ETH Price: $3,845.45 (+6.30%)

Token

ERC-20: They tried to bury us, but they didn&#... (SEEDS)
 

Overview

Max Total Supply

4,086 SEEDS

Holders

1,090

Market

Volume (24H)

N/A

Min Price (24H)

N/A

Max Price (24H)

N/A
Filtered by Token Holder
zoticus.eth
Balance
9 SEEDS
0x6Fe04C5d439b0620217a3B7f1ecdE55888570af9
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
SEEDS

Compiler Version
v0.8.15+commit.e14f2714

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 6 : SEEDS.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.15;

import "../lib/solady/src/utils/ECDSA.sol";
import "../lib/solady/src/utils/LibString.sol";
import "../lib/solmate/src/auth/Owned.sol";
import "../lib/ERC721A/contracts/ERC721A.sol";

/// @title SEEDS
/// @author EtDu
/// @notice They tried to bury us, but they didn't know we were SEEDS

//                                  ╓▄▄
//                        , ▄▄▄▄▄,▄▄███   ,▄▄▄
//                       ▄████████████████▄
//                   ▄█████████▀▀▀▀▀▀▀██████▄█
//                ▄▄█████████           └▀█████
//           ╔▄▄▀██████████▌`,▄▄▄▄         ██████∩
//        █▄█▀▄▄█████████▀  ╓▄▄,██▌        ████████
//         ▄▀██▄██║█████     ═▄██▀  ▄███▄  █████████
//       ▄█╓██▀██▄█████     ,      ,██▌;╙██████║███▌
//    ╓███\█▀▄█████████  ,▀▀└ "▀█▄▌ ¬▀▀███████╖█████
//     ██`█▌███▌╙██████  ▄▌▄▄▄▌▀▀███▄   ╙████ ██████
//     █H▐████└ ███████  └▀,  ▀≡▄ ▀███▄,████▀▐██████▌
//     █║█████ ███████└    ▄╙▀▀▄ ▐▄█████████▄████████∩
//     ▌██████ ██████▀    ╓███▄████████████▄██████████
//      █▐███▌█████████▄;,, ▀▀▀▀█████████▌▐███████████M
//      █████M║███▌██████████▄███████████▌██ ▐████████⌐
//     ╓█████ ████▌║██████████████████████▀ █▀╓███████▄
//    ▄██████▐██▀██▐█████████████▀▄██████  █▀█████████▌
//    ▐█████▌║║▌██▌ █  ███████▀ ╓▀▄████▀▄⌐   ██████▀▌█⌐
//    ║█████▌█╓███▌     ╓▄██▀ ═Γ╓███▀▀▄█▀ ▄╣███████ ▐█H
//     ▀████^███▌██      ╙▐═Φ███████▀██▌ ██████▀█████▀
//    Φ████▄▄▀███▌██     ╓└╓██████▀▄███▀▄█╔█▀▀▓██████▄
//     ██▄██⌐▐███⌐██    ╓¬ Ä█████▀▄███ ▄█H║█▌└ ██║║███▄
//     `███▀╓███,█▀█   ,¬  ▄██▀▐▄▄███▄███ ║█▌ ███"█████▄
//     ╓██▀,███┐╙█∩ ▀ ,┘   ▄▀█▓███▀▄█████ ██▌`██▌ ███████
//    ▄██M,███▐█▄╙█▄  ╛ ¿═└╓████████████¼╝▐█▌*▀█▌ ███████⌐
//    ▐▄█ █║██ ▀▄* ▀ ╛ ▄ ▄██████▀█████████▌██╕▐█M ██▐████H
//    ██▌█████▐W    M▄└╓███████▀║████████▐▀"▀^▀▀  █▌Φ█▌▐█▄
//   ,▄█M└███▌▄▀     █*,███████ ▐█████ █▌▀╓╝     ▐█▌ ╙▀ ██
//  ║████████ █▀ ¿▀ ▄▌█▀██████¬ █████▌ ██▓       ██▌    █
//  `█▐████ ▀  ▄▄p     █╓█████ ▐████▌  ██▌       ▐█╙╓▄ ▐▌
//   █▄▄██      /     █,███▐█⌐ ▐████M ╓█▀█       ,█▌█▌ ▐▌
//     ``       ⌐    █╓███▌▐█   "███ ▐█H ██     ╓████▌ ▐
//                  '^████,█▌    `▀▀██    ▀^  -▄███ ▀
//                     ▐█¬▐█        ▀        ,███▀
//                                          ║█▀
              
contract SEEDS is ERC721A, Owned {
  using ECDSA for bytes32;
  using LibString for uint256;

  /*------------------------------------------------------*/
  /*                VARIABLES / CONSTANTS
  /*------------------------------------------------------*/

  uint256 maxSupply = 4200;
  string private enigma22357;
  string public baseURI;

  /*------------------------------------------------------*/
  /*                     CONSTRUCTOR
  /*------------------------------------------------------*/

  constructor(string memory enigma) ERC721A("They tried to bury us, but they didn't know we were", "SEEDS") Owned(msg.sender){
    enigma22357 = enigma;
  }

  /*------------------------------------------------------*/
  /*                     MAIN FUNCTIONS
  /*------------------------------------------------------*/

  /// @notice Mint X amount of SEEDS to address
  function mint(
    address to,
    uint256 amount
  ) external onlyOwner {
    require(totalSupply() < maxSupply, "Max Supply Reached");
    _mint(to, amount);
  }

  /*------------------------------------------------------*/
  /*                        ADMIN
  /*------------------------------------------------------*/

  function changeBaseURI(string calldata newBaseURI) external onlyOwner {
    baseURI = newBaseURI;
  }

  /*------------------------------------------------------*/
  /*                      READ ONLY
  /*------------------------------------------------------*/

  function _baseURI() internal view override returns (string memory) {
    return baseURI;
  }

  /*------------------------------------------------------*/
  /*                      WITHDRAW
  /*------------------------------------------------------*/

  function withdraw() external onlyOwner {
    assembly {
        let result := call(0, caller(), selfbalance(), 0, 0, 0, 0)
        switch result
        case 0 { revert(0, 0) }
        default { return(0, 0) }
    }
  }
}

File 2 of 6 : ERC721A.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import './IERC721A.sol';

/**
 * @dev Interface of ERC721 token receiver.
 */
interface ERC721A__IERC721Receiver {
    function onERC721Received(
        address operator,
        address from,
        uint256 tokenId,
        bytes calldata data
    ) external returns (bytes4);
}

/**
 * @title ERC721A
 *
 * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
 * Non-Fungible Token Standard, including the Metadata extension.
 * Optimized for lower gas during batch mints.
 *
 * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
 * starting from `_startTokenId()`.
 *
 * Assumptions:
 *
 * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
 * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
 */
contract ERC721A is IERC721A {
    // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364).
    struct TokenApprovalRef {
        address value;
    }

    // =============================================================
    //                           CONSTANTS
    // =============================================================

    // Mask of an entry in packed address data.
    uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;

    // The bit position of `numberMinted` in packed address data.
    uint256 private constant _BITPOS_NUMBER_MINTED = 64;

    // The bit position of `numberBurned` in packed address data.
    uint256 private constant _BITPOS_NUMBER_BURNED = 128;

    // The bit position of `aux` in packed address data.
    uint256 private constant _BITPOS_AUX = 192;

    // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
    uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;

    // The bit position of `startTimestamp` in packed ownership.
    uint256 private constant _BITPOS_START_TIMESTAMP = 160;

    // The bit mask of the `burned` bit in packed ownership.
    uint256 private constant _BITMASK_BURNED = 1 << 224;

    // The bit position of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;

    // The bit mask of the `nextInitialized` bit in packed ownership.
    uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;

    // The bit position of `extraData` in packed ownership.
    uint256 private constant _BITPOS_EXTRA_DATA = 232;

    // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
    uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;

    // The mask of the lower 160 bits for addresses.
    uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

    // The maximum `quantity` that can be minted with {_mintERC2309}.
    // This limit is to prevent overflows on the address data entries.
    // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
    // is required to cause an overflow, which is unrealistic.
    uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;

    // The `Transfer` event signature is given by:
    // `keccak256(bytes("Transfer(address,address,uint256)"))`.
    bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
        0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

    // =============================================================
    //                            STORAGE
    // =============================================================

    // The next token ID to be minted.
    uint256 private _currentIndex;

    // The number of tokens burned.
    uint256 private _burnCounter;

    // Token name
    string private _name;

    // Token symbol
    string private _symbol;

    // Mapping from token ID to ownership details
    // An empty struct value does not necessarily mean the token is unowned.
    // See {_packedOwnershipOf} implementation for details.
    //
    // Bits Layout:
    // - [0..159]   `addr`
    // - [160..223] `startTimestamp`
    // - [224]      `burned`
    // - [225]      `nextInitialized`
    // - [232..255] `extraData`
    mapping(uint256 => uint256) private _packedOwnerships;

    // Mapping owner address to address data.
    //
    // Bits Layout:
    // - [0..63]    `balance`
    // - [64..127]  `numberMinted`
    // - [128..191] `numberBurned`
    // - [192..255] `aux`
    mapping(address => uint256) private _packedAddressData;

    // Mapping from token ID to approved address.
    mapping(uint256 => TokenApprovalRef) private _tokenApprovals;

    // Mapping from owner to operator approvals
    mapping(address => mapping(address => bool)) private _operatorApprovals;

    // =============================================================
    //                          CONSTRUCTOR
    // =============================================================

    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _currentIndex = _startTokenId();
    }

    // =============================================================
    //                   TOKEN COUNTING OPERATIONS
    // =============================================================

    /**
     * @dev Returns the starting token ID.
     * To change the starting token ID, please override this function.
     */
    function _startTokenId() internal view virtual returns (uint256) {
        return 0;
    }

    /**
     * @dev Returns the next token ID to be minted.
     */
    function _nextTokenId() internal view virtual returns (uint256) {
        return _currentIndex;
    }

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        // Counter underflow is impossible as _burnCounter cannot be incremented
        // more than `_currentIndex - _startTokenId()` times.
        unchecked {
            return _currentIndex - _burnCounter - _startTokenId();
        }
    }

    /**
     * @dev Returns the total amount of tokens minted in the contract.
     */
    function _totalMinted() internal view virtual returns (uint256) {
        // Counter underflow is impossible as `_currentIndex` does not decrement,
        // and it is initialized to `_startTokenId()`.
        unchecked {
            return _currentIndex - _startTokenId();
        }
    }

