ETH Price: $3,120.99 (+2.65%)

Token

veMAV (veMAV)
 

Overview

Max Total Supply

83,909,375.9909795942623373 veMAV

Holders

303

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
picachu.eth
Balance
12,458.081331567508244798 veMAV

Value
$0.00
0xfba674dBBbFaFEd6da9895051E5204DE824325b9
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.

Contract Source Code Verified (Exact Match)

Contract Name:
MaverickV2VotingEscrowWSync

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 5500 runs

Other Settings:
paris EvmVersion
File 1 of 63 : MaverickV2VotingEscrowWSync.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import {MaverickV2VotingEscrow} from "./MaverickV2VotingEscrow.sol";
import {IMaverickV2VotingEscrowWSync} from "./interfaces/IMaverickV2VotingEscrowWSync.sol";
import {IMaverickV2VotingEscrowFactory} from "./interfaces/IMaverickV2VotingEscrowFactory.sol";
import {ILegacyVeMav} from "./votingescrowbase/ILegacyVeMav.sol";

/**
 * @notice Inherits MaverickV2VotingEscrow and adds functionality for
 * synchronizing veMav V1 and veMav v2 balances.
 */
contract MaverickV2VotingEscrowWSync is MaverickV2VotingEscrow, IMaverickV2VotingEscrowWSync {
    /// @inheritdoc IMaverickV2VotingEscrowWSync
    IERC20 public immutable legacyVeMav;

    /// @inheritdoc IMaverickV2VotingEscrowWSync
    mapping(address staker => mapping(uint256 legacyLockupIndex => uint256 balance)) public syncBalances;
    /// @inheritdoc IMaverickV2VotingEscrowWSync
    uint256 public constant MIN_SYNC_DURATION = 365 days;

    constructor(string memory __name, string memory __symbol) MaverickV2VotingEscrow(__name, __symbol) {
        legacyVeMav = IMaverickV2VotingEscrowFactory(msg.sender).legacyVeMav();

        startTimestamp = ILegacyVeMav(address(legacyVeMav)).epoch();
    }

    /// @inheritdoc IMaverickV2VotingEscrowWSync
    function sync(address staker, uint256 legacyLockupIndex) public nonReentrant returns (uint256 newBalance) {
        mapping(uint256 => uint256) storage stakerBalancePerIndex = syncBalances[staker];
        uint256 oldBalance = stakerBalancePerIndex[legacyLockupIndex];
        Lockup memory lockup = ILegacyVeMav(address(legacyVeMav)).lockups(staker, legacyLockupIndex);
        if (lockup.end != 0 && lockup.end < block.timestamp + MIN_SYNC_DURATION)
            revert VotingEscrowLockupEndTooShortToSync(lockup.end, block.timestamp + MIN_SYNC_DURATION);

        newBalance = lockup.votes;
        if (newBalance != oldBalance) {
            unchecked {
                if (newBalance > oldBalance) {
                    _mint(staker, newBalance - oldBalance);
                } else if (newBalance < oldBalance) {
                    _burn(staker, oldBalance - newBalance);
                }
            }
            stakerBalancePerIndex[legacyLockupIndex] = newBalance;
            emit Sync(staker, legacyLockupIndex, newBalance);
        }
    }
}

File 2 of 63 : IMulticall.sol
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

interface IMulticall {
    function multicall(bytes[] calldata data) external returns (bytes[] memory results);
}

File 3 of 63 : Multicall.sol
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;
import {IMulticall} from "./IMulticall.sol";
import {Address} from "@openzeppelin/contracts/utils/Address.sol";

// Modified from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/6ba452dea4258afe77726293435f10baf2bed265/contracts/utils/Multicall.sol

/*
 * @notice Multicall
 */
abstract contract Multicall is IMulticall {
    /**
     * @notice This function allows multiple calls to different contract functions
     * in a single transaction.
     * @param data An array of encoded function call data.
     * @return results An array of the results of the function calls.
     */
    function multicall(bytes[] calldata data) external returns (bytes[] memory results) {
        results = new bytes[](data.length);
        for (uint256 i = 0; i < data.length; i++) {
            results[i] = Address.functionDelegateCall(address(this), data[i]);
        }
    }
}

File 4 of 63 : Constants.sol
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

// factory contraints on pools
uint8 constant MAX_PROTOCOL_FEE_RATIO_D3 = 0.25e3; // 25%
uint256 constant MAX_PROTOCOL_LENDING_FEE_RATE_D18 = 0.02e18; // 2%
uint64 constant MAX_POOL_FEE_D18 = 0.9e18; // 90%
uint64 constant MIN_LOOKBACK = 1 seconds;
uint64 constant MAX_TICK_SPACING = 10_000;

// pool constraints
uint8 constant NUMBER_OF_KINDS = 4;
int32 constant NUMBER_OF_KINDS_32 = int32(int8(NUMBER_OF_KINDS));
uint256 constant MAX_TICK = 322_378; // max price 1e14 in D18 scale
int32 constant MAX_TICK_32 = int32(int256(MAX_TICK));
int32 constant MIN_TICK_32 = int32(-int256(MAX_TICK));
uint256 constant MAX_BINS_TO_MERGE = 3;
uint128 constant MINIMUM_LIQUIDITY = 1e8;

// accessor named constants
uint8 constant ALL_KINDS_MASK = 0xF; // 0b1111
uint8 constant PERMISSIONED_LIQUIDITY_MASK = 0x10; // 0b010000
uint8 constant PERMISSIONED_SWAP_MASK = 0x20; // 0b100000
uint8 constant OPTIONS_MASK = ALL_KINDS_MASK | PERMISSIONED_LIQUIDITY_MASK | PERMISSIONED_SWAP_MASK; // 0b111111

// named values
address constant MERGED_LP_BALANCE_ADDRESS = address(0);
uint256 constant MERGED_LP_BALANCE_SUBACCOUNT = 0;
uint128 constant ONE = 1e18;
uint128 constant ONE_SQUARED = 1e36;
int256 constant INT256_ONE = 1e18;
uint256 constant ONE_D8 = 1e8;
uint256 constant ONE_D3 = 1e3;
int40 constant INT_ONE_D8 = 1e8;
int40 constant HALF_TICK_D8 = 0.5e8;
uint8 constant DEFAULT_DECIMALS = 18;
uint256 constant DEFAULT_SCALE = 1;
bytes constant EMPTY_PRICE_BREAKS = hex"010000000000000000000000";

File 5 of 63 : Math.sol
// SPDX-License-Identifier: GPL-2.0-or-later
// As the copyright holder of this work, Ubiquity Labs retains
// the right to distribute, use, and modify this code under any license of
// their choosing, in addition to the terms of the GPL-v2 or later.
pragma solidity ^0.8.25;

import {Math as OzMath} from "@openzeppelin/contracts/utils/math/Math.sol";

import {ONE, DEFAULT_SCALE, DEFAULT_DECIMALS, INT_ONE_D8, ONE_SQUARED} from "./Constants.sol";

/**
 * @notice Math functions.
 */
library Math {
    /**
     * @notice Returns the lesser of two values.
     * @param x First uint256 value.
     * @param y Second uint256 value.
     */
    function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /**
     * @notice Returns the lesser of two uint128 values.
     * @param x First uint128 value.
     * @param y Second uint128 value.
     */
    function min128(uint128 x, uint128 y) internal pure returns (uint128 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), lt(y, x)))
        }
    }

    /**
     * @notice Returns the lesser of two int256 values.
     * @param x First int256 value.
     * @param y Second int256 value.
     */
    function min(int256 x, int256 y) internal pure returns (int256 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), slt(y, x)))
        }
    }

    /**
     * @notice Returns the greater of two uint256 values.
     * @param x First uint256 value.
     * @param y Second uint256 value.
     */
    function max(uint256 x, uint256 y) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /**
     * @notice Returns the greater of two int256 values.
     * @param x First int256 value.
     * @param y Second int256 value.
     */
    function max(int256 x, int256 y) internal pure returns (int256 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), sgt(y, x)))
        }
    }

    /**
     * @notice Returns the greater of two uint128 values.
     * @param x First uint128 value.
     * @param y Second uint128 value.
     */
    function max128(uint128 x, uint128 y) internal pure returns (uint128 z) {
        assembly ("memory-safe") {
            z := xor(x, mul(xor(x, y), gt(y, x)))
        }
    }

    /**
     * @notice Thresholds a value to be within the specified bounds.
     * @param value The value to bound.
     * @param lowerLimit The minimum allowable value.
     * @param upperLimit The maximum allowable value.
     */
    function boundValue(
        uint256 value,
        uint256 lowerLimit,
        uint256 upperLimit
    ) internal pure returns (uint256 outputValue) {
        outputValue = min(max(value, lowerLimit), upperLimit);
    }

    /**
     * @notice Returns the difference between two uint128 values or zero if the result would be negative.
     * @param x The minuend.
     * @param y The subtrahend.
     */
    function clip128(uint128 x, uint128 y) internal pure returns (uint128) {
        unchecked {
            return x < y ? 0 : x - y;
        }
    }

    /**
     * @notice Returns the difference between two uint256 values or zero if the result would be negative.
     * @param x The minuend.
     * @param y The subtrahend.
     */
    function clip(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            return x < y ? 0 : x - y;
        }
    }

    /**
     * @notice Divides one uint256 by another, rounding down to the nearest
     * integer.
     * @param x The dividend.
     * @param y The divisor.
     */
    function divFloor(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivFloor(x, ONE, y);
    }

    /**
     * @notice Divides one uint256 by another, rounding up to the nearest integer.
     * @param x The dividend.
     * @param y The divisor.
     */
    function divCeil(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivCeil(x, ONE, y);
    }

    /**
     * @notice Multiplies two uint256 values and then divides by ONE, rounding down.
     * @param x The multiplicand.
     * @param y The multiplier.
     */
    function mulFloor(uint256 x, uint256 y) internal pure returns (uint256) {
        return OzMath.mulDiv(x, y, ONE);
    }

    /**
     * @notice Multiplies two uint256 values and then divides by ONE, rounding up.
     * @param x The multiplicand.
     * @param y The multiplier.
     */
    function mulCeil(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivCeil(x, y, ONE);
    }

    /**
     * @notice Calculates the multiplicative inverse of a uint256, rounding down.
     * @param x The value to invert.
     */
    function invFloor(uint256 x) internal pure returns (uint256) {
        unchecked {
            return ONE_SQUARED / x;
        }
    }

    /**
     * @notice Calculates the multiplicative inverse of a uint256, rounding up.
     * @param denominator The value to invert.
     */
    function invCeil(uint256 denominator) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            // divide z - 1 by the denominator and add 1.
            z := add(div(sub(ONE_SQUARED, 1), denominator), 1)
        }
    }

    /**
     * @notice Multiplies two uint256 values and divides by a third, rounding down.
     * @param x The multiplicand.
     * @param y The multiplier.
     * @param k The divisor.
     */
    function mulDivFloor(uint256 x, uint256 y, uint256 k) internal pure returns (uint256 result) {
        result = OzMath.mulDiv(x, y, max(1, k));
    }

    /**
     * @notice Multiplies two uint256 values and divides by a third, rounding up if there's a remainder.
     * @param x The multiplicand.
     * @param y The multiplier.
     * @param k The divisor.
     */
    function mulDivCeil(uint256 x, uint256 y, uint256 k) internal pure returns (uint256 result) {
        result = mulDivFloor(x, y, k);
        if (mulmod(x, y, max(1, k)) != 0) result = result + 1;
    }

    /**
     * @notice Multiplies two uint256 values and divides by a third, rounding
     * down. Will revert if `x * y` is larger than `type(uint256).max`.
     * @param x The first operand for multiplication.
     * @param y The second operand for multiplication.
     * @param denominator The divisor after multiplication.
     */
    function mulDivDown(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            // Store x * y in z for now.
            z := mul(x, y)
            if iszero(denominator) {
                denominator := 1
            }

            if iszero(or(iszero(x), eq(div(z, x), y))) {
                revert(0, 0)
            }

            // Divide z by the denominator.
            z := div(z, denominator)
        }
    }

    /**
     * @notice Multiplies two uint256 values and divides by a third, rounding
     * up. Will revert if `x * y` is larger than `type(uint256).max`.
     * @param x The first operand for multiplication.
     * @param y The second operand for multiplication.
     * @param denominator The divisor after multiplication.
     */
    function mulDivUp(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) {
        assembly ("memory-safe") {
            // Store x * y in z for now.
            z := mul(x, y)
            if iszero(denominator) {
                denominator := 1
            }

            if iszero(or(iszero(x), eq(div(z, x), y))) {
                revert(0, 0)
            }

            // First, divide z - 1 by the denominator and add 1.
            // We allow z - 1 to underflow if z is 0, because we multiply the
            // end result by 0 if z is zero, ensuring we return 0 if z is zero.
            z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1))
        }
    }

    /**
     * @notice Multiplies a uint256 by another and divides by a constant,
     * rounding down. Will revert if `x * y` is larger than
     * `type(uint256).max`.
     * @param x The multiplicand.
     * @param y The multiplier.
     */
    function mulDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, y, ONE);
    }

    /**
     * @notice Divides a uint256 by another, rounding down the result. Will
     * revert if `x * 1e18` is larger than `type(uint256).max`.
     * @param x The dividend.
     * @param y The divisor.
     */
    function divDown(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivDown(x, ONE, y);
    }

    /**
     * @notice Divides a uint256 by another, rounding up the result. Will
     * revert if `x * 1e18` is larger than `type(uint256).max`.
     * @param x The dividend.
     * @param y The divisor.
     */
    function divUp(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulDivUp(x, ONE, y);
    }

    /**
     * @notice Scales a number based on a difference in decimals from a default.
     * @param decimals The new decimal precision.
     */
    function scale(uint8 decimals) internal pure returns (uint256) {
        unchecked {
            if (decimals == DEFAULT_DECIMALS) {
                return DEFAULT_SCALE;
            } else {
                return 10 ** (DEFAULT_DECIMALS - decimals);
            }
        }
    }

    /**
     * @notice Adjusts a scaled amount to the token decimal scale.
     * @param amount The scaled amount.
     * @param scaleFactor The scaling factor to adjust by.
     * @param ceil Whether to round up (true) or down (false).
     */
    function ammScaleToTokenScale(uint256 amount, uint256 scaleFactor, bool ceil) internal pure returns (uint256 z) {
        unchecked {
            if (scaleFactor == DEFAULT_SCALE || amount == 0) {
                return amount;
            } else {
                if (!ceil) return amount / scaleFactor;
                assembly ("memory-safe") {
                    z := add(div(sub(amount, 1), scaleFactor), 1)
                }
            }
        }
    }

    /**
     * @notice Adjusts a token amount to the D18 AMM scale.
     * @param amount The amount in token scale.
     * @param scaleFactor The scale factor for adjustment.
     */
    function tokenScaleToAmmScale(uint256 amount, uint256 scaleFactor) internal pure returns (uint256) {
        if (scaleFactor == DEFAULT_SCALE) {
            return amount;
        } else {
            return amount * scaleFactor;
        }
    }

    /**
     * @notice Returns the absolute value of a signed 32-bit integer.
     * @param x The integer to take the absolute value of.
     */
    function abs32(int32 x) internal pure returns (uint32) {
        unchecked {
            return uint32(x < 0 ? -x : x);
        }
    }

    /**
     * @notice Returns the absolute value of a signed 256-bit integer.
     * @param x The integer to take the absolute value of.
     */
    function abs(int256 x) internal pure returns (uint256) {
        unchecked {
            return uint256(x < 0 ? -x : x);
        }
    }

    /**
     * @notice Calculates the integer square root of a uint256 rounded down.
     * @param x The number to take the square root of.
     */
    function sqrt(uint256 x) internal pure returns (uint256 z) {
        // from https://github.com/transmissions11/solmate/blob/e8f96f25d48fe702117ce76c79228ca4f20206cb/src/utils/FixedPointMathLib.sol
        assembly ("memory-safe") {
            let y := x
            z := 181

            if iszero(lt(y, 0x10000000000000000000000000000000000)) {
                y := shr(128, y)
                z := shl(64, z)
            }
            if iszero(lt(y, 0x1000000000000000000)) {
                y := shr(64, y)
                z := shl(32, z)
            }
            if iszero(lt(y, 0x10000000000)) {
                y := shr(32, y)
                z := shl(16, z)
            }
            if iszero(lt(y, 0x1000000)) {
                y := shr(16, y)
                z := shl(8, z)
            }

            z := shr(18, mul(z, add(y, 65536)))

            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))
            z := shr(1, add(z, div(x, z)))

            z := sub(z, lt(div(x, z), z))
        }
    }

    /**
     * @notice Computes the floor of a D8-scaled number as an int32, ignoring
     * potential overflow in the cast.
     * @param val The D8-scaled number.
     */
    function floorD8Unchecked(int256 val) internal pure returns (int32) {
        int32 val32;
        bool check;
        unchecked {
            val32 = int32(val / INT_ONE_D8);
            check = (val < 0 && val % INT_ONE_D8 != 0);
        }
        return check ? val32 - 1 : val32;
    }
}

File 6 of 63 : IMaverickV2VotingEscrow.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IVotes} from "@openzeppelin/contracts/governance/utils/IVotes.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC6372} from "@openzeppelin/contracts/interfaces/IERC6372.sol";

import {IHistoricalBalance} from "../votingescrowbase/IHistoricalBalance.sol";

interface IMaverickV2VotingEscrowBase is IVotes, IHistoricalBalance {
    error VotingEscrowTransferNotSupported();
    error VotingEscrowInvalidAddress(address);
    error VotingEscrowInvalidAmount(uint256);
    error VotingEscrowInvalidDuration(uint256 duration, uint256 minDuration, uint256 maxDuration);
    error VotingEscrowInvalidEndTime(uint256 newEnd, uint256 oldEnd);
    error VotingEscrowStakeStillLocked(uint256 currentTime, uint256 endTime);
    error VotingEscrowStakeAlreadyRedeemed();
    error VotingEscrowNotApprovedExtender(address account, address extender, uint256 lockupId);
    error VotingEscrowIncentiveAlreadyClaimed(address account, uint256 batchIndex);
    error VotingEscrowNoIncentivesToClaim(address account, uint256 batchIndex);
    error VotingEscrowInvalidExtendIncentiveToken(IERC20 incentiveToken);
    error VotingEscrowNoSupplyAtTimepoint();
    error VotingEscrowIncentiveTimepointInFuture(uint256 timestamp, uint256 claimTimepoint);

    event Stake(address indexed user, uint256 lockupId, Lockup);
    event Unstake(address indexed user, uint256 lockupId, Lockup);
    event ExtenderApproval(address staker, address extender, uint256 lockupId, bool newState);
    event ClaimIncentiveBatch(uint256 batchIndex, address account, uint256 claimAmount);
    event CreateNewIncentiveBatch(
        address user,
        uint256 amount,
        uint256 timepoint,
        uint256 stakeDuration,
        IERC20 incentiveToken
    );

    struct Lockup {
        uint128 amount;
        uint128 end;
        uint256 votes;
    }

    struct ClaimInformation {
        bool timepointInPast;
        bool hasClaimed;
        uint128 claimAmount;
    }

    struct BatchInformation {
        uint128 totalIncentives;
        uint128 stakeDuration;
        uint48 claimTimepoint;
        IERC20 incentiveToken;
    }

    struct TokenIncentiveTotals {
        uint128 totalIncentives;
        uint128 claimedIncentives;
    }

    // solhint-disable-next-line func-name-mixedcase
    function MIN_STAKE_DURATION() external returns (uint256 duration);

    // solhint-disable-next-line func-name-mixedcase
    function MAX_STAKE_DURATION() external returns (uint256 duration);

    // solhint-disable-next-line func-name-mixedcase
    function YEAR_BASE() external returns (uint256);

    /**
     * @notice This function retrieves the address of the ERC20 token used as the base token for staking and rewards.
     * @return baseToken The address of the IERC20 base token contract.
     */
    function baseToken() external returns (IERC20);

    /**
     * @notice This function retrieves the starting timestamp. This may be used
     * for reward calculations or other time-based logic.
     */
    function startTimestamp() external returns (uint256 timestamp);

    /**
     * @notice This function retrieves the details of a specific lockup for a given staker and lockup index.
     * @param staker The address of the staker for which to retrieve the lockup details.
     * @param index The index of the lockup within the staker's lockup history.
     * @return lockup A Lockup struct containing details about the lockup (see struct definition for details).
     */
    function getLockup(address staker, uint256 index) external view returns (Lockup memory lockup);

    /**
     * @notice This function retrieves the total number of lockups associated with a specific staker.
     * @param staker The address of the staker for which to retrieve the lockup count.
     * @return count The total number of lockups for the staker.
     */
    function lockupCount(address staker) external view returns (uint256 count);

    /**
     * @notice This function simulates a lockup scenario, providing details about the resulting lockup structure for a specified amount and duration.
     * @param amount The amount of tokens to be locked.
     * @param duration The duration of the lockup period.
     * @return lockup A Lockup struct containing details about the simulated lockup (see struct definition for details).
     */
    function previewVotes(uint128 amount, uint256 duration) external view returns (Lockup memory lockup);

    /**
     * @notice This function grants approval for a designated extender contract to manage a specific lockup on behalf of the staker.
     * @param extender The address of the extender contract to be approved.
     * @param lockupId The ID of the lockup for which to grant approval.
     */
    function approveExtender(address extender, uint256 lockupId) external;

    /**
     * @notice This function revokes approval previously granted to an extender contract for managing a specific lockup.
     * @param extender The address of the extender contract whose approval is being revoked.
     * @param lockupId The ID of the lockup for which to revoke approval.
     */
    function revokeExtender(address extender, uint256 lockupId) external;

    /**
     * @notice This function checks whether a specific account has been approved by a staker to manage a particular lockup through an extender contract.
     * @param account The address of the account to check for approval (may be the extender or another account).
     * @param extender The address of the extender contract for which to check approval.
     * @param lockupId The ID of the lockup to verify approval for.
     * @return isApproved True if the account is approved for the lockup, False otherwise (bool).
     */
    function isApprovedExtender(address account, address extender, uint256 lockupId) external view returns (bool);

    /**
     * @notice This function extends the lockup period for the caller (msg.sender) for a specified lockup ID, adding a new duration and amount.
     * @param lockupId The ID of the lockup to be extended.
     * @param duration The additional duration to extend the lockup by.
     * @param amount The additional amount of tokens to be locked.
     * @return newLockup A Lockup struct containing details about the newly extended lockup (see struct definition for details).
     */
    function extendForSender(
        uint256 lockupId,
        uint256 duration,
        uint128 amount
    ) external returns (Lockup memory newLockup);

    /**
     * @notice This function extends the lockup period for a specified account, adding a new duration and amount. The caller (msg.sender) must be authorized to manage the lockup through an extender contract.
     * @param account The address of the account whose lockup is being extended.
     * @param lockupId The ID of the lockup to be extended.
     * @param duration The additional duration to extend the lockup by.
     * @param amount The additional amount of tokens to be locked.
     * @return newLockup A Lockup struct containing details about the newly extended lockup (see struct definition for details).
     */
    function extendForAccount(
        address account,
        uint256 lockupId,
        uint256 duration,
        uint128 amount
    ) external returns (Lockup memory newLockup);

    /**
     * @notice This function merges multiple lockups associated with the caller
     * (msg.sender) into a single new lockup.
     * @param lockupIds An array containing the IDs of the lockups to be merged.
     * @return newLockup A Lockup struct containing details about the newly merged lockup (see struct definition for details).
     */
    function merge(uint256[] memory lockupIds) external returns (Lockup memory newLockup);

    /**
     * @notice This function unstakes the specified lockup ID for the caller (msg.sender), returning the details of the unstaked lockup.
     * @param lockupId The ID of the lockup to be unstaked.
     * @param to The address to which the unstaked tokens should be sent (optional, defaults to msg.sender).
     * @return lockup A Lockup struct containing details about the unstaked lockup (see struct definition for details).
     */
    function unstake(uint256 lockupId, address to) external returns (Lockup memory lockup);

    /**
     * @notice This function is a simplified version of `unstake` that automatically sends the unstaked tokens to the caller (msg.sender).
     * @param lockupId The ID of the lockup to be unstaked.
     * @return lockup A Lockup struct containing details about the unstaked lockup (see struct definition for details).
     */
    function unstakeToSender(uint256 lockupId) external returns (Lockup memory lockup);

    /**
     * @notice This function stakes a specified amount of tokens for the caller
     * (msg.sender) for a defined duration.
     * @param amount The amount of tokens to be staked.
     * @param duration The duration of the lockup period.
     * @return lockup A Lockup struct containing details about the newly
     * created lockup (see struct definition for details).
     */
    function stakeToSender(uint128 amount, uint256 duration) external returns (Lockup memory lockup);

    /**
     * @notice This function stakes a specified amount of tokens for a defined
     * duration, allowing the caller (msg.sender) to specify an optional
     * recipient for the staked tokens.
     * @param amount The amount of tokens to be staked.
     * @param duration The duration of the lockup period.
     * @param to The address to which the staked tokens will be credited (optional, defaults to msg.sender).
     * @return lockup A Lockup struct containing details about the newly
     * created lockup (see struct definition for details).
     */
    function stake(uint128 amount, uint256 duration, address to) external returns (Lockup memory);

    /**
     * @notice This function retrieves the total incentive information for a specific ERC-20 token.
     * @param token The address of the ERC20 token for which to retrieve incentive totals.
     * @return totals A TokenIncentiveTotals struct containing details about
     * the token's incentives (see struct definition for details).
     */
    function incentiveTotals(IERC20 token) external view returns (TokenIncentiveTotals memory);

    /**
     * @notice This function retrieves the total number of created incentive batches.
     * @return count The total number of incentive batches.
     */
    function incentiveBatchCount() external view returns (uint256);

    /**
     * @notice This function retrieves claim information for a specific account and incentive batch index.
     * @param account The address of the account for which to retrieve claim information.
     * @param batchIndex The index of the incentive batch for which to retrieve
     * claim information.
     * @return claimInformation A ClaimInformation struct containing details about the
     * account's claims for the specified batch (see struct definition for
     * details).
     * @return batchInformation A BatchInformation struct containing details about the
     * specified batch (see struct definition for details).
     */
    function claimAndBatchInformation(
        address account,
        uint256 batchIndex
    ) external view returns (ClaimInformation memory claimInformation, BatchInformation memory batchInformation);

    /**
     * @notice This function retrieves batch information for a incentive batch index.
     * @param batchIndex The index of the incentive batch for which to retrieve
     * claim information.
     * @return info A BatchInformation struct containing details about the
     * specified batch (see struct definition for details).
     */
    function incentiveBatchInformation(uint256 batchIndex) external view returns (BatchInformation memory info);

    /**
     * @notice This function allows claiming rewards from a specific incentive
     * batch while simultaneously extending a lockup with the claimed tokens.
     * @param batchIndex The index of the incentive batch from which to claim rewards.
     * @param lockupId The ID of the lockup to be extended with the claimed tokens.
     * @return lockup A Lockup struct containing details about the updated
     * lockup after extension (see struct definition for details).
     * @return claimAmount The amount of tokens claimed from the incentive batch.
     */
    function claimFromIncentiveBatchAndExtend(
        uint256 batchIndex,
        uint256 lockupId
    ) external returns (Lockup memory lockup, uint128 claimAmount);

    /**
     * @notice This function allows claiming rewards from a specific incentive
     * batch, without extending any lockups.
     * @param batchIndex The index of the incentive batch from which to claim rewards.
     * @return lockup A Lockup struct containing details about the user's
     * lockup that might have been affected by the claim (see struct definition
     * for details).
     * @return claimAmount The amount of tokens claimed from the incentive batch.
     */
    function claimFromIncentiveBatch(uint256 batchIndex) external returns (Lockup memory lockup, uint128 claimAmount);

