ERC-20
Overview
Max Total Supply
13.310798 lpCega
Holders
4
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 6 Decimals)
Balance
2.499998 lpCegaValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
FCNVault
Compiler Version
v0.8.17+commit.8df45f5f
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.13; import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol"; import { FCNProduct } from "./FCNProduct.sol"; import { FCNVaultMetadata, VaultStatus } from "./Structs.sol"; contract FCNVault is ERC20, Ownable { using SafeERC20 for ERC20; address public asset; FCNProduct public fcnProduct; /** * @notice Creates a new FCNVault that is owned by the FCNProduct * @param _asset is the address of the underlying asset * @param _tokenName is the name of the token * @param _tokenSymbol is the name of the token symbol */ constructor(address _asset, string memory _tokenName, string memory _tokenSymbol) ERC20(_tokenName, _tokenSymbol) { asset = _asset; fcnProduct = FCNProduct(owner()); } function decimals() public view virtual override returns (uint8) { return 6; } /** * @notice Returns underlying amount associated for the vault */ function totalAssets() public view returns (uint256) { (, , , , , uint256 underlyingAmount, , , , , , , , , , ) = fcnProduct.vaults(address(this)); return underlyingAmount; } /** * @notice Converts units of shares to assets * @param shares is the number of vault tokens */ function convertToAssets(uint256 shares) public view returns (uint256) { uint256 _totalSupply = totalSupply(); if (_totalSupply == 0) return 0; return (shares * totalAssets()) / _totalSupply; } /** * @notice Converts units assets to shares * @param assets is the amount of underlying assets */ function convertToShares(uint256 assets) public view returns (uint256) { uint256 _totalSupply = totalSupply(); uint256 _totalAssets = totalAssets(); if (_totalAssets == 0 || _totalSupply == 0) return assets; return (assets * _totalSupply) / _totalAssets; } /** * Product can deposit into the vault * @param assets is the number of underlying assets to be deposited * @param receiver is the address of the original depositor */ function deposit(uint256 assets, address receiver) public onlyOwner returns (uint256) { uint256 shares = convertToShares(assets); _mint(receiver, shares); return shares; } /** * Redeem a given amount of shares in return for assets * Shares are burned from the caller * @param shares is the amount of shares (vault tokens) to be redeemed */ function redeem(uint256 shares) external onlyOwner returns (uint256) { uint256 assets = convertToAssets(shares); _burn(msg.sender, shares); return assets; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (interfaces/IERC20.sol) pragma solidity ^0.8.0; import "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata, errorMessage); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.17; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Deposit, FCNVaultMetadata, OptionBarrierType, OptionBarrier, VaultStatus, Withdrawal } from "./Structs.sol"; import { IOracle } from "./interfaces/IOracle.sol"; import { ICegaState } from "./interfaces/ICegaState.sol"; library Calculations { uint256 public constant DAYS_IN_YEAR = 365; uint256 public constant SECONDS_TO_DAYS = 86400; uint256 public constant BPS_DECIMALS = 10 ** 4; uint256 public constant LARGE_CONSTANT = 10 ** 18; uint256 public constant ORACLE_STALE_DELAY = 1 days; /** * @notice Calculates the current yield accumulated to the current day for a given vault */ function calculateCurrentYield(FCNVaultMetadata storage self) public { require(self.vaultStatus == VaultStatus.Traded, "500:WS"); uint256 currentTime = block.timestamp; if (currentTime > self.tradeExpiry) { self.vaultStatus = VaultStatus.TradeExpired; return; } uint256 numberOfDaysPassed = (currentTime - self.tradeDate) / SECONDS_TO_DAYS; self.totalCouponPayoff = calculateCouponPayment(self.underlyingAmount, self.aprBps, numberOfDaysPassed); } /** * @notice Permissionless method that reads price from oracle contracts and checks if barrier is triggered * @param cegaStateAddress is the address of the CegaState contract that stores the oracle addresses */ function checkBarriers(FCNVaultMetadata storage self, address cegaStateAddress) public { if (self.isKnockedIn == true) { return; } require(self.vaultStatus == VaultStatus.Traded, "500:WS"); for (uint256 i = 0; i < self.optionBarriersCount; i++) { OptionBarrier storage optionBarrier = self.optionBarriers[i]; // Knock In: Check if current price is less than barrier if (optionBarrier.barrierType == OptionBarrierType.KnockIn) { address oracle = getOracleAddress(optionBarrier, cegaStateAddress); (, int256 answer, uint256 startedAt, , ) = IOracle(oracle).latestRoundData(); require(block.timestamp - ORACLE_STALE_DELAY <= startedAt, "400:T"); if (uint256(answer) <= optionBarrier.barrierAbsoluteValue) { self.isKnockedIn = true; } } } } /** * @notice Calculates the final payoff for a given vault * @param self is the FCNVaultMetadata * @param cegaStateAddress is address of cegaState */ function calculateVaultFinalPayoff( FCNVaultMetadata storage self, address cegaStateAddress ) public returns (uint256) { uint256 totalPrincipal; uint256 totalCouponPayment; uint256 principalToReturnBps = BPS_DECIMALS; require( (self.vaultStatus == VaultStatus.TradeExpired || self.vaultStatus == VaultStatus.PayoffCalculated), "500:WS" ); // Calculate coupon payment totalCouponPayment = calculateCouponPayment(self.underlyingAmount, self.aprBps, self.tenorInDays); // Calculate principal if (self.isKnockedIn) { principalToReturnBps = calculateKnockInRatio(self, cegaStateAddress); } totalPrincipal = (self.underlyingAmount * principalToReturnBps) / BPS_DECIMALS; uint256 vaultFinalPayoff = totalPrincipal + totalCouponPayment; self.totalCouponPayoff = totalCouponPayment; self.vaultFinalPayoff = vaultFinalPayoff; self.vaultStatus = VaultStatus.PayoffCalculated; return vaultFinalPayoff; } /** * @notice Calculates the percentage of principal to return to users if a knock in occurs. * Iterates through all knock-in barriers and checks the ratio of (spot/strike) for each asset * Returns the minimum of the knock-in ratios. * @param self is the FCNVaultMetadata * @param cegaStateAddress is address of cegaState */ function calculateKnockInRatio( FCNVaultMetadata storage self, address cegaStateAddress ) public view returns (uint256) { OptionBarrier[] memory optionBarriers = self.optionBarriers; uint256 optionBarriersCount = self.optionBarriersCount; uint256 minRatioBps = LARGE_CONSTANT; for (uint256 i = 0; i < optionBarriersCount; i++) { OptionBarrier memory optionBarrier = optionBarriers[i]; address oracle = getOracleAddress(optionBarrier, cegaStateAddress); (, int256 answer, uint256 startedAt, , ) = IOracle(oracle).latestRoundData(); require(block.timestamp - ORACLE_STALE_DELAY <= startedAt, "400:T"); // Only calculate the ratio if it is a knock in barrier if (optionBarrier.barrierType == OptionBarrierType.KnockIn) { uint256 ratioBps = (uint256(answer) * LARGE_CONSTANT) / optionBarrier.strikeAbsoluteValue; minRatioBps = Math.min(ratioBps, minRatioBps); } } return ((minRatioBps * BPS_DECIMALS)) / LARGE_CONSTANT; } /** * @notice Calculates the fees that should be collected from a given