ERC-721
Overview
Max Total Supply
50 SORRY
Holders
43
Market
Volume (24H)
N/A
Min Price (24H)
N/A
Max Price (24H)
N/A
Other Info
Token Contract
Balance
5 SORRYLoading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Minimal Proxy Contract for 0xe5feb62fb34adba661b7c8256887a8b9a21c2278
Contract Name:
SoundEditionV1_1
Compiler Version
v0.8.16+commit.07a7930e
Optimization Enabled:
Yes with 1000 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.16; /* ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ ▒███████████████████████████████████████████████████████████ ▒███████████████████████████████████████████████████████████ ▒▓▓▓▓▓▓▓▓▓▓▓▓▓████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓▓██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒ █████████████████████████████▓ ████████████████████████████████████████████ █████████████████████████████▓ ████████████████████████████████████████████ █████████████████████████████▓ ▒▒▒▒▒▒▒▒▒▒▒▒▒██████████████████████████████ █████████████████████████████▓ ▒█████████████████████████████ █████████████████████████████▓ ▒████████████████████████████ █████████████████████████████████████████████████████████▓ ███████████████████████████████████████████████████████████ ███████████████████████████████████████████████████████████▒ ███████████████████████████████████████████████████████████▒ ▓██████████████████████████████████████████████████████████▒ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████████████████████▒ █████████████████████████████ ▒█████████████████████████████▒ ██████████████████████████████ ▒█████████████████████████████▒ ██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒ ▒█████████████████████████████▒ ████████████████████████████████████████████▒ ▒█████████████████████████████▒ ████████████████████████████████████████████▒ ▒█████████████████████████████▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒███████████████████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒ ▓██████████████████████████████████████████████████████████▒ ▓██████████████████████████████████████████████████████████ */ import { IERC721AUpgradeable } from "chiru-labs/ERC721A-Upgradeable/IERC721AUpgradeable.sol"; import { ERC721AUpgradeable, ERC721AStorage } from "chiru-labs/ERC721A-Upgradeable/ERC721AUpgradeable.sol"; import { ERC721AQueryableUpgradeable } from "chiru-labs/ERC721A-Upgradeable/extensions/ERC721AQueryableUpgradeable.sol"; import { ERC721ABurnableUpgradeable } from "chiru-labs/ERC721A-Upgradeable/extensions/ERC721ABurnableUpgradeable.sol"; import { IERC20 } from "openzeppelin/token/ERC20/IERC20.sol"; import { IERC2981Upgradeable } from "openzeppelin-upgradeable/interfaces/IERC2981Upgradeable.sol"; import { SafeTransferLib } from "solady/utils/SafeTransferLib.sol"; import { FixedPointMathLib } from "solady/utils/FixedPointMathLib.sol"; import { OwnableRoles } from "solady/auth/OwnableRoles.sol"; import { LibString } from "solady/utils/LibString.sol"; import { OperatorFilterer } from "closedsea/OperatorFilterer.sol"; import { ISoundEditionV1_1, EditionInfo } from "./interfaces/ISoundEditionV1_1.sol"; import { IMetadataModule } from "./interfaces/IMetadataModule.sol"; import { ArweaveURILib } from "./utils/ArweaveURILib.sol"; import { MintRandomnessLib } from "./utils/MintRandomnessLib.sol"; /** * @title SoundEditionV1_1 * @notice The Sound Edition contract - a creator-owned, modifiable implementation of ERC721A. */ contract SoundEditionV1_1 is ISoundEditionV1_1, ERC721AQueryableUpgradeable, ERC721ABurnableUpgradeable, OwnableRoles, OperatorFilterer { using ArweaveURILib for ArweaveURILib.URI; // ============================================================= // CONSTANTS // ============================================================= /** * @dev A role every minter module must have in order to mint new tokens. */ uint256 public constant MINTER_ROLE = _ROLE_1; /** * @dev A role the owner can grant for performing admin actions. */ uint256 public constant ADMIN_ROLE = _ROLE_0; /** * @dev The maximum limit for the mint or airdrop `quantity`. * Prevents the first-time transfer costs for tokens near the end of large mint batches * via ERC721A from becoming too expensive due to the need to scan many storage slots. * See: https://chiru-labs.github.io/ERC721A/#/tips?id=batch-size */ uint256 public constant ADDRESS_BATCH_MINT_LIMIT = 255; /** * @dev Basis points denominator used in fee calculations. */ uint16 internal constant _MAX_BPS = 10_000; /** * @dev The interface ID for EIP-2981 (royaltyInfo) */ bytes4 private constant _INTERFACE_ID_ERC2981 = 0x2a55205a; /** * @dev The interface ID for SoundEdition v1.0.0. */ bytes4 private constant _INTERFACE_ID_SOUND_EDITION_V1 = 0x50899e54; /** * @dev The boolean flag on whether the metadata is frozen. */ uint8 public constant METADATA_IS_FROZEN_FLAG = 1 << 0; /** * @dev The boolean flag on whether the `mintRandomness` is enabled. */ uint8 public constant MINT_RANDOMNESS_ENABLED_FLAG = 1 << 1; /** * @dev The boolean flag on whether OpenSea operator filtering is enabled. */ uint8 public constant OPERATOR_FILTERING_ENABLED_FLAG = 1 << 2; // ============================================================= // STORAGE // ============================================================= /** * @dev The value for `name` and `symbol` if their combined * length is (32 - 2) bytes. We need 2 bytes for their lengths. */ bytes32 private _shortNameAndSymbol; /** * @dev The metadata's base URI. */ ArweaveURILib.URI private _baseURIStorage; /** * @dev The contract base URI. */ ArweaveURILib.URI private _contractURIStorage; /** * @dev The destination for ETH withdrawals. */ address public fundingRecipient; /** * @dev The upper bound of the max mintable quantity for the edition. */ uint32 public editionMaxMintableUpper; /** * @dev The lower bound for the maximum tokens that can be minted for this edition. */ uint32 public editionMaxMintableLower; /** * @dev The timestamp after which `editionMaxMintable` drops from * `editionMaxMintableUpper` to `max(_totalMinted(), editionMaxMintableLower)`. */ uint32 public editionCutoffTime; /** * @dev Metadata module used for `tokenURI` and `contractURI` if it is set. */ address public metadataModule; /** * @dev The randomness based on latest block hash, which is stored upon each mint * unless `randomnessLockedAfterMinted` or `randomnessLockedTimestamp` have been surpassed. * Used for game mechanics like the Sound Golden Egg. */ uint72 private _mintRandomness; /** * @dev The royalty fee in basis points. */ uint16 public royaltyBPS; /** * @dev Packed boolean flags. */ uint8 private _flags; // ============================================================= // PUBLIC / EXTERNAL WRITE FUNCTIONS // ============================================================= /** * @inheritdoc ISoundEditionV1_1 */ function initialize( string memory name_, string memory symbol_, address metadataModule_, string memory baseURI_, string memory contractURI_, address fundingRecipient_, uint16 royaltyBPS_, uint32 editionMaxMintableLower_, uint32 editionMaxMintableUpper_, uint32 editionCutoffTime_, uint8 flags_ ) external onlyValidRoyaltyBPS(royaltyBPS_) { // Prevent double initialization. // We can "cheat" here and avoid the initializer modifer to save a SSTORE, // since the `_nextTokenId()` is defined to always return 1. if (_nextTokenId() != 0) revert Unauthorized(); if (fundingRecipient_ == address(0)) revert InvalidFundingRecipient(); if (editionMaxMintableLower_ > editionMaxMintableUpper_) revert InvalidEditionMaxMintableRange(); _initializeNameAndSymbol(name_, symbol_); ERC721AStorage.layout()._currentIndex = _startTokenId(); _initializeOwner(msg.sender); _baseURIStorage.initialize(baseURI_); _contractURIStorage.initialize(contractURI_); fundingRecipient = fundingRecipient_; editionMaxMintableUpper = editionMaxMintableUpper_; editionMaxMintableLower = editionMaxMintableLower_; editionCutoffTime = editionCutoffTime_; _flags = flags_; metadataModule = metadataModule_; royaltyBPS = royaltyBPS_; emit SoundEditionInitialized( address(this), name_, symbol_, metadataModule_, baseURI_, contractURI_, fundingRecipient_, royaltyBPS_, editionMaxMintableLower_, editionMaxMintableUpper_, editionCutoffTime_, flags_ ); if (flags_ & OPERATOR_FILTERING_ENABLED_FLAG != 0) { _registerForOperatorFiltering(); } } /** * @inheritdoc ISoundEditionV1_1 */ function mint(address to, uint256 quantity) external payable onlyRolesOrOwner(ADMIN_ROLE | MINTER_ROLE) requireWithinAddressBatchMintLimit(quantity) requireMintable(quantity) updatesMintRandomness returns (uint256 fromTokenId) { fromTokenId = _nextTokenId(); // Mint the tokens. Will revert if `quantity` is zero. _mint(to, quantity); emit Minted(to, quantity, fromTokenId); } /** * @inheritdoc ISoundEditionV1_1 */ function airdrop(address[] calldata to, uint256 quantity) external onlyRolesOrOwner(ADMIN_ROLE) requireWithinAddressBatchMintLimit(quantity) requireMintable(to.length * quantity) updatesMintRandomness returns (uint256 fromTokenId) { if (to.length == 0) revert NoAddressesToAirdrop(); fromTokenId = _nextTokenId(); // Won't overflow, as `to.length` is bounded by the block max gas limit. unchecked { uint256 toLength = to.length; // Mint the tokens. Will revert if `quantity` is zero. for (uint256 i; i != toLength; ++i) { _mint(to[i], quantity); } } emit Airdropped(to, quantity, fromTokenId); } /** * @inheritdoc ISoundEditionV1_1 */ function withdrawETH() external { uint256 amount = address(this).balance; SafeTransferLib.safeTransferETH(fundingRecipient, amount); emit ETHWithdrawn(fundingRecipient, amount, msg.sender); } /** * @inheritdoc ISoundEditionV1_1 */ function withdrawERC20(address[] calldata tokens) external { unchecked { uint256 n = tokens.length; uint256[] memory amounts = new uint256[](n); for (uint256 i; i != n; ++i) { uint256 amount = IERC20(tokens[i]).balanceOf(address(this)); SafeTransferLib.safeTransfer(tokens[i], fundingRecipient, amount); amounts[i] = amount; } emit ERC20Withdrawn(fundingRecipient, tokens, amounts, msg.sender); } } /** * @inheritdoc ISoundEditionV1_1 */ function setMetadataModule(address metadataModule_) external onlyRolesOrOwner(ADMIN_ROLE) onlyMetadataNotFrozen { metadataModule = metadataModule_; emit MetadataModuleSet(metadataModule_); } /** * @inheritdoc ISoundEditionV1_1 */ function setBaseURI(string memory baseURI_) external onlyRolesOrOwner(ADMIN_ROLE) onlyMetadataNotFrozen { _baseURIStorage.update(baseURI_); emit BaseURISet(baseURI_); } /** * @inheritdoc ISoundEditionV1_1 */ function setContractURI(string memory contractURI_) external onlyRolesOrOwner(ADMIN_ROLE) onlyMetadataNotFrozen { _contractURIStorage.update(contractURI_); emit ContractURISet(contractURI_); } /** * @inheritdoc ISoundEditionV1_1 */ function freezeMetadata() external onlyRolesOrOwner(ADMIN_ROLE) onlyMetadataNotFrozen { _flags |= METADATA_IS_FROZEN_FLAG; emit MetadataFrozen(metadataModule, baseURI(), contractURI()); } /** * @inheritdoc ISoundEditionV1_1 */ function setFundingRecipient(address fundingRecipient_) external onlyRolesOrOwner(ADMIN_ROLE) { if (fundingRecipient_ == address(0)) revert InvalidFundingRecipient(); fundingRecipient = fundingRecipient_; emit FundingRecipientSet(fundingRecipient_); } /** * @inheritdoc ISoundEditionV1_1 */ function setRoyalty(uint16 royaltyBPS_) external onlyRolesOrOwner(ADMIN_ROLE) onlyValidRoyaltyBPS(royaltyBPS_) { royaltyBPS = royaltyBPS_; emit RoyaltySet(royaltyBPS_); } /** * @inheritdoc ISoundEditionV1_1 */ function setEditionMaxMintableRange(uint32 editionMaxMintableLower_, uint32 editionMaxMintableUpper_) external onlyRolesOrOwner(ADMIN_ROLE) { if (mintConcluded()) revert MintHasConcluded(); uint32 currentTotalMinted = uint32(_totalMinted()); if (currentTotalMinted != 0) { editionMaxMintableLower_ = uint32(FixedPointMathLib.max(editionMaxMintableLower_, currentTotalMinted)); editionMaxMintableUpper_ = uint32(FixedPointMathLib.max(editionMaxMintableUpper_, currentTotalMinted)); // If the upper bound is larger than the current stored value, revert. if (editionMaxMintableUpper_ > editionMaxMintableUpper) revert InvalidEditionMaxMintableRange(); } // If the lower bound is larger than the upper bound, revert. if (editionMaxMintableLower_ > editionMaxMintableUpper_) revert InvalidEditionMaxMintableRange(); editionMaxMintableLower = editionMaxMintableLower_; editionMaxMintableUpper = editionMaxMintableUpper_; emit EditionMaxMintableRangeSet(editionMaxMintableLower, editionMaxMintableUpper); } /** * @inheritdoc ISoundEditionV1_1 */ function setEditionCutoffTime(uint32 editionCutoffTime_) external onlyRolesOrOwner(ADMIN_ROLE) { if (mintConcluded()) revert MintHasConcluded(); editionCutoffTime = editionCutoffTime_; emit EditionCutoffTimeSet(editionCutoffTime_); } /** * @inheritdoc ISoundEditionV1_1 */ function setMintRandomnessEnabled(bool mintRandomnessEnabled_) external onlyRolesOrOwner(ADMIN_ROLE) { if (_totalMinted() != 0) revert MintsAlreadyExist(); if (mintRandomnessEnabled() != mintRandomnessEnabled_) { _flags ^= MINT_RANDOMNESS_ENABLED_FLAG; } emit MintRandomnessEnabledSet(mintRandomnessEnabled_); } /** * @inheritdoc ISoundEditionV1_1 */ function setOperatorFilteringEnabled(bool operatorFilteringEnabled_) external onlyRolesOrOwner(ADMIN_ROLE) { if (operatorFilteringEnabled() != operatorFilteringEnabled_) { _flags ^= OPERATOR_FILTERING_ENABLED_FLAG; if (operatorFilteringEnabled_) { _registerForOperatorFiltering(); } } emit OperatorFilteringEnablededSet(operatorFilteringEnabled_); } /** * @inheritdoc IERC721AUpgradeable */ function setApprovalForAll(address operator, bool approved) public override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperatorApproval(operator) { super.setApprovalForAll(operator, approved); } /** * @inheritdoc IERC721AUpgradeable */ function approve(address operator, uint256 tokenId) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperatorApproval(operator) { super.approve(operator, tokenId); } /** * @inheritdoc IERC721AUpgradeable */ function transferFrom( address from, address to, uint256 tokenId ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperator(from) { super.transferFrom(from, to, tokenId); } /** * @inheritdoc IERC721AUpgradeable */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperator(from) { super.safeTransferFrom(from, to, tokenId); } /** * @inheritdoc IERC721AUpgradeable */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory data ) public payable override(ERC721AUpgradeable, IERC721AUpgradeable) onlyAllowedOperator(from) { super.safeTransferFrom(from, to, tokenId, data); } // ============================================================= // PUBLIC / EXTERNAL VIEW FUNCTIONS // ============================================================= /** * @inheritdoc ISoundEditionV1_1 */ function editionInfo() external view returns (EditionInfo memory info) { info.baseURI = baseURI(); info.contractURI = contractURI(); info.name = name(); info.symbol = symbol(); info.fundingRecipient = fundingRecipient; info.editionMaxMintable = editionMaxMintable(); info.editionMaxMintableUpper = editionMaxMintableUpper; info.editionMaxMintableLower = editionMaxMintableLower; info.editionCutoffTime = editionCutoffTime; info.metadataModule = metadataModule; info.mintRandomness = mintRandomness(); info.royaltyBPS = royaltyBPS; info.mintRandomnessEnabled = mintRandomnessEnabled(); info.mintConcluded = mintConcluded(); info.isMetadataFrozen = isMetadataFrozen(); info.nextTokenId = nextTokenId(); info.totalMinted = totalMinted(); info.totalBurned = totalBurned(); info.totalSupply = totalSupply(); } /** * @inheritdoc ISoundEditionV1_1 */ function mintRandomness() public view returns (uint256) { if (mintConcluded() && mintRandomnessEnabled()) { return