ETH Price: $3,062.04 (-8.24%)
 

Overview

Max Total Supply

11,279,581,821,348.146768903717704539 FLUX

Holders

525

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
LI.FI: LiFi Diamond
Balance
0 FLUX

Value
$0.00
0x1231deb6f5749ef6ce6943a275a1d3e7486f4eae
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
Flux

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 200 runs

Other Settings:
shanghai EvmVersion
File 1 of 56 : Flux.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

/* === OZ === */
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

/* = SYSTEM =  */
import {FluxAuction} from "@core/FluxAuction.sol";
import {FluxBuyAndBurn} from "@core/FluxBuyAndBurn.sol";
import {FluxStaking} from "@core/Staking.sol";

/* = UNIV3 = */
import {IUniswapV3Pool} from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";
import {INonfungiblePositionManager} from "@uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol";
import {IQuoter} from "@uniswap/v3-periphery/contracts/interfaces/IQuoter.sol";

/* == UTILS ==  */
import {sqrt} from "@utils/Math.sol";

/* = CONST = */
import "@const/Constants.sol";

/* = INTERFACES = */

import {IInferno} from "@interfaces/IInferno.sol";

/**
 * @title Flux
 * @author Zyntek
 * @dev ERC20 token contract for FLUX tokens.
 */
contract Flux is ERC20Burnable, Ownable {
    FluxAuction public auction;
    FluxBuyAndBurn public buyAndBurn;
    FluxStaking public staking;
    address public immutable pool;

    //===========ERRORS===========//

    error FluX__OnlyAuction();

    //=======CONSTRUCTOR=========//

    constructor(IInferno _inferno, ERC20Burnable _titanX, address _titanXInfernoPool)
        ERC20("FLUX", "FLUX")
        Ownable(msg.sender)
    {
        pool = _createUniswapV3Pool(address(_titanX), address(_inferno), _titanXInfernoPool);
    }

    function setBnB(address _bnb) external onlyOwner {
        buyAndBurn = FluxBuyAndBurn(_bnb);
    }

    function setStaking(address _staking) external onlyOwner {
        staking = FluxStaking(_staking);
    }

    function setAuction(address _auction) external onlyOwner {
        auction = FluxAuction(_auction);
    }

    //=======MODIFIERS=========//

    modifier onlyAuction() {
        _onlyAuction();
        _;
    }

    //==========================//
    //==========PUBLIC==========//
    //==========================//

    function emitFlux(address _receiver, uint256 _amount) external onlyAuction {
        _mint(_receiver, _amount);
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    function _onlyAuction() internal view {
        if (msg.sender != address(auction)) revert FluX__OnlyAuction();
    }

    function _createUniswapV3Pool(address _titanX, address _inferno, address _titanXInfernoPool)
        internal
        returns (address _pool)
    {
        address _flux = address(this);

        IQuoter quoter = IQuoter(UNISWAP_V3_QUOTER);

        bytes memory path = abi.encodePacked(address(_titanX), POOL_FEE, address(_inferno));

        uint256 infernoAmount = quoter.quoteExactInput(path, INITIAL_TITAN_X_FOR_LIQ);

        uint256 fluxAmount = INITIAL_FLUX_FOR_LP;

        (address token0, address token1) = _flux < _inferno ? (_flux, _inferno) : (_inferno, _flux);

        (uint256 amount0, uint256 amount1) =
            token0 == _inferno ? (infernoAmount, fluxAmount) : (fluxAmount, infernoAmount);

        uint160 sqrtPX96 = uint160((sqrt((amount1 * 1e18) / amount0) * 2 ** 96) / 1e9);

        INonfungiblePositionManager manager = INonfungiblePositionManager(UNISWAP_V3_POSITION_MANAGER);

        _pool = manager.createAndInitializePoolIfNecessary(token0, token1, POOL_FEE, sqrtPX96);

        IUniswapV3Pool(_titanXInfernoPool).increaseObservationCardinalityNext(uint16(100));
        IUniswapV3Pool(_pool).increaseObservationCardinalityNext(uint16(100));
    }
}

File 2 of 56 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 3 of 56 : ERC20Burnable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

File 4 of 56 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 5 of 56 : FluxAuction.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

/* == OZ == */
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

/* == CORE == */
import {Flux} from "@core/Flux.sol";
import {FluxStaking} from "@core/Staking.sol";
import {FluxBuyAndBurn} from "@core/FluxBuyAndBurn.sol";

/* == ACTIONS == */
import {SwapActions} from "@actions/SwapActions.sol";

/* == UTILS == */
import {Time} from "@utils/Time.sol";
import {wdiv, wmul, sub, wpow} from "@utils/Math.sol";

/* == CONST == */
import "@const/Constants.sol";

/* == UNIV3 == */
import {TickMath} from "@uniswap/v3-core/contracts/libraries/TickMath.sol";
import {INonfungiblePositionManager} from "@uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol";

/* == INTERFACES == */
import {IInferno} from "@interfaces/IInferno.sol";
import {IDragonX} from "@interfaces/IDragonX.sol";

///@notice Struct is packed to take up exatctly 1 storage slot
struct UserAuction {
    uint32 ts;
    uint32 day;
    uint192 amount;
}

///@notice Struct is packed to take up exatctly 1 storage slot
struct DailyStatistic {
    uint128 fluxEmitted;
    uint128 titanXDeposited;
}

///@notice Struct is packed to take up half a storage slot
struct LP {
    bool hasLP;
    bool isFluxToken0;
    uint240 tokenId;
}

/**
 * @title FluxAuction
 * @author Zyntek
 * @dev Contract to auction ERC20 to earn a proportional amount of FLUX
 */
contract FluxAuction is SwapActions {
    using SafeERC20 for ERC20Burnable;

    FluxBuyAndBurn immutable buyAndBurn;
    IDragonX immutable dragonX;
    uint32 public immutable startTimestamp;
    //=========STORAGE==========//

    LP public lp;

    uint64 depositId;

    uint256 public sentToHelios;
    uint256 public sentToDragonX;

    uint256 public fluxFeesClaimed;
    uint256 public infernoFeesClaimed;

    mapping(address => mapping(uint64 id => UserAuction)) public depositOf;
    mapping(uint32 day => DailyStatistic) public dailyStats;

    //==========ERRORS==========//

    error FluxAuction__OnlyClaimableAfter24Hours();
    error FluxAuction__LiquidityAlreadyAdded();
    error FluxAuction__NotEnoughTitanXForLiquidity();
    error FluxAuction__NotStartedYet();
    error FluxAuction__AuctionIsOver();
    error FluxAuction__NothingToClaim();
    error FluxAuction__AuctionsMustStartAt5PMUTC();
    error FluxAuction__TransactionTooOld();

    //=========EVENTS==========//

    event UserDeposit(address indexed user, uint256 indexed amount, uint32 indexed day, uint248 id);
    event UserClaimed(address indexed user, uint256 indexed fluxAmount, uint248 indexed id);
    event AutoBoughtAndMaxStaked(
        uint256 indexed amount, address indexed forUser, uint256 indexed _stakingId, uint256 shares
    );
    event AddedLiquidity(uint256 indexed infernoAmount);

    //=======CONSTRUCTOR========//

    constructor(
        uint32 _startTimestamp,
        address _flux,
        IInferno _inferno,
        ERC20Burnable _titanX,
        address _owner,
        FluxBuyAndBurn _bnb,
        address _titanXInfernoPool,
        address _dragonXVault
    ) SwapActions(_flux, _titanX, _inferno, _titanXInfernoPool, _owner) {
        if ((_startTimestamp - 17 hours) % 1 days != 0) {
            revert FluxAuction__AuctionsMustStartAt5PMUTC();
        }

        dragonX = IDragonX(_dragonXVault);
        startTimestamp = _startTimestamp;

        buyAndBurn = _bnb;
    }

    //==========================//
    //=====EXTERNAL/PUBLIC======//
    //==========================//

    function deposit(uint192 _amount) external {
        if (startTimestamp > Time.blockTs()) revert FluxAuction__NotStartedYet();
        if (startTimestamp + 2922 days < Time.blockTs()) {
            revert FluxAuction__AuctionIsOver();
        }
        _updateAuction();

        UserAuction storage userDeposit = depositOf[msg.sender][++depositId];
        uint32 currentDay = Time.daysSince(startTimestamp);
        DailyStatistic storage stats = dailyStats[currentDay];

        titanX.safeTransferFrom(msg.sender, address(this), _amount);

        uint192 maxBuyStake = startTimestamp + 24 hours <= Time.blockTs() ? uint192(wmul(_amount, uint256(0.5e18))) : 0;

        uint192 amtToDeposit = _amount;

        if (maxBuyStake != 0) {
            amtToDeposit -= maxBuyStake;
            titanX.approve(address(buyAndBurn), maxBuyStake);
            buyAndBurn.distributeTitanXForBurning(maxBuyStake);
        }

        userDeposit.ts = Time.blockTs();
        userDeposit.amount = amtToDeposit;
        userDeposit.day = currentDay;
        stats.titanXDeposited += uint128(amtToDeposit);

        emit UserDeposit(msg.sender, amtToDeposit, currentDay, depositId);

        _ditributeTokens(amtToDeposit);
    }

    function claim(uint64 _id) public {
        UserAuction storage userDep = depositOf[msg.sender][_id];

        if (userDep.ts + 24 hours > Time.blockTs()) revert FluxAuction__OnlyClaimableAfter24Hours();

        uint256 toClaim = amountToClaim(msg.sender, _id);

        if (toClaim == 0) revert FluxAuction__NothingToClaim();

        if (userDep.day != 0) _maxStake(uint160(toClaim));

        emit UserClaimed(msg.sender, toClaim, _id);

        flux.transfer(msg.sender, toClaim);

        userDep.amount = 0;
    }

    function batchClaim(uint64[] calldata _ids) external {
        for (uint256 i; i < _ids.length; ++i) {
            claim(_ids[i]);
        }
    }

    function batchClaimableAmount(address _user, uint64[] calldata _ids) public view returns (uint256 toClaim) {
        for (uint256 i; i < _ids.length; ++i) {
            toClaim += amountToClaim(_user, _ids[i]);
        }
    }

    function amountToClaim(address _user, uint64 _id) public view returns (uint256 toClaim) {
        UserAuction storage userDep = depositOf[_user][_id];
        DailyStatistic memory stats = dailyStats[userDep.day];

        uint256 fluxPerTitanX = wdiv(stats.fluxEmitted, stats.titanXDeposited);

        return wmul(userDep.amount, fluxPerTitanX);
    }

    /**
     * @notice Adds liquidity to the INF/FLUX UniV3 Pool
     * @param _deadline The deadline for the liquidity addition
     */
    function addLiquidityToInfernoFluxPool(uint32 _deadline) external onlyOwner {
        if (lp.hasLP) revert FluxAuction__LiquidityAlreadyAdded();
        if (titanX.balanceOf(address(this)) < INITIAL_TITAN_X_FOR_LIQ) {
            revert FluxAuction__NotEnoughTitanXForLiquidity();
        }

        uint256 infernoReceived = _swapTitanXForInferno(INITIAL_TITAN_X_FOR_LIQ, _deadline);

        flux.emitFlux(address(this), INITIAL_FLUX_FOR_LP);

        (uint256 amount0, uint256 amount1, uint256 amount0Min, uint256 amount1Min, address token0, address token1) =
            _sortAmountsForLP(infernoReceived, INITIAL_FLUX_FOR_LP);

        ERC20Burnable(token0).approve(UNISWAP_V3_POSITION_MANAGER, amount0);
        ERC20Burnable(token1).approve(UNISWAP_V3_POSITION_MANAGER, amount1);

        // wake-disable-next-line
        INonfungiblePositionManager.MintParams memory params = INonfungiblePositionManager.MintParams({
            token0: token0,
            token1: token1,
            fee: POOL_FEE,
            tickLower: (TickMath.MIN_TICK / TICK_SPACING) * TICK_SPACING,
            tickUpper: (TickMath.MAX_TICK / TICK_SPACING) * TICK_SPACING,
            amount0Desired: amount0,
            amount1Desired: amount1,
            amount0Min: amount0Min,
            amount1Min: amount1Min,
            recipient: address(this),
            deadline: _deadline
        });

        // wake-disable-next-line
        (uint256 tokenId,,,) = INonfungiblePositionManager(UNISWAP_V3_POSITION_MANAGER).mint(params);

        bool isFluxToken0 = token0 == address(flux);

        emit AddedLiquidity(infernoReceived);

        lp = LP({hasLP: true, tokenId: uint240(tokenId), isFluxToken0: isFluxToken0});
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    function _updateAuction() internal {
        uint32 currentDay = Time.daysSince(startTimestamp);

        if (dailyStats[currentDay].fluxEmitted == 0) {
            uint32 currWeek = Time.weekSince(startTimestamp);

            uint160 emitted = uint160(wmul(AUCTION_EMIT, wpow(sub(WAD, WEEKLY_EMISSION_DROP), currWeek, WAD)));

            flux.emitFlux(address(this), emitted);

            dailyStats[currentDay].fluxEmitted = uint128(emitted);
        }
    }

    function _ditributeTokens(uint256 _amount) private {
        if (!lp.hasLP) {
            uint256 titanXBalance = titanX.balanceOf(address(this));

            if (titanXBalance <= INITIAL_TITAN_X_FOR_LIQ) return;

            //@note - If there is no added liquidity, but the balance exceeds the initial for liquidity for distribution should be the difference
            _amount = uint192(titanXBalance - INITIAL_TITAN_X_FOR_LIQ);
        }

        uint256 _toDragonX = wmul(_amount, TITAN_X_DRAGON_X);
        uint256 _toHelios = wmul(_amount, TITAN_X_HELIOS);
        uint256 _toFluxBnB = wmul(_amount, FLUX_BUY_AND_BURN);
        uint256 _toStaking = wmul(_amount, REWARD_POOLS);
        uint256 _toGenesis = wmul(_amount, GENESIS);

        titanX.safeTransfer(address(dragonX), _toDragonX);
        dragonX.updateVault();

        sentToDragonX += _toDragonX;

        FluxStaking staking = flux.staking();

        titanX.approve(address(staking), _toStaking);
        staking.distribute(_toStaking);

        titanX.approve(address(buyAndBurn), _toFluxBnB);
        buyAndBurn.distributeTitanXForBurning(_toFluxBnB);

        titanX.safeTransfer(HELIOS_ADDR, _toHelios);

        sentToHelios += _toHelios;

        titanX.safeTransfer(GENESIS_WALLET, _toGenesis);
    }

    /**
     * @notice Sends the fees acquired from the UniswapV3 position
     * @return amount0 The amount of token0 collected
     * @return amount1 The amount of token1 collected
     */
    function collectFees() external returns (uint256 amount0, uint256 amount1) {
        LP memory _lp = lp;

        INonfungiblePositionManager.CollectParams memory params = INonfungiblePositionManager.CollectParams({
            tokenId: _lp.tokenId,
            recipient: address(this),
            amount0Max: type(uint128).max,
            amount1Max: type(uint128).max
        });

        (amount0, amount1) = INonfungiblePositionManager(UNISWAP_V3_POSITION_MANAGER).collect(params);

        (uint256 fluxAmount, uint256 infernoAmount) = _lp.isFluxToken0 ? (amount0, amount1) : (amount1, amount0);

        infernoFeesClaimed += infernoAmount;
        fluxFeesClaimed += fluxAmount;

        inferno.transfer(FEES_WALLET, infernoAmount);
        flux.transfer(FEES_WALLET, fluxAmount);
    }

    function _maxStake(uint160 _fluxAmount) private {
        flux.emitFlux(address(this), _fluxAmount);

        FluxStaking staking = flux.staking();

        flux.approve(address(staking), _fluxAmount);
        (uint256 _tokenId, uint144 shares) = staking.stake(staking.MAX_DURATION(), _fluxAmount);

        emit AutoBoughtAndMaxStaked(_fluxAmount, msg.sender, _tokenId, shares);
        //Approve the user to be able to claim when the time comes
        staking.approve(msg.sender, _tokenId);
    }
}

File 6 of 56 : FluxBuyAndBurn.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.26;

/* === SYSTEM === */
import "@actions/SwapActions.sol";

/* === OZ === */
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

/* === CONST === */
import "@const/Constants.sol";

/* == UTILS == */
import {wmul} from "@utils/Math.sol";
import {Time} from "@utils/Time.sol";

/* == INTERFACES == */
import {IInferno} from "@interfaces/IInferno.sol";

/**
 * @title FluxBuyAndBurn
 * @author Zyntek
 * @notice This contract handles the buying and burning of Flux tokens using Uniswap V3 pools.
 */
contract FluxBuyAndBurn is SwapActions {
    using SafeERC20 for *;

