600160a01b0316826040516100e891906103a3565b600060405180830381855af49150503d8060008114610123576040519150601f19603f3d011682016040523d82523d6000602084013e610128565b606091505b505090508061013657600080fd5b505b505050565b3b151590565b60008061014e610216565b90506101598161013d565b156101e957806001600160a01b0316630b2bcd676101756102b1565b6040518263ffffffff1660e01b815260040161019191906103dc565b60206040518083038186803b1580156101a957600080fd5b505afa1580156101bd573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101e191906102d6565b9150506101ef565b60009150505b90565b3660008037600080366000845af43d6000803e808015610211573d6000f35b3d6000fd5b7f7a45a402e4cb6e08ebc196f20f66d5d30e67285a2a8aa80503fa409e727a4af15490565b6102448161013d565b6102695760405162461bcd60e51b8152600401610260906103e5565b60405180910390fd5b7f7a45a402e4cb6e08ebc196f20f66d5d30e67285a2a8aa80503fa409e727a4af155565b7f4cd9b827ca535ceb0880425d70eff88561ecdf04dc32fcf7ff3b15c587f8a87055565b7f4cd9b827ca535ceb0880425d70eff88561ecdf04dc32fcf7ff3b15c587f8a8705490565b6000602082840312156102e7578081fd5b81516102f281610466565b9392505050565b60008060006060848603121561030d578182fd5b833561031881610466565b925060208401359150604084013567ffffffffffffffff8082111561033b578283fd5b818601915086601f83011261034e578283fd5b81358181111561035c578384fd5b61036f601f8201601f1916602001610433565b9150808252876020828501011115610385578384fd5b61039681602084016020860161045a565b5080925050509250925092565b60008251815b818110156103c357602081860181015185830152016103a9565b818111156103d15782828501525b509190910192915050565b90815260200190565b6020808252602e908201527f43616e6e6f7420736574206120666163746f727920746f2061206e6f6e2d636f60408201526d6e7472616374206164647265737360901b606082015260800190565b60405181810167ffffffffffffffff8111828210171561045257600080fd5b604052919050565b82818337506000910152565b6001600160a01b038116811461047b57600080fd5b5056fea26469706673582212208a83372edb5bd000f176d79a4af74a92896277b28ec799186455f571b908f17164736f6c634300060c0033

Deployed Bytecode

0x6080604052600436106100225760003560e01c8063748458651461003957610031565b366100315761002f61004c565b005b61002f61004c565b61002f6100473660046102f9565b610091565b6100553361013d565b801561005f575036155b801561006d57506108fc5a11155b156100775761008f565b61007f61008f565b61008f61008a610143565b6101f2565b565b600061009b610216565b6001600160a01b0316146100ae57600080fd5b6100b78361023b565b6100c08261028d565b8051156101385760006100d1610143565b6001600160a01b0316826040516100e891906103a3565b600060405180830381855af49150503d8060008114610123576040519150601f19603f3d011682016040523d82523d6000602084013e610128565b606091505b505090508061013657600080fd5b505b505050565b3b151590565b60008061014e610216565b90506101598161013d565b156101e957806001600160a01b0316630b2bcd676101756102b1565b6040518263ffffffff1660e01b815260040161019191906103dc565b60206040518083038186803b1580156101a957600080fd5b505afa1580156101bd573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906101e191906102d6565b9150506101ef565b60009150505b90565b3660008037600080366000845af43d6000803e808015610211573d6000f35b3d6000fd5b7f7a45a402e4cb6e08ebc196f20f66d5d30e67285a2a8aa80503fa409e727a4af15490565b6102448161013d565b6102695760405162461bcd60e51b8152600401610260906103e5565b60405180910390fd5b7f7a45a402e4cb6e08ebc196f20f66d5d30e67285a2a8aa80503fa409e727a4af155565b7f4cd9b827ca535ceb0880425d70eff88561ecdf04dc32fcf7ff3b15c587f8a87055565b7f4cd9b827ca535ceb0880425d70eff88561ecdf04dc32fcf7ff3b15c587f8a8705490565b6000602082840312156102e7578081fd5b81516102f281610466565b9392505050565b60008060006060848603121561030d578182fd5b833561031881610466565b925060208401359150604084013567ffffffffffffffff8082111561033b578283fd5b818601915086601f83011261034e578283fd5b81358181111561035c578384fd5b61036f601f8201601f1916602001610433565b9150808252876020828501011115610385578384fd5b61039681602084016020860161045a565b5080925050509250925092565b60008251815b818110156103c357602081860181015185830152016103a9565b818111156103d15782828501525b509190910192915050565b90815260200190565b6020808252602e908201527f43616e6e6f7420736574206120666163746f727920746f2061206e6f6e2d636f60408201526d6e7472616374206164647265737360901b606082015260800190565b60405181810167ffffffffffffffff8111828210171561045257600080fd5b604052919050565b82818337506000910152565b6001600160a01b038116811461047b57600080fd5b5056fea26469706673582212208a83372edb5bd000f176d79a4af74a92896277b28ec799186455f571b908f17164736f6c634300060c0033