vault * @param managementFeeBps is the management fee in bps * @param yieldFeeBps is the yield fee in bps */ function calculateFees( FCNVaultMetadata storage self, uint256 managementFeeBps, uint256 yieldFeeBps ) public view returns (uint256, uint256, uint256) { uint256 totalFee = 0; uint256 managementFee = 0; uint256 yieldFee = 0; uint256 underlyingAmount = self.underlyingAmount; uint256 numberOfDaysPassed = (self.tradeExpiry - self.vaultStart) / SECONDS_TO_DAYS; managementFee = (underlyingAmount * numberOfDaysPassed * managementFeeBps * LARGE_CONSTANT) / DAYS_IN_YEAR / BPS_DECIMALS / LARGE_CONSTANT; if (self.vaultFinalPayoff > underlyingAmount) { uint256 profit = self.vaultFinalPayoff - underlyingAmount; yieldFee = (profit * yieldFeeBps) / BPS_DECIMALS; } totalFee = managementFee + yieldFee; return (totalFee, managementFee, yieldFee); } /** * @notice Calculates the coupon payment accumulated for a given number of daysPassed * @param underlyingAmount is the amount of assets * @param aprBps is the apr in bps * @param daysPassed is the number of days that coupon payments have been accured for */ function calculateCouponPayment( uint256 underlyingAmount, uint256 aprBps, uint256 daysPassed ) private pure returns (uint256) { return (underlyingAmount * daysPassed * aprBps * LARGE_CONSTANT) / DAYS_IN_YEAR / BPS_DECIMALS / LARGE_CONSTANT; } /** * @notice Gets the oracle address for a given optionBarrier * @param optionBarrier is the option barrier * @param cegaStateAddress is the address of the Cega state contract */ function getOracleAddress( OptionBarrier memory optionBarrier, address cegaStateAddress ) private view returns (address) { ICegaState cegaState = ICegaState(cegaStateAddress); address oracle = cegaState.oracleAddresses(optionBarrier.oracleName); require(oracle != address(0), "400:Unregistered"); return oracle; } }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.17; import { IERC20 } from "@openzeppelin/contracts/interfaces/IERC20.sol"; import { SafeERC20 } from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { ReentrancyGuard } from "@openzeppelin/contracts/security/ReentrancyGuard.sol"; import { ICegaState } from "./interfaces/ICegaState.sol"; import { Deposit, FCNVaultMetadata, OptionBarrierType, OptionBarrier, VaultStatus, Withdrawal } from "./Structs.sol"; import { FCNVault } from "./FCNVault.sol"; import { Calculations } from "./Calculations.sol"; contract FCNProduct is ReentrancyGuard { using SafeERC20 for IERC20; using Calculations for FCNVaultMetadata; event FCNProductCreated( address indexed cegaState, address indexed asset, string name, uint256 managementFeeBps, uint256 yieldFeeBps, uint256 maxDepositAmountLimit, uint256 minDepositAmount, uint256 minWithdrawalAmount ); event ManagementFeeBpsUpdated(uint256 managementFeeBps); event YieldFeeBpsUpdated(uint256 yieldFeeBps); event MinDepositAmountUpdated(uint256 minDepositAmount); event MinWithdrawalAmountUpdated(uint256 minWithdrawalAmount); event IsDepositQueueOpenUpdated(bool isDepositQueueOpen); event MaxDepositAmountLimitUpdated(uint256 maxDepositAmountLimit); event VaultCreated(address indexed vaultAddress, string _tokenSymbol, string _tokenName, uint256 _vaultStart); event VaultMetadataUpdated(address indexed vaultAddress); event VaultRemoved(address indexed vaultAddress); event TradeDataSet( address indexed vaultAddress, uint256 _tradeDate, uint256 _tradeExpiry, uint256 _aprBps, uint256 _tenorInDays ); event OptionBarrierAdded( address indexed vaultAddress, uint256 barrierBps, uint256 barrierAbsoluteValue, uint256 strikeBps, uint256 strikeAbsoluteValue, string asset, string oracleName, OptionBarrierType barrierType ); event OptionBarrierUpated( address indexed vaultAddress, uint256 index, string _asset, uint256 _strikeAbsoluteValue, uint256 _barrierAbsoluteValue ); event OptionBarrierOracleUpdated(address indexed vaultAddress, uint256 index, string _asset, string _oracleName); event OptionBarrierRemoved(address indexed vaultAddress, uint256 index, string asset); event VaultStatusUpdated(address indexed vaultAddress, VaultStatus vaultStatus); event DepositQueued(address indexed receiver, uint256 amount); event DepositProcessed(address indexed vaultAddress, address indexed receiver, uint256 amount); event KnockInStatusUpdated(address indexed vaultAddress, bool isKnockIn); event FeesCollected( address indexed vaultAddress, uint256 managementFee, uint256 yieldFee, uint256 totalFee, VaultStatus vaultStatus ); event WithdrawalQueued(address indexed vaultAddress, address indexed receiver, uint256 amountShares); event WithdrawalProcessed( address indexed vaultAddress, address indexed receiver, uint256 amountShares, uint256 amountAssets ); event VaultRollover(address indexed vaultAddress, uint256 vaultStart, VaultStatus vaultStatus); event VaultFinalPayoffCalculated(address indexed vaultAddress, uint256 finalPayoffAmount, VaultStatus vaultStatus); event BarriersChecked(address indexed vaultAddress, bool isKnockedIn); event AssetsReceivedFromCegaState(address indexed vaultAddress, uint256 amount); event AssetsSentToTrade( address indexed vaultAddress, address indexed receiver, uint256 amount, VaultStatus vaultStatus ); ICegaState public cegaState; address public immutable asset; string public name; uint256 public managementFeeBps; // basis points uint256 public yieldFeeBps; // basis points bool public isDepositQueueOpen; uint256 public maxDepositAmountLimit; uint256 public minDepositAmount; uint256 public minWithdrawalAmount; uint256 public sumVaultUnderlyingAmounts; uint256 public queuedDepositsTotalAmount; uint256 public queuedDepositsCount; mapping(address => FCNVaultMetadata) public vaults; address[] public vaultAddresses; Deposit[] public depositQueue; mapping(address => Withdrawal[]) public withdrawalQueues; /** * @notice Creates a new FCNProduct * @param _cegaState is the address of the CegaState contract * @param _asset is the underlying asset this product accepts * @param _name is the name of the product * @param _managementFeeBps is the management fee in bps * @param _yieldFeeBps is the yield fee in bps * @param _maxDepositAmountLimit is the deposit limit for the product * @param _minDepositAmount is the minimum units of underlying for a user to deposit * @param _minWithdrawalAmount is the minimum units of vault shares for a user to withdraw */ constructor( address _cegaState, address _asset, string memory _name, uint256 _managementFeeBps, uint256 _yieldFeeBps, uint256 _maxDepositAmountLimit, uint256 _minDepositAmount, uint256 _minWithdrawalAmount ) { require(_managementFeeBps < 1e4, "400:IB"); require(_yieldFeeBps < 1e4, "400:IB"); require(_minDepositAmount > 0, "400:IU"); require(_minWithdrawalAmount > 0, "400:IU"); cegaState = ICegaState(_cegaState); asset = _asset; name = _name; managementFeeBps = _managementFeeBps; yieldFeeBps = _yieldFeeBps; maxDepositAmountLimit = _maxDepositAmountLimit; isDepositQueueOpen = false; minDepositAmount = _minDepositAmount; minWithdrawalAmount = _minWithdrawalAmount; emit FCNProductCreated( _cegaState, _asset, _name, _managementFeeBps, _yieldFeeBps, _maxDepositAmountLimit, _minDepositAmount, _minWithdrawalAmount ); } /** * @notice Asserts whether the sender has the DEFAULT_ADMIN_ROLE */ modifier