    //=============STRUCTS============//

    /// @notice Struct to represent intervals for burning
    struct Interval {
        uint128 amountAllocated;
        uint128 amountBurned;
    }

    //===========IMMUTABLE===========//

    ///@notice The startTimestamp
    uint32 public immutable startTimeStamp;

    //===========STATE===========//

    /// @notice Timestamp of the last burn call
    uint32 public lastBurnedIntervalStartTimestamp;

    /// @notice Total amount of Flux tokens burnt
    uint256 public totalFluxBurnt;

    /// @notice Mapping from interval number to Interval struct
    mapping(uint32 interval => Interval) public intervals;

    /// @notice  Last burned interval
    uint32 public lastBurnedInterval;

    ///@notice TitanX Swap cap
    uint128 public swapCap;

    /// @notice Last interval number
    uint32 public lastIntervalNumber;

    uint256 public totalInfernoBurned;

    /// @notice Total TitanX tokens distributed
    uint256 public totalTitanXDistributed;

    uint32 public lastSnapshot;
    uint256 public toDistribute;

    //===========EVENTS===========//

    /// @notice Event emitted when tokens are bought and burnt
    event BuyAndBurn(uint256 indexed titanXAmount, uint256 indexed fluxBurnt, address indexed caller);

    //===========ERRORS===========//

    /// @notice Error when the contract has not started yet
    error NotStartedYet();

    /// @notice Error when interval has already been burned
    error IntervalAlreadyBurned();

    error FluxBuyAndBurn__AuctionsMustStartAt5PMUTC();

    error FluxBuyAndBurn__OnlyEOA();

    //========CONSTRUCTOR========//

    /// @notice Constructor initializes the contract
    constructor(
        uint32 _startTimestamp,
        ERC20Burnable _titanX,
        IInferno _inferno,
        address _flux,
        address _owner,
        address _titanXInfernoPool
    ) SwapActions(_flux, _titanX, _inferno, _titanXInfernoPool, _owner) {
        if ((_startTimestamp - 17 hours) % 1 days != 0) {
            revert FluxBuyAndBurn__AuctionsMustStartAt5PMUTC();
        }

        swapCap = type(uint128).max;

        startTimeStamp = _startTimestamp;
    }

    //========MODIFIERS=======//

    /// @notice Updates the contract state for intervals
    modifier intervalUpdate() {
        _intervalUpdate();
        _;
    }

    //==========================//
    //==========PUBLIC==========//
    //==========================//

    function changeSwapCap(uint128 _newSwapCap) external onlySlippageAdminOrOwner {
        swapCap = _newSwapCap;
    }

    /**
     * @notice Swaps TitanX for Flux and burns the Flux tokens
     * @param _deadline The deadline for which the passes should pass
     */
    function swapTitanXForFluxAndBurn(uint32 _deadline) external intervalUpdate {
        if (msg.sender != tx.origin) revert FluxBuyAndBurn__OnlyEOA();

        Interval storage currInterval = intervals[lastIntervalNumber];

        if (currInterval.amountBurned != 0) revert IntervalAlreadyBurned();

        if (currInterval.amountAllocated > swapCap) {
            uint256 difference = currInterval.amountAllocated - swapCap;

            //@note - Add the difference for the next day
            toDistribute += difference;

            currInterval.amountAllocated = swapCap;
        }

        _updateSnapshot();

        uint256 incentive = wmul(currInterval.amountAllocated, INCENTIVE_FEE);

        currInterval.amountBurned = currInterval.amountAllocated;

        uint256 titanXToSwapAndBurn = currInterval.amountAllocated - incentive;

        uint256 titanXToBurnInferno = wmul(titanXToSwapAndBurn, uint256(0.1178e18));

        uint256 fluxAmount;

        {
            uint256 toBurnInferno = _swapTitanXForInferno(titanXToBurnInferno, _deadline);
            totalInfernoBurned += toBurnInferno;

            inferno.burn(toBurnInferno);
        }
        {
            uint256 infernoAmount = _swapTitanXForInferno(titanXToSwapAndBurn - titanXToBurnInferno, _deadline);

            fluxAmount = _swapInfernoForFlux(infernoAmount, _deadline);

            burnFlux();
        }

        titanX.safeTransfer(msg.sender, incentive);

        lastBurnedInterval = lastIntervalNumber;

        emit BuyAndBurn(titanXToSwapAndBurn, fluxAmount, msg.sender);
    }

    /// @notice Burns Inferno tokens held by the contract
    function burnFlux() public {
        uint256 fluxToBurn = flux.balanceOf(address(this));

        totalFluxBurnt = totalFluxBurnt + fluxToBurn;
        flux.burn(fluxToBurn);
    }

    /**
     * @notice Distributes TitanX tokens for burning
     * @param _amount The amount of TitanX tokens
     */
    function distributeTitanXForBurning(uint256 _amount) external notAmount0(_amount) {
        ///@dev - If there are some missed intervals update the accumulated allocation before depositing new titanX

        if (Time.blockTs() > startTimeStamp && Time.blockTs() - lastBurnedIntervalStartTimestamp > INTERVAL_TIME) {
            _intervalUpdate();
        }

        titanX.safeTransferFrom(msg.sender, address(this), _amount);

        _updateSnapshot();

        toDistribute += _amount;
    }

    //==========================//
    //=========GETTERS==========//
    //==========================//

    /**
     * @notice Get the day count for a timestamp
     * @param t The timestamp from which to get the timestamp
     */
    function dayCountByT(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cut-off time (5 PM UTC)
        uint32 adjustedTime = t - 17 hours;

        // Calculate the number of days since Unix epoch
        return adjustedTime / 86400;
    }

    /**
     * @notice Gets the end of the day with a cut-off hour of 5 pm UTC
     * @param t The time from where to get the day end
     */
    function getDayEnd(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cutoff time (5 PM UTC)
        uint32 adjustedTime = t - 17 hours;

        // Calculate the number of days since Unix epoch
        uint32 daysSinceEpoch = adjustedTime / 86400;

        // Calculate the start of the next day at 5 PM UTC
        uint32 nextDayStartAt5PM = (daysSinceEpoch + 1) * 86400 + 17 hours;

        // Return the timestamp for 17:00:00 PM UTC of the given day
        return nextDayStartAt5PM;
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    function _calculateIntervals(uint256 timeElapsedSince)
        internal
        view
        returns (uint32 _lastIntervalNumber, uint128 _totalAmountForInterval, uint16 missedIntervals)
    {
        missedIntervals = _calculateMissedIntervals(timeElapsedSince);

        _lastIntervalNumber = lastIntervalNumber + missedIntervals + 1;

        uint32 currentDay = dayCountByT(uint32(block.timestamp));

        uint32 _lastBurnedIntervalTimestamp = lastBurnedIntervalStartTimestamp;

        uint32 dayOfLastInterval =
            _lastBurnedIntervalTimestamp == 0 ? currentDay : dayCountByT(_lastBurnedIntervalTimestamp);

        uint256 _totalTitanXDistributed = totalTitanXDistributed;

        if (currentDay == dayOfLastInterval) {
            uint128 _amountPerInterval = uint128(_totalTitanXDistributed / INTERVALS_PER_DAY);

            uint128 additionalAmount = _amountPerInterval * missedIntervals;

            _totalAmountForInterval = _amountPerInterval + additionalAmount;
        } else {
            uint32 _lastBurnedIntervalStartTimestamp = _lastBurnedIntervalTimestamp;

            uint32 theEndOfTheDay = getDayEnd(_lastBurnedIntervalStartTimestamp);

            uint32 accumulatedIntervalsForTheDay = (theEndOfTheDay - _lastBurnedIntervalStartTimestamp) / INTERVAL_TIME;

            //@note - Calculate the remaining intervals from the last one's day
            _totalAmountForInterval +=
                uint128(_totalTitanXDistributed / INTERVALS_PER_DAY) * accumulatedIntervalsForTheDay;

            //@note - Calculate the upcoming intervals with the to distribute shares
            uint128 _intervalsForNewDay =
                missedIntervals > accumulatedIntervalsForTheDay ? missedIntervals - accumulatedIntervalsForTheDay : 0;

            _totalAmountForInterval += (_intervalsForNewDay > INTERVALS_PER_DAY)
                ? uint128(toDistribute)
                : uint128(toDistribute / INTERVALS_PER_DAY) * _intervalsForNewDay;
        }

        Interval memory prevInt = intervals[lastIntervalNumber];

        //@note - If the last interval was only updated, but not burned add its allocation to the next one.
        uint128 additional = prevInt.amountBurned == 0 && prevInt.amountAllocated != 0 ? prevInt.amountAllocated : 0;

        if (_totalAmountForInterval + additional > titanX.balanceOf(address(this))) {
            _totalAmountForInterval = uint128(titanX.balanceOf(address(this)));
        } else {
            _totalAmountForInterval += additional;
        }
    }

    function _calculateMissedIntervals(uint256 timeElapsedSince) internal view returns (uint16 _missedIntervals) {
        _missedIntervals = uint16(timeElapsedSince / INTERVAL_TIME);

        if (lastBurnedIntervalStartTimestamp != 0) _missedIntervals--;
    }

    function _updateSnapshot() internal {
        if (Time.blockTs() < startTimeStamp || lastSnapshot + 24 hours > Time.blockTs()) return;

        if (lastSnapshot != 0 && lastSnapshot + 48 hours < Time.blockTs()) {
            // If we have missed entire snapshot of interacting with the contract
            toDistribute = 0;
        }

        totalTitanXDistributed = toDistribute;

        toDistribute = 0;

        uint32 timeElapsed = Time.blockTs() - startTimeStamp;

        uint32 snapshots = timeElapsed / 24 hours;

        lastSnapshot = startTimeStamp + (snapshots * 24 hours);
    }

    /// @notice Updates the contract state for intervals
    function _intervalUpdate() private {
        if (Time.blockTs() < startTimeStamp) revert NotStartedYet();

        if (lastSnapshot == 0) _updateSnapshot();

        (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            bool updated
        ) = getCurrentInterval();

        if (updated) {
            lastBurnedIntervalStartTimestamp = _lastIntervalStartTimestamp + (uint32(_missedIntervals) * INTERVAL_TIME);
            intervals[_lastInterval] = Interval({amountAllocated: _amountAllocated, amountBurned: 0});
            lastIntervalNumber = _lastInterval;
        }
    }

    function getCurrentInterval()
        public
        view
        returns (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            bool updated
        )
    {
        if (startTimeStamp > Time.blockTs()) return (0, 0, 0, 0, false);

        uint32 startPoint = lastBurnedIntervalStartTimestamp == 0 ? startTimeStamp : lastBurnedIntervalStartTimestamp;

        uint32 timeElapseSinceLastBurn = Time.blockTs() - startPoint;

        if (lastBurnedIntervalStartTimestamp == 0 || timeElapseSinceLastBurn > INTERVAL_TIME) {
            (_lastInterval, _amountAllocated, _missedIntervals) = _calculateIntervals(timeElapseSinceLastBurn);
            _lastIntervalStartTimestamp = startPoint;
            _missedIntervals += timeElapseSinceLastBurn > INTERVAL_TIME && lastBurnedIntervalStartTimestamp != 0 ? 1 : 0;
            updated = true;
        }
    }
}

File 7 of 56 : Staking.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

/* == OZ == */
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {ERC721} from "@openzeppelin/contracts/token/ERC721/ERC721.sol";

/* == CORE == */
import {Voluntary777Pool} from "@core/Pools/777Voluntary.sol";

/* == UTILS == */
import {Time} from "@utils/Time.sol";
import {wdiv, wmul, sub, wpow} from "@utils/Math.sol";
import {Errors} from "@utils/Errors.sol";

/* == INTERFACES == */
import {IFlux} from "@interfaces/IFlux.sol";

/* == CONST == */
import "@const/Constants.sol";

struct UserRecord {
    uint160 shares;
    uint160 lockedFlux;
    uint128 rewardDebt;
    uint32 endTime;
}
/**
 * @title FluxStaking
 * @author Zyntek
 * @notice The staking contract of the Flux system
 */

contract FluxStaking is ERC721, Errors {
    using SafeERC20 for IERC20;

    //===========ENUMS===========//

    enum POOLS {
        DAY8,
        DAY28,
        DAY88,
        VOLUNTARY
    }

    //===========CONST===========//
    uint32 public constant MIN_DURATION = 90 days;
    uint32 public constant MAX_DURATION = 2888 days;

    //=========IMMUTABLE=========//
    IERC20 immutable titanX;
    address immutable auction;
    Voluntary777Pool public immutable voluntary;
    IFlux immutable flux;

    //===========STATE===========//
    uint256 public totalShares;

    uint128 public rewardPerShare;
    uint32 public startTimestamp;
    uint96 public tokenId;

    uint32 lastDistributedDay;

    mapping(POOLS => uint256) public toDistribute;
    mapping(uint256 id => UserRecord record) public userRecords;

    //==========ERRORS==========//
    error FluxStaking__InvalidDuration();
    error FluxStaking__NoSharesToClaim();
    error FluxStaking__LockPeriodNotOver();
    error FluXStaking__CannotUnstakeAutoBoughtAndStakedFlux();
    error FluxStaking__OnlyMintingAndBurning();

    //==========EVENTS==========//

    event Staked(
        address indexed staker,
        uint256 indexed flux,
        uint152 indexed id,
        uint256 _shares,
        uint32 duration,
        bool isVoluntary
    );
    event Unstaked(
        uint256 indexed shares, uint256 indexed fluxAmountReceived, uint256 indexed _tokenId, address recepient
    );
    event Claimed(uint256 indexed id, uint256 indexed rewards, uint256 indexed newRewardDebt, address ownerOfStake);
    event Distributed(POOLS indexed pool, uint256 indexed amount);

    //==========CONSTRUCTOR==========//
    constructor(address _titanX, address _auction, address _flux, uint32 _startTimestamp) ERC721("Staking", "STK") {
        titanX = IERC20(_titanX);
        auction = _auction;
        startTimestamp = _startTimestamp;

        flux = IFlux(_flux);

        voluntary = new Voluntary777Pool(address(this), titanX);

        lastDistributedDay = 1;
    }

    //==========================//
    //==========PUBLIC==========//
    //==========================//
    function stake(uint32 _duration, uint160 _fluxAmount)
        external
        notAmount0(_fluxAmount)
        returns (uint96 _tokenId, uint144 shares)
    {
        if (_duration > MAX_DURATION || _duration < MIN_DURATION) revert FluxStaking__InvalidDuration();

        updateRewardsIfNecessary();

        _tokenId = ++tokenId;

        shares = uint144(wmul(_fluxAmount, getFluxToShareRatio()));

        _addToVoluntaryPoolIfNeeded(shares, _fluxAmount, _duration, _tokenId);

        userRecords[_tokenId] = UserRecord({
            endTime: Time.blockTs() + _duration,
            shares: shares,
            rewardDebt: rewardPerShare,
            lockedFlux: _fluxAmount
        });

        totalShares += shares;

        emit Staked(
            msg.sender,
            _fluxAmount,
            _tokenId,
            shares,
            _duration,
            _duration == MAX_DURATION && msg.sender != address(auction)
        );

        flux.transferFrom(msg.sender, address(this), _fluxAmount);

        _mint(msg.sender, _tokenId);
    }

    function batchClaimableAmount(uint160[] calldata _ids) external view returns (uint256 toClaim) {
        uint32 currentDay = Time.daysSince(startTimestamp) + 1;

        uint256 m_rewardsPerShare = rewardPerShare;
        uint256 m_voluntaryRewardPerShare = voluntary.rewardPerShare();
        uint256 m_voluntaryTotalShares = voluntary.totalShares();

        bool distributeDay8 = (currentDay / 8 > lastDistributedDay / 8);
        bool distributeDay28 = (currentDay / 28 > lastDistributedDay / 28);
        bool distributeDay88 = (currentDay / 88 > lastDistributedDay / 88);
        bool distributeDay777 = (currentDay / 777 > lastDistributedDay / 777);

        if (distributeDay8) m_rewardsPerShare += uint72(wdiv(toDistribute[POOLS.DAY8], totalShares));
        if (distributeDay28) m_rewardsPerShare += uint72(wdiv(toDistribute[POOLS.DAY28], totalShares));
        if (distributeDay88) m_rewardsPerShare += uint72(wdiv(toDistribute[POOLS.DAY88], totalShares));
        if (distributeDay777) {
            m_voluntaryRewardPerShare += uint72(wdiv(toDistribute[POOLS.VOLUNTARY], m_voluntaryTotalShares));
        }

        for (uint256 i; i < _ids.length; ++i) {
            uint160 _id = _ids[i];