    /**
     * @dev Returns the total number of tokens burned.
     */
    function _totalBurned() internal view virtual returns (uint256) {
        return _burnCounter;
    }

    // =============================================================
    //                    ADDRESS DATA OPERATIONS
    // =============================================================

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) public view virtual override returns (uint256) {
        if (owner == address(0)) revert BalanceQueryForZeroAddress();
        return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens minted by `owner`.
     */
    function _numberMinted(address owner) internal view returns (uint256) {
        return (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the number of tokens burned by or on behalf of `owner`.
     */
    function _numberBurned(address owner) internal view returns (uint256) {
        return (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY;
    }

    /**
     * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     */
    function _getAux(address owner) internal view returns (uint64) {
        return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
    }

    /**
     * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
     * If there are multiple variables, please pack them into a uint64.
     */
    function _setAux(address owner, uint64 aux) internal virtual {
        uint256 packed = _packedAddressData[owner];
        uint256 auxCasted;
        // Cast `aux` with assembly to avoid redundant masking.
        assembly {
            auxCasted := aux
        }
        packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
        _packedAddressData[owner] = packed;
    }

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        // The interface IDs are constants representing the first 4 bytes
        // of the XOR of all function selectors in the interface.
        // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
        // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
        return
            interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
            interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
            interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
    }

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) public view virtual override returns (string memory) {
        if (!_exists(tokenId)) revert URIQueryForNonexistentToken();

        string memory baseURI = _baseURI();
        return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : '';
    }

    /**
     * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
     * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
     * by default, it can be overridden in child contracts.
     */
    function _baseURI() internal view virtual returns (string memory) {
        return '';
    }

    // =============================================================
    //                     OWNERSHIPS OPERATIONS
    // =============================================================

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) public view virtual override returns (address) {
        return address(uint160(_packedOwnershipOf(tokenId)));
    }

    /**
     * @dev Gas spent here starts off proportional to the maximum mint batch size.
     * It gradually moves to O(1) as tokens get transferred around over time.
     */
    function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(_packedOwnershipOf(tokenId));
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct at `index`.
     */
    function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) {
        return _unpackedOwnership(_packedOwnerships[index]);
    }

    /**
     * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
     */
    function _initializeOwnershipAt(uint256 index) internal virtual {
        if (_packedOwnerships[index] == 0) {
            _packedOwnerships[index] = _packedOwnershipOf(index);
        }
    }

    /**
     * Returns the packed ownership data of `tokenId`.
     */
    function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
        uint256 curr = tokenId;

        unchecked {
            if (_startTokenId() <= curr)
                if (curr < _currentIndex) {
                    uint256 packed = _packedOwnerships[curr];
                    // If not burned.
                    if (packed & _BITMASK_BURNED == 0) {
                        // Invariant:
                        // There will always be an initialized ownership slot
                        // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
                        // before an unintialized ownership slot
                        // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
                        // Hence, `curr` will not underflow.
                        //
                        // We can directly compare the packed value.
                        // If the address is zero, packed will be zero.
                        while (packed == 0) {
                            packed = _packedOwnerships[--curr];
                        }
                        return packed;
                    }
                }
        }
        revert OwnerQueryForNonexistentToken();
    }

    /**
     * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
     */
    function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) {
        ownership.addr = address(uint160(packed));
        ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
        ownership.burned = packed & _BITMASK_BURNED != 0;
        ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
    }

    /**
     * @dev Packs ownership data into a single uint256.
     */
    function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
            result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
        }
    }

    /**
     * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
     */
    function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) {
        // For branchless setting of the `nextInitialized` flag.
        assembly {
            // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
            result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
        }
    }

    // =============================================================
    //                      APPROVAL OPERATIONS
    // =============================================================

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) public payable virtual override {
        address owner = ownerOf(tokenId);

        if (_msgSenderERC721A() != owner)
            if (!isApprovedForAll(owner, _msgSenderERC721A())) {
                revert ApprovalCallerNotOwnerNorApproved();
            }

        _tokenApprovals[tokenId].value = to;
        emit Approval(owner, to, tokenId);
    }

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) public view virtual override returns (address) {
        if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();

        return _tokenApprovals[tokenId].value;
    }

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) public virtual override {
        _operatorApprovals[_msgSenderERC721A()][operator] = approved;
        emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
    }

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) {
        return _operatorApprovals[owner][operator];
    }

    /**
     * @dev Returns whether `tokenId` exists.
     *
     * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
     *
     * Tokens start existing when they are minted. See {_mint}.
     */
    function _exists(uint256 tokenId) internal view virtual returns (bool) {
        return
            _startTokenId() <= tokenId &&
            tokenId < _currentIndex && // If within bounds,
            _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
    }

    /**
     * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
     */
    function _isSenderApprovedOrOwner(
        address approvedAddress,
        address owner,
        address msgSender
    ) private pure returns (bool result) {
        assembly {
            // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
            owner := and(owner, _BITMASK_ADDRESS)
            // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
            msgSender := and(msgSender, _BITMASK_ADDRESS)
            // `msgSender == owner || msgSender == approvedAddress`.
            result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
        }
    }

    /**
     * @dev Returns the storage slot and value for the approved address of `tokenId`.
     */
    function _getApprovedSlotAndAddress(uint256 tokenId)
        private
        view
        returns (uint256 approvedAddressSlot, address approvedAddress)
    {
        TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
        // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`.
        assembly {
            approvedAddressSlot := tokenApproval.slot
            approvedAddress := sload(approvedAddressSlot)
        }
    }

    // =============================================================
    //                      TRANSFER OPERATIONS
    // =============================================================

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner();

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        // The nested ifs save around 20+ gas over a compound boolean condition.
        if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
            if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();

        if (to == address(0)) revert TransferToZeroAddress();

        _beforeTokenTransfers(from, to, tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // We can directly increment and decrement the balances.
            --_packedAddressData[from]; // Updates: `balance -= 1`.
            ++_packedAddressData[to]; // Updates: `balance += 1`.

            // Updates:
            // - `address` to the next owner.
            // - `startTimestamp` to the timestamp of transfering.
            // - `burned` to `false`.
            // - `nextInitialized` to `true`.
            _packedOwnerships[tokenId] = _packOwnershipData(
                to,
                _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (_packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != _currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        emit Transfer(from, to, tokenId);
        _afterTokenTransfers(from, to, tokenId, 1);
    }

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) public payable virtual override {
        safeTransferFrom(from, to, tokenId, '');
    }

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) public payable virtual override {
        transferFrom(from, to, tokenId);
        if (to.code.length != 0)
            if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
                revert TransferToNonERC721ReceiverImplementer();
            }
    }

    /**
     * @dev Hook that is called before a set of serially-ordered token IDs
     * are about to be transferred. This includes minting.
     * And also called before burning one token.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _beforeTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Hook that is called after a set of serially-ordered token IDs
     * have been transferred. This includes minting.
     * And also called after one token has been burned.
     *
     * `startTokenId` - the first token ID to be transferred.
     * `quantity` - the amount to be transferred.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
     * transferred to `to`.
     * - When `from` is zero, `tokenId` has been minted for `to`.
     * - When `to` is zero, `tokenId` has been burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _afterTokenTransfers(
        address from,
        address to,
        uint256 startTokenId,
        uint256 quantity
    ) internal virtual {}

    /**
     * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
     *
     * `from` - Previous owner of the given token ID.
     * `to` - Target address that will receive the token.
     * `tokenId` - Token ID to be transferred.
     * `_data` - Optional data to send along with the call.
     *
     * Returns whether the call correctly returned the expected magic value.
     */
    function _checkContractOnERC721Received(
        address from,
        address to,
        uint256 tokenId,
        bytes memory _data
    ) private returns (bool) {
        try ERC721A__IERC721Receiver(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (
            bytes4 retval
        ) {
            return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
        } catch (bytes memory reason) {
            if (reason.length == 0) {
                revert TransferToNonERC721ReceiverImplementer();
            } else {
                assembly {
                    revert(add(32, reason), mload(reason))
                }
            }
        }
    }

    // =============================================================
    //                        MINT OPERATIONS
    // =============================================================

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _mint(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = _currentIndex;
        if (quantity == 0) revert MintZeroQuantity();

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are incredibly unrealistic.
        // `balance` and `numberMinted` have a maximum limit of 2**64.
        // `tokenId` has a maximum limit of 2**256.
        unchecked {
            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            _packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            uint256 toMasked;
            uint256 end = startTokenId + quantity;

            // Use assembly to loop and emit the `Transfer` event for gas savings.
            // The duplicated `log4` removes an extra check and reduces stack juggling.
            // The assembly, together with the surrounding Solidity code, have been
            // delicately arranged to nudge the compiler into producing optimized opcodes.
            assembly {
                // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
                toMasked := and(to, _BITMASK_ADDRESS)
                // Emit the `Transfer` event.
                log4(
                    0, // Start of data (0, since no data).
                    0, // End of data (0, since no data).
                    _TRANSFER_EVENT_SIGNATURE, // Signature.
                    0, // `address(0)`.
                    toMasked, // `to`.
                    startTokenId // `tokenId`.
                )

                // The `iszero(eq(,))` check ensures that large values of `quantity`
                // that overflows uint256 will make the loop run out of gas.
                // The compiler will optimize the `iszero` away for performance.
                for {
                    let tokenId := add(startTokenId, 1)
                } iszero(eq(tokenId, end)) {
                    tokenId := add(tokenId, 1)
                } {
                    // Emit the `Transfer` event. Similar to above.
                    log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
                }
            }
            if (toMasked == 0) revert MintToZeroAddress();

            _currentIndex = end;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Mints `quantity` tokens and transfers them to `to`.
     *
     * This function is intended for efficient minting only during contract creation.
     *
     * It emits only one {ConsecutiveTransfer} as defined in
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
     * instead of a sequence of {Transfer} event(s).
     *
     * Calling this function outside of contract creation WILL make your contract
     * non-compliant with the ERC721 standard.
     * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
     * {ConsecutiveTransfer} event is only permissible during contract creation.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - `quantity` must be greater than 0.
     *
     * Emits a {ConsecutiveTransfer} event.
     */
    function _mintERC2309(address to, uint256 quantity) internal virtual {
        uint256 startTokenId = _currentIndex;
        if (to == address(0)) revert MintToZeroAddress();
        if (quantity == 0) revert MintZeroQuantity();
        if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit();

        _beforeTokenTransfers(address(0), to, startTokenId, quantity);

        // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
        unchecked {
            // Updates:
            // - `balance += quantity`.
            // - `numberMinted += quantity`.
            //
            // We can directly add to the `balance` and `numberMinted`.
            _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

            // Updates:
            // - `address` to the owner.
            // - `startTimestamp` to the timestamp of minting.
            // - `burned` to `false`.
            // - `nextInitialized` to `quantity == 1`.
            _packedOwnerships[startTokenId] = _packOwnershipData(
                to,
                _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
            );

            emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to);

            _currentIndex = startTokenId + quantity;
        }
        _afterTokenTransfers(address(0), to, startTokenId, quantity);
    }

    /**
     * @dev Safely mints `quantity` tokens and transfers them to `to`.
     *
     * Requirements:
     *
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
     * - `quantity` must be greater than 0.
     *
     * See {_mint}.
     *
     * Emits a {Transfer} event for each mint.
     */
    function _safeMint(
        address to,
        uint256 quantity,
        bytes memory _data
    ) internal virtual {
        _mint(to, quantity);

        unchecked {
            if (to.code.length != 0) {
                uint256 end = _currentIndex;
                uint256 index = end - quantity;
                do {
                    if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
                        revert TransferToNonERC721ReceiverImplementer();
                    }
                } while (index < end);
                // Reentrancy protection.
                if (_currentIndex != end) revert();
            }
        }
    }

    /**
     * @dev Equivalent to `_safeMint(to, quantity, '')`.
     */
    function _safeMint(address to, uint256 quantity) internal virtual {
        _safeMint(to, quantity, '');
    }

    // =============================================================
    //                        BURN OPERATIONS
    // =============================================================

    /**
     * @dev Equivalent to `_burn(tokenId, false)`.
     */
    function _burn(uint256 tokenId) internal virtual {
        _burn(tokenId, false);
    }

    /**
     * @dev Destroys `tokenId`.
     * The approval is cleared when the token is burned.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     *
     * Emits a {Transfer} event.
     */
    function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
        uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

        address from = address(uint160(prevOwnershipPacked));

        (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId);

        if (approvalCheck) {
            // The nested ifs save around 20+ gas over a compound boolean condition.
            if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
                if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved();
        }

        _beforeTokenTransfers(from, address(0), tokenId, 1);

        // Clear approvals from the previous owner.
        assembly {
            if approvedAddress {
                // This is equivalent to `delete _tokenApprovals[tokenId]`.
                sstore(approvedAddressSlot, 0)
            }
        }

        // Underflow of the sender's balance is impossible because we check for
        // ownership above and the recipient's balance can't realistically overflow.
        // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
        unchecked {
            // Updates:
            // - `balance -= 1`.
            // - `numberBurned += 1`.
            //
            // We can directly decrement the balance, and increment the number burned.
            // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
            _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;

            // Updates:
            // - `address` to the last owner.
            // - `startTimestamp` to the timestamp of burning.
            // - `burned` to `true`.
            // - `nextInitialized` to `true`.
            _packedOwnerships[tokenId] = _packOwnershipData(
                from,
                (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked)
            );

            // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
            if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
                uint256 nextTokenId = tokenId + 1;
                // If the next slot's address is zero and not burned (i.e. packed value is zero).
                if (_packedOwnerships[nextTokenId] == 0) {
                    // If the next slot is within bounds.
                    if (nextTokenId != _currentIndex) {
                        // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
                        _packedOwnerships[nextTokenId] = prevOwnershipPacked;
                    }
                }
            }
        }

        emit Transfer(from, address(0), tokenId);
        _afterTokenTransfers(from, address(0), tokenId, 1);

        // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
        unchecked {
            _burnCounter++;
        }
    }

    // =============================================================
    //                     EXTRA DATA OPERATIONS
    // =============================================================

    /**
     * @dev Directly sets the extra data for the ownership data `index`.
     */
    function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
        uint256 packed = _packedOwnerships[index];
        if (packed == 0) revert OwnershipNotInitializedForExtraData();
        uint256 extraDataCasted;
        // Cast `extraData` with assembly to avoid redundant masking.
        assembly {
            extraDataCasted := extraData
        }
        packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA);
        _packedOwnerships[index] = packed;
    }

    /**
     * @dev Called during each token transfer to set the 24bit `extraData` field.
     * Intended to be overridden by the cosumer contract.
     *
     * `previousExtraData` - the value of `extraData` before transfer.
     *
     * Calling conditions:
     *
     * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
     * transferred to `to`.
     * - When `from` is zero, `tokenId` will be minted for `to`.
     * - When `to` is zero, `tokenId` will be burned by `from`.
     * - `from` and `to` are never both zero.
     */
    function _extraData(
        address from,
        address to,
        uint24 previousExtraData
    ) internal view virtual returns (uint24) {}

    /**
     * @dev Returns the next extra data for the packed ownership data.
     * The returned result is shifted into position.
     */
    function _nextExtraData(
        address from,
        address to,
        uint256 prevOwnershipPacked
    ) private view returns (uint256) {
        uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
        return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
    }

    // =============================================================
    //                       OTHER OPERATIONS
    // =============================================================

    /**
     * @dev Returns the message sender (defaults to `msg.sender`).
     *
     * If you are writing GSN compatible contracts, you need to override this function.
     */
    function _msgSenderERC721A() internal view virtual returns (address) {
        return msg.sender;
    }

    /**
     * @dev Converts a uint256 to its ASCII string decimal representation.
     */
    function _toString(uint256 value) internal pure virtual returns (string memory str) {
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
            let m := add(mload(0x40), 0xa0)
            // Update the free memory pointer to allocate.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            // prettier-ignore
            for { let temp := value } 1 {} {
                str := sub(str, 1)
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                // prettier-ignore
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }
}

File 3 of 6 : IERC721A.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.3
// Creator: Chiru Labs

pragma solidity ^0.8.4;

/**
 * @dev Interface of ERC721A.
 */
interface IERC721A {
    /**
     * The caller must own the token or be an approved operator.
     */
    error ApprovalCallerNotOwnerNorApproved();

    /**
     * The token does not exist.
     */
    error ApprovalQueryForNonexistentToken();

    /**
     * Cannot query the balance for the zero address.
     */
    error BalanceQueryForZeroAddress();

    /**
     * Cannot mint to the zero address.
     */
    error MintToZeroAddress();

    /**
     * The quantity of tokens minted must be more than zero.
     */
    error MintZeroQuantity();

    /**
     * The token does not exist.
     */
    error OwnerQueryForNonexistentToken();

    /**
     * The caller must own the token or be an approved operator.
     */
    error TransferCallerNotOwnerNorApproved();

    /**
     * The token must be owned by `from`.
     */
    error TransferFromIncorrectOwner();

    /**
     * Cannot safely transfer to a contract that does not implement the
     * ERC721Receiver interface.
     */
    error TransferToNonERC721ReceiverImplementer();

    /**
     * Cannot transfer to the zero address.
     */
    error TransferToZeroAddress();

    /**
     * The token does not exist.
     */
    error URIQueryForNonexistentToken();

    /**
     * The `quantity` minted with ERC2309 exceeds the safety limit.
     */
    error MintERC2309QuantityExceedsLimit();

    /**
     * The `extraData` cannot be set on an unintialized ownership slot.
     */
    error OwnershipNotInitializedForExtraData();

    // =============================================================
    //                            STRUCTS
    // =============================================================

    struct TokenOwnership {
        // The address of the owner.
        address addr;
        // Stores the start time of ownership with minimal overhead for tokenomics.
        uint64 startTimestamp;
        // Whether the token has been burned.
        bool burned;
        // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
        uint24 extraData;
    }

    // =============================================================
    //                         TOKEN COUNTERS
    // =============================================================

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() external view returns (uint256);

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);

    // =============================================================
    //                            IERC721
    // =============================================================

    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables
     * (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`,
     * checking first that contract recipients are aware of the ERC721 protocol
     * to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move
     * this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external payable;

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
     * whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external payable;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external payable;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);

    // =============================================================
    //                           IERC2309
    // =============================================================

    /**
     * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
     * (inclusive) is transferred from `from` to `to`, as defined in the
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
     *
     * See {_mintERC2309} for more details.
     */
    event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}

File 4 of 6 : ECDSA.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Gas optimized ECDSA wrapper.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/ECDSA.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/ECDSA.sol)
/// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol)
library ECDSA {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The number which `s` must not exceed in order for
    /// the signature to be non-malleable.
    bytes32 private constant _MALLEABILITY_THRESHOLD =
        0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                    RECOVERY OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Recovers the signer's address from a message digest `hash`,
    /// and the `signature`.
    ///
    /// This function does NOT accept EIP-2098 short form signatures.
    /// Use `recover(bytes32 hash, bytes32 r, bytes32 vs)` for EIP-2098
    /// short form signatures instead.
    ///
    /// WARNING!
    /// The `result` will be the zero address upon recovery failure.
    /// As such, it is extremely important to ensure that the address which
    /// the `result` is compared against is never zero.
    function recover(bytes32 hash, bytes calldata signature)
        internal
        view
        returns (address result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            if eq(signature.length, 65) {
                // Copy the free memory pointer so that we can restore it later.
                let m := mload(0x40)
                // Directly copy `r` and `s` from the calldata.
                calldatacopy(0x40, signature.offset, 0x40)

                // If `s` in lower half order, such that the signature is not malleable.
                if iszero(gt(mload(0x60), _MALLEABILITY_THRESHOLD)) {
                    mstore(0x00, hash)
                    // Compute `v` and store it in the scratch space.
                    mstore(0x20, byte(0, calldataload(add(signature.offset, 0x40))))
                    pop(
                        staticcall(
                            gas(), // Amount of gas left for the transaction.
                            0x01, // Address of `ecrecover`.
                            0x00, // Start of input.
                            0x80, // Size of input.
                            0x40, // Start of output.
                            0x20 // Size of output.
                        )
                    )
                    // Restore the zero slot.
                    mstore(0x60, 0)
                    // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                    result := mload(sub(0x60, returndatasize()))
                }
                // Restore the free memory pointer.
                mstore(0x40, m)
            }
        }
    }

