ETH Price: $3,127.64 (-5.65%)
 

Overview

Max Total Supply

171.090698410990523411 BEANWETHCP2w

Holders

10 (0.00%)

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
Null: 0x000...000
Balance
0 BEANWETHCP2w

Value
$0.00
0x0000000000000000000000000000000000000000
Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

Beanstalk is a permissionless fiat stablecoin protocol built on Ethereum. The BEANETH Well is deployed on Basin (https://basin.exchange/), which was built by Beanstalk.

# Exchange Pair Price  24H Volume % Volume

Minimal Proxy Contract for 0xba510e11eeb387fad877812108a3406ca3f43a4b

Contract Name:
Well

Compiler Version
v0.8.20+commit.a1b79de6

Optimization Enabled:
Yes with 1000 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 28 : Well.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import {ReentrancyGuardUpgradeable} from "lib/openzeppelin-contracts-upgradeable/contracts/security/ReentrancyGuardUpgradeable.sol";
import {ERC20Upgradeable, ERC20PermitUpgradeable} from "lib/openzeppelin-contracts-upgradeable/contracts/token/ERC20/extensions/ERC20PermitUpgradeable.sol";
import {IERC20, SafeERC20} from "lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {IWell, Call} from "src/interfaces/IWell.sol";
import {IWellErrors} from "src/interfaces/IWellErrors.sol";
import {IPump} from "src/interfaces/pumps/IPump.sol";
import {IWellFunction} from "src/interfaces/IWellFunction.sol";
import {LibBytes} from "src/libraries/LibBytes.sol";
import {ClonePlus} from "src/utils/ClonePlus.sol";

/**
 * @title Well
 * @author Publius, Silo Chad, Brean
 * @dev A Well is a constant function AMM allowing the provisioning of liquidity
 * into a single pooled on-chain liquidity position.
 *
 * Rebasing Tokens:
 * - Positive rebasing tokens are supported by Wells, but any tokens recieved from a
 *   rebase will not be rewarded to LP holders and instead can be extracted by anyone
 *   using `skim`, `sync` or `shift`.
 * - Negative rebasing tokens should not be used in Well as the effect of a negative
 *   rebase will be realized by users interacting with the Well, not LP token holders.
 *
 * Fee on Tranfer (FoT) Tokens:
 * - When transferring fee on transfer tokens to a Well (swapping from or adding liquidity),
 *   use `swapFromFeeOnTrasfer` or `addLiquidityFeeOnTransfer`. `swapTo` does not support
 *   fee on transfer tokens (See {swapTo}).
 * - When recieving fee on transfer tokens from a Well (swapping to and removing liquidity),
 *   INCLUDE the fee that is taken on transfer when calculating amount out values.
 */
contract Well is ERC20PermitUpgradeable, IWell, IWellErrors, ReentrancyGuardUpgradeable, ClonePlus {
    using SafeERC20 for IERC20;

    uint256 private constant PACKED_ADDRESS = 20;
    uint256 private constant ONE_WORD_PLUS_PACKED_ADDRESS = 52; // For gas efficiency purposes
    bytes32 private constant RESERVES_STORAGE_SLOT = 0x4bba01c388049b5ebd30398b65e8ad45b632802c5faf4964e58085ea8ab03715; // bytes32(uint256(keccak256("reserves.storage.slot")) - 1);

    constructor() {
        // Disable Initializers to prevent the init function from being callable on the implementation contract
        _disableInitializers();
    }

    function init(string memory _name, string memory _symbol) external initializer {
        __ERC20Permit_init(_name);
        __ERC20_init(_name, _symbol);
        __ReentrancyGuard_init();

        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        for (uint256 i; i < tokensLength - 1; ++i) {
            for (uint256 j = i + 1; j < tokensLength; ++j) {
                if (_tokens[i] == _tokens[j]) {
                    revert DuplicateTokens(_tokens[i]);
                }
            }
        }
    }

    function isInitialized() external view returns (bool) {
        return _getInitializedVersion() > 0;
    }

    //////////////////// WELL DEFINITION ////////////////////

    /// This Well uses a dynamic immutable storage layout. Immutable storage is
    /// used for gas-efficient reads during Well operation. The Well must be
    /// created by cloning with a pre-encoded byte string containing immutable
    /// data.
    ///
    /// Let n = number of tokens
    ///     m = length of well function data (bytes)
    ///
    /// TYPE        NAME                       LOCATION (CONSTANT)
    /// ==============================================================
    /// address     aquifer()                  0        (LOC_AQUIFER_ADDR)
    /// uint256     numberOfTokens()           20       (LOC_TOKENS_COUNT)
    /// address     wellFunctionAddress()      52       (LOC_WELL_FUNCTION_ADDR)
    /// uint256     wellFunctionDataLength()   72       (LOC_WELL_FUNCTION_DATA_LENGTH)
    /// uint256     numberOfPumps()            104      (LOC_PUMPS_COUNT)
    /// --------------------------------------------------------------
    /// address     token0                     136      (LOC_VARIABLE)
    /// ...
    /// address     tokenN                     136 + (n-1) * 32
    /// --------------------------------------------------------------
    /// byte        wellFunctionData0          136 + n * 32
    /// ...
    /// byte        wellFunctionDataM          136 + n * 32 + m
    /// --------------------------------------------------------------
    /// address     pump1Address               136 + n * 32 + m
    /// uint256     pump1DataLength            136 + n * 32 + m + 20
    /// byte        pump1Data                  136 + n * 32 + m + 52
    /// ...
    /// ==============================================================

    uint256 private constant LOC_AQUIFER_ADDR = 0;
    uint256 private constant LOC_TOKENS_COUNT = 20; // LOC_AQUIFER_ADDR + PACKED_ADDRESS
    uint256 private constant LOC_WELL_FUNCTION_ADDR = 52; // LOC_TOKENS_COUNT + ONE_WORD
    uint256 private constant LOC_WELL_FUNCTION_DATA_LENGTH = 72; // LOC_WELL_FUNCTION_ADDR + PACKED_ADDRESS;
    uint256 private constant LOC_PUMPS_COUNT = 104; // LOC_WELL_FUNCTION_DATA_LENGTH + ONE_WORD;
    uint256 private constant LOC_VARIABLE = 136; // LOC_PUMPS_COUNT + ONE_WORD;

    function tokens() public pure returns (IERC20[] memory _tokens) {
        _tokens = _getArgIERC20Array(LOC_VARIABLE, numberOfTokens());
    }

    function wellFunction() public pure returns (Call memory _wellFunction) {
        _wellFunction.target = wellFunctionAddress();
        _wellFunction.data = _getArgBytes(LOC_VARIABLE + numberOfTokens() * ONE_WORD, wellFunctionDataLength());
    }

    function pumps() public pure returns (Call[] memory _pumps) {
        uint256 _numberOfPumps = numberOfPumps();
        if (_numberOfPumps == 0) return _pumps;

        _pumps = new Call[](_numberOfPumps);
        uint256 dataLoc = LOC_VARIABLE + numberOfTokens() * ONE_WORD + wellFunctionDataLength();

        uint256 pumpDataLength;
        for (uint256 i; i < _pumps.length; ++i) {
            _pumps[i].target = _getArgAddress(dataLoc);
            dataLoc += PACKED_ADDRESS;
            pumpDataLength = _getArgUint256(dataLoc);
            dataLoc += ONE_WORD;
            _pumps[i].data = _getArgBytes(dataLoc, pumpDataLength);
            dataLoc += pumpDataLength;
        }
    }

    /**
     * @dev {wellData} is unused in this implementation.
     */
    function wellData() public pure returns (bytes memory) {}

    function aquifer() public pure override returns (address) {
        return _getArgAddress(LOC_AQUIFER_ADDR);
    }

    function well()
        external
        pure
        returns (
            IERC20[] memory _tokens,
            Call memory _wellFunction,
            Call[] memory _pumps,
            bytes memory _wellData,
            address _aquifer
        )
    {
        _tokens = tokens();
        _wellFunction = wellFunction();
        _pumps = pumps();
        _wellData = wellData();
        _aquifer = aquifer();
    }

    //////////////////// WELL DEFINITION: HELPERS ////////////////////

    /**
     * @notice Returns the number of tokens that are tradable in this Well.
     * @dev Length of the `tokens()` array.
     */
    function numberOfTokens() public pure returns (uint256) {
        return _getArgUint256(LOC_TOKENS_COUNT);
    }

    /**
     * @notice Returns the address of the Well Function.
     */
    function wellFunctionAddress() public pure returns (address) {
        return _getArgAddress(LOC_WELL_FUNCTION_ADDR);
    }

    /**
     * @notice Returns the length of the configurable `data` parameter passed during calls to the Well Function.
     */
    function wellFunctionDataLength() public pure returns (uint256) {
        return _getArgUint256(LOC_WELL_FUNCTION_DATA_LENGTH);
    }

    /**
     * @notice Returns the number of Pumps which this Well was initialized with.
     */
    function numberOfPumps() public pure returns (uint256) {
        return _getArgUint256(LOC_PUMPS_COUNT);
    }

    /**
     * @notice Returns address & data used to call the first Pump.
     * @dev Provided as an optimization in the case where {numberOfPumps} returns 1.
     */
    function firstPump() public pure returns (Call memory _pump) {
        uint256 dataLoc = LOC_VARIABLE + numberOfTokens() * ONE_WORD + wellFunctionDataLength();
        _pump.target = _getArgAddress(dataLoc);
        _pump.data = _getArgBytes(dataLoc + ONE_WORD_PLUS_PACKED_ADDRESS, _getArgUint256(dataLoc + PACKED_ADDRESS));
    }