            UserRecord memory _rec = userRecords[_id];
            (uint144 voluntaryIdShares, uint112 voluntaryIdRewardDebt) = voluntary.record(_id);

            toClaim += wmul(_rec.shares, m_rewardsPerShare - _rec.rewardDebt);
            toClaim += wmul(voluntaryIdShares, m_voluntaryRewardPerShare - voluntaryIdRewardDebt);
        }
    }

    function unstake(uint160 _tokenId, address _receiver) public notAddress0(_receiver) notAmount0(_tokenId) {
        address ownerOfStake = ownerOf(_tokenId);
        UserRecord memory record = userRecords[_tokenId];

        if (ownerOfStake == address(auction)) revert FluXStaking__CannotUnstakeAutoBoughtAndStakedFlux();
        if (record.shares == 0) revert FluxStaking__NoSharesToClaim();
        if (record.endTime > Time.blockTs()) revert FluxStaking__LockPeriodNotOver();
        isApprovedOrOwner(_tokenId, msg.sender);

        _claim(_tokenId, _receiver);

        uint256 _locked = record.lockedFlux;

        (uint160 shares,) = voluntary.record(_tokenId);

        uint256 _shares = record.shares;

        if (shares != 0 && ownerOfStake != address(auction)) voluntary.unstake(_tokenId, _locked);

        delete userRecords[_tokenId];

        totalShares -= _shares;

        emit Unstaked(_shares, _locked, _tokenId, _receiver);

        flux.transfer(_receiver, _locked);

        _burn(_tokenId);
    }

    function batchUnstake(uint160[] calldata _ids, address _receiver) external {
        for (uint256 i; i < _ids.length; ++i) {
            unstake(_ids[i], _receiver);
        }
    }

    function claim(uint160 _tokenId, address _receiver) public notAddress0(_receiver) notAmount0(_tokenId) {
        isApprovedOrOwner(_tokenId, msg.sender);

        _claim(_tokenId, _receiver);
    }

    function batchClaim(uint160[] calldata _ids, address _receiver) external {
        for (uint256 i; i < _ids.length; ++i) {
            claim(_ids[i], _receiver);
        }
    }

    function isApprovedOrOwner(uint256 _tokenId, address _spender) public view {
        _checkAuthorized(ownerOf(_tokenId), _spender, _tokenId);
    }

    function distribute(uint256 _amount) external notAmount0(_amount) {
        titanX.safeTransferFrom(msg.sender, address(this), _amount);

        _distribute(_amount);
    }

    function updateRewardsIfNecessary() public {
        if (totalShares == 0) return;

        uint32 currentDay = Time.daysSince(startTimestamp) + 1;

        // Calculate how many periods have passed for each interval
        bool distributeDay8 = (currentDay / 8 > lastDistributedDay / 8);
        bool distributeDay28 = (currentDay / 28 > lastDistributedDay / 28);
        bool distributeDay88 = (currentDay / 88 > lastDistributedDay / 88);
        bool distributeDay777 = (currentDay / 777 > lastDistributedDay / 777);

        // Distribute for the 8-day pool if necessary
        if (distributeDay8) _updateRewards(POOLS.DAY8, toDistribute);

        // Distribute for the 28-day pool if necessary
        if (distributeDay28) _updateRewards(POOLS.DAY28, toDistribute);

        // Distribute for the 88-day pool if necessary
        if (distributeDay88) _updateRewards(POOLS.DAY88, toDistribute);

        // Distribute for the 777-day pool if necessary
        if (distributeDay777) {
            uint256 forVoluntary = toDistribute[POOLS.VOLUNTARY];

            if (forVoluntary > 0 && voluntary.totalShares() > 0) {
                titanX.transfer(address(voluntary), forVoluntary);
                voluntary.distribute(forVoluntary);

                emit Distributed(POOLS.VOLUNTARY, toDistribute[POOLS.VOLUNTARY]);
                toDistribute[POOLS.VOLUNTARY] = 0;
            }
        }

        // Update the last distributed day to the current day
        lastDistributedDay = currentDay;
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    function _claim(uint160 _tokenId, address _receiver) internal {
        UserRecord storage _rec = userRecords[_tokenId];

        updateRewardsIfNecessary();

        uint256 amountToClaim = wmul(_rec.shares, rewardPerShare - _rec.rewardDebt);

        (uint160 shares,) = voluntary.record(_tokenId);

        uint256 amountFromVoluntary = shares != 0 ? voluntary.claim(_tokenId) : 0;

        _rec.rewardDebt = rewardPerShare;

        emit Claimed(_tokenId, amountToClaim + amountFromVoluntary, rewardPerShare, ownerOf(_tokenId));

        titanX.transfer(_receiver, amountToClaim + amountFromVoluntary);
    }

    function _distribute(uint256 amount) internal {
        uint32 currentDay = Time.daysSince(startTimestamp) + 1;

        if (currentDay == 1) {
            toDistribute[POOLS.DAY8] += amount;
        } else {
            toDistribute[POOLS.DAY8] += wmul(amount, DAY8POOL_DIST);
            toDistribute[POOLS.DAY28] += wmul(amount, DAY28POOL_DIST);
            toDistribute[POOLS.DAY88] += wmul(amount, DAY88POOL_DIST);
            toDistribute[POOLS.VOLUNTARY] += wmul(amount, VOLUNTARY_DIST);
        }

        updateRewardsIfNecessary();
    }

    function _updateRewards(POOLS pool, mapping(POOLS => uint256) storage toDist) internal {
        if (toDist[pool] == 0) return;

        rewardPerShare += uint72(wdiv(toDist[pool], totalShares));

        emit Distributed(pool, toDist[pool]);

        toDistribute[pool] = 0;
    }

    function getFluxToShareRatio() public view returns (uint256 ratio) {
        uint32 currentDay = Time.daysSince(startTimestamp) + 1;

        uint32 gaps = uint32(currentDay / 8);

        //@note - The initial ratio is WAD
        ratio = uint160(wpow(wdiv(WAD, WAD - DAY8_SHARE_DECREASE), gaps, WAD));
    }

    function _addToVoluntaryPoolIfNeeded(uint144 _sharesAmount, uint256 fluxAmount, uint32 _duration, uint256 _id)
        internal
    {
        if (msg.sender == address(auction) || _duration != MAX_DURATION) return;

        voluntary.stake(_id, _sharesAmount, fluxAmount);
    }

    //==========================//
    //=========OVVERRIDE========//
    //==========================//

    function _update(address to, uint256 _id, address auth) internal override returns (address) {
        address from = _ownerOf(_id);

        if (from != address(0) && to != address(0)) revert FluxStaking__OnlyMintingAndBurning();

        return super._update(to, _id, auth);
    }
}

File 8 of 56 : IUniswapV3Pool.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import {IUniswapV3PoolImmutables} from './pool/IUniswapV3PoolImmutables.sol';
import {IUniswapV3PoolState} from './pool/IUniswapV3PoolState.sol';
import {IUniswapV3PoolDerivedState} from './pool/IUniswapV3PoolDerivedState.sol';
import {IUniswapV3PoolActions} from './pool/IUniswapV3PoolActions.sol';
import {IUniswapV3PoolOwnerActions} from './pool/IUniswapV3PoolOwnerActions.sol';
import {IUniswapV3PoolErrors} from './pool/IUniswapV3PoolErrors.sol';
import {IUniswapV3PoolEvents} from './pool/IUniswapV3PoolEvents.sol';

/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
    IUniswapV3PoolImmutables,
    IUniswapV3PoolState,
    IUniswapV3PoolDerivedState,
    IUniswapV3PoolActions,
    IUniswapV3PoolOwnerActions,
    IUniswapV3PoolErrors,
    IUniswapV3PoolEvents
{

}

File 9 of 56 : INonfungiblePositionManager.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol';
import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol';

import './IPoolInitializer.sol';
import './IERC721Permit.sol';
import './IPeripheryPayments.sol';
import './IPeripheryImmutableState.sol';
import '../libraries/PoolAddress.sol';

/// @title Non-fungible token for positions
/// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred
/// and authorized.
interface INonfungiblePositionManager is
    IPoolInitializer,
    IPeripheryPayments,
    IPeripheryImmutableState,
    IERC721Metadata,
    IERC721Enumerable,
    IERC721Permit
{
    /// @notice Emitted when liquidity is increased for a position NFT
    /// @dev Also emitted when a token is minted
    /// @param tokenId The ID of the token for which liquidity was increased
    /// @param liquidity The amount by which liquidity for the NFT position was increased
    /// @param amount0 The amount of token0 that was paid for the increase in liquidity
    /// @param amount1 The amount of token1 that was paid for the increase in liquidity
    event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
    /// @notice Emitted when liquidity is decreased for a position NFT
    /// @param tokenId The ID of the token for which liquidity was decreased
    /// @param liquidity The amount by which liquidity for the NFT position was decreased
    /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
    /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
    event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
    /// @notice Emitted when tokens are collected for a position NFT
    /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
    /// @param tokenId The ID of the token for which underlying tokens were collected
    /// @param recipient The address of the account that received the collected tokens
    /// @param amount0 The amount of token0 owed to the position that was collected
    /// @param amount1 The amount of token1 owed to the position that was collected
    event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);

    /// @notice Returns the position information associated with a given token ID.
    /// @dev Throws if the token ID is not valid.
    /// @param tokenId The ID of the token that represents the position
    /// @return nonce The nonce for permits
    /// @return operator The address that is approved for spending
    /// @return token0 The address of the token0 for a specific pool
    /// @return token1 The address of the token1 for a specific pool
    /// @return fee The fee associated with the pool
    /// @return tickLower The lower end of the tick range for the position
    /// @return tickUpper The higher end of the tick range for the position
    /// @return liquidity The liquidity of the position
    /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
    /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
    /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
    /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
    function positions(uint256 tokenId)
        external
        view
        returns (
            uint96 nonce,
            address operator,
            address token0,
            address token1,
            uint24 fee,
            int24 tickLower,
            int24 tickUpper,
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    struct MintParams {
        address token0;
        address token1;
        uint24 fee;
        int24 tickLower;
        int24 tickUpper;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        address recipient;
        uint256 deadline;
    }

    /// @notice Creates a new position wrapped in a NFT
    /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
    /// a method does not exist, i.e. the pool is assumed to be initialized.
    /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
    /// @return tokenId The ID of the token that represents the minted position
    /// @return liquidity The amount of liquidity for this position
    /// @return amount0 The amount of token0
    /// @return amount1 The amount of token1
    function mint(MintParams calldata params)
        external
        payable
        returns (
            uint256 tokenId,
            uint128 liquidity,
            uint256 amount0,
            uint256 amount1
        );

    struct IncreaseLiquidityParams {
        uint256 tokenId;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        uint256 deadline;
    }

    /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
    /// @param params tokenId The ID of the token for which liquidity is being increased,
    /// amount0Desired The desired amount of token0 to be spent,
    /// amount1Desired The desired amount of token1 to be spent,
    /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
    /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
    /// deadline The time by which the transaction must be included to effect the change
    /// @return liquidity The new liquidity amount as a result of the increase
    /// @return amount0 The amount of token0 to acheive resulting liquidity
    /// @return amount1 The amount of token1 to acheive resulting liquidity
    function increaseLiquidity(IncreaseLiquidityParams calldata params)
        external
        payable
        returns (
            uint128 liquidity,
            uint256 amount0,
            uint256 amount1
        );

    struct DecreaseLiquidityParams {
        uint256 tokenId;
        uint128 liquidity;
        uint256 amount0Min;
        uint256 amount1Min;
        uint256 deadline;
    }

    /// @notice Decreases the amount of liquidity in a position and accounts it to the position
    /// @param params tokenId The ID of the token for which liquidity is being decreased,
    /// amount The amount by which liquidity will be decreased,
    /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
    /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
    /// deadline The time by which the transaction must be included to effect the change
    /// @return amount0 The amount of token0 accounted to the position's tokens owed
    /// @return amount1 The amount of token1 accounted to the position's tokens owed
    function decreaseLiquidity(DecreaseLiquidityParams calldata params)
        external
        payable
        returns (uint256 amount0, uint256 amount1);

    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
    /// @param params tokenId The ID of the NFT for which tokens are being collected,
    /// recipient The account that should receive the tokens,
    /// amount0Max The maximum amount of token0 to collect,
    /// amount1Max The maximum amount of token1 to collect
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);

    /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
    /// must be collected first.
    /// @param tokenId The ID of the token that is being burned
    function burn(uint256 tokenId) external payable;
}

File 10 of 56 : IQuoter.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

/// @title Quoter Interface
/// @notice Supports quoting the calculated amounts from exact input or exact output swaps
/// @dev These functions are not marked view because they rely on calling non-view functions and reverting
/// to compute the result. They are also not gas efficient and should not be called on-chain.
interface IQuoter {
    /// @notice Returns the amount out received for a given exact input swap without executing the swap
    /// @param path The path of the swap, i.e. each token pair and the pool fee
    /// @param amountIn The amount of the first token to swap
    /// @return amountOut The amount of the last token that would be received
    function quoteExactInput(bytes memory path, uint256 amountIn) external returns (uint256 amountOut);

    /// @notice Returns the amount out received for a given exact input but for a swap of a single pool
    /// @param tokenIn The token being swapped in
    /// @param tokenOut The token being swapped out
    /// @param fee The fee of the token pool to consider for the pair
    /// @param amountIn The desired input amount
    /// @param sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
    /// @return amountOut The amount of `tokenOut` that would be received
    function quoteExactInputSingle(
        address tokenIn,
        address tokenOut,
        uint24 fee,
        uint256 amountIn,
        uint160 sqrtPriceLimitX96
    ) external returns (uint256 amountOut);

    /// @notice Returns the amount in required for a given exact output swap without executing the swap
    /// @param path The path of the swap, i.e. each token pair and the pool fee. Path must be provided in reverse order
    /// @param amountOut The amount of the last token to receive
    /// @return amountIn The amount of first token required to be paid
    function quoteExactOutput(bytes memory path, uint256 amountOut) external returns (uint256 amountIn);

    /// @notice Returns the amount in required to receive the given exact output amount but for a swap of a single pool
    /// @param tokenIn The token being swapped in
    /// @param tokenOut The token being swapped out
    /// @param fee The fee of the token pool to consider for the pair
    /// @param amountOut The desired output amount
    /// @param sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
    /// @return amountIn The amount required as the input for the swap in order to receive `amountOut`
    function quoteExactOutputSingle(
        address tokenIn,
        address tokenOut,
        uint24 fee,
        uint256 amountOut,
        uint160 sqrtPriceLimitX96
    ) external returns (uint256 amountIn);
}

File 11 of 56 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

/* solhint-disable func-visibility, no-inline-assembly */

error Math__toInt256_overflow();
error Math__toUint64_overflow();
error Math__add_overflow_signed();
error Math__sub_overflow_signed();
error Math__mul_overflow_signed();
error Math__mul_overflow();
error Math__div_overflow();

uint256 constant WAD = 1e18;

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L367
function toInt256(uint256 x) pure returns (int256) {
    if (x >= 1 << 255) revert Math__toInt256_overflow();
    return int256(x);
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L53
function toUint64(uint256 x) pure returns (uint64) {
    if (x >= 1 << 64) revert Math__toUint64_overflow();
    return uint64(x);
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L602
function abs(int256 x) pure returns (uint256 z) {
    assembly ("memory-safe") {
        let mask := sub(0, shr(255, x))
        z := xor(mask, add(mask, x))
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L620
function min(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := xor(x, mul(xor(x, y), lt(y, x)))
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L628
function min(int256 x, int256 y) pure returns (int256 z) {
    assembly ("memory-safe") {
        z := xor(x, mul(xor(x, y), slt(y, x)))
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L636
function max(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := xor(x, mul(xor(x, y), gt(y, x)))
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L74
function add(uint256 x, int256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := add(x, y)
    }
    if ((y > 0 && z < x) || (y < 0 && z > x)) {
        revert Math__add_overflow_signed();
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L79
function sub(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := sub(x, y)
    }
    if ((y > 0 && z > x) || (y < 0 && z < x)) {
        revert Math__sub_overflow_signed();
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L84
function mul(uint256 x, int256 y) pure returns (int256 z) {
    unchecked {
        z = int256(x) * y;
        if (int256(x) < 0 || (y != 0 && z / y != int256(x))) {
            revert Math__mul_overflow_signed();
        }
    }
}

/// @dev Equivalent to `(x * y) / WAD` rounded down.
/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L54
function wmul(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
        if mul(y, gt(x, div(not(0), y))) {
            // Store the function selector of `Math__mul_overflow()`.
            mstore(0x00, 0xc4c5d7f5)