    /**
     * @notice This function creates a new incentive batch for a specified amount
     * of incentive tokens, timepoint, stake duration, and associated ERC-20
     * token. An incentive batch is a reward of incentives put up by the
     * caller at a certain timepoint.  The incentive batch is claimable by ve
     * holders after the timepoint has passed.  The ve holders will receive
     * their incentive pro rata of their vote balance (`pastbalanceOf`) at that
     * timepoint.  The incentivizer can specify that users have to stake the
     * resulting incentive for a given `stakeDuration` number of seconds.
     * `stakeDuration` can either be zero, meaning that no staking is required
     * on redemption, or can be a number between `MIN_STAKE_DURATION()` and
     * `MAX_STAKE_DURATION()`.
     * @param amount The total amount of incentive tokens to be distributed in the batch.
     * @param timepoint The timepoint at which the incentive batch starts accruing rewards.
     * @param stakeDuration The duration of the lockup period required to be
     * eligible for the incentive batch rewards.
     * @param incentiveToken The address of the ERC20 token used for the incentive rewards.
     * @return index The index of the newly created incentive batch.
     */
    function createIncentiveBatch(
        uint128 amount,
        uint48 timepoint,
        uint128 stakeDuration,
        IERC20 incentiveToken
    ) external returns (uint256 index);
}

interface IMaverickV2VotingEscrow is IMaverickV2VotingEscrowBase, IERC20Metadata, IERC6372 {}

File 7 of 63 : IMaverickV2VotingEscrowFactory.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IMaverickV2VotingEscrow} from "./IMaverickV2VotingEscrow.sol";

interface IMaverickV2VotingEscrowFactory {
    error VotingEscrowTokenAlreadyExists(IERC20 baseToken, IMaverickV2VotingEscrow veToken);

    event CreateVotingEscrow(IERC20 baseToken, IMaverickV2VotingEscrow veToken);

    /**
     * @notice This function retrieves the address of the legacy Maverick V1
     * Voting Escrow (veMAV) token.  The address will be zero for blockchains
     * where this contract is deployed that do not have a legacy MAV contract
     * deployed.
     * @return legacyVeMav The address of the IERC20 legacy veMav token.
     */
    function legacyVeMav() external view returns (IERC20);

    /**
     * @notice This function checks whether a provided IMaverickV2VotingEscrow
     * contract address was created by this factory.
     * @param veToken The address of the IMaverickV2VotingEscrow contract to be checked.
     * @return isFactoryToken True if the veToken was created by this factory, False otherwise (bool).
     */
    function isFactoryToken(IMaverickV2VotingEscrow veToken) external view returns (bool);

    /**
     * @notice This function creates a new Maverick V2 Voting Escrow (veToken)
     * contract for a specified ERC20 base token.
     * @dev Once the ve contract is created, it will call `name()` and
     * `symbol()` on the `baseToken`.  If those functions do not exist, the ve
     * creation will revert.
     * @param baseToken The address of the ERC-20 token to be used as the base token for the new veToken.
     * @return veToken The address of the newly created IMaverickV2VotingEscrow contract.
     */
    function createVotingEscrow(IERC20 baseToken) external returns (IMaverickV2VotingEscrow veToken);

    /**
     * @notice This function retrieves a paginated list of existing Maverick V2
     * Voting Escrow (veToken) contracts within a specified index range.
     * @param startIndex The starting index for the desired range of veTokens.
     * @param endIndex The ending index for the desired range of veTokens.
     * @return votingEscrows An array of IMaverickV2VotingEscrow addresses
     * representing the veTokens within the specified range.
     */
    function votingEscrows(
        uint256 startIndex,
        uint256 endIndex
    ) external view returns (IMaverickV2VotingEscrow[] memory votingEscrows);

    /**
     * @notice This function retrieves the total number of deployed Maverick V2
     * Voting Escrow (veToken) contracts.
     * @return count The total number of veTokens.
     */
    function votingEscrowsCount() external view returns (uint256 count);

    /**
     * @notice This function retrieves the address of the existing Maverick V2
     * Voting Escrow (veToken) contract associated with a specific ERC20 base
     * token.
     * @param baseToken The address of the ERC-20 base token for which to retrieve the veToken address.
     * @return veToken The address of the IMaverickV2VotingEscrow contract
     * associated with the base token, or the zero address if none exists.
     */
    function veForBaseToken(IERC20 baseToken) external view returns (IMaverickV2VotingEscrow veToken);

    /**
     * @notice This function retrieves the default base token used for creating
     * new voting escrow contracts.  This state variable is only used
     * temporarily when a new veToken is deployed.
     * @return baseToken The address of the default ERC-20 base token.
     */
    function baseTokenParameter() external returns (IERC20);
}

File 8 of 63 : IMaverickV2VotingEscrowWSync.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IMaverickV2VotingEscrowWSync {
    error VotingEscrowLockupEndTooShortToSync(uint256 legacyLockupEnd, uint256 minimumLockupEnd);

    event Sync(address staker, uint256 legacyLockupIndex, uint256 newBalance);

    /**
     * @notice This function retrieves the minimum lockup duration required for
     * a legacy lockup to be eligible for synchronization.
     * @return minSyncDuration The minimum allowed lockup end time.
     */
    // solhint-disable-next-line func-name-mixedcase
    function MIN_SYNC_DURATION() external pure returns (uint256 minSyncDuration);

    /**
     * @notice This function retrieves the address of the legacy Maverick V1
     * Voting Escrow (veMav) token.
     * @return legacyVeMav The address of the IERC20 legacy veMav token.
     */
    function legacyVeMav() external view returns (IERC20);

    /**
     * @notice This function retrieves the synced balance for a specific legacy lockup index of a user.
     * @param staker The address of the user for whom to retrieve the synced balance.
     * @param legacyLockupIndex The index of the legacy lockup for which to
     * retrieve the synced balance.
     * @return balance The synced balance associated with the legacy lockup.
     */
    function syncBalances(address staker, uint256 legacyLockupIndex) external view returns (uint256 balance);

    /**
     * @notice This function synchronizes a specific legacy lockup index for a
     * user within the contract.  If the legacy lockup.end is not at least
     * `block.timestamp + MIN_SYNC_DURATION()`, this function will revert.
     * @param staker The address of the user for whom to perform synchronization.
     * @param legacyLockupIndex The index of the legacy lockup to be
     * synchronized.
     * @return newBalance The new balance resulting from the synchronization
     * process.
     */
    function sync(address staker, uint256 legacyLockupIndex) external returns (uint256 newBalance);
}

File 9 of 63 : MaverickV2VotingEscrow.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {Math as OzMath} from "@openzeppelin/contracts/utils/math/Math.sol";

import {VotingEscrow} from "./votingescrowbase/VotingEscrow.sol";
import {IMaverickV2VotingEscrowBase} from "./interfaces/IMaverickV2VotingEscrow.sol";

/**
 * @notice Provides staking, vote power history, vote delegation, and incentive
 * disbursement to ve holders.
 *
 * @dev `VotingEscrow` contract provides details on the staking and delegation
 * features.
 *
 * @dev Incentive disbursement can take place in any token and happens when a
 * user permissionlessly creates a new incentive batch for a specified amount
 * of incentive tokens, timepoint, stake duration, and associated ERC-20 token.
 * An incentive batch is a reward of incentives put up by the caller at a
 * certain timepoint.  The incentive batch is claimable by ve holders after the
 * timepoint has passed.  The ve holders will receive their incentive pro rata
 * of their vote balance (`pastbalanceOf`) at that timepoint.  The incentivizer
 * can specify that users have to stake the resulting incentive for a given
 * `stakeDuration` number of seconds. `stakeDuration` can either be zero,
 * meaning that no staking is required on redemption, or can be a number
 * between `MIN_STAKE_DURATION()` and `MAX_STAKE_DURATION()`.
 */
contract MaverickV2VotingEscrow is VotingEscrow {
    using SafeERC20 for IERC20;
    using Cast for uint256;

    struct IncentiveSpecification {
        BatchInformation batchInformation;
        mapping(address => bool) hasClaimed;
    }

    mapping(uint256 => IncentiveSpecification) private _incentiveBatches;

    mapping(IERC20 => TokenIncentiveTotals) private _tokenIncentiveTotals;

    /// @inheritdoc IMaverickV2VotingEscrowBase
    uint256 public incentiveBatchCount;

    constructor(string memory __name, string memory __symbol) VotingEscrow(__name, __symbol) {}

    //////////////////////
    // Incentive Functions
    //////////////////////

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function createIncentiveBatch(
        uint128 amount,
        uint48 timepoint,
        uint128 stakeDuration,
        IERC20 incentiveToken
    ) public returns (uint256 index) {
        if (amount == 0) revert VotingEscrowInvalidAmount(amount);
        if (stakeDuration != 0) {
            if (incentiveToken == baseToken) {
                _checkDuration(stakeDuration);
            } else {
                // if not base token, stakeDuration should be zero
                revert VotingEscrowInvalidDuration(stakeDuration, 0, 0);
            }
        }

        index = incentiveBatchCount;

        _tokenIncentiveTotals[incentiveToken].totalIncentives += amount;
        IncentiveSpecification storage spec = _incentiveBatches[index];

        spec.batchInformation.totalIncentives = amount;
        spec.batchInformation.incentiveToken = incentiveToken;
        spec.batchInformation.claimTimepoint = timepoint;
        spec.batchInformation.stakeDuration = stakeDuration;
        incentiveBatchCount++;

        incentiveToken.safeTransferFrom(msg.sender, address(this), amount);
        emit CreateNewIncentiveBatch(msg.sender, amount, timepoint, stakeDuration, incentiveToken);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function claimFromIncentiveBatch(uint256 batchIndex) public returns (Lockup memory lockup, uint128 claimAmount) {
        uint256 stakeDuration;
        IERC20 incentiveToken;
        (claimAmount, stakeDuration, incentiveToken) = _claim(batchIndex);

        if (incentiveToken == baseToken && stakeDuration != 0) {
            // no need to transfer; the base assets are already on this contract
            lockup = _stake(claimAmount, stakeDuration, msg.sender, type(uint256).max);
        } else {
            incentiveToken.safeTransfer(msg.sender, claimAmount);
        }
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function claimFromIncentiveBatchAndExtend(
        uint256 batchIndex,
        uint256 lockupId
    ) public returns (Lockup memory lockup, uint128 claimAmount) {
        uint256 stakeDuration;
        IERC20 incentiveToken;
        (claimAmount, stakeDuration, incentiveToken) = _claim(batchIndex);

        if (incentiveToken == baseToken && stakeDuration != 0) {
            // no need to transfer; the base assets are already on this contract
            lockup = _extend(claimAmount, stakeDuration, msg.sender, lockupId);
        } else {
            revert VotingEscrowInvalidExtendIncentiveToken(incentiveToken);
        }
    }

    //////////////////////
    // View Functions
    //////////////////////

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function incentiveTotals(IERC20 incentiveToken) external view returns (TokenIncentiveTotals memory totals) {
        totals = _tokenIncentiveTotals[incentiveToken];
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function claimAndBatchInformation(
        address account,
        uint256 batchIndex
    ) public view returns (ClaimInformation memory claimInformation, BatchInformation memory batchInformation) {
        IncentiveSpecification storage spec = _incentiveBatches[batchIndex];
        batchInformation = spec.batchInformation;

        uint48 timepoint = batchInformation.claimTimepoint;
        claimInformation.timepointInPast = timepoint < block.timestamp;

        if (claimInformation.timepointInPast) {
            claimInformation.claimAmount = OzMath
                .mulDiv(
                    batchInformation.totalIncentives,
                    getPastBalanceOf(account, timepoint),
                    getPastTotalSupply(timepoint)
                )
                .toUint128();
            claimInformation.hasClaimed = spec.hasClaimed[account];
        }
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function incentiveBatchInformation(uint256 batchIndex) public view returns (BatchInformation memory info) {
        info = _incentiveBatches[batchIndex].batchInformation;
    }

    //////////////////////
    // Internal Functions
    //////////////////////

    function _claim(
        uint256 batchIndex
    ) internal returns (uint128 claimAmount, uint256 stakeDuration, IERC20 incentiveToken) {
        (ClaimInformation memory claimInformation, BatchInformation memory batchInformation) = claimAndBatchInformation(
            msg.sender,
            batchIndex
        );

        if (!claimInformation.timepointInPast)
            revert VotingEscrowIncentiveTimepointInFuture(block.timestamp, batchInformation.claimTimepoint);
        if (claimInformation.claimAmount == 0) revert VotingEscrowNoIncentivesToClaim(msg.sender, batchIndex);
        if (claimInformation.hasClaimed) revert VotingEscrowIncentiveAlreadyClaimed(msg.sender, batchIndex);

        _tokenIncentiveTotals[batchInformation.incentiveToken].claimedIncentives += claimInformation.claimAmount;
        _incentiveBatches[batchIndex].hasClaimed[msg.sender] = true;

        emit ClaimIncentiveBatch(batchIndex, msg.sender, claimInformation.claimAmount);
        return (claimInformation.claimAmount, batchInformation.stakeDuration, batchInformation.incentiveToken);
    }
}

File 10 of 63 : HistoricalBalance.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {ERC20Votes} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol";
import {SafeCast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";
import {Time} from "@openzeppelin/contracts/utils/types/Time.sol";

import {Checkpoints} from "@openzeppelin/contracts/utils/structs/Checkpoints.sol";

import {IHistoricalBalance} from "./IHistoricalBalance.sol";

/**
 * @notice Adds support for tracking historical balance on ERC20Votes (not just
 * historical voting power) and adds support for contributing and retrieving
 * incentives pro-rata of historical balanceOf.
 *
 * @notice Uses a timestamp-based clock for checkpoints as opposed to the
 * default OZ implementation that is blocknumber based.
 */
abstract contract HistoricalBalance is ERC20Votes, IHistoricalBalance {
    using Checkpoints for Checkpoints.Trace208;

    mapping(address account => Checkpoints.Trace208) private _balanceOfCheckpoints;

    //////////////////////
    // Past Balance
    //////////////////////

    /// @inheritdoc IHistoricalBalance
    function getPastBalanceOf(address account, uint256 timepoint) public view returns (uint256 balance) {
        uint48 currentTimepoint = clock();
        if (timepoint >= currentTimepoint) {
            revert ERC5805FutureLookup(timepoint, currentTimepoint);
        }
        // cast is safe because of conditional above
        return _balanceOfCheckpoints[account].upperLookupRecent(uint48(timepoint));
    }

    //////////////////////
    // Overrides
    //////////////////////

    function _update(address from, address to, uint256 amount) internal virtual override {
        ERC20Votes._update(from, to, amount);

        if (from != to && amount > 0) {
            if (from != address(0)) {
                __push(_balanceOfCheckpoints[from], __subtract, SafeCast.toUint208(amount));
            }
            if (to != address(0)) {
                __push(_balanceOfCheckpoints[to], __add, SafeCast.toUint208(amount));
            }
        }
    }

    function clock() public view override returns (uint48) {
        return Time.timestamp();
    }

    /**
     * @dev Machine-readable description of the clock as specified in ERC-6372.
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() public pure override returns (string memory) {
        return "mode=timestamp";
    }

    //////////////////////
    // Helpers
    //////////////////////

    function __push(
        Checkpoints.Trace208 storage store,
        function(uint208, uint208) view returns (uint208) op,
        uint208 delta
    ) private returns (uint208, uint208) {
        return store.push(clock(), op(store.latest(), delta));
    }

    function __add(uint208 a, uint208 b) private pure returns (uint208) {
        return a + b;
    }

    function __subtract(uint208 a, uint208 b) private pure returns (uint208) {
        return a - b;
    }
}

File 11 of 63 : IHistoricalBalance.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

interface IHistoricalBalance {
    /**
     * @notice This function retrieves the historical balance of an account at
     * a specific point in time.
     * @param account The address of the account for which to retrieve the
     * historical balance.
     * @param timepoint The timepoint (block number or timestamp depending on
     * implementation) at which to query the balance (uint256).
     * @return balance The balance of the account at the specified timepoint.
     */
    function getPastBalanceOf(address account, uint256 timepoint) external view returns (uint256 balance);
}

File 12 of 63 : ILegacyVeMav.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IMaverickV2VotingEscrow} from "../interfaces/IMaverickV2VotingEscrow.sol";

interface ILegacyVeMav {
    function epoch() external view returns (uint256);
    function lockups(
        address staker,
        uint256 legacyLockupIndex
    ) external view returns (IMaverickV2VotingEscrow.Lockup memory);
    function lockupCount(address staker) external view returns (uint256 count);
    function mav() external view returns (IERC20);
}

File 13 of 63 : VotingEscrow.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.25;

import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {IERC20, ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {EIP712} from "@openzeppelin/contracts/utils/cryptography/EIP712.sol";
import {SafeCast as Cast} from "@openzeppelin/contracts/utils/math/SafeCast.sol";

import {ud} from "@prb/math/src/UD60x18.sol";
import {pow} from "@prb/math/src/ud60x18/Math.sol";

import {Math} from "@maverick/v2-common/contracts/libraries/Math.sol";
import {Multicall} from "@maverick/v2-common/contracts/base/Multicall.sol";

import {IMaverickV2VotingEscrowBase} from "../interfaces/IMaverickV2VotingEscrow.sol";
import {IMaverickV2VotingEscrowFactory} from "../interfaces/IMaverickV2VotingEscrowFactory.sol";
import {HistoricalBalance} from "./HistoricalBalance.sol";

// forked from https://github.com/OriginProtocol/ousd-governance/blob/5a6ed042feef6973177e3b1b093c5a6e64039de4/contracts/OgvStaking.sol

/**
 * @notice Provides staking, vote power history, vote delegation.
 *
 * The balance received for staking (and thus the voting power) goes up
 * exponentially by the end of the staked period.
 */
abstract contract VotingEscrow is HistoricalBalance, IMaverickV2VotingEscrowBase, ReentrancyGuard, Multicall {
    using SafeERC20 for IERC20;
    using Cast for uint256;

    /// @inheritdoc IMaverickV2VotingEscrowBase
    uint256 public constant YEAR_BASE = 1.5e18;
    /// @inheritdoc IMaverickV2VotingEscrowBase
    uint256 public immutable startTimestamp;
    /// @inheritdoc IMaverickV2VotingEscrowBase
    uint256 public constant MIN_STAKE_DURATION = 4 weeks;
    /// @inheritdoc IMaverickV2VotingEscrowBase
    uint256 public constant MAX_STAKE_DURATION = 4 * (365 days);

    mapping(address => Lockup[]) internal _lockups;
    mapping(address => mapping(address => mapping(uint256 => bool))) internal _extenders;

    /// @inheritdoc IMaverickV2VotingEscrowBase
    IERC20 public immutable baseToken;

    constructor(string memory __name, string memory __symbol) ERC20(__name, __symbol) EIP712(__name, "1") {
        baseToken = IMaverickV2VotingEscrowFactory(msg.sender).baseTokenParameter();
        startTimestamp = block.timestamp;
    }

    //////////////////////
    // Internal State-Modifying Functions
    //////////////////////

    /**
     *
     * @notice Internal function that stakes an amount for a duration to an address.
     * @dev This function validates that `to` is not the zero address and that the
     * duration is within bounds.
     * @dev Function also does a transferFrom for the base token amount.  This
     * requires that the sender approve this ve contract to be able to transfer
     * tokens for the sender.
     *
     */
    function _stake(
        uint128 amount,
        uint256 duration,
        address to,
        uint256 lockupId
    ) internal nonReentrant returns (Lockup memory lockup) {
        if (to == address(0)) revert VotingEscrowInvalidAddress(to);

        // duration checks applied inside previewVotes
        lockup = previewVotes(amount, duration);

        // stake to existing or new lockup
        if (lockupId >= lockupCount(to)) {
            _lockups[to].push(lockup);
            unchecked {
                lockupId = _lockups[to].length - 1;
            }
        } else {
            _lockups[to][lockupId] = lockup;
        }

        // mint ve votes
        _mint(to, lockup.votes);

        emit Stake(to, lockupId, lockup);
    }

    /**
     *
     * @notice Internal function that unstakes an account's lockup.
     *
     * @dev This function validates that the lockup has not already been
     * claimed and does burn the account's voting votes.
     *
     * @dev But the function does not transfer the baseTokens to the staker.
     * That transfer operation must be executed seperately as appropiate.
     *
     * @dev This function also does not validate that the lockup end time has
     * passed nor does it validate that `account` has permissions to unstake
     * this lockupId.
     *
     */
    function _unstake(address account, uint256 lockupId) internal returns (Lockup memory lockup) {
        lockup = _lockups[account][lockupId];

        if (lockup.end == 0) revert VotingEscrowStakeAlreadyRedeemed();

        delete _lockups[account][lockupId]; // Keeps empty in array, so indexes are stable

        _burn(account, lockup.votes);

        emit Unstake(account, lockupId, lockup);
    }

    /**
     *
     * @notice Internal function that extends an account's lockup.
     *
     * @dev This function validates that the lockup has not already been
     * claimed.
     *
     * @dev This function also does not validate that the `account` has
     * permissions to unstake this lockupId.
     *
     */
    function _extend(
        uint128 amount,
        uint256 duration,
        address account,
        uint256 lockupId
    ) internal returns (Lockup memory newLockup) {
        // unstake existing lockup
        Lockup memory oldLockup = _unstake(account, lockupId);

        // stake new lockup
        newLockup = _stake(oldLockup.amount + amount, duration, account, lockupId);

        // ensure the new lock is at least as long as old lock
        if (newLockup.end < oldLockup.end) revert VotingEscrowInvalidEndTime(newLockup.end, oldLockup.end);
    }

    //////////////////////
    // Public Stake-Management Functions
    //////////////////////

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function stake(uint128 amount, uint256 duration, address to) public returns (Lockup memory lockup) {
        if (amount == 0) revert VotingEscrowInvalidAmount(amount);
        lockup = _stake(amount, duration, to, type(uint256).max);
        baseToken.safeTransferFrom(msg.sender, address(this), amount);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function stakeToSender(uint128 amount, uint256 duration) public virtual returns (Lockup memory lockup) {
        return stake(amount, duration, msg.sender);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function unstake(uint256 lockupId, address to) public nonReentrant returns (Lockup memory lockup) {
        lockup = _unstake(msg.sender, lockupId);

        if (block.timestamp < lockup.end) revert VotingEscrowStakeStillLocked(block.timestamp, lockup.end);

        baseToken.safeTransfer(to, lockup.amount);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function unstakeToSender(uint256 lockupId) public returns (Lockup memory lockup) {
        return unstake(lockupId, msg.sender);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function merge(uint256[] memory lockupIds) public returns (Lockup memory newLockup) {
        uint128 cumulativeAmount;
        uint256 maxEnd;

        Lockup memory oldLockup;
        for (uint256 k; k < lockupIds.length; k++) {
            oldLockup = _unstake(msg.sender, lockupIds[k]);
            cumulativeAmount += oldLockup.amount;
            maxEnd = Math.max(maxEnd, oldLockup.end);
        }

        // stake new lockup; checks to ensure new duration is at least min duration.
        newLockup = _stake(cumulativeAmount, maxEnd - block.timestamp, msg.sender, lockupIds[0]);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function extendForSender(
        uint256 lockupId,
        uint256 duration,
        uint128 amount
    ) public virtual returns (Lockup memory newLockup) {
        newLockup = _extend(amount, duration, msg.sender, lockupId);
        if (amount != 0) baseToken.safeTransferFrom(msg.sender, address(this), amount);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function extendForAccount(
        address account,
        uint256 lockupId,
        uint256 duration,
        uint128 amount
    ) public returns (Lockup memory newLockup) {
        _checkApprovedExtender(account, lockupId);
        newLockup = _extend(amount, duration, account, lockupId);
        if (amount != 0) baseToken.safeTransferFrom(msg.sender, address(this), amount);
    }

    //////////////////////
    // Permissioning Functions
    //////////////////////

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function approveExtender(address extender, uint256 lockupId) public {
        _extenders[extender][msg.sender][lockupId] = true;
        emit ExtenderApproval(msg.sender, extender, lockupId, true);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function revokeExtender(address extender, uint256 lockupId) public {
        _extenders[extender][msg.sender][lockupId] = false;
        emit ExtenderApproval(msg.sender, extender, lockupId, false);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function isApprovedExtender(address account, address extender, uint256 lockupId) public view returns (bool) {
        return _extenders[extender][account][lockupId];
    }

    function _checkApprovedExtender(address account, uint256 lockupId) internal view {
        bool approved = isApprovedExtender(account, msg.sender, lockupId);
        if (!approved && account != msg.sender) revert VotingEscrowNotApprovedExtender(account, msg.sender, lockupId);
    }

    //////////////////////
    // View Functions
    //////////////////////

    function _checkDuration(uint256 duration) internal pure {
        if (duration < MIN_STAKE_DURATION || duration > MAX_STAKE_DURATION)
            revert VotingEscrowInvalidDuration(duration, MIN_STAKE_DURATION, MAX_STAKE_DURATION);
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function previewVotes(uint128 amount, uint256 duration) public view returns (Lockup memory lockup) {
        _checkDuration(duration);
        unchecked {
            // duration has been validated to be a small number, can do an
            // unsafe cast and add
            lockup.end = uint128(block.timestamp + duration);
            uint256 endYearpoc = Math.divFloor((lockup.end - startTimestamp), 365 days);
            uint256 multiplier = pow(ud(YEAR_BASE), ud(endYearpoc)).unwrap();
            lockup.amount = amount;
            lockup.votes = Math.mulFloor(amount, multiplier);
        }
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function getLockup(address staker, uint256 index) public view returns (Lockup memory lockup) {
        return _lockups[staker][index];
    }

    /// @inheritdoc IMaverickV2VotingEscrowBase
    function lockupCount(address staker) public view returns (uint256 count) {
        return _lockups[staker].length;
    }

    //////////////////////
    // Overrides
    //////////////////////

    /**
     * @notice Transfers of voting balances are not allowed.  This function will revert.
     */
    function transfer(address, uint256) public pure override returns (bool) {
        revert VotingEscrowTransferNotSupported();
    }

    /**
     * @notice Transfers of voting balances are not allowed.  This function will revert.
     */
    function transferFrom(address, address, uint256) public pure override returns (bool) {
        revert VotingEscrowTransferNotSupported();
    }

    /**
     * @notice Transfers of voting balances are not allowed.  This function will revert.
     */
    function approve(address, uint256) public pure override returns (bool) {
        revert VotingEscrowTransferNotSupported();
    }
}

File 14 of 63 : IVotes.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
pragma solidity ^0.8.20;

/**
 * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
 */
interface IVotes {
    /**
     * @dev The signature used has expired.
     */
    error VotesExpiredSignature(uint256 expiry);

    /**
     * @dev Emitted when an account changes their delegate.
     */
    event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);

    /**
     * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
     */
    event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);

    /**
     * @dev Returns the current amount of votes that `account` has.
     */
    function getVotes(address account) external view returns (uint256);

    /**
     * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     */
    function getPastVotes(address account, uint256 timepoint) external view returns (uint256);

    /**
     * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
     * Votes that have not been delegated are still part of total supply, even though they would not participate in a
     * vote.
     */
    function getPastTotalSupply(uint256 timepoint) external view returns (uint256);

    /**
     * @dev Returns the delegate that `account` has chosen.
     */
    function delegates(address account) external view returns (address);

    /**
     * @dev Delegates votes from the sender to `delegatee`.
     */
    function delegate(address delegatee) external;

    /**
     * @dev Delegates votes from signer to `delegatee`.
     */
    function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}

File 15 of 63 : Votes.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol)
pragma solidity ^0.8.20;

import {IERC5805} from "../../interfaces/IERC5805.sol";
import {Context} from "../../utils/Context.sol";
import {Nonces} from "../../utils/Nonces.sol";
import {EIP712} from "../../utils/cryptography/EIP712.sol";
import {Checkpoints} from "../../utils/structs/Checkpoints.sol";
import {SafeCast} from "../../utils/math/SafeCast.sol";
import {ECDSA} from "../../utils/cryptography/ECDSA.sol";
import {Time} from "../../utils/types/Time.sol";

/**
 * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be
 * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of
 * "representative" that will pool delegated voting units from different accounts and can then use it to vote in
 * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to
 * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative.
 *
 * This contract is often combined with a token contract such that voting units correspond to token units. For an
 * example, see {ERC721Votes}.
 *
 * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed
 * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the
 * cost of this history tracking optional.
 *
 * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return
 * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the
 * previous example, it would be included in {ERC721-_update}).
 */
abstract contract Votes is Context, EIP712, Nonces, IERC5805 {
    using Checkpoints for Checkpoints.Trace208;

    bytes32 private constant DELEGATION_TYPEHASH =
        keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");

    mapping(address account => address) private _delegatee;

    mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints;

    Checkpoints.Trace208 private _totalCheckpoints;

    /**
     * @dev The clock was incorrectly modified.
     */
    error ERC6372InconsistentClock();

