ERC-20
Overview
Max Total Supply
19.086168455915913923 Stable-LP
Holders
5
Market
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Loading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Contract Name:
PancakeStableSwapLP
Compiler Version
v0.8.10+commit.fc410830
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/token/ERC20/ERC20.sol"; contract PancakeStableSwapLP is ERC20 { address public minter; constructor() ERC20("Pancake StableSwap LPs", "Stable-LP") { minter = msg.sender; } /** * @notice Checks if the msg.sender is the minter address. */ modifier onlyMinter() { require(msg.sender == minter, "Not minter"); _; } function setMinter(address _newMinter) external onlyMinter { minter = _newMinter; } function mint(address _to, uint256 _amount) external onlyMinter { _mint(_to, _amount); } function burnFrom(address _to, uint256 _amount) external onlyMinter { _burn(_to, _amount); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IPancakeStableSwap { function token() external view returns (address); function balances(uint256 i) external view returns (uint256); function N_COINS() external view returns (uint256); function RATES(uint256 i) external view returns (uint256); function coins(uint256 i) external view returns (address); function PRECISION_MUL(uint256 i) external view returns (uint256); function fee() external view returns (uint256); function admin_fee() external view returns (uint256); function A() external view returns (uint256); function get_D_mem(uint256[2] memory _balances, uint256 amp) external view returns (uint256); function get_y( uint256 i, uint256 j, uint256 x, uint256[2] memory xp_ ) external view returns (uint256); function calc_withdraw_one_coin(uint256 _token_amount, uint256 i) external view returns (uint256); function add_liquidity(uint256[2] memory amounts, uint256 min_mint_amount) external payable; function remove_liquidity(uint256 _amount, uint256[2] memory min_amounts) external; function remove_liquidity_imbalance(uint256[2] memory amounts, uint256 max_burn_amount) external; function transferOwnership(address newOwner) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/token/ERC20/IERC20.sol"; import "@openzeppelin-4.5.0/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin-4.5.0/contracts/access/Ownable.sol"; import "../interfaces/IWBNB.sol"; import "../interfaces/IPancakeStableSwap.sol"; contract PancakeStableSwapWBNBHelper is Ownable { using SafeERC20 for IERC20; uint256 public constant N_COINS = 2; IWBNB public immutable WBNB; // Record whether approved for stable swap smart contract. mapping(address => bool) isApproved; mapping(address => bool) public isWhitelist; error NotWBNBPair(); error NotWhitelist(); error InvalidNCOINS(); event UpdateWhitelist(address swap, bool status); constructor(IWBNB _WBNB) { WBNB = _WBNB; } function setWhiteList(address _swap, bool _status) external onlyOwner { isWhitelist[_swap] = _status; emit UpdateWhitelist(_swap, _status); } function initSwapPair(IPancakeStableSwap swap) internal { address token0 = swap.coins(0); address token1 = swap.coins(1); address LPToken = swap.token(); IERC20(token0).safeApprove(address(swap), type(uint256).max); IERC20(token1).safeApprove(address(swap), type(uint256).max); IERC20(LPToken).safeApprove(address(swap), type(uint256).max); isApproved[address(swap)] = true; } function add_liquidity( IPancakeStableSwap swap, uint256[N_COINS] memory amounts, uint256 min_mint_amount ) external payable { if (!isWhitelist[address(swap)]) revert NotWhitelist(); if (swap.N_COINS() != N_COINS) revert InvalidNCOINS(); if (!isApproved[address(swap)]) initSwapPair(swap); address token0 = swap.coins(0); address token1 = swap.coins(1); uint256 WBNBIndex; if (token0 == address(WBNB)) { WBNBIndex = 0; } else if (token1 == address(WBNB)) { WBNBIndex = 1; } else { revert NotWBNBPair(); } require(msg.value == amounts[WBNBIndex], "Inconsistent quantity"); WBNB.deposit{value: msg.value}(); if (WBNBIndex == 0) { IERC20(token1).safeTransferFrom(msg.sender, address(this), amounts[1]); } else { IERC20(token0).safeTransferFrom(msg.sender, address(this), amounts[0]); } swap.add_liquidity(amounts, min_mint_amount); address LPToken = swap.token(); uint256 mintedLPAmount = IERC20(LPToken).balanceOf(address(this)); IERC20(LPToken).safeTransfer(msg.sender, mintedLPAmount); } function remove_liquidity( IPancakeStableSwap swap, uint256 _amount, uint256[N_COINS] memory min_amounts ) external { if (!isWhitelist[address(swap)]) revert NotWhitelist(); if (swap.N_COINS() != N_COINS) revert InvalidNCOINS(); if (!isApproved[address(swap)]) initSwapPair(swap); address token0 = swap.coins(0); address token1 = swap.coins(1); uint256 WBNBIndex; if (token0 == address(WBNB)) { WBNBIndex = 0; } else if (token1 == address(WBNB)) { WBNBIndex = 1; } else { revert NotWBNBPair(); } address LPToken = swap.token(); IERC20(LPToken).safeTransferFrom(msg.sender, address(this), _amount); swap.remove_liquidity(_amount, min_amounts); uint256 WBNBBalance = WBNB.balanceOf(address(this)); WBNB.withdraw(WBNBBalance); _safeTransferBNB(msg.sender, address(this).balance); if (WBNBIndex == 0) { uint256 token1Balance = IERC20(token1).balanceOf(address(this)); IERC20(token1).safeTransfer(msg.sender, token1Balance); } else { uint256 token0Balance = IERC20(token0).balanceOf(address(this)); IERC20(token0).safeTransfer(msg.sender, token0Balance); } } function _safeTransferBNB(address to, uint256 value) internal { (bool success, ) = to.call{gas: 2300, value: value}(""); require(success, "TransferHelper: BNB_TRANSFER_FAILED"); } receive() external payable { assert(msg.sender == address(WBNB)); // only accept BNB from the WBNB contract } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(owner() == _msgSender(), "Ownable: caller is not the owner"); _; } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IWBNB { function deposit() external payable; function transfer(address to, uint256 value) external returns (bool); function withdraw(uint256) external; function balanceOf(address account) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/access/Ownable.sol"; import "./PancakeStableSwapTwoPool.sol"; contract PancakeStableSwapTwoPoolDeployer is Ownable { uint256 public constant N_COINS = 2; /** * @notice constructor */ constructor() {} // returns sorted token addresses, used to handle return values from pairs sorted in this order function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) { require(tokenA != tokenB, "IDENTICAL_ADDRESSES"); (token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); } /** * @notice createSwapPair * @param _tokenA: Addresses of ERC20 conracts . * @param _tokenB: Addresses of ERC20 conracts . * @param _A: Amplification coefficient multiplied by n * (n - 1) * @param _fee: Fee to charge for exchanges * @param _admin_fee: Admin fee * @param _admin: Admin * @param _LP: LP */ function createSwapPair( address _tokenA, address _tokenB, uint256 _A, uint256 _fee, uint256 _admin_fee, address _admin, address _LP ) external onlyOwner returns (address) { require(_tokenA != address(0) && _tokenB != address(0) && _tokenA != _tokenB, "Illegal token"); (address t0, address t1) = sortTokens(_tokenA, _tokenB); address[N_COINS] memory coins = [t0, t1]; // create swap contract bytes memory bytecode = type(PancakeStableSwapTwoPool).creationCode; bytes32 salt = keccak256(abi.encodePacked(t0, t1, msg.sender, block.timestamp, block.chainid)); address swapContract; assembly { swapContract := create2(0, add(bytecode, 32), mload(bytecode), salt) } PancakeStableSwapTwoPool(swapContract).initialize(coins, _A, _fee, _admin_fee, _admin, _LP); return swapContract; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/access/Ownable.sol"; import "@openzeppelin-4.5.0/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin-4.5.0/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin-4.5.0/contracts/security/ReentrancyGuard.sol"; import "./interfaces/IPancakeStableSwapLP.sol"; contract PancakeStableSwapTwoPool is Ownable, ReentrancyGuard { using SafeERC20 for IERC20; uint256 public constant N_COINS = 2; uint256 public constant MAX_DECIMAL = 18; uint256 public constant FEE_DENOMINATOR = 1e10; uint256 public constant PRECISION = 1e18; uint256[N_COINS] public PRECISION_MUL; uint256[N_COINS] public RATES; uint256 public constant MAX_ADMIN_FEE = 1e10; uint256 public constant MAX_FEE = 5e9; uint256 public constant MAX_A = 1e6; uint256 public constant MAX_A_CHANGE = 10; uint256 public constant MIN_BNB_GAS = 2300; uint256 public constant MAX_BNB_GAS = 23000; uint256 public constant ADMIN_ACTIONS_DELAY = 3 days; uint256 public constant MIN_RAMP_TIME = 1 days; address[N_COINS] public coins; uint256[N_COINS] public balances; uint256 public fee; // fee * 1e10. uint256 public admin_fee; // admin_fee * 1e10. uint256 public bnb_gas = 4029; // transfer bnb gas. IPancakeStableSwapLP public token; address constant BNB_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; bool support_BNB; uint256 public initial_A; uint256 public future_A; uint256 public initial_A_time; uint256 public future_A_time; uint256 public admin_actions_deadline; uint256 public future_fee; uint256 public future_admin_fee; uint256 public kill_deadline; uint256 public constant KILL_DEADLINE_DT = 2 * 30 days; bool public is_killed; address public immutable STABLESWAP_FACTORY; bool public isInitialized; event TokenExchange( address indexed buyer, uint256 sold_id, uint256 tokens_sold, uint256 bought_id, uint256 tokens_bought ); event AddLiquidity( address indexed provider, uint256[N_COINS] token_amounts, uint256[N_COINS] fees, uint256 invariant, uint256 token_supply ); event RemoveLiquidity( address indexed provider, uint256[N_COINS] token_amounts, uint256[N_COINS] fees, uint256 token_supply ); event RemoveLiquidityOne(address indexed provider, uint256 index, uint256 token_amount, uint256 coin_amount); event RemoveLiquidityImbalance( address indexed provider, uint256[N_COINS] token_amounts, uint256[N_COINS] fees, uint256 invariant, uint256 token_supply ); event CommitNewFee(uint256 indexed deadline, uint256 fee, uint256 admin_fee); event NewFee(uint256 fee, uint256 admin_fee); event RampA(uint256 old_A, uint256 new_A, uint256 initial_time, uint256 future_time); event StopRampA(uint256 A, uint256 t); event SetBNBGas(uint256 bnb_gas); event RevertParameters(); event DonateAdminFees(); event Kill(); event Unkill(); /** * @notice constructor */ constructor() { STABLESWAP_FACTORY = msg.sender; } /** * @notice initialize * @param _coins: Addresses of ERC20 conracts of coins (c-tokens) involved * @param _A: Amplification coefficient multiplied by n * (n - 1) * @param _fee: Fee to charge for exchanges * @param _admin_fee: Admin fee * @param _owner: Owner * @param _LP: LP address */ function initialize( address[N_COINS] memory _coins, uint256 _A, uint256 _fee, uint256 _admin_fee, address _owner, address _LP ) external { require(!isInitialized, "Operations: Already initialized"); require(msg.sender == STABLESWAP_FACTORY, "Operations: Not factory"); require(_A <= MAX_A, "_A exceeds maximum"); require(_fee <= MAX_FEE, "_fee exceeds maximum"); require(_admin_fee <= MAX_ADMIN_FEE, "_admin_fee exceeds maximum"); isInitialized = true; for (uint256 i = 0; i < N_COINS; i++) { require(_coins[i] != address(0), "ZERO Address"); uint256 coinDecimal; if (_coins[i] == BNB_ADDRESS) { coinDecimal = 18; support_BNB = true; } else { coinDecimal = IERC20Metadata(_coins[i]).decimals(); } require(coinDecimal <= MAX_DECIMAL, "The maximum decimal cannot exceed 18"); //set PRECISION_MUL and RATES PRECISION_MUL[i] = 10**(MAX_DECIMAL - coinDecimal); RATES[i] = PRECISION * PRECISION_MUL[i]; } coins = _coins; initial_A = _A; future_A = _A; fee = _fee; admin_fee = _admin_fee; kill_deadline = block.timestamp + KILL_DEADLINE_DT; token = IPancakeStableSwapLP(_LP); transferOwnership(_owner); } function get_A() internal view returns (uint256) { //Handle ramping A up or down uint256 t1 = future_A_time; uint256 A1 = future_A; if (block.timestamp < t1) { uint256 A0 = initial_A; uint256 t0 = initial_A_time; // Expressions in uint256 cannot have negative numbers, thus "if" if (A1 > A0) { return A0 + ((A1 - A0) * (block.timestamp - t0)) / (t1 - t0); } else { return A0 - ((A0 - A1) * (block.timestamp - t0)) / (t1 - t0); } } else { // when t1 == 0 or block.timestamp >= t1 return A1; } } function A() external view returns (uint256) { return get_A(); } function _xp() internal view returns (uint256[N_COINS] memory result) { result = RATES; for (uint256 i = 0; i < N_COINS; i++) { result[i] = (result[i] * balances[i]) / PRECISION; } } function _xp_mem(uint256[N_COINS] memory _balances) internal view returns (uint256[N_COINS] memory result) { result = RATES; for (uint256 i = 0; i < N_COINS; i++) { result[i] = (result[i] * _balances[i]) / PRECISION; } } function get_D(uint256[N_COINS] memory xp, uint256 amp) internal pure returns (uint256) { uint256 S; for (uint256 i = 0; i < N_COINS; i++) { S += xp[i]; } if (S == 0) { return 0; } uint256 Dprev; uint256 D = S; uint256 Ann = amp * N_COINS; for (uint256 j = 0; j < 255; j++) { uint256 D_P = D; for (uint256 k = 0; k < N_COINS; k++) { D_P = (D_P * D) / (xp[k] * N_COINS); // If division by 0, this will be borked: only withdrawal will work. And that is good } Dprev = D; D = ((Ann * S + D_P * N_COINS) * D) / ((Ann - 1) * D + (N_COINS + 1) * D_P); // Equality with the precision of 1 if (D > Dprev) { if (D - Dprev <= 1) { break; } } else { if (Dprev - D <= 1) { break; } } } return D; } function get_D_mem(uint256[N_COINS] memory _balances, uint256 amp) internal view returns (uint256) { return get_D(_xp_mem(_balances), amp); } function get_virtual_price() external view returns (uint256) { /** Returns portfolio virtual