uint256(keccak256(abi.encode(_mintRandomness, address(this)))); } return 0; } /** * @inheritdoc ISoundEditionV1_1 */ function editionMaxMintable() public view returns (uint32) { if (block.timestamp < editionCutoffTime) { return editionMaxMintableUpper; } else { return uint32(FixedPointMathLib.max(editionMaxMintableLower, _totalMinted())); } } /** * @inheritdoc ISoundEditionV1_1 */ function isMetadataFrozen() public view returns (bool) { return _flags & METADATA_IS_FROZEN_FLAG != 0; } /** * @inheritdoc ISoundEditionV1_1 */ function mintRandomnessEnabled() public view returns (bool) { return _flags & MINT_RANDOMNESS_ENABLED_FLAG != 0; } /** * @inheritdoc ISoundEditionV1_1 */ function operatorFilteringEnabled() public view returns (bool) { return _operatorFilteringEnabled(); } /** * @inheritdoc ISoundEditionV1_1 */ function mintConcluded() public view returns (bool) { return _totalMinted() == editionMaxMintable(); } /** * @inheritdoc ISoundEditionV1_1 */ function nextTokenId() public view returns (uint256) { return _nextTokenId(); } /** * @inheritdoc ISoundEditionV1_1 */ function numberMinted(address owner) external view returns (uint256) { return _numberMinted(owner); } /** * @inheritdoc ISoundEditionV1_1 */ function numberBurned(address owner) external view returns (uint256) { return _numberBurned(owner); } /** * @inheritdoc ISoundEditionV1_1 */ function totalMinted() public view returns (uint256) { return _totalMinted(); } /** * @inheritdoc ISoundEditionV1_1 */ function totalBurned() public view returns (uint256) { return _totalBurned(); } /** * @inheritdoc IERC721AUpgradeable */ function tokenURI(uint256 tokenId) public view override(ERC721AUpgradeable, IERC721AUpgradeable) returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); if (metadataModule != address(0)) { return IMetadataModule(metadataModule).tokenURI(tokenId); } string memory baseURI_ = baseURI(); return bytes(baseURI_).length != 0 ? string.concat(baseURI_, _toString(tokenId)) : ""; } /** * @inheritdoc ISoundEditionV1_1 */ function supportsInterface(bytes4 interfaceId) public view override(ISoundEditionV1_1, ERC721AUpgradeable, IERC721AUpgradeable) returns (bool) { return interfaceId == _INTERFACE_ID_SOUND_EDITION_V1 || interfaceId == type(ISoundEditionV1_1).interfaceId || ERC721AUpgradeable.supportsInterface(interfaceId) || interfaceId == _INTERFACE_ID_ERC2981 || interfaceId == this.supportsInterface.selector; } /** * @inheritdoc IERC2981Upgradeable */ function royaltyInfo( uint256, // tokenId uint256 salePrice ) external view override(IERC2981Upgradeable) returns (address fundingRecipient_, uint256 royaltyAmount) { fundingRecipient_ = fundingRecipient; royaltyAmount = (salePrice * royaltyBPS) / _MAX_BPS; } /** * @inheritdoc IERC721AUpgradeable */ function name() public view override(ERC721AUpgradeable, IERC721AUpgradeable) returns (string memory) { (string memory name_, ) = _loadNameAndSymbol(); return name_; } /** * @inheritdoc IERC721AUpgradeable */ function symbol() public view override(ERC721AUpgradeable, IERC721AUpgradeable) returns (string memory) { (, string memory symbol_) = _loadNameAndSymbol(); return symbol_; } /** * @inheritdoc ISoundEditionV1_1 */ function baseURI() public view returns (string memory) { return _baseURIStorage.load(); } /** * @inheritdoc ISoundEditionV1_1 */ function contractURI() public view returns (string memory) { return _contractURIStorage.load(); } // ============================================================= // INTERNAL / PRIVATE HELPERS // ============================================================= /** * @dev For operator filtering to be toggled on / off. */ function _operatorFilteringEnabled() internal view override returns (bool) { return _flags & OPERATOR_FILTERING_ENABLED_FLAG != 0; } /** * @dev For skipping the operator check if the operator is the OpenSea Conduit. * If somehow, we use a different address in the future, it won't break functionality, * only increase the gas used back to what it will be with regular operator filtering. */ function _isPriorityOperator(address operator) internal pure override returns (bool) { // OpenSea Seaport Conduit: // https://etherscan.io/address/0x1E0049783F008A0085193E00003D00cd54003c71 // https://goerli.etherscan.io/address/0x1E0049783F008A0085193E00003D00cd54003c71 return operator == address(0x1E0049783F008A0085193E00003D00cd54003c71); } /** * @inheritdoc ERC721AUpgradeable */ function _startTokenId() internal pure override returns (uint256) { return 1; } /** * @dev Ensures the royalty basis points is a valid value. * @param bps The royalty BPS. */ modifier onlyValidRoyaltyBPS(uint16 bps) { if (bps > _MAX_BPS) revert InvalidRoyaltyBPS(); _; } /** * @dev Reverts if the metadata is frozen. */ modifier onlyMetadataNotFrozen() { // Inlined to save gas. if (_flags & METADATA_IS_FROZEN_FLAG != 0) revert MetadataIsFrozen(); _; } /** * @dev Ensures that `totalQuantity` can be minted. * @param totalQuantity The total number of tokens to mint. */ modifier requireMintable(uint256 totalQuantity) { unchecked { uint256 currentTotalMinted = _totalMinted(); uint256 currentEditionMaxMintable = editionMaxMintable(); // Check if there are enough tokens to mint. // We use version v4.2+ of ERC721A, which `_mint` will revert with out-of-gas // error via a loop if `totalQuantity` is large enough to cause an overflow in uint256. if (currentTotalMinted + totalQuantity > currentEditionMaxMintable) { // Won't underflow. // // `currentTotalMinted`, which is `_totalMinted()`, // will return either `editionMaxMintableUpper` // or `max(editionMaxMintableLower, _totalMinted())`. // // We have the following invariants: // - `editionMaxMintableUpper >= _totalMinted()` // - `max(editionMaxMintableLower, _totalMinted()) >= _totalMinted()` uint256 available = currentEditionMaxMintable - currentTotalMinted; revert ExceedsEditionAvailableSupply(uint32(available)); } } _; } /** * @dev Ensures that the `quantity` does not exceed `ADDRESS_BATCH_MINT_LIMIT`. * @param quantity The number of tokens minted per address. */ modifier requireWithinAddressBatchMintLimit(uint256 quantity) { if (quantity > ADDRESS_BATCH_MINT_LIMIT) revert ExceedsAddressBatchMintLimit(); _; } /** * @dev Updates the mint randomness. */ modifier updatesMintRandomness() { if (mintRandomnessEnabled() && !mintConcluded()) { uint256 randomness = _mintRandomness; uint256 newRandomness = MintRandomnessLib.nextMintRandomness( randomness, _totalMinted(), editionMaxMintable() ); if (newRandomness != randomness) { _mintRandomness = uint72(newRandomness); } } _; } /** * @dev Helper function for initializing the name and symbol, * packing them into a single word if possible. * @param name_ Name of the collection. * @param symbol_ Symbol of the collection. */ function _initializeNameAndSymbol(string memory name_, string memory symbol_) internal { // Overflow impossible since max block gas limit bounds the length of the strings. unchecked { // Returns `bytes32(0)` if the strings are too long to be packed into a single word. bytes32 packed = LibString.packTwo(name_, symbol_); // If we cannot pack both strings into a single 32-byte word, store separately. // We need 2 bytes to store their lengths. if (packed == bytes32(0)) { ERC721AStorage.layout()._name = name_; ERC721AStorage.layout()._symbol = symbol_; return; } // Otherwise, pack them and store them into a single word. _shortNameAndSymbol = packed; } } /** * @dev Helper function for retrieving the name and symbol, * unpacking them from a single word in storage if previously packed. * @return name_ Name of the collection. * @return symbol_ Symbol of the collection. */ function _loadNameAndSymbol() internal view returns (string memory name_, string memory symbol_) { // Overflow impossible since max block gas limit bounds the length of the strings. unchecked { bytes32 packed = _shortNameAndSymbol; // If the strings have been previously packed. if (packed != bytes32(0)) { (name_, symbol_) = LibString.unpackTwo(packed); } else { // Otherwise, load them from their separate variables. name_ = ERC721AStorage.layout()._name; symbol_ = ERC721AStorage.layout()._symbol; } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.16; /** * @title IMetadataModule * @notice The interface for custom metadata modules. */ interface IMetadataModule { /** * @dev When implemented, SoundEdition's `tokenURI` redirects execution to this `tokenURI`. * @param tokenId The token ID to retrieve the token URI for. * @return The token URI string. */ function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.16; import { IERC721AUpgradeable } from "chiru-labs/ERC721A-Upgradeable/IERC721AUpgradeable.sol"; import { IERC2981Upgradeable } from "openzeppelin-upgradeable/interfaces/IERC2981Upgradeable.sol"; import { IERC165Upgradeable } from "openzeppelin-upgradeable/utils/introspection/IERC165Upgradeable.sol"; import { IMetadataModule } from "./IMetadataModule.sol"; /** * @dev The information pertaining to this edition. */ struct EditionInfo { // Base URI for the tokenId. string baseURI; // Contract URI for OpenSea storefront. string contractURI; // Name of the collection. string name; // Symbol of the collection. string symbol; // Address that receives primary and secondary royalties. address fundingRecipient; // The current max mintable amount; uint32 editionMaxMintable; // The lower limit of the maximum number of tokens that can be minted. uint32 editionMaxMintableUpper; // The upper limit of the maximum number of tokens that can be minted. uint32 editionMaxMintableLower; // The timestamp (in seconds since unix epoch) after which the // max amount of tokens mintable will drop from // `maxMintableUpper` to `maxMintableLower`. uint32 editionCutoffTime; // Address of metadata module, address(0x00) if not used. address metadataModule; // The current mint randomness value. uint256 mintRandomness; // The royalty BPS (basis points). uint16 royaltyBPS; // Whether the mint randomness is enabled. bool mintRandomnessEnabled; // Whether the mint has concluded. bool mintConcluded; // Whether the metadata has been frozen. bool isMetadataFrozen; // Next token ID to be minted. uint256 nextTokenId; // Total number of tokens burned. uint256 totalBurned; // Total number of tokens minted. uint256 totalMinted; // Total number of tokens currently in existence. uint256 totalSupply; } /** * @title ISoundEditionV1_1 * @notice The interface for Sound edition contracts. */ interface ISoundEditionV1_1 is IERC721AUpgradeable, IERC2981Upgradeable { // ============================================================= // EVENTS // ============================================================= /** * @dev Emitted when the metadata module is set. * @param metadataModule the address of the metadata module. */ event MetadataModuleSet(address metadataModule); /** * @dev Emitted when the `baseURI` is set. * @param baseURI the base URI of the edition. */ event BaseURISet(string baseURI); /** * @dev Emitted when the `contractURI` is set. * @param contractURI The contract URI of the edition. */ event ContractURISet(string contractURI); /** * @dev Emitted when the metadata is frozen (e.g.: `baseURI` can no longer be changed). * @param metadataModule The address of the metadata module. * @param baseURI The base URI of the edition. * @param contractURI The contract URI of the edition. */ event MetadataFrozen(address metadataModule, string baseURI, string contractURI); /** * @dev Emitted when the `fundingRecipient` is set. * @param fundingRecipient The address of the funding recipient. */ event FundingRecipientSet(address fundingRecipient); /** * @dev Emitted when the `royaltyBPS` is set. * @param bps The new royalty, measured in basis points. */ event RoyaltySet(uint16 bps); /** * @dev Emitted when the edition's maximum mintable token quantity range is set. * @param editionMaxMintableLower_ The lower limit of the maximum number of tokens that can be minted. * @param editionMaxMintableUpper_ The upper limit of the maximum number of tokens that can be minted. */ event EditionMaxMintableRangeSet(uint32 editionMaxMintableLower_, uint32 editionMaxMintableUpper_); /** * @dev Emitted when the edition's cutoff time set. * @param editionCutoffTime_ The timestamp. */ event EditionCutoffTimeSet(uint32 editionCutoffTime_); /** * @dev Emitted when the `mintRandomnessEnabled` is set. * @param mintRandomnessEnabled_ The boolean value. */ event MintRandomnessEnabledSet(bool mintRandomnessEnabled_); /** * @dev Emitted when the `operatorFilteringEnabled` is set. * @param operatorFilteringEnabled_ The boolean value. */ event OperatorFilteringEnablededSet(bool operatorFilteringEnabled_); /** * @dev Emitted upon initialization. * @param edition_ The address of the edition. * @param name_ Name of the collection. * @param symbol_ Symbol of the collection. * @param metadataModule_ Address of metadata module, address(0x00) if not used. * @param baseURI_ Base URI. * @param contractURI_ Contract URI for OpenSea storefront. * @param fundingRecipient_ Address that receives primary and secondary royalties. * @param royaltyBPS_ Royalty amount in bps (basis points). * @param editionMaxMintableLower_ The lower bound of the max mintable quantity for the edition. * @param editionMaxMintableUpper_ The upper bound of the max mintable quantity for the edition. * @param editionCutoffTime_ The timestamp after which `editionMaxMintable` drops from * `editionMaxMintableUpper` to * `max(_totalMinted(), editionMaxMintableLower)`. * @param flags_ The bitwise OR result of the initialization flags. * See: {METADATA_IS_FROZEN_FLAG} * See: {MINT_RANDOMNESS_ENABLED_FLAG} */ event SoundEditionInitialized( address indexed edition_, string name_, string symbol_, address metadataModule_, string baseURI_, string contractURI_, address fundingRecipient_, uint16 royaltyBPS_, uint32 editionMaxMintableLower_, uint32 editionMaxMintableUpper_, uint32 editionCutoffTime_, uint8 flags_ ); /** * @dev Emitted upon ETH withdrawal. * @param recipient The recipient of the withdrawal. * @param amount The amount withdrawn. * @param caller The account that initiated the withdrawal. */ event ETHWithdrawn(address recipient, uint256 amount, address caller); /** * @dev Emitted upon ERC20 withdrawal. * @param recipient The recipient of the withdrawal. * @param tokens The addresses of the ERC20 tokens. * @param amounts The amount of each token withdrawn. * @param caller The account that initiated the withdrawal. */ event ERC20Withdrawn(address recipient, address[] tokens, uint256[] amounts, address caller); /** * @dev Emitted upon a mint. * @param to The address to mint to. * @param quantity The number of minted. * @param fromTokenId The first token ID minted. */ event Minted(address to, uint256 quantity, uint256 fromTokenId); /** * @dev Emitted upon an airdrop. * @param to The recipients of the airdrop. * @param quantity The number of tokens airdropped to each address in `to`. * @param fromTokenId The first token ID minted to the first address in `to`. */ event Airdropped(address[] to, uint256 quantity, uint256 fromTokenId); // ============================================================= // ERRORS // ============================================================= /** * @dev The edition's metadata is frozen (e.g.: `baseURI` can no longer be changed). */ error MetadataIsFrozen(); /** * @dev The given `royaltyBPS` is invalid. */ error InvalidRoyaltyBPS(); /** * @dev The given `randomnessLockedAfterMinted` value is invalid. */ error InvalidRandomnessLock(); /** * @dev The requested quantity exceeds the edition's remaining mintable token quantity. * @param available The number of tokens remaining available for mint. */ error ExceedsEditionAvailableSupply(uint32 available); /** * @dev The given amount is invalid. */ error InvalidAmount(); /** * @dev The