    //////////////////// SWAP: FROM ////////////////////

    /**
     * @dev MUST revert if a fee on transfer token is used. The requisite check
     * is performed in {_setReserves}.
     */
    function swapFrom(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 amountIn,
        uint256 minAmountOut,
        address recipient,
        uint256 deadline
    ) external nonReentrant expire(deadline) returns (uint256 amountOut) {
        fromToken.safeTransferFrom(msg.sender, address(this), amountIn);
        amountOut = _swapFrom(fromToken, toToken, amountIn, minAmountOut, recipient);
    }

    /**
     * @dev Note that `amountOut` is the amount *transferred* by the Well; if a fee
     * is charged on transfers of `toToken`, the amount received by `recipient`
     * will be less than `amountOut`.
     */
    function swapFromFeeOnTransfer(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 amountIn,
        uint256 minAmountOut,
        address recipient,
        uint256 deadline
    ) external nonReentrant expire(deadline) returns (uint256 amountOut) {
        amountIn = _safeTransferFromFeeOnTransfer(fromToken, msg.sender, amountIn);
        amountOut = _swapFrom(fromToken, toToken, amountIn, minAmountOut, recipient);
    }

    function _swapFrom(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 amountIn,
        uint256 minAmountOut,
        address recipient
    ) internal returns (uint256 amountOut) {
        IERC20[] memory _tokens = tokens();
        (uint256 i, uint256 j) = _getIJ(_tokens, fromToken, toToken);
        uint256[] memory reserves = _updatePumps(_tokens.length);

        reserves[i] += amountIn;
        uint256 reserveJBefore = reserves[j];
        reserves[j] = _calcReserve(wellFunction(), reserves, j, totalSupply());

        // Note: The rounding approach of the Well function determines whether
        // slippage from imprecision goes to the Well or to the User.
        amountOut = reserveJBefore - reserves[j];
        if (amountOut < minAmountOut) {
            revert SlippageOut(amountOut, minAmountOut);
        }

        toToken.safeTransfer(recipient, amountOut);
        emit Swap(fromToken, toToken, amountIn, amountOut, recipient);
        _setReserves(_tokens, reserves);
    }

    /**
     * @dev Assumes both tokens incur no fee on transfer.
     */
    function getSwapOut(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 amountIn
    ) external view readOnlyNonReentrant returns (uint256 amountOut) {
        IERC20[] memory _tokens = tokens();
        (uint256 i, uint256 j) = _getIJ(_tokens, fromToken, toToken);
        uint256[] memory reserves = _getReserves(_tokens.length);

        reserves[i] += amountIn;

        // underflow is desired; Well Function SHOULD NOT increase reserves of both `i` and `j`
        amountOut = reserves[j] - _calcReserve(wellFunction(), reserves, j, totalSupply());
    }

    //////////////////// SWAP: TO ////////////////////

    /**
     * @dev {swapTo} does not support fee on transfer tokens, and no corresponding
     * "swapToFeeOnTransfer" function is provided as this would require either:
     * (a) inclusion of the fee as a parameter with verification; or
     * (b) iterative transfers which attempts to back-calculate the fee.
     */
    function swapTo(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 maxAmountIn,
        uint256 amountOut,
        address recipient,
        uint256 deadline
    ) external nonReentrant expire(deadline) returns (uint256 amountIn) {
        IERC20[] memory _tokens = tokens();
        (uint256 i, uint256 j) = _getIJ(_tokens, fromToken, toToken);
        uint256[] memory reserves = _updatePumps(_tokens.length);

        reserves[j] -= amountOut;
        uint256 reserveIBefore = reserves[i];
        reserves[i] = _calcReserve(wellFunction(), reserves, i, totalSupply());

        // Note: The rounding approach of the Well function determines whether
        // slippage from imprecision goes to the Well or to the User.
        amountIn = reserves[i] - reserveIBefore;

        if (amountIn > maxAmountIn) {
            revert SlippageIn(amountIn, maxAmountIn);
        }

        _swapTo(fromToken, toToken, amountIn, amountOut, recipient);
        _setReserves(_tokens, reserves);
    }

    /**
     * @dev Executes token transfers and emits Swap event. Used by {swapTo} to
     * avoid stack too deep errors.
     */
    function _swapTo(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 amountIn,
        uint256 amountOut,
        address recipient
    ) internal {
        fromToken.safeTransferFrom(msg.sender, address(this), amountIn);
        toToken.safeTransfer(recipient, amountOut);
        emit Swap(fromToken, toToken, amountIn, amountOut, recipient);
    }

    /**
     * @dev Assumes both tokens incur no fee on transfer.
     */
    function getSwapIn(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 amountOut
    ) external view readOnlyNonReentrant returns (uint256 amountIn) {
        IERC20[] memory _tokens = tokens();
        (uint256 i, uint256 j) = _getIJ(_tokens, fromToken, toToken);
        uint256[] memory reserves = _getReserves(_tokens.length);

        reserves[j] -= amountOut;

        amountIn = _calcReserve(wellFunction(), reserves, i, totalSupply()) - reserves[i];
    }

    //////////////////// SHIFT ////////////////////

    /**
     * @dev When using Wells for a multi-hop swap in 1 single transaction using a
     * multicall contract like Pipeline, costs can be reduced by "shifting" tokens
     * from one Well to another rather than returning them to the multicall router.
     *
     * Example multi-hop swap: WETH -> DAI -> USDC
     *
     * 1. Using a router without {shift}:
     *  WETH.transfer(sender=0xUSER, recipient=0xROUTER)                     [1]
     *  Call the router, which performs:
     *      Well1.swapFrom(fromToken=WETH, toToken=DAI, recipient=0xROUTER)
     *          WETH.transfer(sender=0xROUTER, recipient=Well1)              [2]
     *          DAI.transfer(sender=Well1, recipient=0xROUTER)               [3]
     *      Well2.swapFrom(fromToken=DAI, toToken=USDC, recipient=0xROUTER)
     *          DAI.transfer(sender=0xROUTER, recipient=Well2)               [4]
     *          USDC.transfer(sender=Well2, recipient=0xROUTER)              [5]
     *  USDC.transfer(sender=0xROUTER, recipient=0xUSER)                     [6]
     *
     *  Note: this could be optimized by configuring the router to deliver
     *  tokens from the last swap directly to the user.
     *
     * 2. Using a router with {shift}:
     *  WETH.transfer(sender=0xUSER, recipient=Well1)                        [1]
     *  Call the router, which performs:
     *      Well1.shift(tokenOut=DAI, recipient=Well2)
     *          DAI.transfer(sender=Well1, recipient=Well2)                  [2]
     *      Well2.shift(tokenOut=USDC, recipient=0xUSER)
     *          USDC.transfer(sender=Well2, recipient=0xUSER)                [3]
     */
    function shift(
        IERC20 tokenOut,
        uint256 minAmountOut,
        address recipient
    ) external nonReentrant returns (uint256 amountOut) {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        _updatePumps(tokensLength);

        uint256[] memory reserves = new uint256[](tokensLength);

        // Use the balances of the pool instead of the stored reserves.
        // If there is a change in token balances relative to the currently
        // stored reserves, the extra tokens can be shifted into `tokenOut`.
        for (uint256 i; i < tokensLength; ++i) {
            reserves[i] = _tokens[i].balanceOf(address(this));
        }
        uint256 j = _getJ(_tokens, tokenOut);
        amountOut = reserves[j] - _calcReserve(wellFunction(), reserves, j, totalSupply());

        if (amountOut >= minAmountOut) {
            tokenOut.safeTransfer(recipient, amountOut);
            reserves[j] -= amountOut;
            _setReserves(_tokens, reserves);
            emit Shift(reserves, tokenOut, amountOut, recipient);
        } else {
            revert SlippageOut(amountOut, minAmountOut);
        }
    }

    function getShiftOut(IERC20 tokenOut) external view readOnlyNonReentrant returns (uint256 amountOut) {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        uint256[] memory reserves = new uint256[](tokensLength);
        for (uint256 i; i < tokensLength; ++i) {
            reserves[i] = _tokens[i].balanceOf(address(this));
        }

        uint256 j = _getJ(_tokens, tokenOut);
        amountOut = reserves[j] - _calcReserve(wellFunction(), reserves, j, totalSupply());
    }

    //////////////////// ADD LIQUIDITY ////////////////////

    function addLiquidity(
        uint256[] memory tokenAmountsIn,
        uint256 minLpAmountOut,
        address recipient,
        uint256 deadline
    ) external nonReentrant expire(deadline) returns (uint256 lpAmountOut) {
        lpAmountOut = _addLiquidity(tokenAmountsIn, minLpAmountOut, recipient, false);
    }

    function addLiquidityFeeOnTransfer(
        uint256[] memory tokenAmountsIn,
        uint256 minLpAmountOut,
        address recipient,
        uint256 deadline
    ) external nonReentrant expire(deadline) returns (uint256 lpAmountOut) {
        lpAmountOut = _addLiquidity(tokenAmountsIn, minLpAmountOut, recipient, true);
    }