            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := div(mul(x, y), WAD)
    }
}

function wmul(uint256 x, int256 y) pure returns (int256 z) {
    unchecked {
        z = mul(x, y) / int256(WAD);
    }
}

/// @dev Equivalent to `(x * y) / WAD` rounded up.
/// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L69C22-L69C22
function wmulUp(uint256 x, uint256 y) pure returns (uint256 z) {
    /// @solidity memory-safe-assembly
    assembly {
        // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
        if mul(y, gt(x, div(not(0), y))) {
            // Store the function selector of `Math__mul_overflow()`.
            mstore(0x00, 0xc4c5d7f5)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
    }
}

/// @dev Equivalent to `(x * WAD) / y` rounded down.
/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L84
function wdiv(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
        if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
            // Store the function selector of `Math__div_overflow()`.
            mstore(0x00, 0xbcbede65)

            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := div(mul(x, WAD), y)
    }
}

/// @dev Equivalent to `(x * WAD) / y` rounded up.
/// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L99
function wdivUp(uint256 x, uint256 y) pure returns (uint256 z) {
    /// @solidity memory-safe-assembly
    assembly {
        // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
        if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
            // Store the function selector of `Math__div_overflow()`.
            mstore(0x00, 0xbcbede65)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/jug.sol#L62
function wpow(uint256 x, uint256 n, uint256 b) pure returns (uint256 z) {
    unchecked {
        assembly ("memory-safe") {
            switch n
            case 0 { z := b }
            default {
                switch x
                case 0 { z := 0 }
                default {
                    switch mod(n, 2)
                    case 0 { z := b }
                    default { z := x }
                    let half := div(b, 2) // for rounding.
                    for { n := div(n, 2) } n { n := div(n, 2) } {
                        let xx := mul(x, x)
                        if shr(128, x) { revert(0, 0) }
                        let xxRound := add(xx, half)
                        if lt(xxRound, xx) { revert(0, 0) }
                        x := div(xxRound, b)
                        if mod(n, 2) {
                            let zx := mul(z, x)
                            if and(iszero(iszero(x)), iszero(eq(div(zx, x), z))) { revert(0, 0) }
                            let zxRound := add(zx, half)
                            if lt(zxRound, zx) { revert(0, 0) }
                            z := div(zxRound, b)
                        }
                    }
                }
            }
        }
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L110
/// @dev Equivalent to `x` to the power of `y`.
/// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
function wpow(int256 x, int256 y) pure returns (int256) {
    // Using `ln(x)` means `x` must be greater than 0.
    return wexp((wln(x) * y) / int256(WAD));
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L116
/// @dev Returns `exp(x)`, denominated in `WAD`.
function wexp(int256 x) pure returns (int256 r) {
    unchecked {
        // When the result is < 0.5 we return zero. This happens when
        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
        if (x <= -42139678854452767551) return r;

        /// @solidity memory-safe-assembly
        assembly {
            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if iszero(slt(x, 135305999368893231589)) {
                mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                revert(0x1c, 0x04)
            }
        }

        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
        // for more intermediate precision and a binary basis. This base conversion
        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
        x = (x << 78) / 5 ** 18;

        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
        int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
        x = x - k * 54916777467707473351141471128;

        // k is in the range [-61, 195].

        // Evaluate using a (6, 7)-term rational approximation.
        // p is made monic, we'll multiply by a scale factor later.
        int256 y = x + 1346386616545796478920950773328;
        y = ((y * x) >> 96) + 57155421227552351082224309758442;
        int256 p = y + x - 94201549194550492254356042504812;
        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
        p = p * x + (4385272521454847904659076985693276 << 96);

        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
        int256 q = x - 2855989394907223263936484059900;
        q = ((q * x) >> 96) + 50020603652535783019961831881945;
        q = ((q * x) >> 96) - 533845033583426703283633433725380;
        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
        q = ((q * x) >> 96) + 26449188498355588339934803723976023;

        /// @solidity memory-safe-assembly
        assembly {
            // Div in assembly because solidity adds a zero check despite the unchecked.
            // The q polynomial won't have zeros in the domain as all its roots are complex.
            // No scaling is necessary because p is already 2**96 too large.
            r := sdiv(p, q)
        }

        // r should be in the range (0.09, 0.25) * 2**96.

        // We now need to multiply r by:
        // * the scale factor s = ~6.031367120.
        // * the 2**k factor from the range reduction.
        // * the 1e18 / 2**96 factor for base conversion.
        // We do this all at once, with an intermediate result in 2**213
        // basis, so the final right shift is always by a positive amount.
        r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k));
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L184
/// @dev Returns `ln(x)`, denominated in `WAD`.
function wln(int256 x) pure returns (int256 r) {
    unchecked {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
        }

        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
        // We do this by multiplying by 2**96 / 10**18. But since
        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
        // and add ln(2**96 / 10**18) at the end.

        // Compute k = log2(x) - 96, t = 159 - k = 255 - log2(x) = 255 ^ log2(x).
        int256 t;
        /// @solidity memory-safe-assembly
        assembly {
            t := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            t := or(t, shl(6, lt(0xffffffffffffffff, shr(t, x))))
            t := or(t, shl(5, lt(0xffffffff, shr(t, x))))
            t := or(t, shl(4, lt(0xffff, shr(t, x))))
            t := or(t, shl(3, lt(0xff, shr(t, x))))
            // forgefmt: disable-next-item
            t := xor(
                t,
                byte(
                    and(
                        0x1f,
                        shr(shr(t, x), 0x8421084210842108cc6318c6db6d54be)
                    ),
                    0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff
                )
            )
        }

        // Reduce range of x to (1, 2) * 2**96
        // ln(2^k * x) = k * ln(2) + ln(x)
        x = int256(uint256(x << uint256(t)) >> 159);

        // Evaluate using a (8, 8)-term rational approximation.
        // p is made monic, we will multiply by a scale factor later.
        int256 p = x + 3273285459638523848632254066296;
        p = ((p * x) >> 96) + 24828157081833163892658089445524;
        p = ((p * x) >> 96) + 43456485725739037958740375743393;
        p = ((p * x) >> 96) - 11111509109440967052023855526967;
        p = ((p * x) >> 96) - 45023709667254063763336534515857;
        p = ((p * x) >> 96) - 14706773417378608786704636184526;
        p = p * x - (795164235651350426258249787498 << 96);

        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
        // q is monic by convention.
        int256 q = x + 5573035233440673466300451813936;
        q = ((q * x) >> 96) + 71694874799317883764090561454958;
        q = ((q * x) >> 96) + 283447036172924575727196451306956;
        q = ((q * x) >> 96) + 401686690394027663651624208769553;
        q = ((q * x) >> 96) + 204048457590392012362485061816622;
        q = ((q * x) >> 96) + 31853899698501571402653359427138;
        q = ((q * x) >> 96) + 909429971244387300277376558375;
        /// @solidity memory-safe-assembly
        assembly {
            // Div in assembly because solidity adds a zero check despite the unchecked.
            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already 2**96 too large.
            r := sdiv(p, q)
        }

        // r is in the range (0, 0.125) * 2**96

        // Finalization, we need to:
        // * multiply by the scale factor s = 5.549…
        // * add ln(2**96 / 10**18)
        // * add k * ln(2)
        // * multiply by 10**18 / 2**96 = 5**18 >> 78

        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
        r *= 1677202110996718588342820967067443963516166;
        // add ln(2) * k * 5e18 * 2**192
        r += 16597577552685614221487285958193947469193820559219878177908093499208371 * (159 - t);
        // add ln(2**96 / 10**18) * 5e18 * 2**192
        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
        // base conversion: mul 2**18 / 2**192
        r >>= 174;
    }
}

/// @dev Returns the square root of `x`, rounded down.
function sqrt(uint256 x) pure returns (uint256 z) {
    /// @solidity memory-safe-assembly
    assembly {
        // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
        z := 181 // The "correct" value is 1, but this saves a multiplication later.

        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

        // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
        // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
        let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
        r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
        r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
        r := or(r, shl(4, lt(0xffffff, shr(r, x))))
        z := shl(shr(1, r), z)

        // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
        // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
        // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
        // That's not possible if `x < 256` but we can just verify those cases exhaustively.

        // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
        // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
        // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

        // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
        // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
        // with largest error when `s = 1` and when `s = 256` or `1/256`.

        // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
        // Then we can estimate `sqrt(y)` using
        // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

        // There is no overflow risk here since `y < 2**136` after the first branch above.
        z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))

        // If `x+1` is a perfect square, the Babylonian method cycles between
        // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
        z := sub(z, lt(div(x, z), z))
    }
}

File 12 of 56 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {IDragonX} from "@interfaces/IDragonX.sol";
import {IInferno} from "@interfaces/IInferno.sol";

// Token addresses
ERC20Burnable constant TITAN_X = ERC20Burnable(0xF19308F923582A6f7c465e5CE7a9Dc1BEC6665B1);
IInferno constant INFERNO = IInferno(0x00F116ac0c304C570daAA68FA6c30a86A04B5C5F);
address constant TITAN_X_INFERNO_POOl = 0x1E90B67149e688DfB95fD73Acacd8ADefd16d88D;

// Distribution addresses
address constant GENESIS_WALLET = 0xfF5758cb7B0F57f332F956A1177a0A0Ed7785eD9;
address constant FEES_WALLET = 0xCDFD7919E2a685B53A6da001B72f0170Ca0bF005;
address constant OWNER = 0xA4A55205a4649b070EbD6c8D2ECE4442C8BdED2b;
address constant HELIOS_ADDR = 0xA2d21205Aa7273BadDFC8E9551e05E23bB49ce46;
IDragonX constant DRAGON_X = IDragonX(0x96a5399D07896f757Bd4c6eF56461F58DB951862);

// Percentages in WAD
uint64 constant INCENTIVE_FEE = 0.015e18; //1.5%
uint64 constant WEEKLY_EMISSION_DROP = 0.012e18; // 1.2%
uint64 constant DAY8_SHARE_DECREASE = 0.0126e18;

uint64 constant FLUX_BUY_AND_BURN = 0.46e18; // 46%
uint64 constant REWARD_POOLS = 0.4e18; // 40%
uint64 constant TITAN_X_DRAGON_X = 0.04e18; // 4%
uint64 constant TITAN_X_HELIOS = 0.02e18; // 2%
uint64 constant GENESIS = 0.08e18; // 8%

// Reward pools distribution
uint64 constant DAY8POOL_DIST = 0.38e18; // 38%
uint64 constant DAY28POOL_DIST = 0.3e18; // 30%
uint64 constant DAY88POOL_DIST = 0.22e18; // 22%
uint64 constant VOLUNTARY_DIST = 0.1e18; // 10%

uint64 constant WAD = 1e18;

uint16 constant INTERVAL_TIME = 8 minutes;
uint8 constant INTERVALS_PER_DAY = uint8(24 hours / INTERVAL_TIME);

uint24 constant POOL_FEE = 10_000; //1%
int16 constant TICK_SPACING = 200; // Uniswap's tick spacing for 1% pools is 200

///@dev The initial titan x amount needed to create liquidity pool
uint96 constant INITIAL_TITAN_X_FOR_LIQ = 15_000_000_000e18;

uint96 constant AUCTION_EMIT = 75_000_000_000e18;

///@dev The intial FLUX that pairs with the inferno received from the swap
uint96 constant INITIAL_FLUX_FOR_LP = 10_000_000_000e18;

/* === UNIV3 === */
address constant UNISWAP_V3_ROUTER = 0xE592427A0AEce92De3Edee1F18E0157C05861564;
address constant UNISWAP_V3_POSITION_MANAGER = 0xC36442b4a4522E871399CD717aBDD847Ab11FE88;
address constant UNISWAP_V3_QUOTER = 0xb27308f9F90D607463bb33eA1BeBb41C27CE5AB6;

/* === SEPOLIA ==== */

// address constant UNISWAP_V3_ROUTER = 0x3bFA4769FB09eefC5a80d6E87c3B9C650f7Ae48E;
// address constant UNISWAP_V3_POSITION_MANAGER = 0x1238536071E1c677A632429e3655c799b22cDA52;
// address constant UNISWAP_V3_QUOTER = 0xEd1f6473345F45b75F8179591dd5bA1888cf2FB3;

File 13 of 56 : IInferno.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IInferno is IERC20 {
    function mint(address _to, uint256 _amount) external;
    function mintTokensForLP() external;

    function burn(uint256 value) external;

    function minting() external view returns (address);
    function buyAndBurn() external view returns (address);
    function blazeInfernoPool() external view returns (address);
}

File 14 of 56 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 15 of 56 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 16 of 56 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 17 of 56 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 18 of 56 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 19 of 56 : SwapActions.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

/* == OZ == */
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {ISwapRouter} from "@uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol";

// import {ISwapRouter} from "../../mocks/ISwapRouter.sol";
import {Ownable2Step, Ownable} from "@openzeppelin/contracts/access/Ownable2Step.sol";

/* == LIBS == */
import {OracleLibrary} from "@libs/OracleLibrary.sol";

/* == UTILS == */
import {wdiv, wmul} from "@utils/Math.sol";
import {Errors} from "@utils/Errors.sol";

/* == CONST == */
import "@const/Constants.sol";

/* == UNIV3 == */
import {TickMath} from "@uniswap/v3-core/contracts/libraries/TickMath.sol";

/* = UNIV2 = */
import {IUniswapV2Router02} from "@uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol";
import {IUniswapV2Pair} from "@uniswap/v2-core/contracts/interfaces/IUniswapV2Pair.sol";

/* == INTERFACES == */
import {IInferno} from "@interfaces/IInferno.sol";
import {IFlux} from "@interfaces/IFlux.sol";

struct TWAPConfig {
    uint192 slippage;
    ///@notice This is in minutes, it is multiplied by 60
    uint16 twapLookBack;
}

/**
 * @title SwapActions
 * @author Zyntek
 * @notice This contract handles all interactions with uniswap and also calculates slippage
 */
contract SwapActions is Errors, Ownable2Step {
    //=========STORAGE==========//

    IFlux immutable flux;
    ERC20Burnable immutable titanX;

    IInferno immutable inferno;

    address immutable titanXInfernoPool;

    TWAPConfig infernoToFLuxConfig;
    TWAPConfig titanXToInfernoConfig;
    TWAPConfig lpConfig;

    address slippageAdmin;

    //==========ERRORS==========//

    error SwapActions__InvalidSlippage();
    error SwapAction__OnlySlippageAdmin();

    //========MODIFIERS==========//

    modifier onlySlippageAdminOrOwner() {
        _onlySlippageAdminOrOwner();
        _;
    }

    //=======CONSTRUCTOR========//

    constructor(address _flux, ERC20Burnable _titanX, IInferno _inferno, address _titanXInfernoPool, address _owner)
        Ownable(_owner)
    {
        /// Tokens
        flux = IFlux(_flux);
        titanX = _titanX;
        inferno = _inferno;

        titanXInfernoPool = _titanXInfernoPool;

        ///Slippage
        infernoToFLuxConfig = TWAPConfig({slippage: WAD - 0.2e18, twapLookBack: 15});
        titanXToInfernoConfig = TWAPConfig({slippage: WAD - 0.2e18, twapLookBack: 15});
        lpConfig = TWAPConfig({slippage: WAD - 0.2e18, twapLookBack: 15});

        slippageAdmin = _owner;
    }

    //==========================//
    //=====EXTERNAL/PUBLIC======//
    //==========================//

    function changeSlippageAdmin(address _new) external notAddress0(_new) onlyOwner {
        slippageAdmin = _new;
    }

    function changeLpConfig(uint192 _newSlippage, uint16 _newLookBack)
        external
        notAmount0(_newLookBack)
        onlySlippageAdminOrOwner
    {
        if (_newSlippage > WAD) revert SwapActions__InvalidSlippage();

        lpConfig = TWAPConfig({slippage: _newSlippage, twapLookBack: _newLookBack});
    }

    function changeInfernoToFluxConfig(uint192 _newSlippage, uint16 _newLookBack)
        external
        notAmount0(_newLookBack)
        onlySlippageAdminOrOwner
    {
        if (_newSlippage > WAD) revert SwapActions__InvalidSlippage();

        infernoToFLuxConfig = TWAPConfig({slippage: _newSlippage, twapLookBack: _newLookBack});
    }

    function changeTitanXToInfernoConfig(uint192 _newSlippage, uint16 _newLookBack)
        external
        notAmount0(_newLookBack)
        onlySlippageAdminOrOwner
    {
        if (_newSlippage > WAD) revert SwapActions__InvalidSlippage();
        titanXToInfernoConfig = TWAPConfig({slippage: _newSlippage, twapLookBack: _newLookBack});
    }