given `fundingRecipient` address is invalid. */ error InvalidFundingRecipient(); /** * @dev The `editionMaxMintableLower` must not be greater than `editionMaxMintableUpper`. */ error InvalidEditionMaxMintableRange(); /** * @dev The `editionMaxMintable` has already been reached. */ error MaximumHasAlreadyBeenReached(); /** * @dev The mint `quantity` cannot exceed `ADDRESS_BATCH_MINT_LIMIT` tokens. */ error ExceedsAddressBatchMintLimit(); /** * @dev The mint randomness has already been revealed. */ error MintRandomnessAlreadyRevealed(); /** * @dev No addresses to airdrop. */ error NoAddressesToAirdrop(); /** * @dev The mint has already concluded. */ error MintHasConcluded(); /** * @dev Cannot perform the operation after a token has been minted. */ error MintsAlreadyExist(); // ============================================================= // PUBLIC / EXTERNAL WRITE FUNCTIONS // ============================================================= /** * @dev Initializes the contract. * @param name_ Name of the collection. * @param symbol_ Symbol of the collection. * @param metadataModule_ Address of metadata module, address(0x00) if not used. * @param baseURI_ Base URI. * @param contractURI_ Contract URI for OpenSea storefront. * @param fundingRecipient_ Address that receives primary and secondary royalties. * @param royaltyBPS_ Royalty amount in bps (basis points). * @param editionMaxMintableLower_ The lower bound of the max mintable quantity for the edition. * @param editionMaxMintableUpper_ The upper bound of the max mintable quantity for the edition. * @param editionCutoffTime_ The timestamp after which `editionMaxMintable` drops from * `editionMaxMintableUpper` to * `max(_totalMinted(), editionMaxMintableLower)`. * @param flags_ The bitwise OR result of the initialization flags. * See: {METADATA_IS_FROZEN_FLAG} * See: {MINT_RANDOMNESS_ENABLED_FLAG} */ function initialize( string memory name_, string memory symbol_, address metadataModule_, string memory baseURI_, string memory contractURI_, address fundingRecipient_, uint16 royaltyBPS_, uint32 editionMaxMintableLower_, uint32 editionMaxMintableUpper_, uint32 editionCutoffTime_, uint8 flags_ ) external; /** * @dev Mints `quantity` tokens to addrress `to` * Each token will be assigned a token ID that is consecutively increasing. * * Calling conditions: * - The caller must be the owner of the contract, or have either the * `ADMIN_ROLE`, `MINTER_ROLE`, which can be granted via {grantRole}. * Multiple minters, such as different minter contracts, * can be authorized simultaneously. * * @param to Address to mint to. * @param quantity Number of tokens to mint. * @return fromTokenId The first token ID minted. */ function mint(address to, uint256 quantity) external payable returns (uint256 fromTokenId); /** * @dev Mints `quantity` tokens to each of the addresses in `to`. * * Calling conditions: * - The caller must be the owner of the contract, or have the * `ADMIN_ROLE`, which can be granted via {grantRole}. * * @param to Address to mint to. * @param quantity Number of tokens to mint. * @return fromTokenId The first token ID minted. */ function airdrop(address[] calldata to, uint256 quantity) external returns (uint256 fromTokenId); /** * @dev Withdraws collected ETH royalties to the fundingRecipient. */ function withdrawETH() external; /** * @dev Withdraws collected ERC20 royalties to the fundingRecipient. * @param tokens array of ERC20 tokens to withdraw */ function withdrawERC20(address[] calldata tokens) external; /** * @dev Sets metadata module. * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. * * @param metadataModule Address of metadata module. */ function setMetadataModule(address metadataModule) external; /** * @dev Sets global base URI. * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. * * @param baseURI The base URI to be set. */ function setBaseURI(string memory baseURI) external; /** * @dev Sets contract URI. * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. * * @param contractURI The contract URI to be set. */ function setContractURI(string memory contractURI) external; /** * @dev Freezes metadata by preventing any more changes to base URI. * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. */ function freezeMetadata() external; /** * @dev Sets funding recipient address. * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. * * @param fundingRecipient Address to be set as the new funding recipient. */ function setFundingRecipient(address fundingRecipient) external; /** * @dev Sets royalty amount in bps (basis points). * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. * * @param bps The new royalty basis points to be set. */ function setRoyalty(uint16 bps) external; /** * @dev Sets the edition max mintable range. * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. * * @param editionMaxMintableLower_ The lower limit of the maximum number of tokens that can be minted. * @param editionMaxMintableUpper_ The upper limit of the maximum number of tokens that can be minted. */ function setEditionMaxMintableRange(uint32 editionMaxMintableLower_, uint32 editionMaxMintableUpper_) external; /** * @dev Sets the timestamp after which, the `editionMaxMintable` drops * from `editionMaxMintableUpper` to `editionMaxMintableLower. * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. * * @param editionCutoffTime_ The timestamp. */ function setEditionCutoffTime(uint32 editionCutoffTime_) external; /** * @dev Sets whether the `mintRandomness` is enabled. * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. * * @param mintRandomnessEnabled_ The boolean value. */ function setMintRandomnessEnabled(bool mintRandomnessEnabled_) external; /** * @dev Sets whether OpenSea operator filtering is enabled. * * Calling conditions: * - The caller must be the owner of the contract, or have the `ADMIN_ROLE`. * * @param operatorFilteringEnabled_ The boolean value. */ function setOperatorFilteringEnabled(bool operatorFilteringEnabled_) external; // ============================================================= // PUBLIC / EXTERNAL VIEW FUNCTIONS // ============================================================= /** * @dev Returns the edition info. * @return editionInfo The latest value. */ function editionInfo() external view returns (EditionInfo memory editionInfo); /** * @dev Returns the minter role flag. * @return The constant value. */ function MINTER_ROLE() external view returns (uint256); /** * @dev Returns the admin role flag. * @return The constant value. */ function ADMIN_ROLE() external view returns (uint256); /** * @dev Returns the maximum limit for the mint or airdrop `quantity`. * Prevents the first-time transfer costs for tokens near the end of large mint batches * via ERC721A from becoming too expensive due to the need to scan many storage slots. * See: https://chiru-labs.github.io/ERC721A/#/tips?id=batch-size * @return The constant value. */ function ADDRESS_BATCH_MINT_LIMIT() external pure returns (uint256); /** * @dev Returns the bit flag to freeze the metadata on initialization. * @return The constant value. */ function METADATA_IS_FROZEN_FLAG() external pure returns (uint8); /** * @dev Returns the bit flag to enable the mint randomness feature on initialization. * @return The constant value. */ function MINT_RANDOMNESS_ENABLED_FLAG() external pure returns (uint8); /** * @dev Returns the bit flag to enable OpenSea operator filtering. * @return The constant value. */ function OPERATOR_FILTERING_ENABLED_FLAG() external pure returns (uint8); /** * @dev Returns the base token URI for the collection. * @return The configured value. */ function baseURI() external view returns (string memory); /** * @dev Returns the contract URI to be used by Opensea. * See: https://docs.opensea.io/docs/contract-level-metadata * @return The configured value. */ function contractURI() external view returns (string memory); /** * @dev Returns the address of the funding recipient. * @return The configured value. */ function fundingRecipient() external view returns (address); /** * @dev Returns the maximum amount of tokens mintable for this edition. * @return The configured value. */ function editionMaxMintable() external view returns (uint32); /** * @dev Returns the upper bound for the maximum tokens that can be minted for this edition. * @return The configured value. */ function editionMaxMintableUpper() external view returns (uint32); /** * @dev Returns the lower bound for the maximum tokens that can be minted for this edition. * @return The configured value. */ function editionMaxMintableLower() external view returns (uint32); /** * @dev Returns the timestamp after which `editionMaxMintable` drops from * `editionMaxMintableUpper` to `editionMaxMintableLower`. * @return The configured value. */ function editionCutoffTime() external view returns (uint32); /** * @dev Returns the address of the metadata module. * @return The configured value. */ function metadataModule() external view returns (address); /** * @dev Returns the randomness based on latest block hash, which is stored upon each mint. * unless {mintConcluded} is true. * Used for game mechanics like the Sound Golden Egg. * Returns 0 before revealed. * WARNING: This value should NOT be used for any reward of significant monetary * value, due to it being computed via a purely on-chain psuedorandom mechanism. * @return The latest value. */ function mintRandomness() external view returns (uint256); /** * @dev Returns whether the `mintRandomness` has been enabled. * @return The configured value. */ function mintRandomnessEnabled() external view returns (bool); /** * @dev Returns whether the `operatorFilteringEnabled` has been enabled. * @return The configured value. */ function operatorFilteringEnabled() external view returns (bool); /** * @dev Returns whether the mint has been concluded. * @return The latest value. */ function mintConcluded() external view returns (bool); /** * @dev Returns the royalty basis points. * @return The configured value. */ function royaltyBPS() external view returns (uint16); /** * @dev Returns whether the metadata module is frozen. * @return The configured value. */ function isMetadataFrozen() external view returns (bool); /** * @dev Returns the next token ID to be minted. * @return The latest value. */ function nextTokenId() external view returns (uint256); /** * @dev Returns the number of tokens minted by `owner`. * @param owner Address to query for number minted. * @return The latest value. */ function numberMinted(address owner) external view returns (uint256); /** * @dev Returns the number of tokens burned by `owner`. * @param owner Address to query for number burned. * @return The latest value. */ function numberBurned(address owner) external view returns (uint256); /** * @dev Returns the total amount of tokens minted. * @return The latest value. */ function totalMinted() external view returns (uint256); /** * @dev Returns the total amount of tokens burned. * @return The latest value. */ function totalBurned() external view returns (uint256); /** * @dev Informs other contracts which interfaces this contract supports. * Required by https://eips.ethereum.org/EIPS/eip-165 * @param interfaceId The interface id to check. * @return Whether the `interfaceId` is supported. */ function supportsInterface(bytes4 interfaceId) external view override(IERC721AUpgradeable, IERC165Upgradeable) returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.16; /* ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ ▒███████████████████████████████████████████████████████████ ▒███████████████████████████████████████████████████████████ ▒▓▓▓▓▓▓▓▓▓▓▓▓▓████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓▓██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒ █████████████████████████████▓ ████████████████████████████████████████████ █████████████████████████████▓ ████████████████████████████████████████████ █████████████████████████████▓ ▒▒▒▒▒▒▒▒▒▒▒▒▒██████████████████████████████ █████████████████████████████▓ ▒█████████████████████████████ █████████████████████████████▓ ▒████████████████████████████ █████████████████████████████████████████████████████████▓ ███████████████████████████████████████████████████████████ ███████████████████████████████████████████████████████████▒ ███████████████████████████████████████████████████████████▒ ▓██████████████████████████████████████████████████████████▒ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████████████████████▒ █████████████████████████████ ▒█████████████████████████████▒ ██████████████████████████████ ▒█████████████████████████████▒ ██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒ ▒█████████████████████████████▒ ████████████████████████████████████████████▒ ▒█████████████████████████████▒ ████████████████████████████████████████████▒ ▒█████████████████████████████▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒███████████████████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒ ▓██████████████████████████████████████████████████████████▒ ▓██████████████████████████████████████████████████████████ */ import { Base64 } from "solady/utils/Base64.sol"; library ArweaveURILib { // ============================================================= // STRUCTS // ============================================================= struct URI { bytes32 arweave; string regular; } // ============================================================= // INTERNAL / PRIVATE HELPERS // ============================================================= /** * @dev Helper function for storing a URI that may be an Arweave URI. * Efficiently stores Arweave CIDs by converting them into a single bytes32 word. * The Arweave CID is a base64 encoded sha-256 output (32 bytes when decoded). * See: https://docs.arweave.org/developers/server/http-api * @param uri The URI storage reference. * @param value The string representation of the URI. * @param isUpdate Whether this is called in an update. */ function store( URI storage uri, string memory value, bool isUpdate ) internal { uint256 valueLength; bool isArweave; assembly { // Example: "ar://Hjtz2YLeVyXQkGxKTNcIYfWkKnHioDvfICulzQIAt3E" valueLength := mload(value) // If the URI is length 48 or 49 (due to a trailing slash). if or(eq(valueLength, 48), eq(valueLength, 49)) { // If starts with "ar://". if eq(and(mload(add(value, 5)), 0xffffffffff), 0x61723a2f2f) { isArweave := 1 value := add(value, 5) // Sets the length of the `value` to 43, // such that it only contains the CID. mstore(value, 43) } } } if (isArweave) { bytes memory decodedCIDBytes = Base64.decode(value); bytes32 arweaveCID; assembly { arweaveCID := mload(add(decodedCIDBytes, 0x20)) // Restore the "ar://". mstore(value, 0x61723a2f2f) // Restore the original position of the `value` pointer. value := sub(value, 5) // Restore the original length. mstore(value, valueLength) } uri.arweave = arweaveCID; if (isUpdate) delete uri.regular; } else { uri.regular = value; if (isUpdate) delete uri.arweave; } } /** * @dev Equivalent to `store(uri, value, false)`. * @param uri The URI storage reference. * @param value The string representation of the URI. */ function initialize(URI storage uri, string memory value) internal { store(uri, value, false); } /** * @dev Equivalent to `store(uri, value, true)`. * @param uri The URI storage reference. * @param value The string representation of the URI. */ function update(URI storage uri, string memory value) internal { store(uri, value, true); } /** * @dev Helper function for retrieving a URI stored with {_setURI}. * @param uri The URI storage reference. */ function load(URI storage uri) internal view returns (string memory) { bytes32 arweaveCID = uri.arweave; if (arweaveCID == bytes32(0)) { return