    /**
     * @dev Gas optimization: {IWell.AddLiquidity} is emitted even if `lpAmountOut` is 0.
     */
    function _addLiquidity(
        uint256[] memory tokenAmountsIn,
        uint256 minLpAmountOut,
        address recipient,
        bool feeOnTransfer
    ) internal returns (uint256 lpAmountOut) {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        uint256[] memory reserves = _updatePumps(tokensLength);

        uint256 _tokenAmountIn;
        if (feeOnTransfer) {
            for (uint256 i; i < tokensLength; ++i) {
                _tokenAmountIn = tokenAmountsIn[i];
                if (_tokenAmountIn == 0) continue;
                _tokenAmountIn = _safeTransferFromFeeOnTransfer(_tokens[i], msg.sender, _tokenAmountIn);
                reserves[i] += _tokenAmountIn;
                tokenAmountsIn[i] = _tokenAmountIn;
            }
        } else {
            for (uint256 i; i < tokensLength; ++i) {
                _tokenAmountIn = tokenAmountsIn[i];
                if (_tokenAmountIn == 0) continue;
                _tokens[i].safeTransferFrom(msg.sender, address(this), _tokenAmountIn);
                reserves[i] += _tokenAmountIn;
            }
        }

        lpAmountOut = _calcLpTokenSupply(wellFunction(), reserves) - totalSupply();
        if (lpAmountOut < minLpAmountOut) {
            revert SlippageOut(lpAmountOut, minLpAmountOut);
        }

        _mint(recipient, lpAmountOut);
        _setReserves(_tokens, reserves);
        emit AddLiquidity(tokenAmountsIn, lpAmountOut, recipient);
    }

    /**
     * @dev Assumes that no tokens involved incur a fee on transfer.
     */
    function getAddLiquidityOut(uint256[] memory tokenAmountsIn)
        external
        view
        readOnlyNonReentrant
        returns (uint256 lpAmountOut)
    {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        uint256[] memory reserves = _getReserves(tokensLength);
        for (uint256 i; i < tokensLength; ++i) {
            reserves[i] += tokenAmountsIn[i];
        }
        lpAmountOut = _calcLpTokenSupply(wellFunction(), reserves) - totalSupply();
    }

    //////////////////// REMOVE LIQUIDITY: BALANCED ////////////////////

    function removeLiquidity(
        uint256 lpAmountIn,
        uint256[] calldata minTokenAmountsOut,
        address recipient,
        uint256 deadline
    ) external nonReentrant expire(deadline) returns (uint256[] memory tokenAmountsOut) {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        uint256[] memory reserves = _updatePumps(tokensLength);

        tokenAmountsOut = _calcLPTokenUnderlying(wellFunction(), lpAmountIn, reserves, totalSupply());
        _burn(msg.sender, lpAmountIn);
        uint256 _tokenAmountOut;
        for (uint256 i; i < tokensLength; ++i) {
            _tokenAmountOut = tokenAmountsOut[i];
            if (_tokenAmountOut < minTokenAmountsOut[i]) {
                revert SlippageOut(_tokenAmountOut, minTokenAmountsOut[i]);
            }
            _tokens[i].safeTransfer(recipient, _tokenAmountOut);
            reserves[i] -= _tokenAmountOut;
        }

        _setReserves(_tokens, reserves);
        emit RemoveLiquidity(lpAmountIn, tokenAmountsOut, recipient);
    }

    function getRemoveLiquidityOut(uint256 lpAmountIn)
        external
        view
        readOnlyNonReentrant
        returns (uint256[] memory tokenAmountsOut)
    {
        IERC20[] memory _tokens = tokens();
        uint256[] memory reserves = _getReserves(_tokens.length);
        uint256 lpTokenSupply = totalSupply();

        tokenAmountsOut = _calcLPTokenUnderlying(wellFunction(), lpAmountIn, reserves, lpTokenSupply);
    }

    //////////////////// REMOVE LIQUIDITY: ONE TOKEN ////////////////////

    function removeLiquidityOneToken(
        uint256 lpAmountIn,
        IERC20 tokenOut,
        uint256 minTokenAmountOut,
        address recipient,
        uint256 deadline
    ) external nonReentrant expire(deadline) returns (uint256 tokenAmountOut) {
        IERC20[] memory _tokens = tokens();
        uint256[] memory reserves = _updatePumps(_tokens.length);
        uint256 j = _getJ(_tokens, tokenOut);

        tokenAmountOut = _getRemoveLiquidityOneTokenOut(lpAmountIn, j, reserves);
        if (tokenAmountOut < minTokenAmountOut) {
            revert SlippageOut(tokenAmountOut, minTokenAmountOut);
        }

        _burn(msg.sender, lpAmountIn);
        tokenOut.safeTransfer(recipient, tokenAmountOut);

        reserves[j] -= tokenAmountOut;
        _setReserves(_tokens, reserves);
        emit RemoveLiquidityOneToken(lpAmountIn, tokenOut, tokenAmountOut, recipient);
    }

    function getRemoveLiquidityOneTokenOut(
        uint256 lpAmountIn,
        IERC20 tokenOut
    ) external view readOnlyNonReentrant returns (uint256 tokenAmountOut) {
        IERC20[] memory _tokens = tokens();
        uint256[] memory reserves = _getReserves(_tokens.length);
        tokenAmountOut = _getRemoveLiquidityOneTokenOut(lpAmountIn, _getJ(_tokens, tokenOut), reserves);
    }

    /**
     * @dev Shared logic for removing a single token from liquidity.
     * Calculates change in reserve `j` given a change in LP token supply.
     *
     * Note: `lpAmountIn` is the amount of LP the user is burning in exchange
     * for some amount of token `j`.
     */
    function _getRemoveLiquidityOneTokenOut(
        uint256 lpAmountIn,
        uint256 j,
        uint256[] memory reserves
    ) private view returns (uint256 tokenAmountOut) {
        uint256 newReserveJ = _calcReserve(wellFunction(), reserves, j, totalSupply() - lpAmountIn);
        tokenAmountOut = reserves[j] - newReserveJ;
    }

    //////////// REMOVE LIQUIDITY: IMBALANCED ////////////

    function removeLiquidityImbalanced(
        uint256 maxLpAmountIn,
        uint256[] calldata tokenAmountsOut,
        address recipient,
        uint256 deadline
    ) external nonReentrant expire(deadline) returns (uint256 lpAmountIn) {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        uint256[] memory reserves = _updatePumps(tokensLength);

        uint256 _tokenAmountOut;
        for (uint256 i; i < tokensLength; ++i) {
            _tokenAmountOut = tokenAmountsOut[i];
            _tokens[i].safeTransfer(recipient, _tokenAmountOut);
            reserves[i] -= _tokenAmountOut;
        }

        lpAmountIn = totalSupply() - _calcLpTokenSupply(wellFunction(), reserves);
        if (lpAmountIn > maxLpAmountIn) {
            revert SlippageIn(lpAmountIn, maxLpAmountIn);
        }
        _burn(msg.sender, lpAmountIn);

        _setReserves(_tokens, reserves);
        emit RemoveLiquidity(lpAmountIn, tokenAmountsOut, recipient);
    }

    function getRemoveLiquidityImbalancedIn(uint256[] calldata tokenAmountsOut)
        external
        view
        readOnlyNonReentrant
        returns (uint256 lpAmountIn)
    {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        uint256[] memory reserves = _getReserves(tokensLength);
        for (uint256 i; i < tokensLength; ++i) {
            reserves[i] -= tokenAmountsOut[i];
        }
        lpAmountIn = totalSupply() - _calcLpTokenSupply(wellFunction(), reserves);
    }

    //////////////////// RESERVES ////////////////////

    /**
     * @dev Can be used in a multicall to add liquidity similar to how `shift` can be used to swap.
     * See {shift} for examples of how to use in a multicall.
     */
    function sync(address recipient, uint256 minLpAmountOut) external nonReentrant returns (uint256 lpAmountOut) {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        _updatePumps(tokensLength);
        uint256[] memory reserves = new uint256[](tokensLength);
        for (uint256 i; i < tokensLength; ++i) {
            reserves[i] = _tokens[i].balanceOf(address(this));
        }
        uint256 newTokenSupply = _calcLpTokenSupply(wellFunction(), reserves);
        uint256 oldTokenSupply = totalSupply();
        if (newTokenSupply > oldTokenSupply) {
            lpAmountOut = newTokenSupply - oldTokenSupply;
            _mint(recipient, lpAmountOut);
        }

        if (lpAmountOut < minLpAmountOut) {
            revert SlippageOut(lpAmountOut, minLpAmountOut);
        }

        _setReserves(_tokens, reserves);
        emit Sync(reserves, lpAmountOut, recipient);
    }

    function getSyncOut() external view readOnlyNonReentrant returns (uint256 lpAmountOut) {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;

        uint256[] memory reserves = new uint256[](tokensLength);
        for (uint256 i; i < tokensLength; ++i) {
            reserves[i] = _tokens[i].balanceOf(address(this));
        }

        uint256 newTokenSupply = _calcLpTokenSupply(wellFunction(), reserves);
        uint256 oldTokenSupply = totalSupply();
        if (newTokenSupply > oldTokenSupply) {
            lpAmountOut = newTokenSupply - oldTokenSupply;
        }
    }

    /**
     * @dev Transfer excess tokens held by the Well to `recipient`.
     */
    function skim(address recipient) external nonReentrant returns (uint256[] memory skimAmounts) {
        IERC20[] memory _tokens = tokens();
        uint256 tokensLength = _tokens.length;
        uint256[] memory reserves = _getReserves(tokensLength);
        skimAmounts = new uint256[](tokensLength);
        for (uint256 i; i < tokensLength; ++i) {
            skimAmounts[i] = _tokens[i].balanceOf(address(this)) - reserves[i];
            if (skimAmounts[i] > 0) {
                _tokens[i].safeTransfer(recipient, skimAmounts[i]);
            }
        }
    }

    function getReserves() external view readOnlyNonReentrant returns (uint256[] memory reserves) {
        reserves = _getReserves(numberOfTokens());
    }