onlyDefaultAdmin() { require(cegaState.isDefaultAdmin(msg.sender), "403:DA"); _; } /** * @notice Asserts whether the sender has the TRADER_ADMIN_ROLE */ modifier onlyTraderAdmin() { require(cegaState.isTraderAdmin(msg.sender), "403:TA"); _; } /** * @notice Asserts whether the sender has the OPERATOR_ADMIN_ROLE */ modifier onlyOperatorAdmin() { require(cegaState.isOperatorAdmin(msg.sender), "403:OA"); _; } /** * @notice Asserts that the vault has been initialized & is a Cega Vault * @param vaultAddress is the address of the vault */ modifier onlyValidVault(address vaultAddress) { require(vaults[vaultAddress].vaultStart != 0, "400:VA"); _; } /** * @notice Returns array of vault addresses associated with the product */ function getVaultAddresses() public view returns (address[] memory) { return vaultAddresses; } /** * @notice Returns vault metadata for a given vault address, includes OptionBarrier array in output * @param vaultAddress is the address of the vault */ function getVaultMetadata(address vaultAddress) public view returns (FCNVaultMetadata memory) { return vaults[vaultAddress]; } /** * @notice Sets the management fee for the product * @param _managementFeeBps is the management fee in bps (100% = 10000) */ function setManagementFeeBps(uint256 _managementFeeBps) public onlyOperatorAdmin { require(_managementFeeBps < 1e4, "400:IB"); managementFeeBps = _managementFeeBps; emit ManagementFeeBpsUpdated(_managementFeeBps); } /** * @notice Sets the yieldfee for the product * @param _yieldFeeBps is the management fee in bps (100% = 10000) */ function setYieldFeeBps(uint256 _yieldFeeBps) public onlyOperatorAdmin { require(_yieldFeeBps < 1e4, "400:IB"); yieldFeeBps = _yieldFeeBps; emit YieldFeeBpsUpdated(_yieldFeeBps); } /** * @notice Sets the min deposit amount for the product * @param _minDepositAmount is the minimum units of underlying for a user to deposit */ function setMinDepositAmount(uint256 _minDepositAmount) public onlyOperatorAdmin { require(_minDepositAmount > 0, "400:IU"); minDepositAmount = _minDepositAmount; emit MinDepositAmountUpdated(_minDepositAmount); } /** * @notice Sets the min withdrawal amount for the product * @param _minWithdrawalAmount is the minimum units of vault shares for a user to withdraw */ function setMinWithdrawalAmount(uint256 _minWithdrawalAmount) public onlyOperatorAdmin { require(_minWithdrawalAmount > 0, "400:IU"); minWithdrawalAmount = _minWithdrawalAmount; emit MinWithdrawalAmountUpdated(_minWithdrawalAmount); } /** * @notice Toggles whether the product is open or closed for deposits * @param _isDepositQueueOpen is a boolean for whether the deposit queue is accepting deposits */ function setIsDepositQueueOpen(bool _isDepositQueueOpen) public onlyOperatorAdmin { isDepositQueueOpen = _isDepositQueueOpen; emit IsDepositQueueOpenUpdated(_isDepositQueueOpen); } /** * @notice Sets the maximum deposit limit for the product * @param _maxDepositAmountLimit is the deposit limit for the product */ function setMaxDepositAmountLimit(uint256 _maxDepositAmountLimit) public onlyTraderAdmin { require(queuedDepositsTotalAmount + sumVaultUnderlyingAmounts <= _maxDepositAmountLimit, "400:TooSmall"); maxDepositAmountLimit = _maxDepositAmountLimit; emit MaxDepositAmountLimitUpdated(_maxDepositAmountLimit); } /** * @notice Creates a new vault for the product & maps the new vault address to the vaultMetadata * @param _tokenName is the name of the token for the vault * @param _tokenSymbol is the symbol for the vault's token * @param _vaultStart is the timestamp of the vault's start */ function createVault( string memory _tokenName, string memory _tokenSymbol, uint256 _vaultStart ) public onlyTraderAdmin returns (address vaultAddress) { require(_vaultStart != 0, "400:VS"); FCNVault vault = new FCNVault(asset, _tokenName, _tokenSymbol); address newVaultAddress = address(vault); vaultAddresses.push(newVaultAddress); // vaultMetadata & all of its fields are automatically initialized if it doesn't already exist in the mapping FCNVaultMetadata storage vaultMetadata = vaults[newVaultAddress]; vaultMetadata.vaultStart = _vaultStart; vaultMetadata.vaultAddress = newVaultAddress; // Leverage is always set to 1 vaultMetadata.leverage = 1; emit VaultCreated(newVaultAddress, _tokenSymbol, _tokenName, _vaultStart); return newVaultAddress; } /** * @notice defaultAdmin has the ability to override & change the vaultMetadata * If a value is not input, it will override to the default value * @param vaultAddress is the address of the vault * @param metadata is the vault's metadata that we want to change to */ function setVaultMetadata( address vaultAddress, FCNVaultMetadata calldata metadata ) public onlyDefaultAdmin onlyValidVault(vaultAddress) { require(metadata.vaultStart > 0, "400:VS"); require(metadata.leverage == 1, "400:L"); vaults[vaultAddress] = metadata; emit VaultMetadataUpdated(vaultAddress); } /** * @notice defaultAdmin has the ability to remove a Vault * @param i is the index of the vault in the vaultAddresses array */ function removeVault(uint256 i) public onlyDefaultAdmin { address vaultAddress = vaultAddresses[i]; vaultAddresses[i] = vaultAddresses[vaultAddresses.length - 1]; vaultAddresses.pop(); delete vaults[vaultAddress]; emit VaultRemoved(vaultAddress); } /** * @notice Trader admin sets the trade data after the auction * @param vaultAddress is the address of the vault * @param _tradeDate is the official timestamp of when the options contracts begins * @param _tradeExpiry is the timestamp of when the trade will expire * @param _aprBps is the APR in bps * @param _tenorInDays is the length of the options contract */ function setTradeData( address vaultAddress, uint256 _tradeDate, uint256 _tradeExpiry, uint256 _aprBps, uint256 _tenorInDays ) public onlyTraderAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage metadata = vaults[vaultAddress]; require(metadata.vaultStatus == VaultStatus.NotTraded, "500:WS"); require(_tradeDate >= metadata.vaultStart, "400:TD"); require(_tradeExpiry > _tradeDate, "400:TE"); // allow for a 1 day difference in input tenor and derived tenor uint256 derivedDays = (_tradeExpiry - _tradeDate) / 1 days; if (derivedDays < _tenorInDays) { require(_tenorInDays - derivedDays <= 1, "400:TN"); } else { require(derivedDays - _tenorInDays <= 1, "400:TN"); } metadata.tradeDate = _tradeDate; metadata.tradeExpiry = _tradeExpiry; metadata.aprBps = _aprBps; metadata.tenorInDays = _tenorInDays; emit TradeDataSet(vaultAddress, _tradeDate, _tradeExpiry, _aprBps, _tenorInDays); } /** * @notice Trader admin can add an option with barriers to a given vault * @param vaultAddress is the address of the vault * @param optionBarrier is the data for the option with barriers */ function addOptionBarrier( address vaultAddress, OptionBarrier calldata optionBarrier ) public onlyTraderAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage metadata = vaults[vaultAddress]; require( metadata.vaultStatus == VaultStatus.DepositsClosed || metadata.vaultStatus == VaultStatus.NotTraded, "500:WS" ); metadata.optionBarriers.push(optionBarrier); metadata.optionBarriersCount++; emit OptionBarrierAdded( vaultAddress, optionBarrier.barrierBps, optionBarrier.barrierAbsoluteValue, optionBarrier.strikeBps, optionBarrier.strikeAbsoluteValue, optionBarrier.asset, optionBarrier.oracleName, optionBarrier.barrierType ); } /** * @notice Trader admin has ability to update price fixings & observation time. * @param vaultAddress is the address of the vault * @param index is the index of the option barrier we want to update * @param _asset is the ticker symbol of the asset we want to update * (included as a safety check since the asset name should match the option barrier at given index) * @param _strikeAbsoluteValue is the actual strike price of the asset * @param _barrierAbsoluteValue is the actual price that will cause the barrier to be triggered */ function updateOptionBarrier( address vaultAddress, uint256 index, string calldata _asset, uint256 _strikeAbsoluteValue, uint256 _barrierAbsoluteValue ) public onlyTraderAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; require(_strikeAbsoluteValue > 0, "400:SV"); require(_barrierAbsoluteValue > 0, "400:BV"); OptionBarrier storage optionBarrier = vaultMetadata.optionBarriers[index]; require(keccak256(abi.encodePacked(optionBarrier.asset)) == keccak256(abi.encodePacked(_asset)), "400:AS"); optionBarrier.strikeAbsoluteValue = _strikeAbsoluteValue; optionBarrier.barrierAbsoluteValue = _barrierAbsoluteValue; emit OptionBarrierUpated(vaultAddress, index, _asset, _strikeAbsoluteValue, _barrierAbsoluteValue); } /** * @notice Operator admin has ability to update the oracle for an option barrier. * @param vaultAddress is the address of the vault * @param index is the index of the option barrier we want to update * @param _asset is the ticker symbol of the asset we want to update * (included as a safety check since the asset name should match the option barrier at given index) * @param newOracleName is the name of the new oracle (must also register this name in CegaState) */ function updateOptionBarrierOracle( address vaultAddress, uint256 index, string calldata _asset, string memory newOracleName ) public onlyOperatorAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; require( vaultMetadata.vaultStatus == VaultStatus.DepositsClosed || vaultMetadata.vaultStatus == VaultStatus.NotTraded, "500:WS" ); OptionBarrier storage optionBarrier = vaultMetadata.optionBarriers[index]; require(keccak256(abi.encodePacked(optionBarrier.asset)) == keccak256(abi.encodePacked(_asset)), "400:AS"); require(cegaState.oracleAddresses(newOracleName) != address(0), "400:OR"); optionBarrier.oracleName = newOracleName; emit OptionBarrierOracleUpdated(vaultAddress, index, _asset, newOracleName); } /** * @notice Trader admin has ability to remove an option barrier. * The index for all option barriers to the right of the index are shifted by one to the left. * @param vaultAddress is the address of the vault * @param index is the index of the option barrier we want to remove * @param _asset is the ticker symbol of the asset we want to update * (included as a safety check since the asset should match the option barrier at given index) */ function removeOptionBarrier( address vaultAddress, uint256 index, string calldata _asset ) public onlyTraderAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; require( vaultMetadata.vaultStatus == VaultStatus.DepositsClosed || vaultMetadata.vaultStatus == VaultStatus.NotTraded, "500:WS" ); OptionBarrier[] storage optionBarriers = vaultMetadata.optionBarriers; require( keccak256(abi.encodePacked(optionBarriers[index].asset)) == keccak256(abi.encodePacked(_asset)), "400:AS" ); // swap and pop optionBarriers[index] = optionBarriers[optionBarriers.length - 1]; optionBarriers.pop(); vaultMetadata.optionBarriersCount -= 1; emit OptionBarrierRemoved(vaultAddress, index, _asset); } /** * Operator admin has ability to override the vault's status * @param vaultAddress is the address of the vault * @param _vaultStatus is the new status for the vault */ function setVaultStatus( address vaultAddress, VaultStatus _vaultStatus ) public onlyOperatorAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage metadata = vaults[vaultAddress]; metadata.vaultStatus = _vaultStatus; emit VaultStatusUpdated(vaultAddress, _vaultStatus); } /** * Trader admin has ability to set the vault to "DepositsOpen" state * @param vaultAddress is the address of the vault */ function openVaultDeposits(address vaultAddress) public onlyTraderAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; require(vaultMetadata.vaultStatus == VaultStatus.DepositsClosed, "500:WS"); vaultMetadata.vaultStatus = VaultStatus.DepositsOpen; emit VaultStatusUpdated(vaultAddress, VaultStatus.DepositsOpen); } /** * Default admin has an override to set the knock in status for a vault * @param vaultAddress is the address of the vault * @param newState is the new state for isKnockedIn */ function setKnockInStatus( address vaultAddress, bool newState ) public onlyDefaultAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; vaultMetadata.isKnockedIn = newState; emit KnockInStatusUpdated(vaultAddress, newState); } /** * Transfers assets from the user to the product * @param amount is the amount of assets being deposited */ function addToDepositQueue(uint256 amount) public nonReentrant { require(isDepositQueueOpen, "500:NotOpen"); require(amount >= minDepositAmount, "400:DA"); queuedDepositsCount += 1; queuedDepositsTotalAmount += amount; require(queuedDepositsTotalAmount + sumVaultUnderlyingAmounts <= maxDepositAmountLimit, "500:TooBig"); IERC20(asset).safeTransferFrom(msg.sender, address(this), amount); depositQueue.push(Deposit({ amount: amount, receiver: msg.sender })); emit DepositQueued(msg.sender, amount); } /** * Processes the product's deposit queue into a specific vault * @param vaultAddress is the address of the vault * @param maxProcessCount is the number of elements in the deposit queue to be processed */ function processDepositQueue( address vaultAddress, uint256 maxProcessCount ) public nonReentrant onlyTraderAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; require(vaultMetadata.vaultStatus == VaultStatus.DepositsOpen, "500:WS"); FCNVault vault = FCNVault(vaultAddress); require(!(vaultMetadata.underlyingAmount == 0 && vault.totalSupply() > 0), "500:Z"); uint256 processCount = Math.min(queuedDepositsCount, maxProcessCount); Deposit storage deposit; while (processCount > 0) { deposit = depositQueue[queuedDepositsCount - 1]; queuedDepositsTotalAmount -= deposit.amount; vault.deposit(deposit.amount, deposit.receiver); vaultMetadata.underlyingAmount += deposit.amount; sumVaultUnderlyingAmounts += deposit.amount; vaultMetadata.currentAssetAmount += deposit.amount; depositQueue.pop(); queuedDepositsCount -= 1; processCount -= 1; emit DepositProcessed(vaultAddress, deposit.receiver, deposit.amount); } if (queuedDepositsCount == 0) { vaultMetadata.vaultStatus = VaultStatus.NotTraded; emit VaultStatusUpdated(vaultAddress, VaultStatus.NotTraded); } } /** * @notice Queues a withdrawal for the token holder of a specific vault token * @param vaultAddress is the address of the vault * @param amountShares is the number of vault tokens to be redeemed */ function addToWithdrawalQueue( address vaultAddress, uint256 amountShares ) public nonReentrant onlyValidVault(vaultAddress) { require(amountShares >= minWithdrawalAmount, "400:WA"); FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; IERC20(vaultAddress).safeTransferFrom(msg.sender, address(this), amountShares); Withdrawal[] storage withdrawalQueue = withdrawalQueues[vaultAddress]; withdrawalQueue.push(Withdrawal({ amountShares: amountShares, receiver: msg.sender })); vaultMetadata.queuedWithdrawalsCount += 1; vaultMetadata.queuedWithdrawalsSharesAmount += amountShares; emit WithdrawalQueued(vaultAddress, msg.sender, amountShares); } /** * @notice Permissionless method that reads price from oracle contracts and checks if barrier is triggered * @param vaultAddress is address of the vault */ function checkBarriers(address vaultAddress) public onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; vaultMetadata.checkBarriers(address(cegaState)); emit BarriersChecked(vaultAddress, vaultMetadata.isKnockedIn); } /** * @notice Calculates the final payoff for a given vault * @param vaultAddress is address of the vault */ function calculateVaultFinalPayoff( address vaultAddress ) public onlyValidVault(vaultAddress) returns (uint256 vaultFinalPayoff) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; vaultFinalPayoff = vaultMetadata.calculateVaultFinalPayoff(address(cegaState)); emit VaultFinalPayoffCalculated(vaultAddress, vaultFinalPayoff, VaultStatus.PayoffCalculated); } /** * @notice Calculates the percentage of principal to return to users if a knock in occurs. * Iterates through all knock-in barriers and checks the ratio of (spot/strike) for each asset * Returns the minimum of the knock-in ratios. * @param vaultAddress is address of the vault */ function calculateKnockInRatio(address vaultAddress) public view returns (uint256 knockInRatio) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; return vaultMetadata.calculateKnockInRatio(address(cegaState)); } /** * @notice receive assets and allocate the underlying asset to the specified vault's balance * @param vaultAddress is the address of the vault * @param amount is the amount to transfer */ function receiveAssetsFromCegaState( address vaultAddress, uint256 amount ) public nonReentrant onlyValidVault(vaultAddress) { require(msg.sender == address(cegaState), "403:CS"); FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; IERC20(asset).safeTransferFrom(msg.sender, address(this), amount); vaultMetadata.currentAssetAmount += amount; emit AssetsReceivedFromCegaState(vaultAddress, amount); } /** * @notice Calculates the fees that should be collected from a given vault * @param vaultAddress is the address of the vault */ function calculateFees( address vaultAddress ) public view returns (uint256 totalFee, uint256 managementFee, uint256 yieldFee) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; return vaultMetadata.calculateFees(managementFeeBps, yieldFeeBps); } /** * @notice Transfers the correct amount of fees to the fee recipient * @param vaultAddress is the address of the vault */ function collectFees(address vaultAddress) public nonReentrant onlyTraderAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; require(vaultMetadata.vaultStatus == VaultStatus.PayoffCalculated, "500:WS"); (uint256 totalFees, uint256 managementFee, uint256 yieldFee) = calculateFees(vaultAddress); totalFees = Math.min(totalFees, vaultMetadata.vaultFinalPayoff); IERC20(asset).safeTransfer(cegaState.feeRecipient(), totalFees); vaultMetadata.currentAssetAmount -= totalFees; vaultMetadata.vaultStatus = VaultStatus.FeesCollected; sumVaultUnderlyingAmounts -= vaultMetadata.underlyingAmount; vaultMetadata.underlyingAmount = vaultMetadata.vaultFinalPayoff - totalFees; sumVaultUnderlyingAmounts += vaultMetadata.underlyingAmount; emit FeesCollected(vaultAddress, managementFee, yieldFee, totalFees, VaultStatus.FeesCollected); } /** * @notice Processes all the queued withdrawals in the withdrawal queue * @param vaultAddress is the address of the vault * @param maxProcessCount is the maximum number of withdrawals to process in the queue */ function processWithdrawalQueue( address vaultAddress, uint256 maxProcessCount ) public nonReentrant onlyTraderAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; // Needs zombie state so that we can restore the vault require( vaultMetadata.vaultStatus == VaultStatus.FeesCollected || vaultMetadata.vaultStatus == VaultStatus.Zombie, "500:WS" ); Withdrawal[] storage withdrawalQueue = withdrawalQueues[vaultAddress]; FCNVault vault = FCNVault(vaultAddress); uint256 processCount = Math.min(vaultMetadata.queuedWithdrawalsCount, maxProcessCount); uint256 amountAssets; Withdrawal memory withdrawal; while (processCount > 0) { withdrawal = withdrawalQueue[vaultMetadata.queuedWithdrawalsCount - 1]; amountAssets = vault.redeem(withdrawal.amountShares); vaultMetadata.underlyingAmount -= amountAssets; sumVaultUnderlyingAmounts -= amountAssets; vaultMetadata.queuedWithdrawalsSharesAmount -= withdrawal.amountShares; IERC20(asset).safeTransfer(withdrawal.receiver, amountAssets); vaultMetadata.currentAssetAmount -= amountAssets; withdrawalQueue.pop(); vaultMetadata.queuedWithdrawalsCount -= 1; processCount -= 1; emit WithdrawalProcessed(vaultAddress, withdrawal.receiver, withdrawal.amountShares, amountAssets); } if (vaultMetadata.queuedWithdrawalsCount == 0) { if (vaultMetadata.underlyingAmount == 0 && vault.totalSupply() > 0) { vaultMetadata.vaultStatus = VaultStatus.Zombie; emit VaultStatusUpdated(vaultAddress, VaultStatus.Zombie); } else { vaultMetadata.vaultStatus = VaultStatus.WithdrawalQueueProcessed; emit VaultStatusUpdated(vaultAddress, VaultStatus.WithdrawalQueueProcessed); } } } /** * @notice Resets the vault to the default state after the trade is settled * @param vaultAddress is the address of the vault */ function rolloverVault(address vaultAddress) public onlyTraderAdmin onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; require(vaultMetadata.vaultStatus == VaultStatus.WithdrawalQueueProcessed, "500:WS"); require(vaultMetadata.tradeExpiry != 0, "400:TE"); vaultMetadata.vaultStart = vaultMetadata.tradeExpiry; vaultMetadata.tradeDate = 0; vaultMetadata.tradeExpiry = 0; vaultMetadata.aprBps = 0; vaultMetadata.vaultStatus = VaultStatus.DepositsClosed; vaultMetadata.totalCouponPayoff = 0; vaultMetadata.vaultFinalPayoff = 0; vaultMetadata.isKnockedIn = false; emit VaultRollover(vaultAddress, vaultMetadata.vaultStart, VaultStatus.DepositsClosed); } /** * @notice Trader sends assets from the product to a third party wallet address * @param vaultAddress is the address of the vault * @param receiver is the receiver of the assets * @param amount is the amount of the assets to be sent */ function sendAssetsToTrade( address vaultAddress, address receiver, uint256 amount ) public nonReentrant onlyTraderAdmin onlyValidVault(vaultAddress) { require(cegaState.marketMakerAllowList(receiver), "400:NotAllowed"); FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; require(amount <= vaultMetadata.currentAssetAmount, "400:TooBig"); IERC20(asset).safeTransfer(receiver, amount); vaultMetadata.currentAssetAmount = vaultMetadata.currentAssetAmount - amount; vaultMetadata.vaultStatus = VaultStatus.Traded; emit AssetsSentToTrade(vaultAddress, receiver, amount, VaultStatus.Traded); } /** * @notice Calculates the current yield accumulated to the current day for a given vault * @param vaultAddress is