price (for calculating profit) scaled up by 1e18 */ uint256 D = get_D(_xp(), get_A()); /** D is in the units similar to DAI (e.g. converted to precision 1e18) When balanced, D = n * x_u - total virtual value of the portfolio */ uint256 token_supply = token.totalSupply(); return (D * PRECISION) / token_supply; } function calc_token_amount(uint256[N_COINS] memory amounts, bool deposit) external view returns (uint256) { /** Simplified method to calculate addition or reduction in token supply at deposit or withdrawal without taking fees into account (but looking at slippage). Needed to prevent front-running, not for precise calculations! */ uint256[N_COINS] memory _balances = balances; uint256 amp = get_A(); uint256 D0 = get_D_mem(_balances, amp); for (uint256 i = 0; i < N_COINS; i++) { if (deposit) { _balances[i] += amounts[i]; } else { _balances[i] -= amounts[i]; } } uint256 D1 = get_D_mem(_balances, amp); uint256 token_amount = token.totalSupply(); uint256 difference; if (deposit) { difference = D1 - D0; } else { difference = D0 - D1; } return (difference * token_amount) / D0; } function add_liquidity(uint256[N_COINS] memory amounts, uint256 min_mint_amount) external payable nonReentrant { //Amounts is amounts of c-tokens require(!is_killed, "Killed"); if (!support_BNB) { require(msg.value == 0, "Inconsistent quantity"); // Avoid sending BNB by mistake. } uint256[N_COINS] memory fees; uint256 _fee = (fee * N_COINS) / (4 * (N_COINS - 1)); uint256 _admin_fee = admin_fee; uint256 amp = get_A(); uint256 token_supply = token.totalSupply(); //Initial invariant uint256 D0; uint256[N_COINS] memory old_balances = balances; if (token_supply > 0) { D0 = get_D_mem(old_balances, amp); } uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1]]; for (uint256 i = 0; i < N_COINS; i++) { if (token_supply == 0) { require(amounts[i] > 0, "Initial deposit requires all coins"); } // balances store amounts of c-tokens new_balances[i] = old_balances[i] + amounts[i]; } // Invariant after change uint256 D1 = get_D_mem(new_balances, amp); require(D1 > D0, "D1 must be greater than D0"); // We need to recalculate the invariant accounting for fees // to calculate fair user's share uint256 D2 = D1; if (token_supply > 0) { // Only account for fees if we are not the first to deposit for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } fees[i] = (_fee * difference) / FEE_DENOMINATOR; balances[i] = new_balances[i] - ((fees[i] * _admin_fee) / FEE_DENOMINATOR); new_balances[i] -= fees[i]; } D2 = get_D_mem(new_balances, amp); } else { balances = new_balances; } // Calculate, how much pool tokens to mint uint256 mint_amount; if (token_supply == 0) { mint_amount = D1; // Take the dust if there was any } else { mint_amount = (token_supply * (D2 - D0)) / D0; } require(mint_amount >= min_mint_amount, "Slippage screwed you"); // Take coins from the sender for (uint256 i = 0; i < N_COINS; i++) { uint256 amount = amounts[i]; address coin = coins[i]; transfer_in(coin, amount); } // Mint pool tokens token.mint(msg.sender, mint_amount); emit AddLiquidity(msg.sender, amounts, fees, D1, token_supply + mint_amount); } function get_y( uint256 i, uint256 j, uint256 x, uint256[N_COINS] memory xp_ ) internal view returns (uint256) { // x in the input is converted to the same price/precision require((i != j) && (i < N_COINS) && (j < N_COINS), "Illegal parameter"); uint256 amp = get_A(); uint256 D = get_D(xp_, amp); uint256 c = D; uint256 S_; uint256 Ann = amp * N_COINS; uint256 _x; for (uint256 k = 0; k < N_COINS; k++) { if (k == i) { _x = x; } else if (k != j) { _x = xp_[k]; } else { continue; } S_ += _x; c = (c * D) / (_x * N_COINS); } c = (c * D) / (Ann * N_COINS); uint256 b = S_ + D / Ann; // - D uint256 y_prev; uint256 y = D; for (uint256 m = 0; m < 255; m++) { y_prev = y; y = (y * y + c) / (2 * y + b - D); // Equality with the precision of 1 if (y > y_prev) { if (y - y_prev <= 1) { break; } } else { if (y_prev - y <= 1) { break; } } } return y; } function get_dy( uint256 i, uint256 j, uint256 dx ) external view returns (uint256) { // dx and dy in c-units uint256[N_COINS] memory rates = RATES; uint256[N_COINS] memory xp = _xp(); uint256 x = xp[i] + ((dx * rates[i]) / PRECISION); uint256 y = get_y(i, j, x, xp); uint256 dy = ((xp[j] - y - 1) * PRECISION) / rates[j]; uint256 _fee = (fee * dy) / FEE_DENOMINATOR; return dy - _fee; } function get_dy_underlying( uint256 i, uint256 j, uint256 dx ) external view returns (uint256) { // dx and dy in underlying units uint256[N_COINS] memory xp = _xp(); uint256[N_COINS] memory precisions = PRECISION_MUL; uint256 x = xp[i] + dx * precisions[i]; uint256 y = get_y(i, j, x, xp); uint256 dy = (xp[j] - y - 1) / precisions[j]; uint256 _fee = (fee * dy) / FEE_DENOMINATOR; return dy - _fee; } function exchange( uint256 i, uint256 j, uint256 dx, uint256 min_dy ) external payable nonReentrant { require(!is_killed, "Killed"); if (!support_BNB) { require(msg.value == 0, "Inconsistent quantity"); // Avoid sending BNB by mistake. } uint256[N_COINS] memory old_balances = balances; uint256[N_COINS] memory xp = _xp_mem(old_balances); uint256 x = xp[i] + (dx * RATES[i]) / PRECISION; uint256 y = get_y(i, j, x, xp); uint256 dy = xp[j] - y - 1; // -1 just in case there were some rounding errors uint256 dy_fee = (dy * fee) / FEE_DENOMINATOR; // Convert all to real units dy = ((dy - dy_fee) * PRECISION) / RATES[j]; require(dy >= min_dy, "Exchange resulted in fewer coins than expected"); uint256 dy_admin_fee = (dy_fee * admin_fee) / FEE_DENOMINATOR; dy_admin_fee = (dy_admin_fee * PRECISION) / RATES[j]; // Change balances exactly in same way as we change actual ERC20 coin amounts balances[i] = old_balances[i] + dx; // When rounding errors happen, we undercharge admin fee in favor of LP balances[j] = old_balances[j] - dy - dy_admin_fee; address iAddress = coins[i]; if (iAddress == BNB_ADDRESS) { require(dx == msg.value, "Inconsistent quantity"); } else { IERC20(iAddress).safeTransferFrom(msg.sender, address(this), dx); } address jAddress = coins[j]; transfer_out(jAddress, dy); emit TokenExchange(msg.sender, i, dx, j, dy); } function remove_liquidity(uint256 _amount, uint256[N_COINS] memory min_amounts) external nonReentrant { uint256 total_supply = token.totalSupply(); uint256[N_COINS] memory amounts; uint256[N_COINS] memory fees; //Fees are unused but we've got them historically in event for (uint256 i = 0; i < N_COINS; i++) { uint256 value = (balances[i] * _amount) / total_supply; require(value >= min_amounts[i], "Withdrawal resulted in fewer coins than expected"); balances[i] -= value; amounts[i] = value; transfer_out(coins[i], value); } token.burnFrom(msg.sender, _amount); // dev: insufficient funds emit RemoveLiquidity(msg.sender, amounts, fees, total_supply - _amount); } function remove_liquidity_imbalance(uint256[N_COINS] memory amounts, uint256 max_burn_amount) external nonReentrant { require(!is_killed, "Killed"); uint256 token_supply = token.totalSupply(); require(token_supply > 0, "dev: zero total supply"); uint256 _fee = (fee * N_COINS) / (4 * (N_COINS - 1)); uint256 _admin_fee = admin_fee; uint256 amp = get_A(); uint256[N_COINS] memory old_balances = balances; uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1]]; uint256 D0 = get_D_mem(old_balances, amp); for (uint256 i = 0; i < N_COINS; i++) { new_balances[i] -= amounts[i]; } uint256 D1 = get_D_mem(new_balances, amp); uint256[N_COINS] memory fees; for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } fees[i] = (_fee * difference) / FEE_DENOMINATOR; balances[i] = new_balances[i] - ((fees[i] * _admin_fee) / FEE_DENOMINATOR); new_balances[i] -= fees[i]; } uint256 D2 = get_D_mem(new_balances, amp); uint256 token_amount = ((D0 - D2) * token_supply) / D0; require(token_amount > 0, "token_amount must be greater than 0"); token_amount += 1; // In case of rounding errors - make it unfavorable for the "attacker" require(token_amount <= max_burn_amount, "Slippage screwed you"); token.burnFrom(msg.sender, token_amount); // dev: insufficient funds for (uint256 i = 0; i < N_COINS; i++) { if (amounts[i] > 0) { transfer_out(coins[i], amounts[i]); } } token_supply -= token_amount; emit RemoveLiquidityImbalance(msg.sender, amounts, fees, D1, token_supply); } function get_y_D( uint256 A_, uint256 i, uint256[N_COINS] memory xp, uint256 D ) internal pure returns (uint256) { /** Calculate x[i] if one reduces D from being calculated for xp to D Done by solving quadratic equation iteratively. x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) x_1**2 + b*x_1 = c x_1 = (x_1**2 + c) / (2*x_1 + b) */ // x in the input is converted to the same price/precision require(i < N_COINS, "dev: i above N_COINS"); uint256 c = D; uint256 S_; uint256 Ann = A_ * N_COINS; uint256 _x; for (uint256 k = 0; k < N_COINS; k++) { if (k != i) { _x = xp[k]; } else { continue; } S_ += _x; c = (c * D) / (_x * N_COINS); } c = (c * D) / (Ann * N_COINS); uint256 b = S_ + D / Ann; uint256 y_prev; uint256 y = D; for (uint256 k = 0; k < 255; k++) { y_prev = y; y = (y * y + c) / (2 * y + b - D); // Equality with the precision of 1 if (y > y_prev) { if (y - y_prev <= 1) { break; } } else { if (y_prev - y <= 1) { break; } } } return y; } function _calc_withdraw_one_coin(uint256 _token_amount, uint256 i) internal view returns (uint256, uint256) { // First, need to calculate // * Get current D // * Solve Eqn against y_i for D - _token_amount uint256 amp = get_A(); uint256 _fee = (fee * N_COINS) / (4 * (N_COINS - 1)); uint256[N_COINS] memory precisions = PRECISION_MUL; uint256 total_supply = token.totalSupply(); uint256[N_COINS] memory xp = _xp(); uint256 D0 = get_D(xp, amp); uint256 D1 = D0 - (_token_amount * D0) / total_supply; uint256[N_COINS] memory xp_reduced = xp; uint256 new_y = get_y_D(amp, i, xp, D1); uint256 dy_0 = (xp[i] - new_y) / precisions[i]; // w/o fees for (uint256 k = 0; k < N_COINS; k++) { uint256 dx_expected; if (k == i) { dx_expected = (xp[k] * D1) / D0 - new_y; } else { dx_expected = xp[k] - (xp[k] * D1) / D0; } xp_reduced[k] -= (_fee * dx_expected) / FEE_DENOMINATOR; } uint256 dy = xp_reduced[i] - get_y_D(amp, i, xp_reduced, D1); dy = (dy - 1) / precisions[i]; // Withdraw less to account for rounding errors return (dy, dy_0 - dy); } function calc_withdraw_one_coin(uint256 _token_amount, uint256 i) external view returns (uint256) { (uint256 dy, ) = _calc_withdraw_one_coin(_token_amount, i); return dy; } function remove_liquidity_one_coin( uint256 _token_amount, uint256 i, uint256 min_amount ) external nonReentrant { // Remove _amount of liquidity all in a form of coin i require(!is_killed, "Killed"); (uint256 dy, uint256 dy_fee) = _calc_withdraw_one_coin(_token_amount, i); require(dy >= min_amount, "Not enough coins removed"); balances[i] -= (dy + (dy_fee * admin_fee) / FEE_DENOMINATOR); token.burnFrom(msg.sender, _token_amount); // dev: insufficient funds transfer_out(coins[i], dy); emit RemoveLiquidityOne(msg.sender, i, _token_amount, dy); } function transfer_out(address coin_address, uint256 value) internal { if (coin_address == BNB_ADDRESS) { _safeTransferBNB(msg.sender, value); } else { IERC20(coin_address).safeTransfer(msg.sender, value); } } function transfer_in(address coin_address, uint256 value) internal { if (coin_address == BNB_ADDRESS) { require(value == msg.value, "Inconsistent quantity"); } else { IERC20(coin_address).safeTransferFrom(msg.sender, address(this), value); } } function _safeTransferBNB(address to, uint256 value) internal { (bool success, ) = to.call{gas: bnb_gas, value: value}(""); require(success, "BNB transfer failed"); } // Admin functions function set_bnb_gas(uint256 _bnb_gas) external onlyOwner { require(_bnb_gas >= MIN_BNB_GAS && _bnb_gas <= MAX_BNB_GAS, "Illegal gas"); bnb_gas = _bnb_gas; emit SetBNBGas(_bnb_gas); } function ramp_A(uint256 _future_A, uint256 _future_time) external onlyOwner { require(block.timestamp >= initial_A_time + MIN_RAMP_TIME, "dev : too early"); require(_future_time >= block.timestamp + MIN_RAMP_TIME, "dev: insufficient time"); uint256 _initial_A = get_A(); require(_future_A > 0 && _future_A < MAX_A, "_future_A must be between 0 and MAX_A"); require( (_future_A >= _initial_A && _future_A <= _initial_A * MAX_A_CHANGE) || (_future_A < _initial_A && _future_A * MAX_A_CHANGE >= _initial_A), "Illegal parameter _future_A" ); initial_A = _initial_A; future_A = _future_A; initial_A_time = block.timestamp; future_A_time = _future_time; emit RampA(_initial_A, _future_A, block.timestamp, _future_time); } function stop_rampget_A() external onlyOwner { uint256 current_A = get_A(); initial_A = current_A; future_A = current_A; initial_A_time = block.timestamp; future_A_time = block.timestamp; // now (block.timestamp < t1) is always False, so we return saved A emit StopRampA(current_A, block.timestamp); } function commit_new_fee(uint256 new_fee, uint256 new_admin_fee) external onlyOwner { require(admin_actions_deadline == 0, "admin_actions_deadline must be 0"); // dev: active action require(new_fee <= MAX_FEE, "dev: fee exceeds maximum"); require(new_admin_fee <= MAX_ADMIN_FEE, "dev: admin fee exceeds maximum"); admin_actions_deadline = block.timestamp + ADMIN_ACTIONS_DELAY; future_fee = new_fee; future_admin_fee = new_admin_fee; emit CommitNewFee(admin_actions_deadline, new_fee, new_admin_fee); } function apply_new_fee() external onlyOwner { require(block.timestamp >= admin_actions_deadline, "dev: insufficient time"); require(admin_actions_deadline != 0, "admin_actions_deadline should not be 0"); admin_actions_deadline = 0; fee = future_fee; admin_fee = future_admin_fee; emit NewFee(fee, admin_fee); } function revert_new_parameters() external onlyOwner { admin_actions_deadline = 0; emit RevertParameters(); } function admin_balances(uint256 