    /**
     * @dev Gets the Well's token reserves by reading from byte storage.
     */
    function _getReserves(uint256 _numberOfTokens) internal view returns (uint256[] memory reserves) {
        reserves = LibBytes.readUint128(RESERVES_STORAGE_SLOT, _numberOfTokens);
    }

    /**
     * @dev Checks that the balance of each ERC-20 token is >= the reserves and
     * sets the Well's reserves of each token by writing to byte storage.
     */
    function _setReserves(IERC20[] memory _tokens, uint256[] memory reserves) internal {
        for (uint256 i; i < reserves.length; ++i) {
            if (reserves[i] > _tokens[i].balanceOf(address(this))) revert InvalidReserves();
        }
        LibBytes.storeUint128(RESERVES_STORAGE_SLOT, reserves);
    }

    //////////////////// INTERNAL: UPDATE PUMPS ////////////////////

    /**
     * @dev Fetches the current token reserves of the Well and updates the Pumps.
     * Typically called before an operation that modifies the Well's reserves.
     */
    function _updatePumps(uint256 _numberOfTokens) internal returns (uint256[] memory reserves) {
        reserves = _getReserves(_numberOfTokens);

        uint256 _numberOfPumps = numberOfPumps();
        if (_numberOfPumps == 0) {
            return reserves;
        }

        // gas optimization: avoid looping if there is only one pump
        if (_numberOfPumps == 1) {
            Call memory _pump = firstPump();
            // Don't revert if the update call fails.
            try IPump(_pump.target).update(reserves, _pump.data) {}
            catch {
                // ignore reversion. If an external shutoff mechanism is added to a Pump, it could be called here.
            }
        } else {
            Call[] memory _pumps = pumps();
            for (uint256 i; i < _pumps.length; ++i) {
                // Don't revert if the update call fails.
                try IPump(_pumps[i].target).update(reserves, _pumps[i].data) {}
                catch {
                    // ignore reversion. If an external shutoff mechanism is added to a Pump, it could be called here.
                }
            }
        }
    }

    //////////////////// INTERNAL: WELL FUNCTION INTERACTION ////////////////////

    /**
     * @dev Calculates the LP token supply given a list of `reserves` using the
     * provided `_wellFunction`. Wraps {IWellFunction.calcLpTokenSupply}.
     *
     * The Well function is passed as a parameter to minimize gas in instances
     * where it is called multiple times in one transaction.
     */
    function _calcLpTokenSupply(
        Call memory _wellFunction,
        uint256[] memory reserves
    ) internal view returns (uint256 lpTokenSupply) {
        lpTokenSupply = IWellFunction(_wellFunction.target).calcLpTokenSupply(reserves, _wellFunction.data);
    }

    /**
     * @dev Calculates the `j`th reserve given a list of `reserves` and `lpTokenSupply`
     * using the provided `_wellFunction`. Wraps {IWellFunction.calcReserve}.
     *
     * The Well function is passed as a parameter to minimize gas in instances
     * where it is called multiple times in one transaction.
     */
    function _calcReserve(
        Call memory _wellFunction,
        uint256[] memory reserves,
        uint256 j,
        uint256 lpTokenSupply
    ) internal view returns (uint256 reserve) {
        reserve = IWellFunction(_wellFunction.target).calcReserve(reserves, j, lpTokenSupply, _wellFunction.data);
    }

    /**
     * @dev Calculates the amount of tokens that underly a given amount of LP tokens
     * Wraps {IWellFunction.calcLPTokenAmount}.
     *
     * Used to determine the how many tokens to send to a user when they remove LP.
     *
     * The Well function is passed as a parameter to minimize gas in instances
     * where it is called multiple times in one transaction.
     */
    function _calcLPTokenUnderlying(
        Call memory _wellFunction,
        uint256 lpTokenAmount,
        uint256[] memory reserves,
        uint256 lpTokenSupply
    ) internal view returns (uint256[] memory tokenAmounts) {
        tokenAmounts = IWellFunction(_wellFunction.target).calcLPTokenUnderlying(
            lpTokenAmount, reserves, lpTokenSupply, _wellFunction.data
        );
    }

    //////////////////// INTERNAL: WELL TOKEN INDEXING ////////////////////

    /**
     * @dev Returns the indices of `iToken` and `jToken` in `_tokens`.
     * Reverts if either token is not in `_tokens`.
     * Reverts if `iToken` and `jToken` are the same.
     */
    function _getIJ(
        IERC20[] memory _tokens,
        IERC20 iToken,
        IERC20 jToken
    ) internal pure returns (uint256 i, uint256 j) {
        bool foundOne;
        for (uint256 k; k < _tokens.length; ++k) {
            if (iToken == _tokens[k]) {
                i = k;
                if (foundOne) return (i, j);
                foundOne = true;
            } else if (jToken == _tokens[k]) {
                j = k;
                if (foundOne) return (i, j);
                foundOne = true;
            }
        }
        revert InvalidTokens();
    }

    /**
     * @dev Returns the index of `jToken` in `_tokens`. Reverts if `jToken` is
     * not in `_tokens`.
     *
     * If `_tokens` contains multiple instances of `jToken`, this will return
     * the first one. A {Well} with duplicate tokens has been misconfigured.
     */
    function _getJ(IERC20[] memory _tokens, IERC20 jToken) internal pure returns (uint256 j) {
        for (j; j < _tokens.length; ++j) {
            if (jToken == _tokens[j]) {
                return j;
            }
        }
        revert InvalidTokens();
    }

    //////////////////// INTERNAL: TRANSFER HELPERS ////////////////////

    /**
     * @dev Calculates the change in token balance of the Well across a transfer.
     * Used when a fee might be incurred during safeTransferFrom.
     */
    function _safeTransferFromFeeOnTransfer(
        IERC20 token,
        address from,
        uint256 amount
    ) internal returns (uint256 amountTransferred) {
        uint256 balanceBefore = token.balanceOf(address(this));
        token.safeTransferFrom(from, address(this), amount);
        amountTransferred = token.balanceOf(address(this)) - balanceBefore;
    }

    //////////////////// INTERNAL: EXPIRY ////////////////////

    /**
     * @dev Reverts if the deadline has passed.
     */
    modifier expire(uint256 deadline) {
        if (block.timestamp > deadline) {
            revert Expired();
        }
        _;
    }

    //////////////////// INTERNAL: Read Only Reentrancy ////////////////////

    /**
     * @dev Reverts if the reentrncy guard has been entered.
     */
    modifier readOnlyNonReentrant() {
        // Use the same error as `ReentrancyGuardUpgradeable` instead of using a custom error for consistency.
        require(!_reentrancyGuardEntered(), "ReentrancyGuard: reentrant call");
        _;
    }
}

File 2 of 28 : IERC5267Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.0;

interface IERC5267Upgradeable {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 3 of 28 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils//AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized != type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

File 4 of 28 : ReentrancyGuardUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (security/ReentrancyGuard.sol)

pragma solidity ^0.8.0;
import "../proxy/utils//Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == _ENTERED;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

File 5 of 28 : ERC20Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20Upgradeable.sol";
import "./extensions/IERC20MetadataUpgradeable.sol";
import "../../utils//ContextUpgradeable.sol";
import "../../proxy/utils//Initializable.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable, IERC20MetadataUpgradeable {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
        __ERC20_init_unchained(name_, symbol_);
    }

    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
            // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by
            // decrementing then incrementing.
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above.
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            // Overflow not possible: amount <= accountBalance <= totalSupply.
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[45] private __gap;
}

File 6 of 28 : ERC20PermitUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.0;

import "./IERC20PermitUpgradeable.sol";
import "../ERC20Upgradeable.sol";
import "../../../utils//cryptography/ECDSAUpgradeable.sol";
import "../../../utils//cryptography/EIP712Upgradeable.sol";
import "../../../utils//CountersUpgradeable.sol";
import "../../../proxy/utils//Initializable.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 *
 * @custom:storage-size 51
 */
abstract contract ERC20PermitUpgradeable is Initializable, ERC20Upgradeable, IERC20PermitUpgradeable, EIP712Upgradeable {
    using CountersUpgradeable for CountersUpgradeable.Counter;

    mapping(address => CountersUpgradeable.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    /**
     * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
     * However, to ensure consistency with the upgradeable transpiler, we will continue
     * to reserve a slot.
     * @custom:oz-renamed-from _PERMIT_TYPEHASH
     */
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    function __ERC20Permit_init(string memory name) internal onlyInitializing {
        __EIP712_init_unchained(name, "1");
    }

    function __ERC20Permit_init_unchained(string memory) internal onlyInitializing {}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSAUpgradeable.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        CountersUpgradeable.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[49] private __gap;
}

File 7 of 28 : IERC20MetadataUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20Upgradeable.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20MetadataUpgradeable is IERC20Upgradeable {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 8 of 28 : IERC20PermitUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20PermitUpgradeable {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 9 of 28 : IERC20Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 10 of 28 : AddressUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 11 of 28 : ContextUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;
import "../proxy/utils//Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[50] private __gap;
}

File 12 of 28 : CountersUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library CountersUpgradeable {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

File 13 of 28 : ECDSAUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../StringsUpgradeable.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSAUpgradeable {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV // Deprecated in v4.8
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 message) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32")
            mstore(0x1c, hash)
            message := keccak256(0x00, 0x3c)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", StringsUpgradeable.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 data) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, "\x19\x01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            data := keccak256(ptr, 0x42)
        }
    }