the address of the vault */ function calculateCurrentYield(address vaultAddress) public onlyValidVault(vaultAddress) { FCNVaultMetadata storage vaultMetadata = vaults[vaultAddress]; vaultMetadata.calculateCurrentYield(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.17; interface IAggregatorV3 { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); function getRoundData( uint80 _roundId ) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); function latestRoundData() external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.17; interface ICegaState { function marketMakerAllowList(address marketMaker) external view returns (bool); function products(string memory productName) external view returns (address); function oracleAddresses(string memory oracleName) external view returns (address); function oracleNames() external view returns (string[] memory); function productNames() external view returns (string[] memory); function feeRecipient() external view returns (address); function isDefaultAdmin(address sender) external view returns (bool); function isTraderAdmin(address sender) external view returns (bool); function isOperatorAdmin(address sender) external view returns (bool); function isServiceAdmin(address sender) external view returns (bool); function getOracleNames() external view returns (string[] memory); function addOracle(string memory oracleName, address oracleAddress) external; function removeOracle(string memory oracleName) external; function getProductNames() external view returns (string[] memory); function addProduct(string memory productName, address product) external; function removeProduct(string memory productName) external; function updateMarketMakerPermission(address marketMaker, bool allow) external; function setFeeRecipient(address _feeRecipient) external; function moveAssetsToProduct(string memory productName, address vaultAddress, uint256 amount) external; }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.17; import { IAggregatorV3 } from "./IAggregatorV3.sol"; import { RoundData } from "../Structs.sol"; interface IOracle is IAggregatorV3 { function decimals() external view returns (uint8); function description() external view returns (string memory); function version() external view returns (uint256); function cegaState() external view returns (address); function oracleData() external view returns (RoundData[] memory); function nextRoundId() external view returns (uint80); function addNextRoundData(RoundData calldata _roundData) external; function updateRoundData(uint80 roundId, RoundData calldata _roundData) external; function getRoundData( uint80 _roundId ) external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); function latestRoundData() external view returns (uint80 roundId, int256 answer, uint256 startedAt, uint256 updatedAt, uint80 answeredInRound); }
// SPDX-License-Identifier: UNLICENSED pragma solidity ^0.8.17; enum OptionBarrierType { None, KnockIn } struct Deposit { uint256 amount; address receiver; } struct Withdrawal { uint256 amountShares; address receiver; } enum VaultStatus { DepositsClosed, DepositsOpen, NotTraded, Traded, TradeExpired, PayoffCalculated, FeesCollected, WithdrawalQueueProcessed, Zombie } struct OptionBarrier { uint256 barrierBps; uint256 barrierAbsoluteValue; uint256 strikeBps; uint256 strikeAbsoluteValue; string asset; string oracleName; OptionBarrierType barrierType; } struct FCNVaultMetadata { uint256 vaultStart; uint256 tradeDate; uint256 tradeExpiry; uint256 aprBps; uint256 tenorInDays; uint256 underlyingAmount; // This is how many assets were ever deposited into the vault uint256 currentAssetAmount; // This is how many assets are currently allocated for the vault (not sent for trade) uint256 totalCouponPayoff; uint256 vaultFinalPayoff; uint256 queuedWithdrawalsSharesAmount; uint256 queuedWithdrawalsCount; uint256 optionBarriersCount; uint256 leverage; address vaultAddress; VaultStatus vaultStatus; bool isKnockedIn; OptionBarrier[] optionBarriers; } struct RoundData { int256 answer; uint256 startedAt; uint256 updatedAt; uint80 answeredInRound; }
{ "metadata": { "bytecodeHash": "none" }, "optimizer": { "enabled": true, "runs": 200, "details": { "yul": true } }, "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_asset","type":"address"},{"internalType":"string","name":"_tokenName","type":"string"},{"internalType":"string","name":"_tokenSymbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"convertToAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"}],"name":"convertToShares","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"assets","type":"uint256"},{"internalType":"address","name":"receiver","type":"address"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fcnProduct","outputs":[{"internalType":"contract FCNProduct","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"shares","type":"uint256"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalAssets","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
6080604052346200038e57620012ef803803806200001d8162000393565b9283398101906060818303126200038e5780516001600160a01b039283821692918390036200038e5760208281015190926001600160401b03918281116200038e57836200006d918301620003b9565b9260408201518381116200038e57620000879201620003b9565b82518281116200028e576003918254916001958684811c9416801562000383575b888510146200036d578190601f9485811162000317575b508890858311600114620002b057600092620002a4575b505060001982861b1c191690861b1783555b80519384116200028e5760049586548681811c9116801562000283575b828210146200026e5783811162000223575b5080928511600114620001b55750938394918492600095620001a9575b50501b92600019911b1c19161790555b600580546001600160a01b0319808216339081179093556040519490939291167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0600080a381600654161760065533906007541617600755610ec390816200042c8239f35b01519350388062000134565b92919084601f1981168860005285600020956000905b89838310620002085750505010620001ed575b50505050811b01905562000144565b01519060f884600019921b161c1916905538808080620001de565b858701518955909701969485019488935090810190620001cb565b87600052816000208480880160051c82019284891062000264575b0160051c019087905b8281106200025757505062000117565b6000815501879062000247565b925081926200023e565b602288634e487b7160e01b6000525260246000fd5b90607f169062000105565b634e487b7160e01b600052604160045260246000fd5b015190503880620000d6565b90889350601f19831691876000528a6000209260005b8c828210620003005750508411620002e7575b505050811b018355620000e8565b015160001983881b60f8161c19169055388080620002d9565b8385015186558c97909501949384019301620002c6565b90915085600052886000208580850160051c8201928b861062000363575b918a91869594930160051c01915b82811062000353575050620000bf565b600081558594508a910162000343565b9250819262000335565b634e487b7160e01b600052602260045260246000fd5b93607f1693620000a8565b600080fd5b6040519190601f01601f191682016001600160401b038111838210176200028e57604052565b919080601f840112156200038e5782516001600160401b0381116200028e57602090620003ef601f8201601f1916830162000393565b928184528282870101116200038e5760005b8181106200041757508260009394955001015290565b85810183015184820184015282016200040156fe6040608081526004908136101561001557600080fd5b600091823560e01c806301e1d114146109bb57806306fdde03146108c757806307a2d13a146108a7578063