    /**
     * @dev Lookup to future votes is not available.
     */
    error ERC5805FutureLookup(uint256 timepoint, uint48 clock);

    /**
     * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
     * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
     */
    function clock() public view virtual returns (uint48) {
        return Time.blockNumber();
    }

    /**
     * @dev Machine-readable description of the clock as specified in EIP-6372.
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() public view virtual returns (string memory) {
        // Check that the clock was not modified
        if (clock() != Time.blockNumber()) {
            revert ERC6372InconsistentClock();
        }
        return "mode=blocknumber&from=default";
    }

    /**
     * @dev Returns the current amount of votes that `account` has.
     */
    function getVotes(address account) public view virtual returns (uint256) {
        return _delegateCheckpoints[account].latest();
    }

    /**
     * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * Requirements:
     *
     * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
     */
    function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
        uint48 currentTimepoint = clock();
        if (timepoint >= currentTimepoint) {
            revert ERC5805FutureLookup(timepoint, currentTimepoint);
        }
        return _delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint));
    }

    /**
     * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
     * Votes that have not been delegated are still part of total supply, even though they would not participate in a
     * vote.
     *
     * Requirements:
     *
     * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
     */
    function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) {
        uint48 currentTimepoint = clock();
        if (timepoint >= currentTimepoint) {
            revert ERC5805FutureLookup(timepoint, currentTimepoint);
        }
        return _totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint));
    }

    /**
     * @dev Returns the current total supply of votes.
     */
    function _getTotalSupply() internal view virtual returns (uint256) {
        return _totalCheckpoints.latest();
    }

    /**
     * @dev Returns the delegate that `account` has chosen.
     */
    function delegates(address account) public view virtual returns (address) {
        return _delegatee[account];
    }

    /**
     * @dev Delegates votes from the sender to `delegatee`.
     */
    function delegate(address delegatee) public virtual {
        address account = _msgSender();
        _delegate(account, delegatee);
    }

    /**
     * @dev Delegates votes from signer to `delegatee`.
     */
    function delegateBySig(
        address delegatee,
        uint256 nonce,
        uint256 expiry,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > expiry) {
            revert VotesExpiredSignature(expiry);
        }
        address signer = ECDSA.recover(
            _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
            v,
            r,
            s
        );
        _useCheckedNonce(signer, nonce);
        _delegate(signer, delegatee);
    }

    /**
     * @dev Delegate all of `account`'s voting units to `delegatee`.
     *
     * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
     */
    function _delegate(address account, address delegatee) internal virtual {
        address oldDelegate = delegates(account);
        _delegatee[account] = delegatee;

        emit DelegateChanged(account, oldDelegate, delegatee);
        _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account));
    }

    /**
     * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to`
     * should be zero. Total supply of voting units will be adjusted with mints and burns.
     */
    function _transferVotingUnits(address from, address to, uint256 amount) internal virtual {
        if (from == address(0)) {
            _push(_totalCheckpoints, _add, SafeCast.toUint208(amount));
        }
        if (to == address(0)) {
            _push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount));
        }
        _moveDelegateVotes(delegates(from), delegates(to), amount);
    }

    /**
     * @dev Moves delegated votes from one delegate to another.
     */
    function _moveDelegateVotes(address from, address to, uint256 amount) private {
        if (from != to && amount > 0) {
            if (from != address(0)) {
                (uint256 oldValue, uint256 newValue) = _push(
                    _delegateCheckpoints[from],
                    _subtract,
                    SafeCast.toUint208(amount)
                );
                emit DelegateVotesChanged(from, oldValue, newValue);
            }
            if (to != address(0)) {
                (uint256 oldValue, uint256 newValue) = _push(
                    _delegateCheckpoints[to],
                    _add,
                    SafeCast.toUint208(amount)
                );
                emit DelegateVotesChanged(to, oldValue, newValue);
            }
        }
    }

    /**
     * @dev Get number of checkpoints for `account`.
     */
    function _numCheckpoints(address account) internal view virtual returns (uint32) {
        return SafeCast.toUint32(_delegateCheckpoints[account].length());
    }

    /**
     * @dev Get the `pos`-th checkpoint for `account`.
     */
    function _checkpoints(
        address account,
        uint32 pos
    ) internal view virtual returns (Checkpoints.Checkpoint208 memory) {
        return _delegateCheckpoints[account].at(pos);
    }

    function _push(
        Checkpoints.Trace208 storage store,
        function(uint208, uint208) view returns (uint208) op,
        uint208 delta
    ) private returns (uint208, uint208) {
        return store.push(clock(), op(store.latest(), delta));
    }

    function _add(uint208 a, uint208 b) private pure returns (uint208) {
        return a + b;
    }

    function _subtract(uint208 a, uint208 b) private pure returns (uint208) {
        return a - b;
    }

    /**
     * @dev Must return the voting units held by an account.
     */
    function _getVotingUnits(address) internal view virtual returns (uint256);
}

File 16 of 63 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 17 of 63 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 18 of 63 : IERC5805.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol)

pragma solidity ^0.8.20;

import {IVotes} from "../governance/utils/IVotes.sol";
import {IERC6372} from "./IERC6372.sol";

interface IERC5805 is IERC6372, IVotes {}

File 19 of 63 : IERC6372.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)

pragma solidity ^0.8.20;

interface IERC6372 {
    /**
     * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
     */
    function clock() external view returns (uint48);

    /**
     * @dev Description of the clock
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() external view returns (string memory);
}

File 20 of 63 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 21 of 63 : ERC20Votes.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Votes.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Votes} from "../../../governance/utils/Votes.sol";
import {Checkpoints} from "../../../utils/structs/Checkpoints.sol";

/**
 * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's,
 * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1.
 *
 * NOTE: This contract does not provide interface compatibility with Compound's COMP token.
 *
 * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
 * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting
 * power can be queried through the public accessors {getVotes} and {getPastVotes}.
 *
 * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
 * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
 */
abstract contract ERC20Votes is ERC20, Votes {
    /**
     * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing.
     */
    error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap);

    /**
     * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1).
     *
     * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256,
     * so that checkpoints can be stored in the Trace208 structure used by {{Votes}}. Increasing this value will not
     * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in
     * {_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if
     * additional logic requires it. When resolving override conflicts on this function, the minimum should be
     * returned.
     */
    function _maxSupply() internal view virtual returns (uint256) {
        return type(uint208).max;
    }

    /**
     * @dev Move voting power when tokens are transferred.
     *
     * Emits a {IVotes-DelegateVotesChanged} event.
     */
    function _update(address from, address to, uint256 value) internal virtual override {
        super._update(from, to, value);
        if (from == address(0)) {
            uint256 supply = totalSupply();
            uint256 cap = _maxSupply();
            if (supply > cap) {
                revert ERC20ExceededSafeSupply(supply, cap);
            }
        }
        _transferVotingUnits(from, to, value);
    }

    /**
     * @dev Returns the voting units of an `account`.
     *
     * WARNING: Overriding this function may compromise the internal vote accounting.
     * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change.
     */
    function _getVotingUnits(address account) internal view virtual override returns (uint256) {
        return balanceOf(account);
    }

    /**
     * @dev Get number of checkpoints for `account`.
     */
    function numCheckpoints(address account) public view virtual returns (uint32) {
        return _numCheckpoints(account);
    }

    /**
     * @dev Get the `pos`-th checkpoint for `account`.
     */
    function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) {
        return _checkpoints(account, pos);
    }
}

File 22 of 63 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 23 of 63 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 24 of 63 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 25 of 63 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 26 of 63 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 27 of 63 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 28 of 63 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 29 of 63 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

File 30 of 63 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 31 of 63 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 32 of 63 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

File 33 of 63 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 34 of 63 : Nonces.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

File 35 of 63 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    uint256 private _status;

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    constructor() {
        _status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if (_status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        _status = ENTERED;
    }

    function _nonReentrantAfter() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        return _status == ENTERED;
    }
}

File 36 of 63 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 37 of 63 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 38 of 63 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 39 of 63 : Checkpoints.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";

/**
 * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
 * time, and later looking up past values by block number. See {Votes} as an example.
 *
 * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
 * checkpoint for the current transaction block using the {push} function.
 */
library Checkpoints {
    /**
     * @dev A value was attempted to be inserted on a past checkpoint.
     */
    error CheckpointUnorderedInsertion();

    struct Trace224 {
        Checkpoint224[] _checkpoints;
    }

    struct Checkpoint224 {
        uint32 _key;
        uint224 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
     * library.
     */
    function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace224 storage self) internal view returns (uint224) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace224 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint224 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint224({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint224({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint224[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint224 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace208 {
        Checkpoint208[] _checkpoints;
    }

    struct Checkpoint208 {
        uint48 _key;
        uint208 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
     * library.
     */
    function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace208 storage self) internal view returns (uint208) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace208 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint208 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint208({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint208({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint208[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint208 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace160 {
        Checkpoint160[] _checkpoints;
    }

    struct Checkpoint160 {
        uint96 _key;
        uint160 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
     * library.
     */
    function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace160 storage self) internal view returns (uint160) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace160 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint160 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint160({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint160({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint160[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint160 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }
}

File 40 of 63 : Time.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";

/**
 * @dev This library provides helpers for manipulating time-related objects.
 *
 * It uses the following types:
 * - `uint48` for timepoints
 * - `uint32` for durations
 *
 * While the library doesn't provide specific types for timepoints and duration, it does provide:
 * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
 * - additional helper functions
 */
library Time {
    using Time for *;

    /**
     * @dev Get the block timestamp as a Timepoint.
     */
    function timestamp() internal view returns (uint48) {
        return SafeCast.toUint48(block.timestamp);
    }

    /**
     * @dev Get the block number as a Timepoint.
     */
    function blockNumber() internal view returns (uint48) {
        return SafeCast.toUint48(block.number);
    }

    // ==================================================== Delay =====================================================
    /**
     * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
     * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
     * This allows updating the delay applied to some operation while keeping some guarantees.
     *
     * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
     * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
     * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
     * still apply for some time.
     *
     *
     * The `Delay` type is 112 bits long, and packs the following:
     *
     * ```
     *   | [uint48]: effect date (timepoint)
     *   |           | [uint32]: value before (duration)
     *   ↓           ↓       ↓ [uint32]: value after (duration)
     * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
     * ```
     *
     * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
     * supported.
     */
    type Delay is uint112;

    /**
     * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
     */
    function toDelay(uint32 duration) internal pure returns (Delay) {
        return Delay.wrap(duration);
    }

    /**
     * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
     * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
     */
    function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
        (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
        return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
    }

    /**
     * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
     * effect timepoint is 0, then the pending value should not be considered.
     */
    function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
        return _getFullAt(self, timestamp());
    }

    /**
     * @dev Get the current value.
     */
    function get(Delay self) internal view returns (uint32) {
        (uint32 delay, , ) = self.getFull();
        return delay;
    }

    /**
     * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
     * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
     * new delay becomes effective.
     */
    function withUpdate(
        Delay self,
        uint32 newValue,
        uint32 minSetback
    ) internal view returns (Delay updatedDelay, uint48 effect) {
        uint32 value = self.get();
        uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
        effect = timestamp() + setback;
        return (pack(value, newValue, effect), effect);
    }

    /**
     * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
     */
    function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        uint112 raw = Delay.unwrap(self);

        valueAfter = uint32(raw);
        valueBefore = uint32(raw >> 32);
        effect = uint48(raw >> 64);

        return (valueBefore, valueAfter, effect);
    }

    /**
     * @dev pack the components into a Delay object.
     */
    function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
        return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
    }
}

File 41 of 63 : Common.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

// Common.sol
//
// Common mathematical functions used in both SD59x18 and UD60x18. Note that these global functions do not
// always operate with SD59x18 and UD60x18 numbers.

/*//////////////////////////////////////////////////////////////////////////
                                CUSTOM ERRORS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Thrown when the resultant value in {mulDiv} overflows uint256.
error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator);

/// @notice Thrown when the resultant value in {mulDiv18} overflows uint256.
error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y);

/// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`.
error PRBMath_MulDivSigned_InputTooSmall();

/// @notice Thrown when the resultant value in {mulDivSigned} overflows int256.
error PRBMath_MulDivSigned_Overflow(int256 x, int256 y);

/*//////////////////////////////////////////////////////////////////////////
                                    CONSTANTS
//////////////////////////////////////////////////////////////////////////*/

/// @dev The maximum value a uint128 number can have.
uint128 constant MAX_UINT128 = type(uint128).max;

/// @dev The maximum value a uint40 number can have.
uint40 constant MAX_UINT40 = type(uint40).max;

/// @dev The unit number, which the decimal precision of the fixed-point types.
uint256 constant UNIT = 1e18;

/// @dev The unit number inverted mod 2^256.
uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281;

/// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant
/// bit in the binary representation of `UNIT`.
uint256 constant UNIT_LPOTD = 262144;

/*//////////////////////////////////////////////////////////////////////////
                                    FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the binary exponent of x using the binary fraction method.
/// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693.
/// @param x The exponent as an unsigned 192.64-bit fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function exp2(uint256 x) pure returns (uint256 result) {
    unchecked {
        // Start from 0.5 in the 192.64-bit fixed-point format.
        result = 0x800000000000000000000000000000000000000000000000;

        // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points:
        //
        // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65.
        // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing
        // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1,
        // we know that `x & 0xFF` is also 1.
        if (x & 0xFF00000000000000 > 0) {
            if (x & 0x8000000000000000 > 0) {
                result = (result * 0x16A09E667F3BCC909) >> 64;
            }
            if (x & 0x4000000000000000 > 0) {
                result = (result * 0x1306FE0A31B7152DF) >> 64;
            }
            if (x & 0x2000000000000000 > 0) {
                result = (result * 0x1172B83C7D517ADCE) >> 64;
            }
            if (x & 0x1000000000000000 > 0) {
                result = (result * 0x10B5586CF9890F62A) >> 64;
            }
            if (x & 0x800000000000000 > 0) {
                result = (result * 0x1059B0D31585743AE) >> 64;
            }
            if (x & 0x400000000000000 > 0) {
                result = (result * 0x102C9A3E778060EE7) >> 64;
            }
            if (x & 0x200000000000000 > 0) {
                result = (result * 0x10163DA9FB33356D8) >> 64;
            }
            if (x & 0x100000000000000 > 0) {
                result = (result * 0x100B1AFA5ABCBED61) >> 64;
            }
        }

        if (x & 0xFF000000000000 > 0) {
            if (x & 0x80000000000000 > 0) {
                result = (result * 0x10058C86DA1C09EA2) >> 64;
            }
            if (x & 0x40000000000000 > 0) {
                result = (result * 0x1002C605E2E8CEC50) >> 64;
            }
            if (x & 0x20000000000000 > 0) {
                result = (result * 0x100162F3904051FA1) >> 64;
            }
            if (x & 0x10000000000000 > 0) {
                result = (result * 0x1000B175EFFDC76BA) >> 64;
            }
            if (x & 0x8000000000000 > 0) {
                result = (result * 0x100058BA01FB9F96D) >> 64;
            }
            if (x & 0x4000000000000 > 0) {
                result = (result * 0x10002C5CC37DA9492) >> 64;
            }
            if (x & 0x2000000000000 > 0) {
                result = (result * 0x1000162E525EE0547) >> 64;
            }
            if (x & 0x1000000000000 > 0) {
                result = (result * 0x10000B17255775C04) >> 64;
            }
        }

        if (x & 0xFF0000000000 > 0) {
            if (x & 0x800000000000 > 0) {
                result = (result * 0x1000058B91B5BC9AE) >> 64;
            }
            if (x & 0x400000000000 > 0) {
                result = (result * 0x100002C5C89D5EC6D) >> 64;
            }
            if (x & 0x200000000000 > 0) {
                result = (result * 0x10000162E43F4F831) >> 64;
            }
            if (x & 0x100000000000 > 0) {
                result = (result * 0x100000B1721BCFC9A) >> 64;
            }
            if (x & 0x80000000000 > 0) {
                result = (result * 0x10000058B90CF1E6E) >> 64;
            }
            if (x & 0x40000000000 > 0) {
                result = (result * 0x1000002C5C863B73F) >> 64;
            }
            if (x & 0x20000000000 > 0) {
                result = (result * 0x100000162E430E5A2) >> 64;
            }
            if (x & 0x10000000000 > 0) {
                result = (result * 0x1000000B172183551) >> 64;
            }
        }

        if (x & 0xFF00000000 > 0) {
            if (x & 0x8000000000 > 0) {
                result = (result * 0x100000058B90C0B49) >> 64;
            }
            if (x & 0x4000000000 > 0) {
                result = (result * 0x10000002C5C8601CC) >> 64;
            }
            if (x & 0x2000000000 > 0) {
                result = (result * 0x1000000162E42FFF0) >> 64;
            }
            if (x & 0x1000000000 > 0) {
                result = (result * 0x10000000B17217FBB) >> 64;
            }
            if (x & 0x800000000 > 0) {
                result = (result * 0x1000000058B90BFCE) >> 64;
            }
            if (x & 0x400000000 > 0) {
                result = (result * 0x100000002C5C85FE3) >> 64;
            }
            if (x & 0x200000000 > 0) {
                result = (result * 0x10000000162E42FF1) >> 64;
            }
            if (x & 0x100000000 > 0) {
                result = (result * 0x100000000B17217F8) >> 64;
            }
        }

        if (x & 0xFF000000 > 0) {
            if (x & 0x80000000 > 0) {
                result = (result * 0x10000000058B90BFC) >> 64;
            }
            if (x & 0x40000000 > 0) {
                result = (result * 0x1000000002C5C85FE) >> 64;
            }
            if (x & 0x20000000 > 0) {
                result = (result * 0x100000000162E42FF) >> 64;
            }
            if (x & 0x10000000 > 0) {
                result = (result * 0x1000000000B17217F) >> 64;
            }
            if (x & 0x8000000 > 0) {
                result = (result * 0x100000000058B90C0) >> 64;
            }
            if (x & 0x4000000 > 0) {
                result = (result * 0x10000000002C5C860) >> 64;
            }
            if (x & 0x2000000 > 0) {
                result = (result * 0x1000000000162E430) >> 64;
            }
            if (x & 0x1000000 > 0) {
                result = (result * 0x10000000000B17218) >> 64;
            }
        }

        if (x & 0xFF0000 > 0) {
            if (x & 0x800000 > 0) {
                result = (result * 0x1000000000058B90C) >> 64;
            }
            if (x & 0x400000 > 0) {
                result = (result * 0x100000000002C5C86) >> 64;
            }
            if (x & 0x200000 > 0) {
                result = (result * 0x10000000000162E43) >> 64;
            }
            if (x & 0x100000 > 0) {
                result = (result * 0x100000000000B1721) >> 64;
            }
            if (x & 0x80000 > 0) {
                result = (result * 0x10000000000058B91) >> 64;
            }
            if (x & 0x40000 > 0) {
                result = (result * 0x1000000000002C5C8) >> 64;
            }
            if (x & 0x20000 > 0) {
                result = (result * 0x100000000000162E4) >> 64;
            }
            if (x & 0x10000 > 0) {
                result = (result * 0x1000000000000B172) >> 64;
            }
        }

        if (x & 0xFF00 > 0) {
            if (x & 0x8000 > 0) {
                result = (result * 0x100000000000058B9) >> 64;
            }
            if (x & 0x4000 > 0) {
                result = (result * 0x10000000000002C5D) >> 64;
            }
            if (x & 0x2000 > 0) {
                result = (result * 0x1000000000000162E) >> 64;
            }
            if (x & 0x1000 > 0) {
                result = (result * 0x10000000000000B17) >> 64;
            }
            if (x & 0x800 > 0) {
                result = (result * 0x1000000000000058C) >> 64;
            }
            if (x & 0x400 > 0) {
                result = (result * 0x100000000000002C6) >> 64;
            }
            if (x & 0x200 > 0) {
                result = (result * 0x10000000000000163) >> 64;
            }
            if (x & 0x100 > 0) {
                result = (result * 0x100000000000000B1) >> 64;
            }
        }

        if (x & 0xFF > 0) {
            if (x & 0x80 > 0) {
                result = (result * 0x10000000000000059) >> 64;
            }
            if (x & 0x40 > 0) {
                result = (result * 0x1000000000000002C) >> 64;
            }
            if (x & 0x20 > 0) {
                result = (result * 0x10000000000000016) >> 64;
            }
            if (x & 0x10 > 0) {
                result = (result * 0x1000000000000000B) >> 64;
            }
            if (x & 0x8 > 0) {
                result = (result * 0x10000000000000006) >> 64;
            }
            if (x & 0x4 > 0) {
                result = (result * 0x10000000000000003) >> 64;
            }
            if (x & 0x2 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
            if (x & 0x1 > 0) {
                result = (result * 0x10000000000000001) >> 64;
            }
        }

        // In the code snippet below, two operations are executed simultaneously:
        //
        // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1
        // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192.
        // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format.
        //
        // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the,
        // integer part, $2^n$.
        result *= UNIT;
        result >>= (191 - (x >> 64));
    }
}

/// @notice Finds the zero-based index of the first 1 in the binary representation of x.
///
/// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set
///
/// Each step in this implementation is equivalent to this high-level code:
///
/// ```solidity
/// if (x >= 2 ** 128) {
///     x >>= 128;
///     result += 128;
/// }
/// ```
///
/// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here:
/// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948
///
/// The Yul instructions used below are:
///
/// - "gt" is "greater than"
/// - "or" is the OR bitwise operator
/// - "shl" is "shift left"
/// - "shr" is "shift right"
///
/// @param x The uint256 number for which to find the index of the most significant bit.
/// @return result The index of the most significant bit as a uint256.
/// @custom:smtchecker abstract-function-nondet
function msb(uint256 x) pure returns (uint256 result) {
    // 2^128
    assembly ("memory-safe") {
        let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^64
    assembly ("memory-safe") {
        let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^32
    assembly ("memory-safe") {
        let factor := shl(5, gt(x, 0xFFFFFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^16
    assembly ("memory-safe") {
        let factor := shl(4, gt(x, 0xFFFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^8
    assembly ("memory-safe") {
        let factor := shl(3, gt(x, 0xFF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^4
    assembly ("memory-safe") {
        let factor := shl(2, gt(x, 0xF))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^2
    assembly ("memory-safe") {
        let factor := shl(1, gt(x, 0x3))
        x := shr(factor, x)
        result := or(result, factor)
    }
    // 2^1
    // No need to shift x any more.
    assembly ("memory-safe") {
        let factor := gt(x, 0x1)
        result := or(result, factor)
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - The denominator must not be zero.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as a uint256.
/// @param y The multiplier as a uint256.
/// @param denominator The divisor as a uint256.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) {
    // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
    // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256
    // variables such that product = prod1 * 2^256 + prod0.
    uint256 prod0; // Least significant 256 bits of the product
    uint256 prod1; // Most significant 256 bits of the product
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    // Handle non-overflow cases, 256 by 256 division.
    if (prod1 == 0) {
        unchecked {
            return prod0 / denominator;
        }
    }

    // Make sure the result is less than 2^256. Also prevents denominator == 0.
    if (prod1 >= denominator) {
        revert PRBMath_MulDiv_Overflow(x, y, denominator);
    }

    ////////////////////////////////////////////////////////////////////////////
    // 512 by 256 division
    ////////////////////////////////////////////////////////////////////////////

    // Make division exact by subtracting the remainder from [prod1 prod0].
    uint256 remainder;
    assembly ("memory-safe") {
        // Compute remainder using the mulmod Yul instruction.
        remainder := mulmod(x, y, denominator)

        // Subtract 256 bit number from 512-bit number.
        prod1 := sub(prod1, gt(remainder, prod0))
        prod0 := sub(prod0, remainder)
    }

    unchecked {
        // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow
        // because the denominator cannot be zero at this point in the function execution. The result is always >= 1.
        // For more detail, see https://cs.stackexchange.com/q/138556/92363.
        uint256 lpotdod = denominator & (~denominator + 1);
        uint256 flippedLpotdod;

        assembly ("memory-safe") {
            // Factor powers of two out of denominator.
            denominator := div(denominator, lpotdod)

            // Divide [prod1 prod0] by lpotdod.
            prod0 := div(prod0, lpotdod)

            // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one.
            // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits.
            // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693
            flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1)
        }

        // Shift in bits from prod1 into prod0.
        prod0 |= prod1 * flippedLpotdod;

        // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
        // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
        // four bits. That is, denominator * inv = 1 mod 2^4.
        uint256 inverse = (3 * denominator) ^ 2;

        // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
        // in modular arithmetic, doubling the correct bits in each step.
        inverse *= 2 - denominator * inverse; // inverse mod 2^8
        inverse *= 2 - denominator * inverse; // inverse mod 2^16
        inverse *= 2 - denominator * inverse; // inverse mod 2^32
        inverse *= 2 - denominator * inverse; // inverse mod 2^64
        inverse *= 2 - denominator * inverse; // inverse mod 2^128
        inverse *= 2 - denominator * inverse; // inverse mod 2^256

        // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
        // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
        // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
        // is no longer required.
        result = prod0 * inverse;
    }
}

/// @notice Calculates x*y÷1e18 with 512-bit precision.
///
/// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18.
///
/// Notes:
/// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}.
/// - The result is rounded toward zero.
/// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations:
///
/// $$
/// \begin{cases}
///     x * y = MAX\_UINT256 * UNIT \\
///     (x * y) \% UNIT \geq \frac{UNIT}{2}
/// \end{cases}
/// $$
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - The result must fit in uint256.
///
/// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number.
/// @param y The multiplier as an unsigned 60.18-decimal fixed-point number.
/// @return result The result as an unsigned 60.18-decimal fixed-point number.
/// @custom:smtchecker abstract-function-nondet
function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) {
    uint256 prod0;
    uint256 prod1;
    assembly ("memory-safe") {
        let mm := mulmod(x, y, not(0))
        prod0 := mul(x, y)
        prod1 := sub(sub(mm, prod0), lt(mm, prod0))
    }

    if (prod1 == 0) {
        unchecked {
            return prod0 / UNIT;
        }
    }

    if (prod1 >= UNIT) {
        revert PRBMath_MulDiv18_Overflow(x, y);
    }

    uint256 remainder;
    assembly ("memory-safe") {
        remainder := mulmod(x, y, UNIT)
        result :=
            mul(
                or(
                    div(sub(prod0, remainder), UNIT_LPOTD),
                    mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1))
                ),
                UNIT_INVERSE
            )
    }
}

/// @notice Calculates x*y÷denominator with 512-bit precision.
///
/// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {mulDiv}.
/// - None of the inputs can be `type(int256).min`.
/// - The result must fit in int256.
///
/// @param x The multiplicand as an int256.
/// @param y The multiplier as an int256.
/// @param denominator The divisor as an int256.
/// @return result The result as an int256.
/// @custom:smtchecker abstract-function-nondet
function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) {
    if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) {
        revert PRBMath_MulDivSigned_InputTooSmall();
    }

    // Get hold of the absolute values of x, y and the denominator.
    uint256 xAbs;
    uint256 yAbs;
    uint256 dAbs;
    unchecked {
        xAbs = x < 0 ? uint256(-x) : uint256(x);
        yAbs = y < 0 ? uint256(-y) : uint256(y);
        dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator);
    }

    // Compute the absolute value of x*y÷denominator. The result must fit in int256.
    uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs);
    if (resultAbs > uint256(type(int256).max)) {
        revert PRBMath_MulDivSigned_Overflow(x, y);
    }

    // Get the signs of x, y and the denominator.
    uint256 sx;
    uint256 sy;
    uint256 sd;
    assembly ("memory-safe") {
        // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement.
        sx := sgt(x, sub(0, 1))
        sy := sgt(y, sub(0, 1))
        sd := sgt(denominator, sub(0, 1))
    }

    // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs.
    // If there are, the result should be negative. Otherwise, it should be positive.
    unchecked {
        result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - If x is not a perfect square, the result is rounded down.
/// - Credits to OpenZeppelin for the explanations in comments below.
///
/// @param x The uint256 number for which to calculate the square root.
/// @return result The result as a uint256.
/// @custom:smtchecker abstract-function-nondet
function sqrt(uint256 x) pure returns (uint256 result) {
    if (x == 0) {
        return 0;
    }

    // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x.
    //
    // We know that the "msb" (most significant bit) of x is a power of 2 such that we have:
    //
    // $$
    // msb(x) <= x <= 2*msb(x)$
    // $$
    //
    // We write $msb(x)$ as $2^k$, and we get:
    //
    // $$
    // k = log_2(x)
    // $$
    //
    // Thus, we can write the initial inequality as:
    //
    // $$
    // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\
    // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\
    // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1}
    // $$
    //
    // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit.
    uint256 xAux = uint256(x);
    result = 1;
    if (xAux >= 2 ** 128) {
        xAux >>= 128;
        result <<= 64;
    }
    if (xAux >= 2 ** 64) {
        xAux >>= 64;
        result <<= 32;
    }
    if (xAux >= 2 ** 32) {
        xAux >>= 32;
        result <<= 16;
    }
    if (xAux >= 2 ** 16) {
        xAux >>= 16;
        result <<= 8;
    }
    if (xAux >= 2 ** 8) {
        xAux >>= 8;
        result <<= 4;
    }
    if (xAux >= 2 ** 4) {
        xAux >>= 4;
        result <<= 2;
    }
    if (xAux >= 2 ** 2) {
        result <<= 1;
    }

    // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at
    // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision
    // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of
    // precision into the expected uint128 result.
    unchecked {
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;
        result = (result + x / result) >> 1;

        // If x is not a perfect square, round the result toward zero.
        uint256 roundedResult = x / result;
        if (result >= roundedResult) {
            result = roundedResult;
        }
    }
}

File 42 of 63 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as CastingErrors;
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD1x18 } from "./ValueType.sol";

/// @notice Casts an SD1x18 number into SD59x18.
/// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18.
function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(SD1x18.unwrap(x)));
}

/// @notice Casts an SD1x18 number into UD2x18.
/// - x must be positive.
function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x);
    }
    result = UD2x18.wrap(uint64(xInt));
}

/// @notice Casts an SD1x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD1x18 x) pure returns (uint256 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x);
    }
    result = uint256(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
function intoUint128(SD1x18 x) pure returns (uint128 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x);
    }
    result = uint128(uint64(xInt));
}

/// @notice Casts an SD1x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD1x18 x) pure returns (uint40 result) {
    int64 xInt = SD1x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x);
    }
    if (xInt > int64(uint64(Common.MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x);
    }
    result = uint40(uint64(xInt));
}

/// @notice Alias for {wrap}.
function sd1x18(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

/// @notice Unwraps an SD1x18 number into int64.
function unwrap(SD1x18 x) pure returns (int64 result) {
    result = SD1x18.unwrap(x);
}

/// @notice Wraps an int64 number into SD1x18.
function wrap(int64 x) pure returns (SD1x18 result) {
    result = SD1x18.wrap(x);
}

File 43 of 63 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @dev Euler's number as an SD1x18 number.
SD1x18 constant E = SD1x18.wrap(2_718281828459045235);

/// @dev The maximum value an SD1x18 number can have.
int64 constant uMAX_SD1x18 = 9_223372036854775807;
SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18);

/// @dev The maximum value an SD1x18 number can have.
int64 constant uMIN_SD1x18 = -9_223372036854775808;
SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18);

/// @dev PI as an SD1x18 number.
SD1x18 constant PI = SD1x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD1x18.
SD1x18 constant UNIT = SD1x18.wrap(1e18);
int256 constant uUNIT = 1e18;

File 44 of 63 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD1x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18.
error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18.
error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128.
error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256.
error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x);

/// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40.
error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);

File 45 of 63 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract
/// storage.
type SD1x18 is int64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD59x18,
    Casting.intoUD2x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for SD1x18 global;

File 46 of 63 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Casts an SD59x18 number into int256.
/// @dev This is basically a functional alias for {unwrap}.
function intoInt256(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Casts an SD59x18 number into SD1x18.
/// @dev Requirements:
/// - x must be greater than or equal to `uMIN_SD1x18`.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < uMIN_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x);
    }
    if (xInt > uMAX_SD1x18) {
        revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(xInt));
}

/// @notice Casts an SD59x18 number into UD2x18.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x);
    }
    if (xInt > int256(uint256(uMAX_UD2x18))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(uint256(xInt)));
}

/// @notice Casts an SD59x18 number into UD60x18.
/// @dev Requirements:
/// - x must be positive.
function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x);
    }
    result = UD60x18.wrap(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint256.
/// @dev Requirements:
/// - x must be positive.
function intoUint256(SD59x18 x) pure returns (uint256 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x);
    }
    result = uint256(xInt);
}

/// @notice Casts an SD59x18 number into uint128.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `uMAX_UINT128`.
function intoUint128(SD59x18 x) pure returns (uint128 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT128))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x);
    }
    result = uint128(uint256(xInt));
}

/// @notice Casts an SD59x18 number into uint40.
/// @dev Requirements:
/// - x must be positive.
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(SD59x18 x) pure returns (uint40 result) {
    int256 xInt = SD59x18.unwrap(x);
    if (xInt < 0) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x);
    }
    if (xInt > int256(uint256(MAX_UINT40))) {
        revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x);
    }
    result = uint40(uint256(xInt));
}

/// @notice Alias for {wrap}.
function sd(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Alias for {wrap}.
function sd59x18(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

/// @notice Unwraps an SD59x18 number into int256.
function unwrap(SD59x18 x) pure returns (int256 result) {
    result = SD59x18.unwrap(x);
}

/// @notice Wraps an int256 number into SD59x18.
function wrap(int256 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(x);
}

File 47 of 63 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as an SD59x18 number.
SD59x18 constant E = SD59x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
int256 constant uEXP_MAX_INPUT = 133_084258667509499440;
SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT);

/// @dev The maximum input permitted in {exp2}.
int256 constant uEXP2_MAX_INPUT = 192e18 - 1;
SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT);

/// @dev Half the UNIT number.
int256 constant uHALF_UNIT = 0.5e18;
SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as an SD59x18 number.
int256 constant uLOG2_10 = 3_321928094887362347;
SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as an SD59x18 number.
int256 constant uLOG2_E = 1_442695040888963407;
SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E);

/// @dev The maximum value an SD59x18 number can have.
int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967;
SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18);

/// @dev The maximum whole value an SD59x18 number can have.
int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18);

/// @dev The minimum value an SD59x18 number can have.
int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968;
SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18);

/// @dev The minimum whole value an SD59x18 number can have.
int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000;
SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18);

/// @dev PI as an SD59x18 number.
SD59x18 constant PI = SD59x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of SD59x18.
int256 constant uUNIT = 1e18;
SD59x18 constant UNIT = SD59x18.wrap(1e18);

/// @dev The unit number squared.
int256 constant uUNIT_SQUARED = 1e36;
SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED);

/// @dev Zero as an SD59x18 number.
SD59x18 constant ZERO = SD59x18.wrap(0);

File 48 of 63 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { SD59x18 } from "./ValueType.sol";

/// @notice Thrown when taking the absolute value of `MIN_SD59x18`.
error PRBMath_SD59x18_Abs_MinSD59x18();

/// @notice Thrown when ceiling a number overflows SD59x18.
error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18.
error PRBMath_SD59x18_Convert_Overflow(int256 x);

/// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18.
error PRBMath_SD59x18_Convert_Underflow(int256 x);

/// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`.
error PRBMath_SD59x18_Div_InputTooSmall();

/// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18.
error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x);

/// @notice Thrown when flooring a number underflows SD59x18.
error PRBMath_SD59x18_Floor_Underflow(SD59x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and their product is negative.
error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18.
error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18.
error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256.
error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x);

/// @notice Thrown when taking the logarithm of a number less than or equal to zero.
error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x);

/// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`.
error PRBMath_SD59x18_Mul_InputTooSmall();

/// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y);

/// @notice Thrown when raising a number to a power and the intermediary absolute result overflows SD59x18.
error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y);

/// @notice Thrown when taking the square root of a negative number.
error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x);

/// @notice Thrown when the calculating the square root overflows SD59x18.
error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);

File 49 of 63 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the SD59x18 type.
function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the SD59x18 type.
function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    return wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal (=) operation in the SD59x18 type.
function eq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the SD59x18 type.
function gt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type.
function gte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the SD59x18 type.
function isZero(SD59x18 x) pure returns (bool result) {
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the SD59x18 type.
function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the SD59x18 type.
function lt(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type.
function lte(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the unchecked modulo operation (%) in the SD59x18 type.
function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the SD59x18 type.
function neq(SD59x18 x, SD59x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the SD59x18 type.
function not(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the SD59x18 type.
function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the SD59x18 type.
function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the SD59x18 type.
function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the checked unary minus operation (-) in the SD59x18 type.
function unary(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(-x.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the SD59x18 type.
function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type.
function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type.
function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) {
    unchecked {
        result = wrap(-x.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the SD59x18 type.
function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 50 of 63 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_SD59x18,
    uMAX_WHOLE_SD59x18,
    uMIN_SD59x18,
    uMIN_WHOLE_SD59x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { wrap } from "./Helpers.sol";
import { SD59x18 } from "./ValueType.sol";

/// @notice Calculates the absolute value of x.
///
/// @dev Requirements:
/// - x must be greater than `MIN_SD59x18`.
///
/// @param x The SD59x18 number for which to calculate the absolute value.
/// @param result The absolute value of x as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function abs(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Abs_MinSD59x18();
    }
    result = xInt < 0 ? wrap(-xInt) : x;
}

/// @notice Calculates the arithmetic average of x and y.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The arithmetic average as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    unchecked {
        // This operation is equivalent to `x / 2 +  y / 2`, and it can never overflow.
        int256 sum = (xInt >> 1) + (yInt >> 1);

        if (sum < 0) {
            // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right
            // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`.
            assembly ("memory-safe") {
                result := add(sum, and(or(xInt, yInt), 1))
            }
        } else {
            // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting.
            result = wrap(sum + (xInt & yInt & 1));
        }
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt > uMAX_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Ceil_Overflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt > 0) {
                resultInt += uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Divides two SD59x18 numbers, returning a new SD59x18 number.
///
/// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute
/// values separately.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The denominator must not be zero.
/// - The result must fit in SD59x18.
///
/// @param x The numerator as an SD59x18 number.
/// @param y The denominator as an SD59x18 number.
/// @param result The quotient as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Div_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Div_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}.
///
/// Requirements:
/// - Refer to the requirements in {exp2}.
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xInt > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        int256 doubleUnitProduct = xInt * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method using the following formula:
///
/// $$
/// 2^{-x} = \frac{1}{2^x}
/// $$
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693.
///
/// Notes:
/// - If x is less than -59_794705707972522261, the result is zero.
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in SD59x18.
///
/// @param x The exponent as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        // The inverse of any number less than this is truncated to zero.
        if (xInt < -59_794705707972522261) {
            return ZERO;
        }

        unchecked {
            // Inline the fixed-point inversion to save gas.
            result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap());
        }
    } else {
        // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
        if (xInt > uEXP2_MAX_INPUT) {
            revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x);
        }

        unchecked {
            // Convert x to the 192.64-bit fixed-point format.
            uint256 x_192x64 = uint256((xInt << 64) / uUNIT);

            // It is safe to cast the result to int256 due to the checks above.
            result = wrap(int256(Common.exp2(x_192x64)));
        }
    }
}

/// @notice Yields the greatest whole number less than or equal to x.
///
/// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be greater than or equal to `MIN_WHOLE_SD59x18`.
///
/// @param x The SD59x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < uMIN_WHOLE_SD59x18) {
        revert Errors.PRBMath_SD59x18_Floor_Underflow(x);
    }

    int256 remainder = xInt % uUNIT;
    if (remainder == 0) {
        result = x;
    } else {
        unchecked {
            // Solidity uses C fmod style, which returns a modulus with the same sign as x.
            int256 resultInt = xInt - remainder;
            if (xInt < 0) {
                resultInt -= uUNIT;
            }
            result = wrap(resultInt);
        }
    }
}

/// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right.
/// of the radix point for negative numbers.
/// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part
/// @param x The SD59x18 number to get the fractional part of.
/// @param result The fractional part of x as an SD59x18 number.
function frac(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(x.unwrap() % uUNIT);
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x * y must fit in SD59x18.
/// - x * y must not be negative, since complex numbers are not supported.
///
/// @param x The first operand as an SD59x18 number.
/// @param y The second operand as an SD59x18 number.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == 0 || yInt == 0) {
        return ZERO;
    }

    unchecked {
        // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it.
        int256 xyInt = xInt * yInt;
        if (xyInt / xInt != yInt) {
            revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y);
        }

        // The product must not be negative, since complex numbers are not supported.
        if (xyInt < 0) {
            revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        uint256 resultUint = Common.sqrt(uint256(xyInt));
        result = wrap(int256(resultUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The SD59x18 number for which to calculate the inverse.
/// @return result The inverse as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(SD59x18 x) pure returns (SD59x18 result) {
    result = wrap(uUNIT_SQUARED / x.unwrap());
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(SD59x18 x) pure returns (SD59x18 result) {
    // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
    // {log2} can return is ~195_205294292027477728.
    result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The SD59x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        default { result := uMAX_SD59x18 }
    }

    if (result.unwrap() == uMAX_SD59x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation.
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The SD59x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt <= 0) {
        revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x);
    }

    unchecked {
        int256 sign;
        if (xInt >= uUNIT) {
            sign = 1;
        } else {
            sign = -1;
            // Inline the fixed-point inversion to save gas.
            xInt = uUNIT_SQUARED / xInt;
        }

        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(uint256(xInt / uUNIT));

        // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow
        // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1.
        int256 resultInt = int256(n) * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        int256 y = xInt >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultInt * sign);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        int256 DOUBLE_UNIT = 2e18;
        for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultInt = resultInt + delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        resultInt *= sign;
        result = wrap(resultInt);
    }
}

/// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number.
///
/// @dev Notes:
/// - Refer to the notes in {Common.mulDiv18}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv18}.
/// - None of the inputs can be `MIN_SD59x18`.
/// - The result must fit in SD59x18.
///
/// @param x The multiplicand as an SD59x18 number.
/// @param y The multiplier as an SD59x18 number.
/// @return result The product as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();
    if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) {
        revert Errors.PRBMath_SD59x18_Mul_InputTooSmall();
    }

    // Get hold of the absolute values of x and y.
    uint256 xAbs;
    uint256 yAbs;
    unchecked {
        xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt);
        yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt);
    }

    // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18.
    uint256 resultAbs = Common.mulDiv18(xAbs, yAbs);
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y);
    }

    // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for
    // negative, 0 for positive or zero).
    bool sameSign = (xInt ^ yInt) > -1;

    // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative.
    unchecked {
        result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs));
    }
}

/// @notice Raises x to the power of y using the following formula:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {exp2}, {log2}, and {mul}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as an SD59x18 number.
/// @param y Exponent to raise x to, as an SD59x18 number
/// @return result x raised to power y, as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    int256 yInt = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xInt == 0) {
        return yInt == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xInt == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yInt == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yInt == uUNIT) {
        return x;
    }

    // Calculate the result using the formula.
    result = exp2(mul(log2(x), y));
}

/// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - Refer to the requirements in {abs} and {Common.mulDiv18}.
/// - The result must fit in SD59x18.
///
/// @param x The base as an SD59x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) {
    uint256 xAbs = uint256(abs(x).unwrap());

    // Calculate the first iteration of the loop in advance.
    uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT);

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    uint256 yAux = y;
    for (yAux >>= 1; yAux > 0; yAux >>= 1) {
        xAbs = Common.mulDiv18(xAbs, xAbs);

        // Equivalent to `y % 2 == 1`.
        if (yAux & 1 > 0) {
            resultAbs = Common.mulDiv18(resultAbs, xAbs);
        }
    }

    // The result must fit in SD59x18.
    if (resultAbs > uint256(uMAX_SD59x18)) {
        revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y);
    }

    unchecked {
        // Is the base negative and the exponent odd? If yes, the result should be negative.
        int256 resultInt = int256(resultAbs);
        bool isNegative = x.unwrap() < 0 && y & 1 == 1;
        if (isNegative) {
            resultInt = -resultInt;
        }
        result = wrap(resultInt);
    }
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - Only the positive root is returned.
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x cannot be negative, since complex numbers are not supported.
/// - x must be less than `MAX_SD59x18 / UNIT`.
///
/// @param x The SD59x18 number for which to calculate the square root.
/// @return result The result as an SD59x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(SD59x18 x) pure returns (SD59x18 result) {
    int256 xInt = x.unwrap();
    if (xInt < 0) {
        revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x);
    }
    if (xInt > uMAX_SD59x18 / uUNIT) {
        revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x);
    }

    unchecked {
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers.
        // In this case, the two numbers are both the square root.
        uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT));
        result = wrap(int256(resultUint));
    }
}

File 51 of 63 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type int256.
type SD59x18 is int256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoInt256,
    Casting.intoSD1x18,
    Casting.intoUD2x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Math.abs,
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.log10,
    Math.log2,
    Math.ln,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.uncheckedUnary,
    Helpers.xor
} for SD59x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the SD59x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.or as |,
    Helpers.sub as -,
    Helpers.unary as -,
    Helpers.xor as ^
} for SD59x18 global;

File 52 of 63 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { UD60x18 } from "../ud60x18/ValueType.sol";
import { UD2x18 } from "./ValueType.sol";

/// @notice Casts a UD2x18 number into SD1x18.
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) {
    uint64 xUint = UD2x18.unwrap(x);
    if (xUint > uint64(uMAX_SD1x18)) {
        revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(xUint));
}

/// @notice Casts a UD2x18 number into SD59x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18.
function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) {
    result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x))));
}

/// @notice Casts a UD2x18 number into UD60x18.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18.
function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint128.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128.
function intoUint128(UD2x18 x) pure returns (uint128 result) {
    result = uint128(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint256.
/// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256.
function intoUint256(UD2x18 x) pure returns (uint256 result) {
    result = uint256(UD2x18.unwrap(x));
}

/// @notice Casts a UD2x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD2x18 x) pure returns (uint40 result) {
    uint64 xUint = UD2x18.unwrap(x);
    if (xUint > uint64(Common.MAX_UINT40)) {
        revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud2x18(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

/// @notice Unwrap a UD2x18 number into uint64.
function unwrap(UD2x18 x) pure returns (uint64 result) {
    result = UD2x18.unwrap(x);
}

/// @notice Wraps a uint64 number into UD2x18.
function wrap(uint64 x) pure returns (UD2x18 result) {
    result = UD2x18.wrap(x);
}

File 53 of 63 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @dev Euler's number as a UD2x18 number.
UD2x18 constant E = UD2x18.wrap(2_718281828459045235);

/// @dev The maximum value a UD2x18 number can have.
uint64 constant uMAX_UD2x18 = 18_446744073709551615;
UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18);

/// @dev PI as a UD2x18 number.
UD2x18 constant PI = UD2x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD2x18.
uint256 constant uUNIT = 1e18;
UD2x18 constant UNIT = UD2x18.wrap(1e18);

File 54 of 63 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD2x18 } from "./ValueType.sol";

/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18.
error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x);

/// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40.
error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);

File 55 of 63 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;

/// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity
/// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract
/// storage.
type UD2x18 is uint64;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD1x18,
    Casting.intoSD59x18,
    Casting.intoUD60x18,
    Casting.intoUint256,
    Casting.intoUint128,
    Casting.intoUint40,
    Casting.unwrap
} for UD2x18 global;

File 56 of 63 : UD60x18.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

/*

██████╗ ██████╗ ██████╗ ███╗   ███╗ █████╗ ████████╗██╗  ██╗
██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║  ██║
██████╔╝██████╔╝██████╔╝██╔████╔██║███████║   ██║   ███████║
██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║   ██║   ██╔══██║
██║     ██║  ██║██████╔╝██║ ╚═╝ ██║██║  ██║   ██║   ██║  ██║
╚═╝     ╚═╝  ╚═╝╚═════╝ ╚═╝     ╚═╝╚═╝  ╚═╝   ╚═╝   ╚═╝  ╚═╝

██╗   ██╗██████╗  ██████╗  ██████╗ ██╗  ██╗ ██╗ █████╗
██║   ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗
██║   ██║██║  ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝
██║   ██║██║  ██║██╔═══██╗████╔╝██║ ██╔██╗  ██║██╔══██╗
╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝
 ╚═════╝ ╚═════╝  ╚═════╝  ╚═════╝ ╚═╝  ╚═╝ ╚═╝ ╚════╝

*/

import "./ud60x18/Casting.sol";
import "./ud60x18/Constants.sol";
import "./ud60x18/Conversions.sol";
import "./ud60x18/Errors.sol";
import "./ud60x18/Helpers.sol";
import "./ud60x18/Math.sol";
import "./ud60x18/ValueType.sol";

File 57 of 63 : Casting.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Errors.sol" as CastingErrors;
import { MAX_UINT128, MAX_UINT40 } from "../Common.sol";
import { uMAX_SD1x18 } from "../sd1x18/Constants.sol";
import { SD1x18 } from "../sd1x18/ValueType.sol";
import { uMAX_SD59x18 } from "../sd59x18/Constants.sol";
import { SD59x18 } from "../sd59x18/ValueType.sol";
import { uMAX_UD2x18 } from "../ud2x18/Constants.sol";
import { UD2x18 } from "../ud2x18/ValueType.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Casts a UD60x18 number into SD1x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD1x18`.
function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(int256(uMAX_SD1x18))) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x);
    }
    result = SD1x18.wrap(int64(uint64(xUint)));
}

/// @notice Casts a UD60x18 number into UD2x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_UD2x18`.
function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uMAX_UD2x18) {
        revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x);
    }
    result = UD2x18.wrap(uint64(xUint));
}

/// @notice Casts a UD60x18 number into SD59x18.
/// @dev Requirements:
/// - x must be less than or equal to `uMAX_SD59x18`.
function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > uint256(uMAX_SD59x18)) {
        revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x);
    }
    result = SD59x18.wrap(int256(xUint));
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev This is basically an alias for {unwrap}.
function intoUint256(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Casts a UD60x18 number into uint128.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT128`.
function intoUint128(UD60x18 x) pure returns (uint128 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT128) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x);
    }
    result = uint128(xUint);
}

/// @notice Casts a UD60x18 number into uint40.
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UINT40`.
function intoUint40(UD60x18 x) pure returns (uint40 result) {
    uint256 xUint = UD60x18.unwrap(x);
    if (xUint > MAX_UINT40) {
        revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x);
    }
    result = uint40(xUint);
}

/// @notice Alias for {wrap}.
function ud(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Alias for {wrap}.
function ud60x18(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

/// @notice Unwraps a UD60x18 number into uint256.
function unwrap(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x);
}

/// @notice Wraps a uint256 number into the UD60x18 value type.
function wrap(uint256 x) pure returns (UD60x18 result) {
    result = UD60x18.wrap(x);
}

File 58 of 63 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

// NOTICE: the "u" prefix stands for "unwrapped".

/// @dev Euler's number as a UD60x18 number.
UD60x18 constant E = UD60x18.wrap(2_718281828459045235);

/// @dev The maximum input permitted in {exp}.
uint256 constant uEXP_MAX_INPUT = 133_084258667509499440;
UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT);

/// @dev The maximum input permitted in {exp2}.
uint256 constant uEXP2_MAX_INPUT = 192e18 - 1;
UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT);

/// @dev Half the UNIT number.
uint256 constant uHALF_UNIT = 0.5e18;
UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT);

/// @dev $log_2(10)$ as a UD60x18 number.
uint256 constant uLOG2_10 = 3_321928094887362347;
UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10);

/// @dev $log_2(e)$ as a UD60x18 number.
uint256 constant uLOG2_E = 1_442695040888963407;
UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E);

/// @dev The maximum value a UD60x18 number can have.
uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935;
UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18);

/// @dev The maximum whole value a UD60x18 number can have.
uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000;
UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18);

/// @dev PI as a UD60x18 number.
UD60x18 constant PI = UD60x18.wrap(3_141592653589793238);

/// @dev The unit number, which gives the decimal precision of UD60x18.
uint256 constant uUNIT = 1e18;
UD60x18 constant UNIT = UD60x18.wrap(uUNIT);

/// @dev The unit number squared.
uint256 constant uUNIT_SQUARED = 1e36;
UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED);

/// @dev Zero as a UD60x18 number.
UD60x18 constant ZERO = UD60x18.wrap(0);

File 59 of 63 : Conversions.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { uMAX_UD60x18, uUNIT } from "./Constants.sol";
import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`.
/// @dev The result is rounded toward zero.
/// @param x The UD60x18 number to convert.
/// @return result The same number in basic integer form.
function convert(UD60x18 x) pure returns (uint256 result) {
    result = UD60x18.unwrap(x) / uUNIT;
}

/// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`.
///
/// @dev Requirements:
/// - x must be less than or equal to `MAX_UD60x18 / UNIT`.
///
/// @param x The basic integer to convert.
/// @param result The same number converted to UD60x18.
function convert(uint256 x) pure returns (UD60x18 result) {
    if (x > uMAX_UD60x18 / uUNIT) {
        revert PRBMath_UD60x18_Convert_Overflow(x);
    }
    unchecked {
        result = UD60x18.wrap(x * uUNIT);
    }
}

File 60 of 63 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { UD60x18 } from "./ValueType.sol";

/// @notice Thrown when ceiling a number overflows UD60x18.
error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x);

/// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18.
error PRBMath_UD60x18_Convert_Overflow(uint256 x);

/// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441.
error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the binary exponent of a base greater than 192e18.
error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x);

/// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18.
error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18.
error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18.
error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18.
error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128.
error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x);

/// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40.
error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x);

/// @notice Thrown when taking the logarithm of a number less than 1.
error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x);

/// @notice Thrown when calculating the square root overflows UD60x18.
error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);

File 61 of 63 : Helpers.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import { wrap } from "./Casting.sol";
import { UD60x18 } from "./ValueType.sol";

/// @notice Implements the checked addition operation (+) in the UD60x18 type.
function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() + y.unwrap());
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & bits);
}

/// @notice Implements the AND (&) bitwise operation in the UD60x18 type.
function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() & y.unwrap());
}

/// @notice Implements the equal operation (==) in the UD60x18 type.
function eq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() == y.unwrap();
}

/// @notice Implements the greater than operation (>) in the UD60x18 type.
function gt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() > y.unwrap();
}

/// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type.
function gte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() >= y.unwrap();
}

/// @notice Implements a zero comparison check function in the UD60x18 type.
function isZero(UD60x18 x) pure returns (bool result) {
    // This wouldn't work if x could be negative.
    result = x.unwrap() == 0;
}

/// @notice Implements the left shift operation (<<) in the UD60x18 type.
function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() << bits);
}

/// @notice Implements the lower than operation (<) in the UD60x18 type.
function lt(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() < y.unwrap();
}

/// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type.
function lte(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() <= y.unwrap();
}

/// @notice Implements the checked modulo operation (%) in the UD60x18 type.
function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() % y.unwrap());
}

/// @notice Implements the not equal operation (!=) in the UD60x18 type.
function neq(UD60x18 x, UD60x18 y) pure returns (bool result) {
    result = x.unwrap() != y.unwrap();
}

/// @notice Implements the NOT (~) bitwise operation in the UD60x18 type.
function not(UD60x18 x) pure returns (UD60x18 result) {
    result = wrap(~x.unwrap());
}

/// @notice Implements the OR (|) bitwise operation in the UD60x18 type.
function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() | y.unwrap());
}

/// @notice Implements the right shift operation (>>) in the UD60x18 type.
function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() >> bits);
}

/// @notice Implements the checked subtraction operation (-) in the UD60x18 type.
function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() - y.unwrap());
}

/// @notice Implements the unchecked addition operation (+) in the UD60x18 type.
function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() + y.unwrap());
    }
}

/// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type.
function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(x.unwrap() - y.unwrap());
    }
}

/// @notice Implements the XOR (^) bitwise operation in the UD60x18 type.
function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(x.unwrap() ^ y.unwrap());
}

File 62 of 63 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "../Common.sol" as Common;
import "./Errors.sol" as Errors;
import { wrap } from "./Casting.sol";
import {
    uEXP_MAX_INPUT,
    uEXP2_MAX_INPUT,
    uHALF_UNIT,
    uLOG2_10,
    uLOG2_E,
    uMAX_UD60x18,
    uMAX_WHOLE_UD60x18,
    UNIT,
    uUNIT,
    uUNIT_SQUARED,
    ZERO
} from "./Constants.sol";
import { UD60x18 } from "./ValueType.sol";