    /**
     * @notice Gets a TWAP for FLUX tokens in exchange for Inferno tokens
     * @param baseAmount The amount of Inferno tokens
     * @return quote The amount of Inferno tokens received
     */
    function getFluxQuoteForInferno(uint256 baseAmount) public view returns (uint256 quote) {
        address poolAddress = flux.pool();
        uint32 secondsAgo = infernoToFLuxConfig.twapLookBack * 60;
        uint32 oldestObservation = OracleLibrary.getOldestObservationSecondsAgo(poolAddress);

        if (oldestObservation < secondsAgo) secondsAgo = oldestObservation;

        (int24 arithmeticMeanTick,) = OracleLibrary.consult(poolAddress, secondsAgo);

        uint160 sqrtPriceX96 = TickMath.getSqrtRatioAtTick(arithmeticMeanTick);

        quote = OracleLibrary.getQuoteForSqrtRatioX96(sqrtPriceX96, baseAmount, address(inferno), address(flux));
    }

    /**
     * @notice Gets a quote for Inferno tokens in exchange for TitanX tokens
     * @param baseAmount The amount of TitanX tokens
     * @return quote The amount of Inferno tokens received
     */
    function getInfernoQuoteForTitanX(uint256 baseAmount) public view returns (uint256 quote) {
        address poolAddress = titanXInfernoPool;
        uint32 secondsAgo = titanXToInfernoConfig.twapLookBack * 60;
        uint32 oldestObservation = OracleLibrary.getOldestObservationSecondsAgo(poolAddress);

        if (oldestObservation < secondsAgo) secondsAgo = oldestObservation;

        (int24 arithmeticMeanTick,) = OracleLibrary.consult(poolAddress, secondsAgo);

        uint160 sqrtPriceX96 = TickMath.getSqrtRatioAtTick(arithmeticMeanTick);

        quote = OracleLibrary.getQuoteForSqrtRatioX96(sqrtPriceX96, baseAmount, address(titanX), address(inferno));
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    /**
     * @notice Swaps TitanX tokens for Inferno tokens
     * @param _titanXAmount The amount of TitanX tokens
     * @param _deadline The deadline for when the swap must be executed
     * @return _infernoAmount The amount of TitanX tokens received
     */
    function _swapTitanXForInferno(uint256 _titanXAmount, uint256 _deadline)
        internal
        returns (uint256 _infernoAmount)
    {
        titanX.approve(UNISWAP_V3_ROUTER, _titanXAmount);
        // Setup the swap-path
        bytes memory path = abi.encodePacked(address(titanX), POOL_FEE, address(inferno));

        uint256 expectedInfernoAmount = getInfernoQuoteForTitanX(_titanXAmount);

        uint256 amountOutMin = wmul(expectedInfernoAmount, titanXToInfernoConfig.slippage);

        // Swap parameters
        ISwapRouter.ExactInputParams memory params = ISwapRouter.ExactInputParams({
            path: path,
            recipient: address(this),
            deadline: _deadline,
            amountIn: _titanXAmount,
            amountOutMinimum: amountOutMin
        });

        // Execute the swap
        return ISwapRouter(UNISWAP_V3_ROUTER).exactInput(params);
    }

    /**
     * @notice Sorts the tokens and returns the amounts
     * @return amount0 The amount of token0
     * @return amount1 The amount of token1
     * @return amount0Min Minimum amount of token0
     * @return amount1Min Minimum amount of token1
     * @return token0 Address of token0
     * @return token1 Address of token1
     */
    function _sortAmountsForLP(uint256 _infernoAmount, uint256 _fluxAmount)
        internal
        view
        returns (
            uint256 amount0,
            uint256 amount1,
            uint256 amount0Min,
            uint256 amount1Min,
            address token0,
            address token1
        )
    {
        address _flux = address(flux);
        address _inferno = address(inferno);

        (token0, token1) = _flux < _inferno ? (_flux, _inferno) : (_inferno, _flux);
        (amount0, amount1) = token0 == _flux ? (_fluxAmount, _infernoAmount) : (_infernoAmount, _fluxAmount);

        (amount0Min, amount1Min) = (wmul(amount0, lpConfig.slippage), wmul(amount1, lpConfig.slippage));
    }

    /**
     * @notice Swaps Inferno tokens for Flux tokens
     * @param _amountInferno The amount of Inferno tokens
     * @param _deadline The deadline for when the swap must be executed
     * @return _fluxAmount The amount of Flux tokens received
     */
    function _swapInfernoForFlux(uint256 _amountInferno, uint256 _deadline) internal returns (uint160 _fluxAmount) {
        inferno.approve(UNISWAP_V3_ROUTER, _amountInferno);

        bytes memory path = abi.encodePacked(address(inferno), POOL_FEE, address(flux));

        uint256 expectedInfernoAmount = getFluxQuoteForInferno(_amountInferno);

        uint256 amountOutMin = wmul(expectedInfernoAmount, infernoToFLuxConfig.slippage);

        // Swap parameters
        ISwapRouter.ExactInputParams memory params = ISwapRouter.ExactInputParams({
            path: path,
            recipient: address(this),
            deadline: _deadline,
            amountIn: _amountInferno,
            amountOutMinimum: amountOutMin
        });

        // Execute the swap
        return uint160(ISwapRouter(UNISWAP_V3_ROUTER).exactInput(params));
    }

    function _onlySlippageAdminOrOwner() private view {
        if (msg.sender != slippageAdmin && owner() != msg.sender) revert SwapAction__OnlySlippageAdmin();
    }
}

File 20 of 56 : Time.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

library Time {
    ///@notice Gets the current timestamp
    function blockTs() internal view returns (uint32 ts) {
        assembly {
            ts := timestamp()
        }
    }

    ///@notice Gets the the day count from a timestamp
    function dayCountByT(uint32 t) internal pure returns (uint32 dayCount) {
        assembly {
            let adjustedTime := sub(t, 61200)
            dayCount := div(adjustedTime, 86400)
        }
    }

    ///@notice Gets the week count, since a starting timestamp
    function weekSince(uint32 t) internal view returns (uint32 weeksPassed) {
        assembly {
            let currentTime := timestamp()
            let timeElapsed := sub(currentTime, t)

            weeksPassed := div(timeElapsed, 604800)
        }
    }

    function daysSince(uint32 t) public view returns (uint32 daysPassed) {
        assembly {
            // Get the current block timestamp
            let currentTime := timestamp()

            daysPassed := div(sub(currentTime, t), 86400)
        }
    }
}

File 21 of 56 : TickMath.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
    error T();
    error R();

    /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
    int24 internal constant MIN_TICK = -887272;
    /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
    int24 internal constant MAX_TICK = -MIN_TICK;

    /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
    uint160 internal constant MIN_SQRT_RATIO = 4295128739;
    /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
    uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;

    /// @notice Calculates sqrt(1.0001^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
    /// at the given tick
    function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
        unchecked {
            uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
            if (absTick > uint256(int256(MAX_TICK))) revert T();

            uint256 ratio = absTick & 0x1 != 0
                ? 0xfffcb933bd6fad37aa2d162d1a594001
                : 0x100000000000000000000000000000000;
            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

            if (tick > 0) ratio = type(uint256).max / ratio;

            // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
            // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
            // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
            sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
        }
    }

    /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
    /// ever return.
    /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
    /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
    function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
        unchecked {
            // second inequality must be < because the price can never reach the price at the max tick
            if (!(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO)) revert R();
            uint256 ratio = uint256(sqrtPriceX96) << 32;

            uint256 r = ratio;
            uint256 msb = 0;

            assembly {
                let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(5, gt(r, 0xFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(4, gt(r, 0xFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(3, gt(r, 0xFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(2, gt(r, 0xF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(1, gt(r, 0x3))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := gt(r, 0x1)
                msb := or(msb, f)
            }

            if (msb >= 128) r = ratio >> (msb - 127);
            else r = ratio << (127 - msb);

            int256 log_2 = (int256(msb) - 128) << 64;

            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(63, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(62, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(61, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(60, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(59, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(58, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(57, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(56, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(55, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(54, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(53, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(52, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(51, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(50, f))
            }

            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

            tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        }
    }
}

File 22 of 56 : IDragonX.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

interface IDragonX {
    function updateVault() external;
}

File 23 of 56 : ERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/ERC721.sol)

pragma solidity ^0.8.20;

import {IERC721} from "./IERC721.sol";
import {IERC721Receiver} from "./IERC721Receiver.sol";
import {IERC721Metadata} from "./extensions/IERC721Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {Strings} from "../../utils/Strings.sol";
import {IERC165, ERC165} from "../../utils/introspection/ERC165.sol";
import {IERC721Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of https://eips.ethereum.org/EIPS/eip-721[ERC721] Non-Fungible Token Standard, including
 * the Metadata extension, but not including the Enumerable extension, which is available separately as
 * {ERC721Enumerable}.
 */
abstract contract ERC721 is Context, ERC165, IERC721, IERC721Metadata, IERC721Errors {
    using Strings for uint256;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    mapping(uint256 tokenId => address) private _owners;

    mapping(address owner => uint256) private _balances;

    mapping(uint256 tokenId => address) private _tokenApprovals;

    mapping(address owner => mapping(address operator => bool)) private _operatorApprovals;

    /**
     * @dev Initializes the contract by setting a `name` and a `symbol` to the token collection.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override(ERC165, IERC165) returns (bool) {
        return
            interfaceId == type(IERC721).interfaceId ||
            interfaceId == type(IERC721Metadata).interfaceId ||
            super.supportsInterface(interfaceId);
    }

    /**
     * @dev See {IERC721-balanceOf}.
     */
    function balanceOf(address owner) public view virtual returns (uint256) {
        if (owner == address(0)) {
            revert ERC721InvalidOwner(address(0));
        }
        return _balances[owner];
    }

    /**
     * @dev See {IERC721-ownerOf}.
     */
    function ownerOf(uint256 tokenId) public view virtual returns (address) {
        return _requireOwned(tokenId);
    }

    /**
     * @dev See {IERC721Metadata-name}.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev See {IERC721Metadata-symbol}.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC721Metadata-tokenURI}.
     */
    function tokenURI(uint256 tokenId) public view virtual returns (string memory) {
        _requireOwned(tokenId);

        string memory baseURI = _baseURI();
        return bytes(baseURI).length > 0 ? string.concat(baseURI, tokenId.toString()) : "";
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return "";
    }

    /**
     * @dev See {IERC721-approve}.
     */
    function approve(address to, uint256 tokenId) public virtual {
        _approve(to, tokenId, _msgSender());
    }

    /**
     * @dev See {IERC721-getApproved}.
     */
    function getApproved(uint256 tokenId) public view virtual returns (address) {
        _requireOwned(tokenId);

        return _getApproved(tokenId);
    }

    /**
     * @dev See {IERC721-setApprovalForAll}.
     */
    function setApprovalForAll(address operator, bool approved) public virtual {
        _setApprovalForAll(_msgSender(), operator, approved);
    }

    /**
     * @dev See {IERC721-isApprovedForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev See {IERC721-transferFrom}.
     */
    function transferFrom(address from, address to, uint256 tokenId) public virtual {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        // Setting an "auth" arguments enables the `_isAuthorized` check which verifies that the token exists
        // (from != 0). Therefore, it is not needed to verify that the return value is not 0 here.
        address previousOwner = _update(to, tokenId, _msgSender());
        if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) public {
        safeTransferFrom(from, to, tokenId, "");
    }

    /**
     * @dev See {IERC721-safeTransferFrom}.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes memory data) public virtual {
        transferFrom(from, to, tokenId);
        _checkOnERC721Received(from, to, tokenId, data);
    }

    /**
     * @dev Returns the owner of the `tokenId`. Does NOT revert if token doesn't exist
     *
     * IMPORTANT: Any overrides to this function that add ownership of tokens not tracked by the
     * core ERC721 logic MUST be matched with the use of {_increaseBalance} to keep balances
     * consistent with ownership. The invariant to preserve is that for any address `a` the value returned by
     * `balanceOf(a)` must be equal to the number of tokens such that `_ownerOf(tokenId)` is `a`.
     */
    function _ownerOf(uint256 tokenId) internal view virtual returns (address) {
        return _owners[tokenId];
    }

    /**
     * @dev Returns the approved address for `tokenId`. Returns 0 if `tokenId` is not minted.
     */
    function _getApproved(uint256 tokenId) internal view virtual returns (address) {
        return _tokenApprovals[tokenId];
    }

    /**
     * @dev Returns whether `spender` is allowed to manage `owner`'s tokens, or `tokenId` in
     * particular (ignoring whether it is owned by `owner`).
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _isAuthorized(address owner, address spender, uint256 tokenId) internal view virtual returns (bool) {
        return
            spender != address(0) &&
            (owner == spender || isApprovedForAll(owner, spender) || _getApproved(tokenId) == spender);
    }

    /**
     * @dev Checks if `spender` can operate on `tokenId`, assuming the provided `owner` is the actual owner.
     * Reverts if `spender` does not have approval from the provided `owner` for the given token or for all its assets
     * the `spender` for the specific `tokenId`.
     *
     * WARNING: This function assumes that `owner` is the actual owner of `tokenId` and does not verify this
     * assumption.
     */
    function _checkAuthorized(address owner, address spender, uint256 tokenId) internal view virtual {
        if (!_isAuthorized(owner, spender, tokenId)) {
            if (owner == address(0)) {
                revert ERC721NonexistentToken(tokenId);
            } else {
                revert ERC721InsufficientApproval(spender, tokenId);
            }
        }
    }

    /**
     * @dev Unsafe write access to the balances, used by extensions that "mint" tokens using an {ownerOf} override.
     *
     * NOTE: the value is limited to type(uint128).max. This protect against _balance overflow. It is unrealistic that
     * a uint256 would ever overflow from increments when these increments are bounded to uint128 values.
     *
     * WARNING: Increasing an account's balance using this function tends to be paired with an override of the
     * {_ownerOf} function to resolve the ownership of the corresponding tokens so that balances and ownership
     * remain consistent with one another.
     */
    function _increaseBalance(address account, uint128 value) internal virtual {
        unchecked {
            _balances[account] += value;
        }
    }

    /**
     * @dev Transfers `tokenId` from its current owner to `to`, or alternatively mints (or burns) if the current owner
     * (or `to`) is the zero address. Returns the owner of the `tokenId` before the update.
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that
     * `auth` is either the owner of the token, or approved to operate on the token (by the owner).
     *
     * Emits a {Transfer} event.
     *
     * NOTE: If overriding this function in a way that tracks balances, see also {_increaseBalance}.
     */
    function _update(address to, uint256 tokenId, address auth) internal virtual returns (address) {
        address from = _ownerOf(tokenId);

        // Perform (optional) operator check
        if (auth != address(0)) {
            _checkAuthorized(from, auth, tokenId);
        }

        // Execute the update
        if (from != address(0)) {
            // Clear approval. No need to re-authorize or emit the Approval event
            _approve(address(0), tokenId, address(0), false);

            unchecked {
                _balances[from] -= 1;
            }
        }

        if (to != address(0)) {
            unchecked {
                _balances[to] += 1;
            }
        }

        _owners[tokenId] = to;

        emit Transfer(from, to, tokenId);

        return from;
    }

    /**
     * @dev Mints `tokenId` and transfers it to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {_safeMint} whenever possible
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - `to` cannot be the zero address.
     *
     * Emits a {Transfer} event.
     */
    function _mint(address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner != address(0)) {
            revert ERC721InvalidSender(address(0));
        }
    }

    /**
     * @dev Mints `tokenId`, transfers it to `to` and checks for `to` acceptance.
     *
     * Requirements:
     *
     * - `tokenId` must not exist.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeMint(address to, uint256 tokenId) internal {
        _safeMint(to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeMint-address-uint256-}[`_safeMint`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeMint(address to, uint256 tokenId, bytes memory data) internal virtual {
        _mint(to, tokenId);
        _checkOnERC721Received(address(0), to, tokenId, data);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     * This is an internal function that does not check if the sender is authorized to operate on the token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId) internal {
        address previousOwner = _update(address(0), tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
    }