095ea7b31461087d57806318160ddd1461085e57806323b872dd14610794578063313ce5671461077857806338d52e0f1461074f57806339509351146106ff5780636e553f651461062e57806370a08231146105f7578063715018a61461059a5780638da5cb5b1461057157806395d89b411461046d578063a457c2d7146103c9578063a9059cbb14610398578063b1a635181461036f578063c6e6f59214610348578063db006a7514610223578063dd62ed3e146101d65763f2fde38b1461010857600080fd5b346101d25760203660031901126101d257610121610a21565b9061012a610a52565b6001600160a01b03918216928315610180575050600554826bffffffffffffffffffffffff60a01b821617600555167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b906020608492519162461bcd60e51b8352820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152fd5b8280fd5b50503461021f578060031936011261021f57806020926101f4610a21565b6101fc610a3c565b6001600160a01b0391821683526001865283832091168252845220549051908152f35b5080fd5b5090346101d25760209283600319360112610345578235610242610a52565b61024b81610e56565b9333156102f85733835282865283832054908282106102aa575081903384528387520383832055806002540360025582519081527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef853392a351908152f35b845162461bcd60e51b8152908101879052602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b6064820152608490fd5b835162461bcd60e51b8152908101869052602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b6064820152608490fd5b80fd5b509134610345576020366003190112610345575061036860209235610e83565b9051908152f35b50503461021f578160031936011261021f5760075490516001600160a01b039091168152602090f35b50503461021f578060031936011261021f576020906103c26103b8610a21565b6024359033610b05565b5160018152f35b5082346103455782600319360112610345576103e3610a21565b918360243592338152600160205281812060018060a01b038616825260205220549082821061041c576020856103c28585038733610c73565b608490602086519162461bcd60e51b8352820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b6064820152fd5b5091903461021f578160031936011261021f57805191809380549160019083821c92828516948515610567575b60209586861081146105545785895290811561053057506001146104d8575b6104d487876104ca828c0383610aaa565b51918291826109d8565b0390f35b81529295507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b82841061051d57505050826104d4946104ca928201019438806104b9565b80548685018801529286019281016104ff565b60ff19168887015250505050151560051b83010192506104ca826104d438806104b9565b634e487b7160e01b845260228352602484fd5b93607f169361049a565b50503461021f578160031936011261021f5760055490516001600160a01b039091168152602090f35b83346103455780600319360112610345576105b3610a52565b600580546001600160a01b0319811690915581906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b50503461021f57602036600319011261021f5760209181906001600160a01b0361061f610a21565b16815280845220549051908152f35b5090346101d257806003193601126101d257610648610a3c565b91610651610a52565b61065b8135610e83565b926001600160a01b03169081156106bc575060209361067c84600254610ae2565b6002558181528085528281208481540190557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef858451868152a351908152f35b606490602084519162461bcd60e51b8352820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f2061646472657373006044820152fd5b50503461021f578060031936011261021f576103c2602092610748610722610a21565b338352600186528483206001600160a01b03821684528652918490205460243590610ae2565b9033610c73565b50503461021f578160031936011261021f5760065490516001600160a01b039091168152602090f35b50503461021f578160031936011261021f576020905160068152f35b5082903461021f57606036600319011261021f576107b0610a21565b6107b8610a3c565b91846044359460018060a01b0384168152600160205281812033825260205220549060001982036107f2575b6020866103c2878787610b05565b84821061081b5750918391610810602096956103c295033383610c73565b9193948193506107e4565b606490602087519162461bcd60e51b8352820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152fd5b50503461021f578160031936011261021f576020906002549051908152f35b50503461021f578060031936011261021f576020906103c261089d610a21565b6024359033610c73565b509134610345576020366003190112610345575061036860209235610e56565b5090346101d257826003193601126101d257805191836003549060019082821c9282811680156109b1575b602095868610821461099e575084885290811561097c5750600114610923575b6104d486866104ca828b0383610aaa565b929550600383527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b82841061096957505050826104d4946104ca928201019438610912565b805486850188015292860192810161094c565b60ff191687860152505050151560051b83010192506104ca826104d438610912565b634e487b7160e01b845260229052602483fd5b93607f16936108f2565b50503461021f578160031936011261021f57602090610368610d75565b6020808252825181830181905290939260005b828110610a0d57505060409293506000838284010152601f8019910116010190565b8181018601518482016040015285016109eb565b600435906001600160a01b0382168203610a3757565b600080fd5b602435906001600160a01b0382168203610a3757565b6005546001600160a01b03163303610a6657565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b90601f8019910116810190811067ffffffffffffffff821117610acc57604052565b634e487b7160e01b600052604160045260246000fd5b91908201809211610aef57565b634e487b7160e01b600052601160045260246000fd5b6001600160a01b03908116918215610c205716918215610bcf57600082815280602052604081205491808310610b7b57604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815220818154019055604051908152a3565b60405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b6064820152608490fd5b60405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608490fd5b60405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608490fd5b6001600160a01b03908116918215610d245716918215610cd45760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925918360005260018252604060002085600052825280604060002055604051908152a3565b60405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608490fd5b60405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608490fd5b600754604051632988bb9f60e21b81523060048201526001600160a01b0391610200919082908290602490829087165afa918215610e1757600092610dbc575b5050905090565b81813d8311610e10575b610dd08183610aaa565b8101031261021f5760a0810151926101a08201519081160361021f5760096101c0820151101561021f576101e00151801515036103455750803880610db5565b503d610dc6565b6040513d6000823e3d90fd5b81810292918115918404141715610aef57565b8115610e40570490565b634e487b7160e01b600052601260045260246000fd5b6002548015610e7c57610e74610e7992610e6e610d75565b90610e23565b610e36565b90565b5050600090565b600254610e8e610d75565b9081158015610eae575b610ea957610e7490610e7993610e23565b505090565b508015610e9856fea164736f6c6343000811000a000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000001c43656761205661756c742028233120737570657263686172676572290000000000000000000000000000000000000000000000000000000000000000000000066c70436567610000000000000000000000000000000000000000000000000000
Deployed Bytecode