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

/// @notice Calculates the arithmetic average of x and y using the following formula:
///
/// $$
/// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2)
/// $$
///
/// In English, this is what this formula does:
///
/// 1. AND x and y.
/// 2. Calculate half of XOR x and y.
/// 3. Add the two results together.
///
/// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here:
/// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The arithmetic average as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    unchecked {
        result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1));
    }
}

/// @notice Yields the smallest whole number greater than or equal to x.
///
/// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional
/// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
///
/// Requirements:
/// - x must be less than or equal to `MAX_WHOLE_UD60x18`.
///
/// @param x The UD60x18 number to ceil.
/// @param result The smallest whole number greater than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ceil(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint > uMAX_WHOLE_UD60x18) {
        revert Errors.PRBMath_UD60x18_Ceil_Overflow(x);
    }

    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `UNIT - remainder`.
        let delta := sub(uUNIT, remainder)

        // Equivalent to `x + remainder > 0 ? delta : 0`.
        result := add(x, mul(delta, gt(remainder, 0)))
    }
}

/// @notice Divides two UD60x18 numbers, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @param x The numerator as a UD60x18 number.
/// @param y The denominator as a UD60x18 number.
/// @param result The quotient as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap()));
}

/// @notice Calculates the natural exponent of x using the following formula:
///
/// $$
/// e^x = 2^{x * log_2{e}}
/// $$
///
/// @dev Requirements:
/// - x must be less than 133_084258667509499441.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // This check prevents values greater than 192e18 from being passed to {exp2}.
    if (xUint > uEXP_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x);
    }

    unchecked {
        // Inline the fixed-point multiplication to save gas.
        uint256 doubleUnitProduct = xUint * uLOG2_E;
        result = exp2(wrap(doubleUnitProduct / uUNIT));
    }
}

/// @notice Calculates the binary exponent of x using the binary fraction method.
///
/// @dev See https://ethereum.stackexchange.com/q/79903/24693
///
/// Requirements:
/// - x must be less than 192e18.
/// - The result must fit in UD60x18.
///
/// @param x The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function exp2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format.
    if (xUint > uEXP2_MAX_INPUT) {
        revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x);
    }

    // Convert x to the 192.64-bit fixed-point format.
    uint256 x_192x64 = (xUint << 64) / uUNIT;

    // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation.
    result = wrap(Common.exp2(x_192x64));
}

/// @notice Yields the greatest whole number less than or equal to x.
/// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts.
/// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions.
/// @param x The UD60x18 number to floor.
/// @param result The greatest whole number less than or equal to x, as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function floor(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        // Equivalent to `x % UNIT`.
        let remainder := mod(x, uUNIT)

        // Equivalent to `x - remainder > 0 ? remainder : 0)`.
        result := sub(x, mul(remainder, gt(remainder, 0)))
    }
}

/// @notice Yields the excess beyond the floor of x using the odd function definition.
/// @dev See https://en.wikipedia.org/wiki/Fractional_part.
/// @param x The UD60x18 number to get the fractional part of.
/// @param result The fractional part of x as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function frac(UD60x18 x) pure returns (UD60x18 result) {
    assembly ("memory-safe") {
        result := mod(x, uUNIT)
    }
}

/// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down.
///
/// @dev Requirements:
/// - x * y must fit in UD60x18.
///
/// @param x The first operand as a UD60x18 number.
/// @param y The second operand as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();
    if (xUint == 0 || yUint == 0) {
        return ZERO;
    }

    unchecked {
        // Checking for overflow this way is faster than letting Solidity do it.
        uint256 xyUint = xUint * yUint;
        if (xyUint / xUint != yUint) {
            revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y);
        }

        // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT`
        // during multiplication. See the comments in {Common.sqrt}.
        result = wrap(Common.sqrt(xyUint));
    }
}

/// @notice Calculates the inverse of x.
///
/// @dev Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must not be zero.
///
/// @param x The UD60x18 number for which to calculate the inverse.
/// @return result The inverse as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function inv(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        result = wrap(uUNIT_SQUARED / x.unwrap());
    }
}

/// @notice Calculates the natural logarithm of x using the following formula:
///
/// $$
/// ln{x} = log_2{x} / log_2{e}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
/// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the natural logarithm.
/// @return result The natural logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function ln(UD60x18 x) pure returns (UD60x18 result) {
    unchecked {
        // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that
        // {log2} can return is ~196_205294292027477728.
        result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E);
    }
}

/// @notice Calculates the common logarithm of x using the following formula:
///
/// $$
/// log_{10}{x} = log_2{x} / log_2{10}
/// $$
///
/// However, if x is an exact power of ten, a hard coded value is returned.
///
/// @dev Notes:
/// - Refer to the notes in {log2}.
///
/// Requirements:
/// - Refer to the requirements in {log2}.
///
/// @param x The UD60x18 number for which to calculate the common logarithm.
/// @return result The common logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log10(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}.
    // prettier-ignore
    assembly ("memory-safe") {
        switch x
        case 1 { result := mul(uUNIT, sub(0, 18)) }
        case 10 { result := mul(uUNIT, sub(1, 18)) }
        case 100 { result := mul(uUNIT, sub(2, 18)) }
        case 1000 { result := mul(uUNIT, sub(3, 18)) }
        case 10000 { result := mul(uUNIT, sub(4, 18)) }
        case 100000 { result := mul(uUNIT, sub(5, 18)) }
        case 1000000 { result := mul(uUNIT, sub(6, 18)) }
        case 10000000 { result := mul(uUNIT, sub(7, 18)) }
        case 100000000 { result := mul(uUNIT, sub(8, 18)) }
        case 1000000000 { result := mul(uUNIT, sub(9, 18)) }
        case 10000000000 { result := mul(uUNIT, sub(10, 18)) }
        case 100000000000 { result := mul(uUNIT, sub(11, 18)) }
        case 1000000000000 { result := mul(uUNIT, sub(12, 18)) }
        case 10000000000000 { result := mul(uUNIT, sub(13, 18)) }
        case 100000000000000 { result := mul(uUNIT, sub(14, 18)) }
        case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) }
        case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) }
        case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) }
        case 1000000000000000000 { result := 0 }
        case 10000000000000000000 { result := uUNIT }
        case 100000000000000000000 { result := mul(uUNIT, 2) }
        case 1000000000000000000000 { result := mul(uUNIT, 3) }
        case 10000000000000000000000 { result := mul(uUNIT, 4) }
        case 100000000000000000000000 { result := mul(uUNIT, 5) }
        case 1000000000000000000000000 { result := mul(uUNIT, 6) }
        case 10000000000000000000000000 { result := mul(uUNIT, 7) }
        case 100000000000000000000000000 { result := mul(uUNIT, 8) }
        case 1000000000000000000000000000 { result := mul(uUNIT, 9) }
        case 10000000000000000000000000000 { result := mul(uUNIT, 10) }
        case 100000000000000000000000000000 { result := mul(uUNIT, 11) }
        case 1000000000000000000000000000000 { result := mul(uUNIT, 12) }
        case 10000000000000000000000000000000 { result := mul(uUNIT, 13) }
        case 100000000000000000000000000000000 { result := mul(uUNIT, 14) }
        case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) }
        case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) }
        case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) }
        case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) }
        case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) }
        case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) }
        case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) }
        case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) }
        case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) }
        case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) }
        case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) }
        case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) }
        case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) }
        case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) }
        case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) }
        case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) }
        case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) }
        case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) }
        case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) }
        case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) }
        case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) }
        case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) }
        case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) }
        case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) }
        case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) }
        case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) }
        case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) }
        case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) }
        case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) }
        case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) }
        case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) }
        case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) }
        case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) }
        case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) }
        case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) }
        case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) }
        case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) }
        case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) }
        case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) }
        default { result := uMAX_UD60x18 }
    }

    if (result.unwrap() == uMAX_UD60x18) {
        unchecked {
            // Inline the fixed-point division to save gas.
            result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10);
        }
    }
}

/// @notice Calculates the binary logarithm of x using the iterative approximation algorithm:
///
/// $$
/// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2)
/// $$
///
/// For $0 \leq x \lt 1$, the input is inverted:
///
/// $$
/// log_2{x} = -log_2{\frac{1}{x}}
/// $$
///
/// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation
///
/// Notes:
/// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal.
///
/// Requirements:
/// - x must be greater than zero.
///
/// @param x The UD60x18 number for which to calculate the binary logarithm.
/// @return result The binary logarithm as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function log2(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    if (xUint < uUNIT) {
        revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x);
    }

    unchecked {
        // Calculate the integer part of the logarithm.
        uint256 n = Common.msb(xUint / uUNIT);

        // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n
        // n is at most 255 and UNIT is 1e18.
        uint256 resultUint = n * uUNIT;

        // Calculate $y = x * 2^{-n}$.
        uint256 y = xUint >> n;

        // If y is the unit number, the fractional part is zero.
        if (y == uUNIT) {
            return wrap(resultUint);
        }

        // Calculate the fractional part via the iterative approximation.
        // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient.
        uint256 DOUBLE_UNIT = 2e18;
        for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) {
            y = (y * y) / uUNIT;

            // Is y^2 >= 2e18 and so in the range [2e18, 4e18)?
            if (y >= DOUBLE_UNIT) {
                // Add the 2^{-m} factor to the logarithm.
                resultUint += delta;

                // Halve y, which corresponds to z/2 in the Wikipedia article.
                y >>= 1;
            }
        }
        result = wrap(resultUint);
    }
}

/// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number.
///
/// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv}.
///
/// Requirements:
/// - Refer to the requirements in {Common.mulDiv}.
///
/// @dev See the documentation in {Common.mulDiv18}.
/// @param x The multiplicand as a UD60x18 number.
/// @param y The multiplier as a UD60x18 number.
/// @return result The product as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap()));
}

/// @notice Raises x to the power of y.
///
/// For $1 \leq x \leq \infty$, the following standard formula is used:
///
/// $$
/// x^y = 2^{log_2{x} * y}
/// $$
///
/// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used:
///
/// $$
/// i = \frac{1}{x}
/// w = 2^{log_2{i} * y}
/// x^y = \frac{1}{w}
/// $$
///
/// @dev Notes:
/// - Refer to the notes in {log2} and {mul}.
/// - Returns `UNIT` for 0^0.
/// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative.
///
/// Requirements:
/// - Refer to the requirements in {exp2}, {log2}, and {mul}.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a UD60x18 number.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();
    uint256 yUint = y.unwrap();

    // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero.
    if (xUint == 0) {
        return yUint == 0 ? UNIT : ZERO;
    }
    // If x is `UNIT`, the result is always `UNIT`.
    else if (xUint == uUNIT) {
        return UNIT;
    }

    // If y is zero, the result is always `UNIT`.
    if (yUint == 0) {
        return UNIT;
    }
    // If y is `UNIT`, the result is always x.
    else if (yUint == uUNIT) {
        return x;
    }

    // If x is greater than `UNIT`, use the standard formula.
    if (xUint > uUNIT) {
        result = exp2(mul(log2(x), y));
    }
    // Conversely, if x is less than `UNIT`, use the equivalent formula.
    else {
        UD60x18 i = wrap(uUNIT_SQUARED / xUint);
        UD60x18 w = exp2(mul(log2(i), y));
        result = wrap(uUNIT_SQUARED / w.unwrap());
    }
}

/// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known
/// algorithm "exponentiation by squaring".
///
/// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring.
///
/// Notes:
/// - Refer to the notes in {Common.mulDiv18}.
/// - Returns `UNIT` for 0^0.
///
/// Requirements:
/// - The result must fit in UD60x18.
///
/// @param x The base as a UD60x18 number.
/// @param y The exponent as a uint256.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) {
    // Calculate the first iteration of the loop in advance.
    uint256 xUint = x.unwrap();
    uint256 resultUint = y & 1 > 0 ? xUint : uUNIT;

    // Equivalent to `for(y /= 2; y > 0; y /= 2)`.
    for (y >>= 1; y > 0; y >>= 1) {
        xUint = Common.mulDiv18(xUint, xUint);

        // Equivalent to `y % 2 == 1`.
        if (y & 1 > 0) {
            resultUint = Common.mulDiv18(resultUint, xUint);
        }
    }
    result = wrap(resultUint);
}

/// @notice Calculates the square root of x using the Babylonian method.
///
/// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method.
///
/// Notes:
/// - The result is rounded toward zero.
///
/// Requirements:
/// - x must be less than `MAX_UD60x18 / UNIT`.
///
/// @param x The UD60x18 number for which to calculate the square root.
/// @return result The result as a UD60x18 number.
/// @custom:smtchecker abstract-function-nondet
function sqrt(UD60x18 x) pure returns (UD60x18 result) {
    uint256 xUint = x.unwrap();

    unchecked {
        if (xUint > uMAX_UD60x18 / uUNIT) {
            revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x);
        }
        // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers.
        // In this case, the two numbers are both the square root.
        result = wrap(Common.sqrt(xUint * uUNIT));
    }
}

File 63 of 63 : ValueType.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.8.19;

import "./Casting.sol" as Casting;
import "./Helpers.sol" as Helpers;
import "./Math.sol" as Math;

/// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18
/// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256.
/// @dev The value type is defined here so it can be imported in all other files.
type UD60x18 is uint256;

/*//////////////////////////////////////////////////////////////////////////
                                    CASTING
//////////////////////////////////////////////////////////////////////////*/

using {
    Casting.intoSD1x18,
    Casting.intoUD2x18,
    Casting.intoSD59x18,
    Casting.intoUint128,
    Casting.intoUint256,
    Casting.intoUint40,
    Casting.unwrap
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                            MATHEMATICAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Math.avg,
    Math.ceil,
    Math.div,
    Math.exp,
    Math.exp2,
    Math.floor,
    Math.frac,
    Math.gm,
    Math.inv,
    Math.ln,
    Math.log10,
    Math.log2,
    Math.mul,
    Math.pow,
    Math.powu,
    Math.sqrt
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                HELPER FUNCTIONS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes the functions in this library callable on the UD60x18 type.
using {
    Helpers.add,
    Helpers.and,
    Helpers.eq,
    Helpers.gt,
    Helpers.gte,
    Helpers.isZero,
    Helpers.lshift,
    Helpers.lt,
    Helpers.lte,
    Helpers.mod,
    Helpers.neq,
    Helpers.not,
    Helpers.or,
    Helpers.rshift,
    Helpers.sub,
    Helpers.uncheckedAdd,
    Helpers.uncheckedSub,
    Helpers.xor
} for UD60x18 global;

/*//////////////////////////////////////////////////////////////////////////
                                    OPERATORS
//////////////////////////////////////////////////////////////////////////*/

// The global "using for" directive makes it possible to use these operators on the UD60x18 type.
using {
    Helpers.add as +,
    Helpers.and2 as &,
    Math.div as /,
    Helpers.eq as ==,
    Helpers.gt as >,
    Helpers.gte as >=,
    Helpers.lt as <,
    Helpers.lte as <=,
    Helpers.or as |,
    Helpers.mod as %,
    Math.mul as *,
    Helpers.neq as !=,
    Helpers.not as ~,
    Helpers.sub as -,
    Helpers.xor as ^
} for UD60x18 global;

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 5500
  },
  "viaIR": true,
  "evmVersion": "paris",
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "metadata": {
    "useLiteralContent": true
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"string","name":"__name","type":"string"},{"internalType":"string","name":"__symbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[],"name":"CheckpointUnorderedInsertion","type":"error"},{"inputs":[],"name":"ECDSAInvalidSignature","type":"error"},{"inputs":[{"internalType":"uint256","name":"length","type":"uint256"}],"name":"ECDSAInvalidSignatureLength","type":"error"},{"inputs":[{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"ECDSAInvalidSignatureS","type":"error"},{"inputs":[{"internalType":"uint256","name":"increasedSupply","type":"uint256"},{"internalType":"uint256","name":"cap","type":"uint256"}],"name":"ERC20ExceededSafeSupply","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"timepoint","type":"uint256"},{"internalType":"uint48","name":"clock","type":"uint48"}],"name":"ERC5805FutureLookup","type":"error"},{"inputs":[],"name":"ERC6372InconsistentClock","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"currentNonce","type":"uint256"}],"name":"InvalidAccountNonce","type":"error"},{"inputs":[],"name":"InvalidShortString","type":"error"},{"inputs":[],"name":"MathOverflowedMulDiv","type":"error"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Log_InputTooSmall","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"uint8","name":"bits","type":"uint8"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"SafeCastOverflowedUintDowncast","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[{"internalType":"string","name":"str","type":"string"}],"name":"StringTooLong","type":"error"},{"inputs":[{"internalType":"uint256","name":"expiry","type":"uint256"}],"name":"VotesExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"batchIndex","type":"uint256"}],"name":"VotingEscrowIncentiveAlreadyClaimed","type":"error"},{"inputs":[{"internalType":"uint256","name":"timestamp","type":"uint256"},{"internalType":"uint256","name":"claimTimepoint","type":"uint256"}],"name":"VotingEscrowIncentiveTimepointInFuture","type":"error"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"VotingEscrowInvalidAddress","type":"error"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"VotingEscrowInvalidAmount","type":"error"},{"inputs":[{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint256","name":"minDuration","type":"uint256"},{"internalType":"uint256","name":"maxDuration","type":"uint256"}],"name":"VotingEscrowInvalidDuration","type":"error"},{"inputs":[{"internalType":"uint256","name":"newEnd","type":"uint256"},{"internalType":"uint256","name":"oldEnd","type":"uint256"}],"name":"VotingEscrowInvalidEndTime","type":"error"},{"inputs":[{"internalType":"contract IERC20","name":"incentiveToken","type":"address"}],"name":"VotingEscrowInvalidExtendIncentiveToken","type":"error"},{"inputs":[{"internalType":"uint256","name":"legacyLockupEnd","type":"uint256"},{"internalType":"uint256","name":"minimumLockupEnd","type":"uint256"}],"name":"VotingEscrowLockupEndTooShortToSync","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"batchIndex","type":"uint256"}],"name":"VotingEscrowNoIncentivesToClaim","type":"error"},{"inputs":[],"name":"VotingEscrowNoSupplyAtTimepoint","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"extender","type":"address"},{"internalType":"uint256","name":"lockupId","type":"uint256"}],"name":"VotingEscrowNotApprovedExtender","type":"error"},{"inputs":[],"name":"VotingEscrowStakeAlreadyRedeemed","type":"error"},{"inputs":[{"internalType":"uint256","name":"currentTime","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"VotingEscrowStakeStillLocked","type":"error"},{"inputs":[],"name":"VotingEscrowTransferNotSupported","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"batchIndex","type":"uint256"},{"indexed":false,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"uint256","name":"claimAmount","type":"uint256"}],"name":"ClaimIncentiveBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"timepoint","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"stakeDuration","type":"uint256"},{"indexed":false,"internalType":"contract IERC20","name":"incentiveToken","type":"address"}],"name":"CreateNewIncentiveBatch","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"delegator","type":"address"},{"indexed":true,"internalType":"address","name":"fromDelegate","type":"address"},{"indexed":true,"internalType":"address","name":"toDelegate","type":"address"}],"name":"DelegateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"delegate","type":"address"},{"indexed":false,"internalType":"uint256","name":"previousVotes","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newVotes","type":"uint256"}],"name":"DelegateVotesChanged","type":"event"},{"anonymous":false,"inputs":[],"name":"EIP712DomainChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"address","name":"extender","type":"address"},{"indexed":false,"internalType":"uint256","name":"lockupId","type":"uint256"},{"indexed":false,"internalType":"bool","name":"newState","type":"bool"}],"name":"ExtenderApproval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"lockupId","type":"uint256"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"indexed":false,"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"","type":"tuple"}],"name":"Stake","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"staker","type":"address"},{"indexed":false,"internalType":"uint256","name":"legacyLockupIndex","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newBalance","type":"uint256"}],"name":"Sync","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"lockupId","type":"uint256"},{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"indexed":false,"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"","type":"tuple"}],"name":"Unstake","type":"event"},{"inputs":[],"name":"CLOCK_MODE","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"MAX_STAKE_DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_STAKE_DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_SYNC_DURATION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"YEAR_BASE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"extender","type":"address"},{"internalType":"uint256","name":"lockupId","type":"uint256"}],"name":"approveExtender","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseToken","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint32","name":"pos","type":"uint32"}],"name":"checkpoints","outputs":[{"components":[{"internalType":"uint48","name":"_key","type":"uint48"},{"internalType":"uint208","name":"_value","type":"uint208"}],"internalType":"struct Checkpoints.Checkpoint208","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"batchIndex","type":"uint256"}],"name":"claimAndBatchInformation","outputs":[{"components":[{"internalType":"bool","name":"timepointInPast","type":"bool"},{"internalType":"bool","name":"hasClaimed","type":"bool"},{"internalType":"uint128","name":"claimAmount","type":"uint128"}],"internalType":"struct IMaverickV2VotingEscrowBase.ClaimInformation","name":"claimInformation","type":"tuple"},{"components":[{"internalType":"uint128","name":"totalIncentives","type":"uint128"},{"internalType":"uint128","name":"stakeDuration","type":"uint128"},{"internalType":"uint48","name":"claimTimepoint","type":"uint48"},{"internalType":"contract IERC20","name":"incentiveToken","type":"address"}],"internalType":"struct IMaverickV2VotingEscrowBase.BatchInformation","name":"batchInformation","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"batchIndex","type":"uint256"}],"name":"claimFromIncentiveBatch","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"lockup","type":"tuple"},{"internalType":"uint128","name":"claimAmount","type":"uint128"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"batchIndex","type":"uint256"},{"internalType":"uint256","name":"lockupId","type":"uint256"}],"name":"claimFromIncentiveBatchAndExtend","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"lockup","type":"tuple"},{"internalType":"uint128","name":"claimAmount","type":"uint128"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"clock","outputs":[{"internalType":"uint48","name":"","type":"uint48"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint48","name":"timepoint","type":"uint48"},{"internalType":"uint128","name":"stakeDuration","type":"uint128"},{"internalType":"contract IERC20","name":"incentiveToken","type":"address"}],"name":"createIncentiveBatch","outputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"delegatee","type":"address"}],"name":"delegate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"delegatee","type":"address"},{"internalType":"uint256","name":"nonce","type":"uint256"},{"internalType":"uint256","name":"expiry","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"delegateBySig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"delegates","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"eip712Domain","outputs":[{"internalType":"bytes1","name":"fields","type":"bytes1"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"version","type":"string"},{"internalType":"uint256","name":"chainId","type":"uint256"},{"internalType":"address","name":"verifyingContract","type":"address"},{"internalType":"bytes32","name":"salt","type":"bytes32"},{"internalType":"uint256[]","name":"extensions","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"lockupId","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint128","name":"amount","type":"uint128"}],"name":"extendForAccount","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"newLockup","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"lockupId","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint128","name":"amount","type":"uint128"}],"name":"extendForSender","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"newLockup","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getLockup","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"lockup","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"timepoint","type":"uint256"}],"name":"getPastBalanceOf","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"timepoint","type":"uint256"}],"name":"getPastTotalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"timepoint","type":"uint256"}],"name":"getPastVotes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"getVotes","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"incentiveBatchCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"batchIndex","type":"uint256"}],"name":"incentiveBatchInformation","outputs":[{"components":[{"internalType":"uint128","name":"totalIncentives","type":"uint128"},{"internalType":"uint128","name":"stakeDuration","type":"uint128"},{"internalType":"uint48","name":"claimTimepoint","type":"uint48"},{"internalType":"contract IERC20","name":"incentiveToken","type":"address"}],"internalType":"struct IMaverickV2VotingEscrowBase.BatchInformation","name":"info","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"incentiveToken","type":"address"}],"name":"incentiveTotals","outputs":[{"components":[{"internalType":"uint128","name":"totalIncentives","type":"uint128"},{"internalType":"uint128","name":"claimedIncentives","type":"uint128"}],"internalType":"struct IMaverickV2VotingEscrowBase.TokenIncentiveTotals","name":"totals","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"address","name":"extender","type":"address"},{"internalType":"uint256","name":"lockupId","type":"uint256"}],"name":"isApprovedExtender","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"legacyVeMav","outputs":[{"internalType":"contract IERC20","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"}],"name":"lockupCount","outputs":[{"internalType":"uint256","name":"count","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"lockupIds","type":"uint256[]"}],"name":"merge","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"newLockup","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes[]","name":"data","type":"bytes[]"}],"name":"multicall","outputs":[{"internalType":"bytes[]","name":"results","type":"bytes[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"numCheckpoints","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"previewVotes","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"lockup","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"extender","type":"address"},{"internalType":"uint256","name":"lockupId","type":"uint256"}],"name":"revokeExtender","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"stake","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"lockup","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"stakeToSender","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"lockup","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"startTimestamp","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint256","name":"legacyLockupIndex","type":"uint256"}],"name":"sync","outputs":[{"internalType":"uint256","name":"newBalance","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"staker","type":"address"},{"internalType":"uint256","name":"legacyLockupIndex","type":"uint256"}],"name":"syncBalances","outputs":[{"internalType":"uint256","name":"balance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"},{"internalType":"uint256","name":"","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"lockupId","type":"uint256"},{"internalType":"address","name":"to","type":"address"}],"name":"unstake","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"lockup","type":"tuple"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"lockupId","type":"uint256"}],"name":"unstakeToSender","outputs":[{"components":[{"internalType":"uint128","name":"amount","type":"uint128"},{"internalType":"uint128","name":"end","type":"uint128"},{"internalType":"uint256","name":"votes","type":"uint256"}],"internalType":"struct IMaverickV2VotingEscrowBase.Lockup","name":"lockup","type":"tuple"}],"stateMutability":"nonpayable","type":"function"}]