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *  As opposed to {transferFrom}, this imposes no restrictions on msg.sender.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     *
     * Emits a {Transfer} event.
     */
    function _transfer(address from, address to, uint256 tokenId) internal {
        if (to == address(0)) {
            revert ERC721InvalidReceiver(address(0));
        }
        address previousOwner = _update(to, tokenId, address(0));
        if (previousOwner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        } else if (previousOwner != from) {
            revert ERC721IncorrectOwner(from, tokenId, previousOwner);
        }
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking that contract recipients
     * are aware of the ERC721 standard to prevent tokens from being forever locked.
     *
     * `data` is additional data, it has no specified format and it is sent in call to `to`.
     *
     * This internal function is like {safeTransferFrom} in the sense that it invokes
     * {IERC721Receiver-onERC721Received} on the receiver, and can be used to e.g.
     * implement alternative mechanisms to perform token transfer, such as signature-based.
     *
     * Requirements:
     *
     * - `tokenId` token must exist and be owned by `from`.
     * - `to` cannot be the zero address.
     * - `from` cannot be the zero address.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function _safeTransfer(address from, address to, uint256 tokenId) internal {
        _safeTransfer(from, to, tokenId, "");
    }

    /**
     * @dev Same as {xref-ERC721-_safeTransfer-address-address-uint256-}[`_safeTransfer`], with an additional `data` parameter which is
     * forwarded in {IERC721Receiver-onERC721Received} to contract recipients.
     */
    function _safeTransfer(address from, address to, uint256 tokenId, bytes memory data) internal virtual {
        _transfer(from, to, tokenId);
        _checkOnERC721Received(from, to, tokenId, data);
    }

    /**
     * @dev Approve `to` to operate on `tokenId`
     *
     * The `auth` argument is optional. If the value passed is non 0, then this function will check that `auth` is
     * either the owner of the token, or approved to operate on all tokens held by this owner.
     *
     * Emits an {Approval} event.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address to, uint256 tokenId, address auth) internal {
        _approve(to, tokenId, auth, true);
    }

    /**
     * @dev Variant of `_approve` with an optional flag to enable or disable the {Approval} event. The event is not
     * emitted in the context of transfers.
     */
    function _approve(address to, uint256 tokenId, address auth, bool emitEvent) internal virtual {
        // Avoid reading the owner unless necessary
        if (emitEvent || auth != address(0)) {
            address owner = _requireOwned(tokenId);

            // We do not use _isAuthorized because single-token approvals should not be able to call approve
            if (auth != address(0) && owner != auth && !isApprovedForAll(owner, auth)) {
                revert ERC721InvalidApprover(auth);
            }

            if (emitEvent) {
                emit Approval(owner, to, tokenId);
            }
        }

        _tokenApprovals[tokenId] = to;
    }

    /**
     * @dev Approve `operator` to operate on all of `owner` tokens
     *
     * Requirements:
     * - operator can't be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function _setApprovalForAll(address owner, address operator, bool approved) internal virtual {
        if (operator == address(0)) {
            revert ERC721InvalidOperator(operator);
        }
        _operatorApprovals[owner][operator] = approved;
        emit ApprovalForAll(owner, operator, approved);
    }

    /**
     * @dev Reverts if the `tokenId` doesn't have a current owner (it hasn't been minted, or it has been burned).
     * Returns the owner.
     *
     * Overrides to ownership logic should be done to {_ownerOf}.
     */
    function _requireOwned(uint256 tokenId) internal view returns (address) {
        address owner = _ownerOf(tokenId);
        if (owner == address(0)) {
            revert ERC721NonexistentToken(tokenId);
        }
        return owner;
    }

    /**
     * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target address. This will revert if the
     * recipient doesn't accept the token transfer. The call is not executed if the target address is not a contract.
     *
     * @param from address representing the previous owner of the given token ID
     * @param to target address that will receive the tokens
     * @param tokenId uint256 ID of the token to be transferred
     * @param data bytes optional data to send along with the call
     */
    function _checkOnERC721Received(address from, address to, uint256 tokenId, bytes memory data) private {
        if (to.code.length > 0) {
            try IERC721Receiver(to).onERC721Received(_msgSender(), from, tokenId, data) returns (bytes4 retval) {
                if (retval != IERC721Receiver.onERC721Received.selector) {
                    revert ERC721InvalidReceiver(to);
                }
            } catch (bytes memory reason) {
                if (reason.length == 0) {
                    revert ERC721InvalidReceiver(to);
                } else {
                    /// @solidity memory-safe-assembly
                    assembly {
                        revert(add(32, reason), mload(reason))
                    }
                }
            }
        }
    }
}

File 24 of 56 : 777Voluntary.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

/* == OZ ==  */
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/* == SYSTEM == */
import {FluxStaking} from "@core/Staking.sol";

/* == UTILS == */
import {Errors} from "@utils/Errors.sol";
import {wmul, wdiv} from "@utils/Math.sol";

/* == CONST == */
import "@const/Constants.sol";

struct UserRecord {
    uint144 shares;
    uint112 rewardDebt;
}
/**
 * @title Voluntary777Pool
 * @author Zyntek
 * @notice The voluntary staking pools where people who staked for the max duration earn extra rewards
 */

contract Voluntary777Pool is Errors {
    /* == IMMUTABLE == */
    FluxStaking immutable staking;
    IERC20 immutable titanX;

    /* == STORAGE == */

    mapping(uint256 id => UserRecord) public record;

    uint256 public totalFluxStaked;

    uint160 public totalShares;
    uint112 public rewardPerShare;

    /* == ERRORS == */

    error Voluntary777Pool__OnlyStaking();

    /* == MODIFIERS == */

    modifier onlyStaking() {
        _onlyStaking();
        _;
    }

    /* == CONSTRUCTOR == */

    constructor(address fluxStaking, IERC20 _titanX) notAddress0(fluxStaking) notAddress0(address(_titanX)) {
        staking = FluxStaking(fluxStaking);
        titanX = _titanX;
    }

    /* == PUBLIC == */

    function stake(uint256 _tokenId, uint144 _shares, uint256 fluxAmount)
        external
        onlyStaking
        notAmount0(_shares)
        notAmount0(fluxAmount)
        notAmount0(_tokenId)
    {
        record[_tokenId] = UserRecord({shares: _shares, rewardDebt: rewardPerShare});

        totalFluxStaked += fluxAmount;
        totalShares = totalShares + _shares;
    }

    function unstake(uint256 _tokenId, uint256 fluxAmount) external onlyStaking notAmount0(_tokenId) {
        totalShares -= record[_tokenId].shares;
        totalFluxStaked -= fluxAmount;

        delete record[_tokenId];
    }

    function claim(uint160 _tokenId) external onlyStaking notAmount0(_tokenId) returns (uint256 claimedAmount) {
        UserRecord storage r = record[_tokenId];

        claimedAmount = wmul(r.shares, rewardPerShare - r.rewardDebt);

        if (claimedAmount != 0) {
            r.rewardDebt = rewardPerShare;
            titanX.transfer(msg.sender, claimedAmount);
        }
    }

    function claimableAmount(uint160 _tokenId) public view returns (uint256 amountToClaim) {
        UserRecord storage r = record[_tokenId];

        amountToClaim = wmul(r.shares, rewardPerShare - r.rewardDebt);
    }

    function distribute(uint256 _amount) external onlyStaking {
        if (totalShares == 0) return;
        rewardPerShare += uint112(wdiv(_amount, totalShares));
    }

    /* == INTERNAL == */

    function _onlyStaking() internal view {
        if (msg.sender != address(staking)) revert Voluntary777Pool__OnlyStaking();
    }
}

File 25 of 56 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

contract Errors {
    error Address0();
    error Amount0();
    error Expired();

    modifier notAmount0(uint256 a) {
        _notAmount0(a);
        _;
    }

    modifier notExpired(uint32 _deadline) {
        if (block.timestamp > _deadline) revert Expired();
        _;
    }

    modifier notAddress0(address a) {
        _notAddress0(a);
        _;
    }

    function _notAddress0(address a) internal pure {
        if (a == address(0)) revert Address0();
    }

    function _notAmount0(uint256 a) internal pure {
        if (a == 0) revert Amount0();
    }
}

File 26 of 56 : IFlux.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.26;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {FluxStaking} from "@core/Staking.sol";

interface IFluxBuyAndBurn {
    function distributeTitanXForBurning(uint256 _amount) external;
}

interface IFlux is IERC20 {
    function pool() external view returns (address);
    function buyAndBurn() external view returns (IFluxBuyAndBurn);
    function staking() external view returns (FluxStaking);
    function emitFlux(address _receiver, uint256 _amount) external;
    function burn(uint256 amount) external;
}

File 27 of 56 : IUniswapV3PoolImmutables.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
    /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
    /// @return The contract address
    function factory() external view returns (address);

    /// @notice The first of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token0() external view returns (address);

    /// @notice The second of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token1() external view returns (address);

    /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
    /// @return The fee
    function fee() external view returns (uint24);

    /// @notice The pool tick spacing
    /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
    /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
    /// This value is an int24 to avoid casting even though it is always positive.
    /// @return The tick spacing
    function tickSpacing() external view returns (int24);

    /// @notice The maximum amount of position liquidity that can use any tick in the range
    /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
    /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
    /// @return The max amount of liquidity per tick
    function maxLiquidityPerTick() external view returns (uint128);
}

File 28 of 56 : IUniswapV3PoolState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
    /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
    /// when accessed externally.
    /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
    /// @return tick The current tick of the pool, i.e. according to the last tick transition that was run.
    /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
    /// boundary.
    /// @return observationIndex The index of the last oracle observation that was written,
    /// @return observationCardinality The current maximum number of observations stored in the pool,
    /// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation.
    /// @return feeProtocol The protocol fee for both tokens of the pool.
    /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
    /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
    /// unlocked Whether the pool is currently locked to reentrancy
    function slot0()
        external
        view
        returns (
            uint160 sqrtPriceX96,
            int24 tick,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext,
            uint8 feeProtocol,
            bool unlocked
        );

    /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal0X128() external view returns (uint256);

    /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal1X128() external view returns (uint256);

    /// @notice The amounts of token0 and token1 that are owed to the protocol
    /// @dev Protocol fees will never exceed uint128 max in either token
    function protocolFees() external view returns (uint128 token0, uint128 token1);

    /// @notice The currently in range liquidity available to the pool
    /// @dev This value has no relationship to the total liquidity across all ticks
    /// @return The liquidity at the current price of the pool
    function liquidity() external view returns (uint128);

    /// @notice Look up information about a specific tick in the pool
    /// @param tick The tick to look up
    /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
    /// tick upper
    /// @return liquidityNet how much liquidity changes when the pool price crosses the tick,
    /// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
    /// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
    /// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
    /// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
    /// @return secondsOutside the seconds spent on the other side of the tick from the current tick,
    /// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
    /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
    /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
    /// a specific position.
    function ticks(int24 tick)
        external
        view
        returns (
            uint128 liquidityGross,
            int128 liquidityNet,
            uint256 feeGrowthOutside0X128,
            uint256 feeGrowthOutside1X128,
            int56 tickCumulativeOutside,
            uint160 secondsPerLiquidityOutsideX128,
            uint32 secondsOutside,
            bool initialized
        );

    /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
    function tickBitmap(int16 wordPosition) external view returns (uint256);

    /// @notice Returns the information about a position by the position's key
    /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
    /// @return liquidity The amount of liquidity in the position,
    /// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
    /// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
    /// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
    /// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
    function positions(bytes32 key)
        external
        view
        returns (
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    /// @notice Returns data about a specific observation index
    /// @param index The element of the observations array to fetch
    /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
    /// ago, rather than at a specific index in the array.
    /// @return blockTimestamp The timestamp of the observation,
    /// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
    /// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
    /// @return initialized whether the observation has been initialized and the values are safe to use
    function observations(uint256 index)
        external
        view
        returns (
            uint32 blockTimestamp,
            int56 tickCumulative,
            uint160 secondsPerLiquidityCumulativeX128,
            bool initialized
        );
}

File 29 of 56 : IUniswapV3PoolDerivedState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
    /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
    /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
    /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
    /// you must call it with secondsAgos = [3600, 0].
    /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
    /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
    /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
    /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
    /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
    /// timestamp
    function observe(uint32[] calldata secondsAgos)
        external
        view
        returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);

    /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
    /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
    /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
    /// snapshot is taken and the second snapshot is taken.
    /// @param tickLower The lower tick of the range
    /// @param tickUpper The upper tick of the range
    /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
    /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
    /// @return secondsInside The snapshot of seconds per liquidity for the range
    function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
        external
        view
        returns (
            int56 tickCumulativeInside,
            uint160 secondsPerLiquidityInsideX128,
            uint32 secondsInside
        );
}

File 30 of 56 : IUniswapV3PoolActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
    /// @notice Sets the initial price for the pool
    /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
    /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
    function initialize(uint160 sqrtPriceX96) external;

    /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
    /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
    /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
    /// on tickLower, tickUpper, the amount of liquidity, and the current price.
    /// @param recipient The address for which the liquidity will be created
    /// @param tickLower The lower tick of the position in which to add liquidity
    /// @param tickUpper The upper tick of the position in which to add liquidity
    /// @param amount The amount of liquidity to mint
    /// @param data Any data that should be passed through to the callback
    /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
    /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
    function mint(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount,
        bytes calldata data
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Collects tokens owed to a position
    /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
    /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
    /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
    /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
    /// @param recipient The address which should receive the fees collected
    /// @param tickLower The lower tick of the position for which to collect fees
    /// @param tickUpper The upper tick of the position for which to collect fees
    /// @param amount0Requested How much token0 should be withdrawn from the fees owed
    /// @param amount1Requested How much token1 should be withdrawn from the fees owed
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);

    /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
    /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
    /// @dev Fees must be collected separately via a call to #collect
    /// @param tickLower The lower tick of the position for which to burn liquidity
    /// @param tickUpper The upper tick of the position for which to burn liquidity
    /// @param amount How much liquidity to burn
    /// @return amount0 The amount of token0 sent to the recipient
    /// @return amount1 The amount of token1 sent to the recipient
    function burn(
        int24 tickLower,
        int24 tickUpper,
        uint128 amount
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Swap token0 for token1, or token1 for token0
    /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
    /// @param recipient The address to receive the output of the swap
    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
    /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
    /// @param data Any data to be passed through to the callback
    /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
    /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
    function swap(
        address recipient,
        bool zeroForOne,
        int256 amountSpecified,
        uint160 sqrtPriceLimitX96,
        bytes calldata data
    ) external returns (int256 amount0, int256 amount1);

    /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
    /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
    /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
    /// with 0 amount{0,1} and sending the donation amount(s) from the callback
    /// @param recipient The address which will receive the token0 and token1 amounts
    /// @param amount0 The amount of token0 to send
    /// @param amount1 The amount of token1 to send
    /// @param data Any data to be passed through to the callback
    function flash(
        address recipient,
        uint256 amount0,
        uint256 amount1,
        bytes calldata data
    ) external;

    /// @notice Increase the maximum number of price and liquidity observations that this pool will store
    /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
    /// the input observationCardinalityNext.
    /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
    function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}

File 31 of 56 : IUniswapV3PoolOwnerActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
    /// @notice Set the denominator of the protocol's % share of the fees
    /// @param feeProtocol0 new protocol fee for token0 of the pool
    /// @param feeProtocol1 new protocol fee for token1 of the pool
    function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;

    /// @notice Collect the protocol fee accrued to the pool
    /// @param recipient The address to which collected protocol fees should be sent
    /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
    /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
    /// @return amount0 The protocol fee collected in token0
    /// @return amount1 The protocol fee collected in token1
    function collectProtocol(
        address recipient,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);
}

File 32 of 56 : IUniswapV3PoolErrors.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Errors emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolErrors {
    error LOK();
    error TLU();
    error TLM();
    error TUM();
    error AI();
    error M0();
    error M1();
    error AS();
    error IIA();
    error L();
    error F0();
    error F1();
}

File 33 of 56 : IUniswapV3PoolEvents.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
    /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
    /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
    /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
    /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
    event Initialize(uint160 sqrtPriceX96, int24 tick);

    /// @notice Emitted when liquidity is minted for a given position
    /// @param sender The address that minted the liquidity
    /// @param owner The owner of the position and recipient of any minted liquidity
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity minted to the position range
    /// @param amount0 How much token0 was required for the minted liquidity
    /// @param amount1 How much token1 was required for the minted liquidity
    event Mint(
        address sender,
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted when fees are collected by the owner of a position
    /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
    /// @param owner The owner of the position for which fees are collected
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount0 The amount of token0 fees collected
    /// @param amount1 The amount of token1 fees collected
    event Collect(
        address indexed owner,
        address recipient,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount0,
        uint128 amount1
    );