uri.regular; } bytes memory decoded; assembly { // Copy `arweaveCID`. // First, grab the free memory pointer. decoded := mload(0x40) // Allocate 2 slots. // 1 slot for the length, 1 slot for the bytes. mstore(0x40, add(decoded, 0x40)) mstore(decoded, 0x20) // Set the length (32 bytes). mstore(add(decoded, 0x20), arweaveCID) // Set the bytes. } return string.concat("ar://", Base64.encode(decoded, true, true), "/"); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.16; /* ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ ▒███████████████████████████████████████████████████████████ ▒███████████████████████████████████████████████████████████ ▒▓▓▓▓▓▓▓▓▓▓▓▓▓████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓▓██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒ █████████████████████████████▓ ████████████████████████████████████████████ █████████████████████████████▓ ████████████████████████████████████████████ █████████████████████████████▓ ▒▒▒▒▒▒▒▒▒▒▒▒▒██████████████████████████████ █████████████████████████████▓ ▒█████████████████████████████ █████████████████████████████▓ ▒████████████████████████████ █████████████████████████████████████████████████████████▓ ███████████████████████████████████████████████████████████ ███████████████████████████████████████████████████████████▒ ███████████████████████████████████████████████████████████▒ ▓██████████████████████████████████████████████████████████▒ ▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████████████████████▒ █████████████████████████████ ▒█████████████████████████████▒ ██████████████████████████████ ▒█████████████████████████████▒ ██████████████████████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒ ▒█████████████████████████████▒ ████████████████████████████████████████████▒ ▒█████████████████████████████▒ ████████████████████████████████████████████▒ ▒█████████████████████████████▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒███████████████████████████████▓▓▓▓▓▓▓▓▓▓▓▓▓███████████████▓▒▒▒▒▒▒▒▒▒▒▒▒▒▒ ▓██████████████████████████████████████████████████████████▒ ▓██████████████████████████████████████████████████████████ */ library MintRandomnessLib { /** * @dev Returns the next mint randomness. * @param randomness The current mint randomness. * @param totalMinted The total number of tokens minted. * @param maxMintable The maximum number of tokens that can be minted. * @return newRandomness The next mint randomness. */ function nextMintRandomness( uint256 randomness, uint256 totalMinted, uint256 maxMintable ) internal view returns (uint256 newRandomness) { assembly { newRandomness := randomness // Pick any of the last 256 blocks psuedorandomly for the blockhash. mstore(0x00, blockhash(sub(number(), add(1, and(0xff, randomness))))) // After the merge, if [EIP-4399](https://eips.ethereum.org/EIPS/eip-4399) // is implemented, the `difficulty()` will be determined by the beacon chain. // We also need to xor with the `totalMinted` to prevent the randomness // from being stucked. mstore(0x20, xor(xor(randomness, difficulty()), totalMinted)) let r := keccak256(0x00, 0x40) switch randomness case 0 { // If `randomness` is uninitialized, // initialize all bits psuedorandomly. newRandomness := r } default { // Decay the chance to update as more are minted. if gt(mod(r, add(maxMintable, 1)), totalMinted) { // If `randomness` has already been initialized, // each update can only contribute 1 bit of psuedorandomness. newRandomness := or(shl(1, randomness), shr(255, r)) } } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; library ERC721AStorage { // Bypass for a `--via-ir` bug (https://github.com/chiru-labs/ERC721A/pull/364). struct TokenApprovalRef { address value; } struct Layout { // ============================================================= // STORAGE // ============================================================= // The next token ID to be minted. uint256 _currentIndex; // The number of tokens burned. uint256 _burnCounter; // Token name string _name; // Token symbol string _symbol; // Mapping from token ID to ownership details // An empty struct value does not necessarily mean the token is unowned. // See {_packedOwnershipOf} implementation for details. // // Bits Layout: // - [0..159] `addr` // - [160..223] `startTimestamp` // - [224] `burned` // - [225] `nextInitialized` // - [232..255] `extraData` mapping(uint256 => uint256) _packedOwnerships; // Mapping owner address to address data. // // Bits Layout: // - [0..63] `balance` // - [64..127] `numberMinted` // - [128..191] `numberBurned` // - [192..255] `aux` mapping(address => uint256) _packedAddressData; // Mapping from token ID to approved address. mapping(uint256 => ERC721AStorage.TokenApprovalRef) _tokenApprovals; // Mapping from owner to operator approvals mapping(address => mapping(address => bool)) _operatorApprovals; } bytes32 internal constant STORAGE_SLOT = keccak256('ERC721A.contracts.storage.ERC721A'); function layout() internal pure returns (Layout storage l) { bytes32 slot = STORAGE_SLOT; assembly { l.slot := slot } } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721AUpgradeable.sol'; import {ERC721AStorage} from './ERC721AStorage.sol'; import './ERC721A__Initializable.sol'; /** * @dev Interface of ERC721 token receiver. */ interface ERC721A__IERC721ReceiverUpgradeable { function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } /** * @title ERC721A * * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721) * Non-Fungible Token Standard, including the Metadata extension. * Optimized for lower gas during batch mints. * * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...) * starting from `_startTokenId()`. * * Assumptions: * * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply. * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256). */ contract ERC721AUpgradeable is ERC721A__Initializable, IERC721AUpgradeable { using ERC721AStorage for ERC721AStorage.Layout; // ============================================================= // CONSTANTS // ============================================================= // Mask of an entry in packed address data. uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1; // The bit position of `numberMinted` in packed address data. uint256 private constant _BITPOS_NUMBER_MINTED = 64; // The bit position of `numberBurned` in packed address data. uint256 private constant _BITPOS_NUMBER_BURNED = 128; // The bit position of `aux` in packed address data. uint256 private constant _BITPOS_AUX = 192; // Mask of all 256 bits in packed address data except the 64 bits for `aux`. uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1; // The bit position of `startTimestamp` in packed ownership. uint256 private constant _BITPOS_START_TIMESTAMP = 160; // The bit mask of the `burned` bit in packed ownership. uint256 private constant _BITMASK_BURNED = 1 << 224; // The bit position of the `nextInitialized` bit in packed ownership. uint256 private constant _BITPOS_NEXT_INITIALIZED = 225; // The bit mask of the `nextInitialized` bit in packed ownership. uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225; // The bit position of `extraData` in packed ownership. uint256 private constant _BITPOS_EXTRA_DATA = 232; // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`. uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1; // The mask of the lower 160 bits for addresses. uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1; // The maximum `quantity` that can be minted with {_mintERC2309}. // This limit is to prevent overflows on the address data entries. // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309} // is required to cause an overflow, which is unrealistic. uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000; // The `Transfer` event signature is given by: // `keccak256(bytes("Transfer(address,address,uint256)"))`. bytes32 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; // ============================================================= // CONSTRUCTOR // ============================================================= function __ERC721A_init(string memory name_, string memory symbol_) internal onlyInitializingERC721A { __ERC721A_init_unchained(name_, symbol_); } function __ERC721A_init_unchained(string memory name_, string memory symbol_) internal onlyInitializingERC721A { ERC721AStorage.layout()._name = name_; ERC721AStorage.layout()._symbol = symbol_; ERC721AStorage.layout()._currentIndex = _startTokenId(); } // ============================================================= // TOKEN COUNTING OPERATIONS // ============================================================= /** * @dev Returns the starting token ID. * To change the starting token ID, please override this function. */ function _startTokenId() internal view virtual returns (uint256) { return 0; } /** * @dev Returns the next token ID to be minted. */ function _nextTokenId() internal view virtual returns (uint256) { return ERC721AStorage.layout()._currentIndex; } /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() public view virtual override returns (uint256) { // Counter underflow is impossible as _burnCounter cannot be incremented // more than `_currentIndex - _startTokenId()` times. unchecked { return ERC721AStorage.layout()._currentIndex - ERC721AStorage.layout()._burnCounter - _startTokenId(); } } /** * @dev Returns the total amount of tokens minted in the contract. */ function _totalMinted() internal view virtual returns (uint256) { // Counter underflow is impossible as `_currentIndex` does not decrement, // and it is initialized to `_startTokenId()`. unchecked { return ERC721AStorage.layout()._currentIndex - _startTokenId(); } } /** * @dev Returns the total number of tokens burned. */ function _totalBurned() internal view virtual returns (uint256) { return ERC721AStorage.layout()._burnCounter; } // ============================================================= // ADDRESS DATA OPERATIONS // ============================================================= /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) public view virtual override returns (uint256) { if (owner == address(0)) revert BalanceQueryForZeroAddress(); return ERC721AStorage.layout()._packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens minted by `owner`. */ function _numberMinted(address owner) internal view returns (uint256) { return (ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the number of tokens burned by or on behalf of `owner`. */ function _numberBurned(address owner) internal view returns (uint256) { return (ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) & _BITMASK_ADDRESS_DATA_ENTRY; } /** * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). */ function _getAux(address owner) internal view returns (uint64) { return uint64(ERC721AStorage.layout()._packedAddressData[owner] >> _BITPOS_AUX); } /** * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used). * If there are multiple variables, please pack them into a uint64. */ function _setAux(address owner, uint64 aux) internal virtual { uint256 packed = ERC721AStorage.layout()._packedAddressData[owner]; uint256 auxCasted; // Cast `aux` with assembly to avoid redundant masking. assembly { auxCasted := aux } packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX); ERC721AStorage.layout()._packedAddressData[owner] = packed; } // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { // The interface IDs are constants representing the first 4 bytes // of the XOR of all function selectors in the interface. // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165) // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`) return interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165. interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721. interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata. } // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() public view virtual override returns (string memory) { return ERC721AStorage.layout()._name; } /** * @dev Returns the token collection symbol. */ function symbol() public view virtual override returns (string memory) { return ERC721AStorage.layout()._symbol; } /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) public view virtual override returns (string memory) { if (!_exists(tokenId)) revert URIQueryForNonexistentToken(); string memory baseURI = _baseURI(); return bytes(baseURI).length != 0 ? string(abi.encodePacked(baseURI, _toString(tokenId))) : ''; } /** * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each * token will be the concatenation of the `baseURI` and the `tokenId`. Empty * by default, it can be overridden in child contracts. */ function _baseURI() internal view virtual returns (string memory) { return ''; } // ============================================================= // OWNERSHIPS OPERATIONS // ============================================================= /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) public view virtual override returns (address) { return address(uint160(_packedOwnershipOf(tokenId))); } /** * @dev Gas spent here starts off proportional to the maximum mint batch size. * It gradually moves to O(1) as tokens get transferred around over time. */ function _ownershipOf(uint256 tokenId) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(_packedOwnershipOf(tokenId)); } /** * @dev Returns the unpacked `TokenOwnership` struct at `index`. */ function _ownershipAt(uint256 index) internal view virtual returns (TokenOwnership memory) { return _unpackedOwnership(ERC721AStorage.layout()._packedOwnerships[index]); } /** * @dev Initializes the ownership slot minted at `index` for efficiency purposes. */ function _initializeOwnershipAt(uint256 index) internal virtual { if (ERC721AStorage.layout()._packedOwnerships[index] == 0) { ERC721AStorage.layout()._packedOwnerships[index] = _packedOwnershipOf(index); } } /** * Returns the packed ownership data of `tokenId`. */ function _packedOwnershipOf(uint256 tokenId) private view returns (uint256 packed) { if (_startTokenId() <= tokenId) { packed = ERC721AStorage.layout()._packedOwnerships[tokenId]; // If not burned. if (packed & _BITMASK_BURNED == 0) { // If the data at the starting slot does not exist, start the scan. if (packed == 0) { if (tokenId >= ERC721AStorage.layout()._currentIndex) revert OwnerQueryForNonexistentToken(); // Invariant: // There will always be an initialized ownership slot // (i.e. `ownership.addr != address(0) && ownership.burned == false`) // before an unintialized ownership slot // (i.e. `ownership.addr == address(0) && ownership.burned == false`) // Hence, `tokenId` will not underflow. // // We can directly compare the packed value. // If the address is zero, packed will be zero. for (;;) { unchecked { packed = ERC721AStorage.layout()._packedOwnerships[--tokenId]; } if (packed == 0) continue; return packed; } } // Otherwise, the data exists and is not burned. We can skip the scan. // This is possible because we have already achieved the target condition. // This saves 2143 gas on transfers of initialized tokens. return packed; } } revert OwnerQueryForNonexistentToken(); } /** * @dev Returns the unpacked `TokenOwnership` struct from `packed`. */ function _unpackedOwnership(uint256 packed) private pure returns (TokenOwnership memory ownership) { ownership.addr = address(uint160(packed)); ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP); ownership.burned = packed & _BITMASK_BURNED != 0; ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA); } /** * @dev Packs ownership data into a single uint256. */ function _packOwnershipData(address owner, uint256 flags) private view returns (uint256 