Deployed Bytecode Sourcemap

15508:1087:0:-:0;;;;;;;;;;;;;;;;;;;;;;;607:11;:9;:11::i;:::-;15508:1087;;547:11;:9;:11::i;16089:501::-;;;;;;:::i;:::-;;:::i;2189:267::-;2229:50;2268:10;2229:38;:50::i;:::-;:74;;;;-1:-1:-1;2283:8:0;:20;2229:74;:95;;;;;2320:4;2307:9;:17;;2229:95;2226:168;;;2387:7;;2226:168;2400:15;:13;:15::i;:::-;2422:28;2432:17;:15;:17::i;:::-;2422:9;:28::i;:::-;2189:267::o;16089:501::-;16236:1;16214:10;:8;:10::i;:::-;-1:-1:-1;;;;;16214:24:0;;16206:33;;;;;;16417:21;16429:8;16417:11;:21::i;:::-;16445:15;16454:5;16445:8;:15::i;:::-;16470:12;;:16;16467:118;;16498:12;16515:17;:15;:17::i;:::-;-1:-1:-1;;;;;16515:30:0;16546:5;16515:37;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;16497:55;;;16569:7;16561:16;;;;;;16467:118;;16089:501;;;:::o;29417:627::-;29989:20;30028:8;;;29417:627::o;15069:287::-;15136:7;15152:16;15171:10;:8;:10::i;:::-;15152:29;;15191:48;15230:8;15191:38;:48::i;:::-;15188:162;;;-1:-1:-1;;;;;15257:46:0;;;15304:7;:5;:7::i;:::-;15257:55;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;15250:62;;;;;15188:162;15348:1;15333:17;;;15069:287;;:::o;1054:762::-;1361:14;1358:1;1355;1342:34;1561:1;1558;1542:14;1539:1;1523:14;1516:5;1503:60;1628:16;1625:1;1622;1607:38;1662:6;1719:38;;;;1785:16;1782:1;1775:27;1719:38;1738:16;1735:1;1728:27;14793:155;13785:66;14925:11;;14904:39::o;14429:265::-;14494:50;14533:10;14494:38;:50::i;:::-;14486:109;;;;-1:-1:-1;;;14486:109:0;;;;;;;:::i;:::-;;;;;;;;;13785:66;14658:24;14649:40::o;14181:119::-;13897:66;14273:19;14270:25::o;14032:141::-;13897:66;14154:11;;14142:26::o;869:263:-1:-;;984:2;972:9;963:7;959:23;955:32;952:2;;;-1:-1;;990:12;952:2;226:6;220:13;238:33;265:5;238:33;:::i;:::-;1042:74;946:186;-1:-1;;;946:186::o;1139:595::-;;;;1286:2;1274:9;1265:7;1261:23;1257:32;1254:2;;;-1:-1;;1292:12;1254:2;85:6;72:20;97:33;124:5;97:33;:::i;:::-;1344:63;-1:-1;1444:2;1483:22;;350:20;;-1:-1;1580:2;1565:18;;1552:32;1604:18;1593:30;;;1590:2;;;-1:-1;;1626:12;1590:2;1701:6;1690:9;1686:22;;;522:3;515:4;507:6;503:17;499:27;489:2;;-1:-1;;530:12;489:2;577:6;564:20;1604:18;3944:6;3941:30;3938:2;;;-1:-1;;3974:12;3938:2;599:64;1444:2;-1:-1;;4047:9;4028:17;;4024:33;4105:15;599:64;:::i;:::-;590:73;;683:6;676:5;669:21;787:3;1444:2;778:6;711;769:16;;766:25;763:2;;;-1:-1;;794:12;763:2;814:41;848:6;1444:2;745:5;741:16;1444:2;711:6;707:17;814:41;:::i;:::-;;1646:72;;;;;1248:486;;;;;:::o;2616:271::-;;2021:5;4224:12;-1:-1;5122:101;5136:6;5133:1;5130:13;5122:101;;;2165:4;5203:11;;;;;5197:18;5184:11;;;5177:39;5151:10;5122:101;;;5238:6;5235:1;5232:13;5229:2;;;-1:-1;5294:6;5289:3;5285:16;5278:27;5229:2;-1:-1;2196:16;;;;;2750:137;-1:-1;;2750:137::o;2894:222::-;1812:37;;;3021:2;3006:18;;2992:124::o;3123:416::-;3323:2;3337:47;;;2449:2;3308:18;;;4522:19;2485:34;4562:14;;;2465:55;-1:-1;;;2540:12;;;2533:38;2590:12;;;3294:245::o;3546:256::-;3608:2;3602:9;3634:17;;;3709:18;3694:34;;3730:22;;;3691:62;3688:2;;;3766:1;;3756:12;3688:2;3608;3775:22;3586:216;;-1:-1;3586:216::o;4896:145::-;4977:6;4972:3;4967;4954:30;-1:-1;5033:1;5015:16;;5008:27;4947:94::o;5326:117::-;-1:-1;;;;;4829:54;;5385:35;;5375:2;;5434:1;;5424:12;5375:2;5369:74;:::o

Swarm Source

ipfs://8a83372edb5bd000f176d79a4af74a92896277b28ec799186455f571b908f171
Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.