    /// @notice Emitted when a position's liquidity is removed
    /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
    /// @param owner The owner of the position for which liquidity is removed
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity to remove
    /// @param amount0 The amount of token0 withdrawn
    /// @param amount1 The amount of token1 withdrawn
    event Burn(
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted by the pool for any swaps between token0 and token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the output of the swap
    /// @param amount0 The delta of the token0 balance of the pool
    /// @param amount1 The delta of the token1 balance of the pool
    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
    /// @param liquidity The liquidity of the pool after the swap
    /// @param tick The log base 1.0001 of price of the pool after the swap
    event Swap(
        address indexed sender,
        address indexed recipient,
        int256 amount0,
        int256 amount1,
        uint160 sqrtPriceX96,
        uint128 liquidity,
        int24 tick
    );

    /// @notice Emitted by the pool for any flashes of token0/token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the tokens from flash
    /// @param amount0 The amount of token0 that was flashed
    /// @param amount1 The amount of token1 that was flashed
    /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
    /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
    event Flash(
        address indexed sender,
        address indexed recipient,
        uint256 amount0,
        uint256 amount1,
        uint256 paid0,
        uint256 paid1
    );

    /// @notice Emitted by the pool for increases to the number of observations that can be stored
    /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
    /// just before a mint/swap/burn.
    /// @param observationCardinalityNextOld The previous value of the next observation cardinality
    /// @param observationCardinalityNextNew The updated value of the next observation cardinality
    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    /// @notice Emitted when the protocol fee is changed by the pool
    /// @param feeProtocol0Old The previous value of the token0 protocol fee
    /// @param feeProtocol1Old The previous value of the token1 protocol fee
    /// @param feeProtocol0New The updated value of the token0 protocol fee
    /// @param feeProtocol1New The updated value of the token1 protocol fee
    event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);

    /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
    /// @param sender The address that collects the protocol fees
    /// @param recipient The address that receives the collected protocol fees
    /// @param amount0 The amount of token0 protocol fees that is withdrawn
    /// @param amount0 The amount of token1 protocol fees that is withdrawn
    event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}

File 34 of 56 : IERC721Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

File 35 of 56 : IERC721Enumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

File 36 of 56 : IPoolInitializer.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

/// @title Creates and initializes V3 Pools
/// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that
/// require the pool to exist.
interface IPoolInitializer {
    /// @notice Creates a new pool if it does not exist, then initializes if not initialized
    /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool
    /// @param token0 The contract address of token0 of the pool
    /// @param token1 The contract address of token1 of the pool
    /// @param fee The fee amount of the v3 pool for the specified token pair
    /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value
    /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary
    function createAndInitializePoolIfNecessary(
        address token0,
        address token1,
        uint24 fee,
        uint160 sqrtPriceX96
    ) external payable returns (address pool);
}

File 37 of 56 : IERC721Permit.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;

import '@openzeppelin/contracts/token/ERC721/IERC721.sol';

/// @title ERC721 with permit
/// @notice Extension to ERC721 that includes a permit function for signature based approvals
interface IERC721Permit is IERC721 {
    /// @notice The permit typehash used in the permit signature
    /// @return The typehash for the permit
    function PERMIT_TYPEHASH() external pure returns (bytes32);

    /// @notice The domain separator used in the permit signature
    /// @return The domain seperator used in encoding of permit signature
    function DOMAIN_SEPARATOR() external view returns (bytes32);

    /// @notice Approve of a specific token ID for spending by spender via signature
    /// @param spender The account that is being approved
    /// @param tokenId The ID of the token that is being approved for spending
    /// @param deadline The deadline timestamp by which the call must be mined for the approve to work
    /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
    /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
    /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
    function permit(
        address spender,
        uint256 tokenId,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external payable;
}

File 38 of 56 : IPeripheryPayments.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;

/// @title Periphery Payments
/// @notice Functions to ease deposits and withdrawals of ETH
interface IPeripheryPayments {
    /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH.
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
    /// @param amountMinimum The minimum amount of WETH9 to unwrap
    /// @param recipient The address receiving ETH
    function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;

    /// @notice Refunds any ETH balance held by this contract to the `msg.sender`
    /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
    /// that use ether for the input amount
    function refundETH() external payable;

    /// @notice Transfers the full amount of a token held by this contract to recipient
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
    /// @param token The contract address of the token which will be transferred to `recipient`
    /// @param amountMinimum The minimum amount of token required for a transfer
    /// @param recipient The destination address of the token
    function sweepToken(
        address token,
        uint256 amountMinimum,
        address recipient
    ) external payable;
}

File 39 of 56 : IPeripheryImmutableState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
    /// @return Returns the address of the Uniswap V3 factory
    function factory() external view returns (address);

    /// @return Returns the address of WETH9
    function WETH9() external view returns (address);
}

File 40 of 56 : PoolAddress.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
    bytes32 internal constant POOL_INIT_CODE_HASH = 0xa598dd2fba360510c5a8f02f44423a4468e902df5857dbce3ca162a43a3a31ff;

    /// @notice The identifying key of the pool
    struct PoolKey {
        address token0;
        address token1;
        uint24 fee;
    }

    /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
    /// @param tokenA The first token of a pool, unsorted
    /// @param tokenB The second token of a pool, unsorted
    /// @param fee The fee level of the pool
    /// @return Poolkey The pool details with ordered token0 and token1 assignments
    function getPoolKey(
        address tokenA,
        address tokenB,
        uint24 fee
    ) internal pure returns (PoolKey memory) {
        if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
        return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
    }

    /// @notice Deterministically computes the pool address given the factory and PoolKey
    /// @param factory The Uniswap V3 factory contract address
    /// @param key The PoolKey
    /// @return pool The contract address of the V3 pool
    function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
        require(key.token0 < key.token1);
        pool = address(
            uint160(
                uint256(
                    keccak256(
                        abi.encodePacked(
                            hex'ff',
                            factory,
                            keccak256(abi.encode(key.token0, key.token1, key.fee)),
                            POOL_INIT_CODE_HASH
                        )
                    )
                )
            )
        );
    }
}

File 41 of 56 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 42 of 56 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 43 of 56 : ISwapRouter.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';

/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Uniswap V3
interface ISwapRouter is IUniswapV3SwapCallback {
    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);

    struct ExactInputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);

    struct ExactOutputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);

    struct ExactOutputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
}

File 44 of 56 : Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

File 45 of 56 : OracleLibrary.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.26;

// Uniswap
import {IUniswapV3Pool} from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";

// OpenZeppelin
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

/**
 * @notice Adapted Uniswap V3 OracleLibrary computation to be compliant with Solidity 0.8.x and later.
 *
 * Documentation for Auditors:
 *
 * Solidity Version: Updated the Solidity version pragma to ^0.8.0. This change ensures compatibility
 * with Solidity version 0.8.x.
 *
 * Safe Arithmetic Operations: Solidity 0.8.x automatically checks for arithmetic overflows/underflows.
 * Therefore, the code no longer needs to use SafeMath library (or similar) for basic arithmetic operations.
 * This change simplifies the code and reduces the potential for errors related to manual overflow/underflow checking.
 *
 * Overflow/Underflow: With the introduction of automatic overflow/underflow checks in Solidity 0.8.x, the code is inherently
 * safer and less prone to certain types of arithmetic errors.
 *
 * Removal of SafeMath Library: Since Solidity 0.8.x handles arithmetic operations safely, the use of SafeMath library
 * is omitted in this update.
 *
 * Git-style diff for the `consult` function:
 *
 * ```diff
 * function consult(address pool, uint32 secondsAgo)
 *     internal
 *     view
 *     returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
 * {
 *     require(secondsAgo != 0, 'BP');
 *
 *     uint32[] memory secondsAgos = new uint32[](2);
 *     secondsAgos[0] = secondsAgo;
 *     secondsAgos[1] = 0;
 *
 *     (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) =
 *         IUniswapV3Pool(pool).observe(secondsAgos);
 *
 *     int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
 *     uint160 secondsPerLiquidityCumulativesDelta =
 *         secondsPerLiquidityCumulativeX128s[1] - secondsPerLiquidityCumulativeX128s[0];
 *
 * -   arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgo);
 * +   int56 secondsAgoInt56 = int56(uint56(secondsAgo));
 * +   arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56);
 *     // Always round to negative infinity
 * -   if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgo != 0)) arithmeticMeanTick--;
 * +   if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgoInt56 != 0)) arithmeticMeanTick--;
 *
 * -   uint192 secondsAgoX160 = uint192(secondsAgo) * type(uint160).max;
 * +   uint192 secondsAgoUint192 = uint192(secondsAgo);
 * +   uint192 secondsAgoX160 = secondsAgoUint192 * type(uint160).max;
 *     harmonicMeanLiquidity = uint128(secondsAgoX160 / (uint192(secondsPerLiquidityCumulativesDelta) << 32));
 * }
 * ```
 */

/// @title Oracle library
/// @notice Provides functions to integrate with V3 pool oracle
library OracleLibrary {
    /// @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool
    /// @param pool Address of the pool that we want to observe
    /// @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means
    /// @return arithmeticMeanTick The arithmetic mean tick from (block.timestamp - secondsAgo) to block.timestamp
    /// @return harmonicMeanLiquidity The harmonic mean liquidity from (block.timestamp - secondsAgo) to block.timestamp
    function consult(address pool, uint32 secondsAgo)
        internal
        view
        returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
    {
        require(secondsAgo != 0, "BP");

        uint32[] memory secondsAgos = new uint32[](2);
        secondsAgos[0] = secondsAgo;
        secondsAgos[1] = 0;

        (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) =
            IUniswapV3Pool(pool).observe(secondsAgos);

        int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
        uint160 secondsPerLiquidityCumulativesDelta =
            secondsPerLiquidityCumulativeX128s[1] - secondsPerLiquidityCumulativeX128s[0];

        // Safe casting of secondsAgo to int56 for division
        int56 secondsAgoInt56 = int56(uint56(secondsAgo));
        arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56);
        // Always round to negative infinity
        if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgoInt56 != 0)) arithmeticMeanTick--;

        // Safe casting of secondsAgo to uint192 for multiplication
        uint192 secondsAgoUint192 = uint192(secondsAgo);
        harmonicMeanLiquidity = uint128(
            (secondsAgoUint192 * uint192(type(uint160).max)) / (uint192(secondsPerLiquidityCumulativesDelta) << 32)
        );
    }

    /// @notice Given a pool, it returns the number of seconds ago of the oldest stored observation
    /// @param pool Address of Uniswap V3 pool that we want to observe
    /// @return secondsAgo The number of seconds ago of the oldest observation stored for the pool
    function getOldestObservationSecondsAgo(address pool) internal view returns (uint32 secondsAgo) {
        (,, uint16 observationIndex, uint16 observationCardinality,,,) = IUniswapV3Pool(pool).slot0();
        require(observationCardinality > 0, "NI");

        (uint32 observationTimestamp,,, bool initialized) =
            IUniswapV3Pool(pool).observations((observationIndex + 1) % observationCardinality);

        // The next index might not be initialized if the cardinality is in the process of increasing
        // In this case the oldest observation is always in index 0
        if (!initialized) {
            (observationTimestamp,,,) = IUniswapV3Pool(pool).observations(0);
        }

        secondsAgo = uint32(block.timestamp) - observationTimestamp;
    }

    /// @notice Given a tick and a token amount, calculates the amount of token received in exchange
    /// a slightly modified version of the UniSwap library getQuoteAtTick to accept a sqrtRatioX96 as input parameter
    /// @param sqrtRatioX96 The sqrt ration
    /// @param baseAmount Amount of token to be converted
    /// @param baseToken Address of an ERC20 token contract used as the baseAmount denomination
    /// @param quoteToken Address of an ERC20 token contract used as the quoteAmount denomination
    /// @return quoteAmount Amount of quoteToken received for baseAmount of baseToken
    function getQuoteForSqrtRatioX96(uint160 sqrtRatioX96, uint256 baseAmount, address baseToken, address quoteToken)
        internal
        pure
        returns (uint256 quoteAmount)
    {
        // Calculate quoteAmount with better precision if it doesn't overflow when multiplied by itself
        if (sqrtRatioX96 <= type(uint128).max) {
            uint256 ratioX192 = uint256(sqrtRatioX96) * sqrtRatioX96;
            quoteAmount = baseToken < quoteToken
                ? Math.mulDiv(ratioX192, baseAmount, 1 << 192)
                : Math.mulDiv(1 << 192, baseAmount, ratioX192);
        } else {
            uint256 ratioX128 = Math.mulDiv(sqrtRatioX96, sqrtRatioX96, 1 << 64);
            quoteAmount = baseToken < quoteToken
                ? Math.mulDiv(ratioX128, baseAmount, 1 << 128)
                : Math.mulDiv(1 << 128, baseAmount, ratioX128);
        }
    }
}

File 46 of 56 : IUniswapV2Router02.sol
pragma solidity >=0.6.2;

import './IUniswapV2Router01.sol';

interface IUniswapV2Router02 is IUniswapV2Router01 {
    function removeLiquidityETHSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountETH);
    function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountETH);

    function swapExactTokensForTokensSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
    function swapExactETHForTokensSupportingFeeOnTransferTokens(
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external payable;
    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external;
}

File 47 of 56 : IUniswapV2Pair.sol
pragma solidity >=0.5.0;

interface IUniswapV2Pair {
    event Approval(address indexed owner, address indexed spender, uint value);
    event Transfer(address indexed from, address indexed to, uint value);

    function name() external pure returns (string memory);
    function symbol() external pure returns (string memory);
    function decimals() external pure returns (uint8);
    function totalSupply() external view returns (uint);
    function balanceOf(address owner) external view returns (uint);
    function allowance(address owner, address spender) external view returns (uint);

    function approve(address spender, uint value) external returns (bool);
    function transfer(address to, uint value) external returns (bool);
    function transferFrom(address from, address to, uint value) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);
    function PERMIT_TYPEHASH() external pure returns (bytes32);
    function nonces(address owner) external view returns (uint);

    function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external;

    event Mint(address indexed sender, uint amount0, uint amount1);
    event Burn(address indexed sender, uint amount0, uint amount1, address indexed to);
    event Swap(
        address indexed sender,
        uint amount0In,
        uint amount1In,
        uint amount0Out,
        uint amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint);
    function factory() external view returns (address);
    function token0() external view returns (address);
    function token1() external view returns (address);
    function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);
    function price0CumulativeLast() external view returns (uint);
    function price1CumulativeLast() external view returns (uint);
    function kLast() external view returns (uint);

    function mint(address to) external returns (uint liquidity);
    function burn(address to) external returns (uint amount0, uint amount1);
    function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external;
    function skim(address to) external;
    function sync() external;

    function initialize(address, address) external;
}

File 48 of 56 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 49 of 56 : IERC721Receiver.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol)

pragma solidity ^0.8.20;

/**
 * @title ERC721 token receiver interface
 * @dev Interface for any contract that wants to support safeTransfers
 * from ERC721 asset contracts.
 */
interface IERC721Receiver {
    /**
     * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
     * by `operator` from `from`, this function is called.
     *
     * It must return its Solidity selector to confirm the token transfer.
     * If any other value is returned or the interface is not implemented by the recipient, the transfer will be
     * reverted.
     *
     * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
     */
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

File 50 of 56 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 51 of 56 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/ERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 52 of 56 : IUniswapV3SwapCallback.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
    /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
    /// @dev In the implementation you must pay the pool tokens owed for the swap.
    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
    /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
    /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
    /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
    function uniswapV3SwapCallback(
        int256 amount0Delta,
        int256 amount1Delta,
        bytes calldata data
    ) external;
}

File 53 of 56 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 54 of 56 : IUniswapV2Router01.sol
pragma solidity >=0.6.2;

interface IUniswapV2Router01 {
    function factory() external pure returns (address);
    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint amountADesired,
        uint amountBDesired,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB, uint liquidity);
    function addLiquidityETH(
        address token,
        uint amountTokenDesired,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external payable returns (uint amountToken, uint amountETH, uint liquidity);
    function removeLiquidity(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETH(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline
    ) external returns (uint amountToken, uint amountETH);
    function removeLiquidityWithPermit(
        address tokenA,
        address tokenB,
        uint liquidity,
        uint amountAMin,
        uint amountBMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountA, uint amountB);
    function removeLiquidityETHWithPermit(
        address token,
        uint liquidity,
        uint amountTokenMin,
        uint amountETHMin,
        address to,
        uint deadline,
        bool approveMax, uint8 v, bytes32 r, bytes32 s
    ) external returns (uint amountToken, uint amountETH);
    function swapExactTokensForTokens(
        uint amountIn,
        uint amountOutMin,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapTokensForExactTokens(
        uint amountOut,
        uint amountInMax,
        address[] calldata path,
        address to,
        uint deadline
    ) external returns (uint[] memory amounts);
    function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);
    function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline)
        external
        returns (uint[] memory amounts);
    function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline)
        external
        payable
        returns (uint[] memory amounts);

    function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB);
    function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut);
    function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn);
    function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts);
    function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts);
}