6101c060408181523461032a5761593f803803809161001e8286610591565b84398201818382031261032a5782516001600160401b03929083811161032a578261004a9186016105d7565b936020928382015185811161032a5761006392016105d7565b91815194828601868110868211176104aa57835260019283875282870195603160f81b875282518181116104aa5760038054918783811c93168015610587575b8784101461057157601f9283811161052b575b5080878482116001146104cb576000916104c0575b5060001982841b1c191690881b1781555b8751918383116104aa5760049889548981811c911680156104a0575b8982101461048b579081838695949311610436575b50889184116001146103d0576000936103c5575b505082881b92600019911b1c19161786555b61013c8361064a565b9661012097885261014c896107db565b93610140948552858151910120988960e0525190209461010098868a524660a052835196868801917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f83528589015260608801524660808801523060a088015260a0875260c0870192878410908411176103b057828452865190206080523060c052600c5563f57f77fb60e01b8152838187816000335af19485156103a557600095610370575b505061018093845261016092428452815195630d0c657560e21b875281878281335afa96871561033657600097610341575b506101a0878152835163900cf0cf60e01b815290979091839183919082906001600160a01b03165afa91821561033657600092610303575b50508352519461501e968761092188396080518761473b015260a051876147f6015260c0518761470c015260e0518761478a015251866147b001525185610fd601525184611000015251838181611a68015261254c01525182818161082101528181610b7701528181610d0301528181610f2f0152818161112d0152818161171501528181611b3d01528181611c42015261208a0152518181816109a80152611d1d0152f35b90809250813d831161032f575b61031a8183610591565b8101031261032a5751388061025d565b600080fd5b503d610310565b83513d6000823e3d90fd5b610362919750823d8411610369575b61035a8183610591565b81019061062b565b9538610225565b503d610350565b61039592955060c09085903d871161039d575b61038d8285610591565b01019061062b565b9238806101f3565b3d9150610383565b82513d6000823e3d90fd5b604188634e487b7160e01b6000525260246000fd5b015191503880610121565b9190899450601f198416928b600052896000209360005b8b8282106104205750508511610406575b50505050811b018655610133565b01519060f884600019921b161c19169055388080806103f8565b8385015187558d989096019593840193016103e7565b90919293508a600052886000208380870160051c8201928b8810610482575b918c918897969594930160051c01915b82811061047357505061010d565b600081558796508c9101610465565b92508192610455565b60228b634e487b7160e01b6000525260246000fd5b90607f16906100f8565b634e487b7160e01b600052604160045260246000fd5b9050860151386100cb565b899250601f1982169084600052896000209160005b8b82821061051557505083116104fd575b5050811b0181556100dc565b88015160001983861b60f8161c1916905538806104f1565b838c015185558d969094019392830192016104e0565b82600052876000208480840160051c8201928a8510610568575b0160051c019089905b82811061055c5750506100b6565b6000815501899061054e565b92508192610545565b634e487b7160e01b600052602260045260246000fd5b92607f16926100a3565b601f909101601f19168101906001600160401b038211908210176104aa57604052565b60005b8381106105c75750506000910152565b81810151838201526020016105b7565b81601f8201121561032a5780516001600160401b0381116104aa576040519261060a601f8301601f191660200185610591565b8184526020828401011161032a5761062891602080850191016105b4565b90565b9081602091031261032a57516001600160a01b038116810361032a5790565b805160209190828110156106c5575090601f825111610685578082519201519080831061067657501790565b82600019910360031b1b161790565b6044906106b79260405193849263305a27a960e01b8452806004850152825192839182602487015286860191016105b4565b601f01601f19168101030190fd5b6001600160401b0381116104aa576005928354926001938481811c911680156107d1575b8382101461057157601f811161079d575b5081601f8411600114610737575092829391839260009461072c575b50501b916000199060031b1c191617905560ff90565b015192503880610716565b919083601f1981168760005284600020946000905b88838310610783575050501061076a575b505050811b01905560ff90565b015160001960f88460031b161c1916905538808061075d565b85870151885590960195948501948793509081019061074c565b8560005284601f846000209201871c820191601f8601881c015b8281106107c55750506106fa565b600081550185906107b7565b90607f16906106e9565b8051602090818110156108055750601f825111610685578082519201519080831061067657501790565b906001600160401b0382116104aa57600654926001938481811c91168015610916575b8382101461057157601f81116108df575b5081601f8411600114610877575092829391839260009461086c575b50501b916000199060031b1c19161760065560ff90565b015192503880610855565b919083601f198116600660005284600020946000905b888383106108c557505050106108ac575b505050811b0160065560ff90565b015160001960f88460031b161c1916905538808061089e565b85870151885590960195948501948793509081019061088d565b600660005284601f84600020920160051c820191601f860160051c015b82811061090a575050610839565b600081550185906108fc565b90607f169061082856fe6080604052600436101561001257600080fd5b60003560e01c806306fdde0314610352578063095ea7b3146102bc57806318160ddd1461034d5780631c177d27146103485780631ef3467b1461034357806323b872dd1461033e5780633082f0e914610339578063313ce5671461033457806331df68b51461032f578063343195d41461032a5780633668cec6146103255780633a46b1a8146103205780634695ae4b1461031b5780634bf5d7e914610316578063587cde1e146103115780635c19a95c1461030c578063664cbd101461030757806369fae797146103025780636fcfff45146102fd57806370a08231146102f85780637ecebe00146102f35780638381e182146102ee57806384b0196e146102e95780638de66772146102e45780638e539e8c146102df5780638fc56be7146102da57806390cacc55146102d557806391ddadf4146102d057806394b6b099146102cb57806395d89b41146102c65780639ab24eb0146102c1578063a9059cbb146102bc578063aa902b4d146102b7578063ac9650d8146102b2578063af9c6f8d146102ad578063b6155ac4146102a8578063b803369d146102a3578063b8d25dea1461029e578063c3cda52014610299578063c55dae6314610294578063cc596e411461028f578063ce1780b21461028a578063d7b7d40514610285578063dd62ed3e14610280578063de62d8421461027b578063e0c570ba14610276578063e6fd48bc14610271578063ea4914ef1461026c578063ebcd5e9514610267578063ef4fcafa14610262578063f0ed024f1461025d5763f1127ed81461025857600080fd5b611f39565b611ee7565b611c6c565b611bc5565b611a8b565b611a50565b611a32565b61199b565b61182b565b611800565b6117d5565b611739565b6116f5565b61160a565b6115ec565b6115ae565b61150a565b611499565b611433565b611392565b6104aa565b611344565b61129c565b611279565b61124d565b6111a5565b61116f565b611151565b6110d2565b610fbb565b610ed1565b610e93565b610e4f565b610dca565b610d6e565b610cd1565b610ca9565b610c69565b610c0b565b610b47565b610a47565b6109cc565b610988565b61093c565b610911565b6105f3565b6105dd565b61054b565b6104e9565b6104cb565b6103ab565b919082519283825260005b848110610383575050601f19601f8460006020809697860101520116010190565b602081830181015184830182015201610362565b9060206103a8928181520190610357565b90565b3461049457600080600319360112610491576040519080600354906103cf82611fce565b80855291602091600191828116908115610464575060011461040c575b610408866103fc81880382611953565b60405191829182610397565b0390f35b9350600384527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b838510610451575050505081016020016103fc82610408386103ec565b8054868601840152938201938101610434565b879650610408979450602093506103fc95925060ff1991501682840152151560051b8201019293386103ec565b80fd5b600080fd5b6001600160a01b0381160361049457565b34610494576040600319360112610494576104c6600435610499565b612008565b34610494576000600319360112610494576020600254604051908152f35b346104945760006003193601126104945760206040516301e133808152f35b6001600160801b0381160361049457565b610549909291926060810193604080916001600160801b0380825116855260208201511660208501520151910152565b565b3461049457606060031936011261049457606061058360043561056d81610508565b6044359061057a82610499565b60243590612051565b6105af6040518092604080916001600160801b0380825116855260208201511660208501520151910152565bf35b6003196060910112610494576004356105c981610499565b906024356105d681610499565b9060443590565b34610494576105eb366105b1565b505050612008565b346104945760806003193601126104945760043561061081610508565b6024359065ffffffffffff82168203610494576044359161063083610508565b6064359161063d83610499565b6001600160801b03928382169384156108d757851680610816575b50906108037f9725da1fa479215c591213e78f092ac517f492a21c413428b24ffdc2f9287ad29392610408966107bc601154976106f76106ab856001600160a01b03166000526010602052604060002090565b6106c5886106c083546001600160801b031690565b6120f5565b6001600160801b03167fffffffffffffffffffffffffffffffff00000000000000000000000000000000825416179055565b6107a18361070f8b600052600f602052604060002090565b60018101805465ffffffffffff8c1660308a901b79ffffffffffffffffffffffffffffffffffffffff000000000000167fffffffffffff00000000000000000000000000000000000000000000000000009092169190911717905560809190911b7fffffffffffffffffffffffffffffffff00000000000000000000000000000000166001600160801b038916179055565b6107b46107af601154612115565b601155565b303385612a9a565b604080513381526001600160801b03958616602082015265ffffffffffff909616908601529290921660608401526001600160a01b039091166080830152819060a0820190565b0390a16040519081529081906020820190565b6001600160a01b03807f0000000000000000000000000000000000000000000000000000000000000000169083161460001461088b577f9725da1fa479215c591213e78f092ac517f492a21c413428b24ffdc2f9287ad29392916104089661088061080393612b04565b965091929350610658565b6040517f7a1e2e830000000000000000000000000000000000000000000000000000000081526001600160801b03871660048201526000602482018190526044820152606490fd5b0390fd5b6040517fe58b425f0000000000000000000000000000000000000000000000000000000081526001600160801b0384166004820152602490fd5b3461049457600060031936011261049457602060405160128152f35b90600052602052604060002090565b34610494576040600319360112610494576001600160a01b0360043561096181610499565b16600052601260205260406000206024356000526020526020604060002054604051908152f35b346104945760006003193601126104945760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b34610494576020600319360112610494576109e5612124565b50600435600052600f6020526080610a006040600020612149565b6105af60405180926001600160a01b03606080926001600160801b03808251168652602082015116602086015265ffffffffffff6040820151166040860152015116910152565b3461049457604060031936011261049457600435610a6481610499565b602435610a7042612b68565b65ffffffffffff8116821015610ac6576104086001600160d01b03610ab5846001600160a01b0387166000526009602052610aaf604060002091612b68565b90612bb3565b604051911681529081906020820190565b6040517fecd3f81e000000000000000000000000000000000000000000000000000000008152600481019290925265ffffffffffff166024820152604490fd5b9092916001600160801b03606091610b41846080810197604080916001600160801b0380825116855260208201511660208501520151910152565b16910152565b3461049457604060031936011261049457610b60612032565b50610b6c600435612c92565b6001600160a01b03807f0000000000000000000000000000000000000000000000000000000000000000169082161480610c02575b15610bc65750610bb79060243590339084612ee4565b61040860405192839283610b06565b6040517fa1c118cc0000000000000000000000000000000000000000000000000000000081526001600160a01b03919091166004820152602490fd5b50811515610ba1565b3461049457600060031936011261049457610408604051610c2b816118a6565b600e81527f6d6f64653d74696d657374616d700000000000000000000000000000000000006020820152604051918291602083526020830190610357565b34610494576020600319360112610494576020600435610c8881610499565b6001600160a01b038091166000526008825260406000205416604051908152f35b3461049457602060031936011261049457610ccf600435610cc981610499565b33613065565b005b3461049457602060031936011261049457610cea612032565b610cf5600435612c92565b6001600160a01b03939293807f0000000000000000000000000000000000000000000000000000000000000000169082161480610d65575b15610d495750610bb79150610d40612032565b50339083612779565b610d6091506001600160801b038416903390613100565b610bb7565b50811515610d2d565b34610494576001600160a01b03610dae610d87366105b1565b9316600052600e6020526040600020906001600160a01b0316600052602052604060002090565b90600052602052602060ff604060002054166040519015158152f35b34610494576020600319360112610494576001600160a01b03600435610def81610499565b16600052600960205260406000205463ffffffff90818111610e175760209160405191168152f35b604490604051907f6dfcc650000000000000000000000000000000000000000000000000000000008252602060048301526024820152fd5b34610494576020600319360112610494576020610e8b600435610e7181610499565b6001600160a01b0316600052600060205260406000205490565b604051908152f35b34610494576020600319360112610494576001600160a01b03600435610eb881610499565b1660005260076020526020604060002054604051908152f35b3461049457604060031936011261049457602435610eee81610499565b610ef6612032565b50610eff613152565b610f0b6004353361318d565b6001600160801b0380602083015116804210610f845750606092610f5391835116907f0000000000000000000000000000000000000000000000000000000000000000613100565b6001600c556105af6040518092604080916001600160801b0380825116855260208201511660208501520151910152565b604490604051907f1bdc35520000000000000000000000000000000000000000000000000000000082524260048301526024820152fd5b34610494576000806003193601126104915761107590610ffa7f0000000000000000000000000000000000000000000000000000000000000000614495565b906110247f00000000000000000000000000000000000000000000000000000000000000006145af565b9060405191611032836118ff565b8183526110836020916040519687967f0f00000000000000000000000000000000000000000000000000000000000000885260e0602089015260e0880190610357565b908682036040880152610357565b904660608601523060808601528260a086015284820360c0860152602080855193848152019401925b8281106110bb57505050500390f35b8351855286955093810193928101926001016110ac565b34610494576020600319360112610494576110eb612032565b506110f4612032565b506110fd613152565b6111096004353361318d565b6001600160801b039081602082015116804210610f845750610f53606092825116337f0000000000000000000000000000000000000000000000000000000000000000613100565b34610494576020600319360112610494576020610e8b6004356121af565b3461049457604060031936011261049457606061058360043561119181610508565b611199612032565b50339060243590612051565b34610494576040600319360112610494576004356111c281610499565b7fe1a682fee508b99b4da912b0d402fc0f91d2f09b19fcdc5fc121750d3fb284b960806001600160a01b036024359316600093818552600e60205261121c60408620336001600160a01b0316600052602052604060002090565b81865260205260408520600160ff19825416179055604051913383526020830152604082015260016060820152a180f35b3461049457600060031936011261049457602061126942612b68565b65ffffffffffff60405191168152f35b346104945760006003193601126104945760206040516714d1120d7b1600008152f35b3461049457600080600319360112610491576040519080600454906112c082611fce565b8085529160209160019182811690811561046457506001146112ec57610408866103fc81880382611953565b9350600484527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b838510611331575050505081016020016103fc82610408386103ec565b8054868601840152938201938101611314565b34610494576020600319360112610494576001600160a01b0360043561136981610499565b16600052600960205260206001600160d01b0361138960406000206132b9565b16604051908152f35b34610494576000600319360112610494576020604051630784ce008152f35b6020808201906020835283518092526040830192602060408460051b8301019501936000915b8483106113e75750505050505090565b9091929394958480611423837fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc086600196030187528a51610357565b98019301930191949392906113d7565b346104945760206003193601126104945767ffffffffffffffff6004358181116104945736602382011215610494578060040135918211610494573660248360051b830101116104945761040891602461148d920161236b565b604051918291826113b1565b34610494576020600319360112610494576001600160a01b036004356114be81610499565b6114c6612400565b501660005260106020526040806000208151906114e2826118a6565b546001600160801b0390602082821693848152019060801c8152835192835251166020820152f35b346104945760406003193601126104945760043561152781610499565b7fe1a682fee508b99b4da912b0d402fc0f91d2f09b19fcdc5fc121750d3fb284b960806001600160a01b036024359316600093818552600e60205261158160408620336001600160a01b0316600052602052604060002090565b8186526020526040852060ff1981541690556040519133835260208301526040820152836060820152a180f35b34610494576020600319360112610494576001600160a01b036004356115d381610499565b16600052600d6020526020604060002054604051908152f35b34610494576000600319360112610494576020601154604051908152f35b346104945760c06003193601126104945760043561162781610499565b6044359060243560643560ff81168103610494578342116116c4576116b8610ccf946116bf926040519060208201927fe48329057bfd03d55e49b547132e39cffd9c1820ad7b9d4c5307691425d15adf84526001600160a01b03881660408401528660608401526080830152608082526116a08261191b565b6116b360a4359360843593519020613333565b613374565b918261338c565b613065565b602484604051907f4683af0e0000000000000000000000000000000000000000000000000000000082526004820152fd5b346104945760006003193601126104945760206040516001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000168152f35b346104945760406003193601126104945760e06105af61176760043561175e81610499565b60243590612419565b6001600160801b036040809493945194805115158652602081015115156020870152015116604084015260608301906001600160a01b03606080926001600160801b03808251168652602082015116602086015265ffffffffffff6040820151166040860152015116910152565b346104945760406003193601126104945760606105836004356117f781610508565b60243590612518565b34610494576040600319360112610494576020610e8b60043561182281610499565b60243590612588565b3461049457604060031936011261049457602061188760043561184d81610499565b6001600160a01b036024359161186283610499565b16600052600183526040600020906001600160a01b0316600052602052604060002090565b54604051908152f35b634e487b7160e01b600052604160045260246000fd5b6040810190811067ffffffffffffffff8211176118c257604052565b611890565b6060810190811067ffffffffffffffff8211176118c257604052565b6080810190811067ffffffffffffffff8211176118c257604052565b6020810190811067ffffffffffffffff8211176118c257604052565b60a0810190811067ffffffffffffffff8211176118c257604052565b60c0810190811067ffffffffffffffff8211176118c257604052565b90601f601f19910116810190811067ffffffffffffffff8211176118c257604052565b60405190610549826118a6565b67ffffffffffffffff81116118c25760051b60200190565b34610494576020806003193601126104945760043567ffffffffffffffff81116104945736602382011215610494578060040135906119d982611983565b916119e76040519384611953565b8083526024602084019160051b8301019136831161049457602401905b828210611a2357610408611a1785612626565b60405191829182610519565b81358152908401908401611a04565b346104945760006003193601126104945760206040516224ea008152f35b346104945760006003193601126104945760206040517f00000000000000000000000000000000000000000000000000000000000000008152f35b3461049457608060031936011261049457600435611aa881610499565b6024359060643590611ab982610508565b611ac1612032565b5033600052600e602052611aec816040600020906001600160a01b0316600052602052604060002090565b8360005260205260ff604060002054161580611bb2575b611b6757611b20610408936001600160801b039260443585612ee4565b911680611b35575b5060405191829182610519565b611b619030337f0000000000000000000000000000000000000000000000000000000000000000612a9a565b38611b28565b6040517ffa72b3c60000000000000000000000000000000000000000000000000000000081526001600160a01b03919091166004820152336024820152604481019290925250606490fd5b50336001600160a01b0382161415611b03565b34610494576060600319360112610494576060604435611be481610508565b611bec612032565b506001600160801b03611c056004353360243585612ee4565b911680611c3a575b506105af6040518092604080916001600160801b0380825116855260208201511660208501520151910152565b611c669030337f0000000000000000000000000000000000000000000000000000000000000000612a9a565b38611c0d565b34610494576040806003193601126104945760043590611c8b82610499565b60243590611c97613152565b611cb4836001600160a01b03166000526012602052604060002090565b91611cc9818490600052602052604060002090565b5482517fc93d0b1e0000000000000000000000000000000000000000000000000000000081526001600160a01b03861660048201526024810183905294909190606086806044810103816001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000165afa958615611ee257600096611eb1575b50602086016001600160801b03611d6c82516001600160801b031690565b168015159081611e9f575b50611e405750836104089601518095848203611da9575b878287611d9b6001600c55565b519081529081906020820190565b83611de691867ff10fc780c78f994a214c79a2ae8d8b7bfe7cc3f0f935a8f05a29525e71d7f127978511600014611e145761092d90850386613fc9565b5583516001600160a01b03919091168152602081019190915260408101849052606090a13880808481611d8e565b84818110611e2e575b505090600052602052604060002090565b611e39910386613e76565b3884611e1d565b5184906001600160801b03166108d3611e5842612701565b92519283927ff63a94ef00000000000000000000000000000000000000000000000000000000845260048401602090939291936001600160801b0360408201951681520152565b9050611eaa42612701565b1138611d77565b611ed491965060603d606011611edb575b611ecc8183611953565b8101906126b2565b9438611d4e565b503d611ec2565b6126f5565b34610494576040600319360112610494576001600160a01b03600435611f0c81610499565b611f14612032565b5016600052600d6020526060610583611f33602435604060002061272d565b50612749565b3461049457604060031936011261049457600435611f5681610499565b60243563ffffffff8116810361049457611fa5611fab916001600160a01b03604094611f80612400565b50611f89612400565b5016600052600960205283600020611f9f612400565b506149ed565b50614a05565b6001600160d01b03602083519265ffffffffffff81511684520151166020820152f35b90600182811c92168015611ffe575b6020831014611fe857565b634e487b7160e01b600052602260045260246000fd5b91607f1691611fdd565b60046040517f0890f15b000000000000000000000000000000000000000000000000000000008152fd5b6040519061203f826118c7565b60006040838281528260208201520152565b92919061205c612032565b506001600160801b0384169384156120ae5791612085916105499361207f612032565b50612779565b9230337f0000000000000000000000000000000000000000000000000000000000000000612a9a565b602485604051907fe58b425f0000000000000000000000000000000000000000000000000000000082526004820152fd5b634e487b7160e01b600052601160045260246000fd5b9190916001600160801b038080941691160191821161211057565b6120df565b60001981146121105760010190565b60405190612131826118e3565b60006060838281528260208201528260408201520152565b90604051612156816118e3565b60606001600160a01b036001839580546001600160801b038116865260801c6020860152015465ffffffffffff8116604085015260301c16910152565b67ffffffffffffffff81116118c257601f01601f191660200190565b6121b842612b68565b9065ffffffffffff91828116821015610ac657506121d590612b68565b600a5490600090826005811161223c575b506121f193506142df565b806121fc5750600090565b61220d6001600160d01b0391612617565b600a6000527fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a8015460301c1690565b90926122478261419f565b8203918211612110576121f194600a60005280837fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a8015416908516106000146122935750915b386121e6565b92915061229f90612712565b9061228d565b634e487b7160e01b600052603260045260246000fd5b919081101561231b5760051b810135907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18136030182121561049457019081359167ffffffffffffffff8311610494576020018236038113610494579190565b6122a5565b92919261232c82612193565b9161233a6040519384611953565b829481845281830111610494578281602093846