    /**
     * @dev Returns an Ethereum Signed Data with intended validator, created from a
     * `validator` and `data` according to the version 0 of EIP-191.
     *
     * See {recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x00", validator, data));
    }
}

File 14 of 28 : EIP712Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.8;

import "./ECDSAUpgradeable.sol";
import "../../interfaces/IERC5267Upgradeable.sol";
import "../../proxy/utils//Initializable.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the `_domainSeparatorV4` function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * _Available since v3.4._
 *
 * @custom:storage-size 52
 */
abstract contract EIP712Upgradeable is Initializable, IERC5267Upgradeable {
    bytes32 private constant _TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    /// @custom:oz-renamed-from _HASHED_NAME
    bytes32 private _hashedName;
    /// @custom:oz-renamed-from _HASHED_VERSION
    bytes32 private _hashedVersion;

    string private _name;
    string private _version;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    function __EIP712_init(string memory name, string memory version) internal onlyInitializing {
        __EIP712_init_unchained(name, version);
    }

    function __EIP712_init_unchained(string memory name, string memory version) internal onlyInitializing {
        _name = name;
        _version = version;

        // Reset prior values in storage if upgrading
        _hashedName = 0;
        _hashedVersion = 0;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        return _buildDomainSeparator();
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash(), block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSAUpgradeable.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {EIP-5267}.
     *
     * _Available since v4.9._
     */
    function eip712Domain()
        public
        view
        virtual
        override
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        // If the hashed name and version in storage are non-zero, the contract hasn't been properly initialized
        // and the EIP712 domain is not reliable, as it will be missing name and version.
        require(_hashedName == 0 && _hashedVersion == 0, "EIP712: Uninitialized");

        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Name() internal virtual view returns (string memory) {
        return _name;
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
     * are a concern.
     */
    function _EIP712Version() internal virtual view returns (string memory) {
        return _version;
    }

    /**
     * @dev The hash of the name parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Name` instead.
     */
    function _EIP712NameHash() internal view returns (bytes32) {
        string memory name = _EIP712Name();
        if (bytes(name).length > 0) {
            return keccak256(bytes(name));
        } else {
            // If the name is empty, the contract may have been upgraded without initializing the new storage.
            // We return the name hash in storage if non-zero, otherwise we assume the name is empty by design.
            bytes32 hashedName = _hashedName;
            if (hashedName != 0) {
                return hashedName;
            } else {
                return keccak256("");
            }
        }
    }

    /**
     * @dev The hash of the version parameter for the EIP712 domain.
     *
     * NOTE: In previous versions this function was virtual. In this version you should override `_EIP712Version` instead.
     */
    function _EIP712VersionHash() internal view returns (bytes32) {
        string memory version = _EIP712Version();
        if (bytes(version).length > 0) {
            return keccak256(bytes(version));
        } else {
            // If the version is empty, the contract may have been upgraded without initializing the new storage.
            // We return the version hash in storage if non-zero, otherwise we assume the version is empty by design.
            bytes32 hashedVersion = _hashedVersion;
            if (hashedVersion != 0) {
                return hashedVersion;
            } else {
                return keccak256("");
            }
        }
    }

    /**
     * @dev This empty reserved space is put in place to allow future versions to add new
     * variables without shifting down storage in the inheritance chain.
     * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
     */
    uint256[48] private __gap;
}

File 15 of 28 : MathUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library MathUpgradeable {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1, "Math: mulDiv overflow");

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0);
        }
    }
}

File 16 of 28 : SignedMathUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMathUpgradeable {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 17 of 28 : StringsUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/MathUpgradeable.sol";
import "./math/SignedMathUpgradeable.sol";

/**
 * @dev String operations.
 */
library StringsUpgradeable {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = MathUpgradeable.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toString(int256 value) internal pure returns (string memory) {
        return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMathUpgradeable.abs(value))));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, MathUpgradeable.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 18 of 28 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 19 of 28 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 amount) external returns (bool);
}

File 20 of 28 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.3) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/IERC20Permit.sol";
import "../../../utils//Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance + value));
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, oldAllowance - value));
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeWithSelector(token.approve.selector, spender, value);

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, 0));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Use a ERC-2612 signature to set the `owner` approval toward `spender` on `token`.
     * Revert on invalid signature.
     */
    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        require(returndata.length == 0 || abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return
            success && (returndata.length == 0 || abi.decode(returndata, (bool))) && Address.isContract(address(token));
    }
}

File 21 of 28 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.9.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     *
     * Furthermore, `isContract` will also return true if the target contract within
     * the same transaction is already scheduled for destruction by `SELFDESTRUCT`,
     * which only has an effect at the end of a transaction.
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.0/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 22 of 28 : IWell.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import {IERC20} from "lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";

/**
 * @title Call is the struct that contains the target address and extra calldata of a generic call.
 */
struct Call {
    address target; // The address the call is executed on.
    bytes data; // Extra calldata to be passed during the call
}

/**
 * @title IWell is the interface for the Well contract.
 *
 * In order for a Well to be verified using a permissionless on-chain registry, a Well Implementation should:
 * - Not be able to self-destruct (Aquifer's registry would be vulnerable to a metamorphic contract attack)
 * - Not be able to change its tokens, Well Function, Pumps and Well Data
 */
interface IWell {
    /**
     * @notice Emitted when a Swap occurs.
     * @param fromToken The token swapped from
     * @param toToken The token swapped to
     * @param amountIn The amount of `fromToken` transferred into the Well
     * @param amountOut The amount of `toToken` transferred out of the Well
     * @param recipient The address that received `toToken`
     */
    event Swap(IERC20 fromToken, IERC20 toToken, uint256 amountIn, uint256 amountOut, address recipient);

    /**
     * @notice Emitted when liquidity is added to the Well.
     * @param tokenAmountsIn The amount of each token added to the Well
     * @param lpAmountOut The amount of LP tokens minted
     * @param recipient The address that received the LP tokens
     */
    event AddLiquidity(uint256[] tokenAmountsIn, uint256 lpAmountOut, address recipient);

    /**
     * @notice Emitted when liquidity is removed from the Well as multiple underlying tokens.
     * @param lpAmountIn The amount of LP tokens burned
     * @param tokenAmountsOut The amount of each underlying token removed
     * @param recipient The address that received the underlying tokens
     * @dev Gas cost scales with `n` tokens.
     */
    event RemoveLiquidity(uint256 lpAmountIn, uint256[] tokenAmountsOut, address recipient);

    /**
     * @notice Emitted when liquidity is removed from the Well as a single underlying token.
     * @param lpAmountIn The amount of LP tokens burned
     * @param tokenOut The underlying token removed
     * @param tokenAmountOut The amount of `tokenOut` removed
     * @param recipient The address that received the underlying tokens
     * @dev Emitting a separate event when removing liquidity as a single token
     * saves gas, since `tokenAmountsOut` in {RemoveLiquidity} must emit a value
     * for each token in the Well.
     */
    event RemoveLiquidityOneToken(uint256 lpAmountIn, IERC20 tokenOut, uint256 tokenAmountOut, address recipient);

    /**
     * @notice Emitted when a Shift occurs.
     * @param reserves The ending reserves after a shift
     * @param toToken The token swapped to
     * @param amountOut The amount of `toToken` transferred out of the Well
     * @param recipient The address that received `toToken`
     */
    event Shift(uint256[] reserves, IERC20 toToken, uint256 amountOut, address recipient);

    /**
     * @notice Emitted when a Sync occurs.
     * @param reserves The ending reserves after a sync
     * @param lpAmountOut The amount of LP tokens received from the sync.
     * @param recipient The address that received the LP tokens
     */
    event Sync(uint256[] reserves, uint256 lpAmountOut, address recipient);

    //////////////////// WELL DEFINITION ////////////////////

    /**
     * @notice Returns a list of ERC20 tokens supported by the Well.
     */
    function tokens() external view returns (IERC20[] memory);

    /**
     * @notice Returns the Well function as a Call struct.
     * @dev Contains the address of the Well function contract and extra data to
     * pass during calls.
     *
     * **Well functions** define a relationship between the reserves of the
     * tokens in the Well and the number of LP tokens.
     *
     * A Well function MUST implement {IWellFunction}.
     */
    function wellFunction() external view returns (Call memory);

    /**
     * @notice Returns the Pumps attached to the Well as Call structs.
     * @dev Contains the addresses of the Pumps contract and extra data to pass
     * during calls.
     *
     * **Pumps** are on-chain oracles that are updated every time the Well is
     * interacted with.
     *
     * A Pump is not required for Well operation. For Wells without a Pump:
     * `pumps().length = 0`.
     *
     * An attached Pump MUST implement {IPump}.
     */
    function pumps() external view returns (Call[] memory);

    /**
     * @notice Returns the Well data that the Well was bored with.
     * @dev The existence and signature of Well data is determined by each individual implementation.
     */
    function wellData() external view returns (bytes memory);

    /**
     * @notice Returns the Aquifer that created this Well.
     * @dev Wells can be permissionlessly bored in an Aquifer.
     *
     * Aquifers stores the implementation that was used to bore the Well.
     */
    function aquifer() external view returns (address);

    /**
     * @notice Returns the tokens, Well Function, Pumps and Well Data associated
     * with the Well as well as the Aquifer that deployed the Well.
     */
    function well()
        external
        view
        returns (
            IERC20[] memory _tokens,
            Call memory _wellFunction,
            Call[] memory _pumps,
            bytes memory _wellData,
            address _aquifer
        );