    /// @dev Recovers the signer's address from a message digest `hash`,
    /// and the EIP-2098 short form signature defined by `r` and `vs`.
    ///
    /// This function only accepts EIP-2098 short form signatures.
    /// See: https://eips.ethereum.org/EIPS/eip-2098
    ///
    /// To be honest, I do not recommend using EIP-2098 signatures
    /// for simplicity, performance, and security reasons. Most if not
    /// all clients support traditional non EIP-2098 signatures by default.
    /// As such, this method is intentionally not fully inlined.
    /// It is merely included for completeness.
    ///
    /// WARNING!
    /// The `result` will be the zero address upon recovery failure.
    /// As such, it is extremely important to ensure that the address which
    /// the `result` is compared against is never zero.
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal view returns (address result) {
        uint8 v;
        bytes32 s;
        /// @solidity memory-safe-assembly
        assembly {
            s := shr(1, shl(1, vs))
            v := add(shr(255, vs), 27)
        }
        result = recover(hash, v, r, s);
    }

    /// @dev Recovers the signer's address from a message digest `hash`,
    /// and the signature defined by `v`, `r`, `s`.
    ///
    /// WARNING!
    /// The `result` will be the zero address upon recovery failure.
    /// As such, it is extremely important to ensure that the address which
    /// the `result` is compared against is never zero.
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s)
        internal
        view
        returns (address result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Copy the free memory pointer so that we can restore it later.
            let m := mload(0x40)

            // If `s` in lower half order, such that the signature is not malleable.
            if iszero(gt(s, _MALLEABILITY_THRESHOLD)) {
                mstore(0x00, hash)
                mstore(0x20, v)
                mstore(0x40, r)
                mstore(0x60, s)
                pop(
                    staticcall(
                        gas(), // Amount of gas left for the transaction.
                        0x01, // Address of `ecrecover`.
                        0x00, // Start of input.
                        0x80, // Size of input.
                        0x40, // Start of output.
                        0x20 // Size of output.
                    )
                )
                // Restore the zero slot.
                mstore(0x60, 0)
                // `returndatasize()` will be `0x20` upon success, and `0x00` otherwise.
                result := mload(sub(0x60, returndatasize()))
            }
            // Restore the free memory pointer.
            mstore(0x40, m)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     HASHING OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns an Ethereum Signed Message, created from a `hash`.
    /// This produces a hash corresponding to the one signed with the
    /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
    /// JSON-RPC method as part of EIP-191.
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Store into scratch space for keccak256.
            mstore(0x20, hash)
            mstore(0x00, "\x00\x00\x00\x00\x19Ethereum Signed Message:\n32")
            // 0x40 - 0x04 = 0x3c
            result := keccak256(0x04, 0x3c)
        }
    }

    /// @dev Returns an Ethereum Signed Message, created from `s`.
    /// This produces a hash corresponding to the one signed with the
    /// [`eth_sign`](https://eth.wiki/json-rpc/API#eth_sign)
    /// JSON-RPC method as part of EIP-191.
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32 result) {
        assembly {
            // We need at most 128 bytes for Ethereum signed message header.
            // The max length of the ASCII reprenstation of a uint256 is 78 bytes.
            // The length of "\x19Ethereum Signed Message:\n" is 26 bytes (i.e. 0x1a).
            // The next multiple of 32 above 78 + 26 is 128 (i.e. 0x80).

            // Instead of allocating, we temporarily copy the 128 bytes before the
            // start of `s` data to some variables.
            let m3 := mload(sub(s, 0x60))
            let m2 := mload(sub(s, 0x40))
            let m1 := mload(sub(s, 0x20))
            // The length of `s` is in bytes.
            let sLength := mload(s)

            let ptr := add(s, 0x20)

            // `end` marks the end of the memory which we will compute the keccak256 of.
            let end := add(ptr, sLength)

            // Convert the length of the bytes to ASCII decimal representation
            // and store it into the memory.
            for { let temp := sLength } 1 {} {
                ptr := sub(ptr, 1)
                mstore8(ptr, add(48, mod(temp, 10)))
                temp := div(temp, 10)
                if iszero(temp) { break }
            }

            // Copy the header over to the memory.
            mstore(sub(ptr, 0x20), "\x00\x00\x00\x00\x00\x00\x19Ethereum Signed Message:\n")
            // Compute the keccak256 of the memory.
            result := keccak256(sub(ptr, 0x1a), sub(end, sub(ptr, 0x1a)))

            // Restore the previous memory.
            mstore(s, sLength)
            mstore(sub(s, 0x20), m1)
            mstore(sub(s, 0x40), m2)
            mstore(sub(s, 0x60), m3)
        }
    }
}

File 5 of 6 : LibString.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.4;

/// @notice Library for converting numbers into strings and other string operations.
/// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol)
/// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol)
library LibString {
    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                        CUSTOM ERRORS                       */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The `length` of the output is too small to contain all the hex digits.
    error HexLengthInsufficient();

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                         CONSTANTS                          */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev The constant returned when the `search` is not found in the string.
    uint256 internal constant NOT_FOUND = type(uint256).max;

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                     DECIMAL OPERATIONS                     */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the base 10 decimal representation of `value`.
    function toString(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            // The maximum value of a uint256 contains 78 digits (1 byte per digit), but
            // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned.
            // We will need 1 word for the trailing zeros padding, 1 word for the length,
            // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0.
            let m := add(mload(0x40), 0xa0)
            // Update the free memory pointer to allocate.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end of the memory to calculate the length later.
            let end := str

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := sub(str, 1)
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                if iszero(temp) { break }
            }

            let length := sub(end, str)
            // Move the pointer 32 bytes leftwards to make room for the length.
            str := sub(str, 0x20)
            // Store the length.
            mstore(str, length)
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   HEXADECIMAL OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2 + 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value, length);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`,
    /// left-padded to an input length of `length` bytes.
    /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte,
    /// giving a total length of `length * 2` bytes.
    /// Reverts if `length` is too small for the output to contain all the digits.
    function toHexStringNoPrefix(uint256 value, uint256 length)
        internal
        pure
        returns (string memory str)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let start := mload(0x40)
            // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes
            // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length.
            // We add 0x20 to the total and round down to a multiple of 0x20.
            // (0x20 + 0x20 + 0x02 + 0x20) = 0x62.
            let m := add(start, and(add(shl(1, length), 0x62), not(0x1f)))
            // Allocate the memory.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            let temp := value
            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for {} 1 {} {
                str := sub(str, 2)
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                length := sub(length, 1)
                if iszero(length) { break }
            }

            if temp {
                // Store the function selector of `HexLengthInsufficient()`.
                mstore(0x00, 0x2194895a)
                // Revert with (offset, size).
                revert(0x1c, 0x04)
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2 + 2` bytes.
    function toHexString(uint256 value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    /// As address are 20 bytes long, the output will left-padded to have
    /// a length of `20 * 2` bytes.
    function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            let start := mload(0x40)
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x40 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0.
            let m := add(start, 0xa0)
            // Allocate the memory.
            mstore(0x40, m)
            // Assign the `str` to the end.
            str := sub(m, 0x20)
            // Zeroize the slot after the string.
            mstore(str, 0)

            // Cache the end to calculate the length later.
            let end := str
            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let temp := value } 1 {} {
                str := sub(str, 2)
                mstore8(add(str, 1), mload(and(temp, 15)))
                mstore8(str, mload(and(shr(4, temp), 15)))
                temp := shr(8, temp)
                if iszero(temp) { break }
            }

            // Compute the string's length.
            let strLength := sub(end, str)
            // Move the pointer and write the length.
            str := sub(str, 0x20)
            mstore(str, strLength)
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte,
    /// and the alphabets are capitalized conditionally according to
    /// https://eips.ethereum.org/EIPS/eip-55
    function toHexStringChecksumed(address value) internal pure returns (string memory str) {
        str = toHexString(value);
        /// @solidity memory-safe-assembly
        assembly {
            let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...`
            let o := add(str, 0x22)
            let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... `
            let t := shl(240, 136) // `0b10001000 << 240`
            for { let i := 0 } 1 {} {
                mstore(add(i, i), mul(t, byte(i, hashed)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
            mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask)))))
            o := add(o, 0x20)
            mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask)))))
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte.
    function toHexString(address value) internal pure returns (string memory str) {
        str = toHexStringNoPrefix(value);
        /// @solidity memory-safe-assembly
        assembly {
            let strLength := add(mload(str), 2) // Compute the length.
            mstore(str, 0x3078) // Write the "0x" prefix.
            str := sub(str, 2) // Move the pointer.
            mstore(str, strLength) // Write the length.
        }
    }

    /// @dev Returns the hexadecimal representation of `value`.
    /// The output is encoded using 2 hexadecimal digits per byte.
    function toHexStringNoPrefix(address value) internal pure returns (string memory str) {
        /// @solidity memory-safe-assembly
        assembly {
            str := mload(0x40)

            // Allocate the memory.
            // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length,
            // 0x02 bytes for the prefix, and 0x28 bytes for the digits.
            // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80.
            mstore(0x40, add(str, 0x80))

            // Store "0123456789abcdef" in scratch space.
            mstore(0x0f, 0x30313233343536373839616263646566)

            str := add(str, 2)
            mstore(str, 40)

            let o := add(str, 0x20)
            mstore(add(o, 40), 0)

            value := shl(96, value)

            // We write the string from rightmost digit to leftmost digit.
            // The following is essentially a do-while loop that also handles the zero case.
            for { let i := 0 } 1 {} {
                let p := add(o, add(i, i))
                let temp := byte(i, value)
                mstore8(add(p, 1), mload(and(temp, 15)))
                mstore8(p, mload(shr(4, temp)))
                i := add(i, 1)
                if eq(i, 20) { break }
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   RUNE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    /// @dev Returns the number of UTF characters in the string.
    function runeCount(string memory s) internal pure returns (uint256 result) {
        /// @solidity memory-safe-assembly
        assembly {
            if mload(s) {
                mstore(0x00, div(not(0), 255))
                mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506)
                let o := add(s, 0x20)
                let end := add(o, mload(s))
                for { result := 1 } 1 { result := add(result, 1) } {
                    o := add(o, byte(0, mload(shr(250, mload(o)))))
                    if iszero(lt(o, end)) { break }
                }
            }
        }
    }

    /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/
    /*                   BYTE STRING OPERATIONS                   */
    /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/

    // For performance and bytecode compactness, all indices of the following operations
    // are byte (ASCII) offsets, not UTF character offsets.