i) external view returns (uint256) { if (coins[i] == BNB_ADDRESS) { return address(this).balance - balances[i]; } else { return IERC20(coins[i]).balanceOf(address(this)) - balances[i]; } } function withdraw_admin_fees() external onlyOwner { for (uint256 i = 0; i < N_COINS; i++) { uint256 value; if (coins[i] == BNB_ADDRESS) { value = address(this).balance - balances[i]; } else { value = IERC20(coins[i]).balanceOf(address(this)) - balances[i]; } if (value > 0) { transfer_out(coins[i], value); } } } function donate_admin_fees() external onlyOwner { for (uint256 i = 0; i < N_COINS; i++) { if (coins[i] == BNB_ADDRESS) { balances[i] = address(this).balance; } else { balances[i] = IERC20(coins[i]).balanceOf(address(this)); } } emit DonateAdminFees(); } function kill_me() external onlyOwner { require(kill_deadline > block.timestamp, "Exceeded deadline"); is_killed = true; emit Kill(); } function unkill_me() external onlyOwner { is_killed = false; emit Unkill(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; constructor() { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { // On the first call to nonReentrant, _notEntered will be true require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; _; // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IPancakeStableSwapLP { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); function mint(address _to, uint256 _amount) external; function burnFrom(address _to, uint256 _amount) external; function setMinter(address _newMinter) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/access/Ownable.sol"; import "@openzeppelin-4.5.0/contracts/token/ERC20/utils/SafeERC20.sol"; import "@openzeppelin-4.5.0/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin-4.5.0/contracts/security/ReentrancyGuard.sol"; import "./interfaces/IPancakeStableSwapLP.sol"; contract PancakeStableSwapThreePool is Ownable, ReentrancyGuard { using SafeERC20 for IERC20; uint256 public constant N_COINS = 3; uint256 public constant MAX_DECIMAL = 18; uint256 public constant FEE_DENOMINATOR = 1e10; uint256 public constant PRECISION = 1e18; uint256[N_COINS] public PRECISION_MUL; uint256[N_COINS] public RATES; uint256 public constant MAX_ADMIN_FEE = 1e10; uint256 public constant MAX_FEE = 5e9; uint256 public constant MAX_A = 1e6; uint256 public constant MAX_A_CHANGE = 10; uint256 public constant MIN_BNB_GAS = 2300; uint256 public constant MAX_BNB_GAS = 23000; uint256 public constant ADMIN_ACTIONS_DELAY = 3 days; uint256 public constant MIN_RAMP_TIME = 1 days; address[N_COINS] public coins; uint256[N_COINS] public balances; uint256 public fee; // fee * 1e10. uint256 public admin_fee; // admin_fee * 1e10. uint256 public bnb_gas = 4029; // transfer bnb gas. IPancakeStableSwapLP public token; address constant BNB_ADDRESS = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; bool support_BNB; uint256 public initial_A; uint256 public future_A; uint256 public initial_A_time; uint256 public future_A_time; uint256 public admin_actions_deadline; uint256 public future_fee; uint256 public future_admin_fee; uint256 public kill_deadline; uint256 public constant KILL_DEADLINE_DT = 2 * 30 days; bool public is_killed; address public immutable STABLESWAP_FACTORY; bool public isInitialized; event TokenExchange( address indexed buyer, uint256 sold_id, uint256 tokens_sold, uint256 bought_id, uint256 tokens_bought ); event AddLiquidity( address indexed provider, uint256[N_COINS] token_amounts, uint256[N_COINS] fees, uint256 invariant, uint256 token_supply ); event RemoveLiquidity( address indexed provider, uint256[N_COINS] token_amounts, uint256[N_COINS] fees, uint256 token_supply ); event RemoveLiquidityOne(address indexed provider, uint256 index, uint256 token_amount, uint256 coin_amount); event RemoveLiquidityImbalance( address indexed provider, uint256[N_COINS] token_amounts, uint256[N_COINS] fees, uint256 invariant, uint256 token_supply ); event CommitNewFee(uint256 indexed deadline, uint256 fee, uint256 admin_fee); event NewFee(uint256 fee, uint256 admin_fee); event RampA(uint256 old_A, uint256 new_A, uint256 initial_time, uint256 future_time); event StopRampA(uint256 A, uint256 t); event SetBNBGas(uint256 bnb_gas); event RevertParameters(); event DonateAdminFees(); event Kill(); event Unkill(); /** * @notice constructor */ constructor() { STABLESWAP_FACTORY = msg.sender; } /** * @notice initialize * @param _coins: Addresses of ERC20 conracts of coins (c-tokens) involved * @param _A: Amplification coefficient multiplied by n * (n - 1) * @param _fee: Fee to charge for exchanges * @param _admin_fee: Admin fee * @param _owner: Owner * @param _LP: LP address */ function initialize( address[N_COINS] memory _coins, uint256 _A, uint256 _fee, uint256 _admin_fee, address _owner, address _LP ) external { require(!isInitialized, "Operations: Already initialized"); require(msg.sender == STABLESWAP_FACTORY, "Operations: Not factory"); require(_A <= MAX_A, "_A exceeds maximum"); require(_fee <= MAX_FEE, "_fee exceeds maximum"); require(_admin_fee <= MAX_ADMIN_FEE, "_admin_fee exceeds maximum"); isInitialized = true; for (uint256 i = 0; i < N_COINS; i++) { require(_coins[i] != address(0), "ZERO Address"); uint256 coinDecimal; if (_coins[i] == BNB_ADDRESS) { coinDecimal = 18; support_BNB = true; } else { coinDecimal = IERC20Metadata(_coins[i]).decimals(); } require(coinDecimal <= MAX_DECIMAL, "The maximum decimal cannot exceed 18"); //set PRECISION_MUL and RATES PRECISION_MUL[i] = 10**(MAX_DECIMAL - coinDecimal); RATES[i] = PRECISION * PRECISION_MUL[i]; } coins = _coins; initial_A = _A; future_A = _A; fee = _fee; admin_fee = _admin_fee; kill_deadline = block.timestamp + KILL_DEADLINE_DT; token = IPancakeStableSwapLP(_LP); transferOwnership(_owner); } function get_A() internal view returns (uint256) { //Handle ramping A up or down uint256 t1 = future_A_time; uint256 A1 = future_A; if (block.timestamp < t1) { uint256 A0 = initial_A; uint256 t0 = initial_A_time; // Expressions in uint256 cannot have negative numbers, thus "if" if (A1 > A0) { return A0 + ((A1 - A0) * (block.timestamp - t0)) / (t1 - t0); } else { return A0 - ((A0 - A1) * (block.timestamp - t0)) / (t1 - t0); } } else { // when t1 == 0 or block.timestamp >= t1 return A1; } } function A() external view returns (uint256) { return get_A(); } function _xp() internal view returns (uint256[N_COINS] memory result) { result = RATES; for (uint256 i = 0; i < N_COINS; i++) { result[i] = (result[i] * balances[i]) / PRECISION; } } function _xp_mem(uint256[N_COINS] memory _balances) internal view returns (uint256[N_COINS] memory result) { result = RATES; for (uint256 i = 0; i < N_COINS; i++) { result[i] = (result[i] * _balances[i]) / PRECISION; } } function get_D(uint256[N_COINS] memory xp, uint256 amp) internal pure returns (uint256) { uint256 S; for (uint256 i = 0; i < N_COINS; i++) { S += xp[i]; } if (S == 0) { return 0; } uint256 Dprev; uint256 D = S; uint256 Ann = amp * N_COINS; for (uint256 j = 0; j < 255; j++) { uint256 D_P = D; for (uint256 k = 0; k < N_COINS; k++) { D_P = (D_P * D) / (xp[k] * N_COINS); // If division by 0, this will be borked: only withdrawal will work. And that is good } Dprev = D; D = ((Ann * S + D_P * N_COINS) * D) / ((Ann - 1) * D + (N_COINS + 1) * D_P); // Equality with the precision of 1 if (D > Dprev) { if (D - Dprev <= 1) { break; } } else { if (Dprev - D <= 1) { break; } } } return D; } function get_D_mem(uint256[N_COINS] memory _balances, uint256 amp) internal view returns (uint256) { return get_D(_xp_mem(_balances), amp); } function get_virtual_price() external view returns (uint256) { /** Returns portfolio virtual price (for calculating profit) scaled up by 1e18 */ uint256 D = get_D(_xp(), get_A()); /** D is in the units similar to DAI (e.g. converted to precision 1e18) When balanced, D = n * x_u - total virtual value of the portfolio */ uint256 token_supply = token.totalSupply(); return (D * PRECISION) / token_supply; } function calc_token_amount(uint256[N_COINS] memory amounts, bool deposit) external view returns (uint256) { /** Simplified method to calculate addition or reduction in token supply at deposit or withdrawal without taking fees into account (but looking at slippage). Needed to prevent front-running, not for precise calculations! */ uint256[N_COINS] memory _balances = balances; uint256 amp = get_A(); uint256 D0 = get_D_mem(_balances, amp); for (uint256 i = 0; i < N_COINS; i++) { if (deposit) { _balances[i] += amounts[i]; } else { _balances[i] -= amounts[i]; } } uint256 D1 = get_D_mem(_balances, amp); uint256 token_amount = token.totalSupply(); uint256 difference; if (deposit) { difference = D1 - D0; } else { difference = D0 - D1; } return (difference * token_amount) / D0; } function add_liquidity(uint256[N_COINS] memory amounts, uint256 min_mint_amount) external payable nonReentrant { //Amounts is amounts of c-tokens require(!is_killed, "Killed"); if (!support_BNB) { require(msg.value == 0, "Inconsistent quantity"); // Avoid sending BNB by mistake. } uint256[N_COINS] memory fees; uint256 _fee = (fee * N_COINS) / (4 * (N_COINS - 1)); uint256 _admin_fee = admin_fee; uint256 amp = get_A(); uint256 token_supply = token.totalSupply(); //Initial invariant uint256 D0; uint256[N_COINS] memory old_balances = balances; if (token_supply > 0) { D0 = get_D_mem(old_balances, amp); } uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1], old_balances[2]]; for (uint256 i = 0; i < N_COINS; i++) { if (token_supply == 0) { require(amounts[i] > 0, "Initial deposit requires all coins"); } // balances store amounts of c-tokens new_balances[i] = old_balances[i] + amounts[i]; } // Invariant after change uint256 D1 = get_D_mem(new_balances, amp); require(D1 > D0, "D1 must be greater than D0"); // We need to recalculate the invariant accounting for fees // to calculate fair user's share uint256 D2 = D1; if (token_supply > 0) { // Only account for fees if we are not the first to deposit for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } fees[i] = (_fee * difference) / FEE_DENOMINATOR; balances[i] = new_balances[i] - ((fees[i] * _admin_fee) / FEE_DENOMINATOR); new_balances[i] -= fees[i]; } D2 = get_D_mem(new_balances, amp); } else { balances = new_balances; } // Calculate, how much pool tokens to mint uint256 mint_amount; if (token_supply == 0) { mint_amount = D1; // Take the dust if there was any } else { mint_amount = (token_supply * (D2 - D0)) / D0; } require(mint_amount >= min_mint_amount, "Slippage screwed you"); // Take coins from the sender for (uint256 i = 0; i < N_COINS; i++) { uint256 amount = amounts[i]; address coin = coins[i]; transfer_in(coin, amount); } // Mint pool tokens token.mint(msg.sender, mint_amount); emit AddLiquidity(msg.sender, amounts, fees, D1, token_supply + mint_amount); } function get_y( uint256 i, uint256 j, uint256 x, uint256[N_COINS] memory xp_ ) internal view returns (uint256) { // x in the input is converted to the same price/precision require((i != j) && (i < N_COINS) && (j < N_COINS), "Illegal parameter"); uint256 amp = get_A(); uint256 D = get_D(xp_, amp); uint256 c = D; uint256 S_; uint256 Ann = amp * N_COINS; uint256 _x; for (uint256 k = 0; k < N_COINS; k++) { if (k == i) { _x = x; } else if (k != j) { _x = xp_[k]; } else { continue; } S_ += _x; c = (c * D) / (_x * N_COINS); } c = (c * D) / (Ann * N_COINS); uint256 b = S_ + D / Ann; // - D uint256 y_prev; uint256 y = D; for (uint256 m = 0; m < 255; m++) { y_prev = y; y = (y * y + c) / (2 * y + b - D); // Equality with the precision of 1 if (y > y_prev) { if (y - y_prev <= 1) { break; } } else { if (y_prev - y <= 1) { break; } } } return y; } function get_dy( uint256 i, uint256 j, uint256 dx ) external view returns (uint256) { // dx and dy in c-units uint256[N_COINS] memory rates = RATES; uint256[N_COINS] memory xp = _xp(); uint256 x = xp[i] + ((dx * rates[i]) / PRECISION); uint256 y = get_y(i, j, x, xp); uint256 dy = ((xp[j] - y - 1) * PRECISION) / rates[j]; uint256 _fee = (fee * dy) / FEE_DENOMINATOR; return dy - _fee; } function get_dy_underlying( uint256 i, uint256 j, uint256 dx ) external view returns (uint256) { // dx and dy in underlying units uint256[N_COINS] memory xp = _xp(); uint256[N_COINS] memory precisions = PRECISION_MUL; uint256 x = xp[i] + dx * precisions[i]; uint256 y = get_y(i, j, x, xp); uint256 dy = (xp[j] - y - 1) / precisions[j]; uint256 _fee = (fee * dy) / FEE_DENOMINATOR; return dy - _fee; } function exchange( uint256 i, uint256 j, uint256 dx, uint256 min_dy ) external payable nonReentrant { require(!is_killed, "Killed"); if (!support_BNB) { require(msg.value == 0, "Inconsistent quantity"); // Avoid sending BNB by mistake. } uint256[N_COINS] memory old_balances = balances; uint256[N_COINS] memory xp = _xp_mem(old_balances); uint256 x = xp[i] + (dx * RATES[i]) / PRECISION; uint256 y = get_y(i, j, x, xp); uint256 dy = xp[j] - y - 1; // -1 just in case there were some rounding errors uint256 dy_fee = (dy * fee) / FEE_DENOMINATOR; // Convert all to real units dy = ((dy - dy_fee) * PRECISION) / RATES[j]; require(dy >= min_dy, "Exchange resulted in fewer coins than expected"); uint256 dy_admin_fee = (dy_fee * admin_fee) / FEE_DENOMINATOR; dy_admin_fee = (dy_admin_fee * PRECISION) / RATES[j]; // Change balances exactly in same way as we change actual ERC20 coin amounts balances[i] = old_balances[i] + dx; // When rounding errors happen, we undercharge admin fee in favor of LP balances[j] = old_balances[j] - dy - dy_admin_fee; address iAddress = coins[i]; if (iAddress == BNB_ADDRESS) { require(dx == msg.value, "Inconsistent quantity"); } else { IERC20(iAddress).safeTransferFrom(msg.sender, address(this), dx); } address jAddress = coins[j]; transfer_out(jAddress, dy); emit TokenExchange(msg.sender, i, dx, j, dy); } function