    //////////////////// SWAP: FROM ////////////////////

    /**
     * @notice Swaps from an exact amount of `fromToken` to a minimum amount of `toToken`.
     * @param fromToken The token to swap from
     * @param toToken The token to swap to
     * @param amountIn The amount of `fromToken` to spend
     * @param minAmountOut The minimum amount of `toToken` to receive
     * @param recipient The address to receive `toToken`
     * @param deadline The timestamp after which this operation is invalid
     * @return amountOut The amount of `toToken` received
     */
    function swapFrom(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 amountIn,
        uint256 minAmountOut,
        address recipient,
        uint256 deadline
    ) external returns (uint256 amountOut);

    /**
     * @notice Swaps from an exact amount of `fromToken` to a minimum amount of `toToken` and supports fee on transfer tokens.
     * @param fromToken The token to swap from
     * @param toToken The token to swap to
     * @param amountIn The amount of `fromToken` to spend
     * @param minAmountOut The minimum amount of `toToken` to take from the Well. Note that if `toToken` charges a fee on transfer, `recipient` will receive less than this amount.
     * @param recipient The address to receive `toToken`
     * @param deadline The timestamp after which this operation is invalid
     * @return amountOut The amount of `toToken` transferred from the Well. Note that if `toToken` charges a fee on transfer, `recipient` may receive less than this amount.
     * @dev Can also be used for tokens without a fee on transfer, but is less gas efficient.
     */
    function swapFromFeeOnTransfer(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 amountIn,
        uint256 minAmountOut,
        address recipient,
        uint256 deadline
    ) external returns (uint256 amountOut);

    /**
     * @notice Gets the amount of one token received for swapping an amount of another token.
     * @param fromToken The token to swap from
     * @param toToken The token to swap to
     * @param amountIn The amount of `fromToken` to spend
     * @return amountOut The amount of `toToken` to receive
     */
    function getSwapOut(IERC20 fromToken, IERC20 toToken, uint256 amountIn) external view returns (uint256 amountOut);

    //////////////////// SWAP: TO ////////////////////

    /**
     * @notice Swaps from a maximum amount of `fromToken` to an exact amount of `toToken`.
     * @param fromToken The token to swap from
     * @param toToken The token to swap to
     * @param maxAmountIn The maximum amount of `fromToken` to spend
     * @param amountOut The amount of `toToken` to receive
     * @param recipient The address to receive `toToken`
     * @param deadline The timestamp after which this operation is invalid
     * @return amountIn The amount of `toToken` received
     */
    function swapTo(
        IERC20 fromToken,
        IERC20 toToken,
        uint256 maxAmountIn,
        uint256 amountOut,
        address recipient,
        uint256 deadline
    ) external returns (uint256 amountIn);

    /**
     * @notice Gets the amount of one token that must be spent to receive an amount of another token during a swap.
     * @param fromToken The token to swap from
     * @param toToken The token to swap to
     * @param amountOut The amount of `toToken` desired
     * @return amountIn The amount of `fromToken` that must be spent
     */
    function getSwapIn(IERC20 fromToken, IERC20 toToken, uint256 amountOut) external view returns (uint256 amountIn);

    //////////////////// SHIFT ////////////////////

    /**
     * @notice Shifts at least `minAmountOut` excess tokens held by the Well into `tokenOut` and delivers to `recipient`.
     * @param tokenOut The token to shift into
     * @param minAmountOut The minimum amount of `tokenOut` to receive
     * @param recipient The address to receive the token
     * @return amountOut The amount of `tokenOut` received
     * @dev Can be used in a multicall using a contract like Pipeline to perform gas efficient swaps.
     * No deadline is needed since this function does not use the user's assets. If adding liquidity in a multicall,
     * then a deadline check can be added to the multicall.
     */
    function shift(IERC20 tokenOut, uint256 minAmountOut, address recipient) external returns (uint256 amountOut);

    /**
     * @notice Calculates the amount of the token out received from shifting excess tokens held by the Well.
     * @param tokenOut The token to shift into
     * @return amountOut The amount of `tokenOut` received
     */
    function getShiftOut(IERC20 tokenOut) external returns (uint256 amountOut);

    //////////////////// ADD LIQUIDITY ////////////////////

    /**
     * @notice Adds liquidity to the Well as multiple tokens in any ratio.
     * @param tokenAmountsIn The amount of each token to add; MUST match the indexing of {Well.tokens}
     * @param minLpAmountOut The minimum amount of LP tokens to receive
     * @param recipient The address to receive the LP tokens
     * @param deadline The timestamp after which this operation is invalid
     * @return lpAmountOut The amount of LP tokens received
     */
    function addLiquidity(
        uint256[] memory tokenAmountsIn,
        uint256 minLpAmountOut,
        address recipient,
        uint256 deadline
    ) external returns (uint256 lpAmountOut);

    /**
     * @notice Adds liquidity to the Well as multiple tokens in any ratio and supports
     * fee on transfer tokens.
     * @param tokenAmountsIn The amount of each token to add; MUST match the indexing of {Well.tokens}
     * @param minLpAmountOut The minimum amount of LP tokens to receive
     * @param recipient The address to receive the LP tokens
     * @param deadline The timestamp after which this operation is invalid
     * @return lpAmountOut The amount of LP tokens received
     * @dev Can also be used for tokens without a fee on transfer, but is less gas efficient.
     */
    function addLiquidityFeeOnTransfer(
        uint256[] memory tokenAmountsIn,
        uint256 minLpAmountOut,
        address recipient,
        uint256 deadline
    ) external returns (uint256 lpAmountOut);

    /**
     * @notice Gets the amount of LP tokens received from adding liquidity as multiple tokens in any ratio.
     * @param tokenAmountsIn The amount of each token to add; MUST match the indexing of {Well.tokens}
     * @return lpAmountOut The amount of LP tokens received
     */
    function getAddLiquidityOut(uint256[] memory tokenAmountsIn) external view returns (uint256 lpAmountOut);

    //////////////////// REMOVE LIQUIDITY: BALANCED ////////////////////

    /**
     * @notice Removes liquidity from the Well as all underlying tokens in a balanced ratio.
     * @param lpAmountIn The amount of LP tokens to burn
     * @param minTokenAmountsOut The minimum amount of each underlying token to receive; MUST match the indexing of {Well.tokens}
     * @param recipient The address to receive the underlying tokens
     * @param deadline The timestamp after which this operation is invalid
     * @return tokenAmountsOut The amount of each underlying token received
     */
    function removeLiquidity(
        uint256 lpAmountIn,
        uint256[] calldata minTokenAmountsOut,
        address recipient,
        uint256 deadline
    ) external returns (uint256[] memory tokenAmountsOut);

    /**
     * @notice Gets the amount of each underlying token received from removing liquidity in a balanced ratio.
     * @param lpAmountIn The amount of LP tokens to burn
     * @return tokenAmountsOut The amount of each underlying token received
     */
    function getRemoveLiquidityOut(uint256 lpAmountIn) external view returns (uint256[] memory tokenAmountsOut);

    //////////////////// REMOVE LIQUIDITY: ONE TOKEN ////////////////////

    /**
     * @notice Removes liquidity from the Well as a single underlying token.
     * @param lpAmountIn The amount of LP tokens to burn
     * @param tokenOut The underlying token to receive
     * @param minTokenAmountOut The minimum amount of `tokenOut` to receive
     * @param recipient The address to receive the underlying tokens
     * @param deadline The timestamp after which this operation is invalid
     * @return tokenAmountOut The amount of `tokenOut` received
     */
    function removeLiquidityOneToken(
        uint256 lpAmountIn,
        IERC20 tokenOut,
        uint256 minTokenAmountOut,
        address recipient,
        uint256 deadline
    ) external returns (uint256 tokenAmountOut);

    /**
     * @notice Gets the amount received from removing liquidity from the Well as a single underlying token.
     * @param lpAmountIn The amount of LP tokens to burn
     * @param tokenOut The underlying token to receive
     * @return tokenAmountOut The amount of `tokenOut` received
     *
     */
    function getRemoveLiquidityOneTokenOut(
        uint256 lpAmountIn,
        IERC20 tokenOut
    ) external view returns (uint256 tokenAmountOut);

    //////////////////// REMOVE LIQUIDITY: IMBALANCED ////////////////////

    /**
     * @notice Removes liquidity from the Well as multiple underlying tokens in any ratio.
     * @param maxLpAmountIn The maximum amount of LP tokens to burn
     * @param tokenAmountsOut The amount of each underlying token to receive; MUST match the indexing of {Well.tokens}
     * @param recipient The address to receive the underlying tokens
     * @return lpAmountIn The amount of LP tokens burned
     */
    function removeLiquidityImbalanced(
        uint256 maxLpAmountIn,
        uint256[] calldata tokenAmountsOut,
        address recipient,
        uint256 deadline
    ) external returns (uint256 lpAmountIn);

    /**
     * @notice Gets the amount of LP tokens to burn from removing liquidity as multiple underlying tokens in any ratio.
     * @param tokenAmountsOut The amount of each underlying token to receive; MUST match the indexing of {Well.tokens}
     * @return lpAmountIn The amount of LP tokens burned
     */
    function getRemoveLiquidityImbalancedIn(uint256[] calldata tokenAmountsOut)
        external
        view
        returns (uint256 lpAmountIn);