    /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`.
    function replace(string memory subject, string memory search, string memory replacement)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)
            let replacementLength := mload(replacement)

            subject := add(subject, 0x20)
            search := add(search, 0x20)
            replacement := add(replacement, 0x20)
            result := add(mload(0x40), 0x20)

            let subjectEnd := add(subject, subjectLength)
            if iszero(gt(searchLength, subjectLength)) {
                let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 32)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(32, and(searchLength, 31)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                mstore(result, t)
                                result := add(result, 1)
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Copy the `replacement` one word at a time.
                        for { let o := 0 } 1 {} {
                            mstore(add(result, o), mload(add(replacement, o)))
                            o := add(o, 0x20)
                            if iszero(lt(o, replacementLength)) { break }
                        }
                        result := add(result, replacementLength)
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    mstore(result, t)
                    result := add(result, 1)
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
            }

            let resultRemainder := result
            result := add(mload(0x40), 0x20)
            let k := add(sub(resultRemainder, result), sub(subjectEnd, subject))
            // Copy the rest of the string one word at a time.
            for {} lt(subject, subjectEnd) {} {
                mstore(resultRemainder, mload(subject))
                resultRemainder := add(resultRemainder, 0x20)
                subject := add(subject, 0x20)
            }
            result := sub(result, 0x20)
            // Zeroize the slot after the string.
            let last := add(add(result, 0x20), k)
            mstore(last, 0)
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 31), not(31)))
            // Store the length of the result.
            mstore(result, k)
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for { let subjectLength := mload(subject) } 1 {} {
                if iszero(mload(search)) {
                    // `result = min(from, subjectLength)`.
                    result := xor(from, mul(xor(from, subjectLength), lt(subjectLength, from)))
                    break
                }
                let searchLength := mload(search)
                let subjectStart := add(subject, 0x20)

                result := not(0) // Initialize to `NOT_FOUND`.

                subject := add(subjectStart, from)
                let subjectSearchEnd := add(sub(add(subjectStart, subjectLength), searchLength), 1)

                let m := shl(3, sub(32, and(searchLength, 31)))
                let s := mload(add(search, 0x20))

                if iszero(lt(subject, subjectSearchEnd)) { break }

                if iszero(lt(searchLength, 32)) {
                    for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                        if iszero(shr(m, xor(mload(subject), s))) {
                            if eq(keccak256(subject, searchLength), h) {
                                result := sub(subject, subjectStart)
                                break
                            }
                        }
                        subject := add(subject, 1)
                        if iszero(lt(subject, subjectSearchEnd)) { break }
                    }
                    break
                }
                for {} 1 {} {
                    if iszero(shr(m, xor(mload(subject), s))) {
                        result := sub(subject, subjectStart)
                        break
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from left to right.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function indexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = indexOf(subject, search, 0);
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left, starting from `from`.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search, uint256 from)
        internal
        pure
        returns (uint256 result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            for {} 1 {} {
                let searchLength := mload(search)
                let fromMax := sub(mload(subject), searchLength)
                if iszero(gt(fromMax, from)) { from := fromMax }
                if iszero(mload(search)) {
                    result := from
                    break
                }
                result := not(0) // Initialize to `NOT_FOUND`.

                let subjectSearchEnd := sub(add(subject, 0x20), 1)

                subject := add(add(subject, 0x20), from)
                if iszero(gt(subject, subjectSearchEnd)) { break }
                // As this function is not too often used,
                // we shall simply use keccak256 for smaller bytecode size.
                for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} {
                    if eq(keccak256(subject, searchLength), h) {
                        result := sub(subject, add(subjectSearchEnd, 1))
                        break
                    }
                    subject := sub(subject, 1)
                    if iszero(gt(subject, subjectSearchEnd)) { break }
                }
                break
            }
        }
    }

    /// @dev Returns the byte index of the first location of `search` in `subject`,
    /// searching from right to left.
    /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found.
    function lastIndexOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256 result)
    {
        result = lastIndexOf(subject, search, uint256(int256(-1)));
    }

    /// @dev Returns whether `subject` starts with `search`.
    function startsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                iszero(gt(searchLength, mload(subject))),
                eq(
                    keccak256(add(subject, 0x20), searchLength),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns whether `subject` ends with `search`.
    function endsWith(string memory subject, string memory search)
        internal
        pure
        returns (bool result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let searchLength := mload(search)
            let subjectLength := mload(subject)
            // Whether `search` is not longer than `subject`.
            let withinRange := iszero(gt(searchLength, subjectLength))
            // Just using keccak256 directly is actually cheaper.
            // forgefmt: disable-next-item
            result := and(
                withinRange,
                eq(
                    keccak256(
                        // `subject + 0x20 + max(subjectLength - searchLength, 0)`.
                        add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))),
                        searchLength
                    ),
                    keccak256(add(search, 0x20), searchLength)
                )
            )
        }
    }

    /// @dev Returns `subject` repeated `times`.
    function repeat(string memory subject, uint256 times)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(or(iszero(times), iszero(subjectLength))) {
                subject := add(subject, 0x20)
                result := mload(0x40)
                let output := add(result, 0x20)
                for {} 1 {} {
                    // Copy the `subject` one word at a time.
                    for { let o := 0 } 1 {} {
                        mstore(add(output, o), mload(add(subject, o)))
                        o := add(o, 0x20)
                        if iszero(lt(o, subjectLength)) { break }
                    }
                    output := add(output, subjectLength)
                    times := sub(times, 1)
                    if iszero(times) { break }
                }
                // Zeroize the slot after the string.
                mstore(output, 0)
                // Store the length.
                let resultLength := sub(output, add(result, 0x20))
                mstore(result, resultLength)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, add(result, and(add(resultLength, 63), not(31))))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive).
    /// `start` and `end` are byte offsets.
    function slice(string memory subject, uint256 start, uint256 end)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            if iszero(gt(subjectLength, end)) { end := subjectLength }
            if iszero(gt(subjectLength, start)) { start := subjectLength }
            if lt(start, end) {
                result := mload(0x40)
                let resultLength := sub(end, start)
                mstore(result, resultLength)
                subject := add(subject, start)
                let w := not(31)
                // Copy the `subject` one word at a time, backwards.
                for { let o := and(add(resultLength, 31), w) } 1 {} {
                    mstore(add(result, o), mload(add(subject, o)))
                    o := add(o, w) // `sub(o, 0x20)`.
                    if iszero(o) { break }
                }
                // Zeroize the slot after the string.
                mstore(add(add(result, 0x20), resultLength), 0)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, add(result, and(add(resultLength, 63), w)))
            }
        }
    }

    /// @dev Returns a copy of `subject` sliced from `start` to the end of the string.
    /// `start` is a byte offset.
    function slice(string memory subject, uint256 start)
        internal
        pure
        returns (string memory result)
    {
        result = slice(subject, start, uint256(int256(-1)));
    }

    /// @dev Returns all the indices of `search` in `subject`.
    /// The indices are byte offsets.
    function indicesOf(string memory subject, string memory search)
        internal
        pure
        returns (uint256[] memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let subjectLength := mload(subject)
            let searchLength := mload(search)

            if iszero(gt(searchLength, subjectLength)) {
                subject := add(subject, 0x20)
                search := add(search, 0x20)
                result := add(mload(0x40), 0x20)

                let subjectStart := subject
                let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1)
                let h := 0
                if iszero(lt(searchLength, 32)) { h := keccak256(search, searchLength) }
                let m := shl(3, sub(32, and(searchLength, 31)))
                let s := mload(search)
                for {} 1 {} {
                    let t := mload(subject)
                    // Whether the first `searchLength % 32` bytes of
                    // `subject` and `search` matches.
                    if iszero(shr(m, xor(t, s))) {
                        if h {
                            if iszero(eq(keccak256(subject, searchLength), h)) {
                                subject := add(subject, 1)
                                if iszero(lt(subject, subjectSearchEnd)) { break }
                                continue
                            }
                        }
                        // Append to `result`.
                        mstore(result, sub(subject, subjectStart))
                        result := add(result, 0x20)
                        // Advance `subject` by `searchLength`.
                        subject := add(subject, searchLength)
                        if searchLength {
                            if iszero(lt(subject, subjectSearchEnd)) { break }
                            continue
                        }
                    }
                    subject := add(subject, 1)
                    if iszero(lt(subject, subjectSearchEnd)) { break }
                }
                let resultEnd := result
                // Assign `result` to the free memory pointer.
                result := mload(0x40)
                // Store the length of `result`.
                mstore(result, shr(5, sub(resultEnd, add(result, 0x20))))
                // Allocate memory for result.
                // We allocate one more word, so this array can be recycled for {split}.
                mstore(0x40, add(resultEnd, 0x20))
            }
        }
    }

    /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string.
    function split(string memory subject, string memory delimiter)
        internal
        pure
        returns (string[] memory result)
    {
        uint256[] memory indices = indicesOf(subject, delimiter);
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(31)
            let indexPtr := add(indices, 0x20)
            let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1)))
            mstore(add(indicesEnd, w), mload(subject))
            mstore(indices, add(mload(indices), 1))
            let prevIndex := 0
            for {} 1 {} {
                let index := mload(indexPtr)
                mstore(indexPtr, 0x60)
                if iszero(eq(index, prevIndex)) {
                    let element := mload(0x40)
                    let elementLength := sub(index, prevIndex)
                    mstore(element, elementLength)
                    // Copy the `subject` one word at a time, backwards.
                    for { let o := and(add(elementLength, 31), w) } 1 {} {
                        mstore(add(element, o), mload(add(add(subject, prevIndex), o)))
                        o := add(o, w) // `sub(o, 0x20)`.
                        if iszero(o) { break }
                    }
                    // Zeroize the slot after the string.
                    mstore(add(add(element, 0x20), elementLength), 0)
                    // Allocate memory for the length and the bytes,
                    // rounded up to a multiple of 32.
                    mstore(0x40, add(element, and(add(elementLength, 63), w)))
                    // Store the `element` into the array.
                    mstore(indexPtr, element)
                }
                prevIndex := add(index, mload(delimiter))
                indexPtr := add(indexPtr, 0x20)
                if iszero(lt(indexPtr, indicesEnd)) { break }
            }
            result := indices
            if iszero(mload(delimiter)) {
                result := add(indices, 0x20)
                mstore(result, sub(mload(indices), 2))
            }
        }
    }

    /// @dev Returns a concatenated string of `a` and `b`.
    /// Cheaper than `string.concat()` and does not de-align the free memory pointer.
    function concat(string memory a, string memory b)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let w := not(31)
            result := mload(0x40)
            let aLength := mload(a)
            // Copy `a` one word at a time, backwards.
            for { let o := and(add(mload(a), 32), w) } 1 {} {
                mstore(add(result, o), mload(add(a, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let bLength := mload(b)
            let output := add(result, mload(a))
            // Copy `b` one word at a time, backwards.
            for { let o := and(add(bLength, 32), w) } 1 {} {
                mstore(add(output, o), mload(add(b, o)))
                o := add(o, w) // `sub(o, 0x20)`.
                if iszero(o) { break }
            }
            let totalLength := add(aLength, bLength)
            let last := add(add(result, 0x20), totalLength)
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Stores the length.
            mstore(result, totalLength)
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 31), w))
        }
    }