remove_liquidity(uint256 _amount, uint256[N_COINS] memory min_amounts) external nonReentrant { uint256 total_supply = token.totalSupply(); uint256[N_COINS] memory amounts; uint256[N_COINS] memory fees; //Fees are unused but we've got them historically in event for (uint256 i = 0; i < N_COINS; i++) { uint256 value = (balances[i] * _amount) / total_supply; require(value >= min_amounts[i], "Withdrawal resulted in fewer coins than expected"); balances[i] -= value; amounts[i] = value; transfer_out(coins[i], value); } token.burnFrom(msg.sender, _amount); // dev: insufficient funds emit RemoveLiquidity(msg.sender, amounts, fees, total_supply - _amount); } function remove_liquidity_imbalance(uint256[N_COINS] memory amounts, uint256 max_burn_amount) external nonReentrant { require(!is_killed, "Killed"); uint256 token_supply = token.totalSupply(); require(token_supply > 0, "dev: zero total supply"); uint256 _fee = (fee * N_COINS) / (4 * (N_COINS - 1)); uint256 _admin_fee = admin_fee; uint256 amp = get_A(); uint256[N_COINS] memory old_balances = balances; uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1], old_balances[2]]; uint256 D0 = get_D_mem(old_balances, amp); for (uint256 i = 0; i < N_COINS; i++) { new_balances[i] -= amounts[i]; } uint256 D1 = get_D_mem(new_balances, amp); uint256[N_COINS] memory fees; for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } fees[i] = (_fee * difference) / FEE_DENOMINATOR; balances[i] = new_balances[i] - ((fees[i] * _admin_fee) / FEE_DENOMINATOR); new_balances[i] -= fees[i]; } uint256 D2 = get_D_mem(new_balances, amp); uint256 token_amount = ((D0 - D2) * token_supply) / D0; require(token_amount > 0, "token_amount must be greater than 0"); token_amount += 1; // In case of rounding errors - make it unfavorable for the "attacker" require(token_amount <= max_burn_amount, "Slippage screwed you"); token.burnFrom(msg.sender, token_amount); // dev: insufficient funds for (uint256 i = 0; i < N_COINS; i++) { if (amounts[i] > 0) { transfer_out(coins[i], amounts[i]); } } token_supply -= token_amount; emit RemoveLiquidityImbalance(msg.sender, amounts, fees, D1, token_supply); } function get_y_D( uint256 A_, uint256 i, uint256[N_COINS] memory xp, uint256 D ) internal pure returns (uint256) { /** Calculate x[i] if one reduces D from being calculated for xp to D Done by solving quadratic equation iteratively. x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) x_1**2 + b*x_1 = c x_1 = (x_1**2 + c) / (2*x_1 + b) */ // x in the input is converted to the same price/precision require(i < N_COINS, "dev: i above N_COINS"); uint256 c = D; uint256 S_; uint256 Ann = A_ * N_COINS; uint256 _x; for (uint256 k = 0; k < N_COINS; k++) { if (k != i) { _x = xp[k]; } else { continue; } S_ += _x; c = (c * D) / (_x * N_COINS); } c = (c * D) / (Ann * N_COINS); uint256 b = S_ + D / Ann; uint256 y_prev; uint256 y = D; for (uint256 k = 0; k < 255; k++) { y_prev = y; y = (y * y + c) / (2 * y + b - D); // Equality with the precision of 1 if (y > y_prev) { if (y - y_prev <= 1) { break; } } else { if (y_prev - y <= 1) { break; } } } return y; } function _calc_withdraw_one_coin(uint256 _token_amount, uint256 i) internal view returns (uint256, uint256) { // First, need to calculate // * Get current D // * Solve Eqn against y_i for D - _token_amount uint256 amp = get_A(); uint256 _fee = (fee * N_COINS) / (4 * (N_COINS - 1)); uint256[N_COINS] memory precisions = PRECISION_MUL; uint256 total_supply = token.totalSupply(); uint256[N_COINS] memory xp = _xp(); uint256 D0 = get_D(xp, amp); uint256 D1 = D0 - (_token_amount * D0) / total_supply; uint256[N_COINS] memory xp_reduced = xp; uint256 new_y = get_y_D(amp, i, xp, D1); uint256 dy_0 = (xp[i] - new_y) / precisions[i]; // w/o fees for (uint256 k = 0; k < N_COINS; k++) { uint256 dx_expected; if (k == i) { dx_expected = (xp[k] * D1) / D0 - new_y; } else { dx_expected = xp[k] - (xp[k] * D1) / D0; } xp_reduced[k] -= (_fee * dx_expected) / FEE_DENOMINATOR; } uint256 dy = xp_reduced[i] - get_y_D(amp, i, xp_reduced, D1); dy = (dy - 1) / precisions[i]; // Withdraw less to account for rounding errors return (dy, dy_0 - dy); } function calc_withdraw_one_coin(uint256 _token_amount, uint256 i) external view returns (uint256) { (uint256 dy, ) = _calc_withdraw_one_coin(_token_amount, i); return dy; } function remove_liquidity_one_coin( uint256 _token_amount, uint256 i, uint256 min_amount ) external nonReentrant { // Remove _amount of liquidity all in a form of coin i require(!is_killed, "Killed"); (uint256 dy, uint256 dy_fee) = _calc_withdraw_one_coin(_token_amount, i); require(dy >= min_amount, "Not enough coins removed"); balances[i] -= (dy + (dy_fee * admin_fee) / FEE_DENOMINATOR); token.burnFrom(msg.sender, _token_amount); // dev: insufficient funds transfer_out(coins[i], dy); emit RemoveLiquidityOne(msg.sender, i, _token_amount, dy); } function transfer_out(address coin_address, uint256 value) internal { if (coin_address == BNB_ADDRESS) { _safeTransferBNB(msg.sender, value); } else { IERC20(coin_address).safeTransfer(msg.sender, value); } } function transfer_in(address coin_address, uint256 value) internal { if (coin_address == BNB_ADDRESS) { require(value == msg.value, "Inconsistent quantity"); } else { IERC20(coin_address).safeTransferFrom(msg.sender, address(this), value); } } function _safeTransferBNB(address to, uint256 value) internal { (bool success, ) = to.call{gas: bnb_gas, value: value}(""); require(success, "BNB transfer failed"); } // Admin functions function set_bnb_gas(uint256 _bnb_gas) external onlyOwner { require(_bnb_gas >= MIN_BNB_GAS && _bnb_gas <= MAX_BNB_GAS, "Illegal gas"); bnb_gas = _bnb_gas; emit SetBNBGas(_bnb_gas); } function ramp_A(uint256 _future_A, uint256 _future_time) external onlyOwner { require(block.timestamp >= initial_A_time + MIN_RAMP_TIME, "dev : too early"); require(_future_time >= block.timestamp + MIN_RAMP_TIME, "dev: insufficient time"); uint256 _initial_A = get_A(); require(_future_A > 0 && _future_A < MAX_A, "_future_A must be between 0 and MAX_A"); require( (_future_A >= _initial_A && _future_A <= _initial_A * MAX_A_CHANGE) || (_future_A < _initial_A && _future_A * MAX_A_CHANGE >= _initial_A), "Illegal parameter _future_A" ); initial_A = _initial_A; future_A = _future_A; initial_A_time = block.timestamp; future_A_time = _future_time; emit RampA(_initial_A, _future_A, block.timestamp, _future_time); } function stop_rampget_A() external onlyOwner { uint256 current_A = get_A(); initial_A = current_A; future_A = current_A; initial_A_time = block.timestamp; future_A_time = block.timestamp; // now (block.timestamp < t1) is always False, so we return saved A emit StopRampA(current_A, block.timestamp); } function commit_new_fee(uint256 new_fee, uint256 new_admin_fee) external onlyOwner { require(admin_actions_deadline == 0, "admin_actions_deadline must be 0"); // dev: active action require(new_fee <= MAX_FEE, "dev: fee exceeds maximum"); require(new_admin_fee <= MAX_ADMIN_FEE, "dev: admin fee exceeds maximum"); admin_actions_deadline = block.timestamp + ADMIN_ACTIONS_DELAY; future_fee = new_fee; future_admin_fee = new_admin_fee; emit CommitNewFee(admin_actions_deadline, new_fee, new_admin_fee); } function apply_new_fee() external onlyOwner { require(block.timestamp >= admin_actions_deadline, "dev: insufficient time"); require(admin_actions_deadline != 0, "admin_actions_deadline should not be 0"); admin_actions_deadline = 0; fee = future_fee; admin_fee = future_admin_fee; emit NewFee(fee, admin_fee); } function revert_new_parameters() external onlyOwner { admin_actions_deadline = 0; emit RevertParameters(); } function admin_balances(uint256 i) external view returns (uint256) { if (coins[i] == BNB_ADDRESS) { return address(this).balance - balances[i]; } else { return IERC20(coins[i]).balanceOf(address(this)) - balances[i]; } } function withdraw_admin_fees() external onlyOwner { for (uint256 i = 0; i < N_COINS; i++) { uint256 value; if (coins[i] == BNB_ADDRESS) { value = address(this).balance - balances[i]; } else { value = IERC20(coins[i]).balanceOf(address(this)) - balances[i]; } if (value > 0) { transfer_out(coins[i], value); } } } function donate_admin_fees() external onlyOwner { for (uint256 i = 0; i < N_COINS; i++) { if (coins[i] == BNB_ADDRESS) { balances[i] = address(this).balance; } else { balances[i] = IERC20(coins[i]).balanceOf(address(this)); } } emit DonateAdminFees(); } function kill_me() external onlyOwner { require(kill_deadline > block.timestamp, "Exceeded deadline"); is_killed = true; emit Kill(); } function unkill_me() external onlyOwner { is_killed = false; emit Unkill(); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/access/Ownable.sol"; import "./PancakeStableSwapThreePool.sol"; contract PancakeStableSwapThreePoolDeployer is Ownable { uint256 public constant N_COINS = 3; /** * @notice constructor */ constructor() {} // returns sorted token addresses, used to handle return values from pairs sorted in this order function sortTokens( address tokenA, address tokenB, address tokenC ) internal pure returns ( address, address, address ) { require(tokenA != tokenB && tokenA != tokenC && tokenB != tokenC, "IDENTICAL_ADDRESSES"); address tmp; if (tokenA > tokenB) { tmp = tokenA; tokenA = tokenB; tokenB = tmp; } if (tokenB > tokenC) { tmp = tokenB; tokenB = tokenC; tokenC = tmp; if (tokenA > tokenB) { tmp = tokenA; tokenA = tokenB; tokenB = tmp; } } return (tokenA, tokenB, tokenC); } /** * @notice createSwapPair * @param _tokenA: Addresses of ERC20 conracts . * @param _tokenB: Addresses of ERC20 conracts . * @param _tokenC: Addresses of ERC20 conracts . * @param _A: Amplification coefficient multiplied by n * (n - 1) * @param _fee: Fee to charge for exchanges * @param _admin_fee: Admin fee * @param _admin: Admin * @param _LP: LP */ function createSwapPair( address _tokenA, address _tokenB, address _tokenC, uint256 _A, uint256 _fee, uint256 _admin_fee, address _admin, address _LP ) external onlyOwner returns (address) { require(_tokenA != address(0) && _tokenB != address(0) && _tokenA != _tokenB, "Illegal token"); (address t0, address t1, address t2) = sortTokens(_tokenA, _tokenB, _tokenC); address[N_COINS] memory coins = [t0, t1, t2]; // create swap contract bytes memory bytecode = type(PancakeStableSwapThreePool).creationCode; bytes32 salt = keccak256(abi.encodePacked(t0, t1, t2, msg.sender, block.timestamp, block.chainid)); address swapContract; assembly { swapContract := create2(0, add(bytecode, 32), mload(bytecode), salt) } PancakeStableSwapThreePool(swapContract).initialize(coins, _A, _fee, _admin_fee, _admin, _LP); return swapContract; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/token/ERC20/utils/SafeERC20.sol"; import "../interfaces/IPancakeStableSwap.sol"; contract PancakeStableSwapTwoPoolInfo { uint256 public constant N_COINS = 2; uint256 public constant FEE_DENOMINATOR = 1e10; uint256 public constant PRECISION = 1e18; function token(address _swap) public view returns (IERC20) { return IERC20(IPancakeStableSwap(_swap).token()); } function balances(address _swap) public view returns (uint256[N_COINS] memory swapBalances) { for (uint256 i = 0; i < N_COINS; i++) { swapBalances[i] = IPancakeStableSwap(_swap).balances(i); } } function RATES(address _swap) public view returns (uint256[N_COINS] memory swapRATES) { for (uint256 i = 0; i < N_COINS; i++) { swapRATES[i] = IPancakeStableSwap(_swap).RATES(i); } } function PRECISION_MUL(address _swap) public view returns (uint256[N_COINS] memory swapPRECISION_MUL) { for (uint256 i = 0; i < N_COINS; i++) { swapPRECISION_MUL[i] = IPancakeStableSwap(_swap).PRECISION_MUL(i); } } function calc_coins_amount(address _swap, uint256 _amount) external view returns (uint256[N_COINS] memory) { uint256 total_supply = token(_swap).totalSupply(); uint256[N_COINS] memory amounts; for (uint256 i = 0; i < N_COINS; i++) { uint256 value = (IPancakeStableSwap(_swap).balances(i) * _amount) / total_supply; amounts[i] = value; } return amounts; } function get_D_mem( address _swap, uint256[N_COINS] memory _balances, uint256 amp ) public view returns (uint256) { return get_D(_xp_mem(_swap, _balances), amp); } function get_add_liquidity_mint_amount(address _swap, uint256[N_COINS] memory amounts) external view returns (uint256) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256[N_COINS] memory fees; uint256 _fee = (swap.fee() * N_COINS) / (4 * (N_COINS - 1)); uint256 amp = swap.A(); uint256 token_supply = token(_swap).totalSupply(); //Initial invariant uint256 D0; uint256[N_COINS] memory old_balances = balances(_swap); if (token_supply > 0) { D0 = get_D_mem(_swap, old_balances, amp); } uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1]]; for (uint256 i = 0; i < N_COINS; i++) { if (token_supply == 0) { require(amounts[i] > 0, "Initial deposit requires all coins"); } // balances store amounts of c-tokens new_balances[i] = old_balances[i] + amounts[i]; } // Invariant after change uint256 D1 = get_D_mem(_swap, new_balances, amp); require(D1 > D0, "D1 must be greater than D0"); // We need to recalculate the invariant accounting for fees // to calculate fair user's share uint256 D2 = D1; if (token_supply > 0) { // Only account for fees if we are not the first to deposit for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } fees[i] = (_fee * difference) / FEE_DENOMINATOR; new_balances[i] -= fees[i]; } D2 = get_D_mem(_swap, new_balances, amp); } // Calculate, how much pool tokens to mint uint256 mint_amount; if (token_supply == 0) { mint_amount = D1; // Take the dust if there was any } else { mint_amount = (token_supply * (D2 - D0)) / D0; } return mint_amount; } function get_add_liquidity_fee(address _swap, uint256[N_COINS] memory