000960137010152565b805182101561231b5760209160051b010190565b91909161237783611983565b6123846040519182611953565b838152601f1961239385611983565b0160005b8181106123ef575050809360005b8181106123b25750505050565b806123d36123cd6123c660019486896122bb565b3691612320565b30613315565b6123dd8286612357565b526123e88185612357565b50016123a5565b806060602080938601015201612397565b6040519061240d826118a6565b60006020838281520152565b9091612423612032565b9261242c612124565b50600052600f60205260406000209161244483612149565b9265ffffffffffff60408501511642811080875261246157505050565b61248b6001600160801b0391828751169061248561247f8288612588565b916121af565b9161352f565b8181116124e0579260026124d7936124b76124d094610549971660408b01906001600160801b03169052565b01906001600160a01b0316600052602052604060002090565b5460ff1690565b15156020850152565b604490604051907f6dfcc650000000000000000000000000000000000000000000000000000000008252608060048301526024820152fd5b61258190929192612527612032565b9361253181612b04565b6125776125726001600160801b0380934201168060208901527f0000000000000000000000000000000000000000000000000000000000000000900361341b565b6135b2565b91168085526134ba565b6040830152565b61259142612b68565b9065ffffffffffff918281168410156125d55750916125d1916001600160a01b036001600160d01b039416600052600b6020526040600020911690612bb3565b1690565b6040517fecd3f81e0000000000000000000000000000000000000000000000000000000081526004810185905265ffffffffffff919091166024820152604490fd5b90600019820191821161211057565b9061262f612032565b5060008061263b612032565b506000915b845183101561268d576001906126606126598588612357565b513361318d565b9260206126796001600160801b039283875116906120f5565b940151168181119082180218920191612640565b929392428103925082116121105782511561231b5760206103a893015191339161294b565b908160609103126104945760408051916126cb836118c7565b80516126d681610508565b835260208101516126e681610508565b60208401520151604082015290565b6040513d6000823e3d90fd5b906301e13380820180921161211057565b906001820180921161211057565b9190820180921161211057565b805482101561231b5760005260206000209060011b0190600090565b90604051612756816118c7565b60406001829480546001600160801b038116855260801c60208501520154910152565b90612782613152565b6001600160a01b03831691821561284f577f2cf2760beabc25d90a144af74e4c0c2ad37f8905e59bfd71873a652d43f24daa916127be91612518565b836127dd82956001600160a01b0316600052600d602052604060002090565b50612804826127ff836001600160a01b0316600052600d602052604060002090565b6128e7565b612835600019612827836001600160a01b0316600052600d602052604060002090565b540191604084015190613fc9565b61284460405192839283612915565b0390a2906001600c55565b602483604051907f08b838520000000000000000000000000000000000000000000000000000000082526004820152fd5b634e487b7160e01b600052600060045260246000fd5b91906128e2578051602082015160801b7fffffffffffffffffffffffffffffffff00000000000000000000000000000000166001600160801b0390911617825560019060400151910155565b612880565b90815491680100000000000000008310156118c2578261290f9160016105499501815561272d565b90612896565b916020610549929493608081019581520190604080916001600160801b0380825116855260208201511660208501520151910152565b91929092612957612032565b50612960613152565b81936001600160a01b038216938415612a69577f2cf2760beabc25d90a144af74e4c0c2ad37f8905e59bfd71873a652d43f24daa9392916129a091612518565b948580936129c1846001600160a01b0316600052600d602052604060002090565b548110612a3557506129eb91506127ff836001600160a01b0316600052600d602052604060002090565b612a19600019612827836001600160a01b0316600052600d602052604060002090565b604084015190613fc9565b612a2860405192839283612915565b0390a26103a86001600c55565b839161290f612a6492612a5f612a1996976001600160a01b0316600052600d602052604060002090565b61272d565b612a0e565b602485604051907f08b838520000000000000000000000000000000000000000000000000000000082526004820152fd5b6040517f23b872dd0000000000000000000000000000000000000000000000000000000060208201526001600160a01b039283166024820152929091166044830152606482019290925261054991612aff82608481015b03601f198101845283611953565b6140ff565b6224ea008082108015612b5b575b612b1a575050565b60649250604051917f7a1e2e8300000000000000000000000000000000000000000000000000000000835260048301526024820152630784ce006044820152fd5b50630784ce008211612b12565b65ffffffffffff90818111612b7b571690565b604490604051907f6dfcc650000000000000000000000000000000000000000000000000000000008252603060048301526024820152fd5b908154906000918060058111612c46575b50915b828110612bf657505080612bdc575050600090565b612be590612617565b906000526020600020015460301c90565b90918082169080831860011c8201809211612110578460005265ffffffffffff8083602060002001541690851610600014612c345750915b90612bc7565b929150612c4090612712565b90612c2e565b90612c508261419f565b8203918211612110578460005265ffffffffffff8083602060002001541690841610600014612c8157505b38612bc4565b9250612c8c90612712565b91612c7b565b90612c9d8233612419565b9190612cb0612cac8251151590565b1590565b612e8957604081016001600160801b039182612cd383516001600160801b031690565b1615612e515760200151612e1957612e046020612df5837f14c936be9ba822bf3fb663f4fd4e737b2d8dba39cae8807a876d23c78cc0d66a612d4099612d9c8a612d65612d596060612d2f612e129c516001600160801b031690565b93019e8f516001600160a01b031690565b6001600160a01b03166000526010602052604060002090565b916106c0835460801c90565b6001600160801b037fffffffffffffffffffffffffffffffff0000000000000000000000000000000083549260801b169116179055565b612dc6612db93360026124b785600052600f602052604060002090565b600160ff19825416179055565b8251604080519283523360208401526001600160801b0390911690820152606090a1516001600160801b031690565b9501516001600160801b031690565b94516001600160a01b031690565b9293169190565b6040517f8278318100000000000000000000000000000000000000000000000000000000815233600482015260248101869052604490fd5b6040517f7538f08100000000000000000000000000000000000000000000000000000000815233600482015260248101879052604490fd5b6108d3612e9f604085015165ffffffffffff1690565b6040517f0e076a9500000000000000000000000000000000000000000000000000000000815242600482015265ffffffffffff90911660248201529081906044820190565b90939291612ef0612032565b50612efb838261318d565b92612f116001600160801b0393848651166120f5565b91612f1a612032565b50612f23613152565b81966001600160a01b038216938415612a69577f2cf2760beabc25d90a144af74e4c0c2ad37f8905e59bfd71873a652d43f24daa939291612f6391612518565b97888093612f84846001600160a01b0316600052600d602052604060002090565b54811061303b5750612fae91506127ff836001600160a01b0316600052600d602052604060002090565b612fd1600019612827836001600160a01b0316600052600d602052604060002090565b612fe060405192839283612915565b0390a2612fed6001600c55565b602081818601511692015116808210613004575050565b60449250604051917fa7e6d08300000000000000000000000000000000000000000000000000000000835260048301526024820152fd5b839161290f612a6492612a5f612fd196976001600160a01b0316600052600d602052604060002090565b610549916130fa6001600160a01b03927fffffffffffffffffffffffff0000000000000000000000000000000000000000848216948560005260086020526040600020958654968288169788938816948591161790557f3134e8a2e6d97e929a7e54011ea5485d7d196dd5f0ba4d4ef95803e8e3fc257f600080a46001600160a01b0316600052600060205260406000205490565b9161435a565b6040517fa9059cbb0000000000000000000000000000000000000000000000000000000060208201526001600160a01b039092166024830152604482019290925261054991612aff8260648101612af1565b6002600c5414613163576002600c55565b60046040517f3ee5aeb5000000000000000000000000000000000000000000000000000000008152fd5b9190613197612032565b506001600160a01b0383169081600052600d6020526131bd611f3382604060002061272d565b936001600160801b0360208601511615613248576131f282612a5f836001600160a01b0316600052600d602052604060002090565b9290926128e25761323486926000600186827f3021f19f08b91dd44fa42bf59363bcf5805f08c2c98b1269c651d4d84b5f870498550155604084015190613e76565b61324360405192839283612915565b0390a2565b60046040517fabb19609000000000000000000000000000000000000000000000000000000008152fd5b600a54806132805750600090565b8060001981011161211057600a6000527fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a7015460301c90565b8054806132c7575050600090565b60001991818381011161211057600052602060002001015460301c90565b3d15613310573d906132f682612193565b916133046040519384611953565b82523d6000602084013e565b606090565b6000806103a893602081519101845af461332d6132e5565b9161466f565b60429061333e614702565b90604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b916103a893916133839361481c565b909291926148c0565b6001600160a01b038116600052600760205260406000208054928391600183019055036133b7575050565b6040517f752d88c00000000000000000000000000000000000000000000000000000000081526001600160a01b039190911660048201526024810191909152604490fd5b8115613405570490565b634e487b7160e01b600052601260045260246000fd5b670de0b6b3a764000080820290600019818409908280831092039180830392146134ad576301e133809082821115613483577f98f5be4dd1e14769fbd6666224dc1eb80dd2e0a3d2c8b328f57e76b7ae103957940990828211900360f91b910360071c170290565b60046040517f227bc153000000000000000000000000000000000000000000000000000000008152fd5b50506301e1338091500490565b90808202906000198184099082808310920391808303921461351e57670de0b6b3a76400009082821115613483577faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac10669940990828211900360ee1b910360121c170290565b5050670de0b6b3a764000091500490565b909182820291600019848209938380861095039480860395146135a557848311156134835782910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b5050906103a892506133fb565b806135c45750670de0b6b3a764000090565b670de0b6b3a76400008114613e69576135e4906135df614997565b614ae9565b680a688906bd8affffff8111613e3857670de0b6b3a764000080604092831b04907780000000000000000000000000000000000000000000000067ff000000000000008316613d1b575b66ff0000000000008316613c13575b65ff00000000008316613b13575b64ff000000008316613a1b575b63ff000000831661392b575b62ff00008316613843575b61ff008316613763575b60ff831661368c575b02911c60bf031c90565b60808316613751575b83831661373f575b6020831661372d575b6010831661371b575b60088316613709575b600483166136f7575b600283166136e5575b6001831615613682576801000000000000000102831c613682565b6801000000000000000102831c6136ca565b6801000000000000000302831c6136c1565b6801000000000000000602831c6136b8565b6801000000000000000b02831c6136af565b6801000000000000001602831c6136a6565b6801000000000000002c02831c61369d565b6801000000000000005902831c613695565b6180008316613831575b614000831661381f575b612000831661380d575b61100083166137fb575b61080083166137e9575b61040083166137d7575b61020083166137c5575b61010083161561367957680100000000000000b102831c613679565b6801000000000000016302831c6137a9565b680100000000000002c602831c61379f565b6801000000000000058c02831c613795565b68010000000000000b1702831c61378b565b6801000000000000162e02831c613781565b68010000000000002c5d02831c613777565b680100000000000058b902831c61376d565b628000008316613919575b624000008316613907575b6220000083166138f5575b6210000083166138e3575b6208000083166138d1575b6204000083166138bf575b6202000083166138ad575b6201000083161561366f576801000000000000b17202831c61366f565b680100000000000162e402831c613890565b6801000000000002c5c802831c613885565b68010000000000058b9102831c61387a565b680100000000000b172102831c61386f565b68010000000000162e4302831c613864565b680100000000002c5c8602831c613859565b6801000000000058b90c02831c61384e565b63800000008316613a09575b634000000083166139f7575b632000000083166139e5575b631000000083166139d3575b630800000083166139c1575b630400000083166139af575b6302000000831661399d575b63010000008316156136645768010000000000b1721802831c613664565b6801000000000162e43002831c61397f565b68010000000002c5c86002831c613973565b680100000000058b90c002831c613967565b6801000000000b17217f02831c61395b565b680100000000162e42ff02831c61394f565b6801000000002c5c85fe02831c613943565b68010000000058b90bfc02831c613937565b6480000000008316613b01575b6440000000008316613aef575b6420000000008316613add575b6410000000008316613acb575b6408000000008316613ab9575b6404000000008316613aa7575b6402000000008316613a95575b64010000000083161561365857680100000000b17217f802831c613658565b68010000000162e42ff102831c613a76565b680100000002c5c85fe302831c613a69565b6801000000058b90bfce02831c613a5c565b68010000000b17217fbb02831c613a4f565b6801000000162e42fff002831c613a42565b68010000002c5c8601cc02831c613a35565b680100000058b90c0b4902831c613a28565b658000000000008316613c01575b654000000000008316613bef575b652000000000008316613bdd575b651000000000008316613bcb575b650800000000008316613bb9575b650400000000008316613ba7575b650200000000008316613b95575b6501000000000083161561364b576801000000b17218355102831c61364b565b680100000162e430e5a202831c613b75565b6801000002c5c863b73f02831c613b67565b68010000058b90cf1e6e02831c613b59565b680100000b1721bcfc9a02831c613b4b565b68010000162e43f4f83102831c613b3d565b680100002c5c89d5ec6d02831c613b2f565b6801000058b91b5bc9ae02831c613b21565b66800000000000008316613d09575b66400000000000008316613cf7575b66200000000000008316613ce5575b66100000000000008316613cd3575b66080000000000008316613cc1575b66040000000000008316613caf575b66020000000000008316613c9d575b660100000000000083161561363d5768010000b17255775c0402831c61363d565b6801000162e525ee054702831c613c7c565b68010002c5cc37da949202831c613c6d565b680100058ba01fb9f96d02831c613c5e565b6801000b175effdc76ba02831c613c4f565b680100162f3904051fa102831c613c40565b6801002c605e2e8cec5002831c613c31565b68010058c86da1c09ea202831c613c22565b6780000000000000008316613e19575b6740000000000000008316613e07575b6720000000000000008316613df5575b6710000000000000008316613de3575b6708000000000000008316613dd1575b6704000000000000008316613dbf575b6702000000000000008316613dad575b67010000000000000083161561362e57680100b1afa5abcbed6102831c61362e565b68010163da9fb33356d802831c613d8b565b680102c9a3e778060ee702831c613d7b565b6801059b0d31585743ae02831c613d6b565b68010b5586cf9890f62a02831c613d5b565b6801172b83c7d517adce02831c613d4b565b6801306fe0a31b7152df02831c613d3b565b5077b504f333f9de648480000000000000000000000000000000613d2b565b602490604051907fb3b6ba1f0000000000000000000000000000000000000000000000000000000082526004820152fd5b506714d1120d7b16000090565b906001600160a01b0382168015613f9857613ea4836001600160a01b03166000526000602052604060002090565b54828110613f4f57908260009203613ecf856001600160a01b03166000526000602052604060002090565b55613edd8360025403600255565b6040518381527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90602090a3613f138183614b9b565b80613f1c575050565b613f45613f3f613f4b936001600160a01b0316600052600b602052604060002090565b91614a54565b90614aa0565b5050565b6040517fe450d38c0000000000000000000000000000000000000000000000000000000081526001600160a01b0385166004820152602481019190915260448101839052606490fd5b60246040517f96c6fd1e00000000000000000000000000000000000000000000000000000000815260006004820152fd5b906001600160a01b03821680156140ce57613fee613fe983600254612720565b600255565b61400b836001600160a01b03166000526000602052604060002090565b8054830190556040518281526000907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90602090a36002546001600160d01b03811161408e575061405c8183614c40565b80614065575050565b614088613f3f613f4b936001600160a01b0316600052600b602052604060002090565b90614ab4565b6040517f1cb15d2600000000000000000000000000000000000000000000000000000000815260048101919091526001600160d01b036024820152604490fd5b60246040517fec442f0500000000000000000000000000000000000000000000000000000000815260006004820152fd5b6001600160a01b03169061412a600080836020829551910182875af16141236132e5565b908461466f565b908151918215159283614173575b5050506141425750565b602490604051907f5274afe70000000000000000000000000000000000000000000000000000000082526004820152fd5b81929350906020918101031261419b5760200151908115918215036104915750388080614138565b5080fd5b80156142d9578061427261426b61426161425761424d61424361423961422f60016103a89a6000908b60801c806142cd575b508060401c806142c0575b508060201c806142b3575b508060101c806142a6575b508060081c80614299575b508060041c8061428c575b508060021c8061427f575b50821c614278575b811c1b614228818b6133fb565b0160011c90565b614228818a6133fb565b61422881896133fb565b61422881886133fb565b61422881876133fb565b61422881866133fb565b61422881856133fb565b80926133fb565b90614a29565b810161421b565b6002915091019038614213565b6004915091019038614208565b60089150910190386141fd565b60109150910190386141f2565b60209150910190386141e7565b60409150910190386141dc565b915050608090386141d1565b50600090565b905b8281106142ed57505090565b90918082169080831860011c820180921161211057600a60005265ffffffffffff80837fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a8015416908516106000146143485750915b906142e1565b92915061435490612712565b90614342565b91906001600160a01b039283821693811690848214158061448c575b614382575b5050505050565b816143ff575b505082614397575b808061437b565b7fdec2bacdd2f05b59de34da9b523dff8be42e5e38e818c82fdb0bae774387a72491614088613f3f6143dc936001600160a01b03166000526009602052604060002090565b604080516001600160d01b039384168152919092166020820152a2388080614390565b61446a6144407fdec2bacdd2f05b59de34da9b523dff8be42e5e38e818c82fdb0bae774387a724926001600160a01b03166000526009602052604060002090565b61444986614a54565b61446461445542612b68565b9161445f846132b9565b614a3b565b91614f06565b604080516001600160d01b039384168152919092166020820152a23880614388565b50831515614376565b60ff81146144eb5760ff811690601f82116144c157604051916144b7836118a6565b8252602082015290565b60046040517fb3512b0c000000000000000000000000000000000000000000000000000000008152fd5b506040516005548160006144fe83611fce565b8083529260209060019081811690811561458a5750600114614529575b50506103a892500382611953565b91509260056000527f036b6384b5eca791c62761152d0c79bb0604c104a5fb6f4eb0703f3154bb3db0936000925b82841061457257506103a8945050508101602001388061451b565b85548785018301529485019486945092810192614557565b9050602093506103a895925060ff1991501682840152151560051b820101388061451b565b60ff81146145d15760ff811690601f82116144c157604051916144b7836118a6565b506040516006548160006145e483611fce565b8083529260209060019081811690811561458a575060011461460e5750506103a892500382611953565b91509260066000527ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f936000925b82841061465757506103a8945050508101602001388061451b565b8554878501830152948501948694509281019261463c565b906146ae575080511561468457805190602001fd5b60046040517f1425ea42000000000000000000000000000000000000000000000000000000008152fd5b815115806146f9575b6146bf575090565b6024906001600160a01b03604051917f9996b315000000000000000000000000000000000000000000000000000000008352166004820152fd5b50803b156146b7565b6001600160a01b037f0000000000000000000000000000000000000000000000000000000000000000163014806147f3575b1561475d577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a081526147ed81611937565b51902090565b507f00000000000000000000000000000000000000000000000000000000000000004614614734565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841161489457926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa15611ee25780516001600160a01b0381161561488b57918190565b50809160019190565b50505060009160039190565b600411156148aa57565b634e487b7160e01b600052602160045260246000fd5b6148c9816148a0565b806148d2575050565b6148db816148a0565b6001810361490d5760046040517ff645eedf000000000000000000000000000000000000000000000000000000008152fd5b614916816148a0565b60028103614950576040517ffce698f700000000000000000000000000000000000000000000000000000000815260048101839052602490fd5b8061495c6003926148a0565b146149645750565b6040517fd78bce0c0000000000000000000000000000000000000000000000000000000081526004810191909152602490fd5b60006706f05b59d3b200006714d1120d7b160000815b6149b657505090565b80670de0b6b3a764000091020490671bc16d674ec800008210156149df575b60011c90816149ad565b809192019160011c906149d5565b805482101561231b5760005260206000200190600090565b90604051614a12816118a6565b915465ffffffffffff8116835260301c6020830152565b9080821015614a36575090565b905090565b6001600160d01b03918216908216039190821161211057565b6001600160d01b0390818111614a68571690565b604490604051907f6dfcc65000000000000000000000000000000000000000000000000000000000825260d060048301526024820152fd5b614ab09161446461445542612b68565b9091565b614ab091614464614ac442612b68565b91614ace846132b9565b9190916001600160d01b038080941691160191821161211057565b91909160001983820983820291828083109203918083039214614b8a57670de0b6b3a76400009081831015614b5057947faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac1066994950990828211900360ee1b910360121c170290565b6040517f5173648d000000000000000000000000000000000000000000000000000000008152600481019190915260248101869052604490fd5b5050670de0b6b3a764000090049150565b90610549916001600160a01b038091168015614c18575b614bd9614bbe84614a54565b614bd3614bca42612b68565b9161445f613272565b90614daf565b50506000908152600860205260408120549080527f5eff886ea0ce6ca488a3d6e336d6c0f75f46d19b42c06ce5ee98e42c96d256c7548216911661435a565b614c39614c2484614a54565b614bd3614c3042612b68565b91614ace613272565b5050614bb2565b9061054991614c51614c2483614a54565b50506001600160a01b03809116908115614ca1575b60086020527f5eff886ea0ce6ca488a3d6e336d6c0f75f46d19b42c06ce5ee98e42c96d256c75460009283526040909220548116911661435a565b614cad614bbe84614a54565b5050614c66565b600a5490680100000000000000008210156118c2576001820180600a5582101561231b576001600160d01b03602061054993600a6000527fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a80192614d3565ffffffffffff825116859065ffffffffffff1665ffffffffffff19825416179055565b0151825465ffffffffffff16911660301b65ffffffffffff1916179055565b8054680100000000000000008110156118c257614d76916001820181556149ed565b6128e2576001600160d01b03602083614d3565ffffffffffff610549965116859065ffffffffffff1665ffffffffffff19825416179055565b600a54919291908115614edc57614dfa614df5614dcb84612617565b600a6000527fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a80190565b614a05565b805165ffffffffffff8381169491168410614eb25785602093614e7695614e35614e2a865165ffffffffffff1690565b65ffffffffffff1690565b03614e7a5750614e4a614dcb614e6893612617565b9065ffffffffffff65ffffffffffff1983549260301b169116179055565b01516001600160d01b031690565b9190565b9050614ead9150614e9a614e8c611976565b65ffffffffffff9092168252565b6001600160d01b03871681850152614cb4565b614e68565b60046040517f2520601d000000000000000000000000000000000000000000000000000000008152fd5b614f009150614eec614e8c611976565b6001600160d01b0384166020820152614cb4565b60009190565b805492939291908215614fc457614f2f614df5614f2285612617565b8360005260206000200190565b90614f40825165ffffffffffff1690565b65ffffffffffff84811691168110614eb257614e76946020948892614f6e614e2a875165ffffffffffff1690565b03614f915750614e6892614f84614e4a92612617565b9060005260206000200190565b915050614ead91614fb1614fa3611976565b65ffffffffffff9093168352565b6001600160d01b03881682860152614d54565b614f009250614fd4614fa3611976565b6001600160d01b0385166020830152614d5456fea264697066735822122015d8d40deb412bfba563d8316a07e226155c5bfad872ae63b15aef4a18de980764736f6c6343000819003300000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000000576654d4156000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000576654d4156000000000000000000000000000000000000000000000000000000