    /// @dev Returns a copy of the string in either lowercase or UPPERCASE.
    function toCase(string memory subject, bool toUpper)
        internal
        pure
        returns (string memory result)
    {
        /// @solidity memory-safe-assembly
        assembly {
            let length := mload(subject)
            if length {
                result := add(mload(0x40), 0x20)
                subject := add(subject, 1)
                let flags := shl(add(70, shl(5, toUpper)), 67108863)
                let w := not(0)
                for { let o := length } 1 {} {
                    o := add(o, w)
                    let b := and(0xff, mload(add(subject, o)))
                    mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20)))
                    if iszero(o) { break }
                }
                // Restore the result.
                result := mload(0x40)
                // Stores the string length.
                mstore(result, length)
                // Zeroize the slot after the string.
                let last := add(add(result, 0x20), length)
                mstore(last, 0)
                // Allocate memory for the length and the bytes,
                // rounded up to a multiple of 32.
                mstore(0x40, and(add(last, 31), not(31)))
            }
        }
    }

    /// @dev Returns a lowercased copy of the string.
    function lower(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, false);
    }

    /// @dev Returns an UPPERCASED copy of the string.
    function upper(string memory subject) internal pure returns (string memory result) {
        result = toCase(subject, true);
    }

    /// @dev Escapes the string to be used within HTML tags.
    function escapeHTML(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {
                let end := add(s, mload(s))
                result := add(mload(0x40), 0x20)
                // Store the bytes of the packed offsets and strides into the scratch space.
                // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6.
                mstore(0x1f, 0x900094)
                mstore(0x08, 0xc0000000a6ab)
                // Store "&quot;&amp;&#39;&lt;&gt;" into the scratch space.
                mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b))
            } iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                // Not in `["\"","'","&","<",">"]`.
                if iszero(and(shl(c, 1), 0x500000c400000000)) {
                    mstore8(result, c)
                    result := add(result, 1)
                    continue
                }
                let t := shr(248, mload(c))
                mstore(result, mload(and(t, 31)))
                result := add(result, shr(5, t))
            }
            let last := result
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Restore the result to the start of the free memory.
            result := mload(0x40)
            // Store the length of the result.
            mstore(result, sub(last, add(result, 0x20)))
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 31), not(31)))
        }
    }

    /// @dev Escapes the string to be used within double-quotes in a JSON.
    function escapeJSON(string memory s) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            for {
                let end := add(s, mload(s))
                result := add(mload(0x40), 0x20)
                // Store "\\u0000" in scratch space.
                // Store "0123456789abcdef" in scratch space.
                // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`.
                // into the scratch space.
                mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672)
                // Bitmask for detecting `["\"","\\"]`.
                let e := or(shl(0x22, 1), shl(0x5c, 1))
            } iszero(eq(s, end)) {} {
                s := add(s, 1)
                let c := and(mload(s), 0xff)
                if iszero(lt(c, 0x20)) {
                    if iszero(and(shl(c, 1), e)) {
                        // Not in `["\"","\\"]`.
                        mstore8(result, c)
                        result := add(result, 1)
                        continue
                    }
                    mstore8(result, 0x5c) // "\\".
                    mstore8(add(result, 1), c)
                    result := add(result, 2)
                    continue
                }
                if iszero(and(shl(c, 1), 0x3700)) {
                    // Not in `["\b","\t","\n","\f","\d"]`.
                    mstore8(0x1d, mload(shr(4, c))) // Hex value.
                    mstore8(0x1e, mload(and(c, 15))) // Hex value.
                    mstore(result, mload(0x19)) // "\\u00XX".
                    result := add(result, 6)
                    continue
                }
                mstore8(result, 0x5c) // "\\".
                mstore8(add(result, 1), mload(add(c, 8)))
                result := add(result, 2)
            }
            let last := result
            // Zeroize the slot after the string.
            mstore(last, 0)
            // Restore the result to the start of the free memory.
            result := mload(0x40)
            // Store the length of the result.
            mstore(result, sub(last, add(result, 0x20)))
            // Allocate memory for the length and the bytes,
            // rounded up to a multiple of 32.
            mstore(0x40, and(add(last, 31), not(31)))
        }
    }

    /// @dev Returns whether `a` equals `b`.
    function eq(string memory a, string memory b) internal pure returns (bool result) {
        assembly {
            result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b)))
        }
    }

    /// @dev Packs a single string with its length into a single word.
    /// Returns `bytes32(0)` if the length is zero or greater than 31.
    function packOne(string memory a) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            // We don't need to zero right pad the string,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes.
                    mload(add(a, 0x1f)),
                    // `length != 0 && length < 32`. Abuses underflow.
                    // Assumes that the length is valid and within the block gas limit.
                    lt(sub(mload(a), 1), 0x1f)
                )
        }
    }

    /// @dev Unpacks a string packed using {packOne}.
    /// Returns the empty string if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packOne}, the output behaviour is undefined.
    function unpackOne(bytes32 packed) internal pure returns (string memory result) {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            result := mload(0x40)
            // Allocate 2 words (1 for the length, 1 for the bytes).
            mstore(0x40, add(result, 0x40))
            // Zeroize the length slot.
            mstore(result, 0)
            // Store the length and bytes.
            mstore(add(result, 0x1f), packed)
            // Right pad with zeroes.
            mstore(add(add(result, 0x20), mload(result)), 0)
        }
    }

    /// @dev Packs two strings with their lengths into a single word.
    /// Returns `bytes32(0)` if combined length is zero or greater than 30.
    function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) {
        /// @solidity memory-safe-assembly
        assembly {
            let aLength := mload(a)
            // We don't need to zero right pad the strings,
            // since this is our own custom non-standard packing scheme.
            result :=
                mul(
                    // Load the length and the bytes of `a` and `b`.
                    or(
                        shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))),
                        mload(sub(add(b, 0x1e), aLength))
                    ),
                    // `totalLength != 0 && totalLength < 31`. Abuses underflow.
                    // Assumes that the lengths are valid and within the block gas limit.
                    lt(sub(add(aLength, mload(b)), 1), 0x1e)
                )
        }
    }

    /// @dev Unpacks strings packed using {packTwo}.
    /// Returns the empty strings if `packed` is `bytes32(0)`.
    /// If `packed` is not an output of {packTwo}, the output behaviour is undefined.
    function unpackTwo(bytes32 packed)
        internal
        pure
        returns (string memory resultA, string memory resultB)
    {
        /// @solidity memory-safe-assembly
        assembly {
            // Grab the free memory pointer.
            resultA := mload(0x40)
            resultB := add(resultA, 0x40)
            // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words.
            mstore(0x40, add(resultB, 0x40))
            // Zeroize the length slots.
            mstore(resultA, 0)
            mstore(resultB, 0)
            // Store the lengths and bytes.
            mstore(add(resultA, 0x1f), packed)
            mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA))))
            // Right pad with zeroes.
            mstore(add(add(resultA, 0x20), mload(resultA)), 0)
            mstore(add(add(resultB, 0x20), mload(resultB)), 0)
        }
    }

    /// @dev Directly returns `a` without copying.
    function directReturn(string memory a) internal pure {
        assembly {
            // Assumes that the string does not start from the scratch space.
            let retStart := sub(a, 0x20)
            let retSize := add(mload(a), 0x40)
            // Right pad with zeroes. Just in case the string is produced
            // by a method that doesn't zero right pad.
            mstore(add(retStart, retSize), 0)
            // Store the return offset.
            mstore(retStart, 0x20)
            // End the transaction, returning the string.
            return(retStart, retSize)
        }
    }
}

File 6 of 6 : Owned.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Simple single owner authorization mixin.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/auth/Owned.sol)
abstract contract Owned {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event OwnershipTransferred(address indexed user, address indexed newOwner);

    /*//////////////////////////////////////////////////////////////
                            OWNERSHIP STORAGE
    //////////////////////////////////////////////////////////////*/

    address public owner;

    modifier onlyOwner() virtual {
        require(msg.sender == owner, "UNAUTHORIZED");

        _;
    }

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(address _owner) {
        owner = _owner;

        emit OwnershipTransferred(address(0), _owner);
    }

    /*//////////////////////////////////////////////////////////////
                             OWNERSHIP LOGIC
    //////////////////////////////////////////////////////////////*/

    function transferOwnership(address newOwner) public virtual onlyOwner {
        owner = newOwner;

        emit OwnershipTransferred(msg.sender, newOwner);
    }
}

Settings
{
  "remappings": [
    "ERC721A/=lib/ERC721A/contracts/",
    "ds-test/=lib/solmate/lib/ds-test/src/",
    "forge-std/=lib/forge-std/src/",
    "solady/=lib/solady/src/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "bytecodeHash": "ipfs"
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"string","name":"enigma","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"newBaseURI","type":"string"}],"name":"changeBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