result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`. result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags)) } } /** * @dev Returns the `nextInitialized` flag set if `quantity` equals 1. */ function _nextInitializedFlag(uint256 quantity) private pure returns (uint256 result) { // For branchless setting of the `nextInitialized` flag. assembly { // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`. result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1)) } } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. See {ERC721A-_approve}. * * Requirements: * * - The caller must own the token or be an approved operator. */ function approve(address to, uint256 tokenId) public payable virtual override { _approve(to, tokenId, true); } /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) public view virtual override returns (address) { if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken(); return ERC721AStorage.layout()._tokenApprovals[tokenId].value; } /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool approved) public virtual override { ERC721AStorage.layout()._operatorApprovals[_msgSenderERC721A()][operator] = approved; emit ApprovalForAll(_msgSenderERC721A(), operator, approved); } /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) public view virtual override returns (bool) { return ERC721AStorage.layout()._operatorApprovals[owner][operator]; } /** * @dev Returns whether `tokenId` exists. * * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}. * * Tokens start existing when they are minted. See {_mint}. */ function _exists(uint256 tokenId) internal view virtual returns (bool) { return _startTokenId() <= tokenId && tokenId < ERC721AStorage.layout()._currentIndex && // If within bounds, ERC721AStorage.layout()._packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned. } /** * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`. */ function _isSenderApprovedOrOwner( address approvedAddress, address owner, address msgSender ) private pure returns (bool result) { assembly { // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean. owner := and(owner, _BITMASK_ADDRESS) // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean. msgSender := and(msgSender, _BITMASK_ADDRESS) // `msgSender == owner || msgSender == approvedAddress`. result := or(eq(msgSender, owner), eq(msgSender, approvedAddress)) } } /** * @dev Returns the storage slot and value for the approved address of `tokenId`. */ function _getApprovedSlotAndAddress(uint256 tokenId) private view returns (uint256 approvedAddressSlot, address approvedAddress) { ERC721AStorage.TokenApprovalRef storage tokenApproval = ERC721AStorage.layout()._tokenApprovals[tokenId]; // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId].value`. assembly { approvedAddressSlot := tokenApproval.slot approvedAddress := sload(approvedAddressSlot) } } // ============================================================= // TRANSFER OPERATIONS // ============================================================= /** * @dev Transfers `tokenId` from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) public payable virtual override { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); if (address(uint160(prevOwnershipPacked)) != from) revert TransferFromIncorrectOwner(); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); if (to == address(0)) revert TransferToZeroAddress(); _beforeTokenTransfers(from, to, tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // We can directly increment and decrement the balances. --ERC721AStorage.layout()._packedAddressData[from]; // Updates: `balance -= 1`. ++ERC721AStorage.layout()._packedAddressData[to]; // Updates: `balance += 1`. // Updates: // - `address` to the next owner. // - `startTimestamp` to the timestamp of transfering. // - `burned` to `false`. // - `nextInitialized` to `true`. ERC721AStorage.layout()._packedOwnerships[tokenId] = _packOwnershipData( to, _BITMASK_NEXT_INITIALIZED | _nextExtraData(from, to, prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (ERC721AStorage.layout()._packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != ERC721AStorage.layout()._currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. ERC721AStorage.layout()._packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, to, tokenId); _afterTokenTransfers(from, to, tokenId, 1); } /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) public payable virtual override { safeTransferFrom(from, to, tokenId, ''); } /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes memory _data ) public payable virtual override { transferFrom(from, to, tokenId); if (to.code.length != 0) if (!_checkContractOnERC721Received(from, to, tokenId, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } /** * @dev Hook that is called before a set of serially-ordered token IDs * are about to be transferred. This includes minting. * And also called before burning one token. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _beforeTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Hook that is called after a set of serially-ordered token IDs * have been transferred. This includes minting. * And also called after one token has been burned. * * `startTokenId` - the first token ID to be transferred. * `quantity` - the amount to be transferred. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been * transferred to `to`. * - When `from` is zero, `tokenId` has been minted for `to`. * - When `to` is zero, `tokenId` has been burned by `from`. * - `from` and `to` are never both zero. */ function _afterTokenTransfers( address from, address to, uint256 startTokenId, uint256 quantity ) internal virtual {} /** * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract. * * `from` - Previous owner of the given token ID. * `to` - Target address that will receive the token. * `tokenId` - Token ID to be transferred. * `_data` - Optional data to send along with the call. * * Returns whether the call correctly returned the expected magic value. */ function _checkContractOnERC721Received( address from, address to, uint256 tokenId, bytes memory _data ) private returns (bool) { try ERC721A__IERC721ReceiverUpgradeable(to).onERC721Received(_msgSenderERC721A(), from, tokenId, _data) returns (bytes4 retval) { return retval == ERC721A__IERC721ReceiverUpgradeable(to).onERC721Received.selector; } catch (bytes memory reason) { if (reason.length == 0) { revert TransferToNonERC721ReceiverImplementer(); } else { assembly { revert(add(32, reason), mload(reason)) } } } } // ============================================================= // MINT OPERATIONS // ============================================================= /** * @dev Mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {Transfer} event for each mint. */ function _mint(address to, uint256 quantity) internal virtual { uint256 startTokenId = ERC721AStorage.layout()._currentIndex; if (quantity == 0) revert MintZeroQuantity(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are incredibly unrealistic. // `balance` and `numberMinted` have a maximum limit of 2**64. // `tokenId` has a maximum limit of 2**256. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. ERC721AStorage.layout()._packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. ERC721AStorage.layout()._packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); uint256 toMasked; uint256 end = startTokenId + quantity; // Use assembly to loop and emit the `Transfer` event for gas savings. // The duplicated `log4` removes an extra check and reduces stack juggling. // The assembly, together with the surrounding Solidity code, have been // delicately arranged to nudge the compiler into producing optimized opcodes. assembly { // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean. toMasked := and(to, _BITMASK_ADDRESS) // Emit the `Transfer` event. log4( 0, // Start of data (0, since no data). 0, // End of data (0, since no data). _TRANSFER_EVENT_SIGNATURE, // Signature. 0, // `address(0)`. toMasked, // `to`. startTokenId // `tokenId`. ) // The `iszero(eq(,))` check ensures that large values of `quantity` // that overflows uint256 will make the loop run out of gas. // The compiler will optimize the `iszero` away for performance. for { let tokenId := add(startTokenId, 1) } iszero(eq(tokenId, end)) { tokenId := add(tokenId, 1) } { // Emit the `Transfer` event. Similar to above. log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId) } } if (toMasked == 0) revert MintToZeroAddress(); ERC721AStorage.layout()._currentIndex = end; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Mints `quantity` tokens and transfers them to `to`. * * This function is intended for efficient minting only during contract creation. * * It emits only one {ConsecutiveTransfer} as defined in * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309), * instead of a sequence of {Transfer} event(s). * * Calling this function outside of contract creation WILL make your contract * non-compliant with the ERC721 standard. * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309 * {ConsecutiveTransfer} event is only permissible during contract creation. * * Requirements: * * - `to` cannot be the zero address. * - `quantity` must be greater than 0. * * Emits a {ConsecutiveTransfer} event. */ function _mintERC2309(address to, uint256 quantity) internal virtual { uint256 startTokenId = ERC721AStorage.layout()._currentIndex; if (to == address(0)) revert MintToZeroAddress(); if (quantity == 0) revert MintZeroQuantity(); if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT) revert MintERC2309QuantityExceedsLimit(); _beforeTokenTransfers(address(0), to, startTokenId, quantity); // Overflows are unrealistic due to the above check for `quantity` to be below the limit. unchecked { // Updates: // - `balance += quantity`. // - `numberMinted += quantity`. // // We can directly add to the `balance` and `numberMinted`. ERC721AStorage.layout()._packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1); // Updates: // - `address` to the owner. // - `startTimestamp` to the timestamp of minting. // - `burned` to `false`. // - `nextInitialized` to `quantity == 1`. ERC721AStorage.layout()._packedOwnerships[startTokenId] = _packOwnershipData( to, _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0) ); emit ConsecutiveTransfer(startTokenId, startTokenId + quantity - 1, address(0), to); ERC721AStorage.layout()._currentIndex = startTokenId + quantity; } _afterTokenTransfers(address(0), to, startTokenId, quantity); } /** * @dev Safely mints `quantity` tokens and transfers them to `to`. * * Requirements: * * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called for each safe transfer. * - `quantity` must be greater than 0. * * See {_mint}. * * Emits a {Transfer} event for each mint. */ function _safeMint( address to, uint256 quantity, bytes memory _data ) internal virtual { _mint(to, quantity); unchecked { if (to.code.length != 0) { uint256 end = ERC721AStorage.layout()._currentIndex; uint256 index = end - quantity; do { if (!_checkContractOnERC721Received(address(0), to, index++, _data)) { revert TransferToNonERC721ReceiverImplementer(); } } while (index < end); // Reentrancy protection. if (ERC721AStorage.layout()._currentIndex != end) revert(); } } } /** * @dev Equivalent to `_safeMint(to, quantity, '')`. */ function _safeMint(address to, uint256 quantity) internal virtual { _safeMint(to, quantity, ''); } // ============================================================= // APPROVAL OPERATIONS // ============================================================= /** * @dev Equivalent to `_approve(to, tokenId, false)`. */ function _approve(address to, uint256 tokenId) internal virtual { _approve(to, tokenId, false); } /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - `tokenId` must exist. * * Emits an {Approval} event. */ function _approve( address to, uint256 tokenId, bool approvalCheck ) internal virtual { address owner = ownerOf(tokenId); if (approvalCheck) if (_msgSenderERC721A() != owner) if (!isApprovedForAll(owner, _msgSenderERC721A())) { revert ApprovalCallerNotOwnerNorApproved(); } ERC721AStorage.layout()._tokenApprovals[tokenId].value = to; emit Approval(owner, to, tokenId); } // ============================================================= // BURN OPERATIONS // ============================================================= /** * @dev Equivalent to `_burn(tokenId, false)`. */ function _burn(uint256 tokenId) internal virtual { _burn(tokenId, false); } /** * @dev Destroys `tokenId`. * The approval is cleared when the token is burned. * * Requirements: * * - `tokenId` must exist. * * Emits a {Transfer} event. */ function _burn(uint256 tokenId, bool approvalCheck) internal virtual { uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId); address from = address(uint160(prevOwnershipPacked)); (uint256 approvedAddressSlot, address approvedAddress) = _getApprovedSlotAndAddress(tokenId); if (approvalCheck) { // The nested ifs save around 20+ gas over a compound boolean condition. if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A())) if (!isApprovedForAll(from, _msgSenderERC721A())) revert TransferCallerNotOwnerNorApproved(); } _beforeTokenTransfers(from, address(0), tokenId, 1); // Clear approvals from the previous owner. assembly { if approvedAddress { // This is equivalent to `delete _tokenApprovals[tokenId]`. sstore(approvedAddressSlot, 0) } } // Underflow of the sender's balance is impossible because we check for // ownership above and the recipient's balance can't realistically overflow. // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256. unchecked { // Updates: // - `balance -= 1`. // - `numberBurned += 1`. // // We can directly decrement the balance, and increment the number burned. // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`. ERC721AStorage.layout()._packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1; // Updates: // - `address` to the last owner. // - `startTimestamp` to the timestamp of burning. // - `burned` to `true`. // - `nextInitialized` to `true`. ERC721AStorage.layout()._packedOwnerships[tokenId] = _packOwnershipData( from, (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) | _nextExtraData(from, address(0), prevOwnershipPacked) ); // If the next slot may not have been initialized (i.e. `nextInitialized == false`) . if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) { uint256 nextTokenId = tokenId + 1; // If the next slot's address is zero and not burned (i.e. packed value is zero). if (ERC721AStorage.layout()._packedOwnerships[nextTokenId] == 0) { // If the next slot is within bounds. if (nextTokenId != ERC721AStorage.layout()._currentIndex) { // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`. ERC721AStorage.layout()._packedOwnerships[nextTokenId] = prevOwnershipPacked; } } } } emit Transfer(from, address(0), tokenId); _afterTokenTransfers(from, address(0), tokenId, 1); // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times. unchecked { ERC721AStorage.layout()._burnCounter++; } } // ============================================================= // EXTRA DATA OPERATIONS // ============================================================= /** * @dev Directly sets the extra data for the ownership data `index`. */ function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual { uint256 packed = ERC721AStorage.layout()._packedOwnerships[index]; if (packed == 0) revert OwnershipNotInitializedForExtraData(); uint256 extraDataCasted; // Cast `extraData` with assembly to avoid redundant masking. assembly { extraDataCasted := extraData } packed = (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) | (extraDataCasted << _BITPOS_EXTRA_DATA); ERC721AStorage.layout()._packedOwnerships[index] = packed; } /** * @dev Called during each