File 55 of 56 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 56 of 56 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

Settings
{
  "remappings": [
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@uniswap/v3-core/=lib/v3-core/",
    "@uniswap/v3-periphery/=lib/v3-periphery/",
    "@uniswap/v2-periphery/=lib/v2-periphery/",
    "@uniswap/v2-core/=lib/v2-core/",
    "@utils/=src/utils/",
    "@libs/=src/libs/",
    "@core/=src/core/",
    "@const/=src/const/",
    "@actions/=src/core/Actions/",
    "@interfaces/=src/interfaces/",
    "@script/=script/",
    "ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "v2-core/=lib/v2-core/contracts/",
    "v2-periphery/=lib/v2-periphery/contracts/",
    "v3-core/=lib/v3-core/contracts/",
    "v3-periphery/=lib/v3-periphery/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "shanghai",
  "viaIR": false,
  "libraries": {
    "src/utils/Time.sol": {
      "Time": "0xbbf25CA275325Ef4682851A12Bd8e9aA714DA2F4"
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"contract IInferno","name":"_inferno","type":"address"},{"internalType":"contract ERC20Burnable","name":"_titanX","type":"address"},{"internalType":"address","name":"_titanXInfernoPool","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"FluX__OnlyAuction","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"auction","outputs":[{"internalType":"contract FluxAuction","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"buyAndBurn","outputs":[{"internalType":"contract FluxBuyAndBurn","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"emitFlux","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_auction","type":"address"}],"name":"setAuction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_bnb","type":"address"}],"name":"setBnB","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_staking","type":"address"}],"name":"setStaking","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"staking","outputs":[{"internalType":"contract FluxStaking","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60a060405234801561000f575f80fd5b506040516111f83803806111f883398101604081905261002e9161047d565b60408051808201825260048082526308c98aab60e31b602080840182905284518086019095529184529083015233916003610069838261055f565b506004610076828261055f565b5050506001600160a01b0381166100a657604051631e4fbdf760e01b81525f600482015260240160405180910390fd5b6100af816100d0565b506100bb828483610121565b6001600160a01b0316608052506106f7915050565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b604080516001600160601b0319606086811b8216602084015261027160ec1b603484015285901b1660378201528151808203602b018152604b82019283905263cdca175360e01b9092525f91309173b27308f9f90d607463bb33ea1bebb41c27ce5ab691908490839063cdca1753906101ac9085906b3077b58d5d3783919800000090604f01610619565b6020604051808303815f875af11580156101c8573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906101ec9190610676565b90506b204fce5e3e250261100000005f806001600160a01b03808b169088161061021757898761021a565b868a5b915091505f808b6001600160a01b0316846001600160a01b031614610240578486610243565b85855b90925090505f633b9aca006102ee8461026485670de0b6b3a764000061068d565b61026e91906106b6565b6001600160881b03811160071b81811c6001600160481b031060061b1781811c64ffffffffff1060051b1781811c62ffffff1060041b1781811c620100000160b5600192831c1b0260121c80830401811c80830401811c80830401811c80830401811c80830401811c80830401811c80830401901c908190048111900390565b610305906c0100000000000000000000000061068d565b61030f91906106b6565b6040516309f56ab160e11b81526001600160a01b038088166004830152808716602483015261271060448301528216606482015290915073c36442b4a4522e871399cd717abdd847ab11fe889081906313ead562906084016020604051808303815f875af1158015610383573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103a791906106d5565b6040516332148f6760e01b815260646004820152909c506001600160a01b038e16906332148f67906024015f604051808303815f87803b1580156103e9575f80fd5b505af11580156103fb573d5f803e3d5ffd5b50506040516332148f6760e01b8152606460048201526001600160a01b038f1692506332148f6791506024015f604051808303815f87803b15801561043e575f80fd5b505af1158015610450573d5f803e3d5ffd5b5050505050505050505050505050509392505050565b6001600160a01b038116811461047a575f80fd5b50565b5f805f6060848603121561048f575f80fd5b835161049a81610466565b60208501519093506104ab81610466565b60408501519092506104bc81610466565b809150509250925092565b634e487b7160e01b5f52604160045260245ffd5b600181811c908216806104ef57607f821691505b60208210810361050d57634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561055a57805f5260205f20601f840160051c810160208510156105385750805b601f840160051c820191505b81811015610557575f8155600101610544565b50505b505050565b81516001600160401b03811115610578576105786104c7565b61058c8161058684546104db565b84610513565b6020601f8211600181146105be575f83156105a75750848201515b5f19600385901b1c1916600184901b178455610557565b5f84815260208120601f198516915b828110156105ed57878501518255602094850194600190920191016105cd565b508482101561060a57868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b604081525f83518060408401525f5b818110156106455760208187018101516060868401015201610628565b505f60608285018101919091526001600160601b03949094166020840152601f01601f191690910190910192915050565b5f60208284031215610686575f80fd5b5051919050565b80820281158282048414176106b057634e487b7160e01b5f52601160045260245ffd5b92915050565b5f826106d057634e487b7160e01b5f52601260045260245ffd5b500490565b5f602082840312156106e5575f80fd5b81516106f081610466565b9392505050565b608051610ae961070f5f395f6101870152610ae95ff3fe608060405234801561000f575f80fd5b506004361061013d575f3560e01c80637d9f6db5116100b4578063a9059cbb11610079578063a9059cbb146102b2578063aa6df299146102c5578063b8c6f579146102d8578063dd62ed3e146102eb578063f2fde38b14610323578063f4132eac14610336575f80fd5b80637d9f6db5146102605780638da5cb5b146102735780638ff390991461028457806395d89b4114610297578063a749239f1461029f575f80fd5b8063313ce56711610105578063313ce567146101e657806342966c68146101f55780634cf088d91461020a57806370a082311461021d578063715018a61461024557806379cc67901461024d575f80fd5b806306fdde0314610141578063095ea7b31461015f57806316f0115b1461018257806318160ddd146101c157806323b872dd146101d3575b5f80fd5b610149610349565b604051610156919061092c565b60405180910390f35b61017261016d366004610992565b6103d9565b6040519015158152602001610156565b6101a97f000000000000000000000000000000000000000000000000000000000000000081565b6040516001600160a01b039091168152602001610156565b6002545b604051908152602001610156565b6101726101e13660046109ba565b6103f2565b60405160128152602001610156565b6102086102033660046109f4565b610415565b005b6008546101a9906001600160a01b031681565b6101c561022b366004610a0b565b6001600160a01b03165f9081526020819052604090205490565b610208610422565b61020861025b366004610992565b610435565b6006546101a9906001600160a01b031681565b6005546001600160a01b03166101a9565b610208610292366004610a0b565b61044e565b610149610478565b6102086102ad366004610992565b610487565b6101726102c0366004610992565b610499565b6007546101a9906001600160a01b031681565b6102086102e6366004610a0b565b6104a6565b6101c56102f9366004610a2b565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b610208610331366004610a0b565b6104d0565b610208610344366004610a0b565b61050f565b60606003805461035890610a5c565b80601f016020809104026020016040519081016040528092919081815260200182805461038490610a5c565b80156103cf5780601f106103a6576101008083540402835291602001916103cf565b820191905f5260205f20905b8154815290600101906020018083116103b257829003601f168201915b5050505050905090565b5f336103e6818585610539565b60019150505b92915050565b5f336103ff85828561054b565b61040a8585856105c6565b506001949350505050565b61041f3382610623565b50565b61042a610657565b6104335f610684565b565b61044082338361054b565b61044a8282610623565b5050565b610456610657565b600880546001600160a01b0319166001600160a01b0392909216919091179055565b60606004805461035890610a5c565b61048f6106d5565b61044a8282610700565b5f336103e68185856105c6565b6104ae610657565b600680546001600160a01b0319166001600160a01b0392909216919091179055565b6104d8610657565b6001600160a01b03811661050657604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b61041f81610684565b610517610657565b600780546001600160a01b0319166001600160a01b0392909216919091179055565b6105468383836001610734565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f1981146105c057818110156105b257604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016104fd565b6105c084848484035f610734565b50505050565b6001600160a01b0383166105ef57604051634b637e8f60e11b81525f60048201526024016104fd565b6001600160a01b0382166106185760405163ec442f0560e01b81525f60048201526024016104fd565b610546838383610806565b6001600160a01b03821661064c57604051634b637e8f60e11b81525f60048201526024016104fd565b61044a825f83610806565b6005546001600160a01b031633146104335760405163118cdaa760e01b81523360048201526024016104fd565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6006546001600160a01b0316331461043357604051632a7c620d60e11b815260040160405180910390fd5b6001600160a01b0382166107295760405163ec442f0560e01b81525f60048201526024016104fd565b61044a5f8383610806565b6001600160a01b03841661075d5760405163e602df0560e01b81525f60048201526024016104fd565b6001600160a01b03831661078657604051634a1406b160e11b81525f60048201526024016104fd565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156105c057826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516107f891815260200190565b60405180910390a350505050565b6001600160a01b038316610830578060025f8282546108259190610a94565b909155506108a09050565b6001600160a01b0383165f90815260208190526040902054818110156108825760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016104fd565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b0382166108bc576002805482900390556108da565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161091f91815260200190565b60405180910390a3505050565b602081525f82518060208401525f5b81811015610958576020818601810151604086840101520161093b565b505f604082850101526040601f19601f83011684010191505092915050565b80356001600160a01b038116811461098d575f80fd5b919050565b5f80604083850312156109a3575f80fd5b6109ac83610977565b946020939093013593505050565b5f805f606084860312156109cc575f80fd5b6109d584610977565b92506109e360208501610977565b929592945050506040919091013590565b5f60208284031215610a04575f80fd5b5035919050565b5f60208284031215610a1b575f80fd5b610a2482610977565b9392505050565b5f8060408385031215610a3c575f80fd5b610a4583610977565b9150610a5360208401610977565b90509250929050565b600181811c90821680610a7057607f821691505b602082108103610a8e57634e487b7160e01b5f52602260045260245ffd5b50919050565b808201808211156103ec57634e487b7160e01b5f52601160045260245ffdfea26469706673582212204abcbbcc1834e8a5f2543b6b74fb1e3c934a500a88a8b841c23f7d0a5effaf4d64736f6c634300081a003300000000000000000000000000f116ac0c304c570daaa68fa6c30a86a04b5c5f000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b10000000000000000000000001e90b67149e688dfb95fd73acacd8adefd16d88d

Deployed Bytecode

0x608060405234801561000f575f80fd5b506004361061013d575f3560e01c80637d9f6db5116100b4578063a9059cbb11610079578063a9059cbb146102b2578063aa6df299146102c5578063b8c6f579146102d8578063dd62ed3e146102eb578063f2fde38b14610323578063f4132eac14610336575f80fd5b80637d9f6db5146102605780638da5cb5b146102735780638ff390991461028457806395d89b4114610297578063a749239f1461029f575f80fd5b8063313ce56711610105578063313ce567146101e657806342966c68146101f55780634cf088d91461020a57806370a082311461021d578063715018a61461024557806379cc67901461024d575f80fd5b806306fdde0314610141578063095ea7b31461015f57806316f0115b1461018257806318160ddd146101c157806323b872dd146101d3575b5f80fd5b610149610349565b604051610156919061092c565b60405180910390f35b61017261016d366004610992565b6103d9565b6040519015158152602001610156565b6101a97f00000000000000000000000009848d115e085942e6fa9d85b6b6c73fb0e63cb181565b6040516001600160a01b039091168152602001610156565b6002545b604051908152602001610156565b6101726101e13660046109ba565b6103f2565b60405160128152602001610156565b6102086102033660046109f4565b610415565b005b6008546101a9906001600160a01b031681565b6101c561022b366004610a0b565b6001600160a01b03165f9081526020819052604090205490565b610208610422565b61020861025b366004610992565b610435565b6006546101a9906001600160a01b031681565b6005546001600160a01b03166101a9565b610208610292366004610a0b565b61044e565b610149610478565b6102086102ad366004610992565b610487565b6101726102c0366004610992565b610499565b6007546101a9906001600160a01b031681565b6102086102e6366004610a0b565b6104a6565b6101c56102f9366004610a2b565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b610208610331366004610a0b565b6104d0565b610208610344366004610a0b565b61050f565b60606003805461035890610a5c565b80601f016020809104026020016040519081016040528092919081815260200182805461038490610a5c565b80156103cf5780601f106103a6576101008083540402835291602001916103cf565b820191905f5260205f20905b8154815290600101906020018083116103b257829003601f168201915b5050505050905090565b5f336103e6818585610539565b60019150505b92915050565b5f336103ff85828561054b565b61040a8585856105c6565b506001949350505050565b61041f3382610623565b50565b61042a610657565b6104335f610684565b565b61044082338361054b565b61044a8282610623565b5050565b610456610657565b600880546001600160a01b0319166001600160a01b0392909216919091179055565b60606004805461035890610a5c565b61048f6106d5565b61044a8282610700565b5f336103e68185856105c6565b6104ae610657565b600680546001600160a01b0319166001600160a01b0392909216919091179055565b6104d8610657565b6001600160a01b03811661050657604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b61041f81610684565b610517610657565b600780546001600160a01b0319166001600160a01b0392909216919091179055565b6105468383836001610734565b505050565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f1981146105c057818110156105b257604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016104fd565b6105c084848484035f610734565b50505050565b6001600160a01b0383166105ef57604051634b637e8f60e11b81525f60048201526024016104fd565b6001600160a01b0382166106185760405163ec442f0560e01b81525f60048201526024016104fd565b610546838383610806565b6001600160a01b03821661064c57604051634b637e8f60e11b81525f60048201526024016104fd565b61044a825f83610806565b6005546001600160a01b031633146104335760405163118cdaa760e01b81523360048201526024016104fd565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6006546001600160a01b0316331461043357604051632a7c620d60e11b815260040160405180910390fd5b6001600160a01b0382166107295760405163ec442f0560e01b81525f60048201526024016104fd565b61044a5f8383610806565b6001600160a01b03841661075d5760405163e602df0560e01b81525f60048201526024016104fd565b6001600160a01b03831661078657604051634a1406b160e11b81525f60048201526024016104fd565b6001600160a01b038085165f90815260016020908152604080832093871683529290522082905580156105c057826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516107f891815260200190565b60405180910390a350505050565b6001600160a01b038316610830578060025f8282546108259190610a94565b909155506108a09050565b6001600160a01b0383165f90815260208190526040902054818110156108825760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016104fd565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b0382166108bc576002805482900390556108da565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161091f91815260200190565b60405180910390a3505050565b602081525f82518060208401525f5b81811015610958576020818601810151604086840101520161093b565b505f604082850101526040601f19601f83011684010191505092915050565b80356001600160a01b038116811461098d575f80fd5b919050565b5f80604083850312156109a3575f80fd5b6109ac83610977565b946020939093013593505050565b5f805f606084860312156109cc575f80fd5b6109d584610977565b92506109e360208501610977565b929592945050506040919091013590565b5f60208284031215610a04575f80fd5b5035919050565b5f60208284031215610a1b575f80fd5b610a2482610977565b9392505050565b5f8060408385031215610a3c575f80fd5b610a4583610977565b9150610a5360208401610977565b90509250929050565b600181811c90821680610a7057607f821691505b602082108103610a8e57634e487b7160e01b5f52602260045260245ffd5b50919050565b808201808211156103ec57634e487b7160e01b5f52601160045260245ffdfea26469706673582212204abcbbcc1834e8a5f2543b6b74fb1e3c934a500a88a8b841c23f7d0a5effaf4d64736f6c634300081a0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000f116ac0c304c570daaa68fa6c30a86a04b5c5f000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b10000000000000000000000001e90b67149e688dfb95fd73acacd8adefd16d88d

-----Decoded View---------------
Arg [0] : _inferno (address): 0x00F116ac0c304C570daAA68FA6c30a86A04B5C5F
Arg [1] : _titanX (address): 0xF19308F923582A6f7c465e5CE7a9Dc1BEC6665B1
Arg [2] : _titanXInfernoPool (address): 0x1E90B67149e688DfB95fD73Acacd8ADefd16d88D

-----Encoded View---------------
3 Constructor Arguments found :
Arg [0] : 00000000000000000000000000f116ac0c304c570daaa68fa6c30a86a04b5c5f
Arg [1] : 000000000000000000000000f19308f923582a6f7c465e5ce7a9dc1bec6665b1
Arg [2] : 0000000000000000000000001e90b67149e688dfb95fd73acacd8adefd16d88d


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.