    //////////////////// RESERVES ////////////////////

    /**
     * @notice Syncs the Well's reserves with the Well's balances of underlying tokens. If the reserves
     * increase, mints at least `minLpAmountOut` LP Tokens to `recipient`.
     * @param recipient The address to receive the LP tokens
     * @param minLpAmountOut The minimum amount of LP tokens to receive
     * @return lpAmountOut The amount of LP tokens received
     * @dev Can be used in a multicall using a contract like Pipeline to perform gas efficient additions of liquidity.
     * No deadline is needed since this function does not use the user's assets. If adding liquidity in a multicall,
     * then a deadline check can be added to the multicall.
     * If `sync` decreases the Well's reserves, then no LP tokens are minted and `lpAmountOut` must be 0.
     */
    function sync(address recipient, uint256 minLpAmountOut) external returns (uint256 lpAmountOut);

    /**
     * @notice Calculates the amount of LP Tokens received from syncing the Well's reserves with the Well's balances.
     * @return lpAmountOut The amount of LP tokens received
     */
    function getSyncOut() external view returns (uint256 lpAmountOut);

    /**
     * @notice Sends excess tokens held by the Well to the `recipient`.
     * @param recipient The address to send the tokens
     * @return skimAmounts The amount of each token skimmed
     * @dev No deadline is needed since this function does not use the user's assets.
     */
    function skim(address recipient) external returns (uint256[] memory skimAmounts);

    /**
     * @notice Gets the reserves of each token held by the Well.
     */
    function getReserves() external view returns (uint256[] memory reserves);

    /**
     * @notice Returns whether or not the Well is initialized if it requires initialization.
     * If a Well does not require initialization, it should always return `true`.
     */
    function isInitialized() external view returns (bool);
}

File 23 of 28 : IWellErrors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import {IERC20} from "lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";

/**
 * @title IWellErrors defines all Well errors.
 * @dev The errors are separated into a different interface as not all Well
 * implementations may share the same errors.
 */
interface IWellErrors {
    /**
     * @notice Thrown when an operation would deliver fewer tokens than `minAmountOut`.
     */
    error SlippageOut(uint256 amountOut, uint256 minAmountOut);

    /**
     * @notice Thrown when an operation would require more tokens than `maxAmountIn`.
     */
    error SlippageIn(uint256 amountIn, uint256 maxAmountIn);

    /**
     * @notice Thrown if one or more tokens used in the operation are not supported by the Well.
     */
    error InvalidTokens();

    /**
     * @notice Thrown if this operation would cause an incorrect change in Well reserves.
     */
    error InvalidReserves();

    /**
     * @notice Thrown when a Well is bored with duplicate tokens.
     */
    error DuplicateTokens(IERC20 token);

    /**
     * @notice Thrown if an operation is executed after the provided `deadline` has passed.
     */
    error Expired();
}

File 24 of 28 : IWellFunction.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @title IWellFunction
 * @notice Defines a relationship between token reserves and LP token supply.
 * @dev Well Functions can contain arbitrary logic, but should be deterministic
 * if expected to be used alongside a Pump. When interacing with a Well or
 * Well Function, always verify that the Well Function is valid.
 */
interface IWellFunction {
    /**
     * @notice Thrown if the user inputs a `j` value is out of bounds.
     */
    error InvalidJArgument();

    /**
     * @notice Calculates the `j`th reserve given a list of `reserves` and `lpTokenSupply`.
     * @param reserves A list of token reserves. The jth reserve will be ignored, but a placeholder must be provided.
     * @param j The index of the reserve to solve for
     * @param lpTokenSupply The supply of LP tokens
     * @param data Extra Well function data provided on every call
     * @return reserve The resulting reserve at the jth index
     * @dev Should round up to ensure that Well reserves are marginally higher to enforce calcLpTokenSupply(...) >= totalSupply()
     */
    function calcReserve(
        uint256[] memory reserves,
        uint256 j,
        uint256 lpTokenSupply,
        bytes calldata data
    ) external view returns (uint256 reserve);

    /**
     * @notice Gets the LP token supply given a list of reserves.
     * @param reserves A list of token reserves
     * @param data Extra Well function data provided on every call
     * @return lpTokenSupply The resulting supply of LP tokens
     * @dev Should round down to ensure so that the Well Token supply is marignally lower to enforce calcLpTokenSupply(...) >= totalSupply()
     */
    function calcLpTokenSupply(
        uint256[] memory reserves,
        bytes calldata data
    ) external view returns (uint256 lpTokenSupply);

    /**
     * @notice Calculates the amount of each reserve token underlying a given amount of LP tokens.
     * @param lpTokenAmount An amount of LP tokens
     * @param reserves A list of token reserves
     * @param lpTokenSupply The current supply of LP tokens
     * @param data Extra Well function data provided on every call
     * @return underlyingAmounts The amount of each reserve token that underlies the LP tokens
     * @dev The constraint totalSupply() <= calcLPTokenSupply(...) must be held in the case where
     * `lpTokenAmount` LP tokens are burned in exchanged for `underlyingAmounts`. If the constraint
     * does not hold, then the Well Function is invalid.
     */
    function calcLPTokenUnderlying(
        uint256 lpTokenAmount,
        uint256[] memory reserves,
        uint256 lpTokenSupply,
        bytes calldata data
    ) external view returns (uint256[] memory underlyingAmounts);

    /**
     * @notice Returns the name of the Well function.
     */
    function name() external view returns (string memory);

    /**
     * @notice Returns the symbol of the Well function.
     */
    function symbol() external view returns (string memory);
}

File 25 of 28 : IPump.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @title IPump defines the interface for a Pump.
 *
 * @dev Pumps are on-chain oracles that are updated upon each interaction with a {IWell}.
 * When reading a Pump, always verify the Pump's functionality.
 */
interface IPump {
    /**
     * @notice Updates the Pump with the given reserves.
     * @param reserves The previous reserves of the tokens in the Well.
     * @param data data specific to the Well
     * @dev Pumps are updated every time a user swaps, adds liquidity, or
     * removes liquidity from a Well.
     */
    function update(uint256[] calldata reserves, bytes calldata data) external;
}

File 26 of 28 : LibBytes.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @title LibBytes
 * @author Publius
 * @notice Contains byte operations used during storage reads & writes.
 *
 * {LibBytes} tightly packs an array of `uint256` values into `n / 2` storage
 * slots, where `n` is number of items to pack.
 *
 * Each value must be `<= type(uint128).max` in order pack properly.
 */
library LibBytes {
    uint256 constant MAX_UINT128 = 340_282_366_920_938_463_463_374_607_431_768_211_455; // type(uint128).max

    /**
     * @dev Store packed uint128 `reserves` starting at storage position `slot`.
     * Balances are passed as an uint256[], but values must be <= max uint128
     * to allow for packing into a single storage slot.
     */
    function storeUint128(bytes32 slot, uint256[] memory reserves) internal {
        // Shortcut: two reserves can be packed into one slot without a loop
        if (reserves.length == 2) {
            require(reserves[0] <= MAX_UINT128, "ByteStorage: too large");
            require(reserves[1] <= MAX_UINT128, "ByteStorage: too large");
            assembly {
                sstore(slot, add(mload(add(reserves, 32)), shl(128, mload(add(reserves, 64)))))
            }
        } else {
            uint256 maxI = reserves.length / 2; // number of fully-packed slots
            uint256 iByte; // byte offset of the current reserve
            for (uint256 i; i < maxI; ++i) {
                require(reserves[2 * i] <= MAX_UINT128, "ByteStorage: too large");
                require(reserves[2 * i + 1] <= MAX_UINT128, "ByteStorage: too large");
                iByte = i * 64;
                assembly {
                    sstore(
                        add(slot, i),
                        add(mload(add(reserves, add(iByte, 32))), shl(128, mload(add(reserves, add(iByte, 64)))))
                    )
                }
            }
            // If there is an odd number of reserves, create a slot with the last reserve
            // Since `i < maxI` above, the next byte offset `maxI * 64`
            // Equivalent to "reserves.length % 2 == 1", but cheaper.
            if (reserves.length & 1 == 1) {
                require(reserves[reserves.length - 1] <= MAX_UINT128, "ByteStorage: too large");
                iByte = maxI * 64;
                assembly {
                    sstore(
                        add(slot, maxI),
                        add(mload(add(reserves, add(iByte, 32))), shr(128, shl(128, sload(add(slot, maxI)))))
                    )
                }
            }
        }
    }

    /**
     * @dev Read `n` packed uint128 reserves at storage position `slot`.
     */
    function readUint128(bytes32 slot, uint256 n) internal view returns (uint256[] memory reserves) {
        // Initialize array with length `n`, fill it in via assembly
        reserves = new uint256[](n);

        // Shortcut: two reserves can be quickly unpacked from one slot
        if (n == 2) {
            assembly {
                mstore(add(reserves, 32), shr(128, shl(128, sload(slot))))
                mstore(add(reserves, 64), shr(128, sload(slot)))
            }
            return reserves;
        }

        uint256 iByte;
        for (uint256 i = 1; i <= n; ++i) {
            // `iByte` is the byte position for the current slot:
            // i        1 2 3 4 5 6
            // iByte    0 0 1 1 2 2
            iByte = (i - 1) / 2;
            // Equivalent to "i % 2 == 1", but cheaper.
            if (i & 1 == 1) {
                assembly {
                    mstore(
                        // store at index i * 32; i = 0 is skipped by loop
                        add(reserves, mul(i, 32)),
                        shr(128, shl(128, sload(add(slot, iByte))))
                    )
                }
            } else {
                assembly {
                    mstore(add(reserves, mul(i, 32)), shr(128, sload(add(slot, iByte))))
                }
            }
        }
    }
}

File 27 of 28 : Clone.sol
// SPDX-License-Identifier: BSD
pragma solidity ^0.8.20;

/// @title Clone
/// @author zefram.eth, Saw-mon & Natalie
/// @notice Provides helper functions for reading immutable args from calldata
contract Clone {

    uint256 internal constant ONE_WORD = 0x20;