60806040526110686009553480156200001757600080fd5b5060405162001679380380620016798339810160408190526200003a916200010b565b336040518060600160405280603381526020016200164660339139604080518082019091526005815264534545445360d81b602082015260026200007f838262000276565b5060036200008e828262000276565b50506000808055600880546001600160a01b0319166001600160a01b0385169081179091556040519092507f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0908290a350600a620000ed828262000276565b505062000342565b634e487b7160e01b600052604160045260246000fd5b600060208083850312156200011f57600080fd5b82516001600160401b03808211156200013757600080fd5b818501915085601f8301126200014c57600080fd5b815181811115620001615762000161620000f5565b604051601f8201601f19908116603f011681019083821181831017156200018c576200018c620000f5565b816040528281528886848701011115620001a557600080fd5b600093505b82841015620001c95784840186015181850187015292850192620001aa565b82841115620001db5760008684830101525b98975050505050505050565b600181811c90821680620001fc57607f821691505b6020821081036200021d57634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200027157600081815260208120601f850160051c810160208610156200024c5750805b601f850160051c820191505b818110156200026d5782815560010162000258565b5050505b505050565b81516001600160401b03811115620002925762000292620000f5565b620002aa81620002a38454620001e7565b8462000223565b602080601f831160018114620002e25760008415620002c95750858301515b600019600386901b1c1916600185901b1785556200026d565b600085815260208120601f198616915b828110156200031357888601518255948401946001909101908401620002f2565b5085821015620003325787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b6112f480620003526000396000f3fe60806040526004361061011f5760003560e01c80636352211e116100a0578063a22cb46511610064578063a22cb465146102f0578063b88d4fde14610310578063c87b56dd14610323578063e985e9c514610343578063f2fde38b1461038c57600080fd5b80636352211e146102665780636c0360eb1461028657806370a082311461029b5780638da5cb5b146102bb57806395d89b41146102db57600080fd5b806323b872dd116100e757806323b872dd146101eb57806339a0c6f9146101fe5780633ccfd60b1461021e57806340c10f191461023357806342842e0e1461025357600080fd5b806301ffc9a71461012457806306fdde0314610159578063081812fc1461017b578063095ea7b3146101b357806318160ddd146101c8575b600080fd5b34801561013057600080fd5b5061014461013f366004610dbd565b6103ac565b60405190151581526020015b60405180910390f35b34801561016557600080fd5b5061016e6103fe565b6040516101509190610e32565b34801561018757600080fd5b5061019b610196366004610e45565b610490565b6040516001600160a01b039091168152602001610150565b6101c66101c1366004610e7a565b6104d4565b005b3480156101d457600080fd5b50600154600054035b604051908152602001610150565b6101c66101f9366004610ea4565b610574565b34801561020a57600080fd5b506101c6610219366004610ee0565b61070d565b34801561022a57600080fd5b506101c6610752565b34801561023f57600080fd5b506101c661024e366004610e7a565b610798565b6101c6610261366004610ea4565b610818565b34801561027257600080fd5b5061019b610281366004610e45565b610833565b34801561029257600080fd5b5061016e61083e565b3480156102a757600080fd5b506101dd6102b6366004610f52565b6108cc565b3480156102c757600080fd5b5060085461019b906001600160a01b031681565b3480156102e757600080fd5b5061016e61091b565b3480156102fc57600080fd5b506101c661030b366004610f6d565b61092a565b6101c661031e366004610fbf565b610996565b34801561032f57600080fd5b5061016e61033e366004610e45565b6109e0565b34801561034f57600080fd5b5061014461035e36600461109b565b6001600160a01b03918216600090815260076020908152604080832093909416825291909152205460ff1690565b34801561039857600080fd5b506101c66103a7366004610f52565b610a64565b60006301ffc9a760e01b6001600160e01b0319831614806103dd57506380ac58cd60e01b6001600160e01b03198316145b806103f85750635b5e139f60e01b6001600160e01b03198316145b92915050565b60606002805461040d906110ce565b80601f0160208091040260200160405190810160405280929190818152602001828054610439906110ce565b80156104865780601f1061045b57610100808354040283529160200191610486565b820191906000526020600020905b81548152906001019060200180831161046957829003601f168201915b5050505050905090565b600061049b82610ada565b6104b8576040516333d1c03960e21b815260040160405180910390fd5b506000908152600660205260409020546001600160a01b031690565b60006104df82610833565b9050336001600160a01b03821614610518576104fb813361035e565b610518576040516367d9dca160e11b815260040160405180910390fd5b60008281526006602052604080822080546001600160a01b0319166001600160a01b0387811691821790925591518593918516917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591a4505050565b600061057f82610b01565b9050836001600160a01b0316816001600160a01b0316146105b25760405162a1148160e81b815260040160405180910390fd5b60008281526006602052604090208054338082146001600160a01b038816909114176105ff576105e2863361035e565b6105ff57604051632ce44b5f60e11b815260040160405180910390fd5b6001600160a01b03851661062657604051633a954ecd60e21b815260040160405180910390fd5b801561063157600082555b6001600160a01b038681166000908152600560205260408082208054600019019055918716808252919020805460010190554260a01b17600160e11b17600085815260046020526040812091909155600160e11b841690036106c3576001840160008181526004602052604081205490036106c15760005481146106c15760008181526004602052604090208490555b505b83856001600160a01b0316876001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60405160405180910390a45b505050505050565b6008546001600160a01b031633146107405760405162461bcd60e51b815260040161073790611108565b60405180910390fd5b600b61074d828483611174565b505050565b6008546001600160a01b0316331461077c5760405162461bcd60e51b815260040161073790611108565b600080818283473386f18015610790578182f35b8182fd5b5050565b6008546001600160a01b031633146107c25760405162461bcd60e51b815260040161073790611108565b600954600154600054031061080e5760405162461bcd60e51b815260206004820152601260248201527113585e0814dd5c1c1b1e4814995858da195960721b6044820152606401610737565b6107948282610b68565b61074d83838360405180602001604052806000815250610996565b60006103f882610b01565b600b805461084b906110ce565b80601f0160208091040260200160405190810160405280929190818152602001828054610877906110ce565b80156108c45780601f10610899576101008083540402835291602001916108c4565b820191906000526020600020905b8154815290600101906020018083116108a757829003601f168201915b505050505081565b60006001600160a01b0382166108f5576040516323d3ad8160e21b815260040160405180910390fd5b506001600160a01b031660009081526005602052604090205467ffffffffffffffff1690565b60606003805461040d906110ce565b3360008181526007602090815260408083206001600160a01b03871680855290835292819020805460ff191686151590811790915590519081529192917f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a35050565b6109a1848484610574565b6001600160a01b0383163b156109da576109bd84848484610c66565b6109da576040516368d2bf6b60e11b815260040160405180910390fd5b50505050565b60606109eb82610ada565b610a0857604051630a14c4b560e41b815260040160405180910390fd5b6000610a12610d51565b90508051600003610a325760405180602001604052806000815250610a5d565b80610a3c84610d60565b604051602001610a4d929190611235565b6040516020818303038152906040525b9392505050565b6008546001600160a01b03163314610a8e5760405162461bcd60e51b815260040161073790611108565b600880546001600160a01b0319166001600160a01b03831690811790915560405133907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a350565b60008054821080156103f8575050600090815260046020526040902054600160e01b161590565b600081600054811015610b4f5760008181526004602052604081205490600160e01b82169003610b4d575b80600003610a5d575060001901600081815260046020526040902054610b2c565b505b604051636f96cda160e11b815260040160405180910390fd5b6000805490829003610b8d5760405163b562e8dd60e01b815260040160405180910390fd5b6001600160a01b03831660008181526005602090815260408083208054680100000000000000018802019055848352600490915281206001851460e11b4260a01b178317905582840190839083907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8180a4600183015b818114610c3c57808360007fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef600080a4600101610c04565b5081600003610c5d57604051622e076360e81b815260040160405180910390fd5b60005550505050565b604051630a85bd0160e11b81526000906001600160a01b0385169063150b7a0290610c9b903390899088908890600401611264565b6020604051808303816000875af1925050508015610cd6575060408051601f3d908101601f19168201909252610cd3918101906112a1565b60015b610d34573d808015610d04576040519150601f19603f3d011682016040523d82523d6000602084013e610d09565b606091505b508051600003610d2c576040516368d2bf6b60e11b815260040160405180910390fd5b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050949350505050565b6060600b805461040d906110ce565b606060a06040510180604052602081039150506000815280825b600183039250600a81066030018353600a900480610d7a5750819003601f19909101908152919050565b6001600160e01b031981168114610dba57600080fd5b50565b600060208284031215610dcf57600080fd5b8135610a5d81610da4565b60005b83811015610df5578181015183820152602001610ddd565b838111156109da5750506000910152565b60008151808452610e1e816020860160208601610dda565b601f01601f19169290920160200192915050565b602081526000610a5d6020830184610e06565b600060208284031215610e5757600080fd5b5035919050565b80356001600160a01b0381168114610e7557600080fd5b919050565b60008060408385031215610e8d57600080fd5b610e9683610e5e565b946020939093013593505050565b600080600060608486031215610eb957600080fd5b610ec284610e5e565b9250610ed060208501610e5e565b9150604084013590509250925092565b60008060208385031215610ef357600080fd5b823567ffffffffffffffff80821115610f0b57600080fd5b818501915085601f830112610f1f57600080fd5b813581811115610f2e57600080fd5b866020828501011115610f4057600080fd5b60209290920196919550909350505050565b600060208284031215610f6457600080fd5b610a5d82610e5e565b60008060408385031215610f8057600080fd5b610f8983610e5e565b915060208301358015158114610f9e57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b60008060008060808587031215610fd557600080fd5b610fde85610e5e565b9350610fec60208601610e5e565b925060408501359150606085013567ffffffffffffffff8082111561101057600080fd5b818701915087601f83011261102457600080fd5b81358181111561103657611036610fa9565b604051601f8201601f19908116603f0116810190838211818310171561105e5761105e610fa9565b816040528281528a602084870101111561107757600080fd5b82602086016020830137600060208483010152809550505050505092959194509250565b600080604083850312156110ae57600080fd5b6110b783610e5e565b91506110c560208401610e5e565b90509250929050565b600181811c908216806110e257607f821691505b60208210810361110257634e487b7160e01b600052602260045260246000fd5b50919050565b6020808252600c908201526b15539055551213d49256915160a21b604082015260600190565b601f82111561074d57600081815260208120601f850160051c810160208610156111555750805b601f850160051c820191505b8181101561070557828155600101611161565b67ffffffffffffffff83111561118c5761118c610fa9565b6111a08361119a83546110ce565b8361112e565b6000601f8411600181146111d457600085156111bc5750838201355b600019600387901b1c1916600186901b17835561122e565b600083815260209020601f19861690835b8281101561120557868501358255602094850194600190920191016111e5565b50868210156112225760001960f88860031b161c19848701351681555b505060018560011b0183555b5050505050565b60008351611247818460208801610dda565b83519083019061125b818360208801610dda565b01949350505050565b6001600160a01b038581168252841660208201526040810183905260806060820181905260009061129790830184610e06565b9695505050505050565b6000602082840312156112b357600080fd5b8151610a5d81610da456fea26469706673582212202a40e8430a7bd916c83de2f16066e0d4b07b6a6018253c66dd4fc6b8822e977764736f6c634300080f00335468657920747269656420746f20627572792075732c206275742074686579206469646e2774206b6e6f7720776520776572650000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000004f49747320616e20656e69676d61203232333537207a6a6f7378206f6b7a6169206475637067206c656e77752065656d706b2071636864752066736a687620796b697a672062686263702065646e706b0000000000000000000000000000000000