token transfer to set the 24bit `extraData` field. * Intended to be overridden by the cosumer contract. * * `previousExtraData` - the value of `extraData` before transfer. * * Calling conditions: * * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be * transferred to `to`. * - When `from` is zero, `tokenId` will be minted for `to`. * - When `to` is zero, `tokenId` will be burned by `from`. * - `from` and `to` are never both zero. */ function _extraData( address from, address to, uint24 previousExtraData ) internal view virtual returns (uint24) {} /** * @dev Returns the next extra data for the packed ownership data. * The returned result is shifted into position. */ function _nextExtraData( address from, address to, uint256 prevOwnershipPacked ) private view returns (uint256) { uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA); return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA; } // ============================================================= // OTHER OPERATIONS // ============================================================= /** * @dev Returns the message sender (defaults to `msg.sender`). * * If you are writing GSN compatible contracts, you need to override this function. */ function _msgSenderERC721A() internal view virtual returns (address) { return msg.sender; } /** * @dev Converts a uint256 to its ASCII string decimal representation. */ function _toString(uint256 value) internal pure virtual returns (string memory str) { assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. // prettier-ignore for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) // prettier-ignore if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is a base contract to aid in writing upgradeable diamond facet contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. */ import {ERC721A__InitializableStorage} from './ERC721A__InitializableStorage.sol'; abstract contract ERC721A__Initializable { using ERC721A__InitializableStorage for ERC721A__InitializableStorage.Layout; /** * @dev Modifier to protect an initializer function from being invoked twice. */ modifier initializerERC721A() { // If the contract is initializing we ignore whether _initialized is set in order to support multiple // inheritance patterns, but we only do this in the context of a constructor, because in other contexts the // contract may have been reentered. require( ERC721A__InitializableStorage.layout()._initializing ? _isConstructor() : !ERC721A__InitializableStorage.layout()._initialized, 'ERC721A__Initializable: contract is already initialized' ); bool isTopLevelCall = !ERC721A__InitializableStorage.layout()._initializing; if (isTopLevelCall) { ERC721A__InitializableStorage.layout()._initializing = true; ERC721A__InitializableStorage.layout()._initialized = true; } _; if (isTopLevelCall) { ERC721A__InitializableStorage.layout()._initializing = false; } } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} modifier, directly or indirectly. */ modifier onlyInitializingERC721A() { require( ERC721A__InitializableStorage.layout()._initializing, 'ERC721A__Initializable: contract is not initializing' ); _; } /// @dev Returns true if and only if the function is running in the constructor function _isConstructor() private view returns (bool) { // extcodesize checks the size of the code stored in an address, and // address returns the current address. Since the code is still not // deployed when running a constructor, any checks on its code size will // yield zero, making it an effective way to detect if a contract is // under construction or not. address self = address(this); uint256 cs; assembly { cs := extcodesize(self) } return cs == 0; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev This is a base storage for the initialization function for upgradeable diamond facet contracts **/ library ERC721A__InitializableStorage { struct Layout { /* * Indicates that the contract has been initialized. */ bool _initialized; /* * Indicates that the contract is in the process of being initialized. */ bool _initializing; } bytes32 internal constant STORAGE_SLOT = keccak256('ERC721A.contracts.storage.initializable.facet'); function layout() internal pure returns (Layout storage l) { bytes32 slot = STORAGE_SLOT; assembly { l.slot := slot } } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; /** * @dev Interface of ERC721A. */ interface IERC721AUpgradeable { /** * The caller must own the token or be an approved operator. */ error ApprovalCallerNotOwnerNorApproved(); /** * The token does not exist. */ error ApprovalQueryForNonexistentToken(); /** * Cannot query the balance for the zero address. */ error BalanceQueryForZeroAddress(); /** * Cannot mint to the zero address. */ error MintToZeroAddress(); /** * The quantity of tokens minted must be more than zero. */ error MintZeroQuantity(); /** * The token does not exist. */ error OwnerQueryForNonexistentToken(); /** * The caller must own the token or be an approved operator. */ error TransferCallerNotOwnerNorApproved(); /** * The token must be owned by `from`. */ error TransferFromIncorrectOwner(); /** * Cannot safely transfer to a contract that does not implement the * ERC721Receiver interface. */ error TransferToNonERC721ReceiverImplementer(); /** * Cannot transfer to the zero address. */ error TransferToZeroAddress(); /** * The token does not exist. */ error URIQueryForNonexistentToken(); /** * The `quantity` minted with ERC2309 exceeds the safety limit. */ error MintERC2309QuantityExceedsLimit(); /** * The `extraData` cannot be set on an unintialized ownership slot. */ error OwnershipNotInitializedForExtraData(); // ============================================================= // STRUCTS // ============================================================= struct TokenOwnership { // The address of the owner. address addr; // Stores the start time of ownership with minimal overhead for tokenomics. uint64 startTimestamp; // Whether the token has been burned. bool burned; // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}. uint24 extraData; } // ============================================================= // TOKEN COUNTERS // ============================================================= /** * @dev Returns the total number of tokens in existence. * Burned tokens will reduce the count. * To get the total number of tokens minted, please see {_totalMinted}. */ function totalSupply() external view returns (uint256); // ============================================================= // IERC165 // ============================================================= /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified) * to learn more about how these ids are created. * * This function call must use less than 30000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); // ============================================================= // IERC721 // ============================================================= /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer(address indexed from, address indexed to, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId); /** * @dev Emitted when `owner` enables or disables * (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll(address indexed owner, address indexed operator, bool approved); /** * @dev Returns the number of tokens in `owner`'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`, * checking first that contract recipients are aware of the ERC721 protocol * to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be have been allowed to move * this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external payable; /** * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Transfers `tokenId` from `from` to `to`. * * WARNING: Usage of this method is discouraged, use {safeTransferFrom} * whenever possible. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token * by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external payable; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the * zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external payable; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} * for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll}. */ function isApprovedForAll(address owner, address operator) external view returns (bool); // ============================================================= // IERC721Metadata // ============================================================= /** * @dev Returns the token collection name. */ function name() external view returns (string memory); /** * @dev Returns the token collection symbol. */ function symbol() external view returns (string memory); /** * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token. */ function tokenURI(uint256 tokenId) external view returns (string memory); // ============================================================= // IERC2309 // ============================================================= /** * @dev Emitted when tokens in `fromTokenId` to `toTokenId` * (inclusive) is transferred from `from` to `to`, as defined in the * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard. * * See {_mintERC2309} for more details. */ event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to); }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721ABurnableUpgradeable.sol'; import '../ERC721AUpgradeable.sol'; import '../ERC721A__Initializable.sol'; /** * @title ERC721ABurnable. * * @dev ERC721A token that can be irreversibly burned (destroyed). */ abstract contract ERC721ABurnableUpgradeable is ERC721A__Initializable, ERC721AUpgradeable, IERC721ABurnableUpgradeable { function __ERC721ABurnable_init() internal onlyInitializingERC721A { __ERC721ABurnable_init_unchained(); } function __ERC721ABurnable_init_unchained() internal onlyInitializingERC721A {} /** * @dev Burns `tokenId`. See {ERC721A-_burn}. * * Requirements: * * - The caller must own `tokenId` or be an approved operator. */ function burn(uint256 tokenId) public virtual override { _burn(tokenId, true); } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; import './IERC721AQueryableUpgradeable.sol'; import '../ERC721AUpgradeable.sol'; import '../ERC721A__Initializable.sol'; /** * @title ERC721AQueryable. * * @dev ERC721A subclass with convenience query functions. */ abstract contract ERC721AQueryableUpgradeable is ERC721A__Initializable, ERC721AUpgradeable, IERC721AQueryableUpgradeable { function __ERC721AQueryable_init() internal onlyInitializingERC721A { __ERC721AQueryable_init_unchained(); } function __ERC721AQueryable_init_unchained() internal onlyInitializingERC721A {} /** * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting. * * If the `tokenId` is out of bounds: * * - `addr = address(0)` * - `startTimestamp = 0` * - `burned = false` * - `extraData = 0` * * If the `tokenId` is burned: * * - `addr = <Address of owner before token was burned>` * - `startTimestamp = <Timestamp when token was burned>` * - `burned = true` * - `extraData = <Extra data when token was burned>` * * Otherwise: * * - `addr = <Address of owner>` * - `startTimestamp = <Timestamp of start of ownership>` * - `burned = false` * - `extraData = <Extra data at start of ownership>` */ function explicitOwnershipOf(uint256 tokenId) public view virtual override returns (TokenOwnership memory) { TokenOwnership memory ownership; if (tokenId < _startTokenId() || tokenId >= _nextTokenId()) { return ownership; } ownership = _ownershipAt(tokenId); if (ownership.burned) { return ownership; } return _ownershipOf(tokenId); } /** * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order. * See {ERC721AQueryable-explicitOwnershipOf} */ function explicitOwnershipsOf(uint256[] calldata tokenIds) external view virtual override returns (TokenOwnership[] memory) { unchecked { uint256 tokenIdsLength = tokenIds.length; TokenOwnership[] memory ownerships = new TokenOwnership[](tokenIdsLength); for (uint256 i; i != tokenIdsLength; ++i) { ownerships[i] = explicitOwnershipOf(tokenIds[i]); } return ownerships; } } /** * @dev Returns an array of token IDs owned by `owner`, * in the range [`start`, `stop`) * (i.e. `start <= tokenId < stop`). * * This function allows for tokens to be queried if the collection * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}. * * Requirements: * * - `start < stop` */ function tokensOfOwnerIn( address owner, uint256 start, uint256 stop ) external view virtual override returns (uint256[] memory) { unchecked { if (start >= stop) revert InvalidQueryRange(); uint256 tokenIdsIdx; uint256 stopLimit = _nextTokenId(); // Set `start = max(start, _startTokenId())`. if (start < _startTokenId()) { start = _startTokenId(); } // Set `stop = min(stop, stopLimit)`. if (stop > stopLimit) { stop = stopLimit; } uint256 tokenIdsMaxLength = balanceOf(owner); // Set `tokenIdsMaxLength = min(balanceOf(owner), stop - start)`, // to cater for cases where `balanceOf(owner)` is too big. if (start < stop) { uint256 rangeLength = stop - start; if (rangeLength < tokenIdsMaxLength) { tokenIdsMaxLength = rangeLength; } } else { tokenIdsMaxLength = 0; } uint256[] memory tokenIds = new uint256[](tokenIdsMaxLength); if (tokenIdsMaxLength == 0) { return tokenIds; } // We need to call `explicitOwnershipOf(start)`, // because the slot at `start` may not be initialized. TokenOwnership memory ownership = explicitOwnershipOf(start); address currOwnershipAddr; // If the starting slot exists (i.e. not burned), initialize `currOwnershipAddr`. // `ownership.address` will not be zero, as `start` is clamped to the valid token ID range. if (!ownership.burned) { currOwnershipAddr = ownership.addr; } for (uint256 i = start; i != stop && tokenIdsIdx != tokenIdsMaxLength; ++i) { ownership = _ownershipAt(i); if (ownership.burned) { continue; } if (ownership.addr != address(0)) { currOwnershipAddr = ownership.addr; } if (currOwnershipAddr == owner) { tokenIds[tokenIdsIdx++] = i; } } // Downsize the array to fit. assembly { mstore(tokenIds, tokenIdsIdx) } return tokenIds; } } /** * @dev Returns an array of token IDs owned by `owner`. * * This function scans the ownership mapping and is O(`totalSupply`) in complexity. * It is meant to be called off-chain. * * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into * multiple smaller scans if the collection is large enough to cause * an out-of-gas error (10K collections should be fine). */ function tokensOfOwner(address owner) external view virtual override returns (uint256[] memory) { unchecked { uint256 tokenIdsIdx; address currOwnershipAddr; uint256 tokenIdsLength = balanceOf(owner); uint256[] memory tokenIds = new uint256[](tokenIdsLength); TokenOwnership memory ownership; for (uint256 i = _startTokenId(); tokenIdsIdx != tokenIdsLength; ++i) { ownership = _ownershipAt(i); if (ownership.burned) { continue; } if (ownership.addr != address(0)) { currOwnershipAddr = ownership.addr; } if (currOwnershipAddr == owner) { tokenIds[tokenIdsIdx++] = i; } } return tokenIds; } } }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; import '../IERC721AUpgradeable.sol'; /** * @dev Interface of ERC721ABurnable. */ interface IERC721ABurnableUpgradeable is IERC721AUpgradeable { /** * @dev Burns `tokenId`. See {ERC721A-_burn}. * * Requirements: * * - The caller must own `tokenId` or be an approved operator. */ function burn(uint256 tokenId) external; }