amounts) external view returns (uint256[N_COINS] memory liquidityFee) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256 _fee = (swap.fee() * N_COINS) / (4 * (N_COINS - 1)); uint256 _admin_fee = swap.admin_fee(); uint256 amp = swap.A(); uint256 token_supply = token(_swap).totalSupply(); //Initial invariant uint256 D0; uint256[N_COINS] memory old_balances = balances(_swap); if (token_supply > 0) { D0 = get_D_mem(_swap, old_balances, amp); } uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1]]; for (uint256 i = 0; i < N_COINS; i++) { if (token_supply == 0) { require(amounts[i] > 0, "Initial deposit requires all coins"); } new_balances[i] = old_balances[i] + amounts[i]; } // Invariant after change uint256 D1 = get_D_mem(_swap, new_balances, amp); require(D1 > D0, "D1 must be greater than D0"); if (token_supply > 0) { // Only account for fees if we are not the first to deposit for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } uint256 coinFee; coinFee = (_fee * difference) / FEE_DENOMINATOR; liquidityFee[i] = ((coinFee * _admin_fee) / FEE_DENOMINATOR); } } } function get_remove_liquidity_imbalance_fee(address _swap, uint256[N_COINS] memory amounts) external view returns (uint256[N_COINS] memory liquidityFee) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256 _fee = (swap.fee() * N_COINS) / (4 * (N_COINS - 1)); uint256 _admin_fee = swap.admin_fee(); uint256 amp = swap.A(); uint256[N_COINS] memory old_balances = balances(_swap); uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1]]; uint256 D0 = get_D_mem(_swap, old_balances, amp); for (uint256 i = 0; i < N_COINS; i++) { new_balances[i] -= amounts[i]; } uint256 D1 = get_D_mem(_swap, new_balances, amp); for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } uint256 coinFee; coinFee = (_fee * difference) / FEE_DENOMINATOR; liquidityFee[i] = ((coinFee * _admin_fee) / FEE_DENOMINATOR); } } function _xp_mem(address _swap, uint256[N_COINS] memory _balances) public view returns (uint256[N_COINS] memory result) { result = RATES(_swap); for (uint256 i = 0; i < N_COINS; i++) { result[i] = (result[i] * _balances[i]) / PRECISION; } } function get_D(uint256[N_COINS] memory xp, uint256 amp) internal pure returns (uint256) { uint256 S; for (uint256 i = 0; i < N_COINS; i++) { S += xp[i]; } if (S == 0) { return 0; } uint256 Dprev; uint256 D = S; uint256 Ann = amp * N_COINS; for (uint256 j = 0; j < 255; j++) { uint256 D_P = D; for (uint256 k = 0; k < N_COINS; k++) { D_P = (D_P * D) / (xp[k] * N_COINS); // If division by 0, this will be borked: only withdrawal will work. And that is good } Dprev = D; D = ((Ann * S + D_P * N_COINS) * D) / ((Ann - 1) * D + (N_COINS + 1) * D_P); // Equality with the precision of 1 if (D > Dprev) { if (D - Dprev <= 1) { break; } } else { if (Dprev - D <= 1) { break; } } } return D; } function get_y( address _swap, uint256 i, uint256 j, uint256 x, uint256[N_COINS] memory xp_ ) internal view returns (uint256) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256 amp = swap.A(); uint256 D = get_D(xp_, amp); uint256 c = D; uint256 S_; uint256 Ann = amp * N_COINS; uint256 _x; for (uint256 k = 0; k < N_COINS; k++) { if (k == i) { _x = x; } else if (k != j) { _x = xp_[k]; } else { continue; } S_ += _x; c = (c * D) / (_x * N_COINS); } c = (c * D) / (Ann * N_COINS); uint256 b = S_ + D / Ann; // - D uint256 y_prev; uint256 y = D; for (uint256 m = 0; m < 255; m++) { y_prev = y; y = (y * y + c) / (2 * y + b - D); // Equality with the precision of 1 if (y > y_prev) { if (y - y_prev <= 1) { break; } } else { if (y_prev - y <= 1) { break; } } } return y; } function get_exchange_fee( address _swap, uint256 i, uint256 j, uint256 dx ) external view returns (uint256 exFee, uint256 exAdminFee) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256[N_COINS] memory old_balances = balances(_swap); uint256[N_COINS] memory xp = _xp_mem(_swap, old_balances); uint256[N_COINS] memory rates = RATES(_swap); uint256 x = xp[i] + (dx * rates[i]) / PRECISION; uint256 y = get_y(_swap, i, j, x, xp); uint256 dy = xp[j] - y - 1; // -1 just in case there were some rounding errors uint256 dy_fee = (dy * swap.fee()) / FEE_DENOMINATOR; uint256 dy_admin_fee = (dy_fee * swap.admin_fee()) / FEE_DENOMINATOR; dy_fee = (dy_fee * PRECISION) / rates[j]; dy_admin_fee = (dy_admin_fee * PRECISION) / rates[j]; exFee = dy_fee; exAdminFee = dy_admin_fee; } function _xp(address _swap) internal view returns (uint256[N_COINS] memory result) { result = RATES(_swap); for (uint256 i = 0; i < N_COINS; i++) { result[i] = (result[i] * IPancakeStableSwap(_swap).balances(i)) / PRECISION; } } function get_y_D( uint256 A_, uint256 i, uint256[N_COINS] memory xp, uint256 D ) internal pure returns (uint256) { /** Calculate x[i] if one reduces D from being calculated for xp to D Done by solving quadratic equation iteratively. x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) x_1**2 + b*x_1 = c x_1 = (x_1**2 + c) / (2*x_1 + b) */ // x in the input is converted to the same price/precision require(i < N_COINS, "dev: i above N_COINS"); uint256 c = D; uint256 S_; uint256 Ann = A_ * N_COINS; uint256 _x; for (uint256 k = 0; k < N_COINS; k++) { if (k != i) { _x = xp[k]; } else { continue; } S_ += _x; c = (c * D) / (_x * N_COINS); } c = (c * D) / (Ann * N_COINS); uint256 b = S_ + D / Ann; uint256 y_prev; uint256 y = D; for (uint256 k = 0; k < 255; k++) { y_prev = y; y = (y * y + c) / (2 * y + b - D); // Equality with the precision of 1 if (y > y_prev) { if (y - y_prev <= 1) { break; } } else { if (y_prev - y <= 1) { break; } } } return y; } function _calc_withdraw_one_coin( address _swap, uint256 _token_amount, uint256 i ) internal view returns (uint256, uint256) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256 amp = swap.A(); uint256 _fee = (swap.fee() * N_COINS) / (4 * (N_COINS - 1)); uint256[N_COINS] memory precisions = PRECISION_MUL(_swap); uint256[N_COINS] memory xp = _xp(_swap); uint256 D0 = get_D(xp, amp); uint256 D1 = D0 - (_token_amount * D0) / (token(_swap).totalSupply()); uint256[N_COINS] memory xp_reduced = xp; uint256 new_y = get_y_D(amp, i, xp, D1); uint256 dy_0 = (xp[i] - new_y) / precisions[i]; // w/o fees for (uint256 k = 0; k < N_COINS; k++) { uint256 dx_expected; if (k == i) { dx_expected = (xp[k] * D1) / D0 - new_y; } else { dx_expected = xp[k] - (xp[k] * D1) / D0; } xp_reduced[k] -= (_fee * dx_expected) / FEE_DENOMINATOR; } uint256 dy = xp_reduced[i] - get_y_D(amp, i, xp_reduced, D1); dy = (dy - 1) / precisions[i]; // Withdraw less to account for rounding errors return (dy, dy_0 - dy); } function get_remove_liquidity_one_coin_fee( address _swap, uint256 _token_amount, uint256 i ) external view returns (uint256 adminFee) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); (, uint256 dy_fee) = _calc_withdraw_one_coin(_swap, _token_amount, i); adminFee = (dy_fee * swap.admin_fee()) / FEE_DENOMINATOR; } function get_dx( address _swap, uint256 i, uint256 j, uint256 dy, uint256 max_dx ) external view returns (uint256) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256[N_COINS] memory old_balances = balances(_swap); uint256[N_COINS] memory xp = _xp_mem(_swap, old_balances); uint256 dy_with_fee = (dy * FEE_DENOMINATOR) / (FEE_DENOMINATOR - swap.fee()); require(dy_with_fee < old_balances[j], "Excess balance"); uint256[N_COINS] memory rates = RATES(_swap); uint256 y = xp[j] - (dy_with_fee * rates[j]) / PRECISION; uint256 x = get_y(_swap, j, i, y, xp); uint256 dx = x - xp[i]; // Convert all to real units dx = (dx * PRECISION) / rates[i] + 1; // +1 for round lose. require(dx <= max_dx, "Exchange resulted in fewer coins than expected"); return dx; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/token/ERC20/utils/SafeERC20.sol"; import "../interfaces/IPancakeStableSwap.sol"; contract PancakeStableSwapThreePoolInfo { uint256 public constant N_COINS = 3; uint256 public constant FEE_DENOMINATOR = 1e10; uint256 public constant PRECISION = 1e18; function token(address _swap) public view returns (IERC20) { return IERC20(IPancakeStableSwap(_swap).token()); } function balances(address _swap) public view returns (uint256[N_COINS] memory swapBalances) { for (uint256 i = 0; i < N_COINS; i++) { swapBalances[i] = IPancakeStableSwap(_swap).balances(i); } } function RATES(address _swap) public view returns (uint256[N_COINS] memory swapRATES) { for (uint256 i = 0; i < N_COINS; i++) { swapRATES[i] = IPancakeStableSwap(_swap).RATES(i); } } function PRECISION_MUL(address _swap) public view returns (uint256[N_COINS] memory swapPRECISION_MUL) { for (uint256 i = 0; i < N_COINS; i++) { swapPRECISION_MUL[i] = IPancakeStableSwap(_swap).PRECISION_MUL(i); } } function calc_coins_amount(address _swap, uint256 _amount) external view returns (uint256[N_COINS] memory) { uint256 total_supply = token(_swap).totalSupply(); uint256[N_COINS] memory amounts; for (uint256 i = 0; i < N_COINS; i++) { uint256 value = (IPancakeStableSwap(_swap).balances(i) * _amount) / total_supply; amounts[i] = value; } return amounts; } function get_D_mem( address _swap, uint256[N_COINS] memory _balances, uint256 amp ) public view returns (uint256) { return get_D(_xp_mem(_swap, _balances), amp); } function get_add_liquidity_mint_amount(address _swap, uint256[N_COINS] memory amounts) external view returns (uint256) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256[N_COINS] memory fees; uint256 _fee = (swap.fee() * N_COINS) / (4 * (N_COINS - 1)); uint256 amp = swap.A(); uint256 token_supply = token(_swap).totalSupply(); //Initial invariant uint256 D0; uint256[N_COINS] memory old_balances = balances(_swap); if (token_supply > 0) { D0 = get_D_mem(_swap, old_balances, amp); } uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1], old_balances[2]]; for (uint256 i = 0; i < N_COINS; i++) { if (token_supply == 0) { require(amounts[i] > 0, "Initial deposit requires all coins"); } // balances store amounts of c-tokens new_balances[i] = old_balances[i] + amounts[i]; } // Invariant after change uint256 D1 = get_D_mem(_swap, new_balances, amp); require(D1 > D0, "D1 must be greater than D0"); // We need to recalculate the invariant accounting for fees // to calculate fair user's share uint256 D2 = D1; if (token_supply > 0) { // Only account for fees if we are not the first to deposit for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } fees[i] = (_fee * difference) / FEE_DENOMINATOR; new_balances[i] -= fees[i]; } D2 = get_D_mem(_swap, new_balances, amp); } // Calculate, how much pool tokens to mint uint256 mint_amount; if (token_supply == 0) { mint_amount = D1; // Take the dust if there was any } else { mint_amount = (token_supply * (D2 - D0)) / D0; } return mint_amount; } function get_add_liquidity_fee(address _swap, uint256[N_COINS] memory amounts) external view returns (uint256[N_COINS] memory liquidityFee) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256 _fee = (swap.fee() * N_COINS) / (4 * (N_COINS - 1)); uint256 _admin_fee = swap.admin_fee(); uint256 amp = swap.A(); uint256 token_supply = token(_swap).totalSupply(); //Initial invariant uint256 D0; uint256[N_COINS] memory old_balances = balances(_swap); if (token_supply > 0) { D0 = get_D_mem(_swap, old_balances, amp); } uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1], old_balances[2]]; for (uint256 i = 0; i < N_COINS; i++) { if (token_supply == 0) { require(amounts[i] > 0, "Initial deposit requires all coins"); } new_balances[i] = old_balances[i] + amounts[i]; } // Invariant after change uint256 D1 = get_D_mem(_swap, new_balances, amp); require(D1 > D0, "D1 must be greater than D0"); if (token_supply > 0) { // Only account for fees if we are not the first to deposit for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } uint256 coinFee; coinFee = (_fee * difference) / FEE_DENOMINATOR; liquidityFee[i] = ((coinFee * _admin_fee) / FEE_DENOMINATOR); } } } function get_remove_liquidity_imbalance_fee(address _swap, uint256[N_COINS] memory amounts) external view returns (uint256[N_COINS] memory liquidityFee) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256 _fee = (swap.fee() * N_COINS) / (4 * (N_COINS - 1)); uint256 _admin_fee = swap.admin_fee(); uint256 amp = swap.A(); uint256[N_COINS] memory old_balances = balances(_swap); uint256[N_COINS] memory new_balances = [old_balances[0], old_balances[1], old_balances[2]]; uint256 D0 = get_D_mem(_swap, old_balances, amp); for (uint256 i = 0; i < N_COINS; i++) { new_balances[i] -= amounts[i]; } uint256 D1 = get_D_mem(_swap, new_balances, amp); for (uint256 i = 0; i < N_COINS; i++) { uint256 ideal_balance = (D1 * old_balances[i]) / D0; uint256 difference; if (ideal_balance > new_balances[i]) { difference = ideal_balance - new_balances[i]; } else { difference = new_balances[i] - ideal_balance; } uint256 coinFee; coinFee = (_fee * difference) / FEE_DENOMINATOR; liquidityFee[i] = ((coinFee * _admin_fee) / FEE_DENOMINATOR); } } function _xp_mem(address _swap, uint256[N_COINS] memory _balances) public view returns (uint256[N_COINS] memory result) { result = RATES(_swap); for (uint256 i = 0; i < N_COINS; i++) { result[i] = (result[i] * _balances[i]) / PRECISION; } } function get_D(uint256[N_COINS] memory xp, uint256 amp) internal pure returns (uint256) { uint256 S; for (uint256 i = 0; i < N_COINS; i++) { S += xp[i]; } if (S == 0) { return 0; } uint256 Dprev; uint256 D = S; uint256 Ann = amp * N_COINS; for (uint256 j = 0; j < 255; j++) { uint256 D_P = D; for (uint256 k = 0; k < N_COINS; k++) { D_P = (D_P * D) / (xp[k] * N_COINS); // If division by 0, this will be borked: only withdrawal will work. And that is good } Dprev = D; D = ((Ann * S + D_P * N_COINS) * D) / ((Ann - 1) * D + (N_COINS + 1) * D_P); // Equality with the precision of 1 if (D > Dprev) { if (D - Dprev <= 1) { break; } } else { if (Dprev - D <= 1) { break; } } } return D; } function get_y( address _swap, uint256 i, uint256 j, uint256 x, uint256[N_COINS] memory xp_ ) internal view returns (uint256) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256 amp = swap.A(); uint256 D = get_D(xp_, amp); uint256 c = D; uint256 S_; uint256 Ann = amp * N_COINS; uint256 _x; for (uint256 k = 0; k < N_COINS; k++) { if (k == i) { _x = x; } else if (k != j) { _x = xp_[k]; } else { continue; } S_ += _x; c = (c * D) / (_x * N_COINS); } c = (c * D) / (Ann * N_COINS); uint256 b = S_ + D / Ann; // - D uint256 y_prev; uint256 y = D; for (uint256 m = 0; m < 255; m++) { y_prev = y; y = (y * y + c) / (2 * y + b - D); // Equality with the precision of 1 if (y > y_prev) { if (y - y_prev <= 1) { break; } } else { if (y_prev - y <= 1) { break; } } } return y; } function get_exchange_fee( address _swap, uint256 i, uint256 j, uint256 dx ) external view returns (uint256 exFee, uint256 exAdminFee) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256[N_COINS] memory old_balances = balances(_swap); uint256[N_COINS] memory xp = _xp_mem(_swap, old_balances); uint256[N_COINS] memory rates = RATES(_swap); uint256 x = xp[i] + (dx * rates[i]) / PRECISION; uint256 y = get_y(_swap, i, j, x, xp); uint256 dy = xp[j] - y - 1; // -1 just in case there were some rounding errors uint256 dy_fee = (dy * swap.fee()) / FEE_DENOMINATOR; uint256 dy_admin_fee = (dy_fee * swap.admin_fee()) / FEE_DENOMINATOR; dy_fee = (dy_fee * PRECISION) / rates[j]; dy_admin_fee = (dy_admin_fee * PRECISION) / rates[j]; exFee = dy_fee; exAdminFee = dy_admin_fee; } function _xp(address _swap) internal view returns (uint256[N_COINS] memory result) { result = RATES(_swap); for (uint256 i = 0; i < N_COINS; i++) { result[i] = (result[i] * IPancakeStableSwap(_swap).balances(i)) / PRECISION; } } function get_y_D( uint256 A_, uint256 i, uint256[N_COINS] memory xp, uint256 D ) internal pure returns (uint256) { /** Calculate x[i] if one reduces D from being calculated for xp to D Done by solving quadratic equation iteratively. x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A) x_1**2 + b*x_1 = c x_1 = (x_1**2 + c) / (2*x_1 + b) */ // x in the input is converted to the same price/precision require(i < N_COINS, "dev: i above N_COINS"); uint256 c = D; uint256 S_; uint256 Ann = A_ * N_COINS; uint256 _x; for (uint256 k = 0; k < N_COINS; k++) { if (k != i) { _x = xp[k]; } else { continue; } S_ += _x; c = (c * D) / (_x * N_COINS); } c = (c * D) / (Ann * N_COINS); uint256 b = S_ + D / Ann; uint256 y_prev; uint256 y = D; for (uint256 k = 0; k < 255; k++) { y_prev = y; y = (y * y + c) / (2 * y + b - D); // Equality with the precision of 1 if (y > y_prev) { if (y - y_prev <= 1) { break; } } else { if (y_prev - y <= 1) { break; } } } return y; } function _calc_withdraw_one_coin( address _swap, uint256 _token_amount, uint256 i ) internal view returns (uint256, uint256) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256 amp = swap.A(); uint256 _fee = (swap.fee() * N_COINS) / (4 * (N_COINS - 1)); uint256[N_COINS] memory precisions = PRECISION_MUL(_swap); uint256[N_COINS] memory xp = _xp(_swap); uint256 D0 = get_D(xp, amp); uint256 D1 = D0 - (_token_amount * D0) / (token(_swap).totalSupply()); uint256[N_COINS] memory xp_reduced = xp; uint256 new_y = get_y_D(amp, i, xp, D1); uint256 dy_0 = (xp[i] - new_y) / precisions[i]; // w/o fees for (uint256 k = 0; k < N_COINS; k++) { uint256 dx_expected; if (k == i) { dx_expected = (xp[k] * D1) / D0 - new_y; } else { dx_expected = xp[k] - (xp[k] * D1) / D0; } xp_reduced[k] -= (_fee * dx_expected) / FEE_DENOMINATOR; } uint256 dy = xp_reduced[i] - get_y_D(amp, i, xp_reduced, D1); dy = (dy - 1) / precisions[i]; // Withdraw less to account for rounding errors return (dy, dy_0 - dy); } function get_remove_liquidity_one_coin_fee( address _swap, uint256 _token_amount, uint256 i ) external view returns (uint256 adminFee) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); (, uint256 dy_fee) = _calc_withdraw_one_coin(_swap, _token_amount, i); adminFee = (dy_fee * swap.admin_fee()) / FEE_DENOMINATOR; } function get_dx( address _swap, uint256 i, uint256 j, uint256 dy, uint256 max_dx ) external view returns (uint256) { IPancakeStableSwap swap = IPancakeStableSwap(_swap); uint256[N_COINS] memory old_balances = balances(_swap); uint256[N_COINS] memory xp = _xp_mem(_swap, old_balances); uint256 dy_with_fee = (dy * FEE_DENOMINATOR) / (FEE_DENOMINATOR - swap.fee()); require(dy_with_fee < old_balances[j], "Excess balance"); uint256[N_COINS] memory rates = RATES(_swap); uint256 y = xp[j] - (dy_with_fee * rates[j]) / PRECISION; uint256 x = get_y(_swap, j, i, y, xp); uint256 dx = x - xp[i]; // Convert all to real units dx = (dx * PRECISION) / rates[i] + 1; // +1 for round lose. require(dx <= max_dx, "Exchange resulted in fewer coins than expected"); return dx; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/token/ERC20/utils/SafeERC20.sol"; import "../interfaces/IPancakeStableSwapInfo.sol"; import "../interfaces/IPancakeStableSwap.sol"; contract PancakeStableSwapInfo { IPancakeStableSwapInfo public immutable twoPoolInfo; IPancakeStableSwapInfo public immutable threePoolInfo; constructor(IPancakeStableSwapInfo _twoPoolInfo, IPancakeStableSwapInfo _threePoolInfo) { twoPoolInfo = _twoPoolInfo; threePoolInfo = _threePoolInfo; } function get_dx( address _swap, uint256 i, uint256 j, uint256 dy, uint256 max_dx ) external view returns (uint256 dx) { uint256 N_COINS = IPancakeStableSwap(_swap).N_COINS(); if (N_COINS == 2) { dx = twoPoolInfo.get_dx(_swap, i, j, dy, max_dx); } else if (N_COINS == 3) { dx = threePoolInfo.get_dx(_swap, i, j, dy, max_dx); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IPancakeStableSwapInfo { function get_dx( address _swap, uint256 i, uint256 j, uint256 dy, uint256 max_dx ) external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * The default value of {decimals} is 18. To select a different value for * {decimals} you should overload it. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless this function is * overridden; * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom( address from, address to, uint256 amount ) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, _allowances[owner][spender] + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = _allowances[owner][spender]; require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `sender` to `recipient`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer( address from, address to, uint256 amount ) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; } _balances[to] += amount; emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; _balances[account] += amount; emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; } _totalSupply -= amount; emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve( address owner, address spender, uint256 amount ) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Spend `amount` form the allowance of `owner` toward `spender`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 amount ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer( address from, address to, uint256 amount ) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer( address from, address to, uint256 amount ) internal virtual {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/token/ERC20/ERC20.sol"; contract Token is ERC20 { uint8 private immutable newDecimal; constructor( string memory _name, string memory _symbol, uint8 _decimal ) ERC20(_name, _symbol) { newDecimal = _decimal; } function decimals() public view override returns (uint8) { return newDecimal; } function mint(address _to, uint256 _amount) external { _mint(_to, _amount); } function burnFrom(address _to, uint256 _amount) external { _burn(_to, _amount); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/access/Ownable.sol"; import "./PancakeStableSwapLP.sol"; contract PancakeStableSwapLPFactory is Ownable { event NewStableSwapLP(address indexed swapLPContract, address tokenA, address tokenB, address tokenC); constructor() {} /** * @notice createSwapLP * @param _tokenA: Addresses of ERC20 conracts . * @param _tokenB: Addresses of ERC20 conracts . * @param _tokenC: Addresses of ERC20 conracts . * @param _minter: Minter address */ function createSwapLP( address _tokenA, address _tokenB, address _tokenC, address _minter ) external onlyOwner returns (address) { // create LP token bytes memory bytecode = type(PancakeStableSwapLP).creationCode; bytes32 salt = keccak256( abi.encodePacked(_tokenA, _tokenB, _tokenC, msg.sender, block.timestamp, block.chainid) ); address lpToken; assembly { lpToken := create2(0, add(bytecode, 32), mload(bytecode), salt) } PancakeStableSwapLP(lpToken).setMinter(_minter); emit NewStableSwapLP(lpToken, _tokenA, _tokenB, _tokenC); return lpToken; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/token/ERC20/ERC20.sol"; contract MockToken is ERC20 { constructor() ERC20("Binance USD", "BUSD") { // _mint(msg.sender, 100000 ether); } function decimals() public pure override returns (uint8) { return 18; } function mint(address _to, uint256 _amount) external { _mint(_to, _amount); } function burnFrom(address _to, uint256 _amount) external { _burn(_to, _amount); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/access/Ownable.sol"; import "./interfaces/IPancakeStableSwap.sol"; import "./interfaces/IPancakeStableSwapLP.sol"; import "./interfaces/IPancakeStableSwapDeployer.sol"; import "./interfaces/IPancakeStableSwapLPFactory.sol"; contract PancakeStableSwapFactory is Ownable { struct StableSwapPairInfo { address swapContract; address token0; address token1; address LPContract; } struct StableSwapThreePoolPairInfo { address swapContract; address token0; address token1; address token2; address LPContract; } mapping(address => mapping(address => mapping(address => StableSwapThreePoolPairInfo))) public stableSwapPairInfo; // Query three pool pair infomation by two tokens. mapping(address => mapping(address => StableSwapThreePoolPairInfo)) threePoolInfo; mapping(uint256 => address) public swapPairContract; IPancakeStableSwapLPFactory public immutable LPFactory; IPancakeStableSwapDeployer public immutable SwapTwoPoolDeployer; IPancakeStableSwapDeployer public immutable SwapThreePoolDeployer; address constant ZEROADDRESS = address(0); uint256 public pairLength; event NewStableSwapPair(address indexed swapContract, address tokenA, address tokenB, address tokenC, address LP); /** * @notice constructor * _LPFactory: LP factory * _SwapTwoPoolDeployer: Swap two pool deployer * _SwapThreePoolDeployer: Swap three pool deployer */ constructor( IPancakeStableSwapLPFactory _LPFactory, IPancakeStableSwapDeployer _SwapTwoPoolDeployer, IPancakeStableSwapDeployer _SwapThreePoolDeployer ) { LPFactory = _LPFactory; SwapTwoPoolDeployer = _SwapTwoPoolDeployer; SwapThreePoolDeployer = _SwapThreePoolDeployer; } // returns sorted token addresses, used to handle return values from pairs sorted in this order function sortTokens(address tokenA, address tokenB) internal pure returns (address token0, address token1) { require(tokenA != tokenB, "IDENTICAL_ADDRESSES"); (token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB, tokenA); } function sortTokens( address tokenA, address tokenB, address tokenC ) internal pure returns ( address, address, address ) { require(tokenA != tokenB && tokenA != tokenC && tokenB != tokenC, "IDENTICAL_ADDRESSES"); address tmp; if (tokenA > tokenB) { tmp = tokenA; tokenA = tokenB; tokenB = tmp; } if (tokenB > tokenC) { tmp = tokenB; tokenB = tokenC; tokenC = tmp; if (tokenA > tokenB) { tmp = tokenA; tokenA = tokenB; tokenB = tmp; } } return (tokenA, tokenB, tokenC); } /** * @notice createSwapPair * @param _tokenA: Addresses of ERC20 conracts . * @param _tokenB: Addresses of ERC20 conracts . * @param _A: Amplification coefficient multiplied by n * (n - 1) * @param _fee: Fee to charge for exchanges * @param _admin_fee: Admin fee */ function createSwapPair( address _tokenA, address _tokenB, uint256 _A, uint256 _fee, uint256 _admin_fee ) external onlyOwner { require(_tokenA != ZEROADDRESS && _tokenB != ZEROADDRESS && _tokenA != _tokenB, "Illegal token"); (address t0, address t1) = sortTokens(_tokenA, _tokenB); address LP = LPFactory.createSwapLP(t0, t1, ZEROADDRESS, address(this)); address swapContract = SwapTwoPoolDeployer.createSwapPair(t0, t1, _A, _fee, _admin_fee, msg.sender, LP); IPancakeStableSwapLP(LP).setMinter(swapContract); addPairInfoInternal(swapContract, t0, t1, ZEROADDRESS, LP); } /** * @notice createThreePoolPair * @param _tokenA: Addresses of ERC20 conracts . * @param _tokenB: Addresses of ERC20 conracts . * @param _tokenC: Addresses of ERC20 conracts . * @param _A: Amplification coefficient multiplied by n * (n - 1) * @param _fee: Fee to charge for exchanges * @param _admin_fee: Admin fee */ function createThreePoolPair( address _tokenA, address _tokenB, address _tokenC, uint256 _A, uint256 _fee, uint256 _admin_fee ) external onlyOwner { require( _tokenA != ZEROADDRESS && _tokenB != ZEROADDRESS && _tokenC != ZEROADDRESS && _tokenA != _tokenB && _tokenA != _tokenC && _tokenB != _tokenC, "Illegal token" ); (address t0, address t1, address t2) = sortTokens(_tokenA, _tokenB, _tokenC); address LP = LPFactory.createSwapLP(t0, t1, t2, address(this)); address swapContract = SwapThreePoolDeployer.createSwapPair(t0, t1, t2, _A, _fee, _admin_fee, msg.sender, LP); IPancakeStableSwapLP(LP).setMinter(swapContract); addPairInfoInternal(swapContract, t0, t1, t2, LP); } function addPairInfoInternal( address _swapContract, address _t0, address _t1, address _t2, address _LP ) internal { StableSwapThreePoolPairInfo storage info = stableSwapPairInfo[_t0][_t1][_t2]; info.swapContract = _swapContract; info.token0 = _t0; info.token1 = _t1; info.token2 = _t2; info.LPContract = _LP; swapPairContract[pairLength] = _swapContract; pairLength += 1; if (_t2 != ZEROADDRESS) { addThreePoolPairInfo(_t0, _t1, _t2, info); } emit NewStableSwapPair(_swapContract, _t0, _t1, _t2, _LP); } function addThreePoolPairInfo( address _t0, address _t1, address _t2, StableSwapThreePoolPairInfo memory info ) internal { threePoolInfo[_t0][_t1] = info; threePoolInfo[_t0][_t2] = info; threePoolInfo[_t1][_t2] = info; } function addPairInfo(address _swapContract) external onlyOwner { IPancakeStableSwap swap = IPancakeStableSwap(_swapContract); uint256 N_COINS = swap.N_COINS(); if (N_COINS == 2) { addPairInfoInternal(_swapContract, swap.coins(0), swap.coins(1), ZEROADDRESS, swap.token()); } else if (N_COINS == 3) { addPairInfoInternal(_swapContract, swap.coins(0), swap.coins(1), swap.coins(2), swap.token()); } } function getPairInfo(address _tokenA, address _tokenB) external view returns (StableSwapPairInfo memory info) { (address t0, address t1) = sortTokens(_tokenA, _tokenB); StableSwapThreePoolPairInfo memory pairInfo = stableSwapPairInfo[t0][t1][ZEROADDRESS]; info.swapContract = pairInfo.swapContract; info.token0 = pairInfo.token0; info.token1 = pairInfo.token1; info.LPContract = pairInfo.LPContract; } function getThreePoolPairInfo(address _tokenA, address _tokenB) external view returns (StableSwapThreePoolPairInfo memory info) { (address t0, address t1) = sortTokens(_tokenA, _tokenB); info = threePoolInfo[t0][t1]; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IPancakeStableSwapDeployer { function createSwapPair( address _tokenA, address _tokenB, uint256 _A, uint256 _fee, uint256 _admin_fee, address _admin, address _LP ) external returns (address); function createSwapPair( address _tokenA, address _tokenB, address _tokenC, uint256 _A, uint256 _fee, uint256 _admin_fee, address _admin, address _LP ) external returns (address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IPancakeStableSwapLPFactory { function createSwapLP( address _tokenA, address _tokenB, address _tokenC, address _minter ) external returns (address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; import "@openzeppelin-4.5.0/contracts/access/Ownable.sol"; import "./interfaces/IPancakeStableSwapFactory.sol"; import "./interfaces/IPancakeStableSwap.sol"; contract PancakeStableSwapFactoryOwner is Ownable { IPancakeStableSwapFactory public immutable PancakeStableSwapFactory; // user can deploy new stable swap pair with permission. mapping(address => bool) public deployPermission; event UpdatePermission(address indexed user, bool permission); event NewStableSwapPair(address indexed user, address swapContract, address lpContract); error ZeroAddress(); error NoPermission(); error PairAlreadyExist(address swapContract); modifier onlyPermission() { if (!deployPermission[msg.sender]) { revert NoPermission(); } _; } /** * @notice constructor * _factory : PancakeStableSwapFactory */ constructor(IPancakeStableSwapFactory _factory) { PancakeStableSwapFactory = _factory; } struct PermissionConfig { address user; bool permission; } /** * @notice setPermission * @param _permissions : PermissionConfig array. */ function setPermission(PermissionConfig[] calldata _permissions) external onlyOwner { for (uint256 i = 0; i < _permissions.length; i++) { PermissionConfig memory currentPermissionConfig = _permissions[i]; if (currentPermissionConfig.user == address(0)) { revert ZeroAddress(); } deployPermission[currentPermissionConfig.user] = currentPermissionConfig.permission; emit UpdatePermission(currentPermissionConfig.user, currentPermissionConfig.permission); } } /** * @notice createSwapPairWithPermission * @dev Create a new stable swap pair with permission. * @dev Can only create pair which does not exist. * @param _tokenA : Addresses of ERC20 conracts . * @param _tokenB : Addresses of ERC20 conracts . * @param _A : Amplification coefficient multiplied by n * (n - 1) * @param _fee : Fee to charge for exchanges * @param _admin_fee : Admin fee */ function createSwapPairWithPermission( address _tokenA, address _tokenB, uint256 _A, uint256 _fee, uint256 _admin_fee ) external onlyPermission { _checkExistPair(_tokenA, _tokenB); _createSwapPair(_tokenA, _tokenB, _A, _fee, _admin_fee); } /** * @notice createSwapPair * @dev Create a new stable swap pair by owner. * @dev Can create pair which exists. * @dev It will update the stableSwapPairInfo in PancakeStableSwapFactory when deploying existing pair, and there is no effect on existing pairs. * @param _tokenA : Addresses of ERC20 conracts . * @param _tokenB : Addresses of ERC20 conracts . * @param _A : Amplification coefficient multiplied by n * (n - 1) * @param _fee : Fee to charge for exchanges * @param _admin_fee : Admin fee */ function createSwapPair( address _tokenA, address _tokenB, uint256 _A, uint256 _fee, uint256 _admin_fee ) external onlyOwner { _createSwapPair(_tokenA, _tokenB, _A, _fee, _admin_fee); } /** * @notice setFactoryOwner * @dev Transfer ownership of PancakeStableSwapFactory. * @param _newOwner : New owner. */ function setFactoryOwner(address _newOwner) external onlyOwner { PancakeStableSwapFactory.transferOwnership(_newOwner); } /** * @notice addPairInfo * @dev Add pair info to PancakeStableSwapFactory when we deploy a new factory. * @dev It will update the stableSwapPairInfo in PancakeStableSwapFactory, and there is no effect on existing pairs. * @param _swapContract : Swap contract. */ function addPairInfo(address _swapContract) external onlyOwner { PancakeStableSwapFactory.addPairInfo(_swapContract); } function _createSwapPair( address _tokenA, address _tokenB, uint256 _A, uint256 _fee, uint256 _admin_fee ) internal { PancakeStableSwapFactory.createSwapPair(_tokenA, _tokenB, _A, _fee, _admin_fee); (address swapContract, , , address LPContract) = PancakeStableSwapFactory.getPairInfo(_tokenA, _tokenB); // transfer stable swap pool ownership to owner IPancakeStableSwap(swapContract).transferOwnership(owner()); emit NewStableSwapPair(msg.sender, swapContract, LPContract); } function _checkExistPair(address _tokenA, address _tokenB) internal view { (address swapContract, , , ) = PancakeStableSwapFactory.getPairInfo(_tokenA, _tokenB); if (swapContract != address(0)) { revert PairAlreadyExist(swapContract); } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.10; interface IPancakeStableSwapFactory { function stableSwapPairInfo( address, address, address ) external view returns ( address swapContract, address token0, address token1, address LPContract ); /** * @notice createSwapPair * @param _tokenA: Addresses of ERC20 conracts . * @param _tokenB: Addresses of ERC20 conracts . * @param _A: Amplification coefficient multiplied by n * (n - 1) * @param _fee: Fee to charge for exchanges * @param _admin_fee: Admin fee */ function createSwapPair( address _tokenA, address _tokenB, uint256 _A, uint256 _fee, uint256 _admin_fee ) external; /** * @notice createThreePoolPair * @param _tokenA: Addresses of ERC20 conracts . * @param _tokenB: Addresses of ERC20 conracts . * @param _tokenC: Addresses of ERC20 conracts . * @param _A: Amplification coefficient multiplied by n * (n - 1) * @param _fee: Fee to charge for exchanges * @param _admin_fee: Admin fee */ function createThreePoolPair( address _tokenA, address _tokenB, address _tokenC, uint256 _A, uint256 _fee, uint256 _admin_fee ) external; function addPairInfo(address _swapContract) external; function transferOwnership(address _newOwner) external; function getPairInfo(address _tokenA, address _tokenB) external view returns ( address, address, address, address ); }
{ "optimizer": { "enabled": true, "runs": 100 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "abi" ] } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_to","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"minter","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_newMinter","type":"address"}],"name":"setMinter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60806040523480156200001157600080fd5b50604080518082018252601681527f50616e63616b6520537461626c6553776170204c5073000000000000000000006020808301918252835180850190945260098452680537461626c652d4c560bc1b9084015281519192916200007891600391620000a9565b5080516200008e906004906020840190620000a9565b5050600580546001600160a01b03191633179055506200018c565b828054620000b7906200014f565b90600052602060002090601f016020900481019282620000db576000855562000126565b82601f10620000f657805160ff191683800117855562000126565b8280016001018555821562000126579182015b828111156200012657825182559160200191906001019062000109565b506200013492915062000138565b5090565b5b8082111562000134576000815560010162000139565b600181811c908216806200016457607f821691505b602082108114156200018657634e487b7160e01b600052602260045260246000fd5b50919050565b610c5c806200019c6000396000f3fe608060405234801561001057600080fd5b50600436106100d55760003560e01c806340c10f191161008757806340c10f191461018d57806370a08231146101a257806379cc6790146101cb57806395d89b41146101de578063a457c2d7146101e6578063a9059cbb146101f9578063dd62ed3e1461020c578063fca3b5aa1461021f57600080fd5b806306fdde03146100da57806307546172146100f8578063095ea7b31461012357806318160ddd1461014657806323b872dd14610158578063313ce5671461016b578063395093511461017a575b600080fd5b6100e2610232565b6040516100ef9190610a36565b60405180910390f35b60055461010b906001600160a01b031681565b6040516001600160a01b0390911681526020016100ef565b610136610131366004610aa7565b6102c4565b60405190151581526020016100ef565b6002545b6040519081526020016100ef565b610136610166366004610ad1565b6102dc565b604051601281526020016100ef565b610136610188366004610aa7565b610300565b6101a061019b366004610aa7565b61033f565b005b61014a6101b0366004610b0d565b6001600160a01b031660009081526020819052604090205490565b6101a06101d9366004610aa7565b610380565b6100e26103b4565b6101366101f4366004610aa7565b6103c3565b610136610207366004610aa7565b610455565b61014a61021a366004610b2f565b610463565b6101a061022d366004610b0d565b61048e565b60606003805461024190610b62565b80601f016020809104026020016040519081016040528092919081815260200182805461026d90610b62565b80156102ba5780601f1061028f576101008083540402835291602001916102ba565b820191906000526020600020905b81548152906001019060200180831161029d57829003601f168201915b5050505050905090565b6000336102d28185856104da565b5060019392505050565b6000336102ea8582856105ff565b6102f5858585610679565b506001949350505050565b3360008181526001602090815260408083206001600160a01b03871684529091528120549091906102d2908290869061033a908790610bb3565b6104da565b6005546001600160a01b031633146103725760405162461bcd60e51b815260040161036990610bcb565b60405180910390fd5b61037c8282610835565b5050565b6005546001600160a01b031633146103aa5760405162461bcd60e51b815260040161036990610bcb565b61037c8282610902565b60606004805461024190610b62565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909190838110156104485760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b6064820152608401610369565b6102f582868684036104da565b6000336102d2818585610679565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6005546001600160a01b031633146104b85760405162461bcd60e51b815260040161036990610bcb565b600580546001600160a01b0319166001600160a01b0392909216919091179055565b6001600160a01b03831661053c5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608401610369565b6001600160a01b03821661059d5760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608401610369565b6001600160a01b0383811660008181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b600061060b8484610463565b9050600019811461067357818110156106665760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152606401610369565b61067384848484036104da565b50505050565b6001600160a01b0383166106dd5760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608401610369565b6001600160a01b03821661073f5760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608401610369565b6001600160a01b038316600090815260208190526040902054818110156107b75760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b6064820152608401610369565b6001600160a01b038085166000908152602081905260408082208585039055918516815290812080548492906107ee908490610bb3565b92505081905550826001600160a01b0316846001600160a01b0316600080516020610c078339815191528460405161082891815260200190565b60405180910390a3610673565b6001600160a01b03821661088b5760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f2061646472657373006044820152606401610369565b806002600082825461089d9190610bb3565b90915550506001600160a01b038216600090815260208190526040812080548392906108ca908490610bb3565b90915550506040518181526001600160a01b03831690600090600080516020610c078339815191529060200160405180910390a35050565b6001600160a01b0382166109625760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b6064820152608401610369565b6001600160a01b038216600090815260208190526040902054818110156109d65760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b6064820152608401610369565b6001600160a01b0383166000908152602081905260408120838303905560028054849290610a05908490610bef565b90915550506040518281526000906001600160a01b03851690600080516020610c07833981519152906020016105f2565b600060208083528351808285015260005b81811015610a6357858101830151858201604001528201610a47565b81811115610a75576000604083870101525b50601f01601f1916929092016040019392505050565b80356001600160a01b0381168114610aa257600080fd5b919050565b60008060408385031215610aba57600080fd5b610ac383610a8b565b946020939093013593505050565b600080600060608486031215610ae657600080fd5b610aef84610a8b565b9250610afd60208501610a8b565b9150604084013590509250925092565b600060208284031215610b1f57600080fd5b610b2882610a8b565b9392505050565b60008060408385031215610b4257600080fd5b610b4b83610a8b565b9150610b5960208401610a8b565b90509250929050565b600181811c90821680610b7657607f821691505b60208210811415610b9757634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052601160045260246000fd5b60008219821115610bc657610bc6610b9d565b500190565b6020808252600a90820152692737ba1036b4b73a32b960b11b604082015260600190565b600082821015610c0157610c01610b9d565b50039056feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa2646970667358221220fe49ceebabb439405bb5c511fc7e03bcdf6be5c40e736c4af2b62ded3bb7891d64736f6c634300080a0033