Deployed Bytecode

0x60806040526004361061011f5760003560e01c80636352211e116100a0578063a22cb46511610064578063a22cb465146102f0578063b88d4fde14610310578063c87b56dd14610323578063e985e9c514610343578063f2fde38b1461038c57600080fd5b80636352211e146102665780636c0360eb1461028657806370a082311461029b5780638da5cb5b146102bb57806395d89b41146102db57600080fd5b806323b872dd116100e757806323b872dd146101eb57806339a0c6f9146101fe5780633ccfd60b1461021e57806340c10f191461023357806342842e0e1461025357600080fd5b806301ffc9a71461012457806306fdde0314610159578063081812fc1461017b578063095ea7b3146101b357806318160ddd146101c8575b600080fd5b34801561013057600080fd5b5061014461013f366004610dbd565b6103ac565b60405190151581526020015b60405180910390f35b34801561016557600080fd5b5061016e6103fe565b6040516101509190610e32565b34801561018757600080fd5b5061019b610196366004610e45565b610490565b6040516001600160a01b039091168152602001610150565b6101c66101c1366004610e7a565b6104d4565b005b3480156101d457600080fd5b50600154600054035b604051908152602001610150565b6101c66101f9366004610ea4565b610574565b34801561020a57600080fd5b506101c6610219366004610ee0565b61070d565b34801561022a57600080fd5b506101c6610752565b34801561023f57600080fd5b506101c661024e366004610e7a565b610798565b6101c6610261366004610ea4565b610818565b34801561027257600080fd5b5061019b610281366004610e45565b610833565b34801561029257600080fd5b5061016e61083e565b3480156102a757600080fd5b506101dd6102b6366004610f52565b6108cc565b3480156102c757600080fd5b5060085461019b906001600160a01b031681565b3480156102e757600080fd5b5061016e61091b565b3480156102fc57600080fd5b506101c661030b366004610f6d565b61092a565b6101c661031e366004610fbf565b610996565b34801561032f57600080fd5b5061016e61033e366004610e45565b6109e0565b34801561034f57600080fd5b5061014461035e36600461109b565b6001600160a01b03918216600090815260076020908152604080832093909416825291909152205460ff1690565b34801561039857600080fd5b506101c66103a7366004610f52565b610a64565b60006301ffc9a760e01b6001600160e01b0319831614806103dd57506380ac58cd60e01b6001600160e01b03198316145b806103f85750635b5e139f60e01b6001600160e01b03198316145b92915050565b60606002805461040d906110ce565b80601f0160208091040260200160405190810160405280929190818152602001828054610439906110ce565b80156104865780601f1061045b57610100808354040283529160200191610486565b820191906000526020600020905b81548152906001019060200180831161046957829003601f168201915b5050505050905090565b600061049b82610ada565b6104b8576040516333d1c03960e21b815260040160405180910390fd5b506000908152600660205260409020546001600160a01b031690565b60006104df82610833565b9050336001600160a01b03821614610518576104fb813361035e565b610518576040516367d9dca160e11b815260040160405180910390fd5b60008281526006602052604080822080546001600160a01b0319166001600160a01b0387811691821790925591518593918516917f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92591a4505050565b600061057f82610b01565b9050836001600160a01b0316816001600160a01b0316146105b25760405162a1148160e81b815260040160405180910390fd5b60008281526006602052604090208054338082146001600160a01b038816909114176105ff576105e2863361035e565b6105ff57604051632ce44b5f60e11b815260040160405180910390fd5b6001600160a01b03851661062657604051633a954ecd60e21b815260040160405180910390fd5b801561063157600082555b6001600160a01b038681166000908152600560205260408082208054600019019055918716808252919020805460010190554260a01b17600160e11b17600085815260046020526040812091909155600160e11b841690036106c3576001840160008181526004602052604081205490036106c15760005481146106c15760008181526004602052604090208490555b505b83856001600160a01b0316876001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60405160405180910390a45b505050505050565b6008546001600160a01b031633146107405760405162461bcd60e51b815260040161073790611108565b60405180910390fd5b600b61074d828483611174565b505050565b6008546001600160a01b0316331461077c5760405162461bcd60e51b815260040161073790611108565b600080818283473386f18015610790578182f35b8182fd5b5050565b6008546001600160a01b031633146107c25760405162461bcd60e51b815260040161073790611108565b600954600154600054031061080e5760405162461bcd60e51b815260206004820152601260248201527113585e0814dd5c1c1b1e4814995858da195960721b6044820152606401610737565b6107948282610b68565b61074d83838360405180602001604052806000815250610996565b60006103f882610b01565b600b805461084b906110ce565b80601f0160208091040260200160405190810160405280929190818152602001828054610877906110ce565b80156108c45780601f10610899576101008083540402835291602001916108c4565b820191906000526020600020905b8154815290600101906020018083116108a757829003601f168201915b505050505081565b60006001600160a01b0382166108f5576040516323d3ad8160e21b815260040160405180910390fd5b506001600160a01b031660009081526005602052604090205467ffffffffffffffff1690565b60606003805461040d906110ce565b3360008181526007602090815260408083206001600160a01b03871680855290835292819020805460ff191686151590811790915590519081529192917f17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31910160405180910390a35050565b6109a1848484610574565b6001600160a01b0383163b156109da576109bd84848484610c66565b6109da576040516368d2bf6b60e11b815260040160405180910390fd5b50505050565b60606109eb82610ada565b610a0857604051630a14c4b560e41b815260040160405180910390fd5b6000610a12610d51565b90508051600003610a325760405180602001604052806000815250610a5d565b80610a3c84610d60565b604051602001610a4d929190611235565b6040516020818303038152906040525b9392505050565b6008546001600160a01b03163314610a8e5760405162461bcd60e51b815260040161073790611108565b600880546001600160a01b0319166001600160a01b03831690811790915560405133907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a350565b60008054821080156103f8575050600090815260046020526040902054600160e01b161590565b600081600054811015610b4f5760008181526004602052604081205490600160e01b82169003610b4d575b80600003610a5d575060001901600081815260046020526040902054610b2c565b505b604051636f96cda160e11b815260040160405180910390fd5b6000805490829003610b8d5760405163b562e8dd60e01b815260040160405180910390fd5b6001600160a01b03831660008181526005602090815260408083208054680100000000000000018802019055848352600490915281206001851460e11b4260a01b178317905582840190839083907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8180a4600183015b818114610c3c57808360007fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef600080a4600101610c04565b5081600003610c5d57604051622e076360e81b815260040160405180910390fd5b60005550505050565b604051630a85bd0160e11b81526000906001600160a01b0385169063150b7a0290610c9b903390899088908890600401611264565b6020604051808303816000875af1925050508015610cd6575060408051601f3d908101601f19168201909252610cd3918101906112a1565b60015b610d34573d808015610d04576040519150601f19603f3d011682016040523d82523d6000602084013e610d09565b606091505b508051600003610d2c576040516368d2bf6b60e11b815260040160405180910390fd5b805181602001fd5b6001600160e01b031916630a85bd0160e11b149050949350505050565b6060600b805461040d906110ce565b606060a06040510180604052602081039150506000815280825b600183039250600a81066030018353600a900480610d7a5750819003601f19909101908152919050565b6001600160e01b031981168114610dba57600080fd5b50565b600060208284031215610dcf57600080fd5b8135610a5d81610da4565b60005b83811015610df5578181015183820152602001610ddd565b838111156109da5750506000910152565b60008151808452610e1e816020860160208601610dda565b601f01601f19169290920160200192915050565b602081526000610a5d6020830184610e06565b600060208284031215610e5757600080fd5b5035919050565b80356001600160a01b0381168114610e7557600080fd5b919050565b60008060408385031215610e8d57600080fd5b610e9683610e5e565b946020939093013593505050565b600080600060608486031215610eb957600080fd5b610ec284610e5e565b9250610ed060208501610e5e565b9150604084013590509250925092565b60008060208385031215610ef357600080fd5b823567ffffffffffffffff80821115610f0b57600080fd5b818501915085601f830112610f1f57600080fd5b813581811115610f2e57600080fd5b866020828501011115610f4057600080fd5b60209290920196919550909350505050565b600060208284031215610f6457600080fd5b610a5d82610e5e565b60008060408385031215610f8057600080fd5b610f8983610e5e565b915060208301358015158114610f9e57600080fd5b809150509250929050565b634e487b7160e01b600052604160045260246000fd5b60008060008060808587031215610fd557600080fd5b610fde85610e5e565b9350610fec60208601610e5e565b925060408501359150606085013567ffffffffffffffff8082111561101057600080fd5b818701915087601f83011261102457600080fd5b81358181111561103657611036610fa9565b604051601f8201601f19908116603f0116810190838211818310171561105e5761105e610fa9565b816040528281528a602084870101111561107757600080fd5b82602086016020830137600060208483010152809550505050505092959194509250565b600080604083850312156110ae57600080fd5b6110b783610e5e565b91506110c560208401610e5e565b90509250929050565b600181811c908216806110e257607f821691505b60208210810361110257634e487b7160e01b600052602260045260246000fd5b50919050565b6020808252600c908201526b15539055551213d49256915160a21b604082015260600190565b601f82111561074d57600081815260208120601f850160051c810160208610156111555750805b601f850160051c820191505b8181101561070557828155600101611161565b67ffffffffffffffff83111561118c5761118c610fa9565b6111a08361119a83546110ce565b8361112e565b6000601f8411600181146111d457600085156111bc5750838201355b600019600387901b1c1916600186901b17835561122e565b600083815260209020601f19861690835b8281101561120557868501358255602094850194600190920191016111e5565b50868210156112225760001960f88860031b161c19848701351681555b505060018560011b0183555b5050505050565b60008351611247818460208801610dda565b83519083019061125b818360208801610dda565b01949350505050565b6001600160a01b038581168252841660208201526040810183905260806060820181905260009061129790830184610e06565b9695505050505050565b6000602082840312156112b357600080fd5b8151610a5d81610da456fea26469706673582212202a40e8430a7bd916c83de2f16066e0d4b07b6a6018253c66dd4fc6b8822e977764736f6c634300080f0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000004f49747320616e20656e69676d61203232333537207a6a6f7378206f6b7a6169206475637067206c656e77752065656d706b2071636864752066736a687620796b697a672062686263702065646e706b0000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : enigma (string): Its an enigma 22357 zjosx okzai ducpg lenwu eempk qchdu fsjhv ykizg bhbcp ednpk

-----Encoded View---------------
5 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 000000000000000000000000000000000000000000000000000000000000004f
Arg [2] : 49747320616e20656e69676d61203232333537207a6a6f7378206f6b7a616920
Arg [3] : 6475637067206c656e77752065656d706b2071636864752066736a687620796b
Arg [4] : 697a672062686263702065646e706b0000000000000000000000000000000000


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.