    /// @notice Reads an immutable arg with type address
    /// @param argOffset The offset of the arg in the packed data
    /// @return arg The arg value
    function _getArgAddress(uint256 argOffset)
        internal
        pure
        returns (address arg)
    {
        uint256 offset = _getImmutableArgsOffset();
        // solhint-disable-next-line no-inline-assembly
        assembly {
            arg := shr(0x60, calldataload(add(offset, argOffset)))
        }
    }

    /// @notice Reads an immutable arg with type uint256
    /// @param argOffset The offset of the arg in the packed data
    /// @return arg The arg value
    function _getArgUint256(uint256 argOffset)
        internal
        pure
        returns (uint256 arg)
    {
        uint256 offset = _getImmutableArgsOffset();
        // solhint-disable-next-line no-inline-assembly
        assembly {
            arg := calldataload(add(offset, argOffset))
        }
    }

    /// @notice Reads a uint256 array stored in the immutable args.
    /// @param argOffset The offset of the arg in the packed data
    /// @param arrLen Number of elements in the array
    /// @return arr The array
    function _getArgUint256Array(uint256 argOffset, uint256 arrLen)
        internal
        pure
      returns (uint256[] memory arr)
    {
        uint256 offset = _getImmutableArgsOffset() + argOffset;
        arr = new uint256[](arrLen);

        // solhint-disable-next-line no-inline-assembly
        assembly {
            calldatacopy(
                add(arr, ONE_WORD),
                offset,
                shl(5, arrLen)
            )
        }
    }

    /// @notice Reads an immutable arg with type uint64
    /// @param argOffset The offset of the arg in the packed data
    /// @return arg The arg value
    function _getArgUint64(uint256 argOffset)
        internal
        pure
        returns (uint64 arg)
    {
        uint256 offset = _getImmutableArgsOffset();
        // solhint-disable-next-line no-inline-assembly
        assembly {
            arg := shr(0xc0, calldataload(add(offset, argOffset)))
        }
    }

    /// @notice Reads an immutable arg with type uint8
    /// @param argOffset The offset of the arg in the packed data
    /// @return arg The arg value
    function _getArgUint8(uint256 argOffset) internal pure returns (uint8 arg) {
        uint256 offset = _getImmutableArgsOffset();
        // solhint-disable-next-line no-inline-assembly
        assembly {
            arg := shr(0xf8, calldataload(add(offset, argOffset)))
        }
    }

    /// @return offset The offset of the packed immutable args in calldata
    function _getImmutableArgsOffset() internal pure returns (uint256 offset) {
        // solhint-disable-next-line no-inline-assembly
        assembly {
            offset := sub(
                calldatasize(),
                shr(0xf0, calldataload(sub(calldatasize(), 2)))
            )
        }
    }
}

File 28 of 28 : ClonePlus.sol
// SPDX-License-Identifier: BSD
pragma solidity ^0.8.20;

import {Clone} from "./Clone.sol";
import {IERC20} from "lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";

/// @title ClonePlus
/// @notice Extends Clone with additional helper functions
contract ClonePlus is Clone {
    /// @notice Reads a IERC20 array stored in the immutable args.
    /// @param argOffset The offset of the arg in the packed data
    /// @param arrLen Number of elements in the array
    /// @return arr The array
    function _getArgIERC20Array(uint256 argOffset, uint256 arrLen) internal pure returns (IERC20[] memory arr) {
        uint256 offset = _getImmutableArgsOffset() + argOffset;
        arr = new IERC20[](arrLen);

        // solhint-disable-next-line no-inline-assembly
        assembly {
            calldatacopy(add(arr, ONE_WORD), offset, shl(5, arrLen))
        }
    }

    /// @notice Reads a bytes data stored in the immutable args.
    /// @param argOffset The offset of the arg in the packed data
    /// @param bytesLen Number of bytes in the data
    /// @return data the bytes data
    function _getArgBytes(uint256 argOffset, uint256 bytesLen) internal pure returns (bytes memory data) {
        if (bytesLen == 0) return data;
        uint256 offset = _getImmutableArgsOffset() + argOffset;
        data = new bytes(bytesLen);

        // solhint-disable-next-line no-inline-assembly
        assembly {
            calldatacopy(add(data, ONE_WORD), offset, bytesLen)
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 1000
  },
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"DuplicateTokens","type":"error"},{"inputs":[],"name":"Expired","type":"error"},{"inputs":[],"name":"InvalidReserves","type":"error"},{"inputs":[],"name":"InvalidTokens","type":"error"},{"inputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"maxAmountIn","type":"uint256"}],"name":"SlippageIn","type":"error"},{"inputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"}],"name":"SlippageOut","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"tokenAmountsIn","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"lpAmountOut","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"AddLiquidity","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"lpAmountIn","type":"uint256"},{"indexed":false,"internalType":"uint256[]","name":"tokenAmountsOut","type":"uint256[]"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"RemoveLiquidity","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"lpAmountIn","type":"uint256"},{"indexed":false,"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenAmountOut","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"RemoveLiquidityOneToken","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"reserves","type":"uint256[]"},{"indexed":false,"internalType":"contract IERC20","name":"toToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountOut","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"Shift","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"contract IERC20","name":"fromToken","type":"address"},{"indexed":false,"internalType":"contract IERC20","name":"toToken","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountOut","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256[]","name":"reserves","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"lpAmountOut","type":"uint256"},{"indexed":false,"internalType":"address","name":"recipient","type":"address"}],"name":"Sync","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenAmountsIn","type":"uint256[]"},{"internalType":"uint256","name":"minLpAmountOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"addLiquidity","outputs":[{"internalType":"uint256","name":"lpAmountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenAmountsIn","type":"uint256[]"},{"internalType":"uint256","name":"minLpAmountOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"addLiquidityFeeOnTransfer","outputs":[{"internalType":"uint256","name":"lpAmountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"aquifer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"firstPump","outputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call","name":"_pump","type":"tuple"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenAmountsIn","type":"uint256[]"}],"name":"getAddLiquidityOut","outputs":[{"internalType":"uint256","name":"lpAmountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenAmountsOut","type":"uint256[]"}],"name":"getRemoveLiquidityImbalancedIn","outputs":[{"internalType":"uint256","name":"lpAmountIn","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"lpAmountIn","type":"uint256"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"}],"name":"getRemoveLiquidityOneTokenOut","outputs":[{"internalType":"uint256","name":"tokenAmountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"lpAmountIn","type":"uint256"}],"name":"getRemoveLiquidityOut","outputs":[{"internalType":"uint256[]","name":"tokenAmountsOut","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReserves","outputs":[{"internalType":"uint256[]","name":"reserves","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"tokenOut","type":"address"}],"name":"getShiftOut","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"fromToken","type":"address"},{"internalType":"contract IERC20","name":"toToken","type":"address"},{"internalType":"uint256","name":"amountOut","type":"uint256"}],"name":"getSwapIn","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"fromToken","type":"address"},{"internalType":"contract IERC20","name":"toToken","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"}],"name":"getSwapOut","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSyncOut","outputs":[{"internalType":"uint256","name":"lpAmountOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"}],"name":"init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isInitialized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"numberOfPumps","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"numberOfTokens","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"pumps","outputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"_pumps","type":"tuple[]"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"lpAmountIn","type":"uint256"},{"internalType":"uint256[]","name":"minTokenAmountsOut","type":"uint256[]"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"removeLiquidity","outputs":[{"internalType":"uint256[]","name":"tokenAmountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxLpAmountIn","type":"uint256"},{"internalType":"uint256[]","name":"tokenAmountsOut","type":"uint256[]"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"removeLiquidityImbalanced","outputs":[{"internalType":"uint256","name":"lpAmountIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"lpAmountIn","type":"uint256"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"minTokenAmountOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"removeLiquidityOneToken","outputs":[{"internalType":"uint256","name":"tokenAmountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"}],"name":"shift","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"skim","outputs":[{"internalType":"uint256[]","name":"skimAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"fromToken","type":"address"},{"internalType":"contract IERC20","name":"toToken","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"swapFrom","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"fromToken","type":"address"},{"internalType":"contract IERC20","name":"toToken","type":"address"},{"internalType":"uint256","name":"amountIn","type":"uint256"},{"internalType":"uint256","name":"minAmountOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"swapFromFeeOnTransfer","outputs":[{"internalType":"uint256","name":"amountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"fromToken","type":"address"},{"internalType":"contract IERC20","name":"toToken","type":"address"},{"internalType":"uint256","name":"maxAmountIn","type":"uint256"},{"internalType":"uint256","name":"amountOut","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"swapTo","outputs":[{"internalType":"uint256","name":"amountIn","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"minLpAmountOut","type":"uint256"}],"name":"sync","outputs":[{"internalType":"uint256","name":"lpAmountOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"tokens","outputs":[{"internalType":"contract IERC20[]","name":"_tokens","type":"address[]"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"well","outputs":[{"internalType":"contract IERC20[]","name":"_tokens","type":"address[]"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call","name":"_wellFunction","type":"tuple"},{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call[]","name":"_pumps","type":"tuple[]"},{"internalType":"bytes","name":"_wellData","type":"bytes"},{"internalType":"address","name":"_aquifer","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"wellData","outputs":[{"internalType":"bytes","name":"","type":"bytes"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"wellFunction","outputs":[{"components":[{"internalType":"address","name":"target","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"internalType":"struct Call","name":"_wellFunction","type":"tuple"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"wellFunctionAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"wellFunctionDataLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"}]

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.