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106100d55760003560e01c806340c10f191161008757806340c10f191461018d57806370a08231146101a257806379cc6790146101cb57806395d89b41146101de578063a457c2d7146101e6578063a9059cbb146101f9578063dd62ed3e1461020c578063fca3b5aa1461021f57600080fd5b806306fdde03146100da57806307546172146100f8578063095ea7b31461012357806318160ddd1461014657806323b872dd14610158578063313ce5671461016b578063395093511461017a575b600080fd5b6100e2610232565b6040516100ef9190610a36565b60405180910390f35b60055461010b906001600160a01b031681565b6040516001600160a01b0390911681526020016100ef565b610136610131366004610aa7565b6102c4565b60405190151581526020016100ef565b6002545b6040519081526020016100ef565b610136610166366004610ad1565b6102dc565b604051601281526020016100ef565b610136610188366004610aa7565b610300565b6101a061019b366004610aa7565b61033f565b005b61014a6101b0366004610b0d565b6001600160a01b031660009081526020819052604090205490565b6101a06101d9366004610aa7565b610380565b6100e26103b4565b6101366101f4366004610aa7565b6103c3565b610136610207366004610aa7565b610455565b61014a61021a366004610b2f565b610463565b6101a061022d366004610b0d565b61048e565b60606003805461024190610b62565b80601f016020809104026020016040519081016040528092919081815260200182805461026d90610b62565b80156102ba5780601f1061028f576101008083540402835291602001916102ba565b820191906000526020600020905b81548152906001019060200180831161029d57829003601f168201915b5050505050905090565b6000336102d28185856104da565b5060019392505050565b6000336102ea8582856105ff565b6102f5858585610679565b506001949350505050565b3360008181526001602090815260408083206001600160a01b03871684529091528120549091906102d2908290869061033a908790610bb3565b6104da565b6005546001600160a01b031633146103725760405162461bcd60e51b815260040161036990610bcb565b60405180910390fd5b61037c8282610835565b5050565b6005546001600160a01b031633146103aa5760405162461bcd60e51b815260040161036990610bcb565b61037c8282610902565b60606004805461024190610b62565b3360008181526001602090815260408083206001600160a01b0387168452909152812054909190838110156104485760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b6064820152608401610369565b6102f582868684036104da565b6000336102d2818585610679565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6005546001600160a01b031633146104b85760405162461bcd60e51b815260040161036990610bcb565b600580546001600160a01b0319166001600160a01b0392909216919091179055565b6001600160a01b03831661053c5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608401610369565b6001600160a01b03821661059d5760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608401610369565b6001600160a01b0383811660008181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591015b60405180910390a3505050565b600061060b8484610463565b9050600019811461067357818110156106665760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152606401610369565b61067384848484036104da565b50505050565b6001600160a01b0383166106dd5760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608401610369565b6001600160a01b03821661073f5760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608401610369565b6001600160a01b038316600090815260208190526040902054818110156107b75760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b6064820152608401610369565b6001600160a01b038085166000908152602081905260408082208585039055918516815290812080548492906107ee908490610bb3565b92505081905550826001600160a01b0316846001600160a01b0316600080516020610c078339815191528460405161082891815260200190565b60405180910390a3610673565b6001600160a01b03821661088b5760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f2061646472657373006044820152606401610369565b806002600082825461089d9190610bb3565b90915550506001600160a01b038216600090815260208190526040812080548392906108ca908490610bb3565b90915550506040518181526001600160a01b03831690600090600080516020610c078339815191529060200160405180910390a35050565b6001600160a01b0382166109625760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b6064820152608401610369565b6001600160a01b038216600090815260208190526040902054818110156109d65760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b6064820152608401610369565b6001600160a01b0383166000908152602081905260408120838303905560028054849290610a05908490610bef565b90915550506040518281526000906001600160a01b03851690600080516020610c07833981519152906020016105f2565b600060208083528351808285015260005b81811015610a6357858101830151858201604001528201610a47565b81811115610a75576000604083870101525b50601f01601f1916929092016040019392505050565b80356001600160a01b0381168114610aa257600080fd5b919050565b60008060408385031215610aba57600080fd5b610ac383610a8b565b946020939093013593505050565b600080600060608486031215610ae657600080fd5b610aef84610a8b565b9250610afd60208501610a8b565b9150604084013590509250925092565b600060208284031215610b1f57600080fd5b610b2882610a8b565b9392505050565b60008060408385031215610b4257600080fd5b610b4b83610a8b565b9150610b5960208401610a8b565b90509250929050565b600181811c90821680610b7657607f821691505b60208210811415610b9757634e487b7160e01b600052602260045260246000fd5b50919050565b634e487b7160e01b600052601160045260246000fd5b60008219821115610bc657610bc6610b9d565b500190565b6020808252600a90820152692737ba1036b4b73a32b960b11b604082015260600190565b600082821015610c0157610c01610b9d565b50039056feddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3efa2646970667358221220fe49ceebabb439405bb5c511fc7e03bcdf6be5c40e736c4af2b62ded3bb7891d64736f6c634300080a0033
Deployed Bytecode Sourcemap
121:664:10:-:0;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2156:98:2;;;:::i;:::-;;;;;;;:::i;:::-;;;;;;;;165:21:10;;;;;-1:-1:-1;;;;;165:21:10;;;;;;-1:-1:-1;;;;;780:32:29;;;762:51;;750:2;735:18;165:21:10;616:203:29;4433:197:2;;;;;;:::i;:::-;;:::i;:::-;;;1426:14:29;;1419:22;1401:41;;1389:2;1374:18;4433:197:2;1261:187:29;3244:106:2;3331:12;;3244:106;;;1599:25:29;;;1587:2;1572:18;3244:106:2;1453:177:29;5192:286:2;;;;;;:::i;:::-;;:::i;3093:91::-;;;3175:2;2110:36:29;;2098:2;2083:18;3093:91:2;1968:184:29;5873:236:2;;;;;;:::i;:::-;;:::i;573:100:10:-;;;;;;:::i;:::-;;:::i;:::-;;3408:125:2;;;;;;:::i;:::-;-1:-1:-1;;;;;3508:18:2;3482:7;3508:18;;;;;;;;;;;;3408:125;679:104:10;;;;;;:::i;:::-;;:::i;2367:102:2:-;;;:::i;6596:429::-;;;;;;:::i;:::-;;:::i;3729:189::-;;;;;;:::i;:::-;;:::i;3976:149::-;;;;;;:::i;:::-;;:::i;472:95:10:-;;;;;;:::i;:::-;;:::i;2156:98:2:-;2210:13;2242:5;2235:12;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;:::i;:::-;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;2156:98;:::o;4433:197::-;4516:4;719:10:7;4570:32:2;719:10:7;4586:7:2;4595:6;4570:8;:32::i;:::-;-1:-1:-1;4619:4:2;;4433:197;-1:-1:-1;;;4433:197:2:o;5192:286::-;5319:4;719:10:7;5375:38:2;5391:4;719:10:7;5406:6:2;5375:15;:38::i;:::-;5423:27;5433:4;5439:2;5443:6;5423:9;:27::i;:::-;-1:-1:-1;5467:4:2;;5192:286;-1:-1:-1;;;;5192:286:2:o;5873:236::-;719:10:7;5961:4:2;6040:18;;;:11;:18;;;;;;;;-1:-1:-1;;;;;6040:27:2;;;;;;;;;;5961:4;;719:10:7;6015:66:2;;719:10:7;;6040:27:2;;:40;;6070:10;;6040:40;:::i;:::-;6015:8;:66::i;573:100:10:-;427:6;;-1:-1:-1;;;;;427:6:10;413:10;:20;405:43;;;;-1:-1:-1;;;405:43:10;;;;;;;:::i;:::-;;;;;;;;;647:19:::1;653:3;658:7;647:5;:19::i;:::-;573:100:::0;;:::o;679:104::-;427:6;;-1:-1:-1;;;;;427:6:10;413:10;:20;405:43;;;;-1:-1:-1;;;405:43:10;;;;;;;:::i;:::-;757:19:::1;763:3;768:7;757:5;:19::i;2367:102:2:-:0;2423:13;2455:7;2448:14;;;;;:::i;6596:429::-;719:10:7;6689:4:2;6770:18;;;:11;:18;;;;;;;;-1:-1:-1;;;;;6770:27:2;;;;;;;;;;6689:4;;719:10:7;6815:35:2;;;;6807:85;;;;-1:-1:-1;;;6807:85:2;;3804:2:29;6807:85:2;;;3786:21:29;3843:2;3823:18;;;3816:30;3882:34;3862:18;;;3855:62;-1:-1:-1;;;3933:18:29;;;3926:35;3978:19;;6807:85:2;3602:401:29;6807:85:2;6926:60;6935:5;6942:7;6970:15;6951:16;:34;6926:8;:60::i;3729:189::-;3808:4;719:10:7;3862:28:2;719:10:7;3879:2:2;3883:6;3862:9;:28::i;3976:149::-;-1:-1:-1;;;;;4091:18:2;;;4065:7;4091:18;;;:11;:18;;;;;;;;:27;;;;;;;;;;;;;3976:149::o;472:95:10:-;427:6;;-1:-1:-1;;;;;427:6:10;413:10;:20;405:43;;;;-1:-1:-1;;;405:43:10;;;;;;;:::i;:::-;541:6:::1;:19:::0;;-1:-1:-1;;;;;;541:19:10::1;-1:-1:-1::0;;;;;541:19:10;;;::::1;::::0;;;::::1;::::0;;472:95::o;10123:370:2:-;-1:-1:-1;;;;;10254:19:2;;10246:68;;;;-1:-1:-1;;;10246:68:2;;4210:2:29;10246:68:2;;;4192:21:29;4249:2;4229:18;;;4222:30;4288:34;4268:18;;;4261:62;-1:-1:-1;;;4339:18:29;;;4332:34;4383:19;;10246:68:2;4008:400:29;10246:68:2;-1:-1:-1;;;;;10332:21:2;;10324:68;;;;-1:-1:-1;;;10324:68:2;;4615:2:29;10324:68:2;;;4597:21:29;4654:2;4634:18;;;4627:30;4693:34;4673:18;;;4666:62;-1:-1:-1;;;4744:18:29;;;4737:32;4786:19;;10324:68:2;4413:398:29;10324:68:2;-1:-1:-1;;;;;10403:18:2;;;;;;;:11;:18;;;;;;;;:27;;;;;;;;;;;;;:36;;;10454:32;;1599:25:29;;;10454:32:2;;1572:18:29;10454:32:2;;;;;;;;10123:370;;;:::o;10770:441::-;10900:24;10927:25;10937:5;10944:7;10927:9;:25::i;:::-;10900:52;;-1:-1:-1;;10966:16:2;:37;10962:243;;11047:6;11027:16;:26;;11019:68;;;;-1:-1:-1;;;11019:68:2;;5018:2:29;11019:68:2;;;5000:21:29;5057:2;5037:18;;;5030:30;5096:31;5076:18;;;5069:59;5145:18;;11019:68:2;4816:353:29;11019:68:2;11129:51;11138:5;11145:7;11173:6;11154:16;:25;11129:8;:51::i;:::-;10890:321;10770:441;;;:::o;7488:651::-;-1:-1:-1;;;;;7614:18:2;;7606:68;;;;-1:-1:-1;;;7606:68:2;;5376:2:29;7606:68:2;;;5358:21:29;5415:2;5395:18;;;5388:30;5454:34;5434:18;;;5427:62;-1:-1:-1;;;5505:18:29;;;5498:35;5550:19;;7606:68:2;5174:401:29;7606:68:2;-1:-1:-1;;;;;7692:16:2;;7684:64;;;;-1:-1:-1;;;7684:64:2;;5782:2:29;7684:64:2;;;5764:21:29;5821:2;5801:18;;;5794:30;5860:34;5840:18;;;5833:62;-1:-1:-1;;;5911:18:29;;;5904:33;5954:19;;7684:64:2;5580:399:29;7684:64:2;-1:-1:-1;;;;;7830:15:2;;7808:19;7830:15;;;;;;;;;;;7863:21;;;;7855:72;;;;-1:-1:-1;;;7855:72:2;;6186:2:29;7855:72:2;;;6168:21:29;6225:2;6205:18;;;6198:30;6264:34;6244:18;;;6237:62;-1:-1:-1;;;6315:18:29;;;6308:36;6361:19;;7855:72:2;5984:402:29;7855:72:2;-1:-1:-1;;;;;7961:15:2;;;:9;:15;;;;;;;;;;;7979:20;;;7961:38;;8019:13;;;;;;;;:23;;7993:6;;7961:9;8019:23;;7993:6;;8019:23;:::i;:::-;;;;;;;;8073:2;-1:-1:-1;;;;;8058:26:2;8067:4;-1:-1:-1;;;;;8058:26:2;-1:-1:-1;;;;;;;;;;;8077:6:2;8058:26;;;;1599:25:29;;1587:2;1572:18;;1453:177;8058:26:2;;;;;;;;8095:37;9124:576;8415:389;-1:-1:-1;;;;;8498:21:2;;8490:65;;;;-1:-1:-1;;;8490:65:2;;6593:2:29;8490:65:2;;;6575:21:29;6632:2;6612:18;;;6605:30;6671:33;6651:18;;;6644:61;6722:18;;8490:65:2;6391:355:29;8490:65:2;8642:6;8626:12;;:22;;;;;;;:::i;:::-;;;;-1:-1:-1;;;;;;;8658:18:2;;:9;:18;;;;;;;;;;:28;;8680:6;;8658:9;:28;;8680:6;;8658:28;:::i;:::-;;;;-1:-1:-1;;8701:37:2;;1599:25:29;;;-1:-1:-1;;;;;8701:37:2;;;8718:1;;-1:-1:-1;;;;;;;;;;;8701:37:2;1587:2:29;1572:18;8701:37:2;;;;;;;573:100:10;;:::o;9124:576:2:-;-1:-1:-1;;;;;9207:21:2;;9199:67;;;;-1:-1:-1;;;9199:67:2;;6953:2:29;9199:67:2;;;6935:21:29;6992:2;6972:18;;;6965:30;7031:34;7011:18;;;7004:62;-1:-1:-1;;;7082:18:29;;;7075:31;7123:19;;9199:67:2;6751:397:29;9199:67:2;-1:-1:-1;;;;;9362:18:2;;9337:22;9362:18;;;;;;;;;;;9398:24;;;;9390:71;;;;-1:-1:-1;;;9390:71:2;;7355:2:29;9390:71:2;;;7337:21:29;7394:2;7374:18;;;7367:30;7433:34;7413:18;;;7406:62;-1:-1:-1;;;7484:18:29;;;7477:32;7526:19;;9390:71:2;7153:398:29;9390:71:2;-1:-1:-1;;;;;9495:18:2;;:9;:18;;;;;;;;;;9516:23;;;9495:44;;9559:12;:22;;9533:6;;9495:9;9559:22;;9533:6;;9559:22;:::i;:::-;;;;-1:-1:-1;;9597:37:2;;1599:25:29;;;9623:1:2;;-1:-1:-1;;;;;9597:37:2;;;-1:-1:-1;;;;;;;;;;;9597:37:2;1587:2:29;1572:18;9597:37:2;1453:177:29;14:597;126:4;155:2;184;173:9;166:21;216:6;210:13;259:6;254:2;243:9;239:18;232:34;284:1;294:140;308:6;305:1;302:13;294:140;;;403:14;;;399:23;;393:30;369:17;;;388:2;365:26;358:66;323:10;;294:140;;;452:6;449:1;446:13;443:91;;;522:1;517:2;508:6;497:9;493:22;489:31;482:42;443:91;-1:-1:-1;595:2:29;574:15;-1:-1:-1;;570:29:29;555:45;;;;602:2;551:54;;14:597;-1:-1:-1;;;14:597:29:o;824:173::-;892:20;;-1:-1:-1;;;;;941:31:29;;931:42;;921:70;;987:1;984;977:12;921:70;824:173;;;:::o;1002:254::-;1070:6;1078;1131:2;1119:9;1110:7;1106:23;1102:32;1099:52;;;1147:1;1144;1137:12;1099:52;1170:29;1189:9;1170:29;:::i;:::-;1160:39;1246:2;1231:18;;;;1218:32;;-1:-1:-1;;;1002:254:29:o;1635:328::-;1712:6;1720;1728;1781:2;1769:9;1760:7;1756:23;1752:32;1749:52;;;1797:1;1794;1787:12;1749:52;1820:29;1839:9;1820:29;:::i;:::-;1810:39;;1868:38;1902:2;1891:9;1887:18;1868:38;:::i;:::-;1858:48;;1953:2;1942:9;1938:18;1925:32;1915:42;;1635:328;;;;;:::o;2157:186::-;2216:6;2269:2;2257:9;2248:7;2244:23;2240:32;2237:52;;;2285:1;2282;2275:12;2237:52;2308:29;2327:9;2308:29;:::i;:::-;2298:39;2157:186;-1:-1:-1;;;2157:186:29:o;2348:260::-;2416:6;2424;2477:2;2465:9;2456:7;2452:23;2448:32;2445:52;;;2493:1;2490;2483:12;2445:52;2516:29;2535:9;2516:29;:::i;:::-;2506:39;;2564:38;2598:2;2587:9;2583:18;2564:38;:::i;:::-;2554:48;;2348:260;;;;;:::o;2613:380::-;2692:1;2688:12;;;;2735;;;2756:61;;2810:4;2802:6;2798:17;2788:27;;2756:61;2863:2;2855:6;2852:14;2832:18;2829:38;2826:161;;;2909:10;2904:3;2900:20;2897:1;2890:31;2944:4;2941:1;2934:15;2972:4;2969:1;2962:15;2826:161;;2613:380;;;:::o;2998:127::-;3059:10;3054:3;3050:20;3047:1;3040:31;3090:4;3087:1;3080:15;3114:4;3111:1;3104:15;3130:128;3170:3;3201:1;3197:6;3194:1;3191:13;3188:39;;;3207:18;;:::i;:::-;-1:-1:-1;3243:9:29;;3130:128::o;3263:334::-;3465:2;3447:21;;;3504:2;3484:18;;;3477:30;-1:-1:-1;;;3538:2:29;3523:18;;3516:40;3588:2;3573:18;;3263:334::o;7556:125::-;7596:4;7624:1;7621;7618:8;7615:34;;;7629:18;;:::i;:::-;-1:-1:-1;7666:9:29;;7556:125::o
Swarm Source
ipfs://fe49ceebabb439405bb5c511fc7e03bcdf6be5c40e736c4af2b62ded3bb7891d
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.