// SPDX-License-Identifier: MIT // ERC721A Contracts v4.2.3 // Creator: Chiru Labs pragma solidity ^0.8.4; import '../IERC721AUpgradeable.sol'; /** * @dev Interface of ERC721AQueryable. */ interface IERC721AQueryableUpgradeable is IERC721AUpgradeable { /** * Invalid query range (`start` >= `stop`). */ error InvalidQueryRange(); /** * @dev Returns the `TokenOwnership` struct at `tokenId` without reverting. * * If the `tokenId` is out of bounds: * * - `addr = address(0)` * - `startTimestamp = 0` * - `burned = false` * - `extraData = 0` * * If the `tokenId` is burned: * * - `addr = <Address of owner before token was burned>` * - `startTimestamp = <Timestamp when token was burned>` * - `burned = true` * - `extraData = <Extra data when token was burned>` * * Otherwise: * * - `addr = <Address of owner>` * - `startTimestamp = <Timestamp of start of ownership>` * - `burned = false` * - `extraData = <Extra data at start of ownership>` */ function explicitOwnershipOf(uint256 tokenId) external view returns (TokenOwnership memory); /** * @dev Returns an array of `TokenOwnership` structs at `tokenIds` in order. * See {ERC721AQueryable-explicitOwnershipOf} */ function explicitOwnershipsOf(uint256[] memory tokenIds) external view returns (TokenOwnership[] memory); /** * @dev Returns an array of token IDs owned by `owner`, * in the range [`start`, `stop`) * (i.e. `start <= tokenId < stop`). * * This function allows for tokens to be queried if the collection * grows too big for a single call of {ERC721AQueryable-tokensOfOwner}. * * Requirements: * * - `start < stop` */ function tokensOfOwnerIn( address owner, uint256 start, uint256 stop ) external view returns (uint256[] memory); /** * @dev Returns an array of token IDs owned by `owner`. * * This function scans the ownership mapping and is O(`totalSupply`) in complexity. * It is meant to be called off-chain. * * See {ERC721AQueryable-tokensOfOwnerIn} for splitting the scan into * multiple smaller scans if the collection is large enough to cause * an out-of-gas error (10K collections should be fine). */ function tokensOfOwner(address owner) external view returns (uint256[] memory); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Optimized and flexible operator filterer to abide to OpenSea's /// mandatory on-chain royalty enforcement in order for new collections to /// receive royalties. /// For more information, see: /// See: https://github.com/ProjectOpenSea/operator-filter-registry abstract contract OperatorFilterer { /// @dev The default OpenSea operator blocklist subscription. address internal constant _DEFAULT_SUBSCRIPTION = 0x3cc6CddA760b79bAfa08dF41ECFA224f810dCeB6; /// @dev The OpenSea operator filter registry. address internal constant _OPERATOR_FILTER_REGISTRY = 0x000000000000AAeB6D7670E522A718067333cd4E; /// @dev Registers the current contract to OpenSea's operator filter, /// and subscribe to the default OpenSea operator blocklist. /// Note: Will not revert nor update existing settings for repeated registration. function _registerForOperatorFiltering() internal virtual { _registerForOperatorFiltering(_DEFAULT_SUBSCRIPTION, true); } /// @dev Registers the current contract to OpenSea's operator filter. /// Note: Will not revert nor update existing settings for repeated registration. function _registerForOperatorFiltering(address subscriptionOrRegistrantToCopy, bool subscribe) internal virtual { /// @solidity memory-safe-assembly assembly { let functionSelector := 0x7d3e3dbe // `registerAndSubscribe(address,address)`. // Clean the upper 96 bits of `subscriptionOrRegistrantToCopy` in case they are dirty. subscriptionOrRegistrantToCopy := shr(96, shl(96, subscriptionOrRegistrantToCopy)) for {} iszero(subscribe) {} { if iszero(subscriptionOrRegistrantToCopy) { functionSelector := 0x4420e486 // `register(address)`. break } functionSelector := 0xa0af2903 // `registerAndCopyEntries(address,address)`. break } // Store the function selector. mstore(0x00, shl(224, functionSelector)) // Store the `address(this)`. mstore(0x04, address()) // Store the `subscriptionOrRegistrantToCopy`. mstore(0x24, subscriptionOrRegistrantToCopy) // Register into the registry. pop(call(gas(), _OPERATOR_FILTER_REGISTRY, 0, 0x00, 0x44, 0x00, 0x00)) // Restore the part of the free memory pointer that was overwritten, // which is guaranteed to be zero, because of Solidity's memory size limits. mstore(0x24, 0) } } /// @dev Modifier to guard a function and revert if the caller is a blocked operator. modifier onlyAllowedOperator(address from) virtual { if (from != msg.sender) { if (!_isPriorityOperator(msg.sender)) { if (_operatorFilteringEnabled()) _revertIfBlocked(msg.sender); } } _; } /// @dev Modifier to guard a function from approving a blocked operator.. modifier onlyAllowedOperatorApproval(address operator) virtual { if (!_isPriorityOperator(operator)) { if (_operatorFilteringEnabled()) _revertIfBlocked(operator); } _; } /// @dev Helper function that reverts if the `operator` is blocked by the registry. function _revertIfBlocked(address operator) private view { /// @solidity memory-safe-assembly assembly { // Store the function selector of `isOperatorAllowed(address,address)`, // shifted left by 6 bytes, which is enough for 8tb of memory. // We waste 6-3 = 3 bytes to save on 6 runtime gas (PUSH1 0x224 SHL). mstore(0x00, 0xc6171134001122334455) // Store the `address(this)`. mstore(0x1a, address()) // Store the `operator`. mstore(0x3a, operator) // `isOperatorAllowed` always returns true if it does not revert. if iszero(staticcall(gas(), _OPERATOR_FILTER_REGISTRY, 0x16, 0x44, 0x00, 0x00)) { // Bubble up the revert if the staticcall reverts. returndatacopy(0x00, 0x00, returndatasize()) revert(0x00, returndatasize()) } // We'll skip checking if `from` is inside the blacklist. // Even though that can block transferring out of wrapper contracts, // we don't want tokens to be stuck. // Restore the part of the free memory pointer that was overwritten, // which is guaranteed to be zero, if less than 8tb of memory is used. mstore(0x3a, 0) } } /// @dev For deriving contracts to override, so that operator filtering /// can be turned on / off. /// Returns true by default. function _operatorFilteringEnabled() internal view virtual returns (bool) { return true; } /// @dev For deriving contracts to override, so that preferred marketplaces can /// skip operator filtering, helping users save gas. /// Returns false for all inputs by default. function _isPriorityOperator(address) internal view virtual returns (bool) { return false; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol) pragma solidity ^0.8.0; import "../utils/introspection/IERC165Upgradeable.sol"; /** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. * * _Available since v4.5._ */ interface IERC2981Upgradeable is IERC165Upgradeable { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. */ function royaltyInfo(uint256 tokenId, uint256 salePrice) external view returns (address receiver, uint256 royaltyAmount); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165Upgradeable { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple single owner and multiroles authorization mixin. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/OwnableRoles.sol) /// @dev While the ownable portion follows [EIP-173](https://eips.ethereum.org/EIPS/eip-173) /// for compatibility, the nomenclature for the 2-step ownership handover and roles /// may be unique to this codebase. abstract contract OwnableRoles { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The caller is not authorized to call the function. error Unauthorized(); /// @dev The `newOwner` cannot be the zero address. error NewOwnerIsZeroAddress(); /// @dev The `pendingOwner` does not have a valid handover request. error NoHandoverRequest(); /// @dev `bytes4(keccak256(bytes("Unauthorized()")))`. uint256 private constant _UNAUTHORIZED_ERROR_SELECTOR = 0x82b42900; /// @dev `bytes4(keccak256(bytes("NewOwnerIsZeroAddress()")))`. uint256 private constant _NEW_OWNER_IS_ZERO_ADDRESS_ERROR_SELECTOR = 0x7448fbae; /// @dev `bytes4(keccak256(bytes("NoHandoverRequest()")))`. uint256 private constant _NO_HANDOVER_REQUEST_ERROR_SELECTOR = 0x6f5e8818; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ownership is transferred from `oldOwner` to `newOwner`. /// This event is intentionally kept the same as OpenZeppelin's Ownable to be /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173), /// despite it not being as lightweight as a single argument event. event OwnershipTransferred(address indexed oldOwner, address indexed newOwner); /// @dev An ownership handover to `pendingOwner` has been requested. event OwnershipHandoverRequested(address indexed pendingOwner); /// @dev The ownership handover to `pendingOwner` has been canceled. event OwnershipHandoverCanceled(address indexed pendingOwner); /// @dev The `user`'s roles is updated to `roles`. /// Each bit of `roles` represents whether the role is set. event RolesUpdated(address indexed user, uint256 indexed roles); /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`. uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE = 0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0; /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE = 0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d; /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE = 0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92; /// @dev `keccak256(bytes("RolesUpdated(address,uint256)"))`. uint256 private constant _ROLES_UPDATED_EVENT_SIGNATURE = 0x715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe26; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The owner slot is given by: `not(_OWNER_SLOT_NOT)`. /// It is intentionally choosen to be a high value /// to avoid collision with lower slots. /// The choice of manual storage layout is to enable compatibility /// with both regular and upgradeable contracts. /// /// The role slot of `user` is given by: /// ``` /// mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT)) /// let roleSlot := keccak256(0x00, 0x20) /// ``` /// This automatically ignores the upper bits of the `user` in case /// they are not clean, as well as keep the `keccak256` under 32-bytes. uint256 private constant _OWNER_SLOT_NOT = 0x8b78c6d8; /// The ownership handover slot of `newOwner` is given by: /// ``` /// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED)) /// let handoverSlot := keccak256(0x00, 0x20) /// ``` /// It stores the expiry timestamp of the two-step ownership handover. uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* INTERNAL FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Initializes the owner directly without authorization guard. /// This function must be called upon initialization, /// regardless of whether the contract is upgradeable or not. /// This is to enable generalization to both regular and upgradeable contracts, /// and to save gas in case the initial owner is not the caller. /// For performance reasons, this function will not check if there /// is an existing owner. function _initializeOwner(address newOwner) internal virtual { /// @solidity memory-safe-assembly assembly { // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(not(_OWNER_SLOT_NOT), newOwner) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } /// @dev Sets the owner directly without authorization guard. function _setOwner(address newOwner) internal virtual { /// @solidity memory-safe-assembly assembly { let ownerSlot := not(_OWNER_SLOT_NOT) // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, newOwner) } } /// @dev Grants the roles directly without authorization guard. /// Each bit of `roles` represents the role to turn on. function _grantRoles(address user, uint256 roles) internal virtual { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT)) let roleSlot := keccak256(0x00, 0x20) // Load the current value and `or` it with `roles`. let newRoles := or(sload(roleSlot), roles) // Store the new value. sstore(roleSlot, newRoles) // Emit the {RolesUpdated} event. log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, shl(96, user)), newRoles) } } /// @dev Removes the roles directly without authorization guard. /// Each bit of `roles` represents the role to turn off. function _removeRoles(address user, uint256 roles) internal virtual { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT)) let roleSlot := keccak256(0x00, 0x20) // Load the current value. let currentRoles := sload(roleSlot) // Use `and` to compute the intersection of `currentRoles` and `roles`, // `xor` it with `currentRoles` to flip the bits in the intersection. let newRoles := xor(currentRoles, and(currentRoles, roles)) // Then, store the new value. sstore(roleSlot, newRoles) // Emit the {RolesUpdated} event. log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, shl(96, user)), newRoles) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC UPDATE FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Allows the owner to transfer the ownership to `newOwner`. function transferOwnership(address newOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Reverts if the `newOwner` is the zero address. if iszero(newOwner) { mstore(0x00, _NEW_OWNER_IS_ZERO_ADDRESS_ERROR_SELECTOR) revert(0x1c, 0x04) } // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, caller(), newOwner) // Store the new value. sstore(not(_OWNER_SLOT_NOT), newOwner) } } /// @dev Allows the owner to renounce their ownership. function renounceOwnership() public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, caller(), 0) // Store the new value. sstore(not(_OWNER_SLOT_NOT), 0) } } /// @dev Request a two-step ownership handover to the caller. /// The request will be automatically expire in 48 hours (172800 seconds) by default. function requestOwnershipHandover() public payable virtual { unchecked { uint256 expires = block.timestamp + ownershipHandoverValidFor(); /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 1. mstore(0x00, or(shl(96, caller()), _HANDOVER_SLOT_SEED)) sstore(keccak256(0x00, 0x20), expires) // Emit the {OwnershipHandoverRequested} event. log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller()) } } } /// @dev Cancels the two-step ownership handover to the caller, if any. function cancelOwnershipHandover() public payable virtual { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x00, or(shl(96, caller()), _HANDOVER_SLOT_SEED)) sstore(keccak256(0x00, 0x20), 0) // Emit the {OwnershipHandoverCanceled} event. log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller()) } } /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`. /// Reverts if there is no existing ownership handover requested by `pendingOwner`. function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { // Clean the upper 96 bits. pendingOwner := shr(96, shl(96, pendingOwner)) // Compute and set the handover slot to 0. mstore(0x00, or(shl(96, pendingOwner), _HANDOVER_SLOT_SEED)) let handoverSlot := keccak256(0x00, 0x20) // If the handover does not exist, or has expired. if gt(timestamp(), sload(handoverSlot)) { mstore(0x00, _NO_HANDOVER_REQUEST_ERROR_SELECTOR) revert(0x1c, 0x04) } // Set the handover slot to 0. sstore(handoverSlot, 0) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, caller(), pendingOwner) // Store the new value. sstore(not(_OWNER_SLOT_NOT), pendingOwner) } } /// @dev Allows the owner to grant `user` `roles`. /// If the `user` already has a role, then it will be an no-op for the role. function grantRoles(address user, uint256 roles) public payable virtual onlyOwner { _grantRoles(user, roles); } /// @dev Allows the owner to remove `user` `roles`. /// If the `user` does not have a role, then it will be an no-op for the role. function revokeRoles(address user, uint256 roles) public payable virtual onlyOwner { _removeRoles(user, roles); } /// @dev Allow the caller to remove their own roles. /// If the caller does not have a role, then it will be an no-op for the role. function renounceRoles(uint256 roles) public payable virtual { _removeRoles(msg.sender, roles); } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* PUBLIC READ FUNCTIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the