0x6040608081526004908136101561001557600080fd5b600091823560e01c806301e1d114146109bb57806306fdde03146108c757806307a2d13a146108a7578063095ea7b31461087d57806318160ddd1461085e57806323b872dd14610794578063313ce5671461077857806338d52e0f1461074f57806339509351146106ff5780636e553f651461062e57806370a08231146105f7578063715018a61461059a5780638da5cb5b1461057157806395d89b411461046d578063a457c2d7146103c9578063a9059cbb14610398578063b1a635181461036f578063c6e6f59214610348578063db006a7514610223578063dd62ed3e146101d65763f2fde38b1461010857600080fd5b346101d25760203660031901126101d257610121610a21565b9061012a610a52565b6001600160a01b03918216928315610180575050600554826bffffffffffffffffffffffff60a01b821617600555167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08380a380f35b906020608492519162461bcd60e51b8352820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152fd5b8280fd5b50503461021f578060031936011261021f57806020926101f4610a21565b6101fc610a3c565b6001600160a01b0391821683526001865283832091168252845220549051908152f35b5080fd5b5090346101d25760209283600319360112610345578235610242610a52565b61024b81610e56565b9333156102f85733835282865283832054908282106102aa575081903384528387520383832055806002540360025582519081527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef853392a351908152f35b845162461bcd60e51b8152908101879052602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b6064820152608490fd5b835162461bcd60e51b8152908101869052602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b6064820152608490fd5b80fd5b509134610345576020366003190112610345575061036860209235610e83565b9051908152f35b50503461021f578160031936011261021f5760075490516001600160a01b039091168152602090f35b50503461021f578060031936011261021f576020906103c26103b8610a21565b6024359033610b05565b5160018152f35b5082346103455782600319360112610345576103e3610a21565b918360243592338152600160205281812060018060a01b038616825260205220549082821061041c576020856103c28585038733610c73565b608490602086519162461bcd60e51b8352820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b6064820152fd5b5091903461021f578160031936011261021f57805191809380549160019083821c92828516948515610567575b60209586861081146105545785895290811561053057506001146104d8575b6104d487876104ca828c0383610aaa565b51918291826109d8565b0390f35b81529295507f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b82841061051d57505050826104d4946104ca928201019438806104b9565b80548685018801529286019281016104ff565b60ff19168887015250505050151560051b83010192506104ca826104d438806104b9565b634e487b7160e01b845260228352602484fd5b93607f169361049a565b50503461021f578160031936011261021f5760055490516001600160a01b039091168152602090f35b83346103455780600319360112610345576105b3610a52565b600580546001600160a01b0319811690915581906001600160a01b03167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08280a380f35b50503461021f57602036600319011261021f5760209181906001600160a01b0361061f610a21565b16815280845220549051908152f35b5090346101d257806003193601126101d257610648610a3c565b91610651610a52565b61065b8135610e83565b926001600160a01b03169081156106bc575060209361067c84600254610ae2565b6002558181528085528281208481540190557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef858451868152a351908152f35b606490602084519162461bcd60e51b8352820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f2061646472657373006044820152fd5b50503461021f578060031936011261021f576103c2602092610748610722610a21565b338352600186528483206001600160a01b03821684528652918490205460243590610ae2565b9033610c73565b50503461021f578160031936011261021f5760065490516001600160a01b039091168152602090f35b50503461021f578160031936011261021f576020905160068152f35b5082903461021f57606036600319011261021f576107b0610a21565b6107b8610a3c565b91846044359460018060a01b0384168152600160205281812033825260205220549060001982036107f2575b6020866103c2878787610b05565b84821061081b5750918391610810602096956103c295033383610c73565b9193948193506107e4565b606490602087519162461bcd60e51b8352820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152fd5b50503461021f578160031936011261021f576020906002549051908152f35b50503461021f578060031936011261021f576020906103c261089d610a21565b6024359033610c73565b509134610345576020366003190112610345575061036860209235610e56565b5090346101d257826003193601126101d257805191836003549060019082821c9282811680156109b1575b602095868610821461099e575084885290811561097c5750600114610923575b6104d486866104ca828b0383610aaa565b929550600383527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b82841061096957505050826104d4946104ca928201019438610912565b805486850188015292860192810161094c565b60ff191687860152505050151560051b83010192506104ca826104d438610912565b634e487b7160e01b845260229052602483fd5b93607f16936108f2565b50503461021f578160031936011261021f57602090610368610d75565b6020808252825181830181905290939260005b828110610a0d57505060409293506000838284010152601f8019910116010190565b8181018601518482016040015285016109eb565b600435906001600160a01b0382168203610a3757565b600080fd5b602435906001600160a01b0382168203610a3757565b6005546001600160a01b03163303610a6657565b606460405162461bcd60e51b815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b90601f8019910116810190811067ffffffffffffffff821117610acc57604052565b634e487b7160e01b600052604160045260246000fd5b91908201809211610aef57565b634e487b7160e01b600052601160045260246000fd5b6001600160a01b03908116918215610c205716918215610bcf57600082815280602052604081205491808310610b7b57604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815220818154019055604051908152a3565b60405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b6064820152608490fd5b60405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608490fd5b60405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608490fd5b6001600160a01b03908116918215610d245716918215610cd45760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925918360005260018252604060002085600052825280604060002055604051908152a3565b60405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608490fd5b60405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608490fd5b600754604051632988bb9f60e21b81523060048201526001600160a01b0391610200919082908290602490829087165afa918215610e1757600092610dbc575b5050905090565b81813d8311610e10575b610dd08183610aaa565b8101031261021f5760a0810151926101a08201519081160361021f5760096101c0820151101561021f576101e00151801515036103455750803880610db5565b503d610dc6565b6040513d6000823e3d90fd5b81810292918115918404141715610aef57565b8115610e40570490565b634e487b7160e01b600052601260045260246000fd5b6002548015610e7c57610e74610e7992610e6e610d75565b90610e23565b610e36565b90565b5050600090565b600254610e8e610d75565b9081158015610eae575b610ea957610e7490610e7993610e23565b505090565b508015610e9856fea164736f6c6343000811000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000000000000000000000000000000000000000006000000000000000000000000000000000000000000000000000000000000000a0000000000000000000000000000000000000000000000000000000000000001c43656761205661756c742028233120737570657263686172676572290000000000000000000000000000000000000000000000000000000000000000000000066c70436567610000000000000000000000000000000000000000000000000000
-----Decoded View---------------
Arg [0] : _asset (address): 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
Arg [1] : _tokenName (string): Cega Vault (#1 supercharger)
Arg [2] : _tokenSymbol (string): lpCega
-----Encoded View---------------
7 Constructor Arguments found :
Arg [0] : 000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000060
Arg [2] : 00000000000000000000000000000000000000000000000000000000000000a0
Arg [3] : 000000000000000000000000000000000000000000000000000000000000001c
Arg [4] : 43656761205661756c7420282331207375706572636861726765722900000000
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000006
Arg [6] : 6c70436567610000000000000000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.