Deployed Bytecode

0x6080604052600436101561001257600080fd5b60003560e01c806306fdde0314610352578063095ea7b3146102bc57806318160ddd1461034d5780631c177d27146103485780631ef3467b1461034357806323b872dd1461033e5780633082f0e914610339578063313ce5671461033457806331df68b51461032f578063343195d41461032a5780633668cec6146103255780633a46b1a8146103205780634695ae4b1461031b5780634bf5d7e914610316578063587cde1e146103115780635c19a95c1461030c578063664cbd101461030757806369fae797146103025780636fcfff45146102fd57806370a08231146102f85780637ecebe00146102f35780638381e182146102ee57806384b0196e146102e95780638de66772146102e45780638e539e8c146102df5780638fc56be7146102da57806390cacc55146102d557806391ddadf4146102d057806394b6b099146102cb57806395d89b41146102c65780639ab24eb0146102c1578063a9059cbb146102bc578063aa902b4d146102b7578063ac9650d8146102b2578063af9c6f8d146102ad578063b6155ac4146102a8578063b803369d146102a3578063b8d25dea1461029e578063c3cda52014610299578063c55dae6314610294578063cc596e411461028f578063ce1780b21461028a578063d7b7d40514610285578063dd62ed3e14610280578063de62d8421461027b578063e0c570ba14610276578063e6fd48bc14610271578063ea4914ef1461026c578063ebcd5e9514610267578063ef4fcafa14610262578063f0ed024f1461025d5763f1127ed81461025857600080fd5b611f39565b611ee7565b611c6c565b611bc5565b611a8b565b611a50565b611a32565b61199b565b61182b565b611800565b6117d5565b611739565b6116f5565b61160a565b6115ec565b6115ae565b61150a565b611499565b611433565b611392565b6104aa565b611344565b61129c565b611279565b61124d565b6111a5565b61116f565b611151565b6110d2565b610fbb565b610ed1565b610e93565b610e4f565b610dca565b610d6e565b610cd1565b610ca9565b610c69565b610c0b565b610b47565b610a47565b6109cc565b610988565b61093c565b610911565b6105f3565b6105dd565b61054b565b6104e9565b6104cb565b6103ab565b919082519283825260005b848110610383575050601f19601f8460006020809697860101520116010190565b602081830181015184830182015201610362565b9060206103a8928181520190610357565b90565b3461049457600080600319360112610491576040519080600354906103cf82611fce565b80855291602091600191828116908115610464575060011461040c575b610408866103fc81880382611953565b60405191829182610397565b0390f35b9350600384527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b838510610451575050505081016020016103fc82610408386103ec565b8054868601840152938201938101610434565b879650610408979450602093506103fc95925060ff1991501682840152151560051b8201019293386103ec565b80fd5b600080fd5b6001600160a01b0381160361049457565b34610494576040600319360112610494576104c6600435610499565b612008565b34610494576000600319360112610494576020600254604051908152f35b346104945760006003193601126104945760206040516301e133808152f35b6001600160801b0381160361049457565b610549909291926060810193604080916001600160801b0380825116855260208201511660208501520151910152565b565b3461049457606060031936011261049457606061058360043561056d81610508565b6044359061057a82610499565b60243590612051565b6105af6040518092604080916001600160801b0380825116855260208201511660208501520151910152565bf35b6003196060910112610494576004356105c981610499565b906024356105d681610499565b9060443590565b34610494576105eb366105b1565b505050612008565b346104945760806003193601126104945760043561061081610508565b6024359065ffffffffffff82168203610494576044359161063083610508565b6064359161063d83610499565b6001600160801b03928382169384156108d757851680610816575b50906108037f9725da1fa479215c591213e78f092ac517f492a21c413428b24ffdc2f9287ad29392610408966107bc601154976106f76106ab856001600160a01b03166000526010602052604060002090565b6106c5886106c083546001600160801b031690565b6120f5565b6001600160801b03167fffffffffffffffffffffffffffffffff00000000000000000000000000000000825416179055565b6107a18361070f8b600052600f602052604060002090565b60018101805465ffffffffffff8c1660308a901b79ffffffffffffffffffffffffffffffffffffffff000000000000167fffffffffffff00000000000000000000000000000000000000000000000000009092169190911717905560809190911b7fffffffffffffffffffffffffffffffff00000000000000000000000000000000166001600160801b038916179055565b6107b46107af601154612115565b601155565b303385612a9a565b604080513381526001600160801b03958616602082015265ffffffffffff909616908601529290921660608401526001600160a01b039091166080830152819060a0820190565b0390a16040519081529081906020820190565b6001600160a01b03807f0000000000000000000000007448c7456a97769f6cd04f1e83a4a23ccdc46abd169083161460001461088b577f9725da1fa479215c591213e78f092ac517f492a21c413428b24ffdc2f9287ad29392916104089661088061080393612b04565b965091929350610658565b6040517f7a1e2e830000000000000000000000000000000000000000000000000000000081526001600160801b03871660048201526000602482018190526044820152606490fd5b0390fd5b6040517fe58b425f0000000000000000000000000000000000000000000000000000000081526001600160801b0384166004820152602490fd5b3461049457600060031936011261049457602060405160128152f35b90600052602052604060002090565b34610494576040600319360112610494576001600160a01b0360043561096181610499565b16600052601260205260406000206024356000526020526020604060002054604051908152f35b346104945760006003193601126104945760206040516001600160a01b037f0000000000000000000000004949ac21d5b2a0ccd303c20425eeb29dccba66d8168152f35b34610494576020600319360112610494576109e5612124565b50600435600052600f6020526080610a006040600020612149565b6105af60405180926001600160a01b03606080926001600160801b03808251168652602082015116602086015265ffffffffffff6040820151166040860152015116910152565b3461049457604060031936011261049457600435610a6481610499565b602435610a7042612b68565b65ffffffffffff8116821015610ac6576104086001600160d01b03610ab5846001600160a01b0387166000526009602052610aaf604060002091612b68565b90612bb3565b604051911681529081906020820190565b6040517fecd3f81e000000000000000000000000000000000000000000000000000000008152600481019290925265ffffffffffff166024820152604490fd5b9092916001600160801b03606091610b41846080810197604080916001600160801b0380825116855260208201511660208501520151910152565b16910152565b3461049457604060031936011261049457610b60612032565b50610b6c600435612c92565b6001600160a01b03807f0000000000000000000000007448c7456a97769f6cd04f1e83a4a23ccdc46abd169082161480610c02575b15610bc65750610bb79060243590339084612ee4565b61040860405192839283610b06565b6040517fa1c118cc0000000000000000000000000000000000000000000000000000000081526001600160a01b03919091166004820152602490fd5b50811515610ba1565b3461049457600060031936011261049457610408604051610c2b816118a6565b600e81527f6d6f64653d74696d657374616d700000000000000000000000000000000000006020820152604051918291602083526020830190610357565b34610494576020600319360112610494576020600435610c8881610499565b6001600160a01b038091166000526008825260406000205416604051908152f35b3461049457602060031936011261049457610ccf600435610cc981610499565b33613065565b005b3461049457602060031936011261049457610cea612032565b610cf5600435612c92565b6001600160a01b03939293807f0000000000000000000000007448c7456a97769f6cd04f1e83a4a23ccdc46abd169082161480610d65575b15610d495750610bb79150610d40612032565b50339083612779565b610d6091506001600160801b038416903390613100565b610bb7565b50811515610d2d565b34610494576001600160a01b03610dae610d87366105b1565b9316600052600e6020526040600020906001600160a01b0316600052602052604060002090565b90600052602052602060ff604060002054166040519015158152f35b34610494576020600319360112610494576001600160a01b03600435610def81610499565b16600052600960205260406000205463ffffffff90818111610e175760209160405191168152f35b604490604051907f6dfcc650000000000000000000000000000000000000000000000000000000008252602060048301526024820152fd5b34610494576020600319360112610494576020610e8b600435610e7181610499565b6001600160a01b0316600052600060205260406000205490565b604051908152f35b34610494576020600319360112610494576001600160a01b03600435610eb881610499565b1660005260076020526020604060002054604051908152f35b3461049457604060031936011261049457602435610eee81610499565b610ef6612032565b50610eff613152565b610f0b6004353361318d565b6001600160801b0380602083015116804210610f845750606092610f5391835116907f0000000000000000000000007448c7456a97769f6cd04f1e83a4a23ccdc46abd613100565b6001600c556105af6040518092604080916001600160801b0380825116855260208201511660208501520151910152565b604490604051907f1bdc35520000000000000000000000000000000000000000000000000000000082524260048301526024820152fd5b34610494576000806003193601126104915761107590610ffa7f76654d4156000000000000000000000000000000000000000000000000000005614495565b906110247f31000000000000000000000000000000000000000000000000000000000000016145af565b9060405191611032836118ff565b8183526110836020916040519687967f0f00000000000000000000000000000000000000000000000000000000000000885260e0602089015260e0880190610357565b908682036040880152610357565b904660608601523060808601528260a086015284820360c0860152602080855193848152019401925b8281106110bb57505050500390f35b8351855286955093810193928101926001016110ac565b34610494576020600319360112610494576110eb612032565b506110f4612032565b506110fd613152565b6111096004353361318d565b6001600160801b039081602082015116804210610f845750610f53606092825116337f0000000000000000000000007448c7456a97769f6cd04f1e83a4a23ccdc46abd613100565b34610494576020600319360112610494576020610e8b6004356121af565b3461049457604060031936011261049457606061058360043561119181610508565b611199612032565b50339060243590612051565b34610494576040600319360112610494576004356111c281610499565b7fe1a682fee508b99b4da912b0d402fc0f91d2f09b19fcdc5fc121750d3fb284b960806001600160a01b036024359316600093818552600e60205261121c60408620336001600160a01b0316600052602052604060002090565b81865260205260408520600160ff19825416179055604051913383526020830152604082015260016060820152a180f35b3461049457600060031936011261049457602061126942612b68565b65ffffffffffff60405191168152f35b346104945760006003193601126104945760206040516714d1120d7b1600008152f35b3461049457600080600319360112610491576040519080600454906112c082611fce565b8085529160209160019182811690811561046457506001146112ec57610408866103fc81880382611953565b9350600484527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b838510611331575050505081016020016103fc82610408386103ec565b8054868601840152938201938101611314565b34610494576020600319360112610494576001600160a01b0360043561136981610499565b16600052600960205260206001600160d01b0361138960406000206132b9565b16604051908152f35b34610494576000600319360112610494576020604051630784ce008152f35b6020808201906020835283518092526040830192602060408460051b8301019501936000915b8483106113e75750505050505090565b9091929394958480611423837fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc086600196030187528a51610357565b98019301930191949392906113d7565b346104945760206003193601126104945767ffffffffffffffff6004358181116104945736602382011215610494578060040135918211610494573660248360051b830101116104945761040891602461148d920161236b565b604051918291826113b1565b34610494576020600319360112610494576001600160a01b036004356114be81610499565b6114c6612400565b501660005260106020526040806000208151906114e2826118a6565b546001600160801b0390602082821693848152019060801c8152835192835251166020820152f35b346104945760406003193601126104945760043561152781610499565b7fe1a682fee508b99b4da912b0d402fc0f91d2f09b19fcdc5fc121750d3fb284b960806001600160a01b036024359316600093818552600e60205261158160408620336001600160a01b0316600052602052604060002090565b8186526020526040852060ff1981541690556040519133835260208301526040820152836060820152a180f35b34610494576020600319360112610494576001600160a01b036004356115d381610499565b16600052600d6020526020604060002054604051908152f35b34610494576000600319360112610494576020601154604051908152f35b346104945760c06003193601126104945760043561162781610499565b6044359060243560643560ff81168103610494578342116116c4576116b8610ccf946116bf926040519060208201927fe48329057bfd03d55e49b547132e39cffd9c1820ad7b9d4c5307691425d15adf84526001600160a01b03881660408401528660608401526080830152608082526116a08261191b565b6116b360a4359360843593519020613333565b613374565b918261338c565b613065565b602484604051907f4683af0e0000000000000000000000000000000000000000000000000000000082526004820152fd5b346104945760006003193601126104945760206040516001600160a01b037f0000000000000000000000007448c7456a97769f6cd04f1e83a4a23ccdc46abd168152f35b346104945760406003193601126104945760e06105af61176760043561175e81610499565b60243590612419565b6001600160801b036040809493945194805115158652602081015115156020870152015116604084015260608301906001600160a01b03606080926001600160801b03808251168652602082015116602086015265ffffffffffff6040820151166040860152015116910152565b346104945760406003193601126104945760606105836004356117f781610508565b60243590612518565b34610494576040600319360112610494576020610e8b60043561182281610499565b60243590612588565b3461049457604060031936011261049457602061188760043561184d81610499565b6001600160a01b036024359161186283610499565b16600052600183526040600020906001600160a01b0316600052602052604060002090565b54604051908152f35b634e487b7160e01b600052604160045260246000fd5b6040810190811067ffffffffffffffff8211176118c257604052565b611890565b6060810190811067ffffffffffffffff8211176118c257604052565b6080810190811067ffffffffffffffff8211176118c257604052565b6020810190811067ffffffffffffffff8211176118c257604052565b60a0810190811067ffffffffffffffff8211176118c257604052565b60c0810190811067ffffffffffffffff8211176118c257604052565b90601f601f19910116810190811067ffffffffffffffff8211176118c257604052565b60405190610549826118a6565b67ffffffffffffffff81116118c25760051b60200190565b34610494576020806003193601126104945760043567ffffffffffffffff81116104945736602382011215610494578060040135906119d982611983565b916119e76040519384611953565b8083526024602084019160051b8301019136831161049457602401905b828210611a2357610408611a1785612626565b60405191829182610519565b81358152908401908401611a04565b346104945760006003193601126104945760206040516224ea008152f35b346104945760006003193601126104945760206040517f00000000000000000000000000000000000000000000000000000000649b37bb8152f35b3461049457608060031936011261049457600435611aa881610499565b6024359060643590611ab982610508565b611ac1612032565b5033600052600e602052611aec816040600020906001600160a01b0316600052602052604060002090565b8360005260205260ff604060002054161580611bb2575b611b6757611b20610408936001600160801b039260443585612ee4565b911680611b35575b5060405191829182610519565b611b619030337f0000000000000000000000007448c7456a97769f6cd04f1e83a4a23ccdc46abd612a9a565b38611b28565b6040517ffa72b3c60000000000000000000000000000000000000000000000000000000081526001600160a01b03919091166004820152336024820152604481019290925250606490fd5b50336001600160a01b0382161415611b03565b34610494576060600319360112610494576060604435611be481610508565b611bec612032565b506001600160801b03611c056004353360243585612ee4565b911680611c3a575b506105af6040518092604080916001600160801b0380825116855260208201511660208501520151910152565b611c669030337f0000000000000000000000007448c7456a97769f6cd04f1e83a4a23ccdc46abd612a9a565b38611c0d565b34610494576040806003193601126104945760043590611c8b82610499565b60243590611c97613152565b611cb4836001600160a01b03166000526012602052604060002090565b91611cc9818490600052602052604060002090565b5482517fc93d0b1e0000000000000000000000000000000000000000000000000000000081526001600160a01b03861660048201526024810183905294909190606086806044810103816001600160a01b037f0000000000000000000000004949ac21d5b2a0ccd303c20425eeb29dccba66d8165afa958615611ee257600096611eb1575b50602086016001600160801b03611d6c82516001600160801b031690565b168015159081611e9f575b50611e405750836104089601518095848203611da9575b878287611d9b6001600c55565b519081529081906020820190565b83611de691867ff10fc780c78f994a214c79a2ae8d8b7bfe7cc3f0f935a8f05a29525e71d7f127978511600014611e145761092d90850386613fc9565b5583516001600160a01b03919091168152602081019190915260408101849052606090a13880808481611d8e565b84818110611e2e575b505090600052602052604060002090565b611e39910386613e76565b3884611e1d565b5184906001600160801b03166108d3611e5842612701565b92519283927ff63a94ef00000000000000000000000000000000000000000000000000000000845260048401602090939291936001600160801b0360408201951681520152565b9050611eaa42612701565b1138611d77565b611ed491965060603d606011611edb575b611ecc8183611953565b8101906126b2565b9438611d4e565b503d611ec2565b6126f5565b34610494576040600319360112610494576001600160a01b03600435611f0c81610499565b611f14612032565b5016600052600d6020526060610583611f33602435604060002061272d565b50612749565b3461049457604060031936011261049457600435611f5681610499565b60243563ffffffff8116810361049457611fa5611fab916001600160a01b03604094611f80612400565b50611f89612400565b5016600052600960205283600020611f9f612400565b506149ed565b50614a05565b6001600160d01b03602083519265ffffffffffff81511684520151166020820152f35b90600182811c92168015611ffe575b6020831014611fe857565b634e487b7160e01b600052602260045260246000fd5b91607f1691611fdd565b60046040517f0890f15b000000000000000000000000000000000000000000000000000000008152fd5b6040519061203f826118c7565b60006040838281528260208201520152565b92919061205c612032565b506001600160801b0384169384156120ae5791612085916105499361207f612032565b50612779565b9230337f0000000000000000000000007448c7456a97769f6cd04f1e83a4a23ccdc46abd612a9a565b602485604051907fe58b425f0000000000000000000000000000000000000000000000000000000082526004820152fd5b634e487b7160e01b600052601160045260246000fd5b9190916001600160801b038080941691160191821161211057565b6120df565b60001981146121105760010190565b60405190612131826118e3565b60006060838281528260208201528260408201520152565b90604051612156816118e3565b60606001600160a01b036001839580546001600160801b038116865260801c6020860152015465ffffffffffff8116604085015260301c16910152565b67ffffffffffffffff81116118c257601f01601f191660200190565b6121b842612b68565b9065ffffffffffff91828116821015610ac657506121d590612b68565b600a5490600090826005811161223c575b506121f193506142df565b806121fc5750600090565b61220d6001600160d01b0391612617565b600a6000527fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a8015460301c1690565b90926122478261419f565b8203918211612110576121f194600a60005280837fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a8015416908516106000146122935750915b386121e6565b92915061229f90612712565b9061228d565b634e487b7160e01b600052603260045260246000fd5b919081101561231b5760051b810135907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18136030182121561049457019081359167ffffffffffffffff8311610494576020018236038113610494579190565b6122a5565b92919261232c82612193565b9161233a6040519384611953565b829481845281830111610494578281602093846000960137010152565b805182101561231b5760209160051b010190565b91909161237783611983565b6123846040519182611953565b838152601f1961239385611983565b0160005b8181106123ef575050809360005b8181106123b25750505050565b806123d36123cd6123c660019486896122bb565b3691612320565b30613315565b6123dd8286612357565b526123e88185612357565b50016123a5565b806060602080938601015201612397565b6040519061240d826118a6565b60006020838281520152565b9091612423612032565b9261242c612124565b50600052600f60205260406000209161244483612149565b9265ffffffffffff60408501511642811080875261246157505050565b61248b6001600160801b0391828751169061248561247f8288612588565b916121af565b9161352f565b8181116124e0579260026124d7936124b76124d094610549971660408b01906001600160801b03169052565b01906001600160a01b0316600052602052604060002090565b5460ff1690565b15156020850152565b604490604051907f6dfcc650000000000000000000000000000000000000000000000000000000008252608060048301526024820152fd5b61258190929192612527612032565b9361253181612b04565b6125776125726001600160801b0380934201168060208901527f00000000000000000000000000000000000000000000000000000000649b37bb900361341b565b6135b2565b91168085526134ba565b6040830152565b61259142612b68565b9065ffffffffffff918281168410156125d55750916125d1916001600160a01b036001600160d01b039416600052600b6020526040600020911690612bb3565b1690565b6040517fecd3f81e0000000000000000000000000000000000000000000000000000000081526004810185905265ffffffffffff919091166024820152604490fd5b90600019820191821161211057565b9061262f612032565b5060008061263b612032565b506000915b845183101561268d576001906126606126598588612357565b513361318d565b9260206126796001600160801b039283875116906120f5565b940151168181119082180218920191612640565b929392428103925082116121105782511561231b5760206103a893015191339161294b565b908160609103126104945760408051916126cb836118c7565b80516126d681610508565b835260208101516126e681610508565b60208401520151604082015290565b6040513d6000823e3d90fd5b906301e13380820180921161211057565b906001820180921161211057565b9190820180921161211057565b805482101561231b5760005260206000209060011b0190600090565b90604051612756816118c7565b60406001829480546001600160801b038116855260801c60208501520154910152565b90612782613152565b6001600160a01b03831691821561284f577f2cf2760beabc25d90a144af74e4c0c2ad37f8905e59bfd71873a652d43f24daa916127be91612518565b836127dd82956001600160a01b0316600052600d602052604060002090565b50612804826127ff836001600160a01b0316600052600d602052604060002090565b6128e7565b612835600019612827836001600160a01b0316600052600d602052604060002090565b540191604084015190613fc9565b61284460405192839283612915565b0390a2906001600c55565b602483604051907f08b838520000000000000000000000000000000000000000000000000000000082526004820152fd5b634e487b7160e01b600052600060045260246000fd5b91906128e2578051602082015160801b7fffffffffffffffffffffffffffffffff00000000000000000000000000000000166001600160801b0390911617825560019060400151910155565b612880565b90815491680100000000000000008310156118c2578261290f9160016105499501815561272d565b90612896565b916020610549929493608081019581520190604080916001600160801b0380825116855260208201511660208501520151910152565b91929092612957612032565b50612960613152565b81936001600160a01b038216938415612a69577f2cf2760beabc25d90a144af74e4c0c2ad37f8905e59bfd71873a652d43f24daa9392916129a091612518565b948580936129c1846001600160a01b0316600052600d602052604060002090565b548110612a3557506129eb91506127ff836001600160a01b0316600052600d602052604060002090565b612a19600019612827836001600160a01b0316600052600d602052604060002090565b604084015190613fc9565b612a2860405192839283612915565b0390a26103a86001600c55565b839161290f612a6492612a5f612a1996976001600160a01b0316600052600d602052604060002090565b61272d565b612a0e565b602485604051907f08b838520000000000000000000000000000000000000000000000000000000082526004820152fd5b6040517f23b872dd0000000000000000000000000000000000000000000000000000000060208201526001600160a01b039283166024820152929091166044830152606482019290925261054991612aff82608481015b03601f198101845283611953565b6140ff565b6224ea008082108015612b5b575b612b1a575050565b60649250604051917f7a1e2e8300000000000000000000000000000000000000000000000000000000835260048301526024820152630784ce006044820152fd5b50630784ce008211612b12565b65ffffffffffff90818111612b7b571690565b604490604051907f6dfcc650000000000000000000000000000000000000000000000000000000008252603060048301526024820152fd5b908154906000918060058111612c46575b50915b828110612bf657505080612bdc575050600090565b612be590612617565b906000526020600020015460301c90565b90918082169080831860011c8201809211612110578460005265ffffffffffff8083602060002001541690851610600014612c345750915b90612bc7565b929150612c4090612712565b90612c2e565b90612c508261419f565b8203918211612110578460005265ffffffffffff8083602060002001541690841610600014612c8157505b38612bc4565b9250612c8c90612712565b91612c7b565b90612c9d8233612419565b9190612cb0612cac8251151590565b1590565b612e8957604081016001600160801b039182612cd383516001600160801b031690565b1615612e515760200151612e1957612e046020612df5837f14c936be9ba822bf3fb663f4fd4e737b2d8dba39cae8807a876d23c78cc0d66a612d4099612d9c8a612d65612d596060612d2f612e129c516001600160801b031690565b93019e8f516001600160a01b031690565b6001600160a01b03166000526010602052604060002090565b916106c0835460801c90565b6001600160801b037fffffffffffffffffffffffffffffffff0000000000000000000000000000000083549260801b169116179055565b612dc6612db93360026124b785600052600f602052604060002090565b600160ff19825416179055565b8251604080519283523360208401526001600160801b0390911690820152606090a1516001600160801b031690565b9501516001600160801b031690565b94516001600160a01b031690565b9293169190565b6040517f8278318100000000000000000000000000000000000000000000000000000000815233600482015260248101869052604490fd5b6040517f7538f08100000000000000000000000000000000000000000000000000000000815233600482015260248101879052604490fd5b6108d3612e9f604085015165ffffffffffff1690565b6040517f0e076a9500000000000000000000000000000000000000000000000000000000815242600482015265ffffffffffff90911660248201529081906044820190565b90939291612ef0612032565b50612efb838261318d565b92612f116001600160801b0393848651166120f5565b91612f1a612032565b50612f23613152565b81966001600160a01b038216938415612a69577f2cf2760beabc25d90a144af74e4c0c2ad37f8905e59bfd71873a652d43f24daa939291612f6391612518565b97888093612f84846001600160a01b0316600052600d602052604060002090565b54811061303b5750612fae91506127ff836001600160a01b0316600052600d602052604060002090565b612fd1600019612827836001600160a01b0316600052600d602052604060002090565b612fe060405192839283612915565b0390a2612fed6001600c55565b602081818601511692015116808210613004575050565b60449250604051917fa7e6d08300000000000000000000000000000000000000000000000000000000835260048301526024820152fd5b839161290f612a6492612a5f612fd196976001600160a01b0316600052600d602052604060002090565b610549916130fa6001600160a01b03927fffffffffffffffffffffffff0000000000000000000000000000000000000000848216948560005260086020526040600020958654968288169788938816948591161790557f3134e8a2e6d97e929a7e54011ea5485d7d196dd5f0ba4d4ef95803e8e3fc257f600080a46001600160a01b0316600052600060205260406000205490565b9161435a565b6040517fa9059cbb0000000000000000000000000000000000000000000000000000000060208201526001600160a01b039092166024830152604482019290925261054991612aff8260648101612af1565b6002600c5414613163576002600c55565b60046040517f3ee5aeb5000000000000000000000000000000000000000000000000000000008152fd5b9190613197612032565b506001600160a01b0383169081600052600d6020526131bd611f3382604060002061272d565b936001600160801b0360208601511615613248576131f282612a5f836001600160a01b0316600052600d602052604060002090565b9290926128e25761323486926000600186827f3021f19f08b91dd44fa42bf59363bcf5805f08c2c98b1269c651d4d84b5f870498550155604084015190613e76565b61324360405192839283612915565b0390a2565b60046040517fabb19609000000000000000000000000000000000000000000000000000000008152fd5b600a54806132805750600090565b8060001981011161211057600a6000527fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a7015460301c90565b8054806132c7575050600090565b60001991818381011161211057600052602060002001015460301c90565b3d15613310573d906132f682612193565b916133046040519384611953565b82523d6000602084013e565b606090565b6000806103a893602081519101845af461332d6132e5565b9161466f565b60429061333e614702565b90604051917f19010000000000000000000000000000000000000000000000000000000000008352600283015260228201522090565b916103a893916133839361481c565b909291926148c0565b6001600160a01b038116600052600760205260406000208054928391600183019055036133b7575050565b6040517f752d88c00000000000000000000000000000000000000000000000000000000081526001600160a01b039190911660048201526024810191909152604490fd5b8115613405570490565b634e487b7160e01b600052601260045260246000fd5b670de0b6b3a764000080820290600019818409908280831092039180830392146134ad576301e133809082821115613483577f98f5be4dd1e14769fbd6666224dc1eb80dd2e0a3d2c8b328f57e76b7ae103957940990828211900360f91b910360071c170290565b60046040517f227bc153000000000000000000000000000000000000000000000000000000008152fd5b50506301e1338091500490565b90808202906000198184099082808310920391808303921461351e57670de0b6b3a76400009082821115613483577faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac10669940990828211900360ee1b910360121c170290565b5050670de0b6b3a764000091500490565b909182820291600019848209938380861095039480860395146135a557848311156134835782910981600003821680920460028082600302188083028203028083028203028083028203028083028203028083028203028092029003029360018380600003040190848311900302920304170290565b5050906103a892506133fb565b806135c45750670de0b6b3a764000090565b670de0b6b3a76400008114613e69576135e4906135df614997565b614ae9565b680a688906bd8affffff8111613e3857670de0b6b3a764000080604092831b04907780000000000000000000000000000000000000000000000067ff000000000000008316613d1b575b66ff0000000000008316613c13575b65ff00000000008316613b13575b64ff000000008316613a1b575b63ff000000831661392b575b62ff00008316613843575b61ff008316613763575b60ff831661368c575b02911c60bf031c90565b60808316613751575b83831661373f575b6020831661372d575b6010831661371b575b60088316613709575b600483166136f7575b600283166136e5575b6001831615613682576801000000000000000102831c613682565b6801000000000000000102831c6136ca565b6801000000000000000302831c6136c1565b6801000000000000000602831c6136b8565b6801000000000000000b02831c6136af565b6801000000000000001602831c6136a6565b6801000000000000002c02831c61369d565b6801000000000000005902831c613695565b6180008316613831575b614000831661381f575b612000831661380d575b61100083166137fb575b61080083166137e9575b61040083166137d7575b61020083166137c5575b61010083161561367957680100000000000000b102831c613679565b6801000000000000016302831c6137a9565b680100000000000002c602831c61379f565b6801000000000000058c02831c613795565b68010000000000000b1702831c61378b565b6801000000000000162e02831c613781565b68010000000000002c5d02831c613777565b680100000000000058b902831c61376d565b628000008316613919575b624000008316613907575b6220000083166138f5575b6210000083166138e3575b6208000083166138d1575b6204000083166138bf575b6202000083166138ad575b6201000083161561366f576801000000000000b17202831c61366f565b680100000000000162e402831c613890565b6801000000000002c5c802831c613885565b68010000000000058b9102831c61387a565b680100000000000b172102831c61386f565b68010000000000162e4302831c613864565b680100000000002c5c8602831c613859565b6801000000000058b90c02831c61384e565b63800000008316613a09575b634000000083166139f7575b632000000083166139e5575b631000000083166139d3575b630800000083166139c1575b630400000083166139af575b6302000000831661399d575b63010000008316156136645768010000000000b1721802831c613664565b6801000000000162e43002831c61397f565b68010000000002c5c86002831c613973565b680100000000058b90c002831c613967565b6801000000000b17217f02831c61395b565b680100000000162e42ff02831c61394f565b6801000000002c5c85fe02831c613943565b68010000000058b90bfc02831c613937565b6480000000008316613b01575b6440000000008316613aef575b6420000000008316613add575b6410000000008316613acb575b6408000000008316613ab9575b6404000000008316613aa7575b6402000000008316613a95575b64010000000083161561365857680100000000b17217f802831c613658565b68010000000162e42ff102831c613a76565b680100000002c5c85fe302831c613a69565b6801000000058b90bfce02831c613a5c565b68010000000b17217fbb02831c613a4f565b6801000000162e42fff002831c613a42565b68010000002c5c8601cc02831c613a35565b680100000058b90c0b4902831c613a28565b658000000000008316613c01575b654000000000008316613bef575b652000000000008316613bdd575b651000000000008316613bcb575b650800000000008316613bb9575b650400000000008316613ba7575b650200000000008316613b95575b6501000000000083161561364b576801000000b17218355102831c61364b565b680100000162e430e5a202831c613b75565b6801000002c5c863b73f02831c613b67565b68010000058b90cf1e6e02831c613b59565b680100000b1721bcfc9a02831c613b4b565b68010000162e43f4f83102831c613b3d565b680100002c5c89d5ec6d02831c613b2f565b6801000058b91b5bc9ae02831c613b21565b66800000000000008316613d09575b66400000000000008316613cf7575b66200000000000008316613ce5575b66100000000000008316613cd3575b66080000000000008316613cc1575b66040000000000008316613caf575b66020000000000008316613c9d575b660100000000000083161561363d5768010000b17255775c0402831c61363d565b6801000162e525ee054702831c613c7c565b68010002c5cc37da949202831c613c6d565b680100058ba01fb9f96d02831c613c5e565b6801000b175effdc76ba02831c613c4f565b680100162f3904051fa102831c613c40565b6801002c605e2e8cec5002831c613c31565b68010058c86da1c09ea202831c613c22565b6780000000000000008316613e19575b6740000000000000008316613e07575b6720000000000000008316613df5575b6710000000000000008316613de3575b6708000000000000008316613dd1575b6704000000000000008316613dbf575b6702000000000000008316613dad575b67010000000000000083161561362e57680100b1afa5abcbed6102831c61362e565b68010163da9fb33356d802831c613d8b565b680102c9a3e778060ee702831c613d7b565b6801059b0d31585743ae02831c613d6b565b68010b5586cf9890f62a02831c613d5b565b6801172b83c7d517adce02831c613d4b565b6801306fe0a31b7152df02831c613d3b565b5077b504f333f9de648480000000000000000000000000000000613d2b565b602490604051907fb3b6ba1f0000000000000000000000000000000000000000000000000000000082526004820152fd5b506714d1120d7b16000090565b906001600160a01b0382168015613f9857613ea4836001600160a01b03166000526000602052604060002090565b54828110613f4f57908260009203613ecf856001600160a01b03166000526000602052604060002090565b55613edd8360025403600255565b6040518381527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90602090a3613f138183614b9b565b80613f1c575050565b613f45613f3f613f4b936001600160a01b0316600052600b602052604060002090565b91614a54565b90614aa0565b5050565b6040517fe450d38c0000000000000000000000000000000000000000000000000000000081526001600160a01b0385166004820152602481019190915260448101839052606490fd5b60246040517f96c6fd1e00000000000000000000000000000000000000000000000000000000815260006004820152fd5b906001600160a01b03821680156140ce57613fee613fe983600254612720565b600255565b61400b836001600160a01b03166000526000602052604060002090565b8054830190556040518281526000907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90602090a36002546001600160d01b03811161408e575061405c8183614c40565b80614065575050565b614088613f3f613f4b936001600160a01b0316600052600b602052604060002090565b90614ab4565b6040517f1cb15d2600000000000000000000000000000000000000000000000000000000815260048101919091526001600160d01b036024820152604490fd5b60246040517fec442f0500000000000000000000000000000000000000000000000000000000815260006004820152fd5b6001600160a01b03169061412a600080836020829551910182875af16141236132e5565b908461466f565b908151918215159283614173575b5050506141425750565b602490604051907f5274afe70000000000000000000000000000000000000000000000000000000082526004820152fd5b81929350906020918101031261419b5760200151908115918215036104915750388080614138565b5080fd5b80156142d9578061427261426b61426161425761424d61424361423961422f60016103a89a6000908b60801c806142cd575b508060401c806142c0575b508060201c806142b3575b508060101c806142a6575b508060081c80614299575b508060041c8061428c575b508060021c8061427f575b50821c614278575b811c1b614228818b6133fb565b0160011c90565b614228818a6133fb565b61422881896133fb565b61422881886133fb565b61422881876133fb565b61422881866133fb565b61422881856133fb565b80926133fb565b90614a29565b810161421b565b6002915091019038614213565b6004915091019038614208565b60089150910190386141fd565b60109150910190386141f2565b60209150910190386141e7565b60409150910190386141dc565b915050608090386141d1565b50600090565b905b8281106142ed57505090565b90918082169080831860011c820180921161211057600a60005265ffffffffffff80837fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a8015416908516106000146143485750915b906142e1565b92915061435490612712565b90614342565b91906001600160a01b039283821693811690848214158061448c575b614382575b5050505050565b816143ff575b505082614397575b808061437b565b7fdec2bacdd2f05b59de34da9b523dff8be42e5e38e818c82fdb0bae774387a72491614088613f3f6143dc936001600160a01b03166000526009602052604060002090565b604080516001600160d01b039384168152919092166020820152a2388080614390565b61446a6144407fdec2bacdd2f05b59de34da9b523dff8be42e5e38e818c82fdb0bae774387a724926001600160a01b03166000526009602052604060002090565b61444986614a54565b61446461445542612b68565b9161445f846132b9565b614a3b565b91614f06565b604080516001600160d01b039384168152919092166020820152a23880614388565b50831515614376565b60ff81146144eb5760ff811690601f82116144c157604051916144b7836118a6565b8252602082015290565b60046040517fb3512b0c000000000000000000000000000000000000000000000000000000008152fd5b506040516005548160006144fe83611fce565b8083529260209060019081811690811561458a5750600114614529575b50506103a892500382611953565b91509260056000527f036b6384b5eca791c62761152d0c79bb0604c104a5fb6f4eb0703f3154bb3db0936000925b82841061457257506103a8945050508101602001388061451b565b85548785018301529485019486945092810192614557565b9050602093506103a895925060ff1991501682840152151560051b820101388061451b565b60ff81146145d15760ff811690601f82116144c157604051916144b7836118a6565b506040516006548160006145e483611fce565b8083529260209060019081811690811561458a575060011461460e5750506103a892500382611953565b91509260066000527ff652222313e28459528d920b65115c16c04f3efc82aaedc97be59f3f377c0d3f936000925b82841061465757506103a8945050508101602001388061451b565b8554878501830152948501948694509281019261463c565b906146ae575080511561468457805190602001fd5b60046040517f1425ea42000000000000000000000000000000000000000000000000000000008152fd5b815115806146f9575b6146bf575090565b6024906001600160a01b03604051917f9996b315000000000000000000000000000000000000000000000000000000008352166004820152fd5b50803b156146b7565b6001600160a01b037f000000000000000000000000c6addb3327a7d4b3b604227f82a6259ca7112053163014806147f3575b1561475d577f27f4ae6238527b0eb6b163ee392df216f3439f62a0d2f5a75e72eb8e8a6eff6790565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527f707bf7a47db147d52463e1b2acaa17cc8bac76f31d1710245c3b017b216f225760408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a081526147ed81611937565b51902090565b507f00000000000000000000000000000000000000000000000000000000000000014614614734565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841161489457926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa15611ee25780516001600160a01b0381161561488b57918190565b50809160019190565b50505060009160039190565b600411156148aa57565b634e487b7160e01b600052602160045260246000fd5b6148c9816148a0565b806148d2575050565b6148db816148a0565b6001810361490d5760046040517ff645eedf000000000000000000000000000000000000000000000000000000008152fd5b614916816148a0565b60028103614950576040517ffce698f700000000000000000000000000000000000000000000000000000000815260048101839052602490fd5b8061495c6003926148a0565b146149645750565b6040517fd78bce0c0000000000000000000000000000000000000000000000000000000081526004810191909152602490fd5b60006706f05b59d3b200006714d1120d7b160000815b6149b657505090565b80670de0b6b3a764000091020490671bc16d674ec800008210156149df575b60011c90816149ad565b809192019160011c906149d5565b805482101561231b5760005260206000200190600090565b90604051614a12816118a6565b915465ffffffffffff8116835260301c6020830152565b9080821015614a36575090565b905090565b6001600160d01b03918216908216039190821161211057565b6001600160d01b0390818111614a68571690565b604490604051907f6dfcc65000000000000000000000000000000000000000000000000000000000825260d060048301526024820152fd5b614ab09161446461445542612b68565b9091565b614ab091614464614ac442612b68565b91614ace846132b9565b9190916001600160d01b038080941691160191821161211057565b91909160001983820983820291828083109203918083039214614b8a57670de0b6b3a76400009081831015614b5057947faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac1066994950990828211900360ee1b910360121c170290565b6040517f5173648d000000000000000000000000000000000000000000000000000000008152600481019190915260248101869052604490fd5b5050670de0b6b3a764000090049150565b90610549916001600160a01b038091168015614c18575b614bd9614bbe84614a54565b614bd3614bca42612b68565b9161445f613272565b90614daf565b50506000908152600860205260408120549080527f5eff886ea0ce6ca488a3d6e336d6c0f75f46d19b42c06ce5ee98e42c96d256c7548216911661435a565b614c39614c2484614a54565b614bd3614c3042612b68565b91614ace613272565b5050614bb2565b9061054991614c51614c2483614a54565b50506001600160a01b03809116908115614ca1575b60086020527f5eff886ea0ce6ca488a3d6e336d6c0f75f46d19b42c06ce5ee98e42c96d256c75460009283526040909220548116911661435a565b614cad614bbe84614a54565b5050614c66565b600a5490680100000000000000008210156118c2576001820180600a5582101561231b576001600160d01b03602061054993600a6000527fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a80192614d3565ffffffffffff825116859065ffffffffffff1665ffffffffffff19825416179055565b0151825465ffffffffffff16911660301b65ffffffffffff1916179055565b8054680100000000000000008110156118c257614d76916001820181556149ed565b6128e2576001600160d01b03602083614d3565ffffffffffff610549965116859065ffffffffffff1665ffffffffffff19825416179055565b600a54919291908115614edc57614dfa614df5614dcb84612617565b600a6000527fc65a7bb8d6351c1cf70c95a316cc6a92839c986682d98bc35f958f4883f9d2a80190565b614a05565b805165ffffffffffff8381169491168410614eb25785602093614e7695614e35614e2a865165ffffffffffff1690565b65ffffffffffff1690565b03614e7a5750614e4a614dcb614e6893612617565b9065ffffffffffff65ffffffffffff1983549260301b169116179055565b01516001600160d01b031690565b9190565b9050614ead9150614e9a614e8c611976565b65ffffffffffff9092168252565b6001600160d01b03871681850152614cb4565b614e68565b60046040517f2520601d000000000000000000000000000000000000000000000000000000008152fd5b614f009150614eec614e8c611976565b6001600160d01b0384166020820152614cb4565b60009190565b805492939291908215614fc457614f2f614df5614f2285612617565b8360005260206000200190565b90614f40825165ffffffffffff1690565b65ffffffffffff84811691168110614eb257614e76946020948892614f6e614e2a875165ffffffffffff1690565b03614f915750614e6892614f84614e4a92612617565b9060005260206000200190565b915050614ead91614fb1614fa3611976565b65ffffffffffff9093168352565b6001600160d01b03881682860152614d54565b614f009250614fd4614fa3611976565b6001600160d01b0385166020830152614d5456fea264697066735822122015d8d40deb412bfba563d8316a07e226155c5bfad872ae63b15aef4a18de980764736f6c63430008190033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000000576654d4156000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000576654d4156000000000000000000000000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : __name (string): veMAV
Arg [1] : __symbol (string): veMAV

-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000040
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000080
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [3] : 76654d4156000000000000000000000000000000000000000000000000000000
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000005
Arg [5] : 76654d4156000000000000000000000000000000000000000000000000000000


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.