owner of the contract. function owner() public view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { result := sload(not(_OWNER_SLOT_NOT)) } } /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`. function ownershipHandoverExpiresAt(address pendingOwner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Compute the handover slot. mstore(0x00, or(shl(96, pendingOwner), _HANDOVER_SLOT_SEED)) // Load the handover slot. result := sload(keccak256(0x00, 0x20)) } } /// @dev Returns how long a two-step ownership handover is valid for in seconds. function ownershipHandoverValidFor() public view virtual returns (uint64) { return 48 * 3600; } /// @dev Returns whether `user` has any of `roles`. function hasAnyRole(address user, uint256 roles) public view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT)) // Load the stored value, and set the result to whether the // `and` intersection of the value and `roles` is not zero. result := iszero(iszero(and(sload(keccak256(0x00, 0x20)), roles))) } } /// @dev Returns whether `user` has all of `roles`. function hasAllRoles(address user, uint256 roles) public view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT)) // Whether the stored value is contains all the set bits in `roles`. result := eq(and(sload(keccak256(0x00, 0x20)), roles), roles) } } /// @dev Returns the roles of `user`. function rolesOf(address user) public view virtual returns (uint256 roles) { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x00, or(shl(96, user), _OWNER_SLOT_NOT)) // Load the stored value. roles := sload(keccak256(0x00, 0x20)) } } /// @dev Convenience function to return a `roles` bitmap from an array of `ordinals`. /// This is meant for frontends like Etherscan, and is therefore not fully optimized. /// Not recommended to be called on-chain. function rolesFromOrdinals(uint8[] memory ordinals) public pure returns (uint256 roles) { /// @solidity memory-safe-assembly assembly { // Skip the length slot. let o := add(ordinals, 0x20) // `shl` 5 is equivalent to multiplying by 0x20. let end := add(o, shl(5, mload(ordinals))) for {} iszero(eq(o, end)) { o := add(o, 0x20) } { roles := or(roles, shl(and(mload(o), 0xff), 1)) } } } /// @dev Convenience function to return an array of `ordinals` from the `roles` bitmap. /// This is meant for frontends like Etherscan, and is therefore not fully optimized. /// Not recommended to be called on-chain. function ordinalsFromRoles(uint256 roles) public pure returns (uint8[] memory ordinals) { /// @solidity memory-safe-assembly assembly { // Grab the pointer to the free memory. let ptr := add(mload(0x40), 0x20) // The absence of lookup tables, De Bruijn, etc., here is intentional for // smaller bytecode, as this function is not meant to be called on-chain. for { let i := 0 } 1 { i := add(i, 1) } { mstore(ptr, i) // `shr` 5 is equivalent to multiplying by 0x20. // Push back into the ordinals array if the bit is set. ptr := add(ptr, shl(5, and(roles, 1))) roles := shr(1, roles) if iszero(roles) { break } } // Set `ordinals` to the start of the free memory. ordinals := mload(0x40) // Allocate the memory. mstore(0x40, ptr) // Store the length of `ordinals`. mstore(ordinals, shr(5, sub(ptr, add(ordinals, 0x20)))) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* MODIFIERS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Marks a function as only callable by the owner. modifier onlyOwner() virtual { /// @solidity memory-safe-assembly assembly { // If the caller is not the stored owner, revert. if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) { mstore(0x00, _UNAUTHORIZED_ERROR_SELECTOR) revert(0x1c, 0x04) } } _; } /// @dev Marks a function as only callable by an account with `roles`. modifier onlyRoles(uint256 roles) virtual { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x00, or(shl(96, caller()), _OWNER_SLOT_NOT)) // Load the stored value, and if the `and` intersection // of the value and `roles` is zero, revert. if iszero(and(sload(keccak256(0x00, 0x20)), roles)) { mstore(0x00, _UNAUTHORIZED_ERROR_SELECTOR) revert(0x1c, 0x04) } } _; } /// @dev Marks a function as only callable by the owner or by an account /// with `roles`. Checks for ownership first, then lazily checks for roles. modifier onlyOwnerOrRoles(uint256 roles) virtual { /// @solidity memory-safe-assembly assembly { // If the caller is not the stored owner. if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) { // Compute the role slot. mstore(0x00, or(shl(96, caller()), _OWNER_SLOT_NOT)) // Load the stored value, and if the `and` intersection // of the value and `roles` is zero, revert. if iszero(and(sload(keccak256(0x00, 0x20)), roles)) { mstore(0x00, _UNAUTHORIZED_ERROR_SELECTOR) revert(0x1c, 0x04) } } } _; } /// @dev Marks a function as only callable by an account with `roles` /// or the owner. Checks for roles first, then lazily checks for ownership. modifier onlyRolesOrOwner(uint256 roles) virtual { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x00, or(shl(96, caller()), _OWNER_SLOT_NOT)) // Load the stored value, and if the `and` intersection // of the value and `roles` is zero, revert. if iszero(and(sload(keccak256(0x00, 0x20)), roles)) { // If the caller is not the stored owner. if iszero(eq(caller(), sload(not(_OWNER_SLOT_NOT)))) { mstore(0x00, _UNAUTHORIZED_ERROR_SELECTOR) revert(0x1c, 0x04) } } } _; } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ROLE CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // IYKYK uint256 internal constant _ROLE_0 = 1 << 0; uint256 internal constant _ROLE_1 = 1 << 1; uint256 internal constant _ROLE_2 = 1 << 2; uint256 internal constant _ROLE_3 = 1 << 3; uint256 internal constant _ROLE_4 = 1 << 4; uint256 internal constant _ROLE_5 = 1 << 5; uint256 internal constant _ROLE_6 = 1 << 6; uint256 internal constant _ROLE_7 = 1 << 7; uint256 internal constant _ROLE_8 = 1 << 8; uint256 internal constant _ROLE_9 = 1 << 9; uint256 internal constant _ROLE_10 = 1 << 10; uint256 internal constant _ROLE_11 = 1 << 11; uint256 internal constant _ROLE_12 = 1 << 12; uint256 internal constant _ROLE_13 = 1 << 13; uint256 internal constant _ROLE_14 = 1 << 14; uint256 internal constant _ROLE_15 = 1 << 15; uint256 internal constant _ROLE_16 = 1 << 16; uint256 internal constant _ROLE_17 = 1 << 17; uint256 internal constant _ROLE_18 = 1 << 18; uint256 internal constant _ROLE_19 = 1 << 19; uint256 internal constant _ROLE_20 = 1 << 20; uint256 internal constant _ROLE_21 = 1 << 21; uint256 internal constant _ROLE_22 = 1 << 22; uint256 internal constant _ROLE_23 = 1 << 23; uint256 internal constant _ROLE_24 = 1 << 24; uint256 internal constant _ROLE_25 = 1 << 25; uint256 internal constant _ROLE_26 = 1 << 26; uint256 internal constant _ROLE_27 = 1 << 27; uint256 internal constant _ROLE_28 = 1 << 28; uint256 internal constant _ROLE_29 = 1 << 29; uint256 internal constant _ROLE_30 = 1 << 30; uint256 internal constant _ROLE_31 = 1 << 31; uint256 internal constant _ROLE_32 = 1 << 32; uint256 internal constant _ROLE_33 = 1 << 33; uint256 internal constant _ROLE_34 = 1 << 34; uint256 internal constant _ROLE_35 = 1 << 35; uint256 internal constant _ROLE_36 = 1 << 36; uint256 internal constant _ROLE_37 = 1 << 37; uint256 internal constant _ROLE_38 = 1 << 38; uint256 internal constant _ROLE_39 = 1 << 39; uint256 internal constant _ROLE_40 = 1 << 40; uint256 internal constant _ROLE_41 = 1 << 41; uint256 internal constant _ROLE_42 = 1 << 42; uint256 internal constant _ROLE_43 = 1 << 43; uint256 internal constant _ROLE_44 = 1 << 44; uint256 internal constant _ROLE_45 = 1 << 45; uint256 internal constant _ROLE_46 = 1 << 46; uint256 internal constant _ROLE_47 = 1 << 47; uint256 internal constant _ROLE_48 = 1 << 48; uint256 internal constant _ROLE_49 = 1 << 49; uint256 internal constant _ROLE_50 = 1 << 50; uint256 internal constant _ROLE_51 = 1 << 51; uint256 internal constant _ROLE_52 = 1 << 52; uint256 internal constant _ROLE_53 = 1 << 53; uint256 internal constant _ROLE_54 = 1 << 54; uint256 internal constant _ROLE_55 = 1 << 55; uint256 internal constant _ROLE_56 = 1 << 56; uint256 internal constant _ROLE_57 = 1 << 57; uint256 internal constant _ROLE_58 = 1 << 58; uint256 internal constant _ROLE_59 = 1 << 59; uint256 internal constant _ROLE_60 = 1 << 60; uint256 internal constant _ROLE_61 = 1 << 61; uint256 internal constant _ROLE_62 = 1 << 62; uint256 internal constant _ROLE_63 = 1 << 63; uint256 internal constant _ROLE_64 = 1 << 64; uint256 internal constant _ROLE_65 = 1 << 65; uint256 internal constant _ROLE_66 = 1 << 66; uint256 internal constant _ROLE_67 = 1 << 67; uint256 internal constant _ROLE_68 = 1 << 68; uint256 internal constant _ROLE_69 = 1 << 69; uint256 internal constant _ROLE_70 = 1 << 70; uint256 internal constant _ROLE_71 = 1 << 71; uint256 internal constant _ROLE_72 = 1 << 72; uint256 internal constant _ROLE_73 = 1 << 73; uint256 internal constant _ROLE_74 = 1 << 74; uint256 internal constant _ROLE_75 = 1 << 75; uint256 internal constant _ROLE_76 = 1 << 76; uint256 internal constant _ROLE_77 = 1 << 77; uint256 internal constant _ROLE_78 = 1 << 78; uint256 internal constant _ROLE_79 = 1 << 79; uint256 internal constant _ROLE_80 = 1 << 80; uint256 internal constant _ROLE_81 = 1 << 81; uint256 internal constant _ROLE_82 = 1 << 82; uint256 internal constant _ROLE_83 = 1 << 83; uint256 internal constant _ROLE_84 = 1 << 84; uint256 internal constant _ROLE_85 = 1 << 85; uint256 internal constant _ROLE_86 = 1 << 86; uint256 internal constant _ROLE_87 = 1 << 87; uint256 internal constant _ROLE_88 = 1 << 88; uint256 internal constant _ROLE_89 = 1 << 89; uint256 internal constant _ROLE_90 = 1 << 90; uint256 internal constant _ROLE_91 = 1 << 91; uint256 internal constant _ROLE_92 = 1 << 92; uint256 internal constant _ROLE_93 = 1 << 93; uint256 internal constant _ROLE_94 = 1 << 94; uint256 internal constant _ROLE_95 = 1 << 95; uint256 internal constant _ROLE_96 = 1 << 96; uint256 internal constant _ROLE_97 = 1 << 97; uint256 internal constant _ROLE_98 = 1 << 98; uint256 internal constant _ROLE_99 = 1 << 99; uint256 internal constant _ROLE_100 = 1 << 100; uint256 internal constant _ROLE_101 = 1 << 101; uint256 internal constant _ROLE_102 = 1 << 102; uint256 internal constant _ROLE_103 = 1 << 103; uint256 internal constant _ROLE_104 = 1 << 104; uint256 internal constant _ROLE_105 = 1 << 105; uint256 internal constant _ROLE_106 = 1 << 106; uint256 internal constant _ROLE_107 = 1 << 107; uint256 internal constant _ROLE_108 = 1 << 108; uint256 internal constant _ROLE_109 = 1 << 109; uint256 internal constant _ROLE_110 = 1 << 110; uint256 internal constant _ROLE_111 = 1 << 111; uint256 internal constant _ROLE_112 = 1 << 112; uint256 internal constant _ROLE_113 = 1 << 113; uint256 internal constant _ROLE_114 = 1 << 114; uint256 internal constant _ROLE_115 = 1 << 115; uint256 internal constant _ROLE_116 = 1 << 116; uint256 internal constant _ROLE_117 = 1 << 117; uint256 internal constant _ROLE_118 = 1 << 118; uint256 internal constant _ROLE_119 = 1 << 119; uint256 internal constant _ROLE_120 = 1 << 120; uint256 internal constant _ROLE_121 = 1 << 121; uint256 internal constant _ROLE_122 = 1 << 122; uint256 internal constant _ROLE_123 = 1 << 123; uint256 internal constant _ROLE_124 = 1 << 124; uint256 internal constant _ROLE_125 = 1 << 125; uint256 internal constant _ROLE_126 = 1 << 126; uint256 internal constant _ROLE_127 = 1 << 127; uint256 internal constant _ROLE_128 = 1 << 128; uint256 internal constant _ROLE_129 = 1 << 129; uint256 internal constant _ROLE_130 = 1 << 130; uint256 internal constant _ROLE_131 = 1 << 131; uint256 internal constant _ROLE_132 = 1 << 132; uint256 internal constant _ROLE_133 = 1 << 133; uint256 internal constant _ROLE_134 = 1 << 134; uint256 internal constant _ROLE_135 = 1 << 135; uint256 internal constant _ROLE_136 = 1 << 136; uint256 internal constant _ROLE_137 = 1 << 137; uint256 internal constant _ROLE_138 = 1 << 138; uint256 internal constant _ROLE_139 = 1 << 139; uint256 internal constant _ROLE_140 = 1 << 140; uint256 internal constant _ROLE_141 = 1 << 141; uint256 internal constant _ROLE_142 = 1 << 142; uint256 internal constant _ROLE_143 = 1 << 143; uint256 internal constant _ROLE_144 = 1 << 144; uint256 internal constant _ROLE_145 = 1 << 145; uint256 internal constant _ROLE_146 = 1 << 146; uint256 internal constant _ROLE_147 = 1 << 147; uint256 internal constant _ROLE_148 = 1 << 148; uint256 internal constant _ROLE_149 = 1 << 149; uint256 internal constant _ROLE_150 = 1 << 150; uint256 internal constant _ROLE_151 = 1 << 151; uint256 internal constant _ROLE_152 = 1 << 152; uint256 internal constant _ROLE_153 = 1 << 153; uint256 internal constant _ROLE_154 = 1 << 154; uint256 internal constant _ROLE_155 = 1 << 155; uint256 internal constant _ROLE_156 = 1 << 156; uint256 internal constant _ROLE_157 = 1 << 157; uint256 internal constant _ROLE_158 = 1 << 158; uint256 internal constant _ROLE_159 = 1 << 159; uint256 internal constant _ROLE_160 = 1 << 160; uint256 internal constant _ROLE_161 = 1 << 161; uint256 internal constant _ROLE_162 = 1 << 162; uint256 internal constant _ROLE_163 = 1 << 163; uint256 internal constant _ROLE_164 = 1 << 164; uint256 internal constant _ROLE_165 = 1 << 165; uint256 internal constant _ROLE_166 = 1 << 166; uint256 internal constant _ROLE_167 = 1 << 167; uint256 internal constant _ROLE_168 = 1 << 168; uint256 internal constant _ROLE_169 = 1 << 169; uint256 internal constant _ROLE_170 = 1 << 170; uint256 internal constant _ROLE_171 = 1 << 171; uint256 internal constant _ROLE_172 = 1 << 172; uint256 internal constant _ROLE_173 = 1 << 173; uint256 internal constant _ROLE_174 = 1 << 174; uint256 internal constant _ROLE_175 = 1 << 175; uint256 internal constant _ROLE_176 = 1 << 176; uint256 internal constant _ROLE_177 = 1 << 177; uint256 internal constant _ROLE_178 = 1 << 178; uint256 internal constant _ROLE_179 = 1 << 179; uint256 internal constant _ROLE_180 = 1 << 180; uint256 internal constant _ROLE_181 = 1 << 181; uint256 internal constant _ROLE_182 = 1 << 182; uint256 internal constant _ROLE_183 = 1 << 183; uint256 internal constant _ROLE_184 = 1 << 184; uint256 internal constant _ROLE_185 = 1 << 185; uint256 internal constant _ROLE_186 = 1 << 186; uint256 internal constant _ROLE_187 = 1 << 187; uint256 internal constant _ROLE_188 = 1 << 188; uint256 internal constant _ROLE_189 = 1 << 189; uint256 internal constant _ROLE_190 = 1 << 190; uint256 internal constant _ROLE_191 = 1 << 191; uint256 internal constant _ROLE_192 = 1 << 192; uint256 internal constant _ROLE_193 = 1 << 193; uint256 internal constant _ROLE_194 = 1 << 194; uint256 internal constant _ROLE_195 = 1 << 195; uint256 internal constant _ROLE_196 = 1 << 196; uint256 internal constant _ROLE_197 = 1 << 197; uint256 internal constant _ROLE_198 = 1 << 198; uint256 internal constant _ROLE_199 = 1 << 199; uint256 internal constant _ROLE_200 = 1 << 200; uint256 internal constant _ROLE_201 = 1 << 201; uint256 internal constant _ROLE_202 = 1 << 202; uint256 internal constant _ROLE_203 = 1 << 203; uint256 internal constant _ROLE_204 = 1 << 204; uint256 internal constant _ROLE_205 = 1 << 205; uint256 internal constant _ROLE_206 = 1 << 206; uint256 internal constant _ROLE_207 = 1 << 207; uint256 internal constant _ROLE_208 = 1 << 208; uint256 internal constant _ROLE_209 = 1 << 209; uint256 internal constant _ROLE_210 = 1 << 210; uint256 internal constant _ROLE_211 = 1 << 211; uint256 internal constant _ROLE_212 = 1 << 212; uint256 internal constant _ROLE_213 = 1 << 213; uint256 internal constant _ROLE_214 = 1 << 214; uint256 internal constant _ROLE_215 = 1 << 215; uint256 internal constant _ROLE_216 = 1 << 216; uint256 internal constant _ROLE_217 = 1 << 217; uint256 internal constant _ROLE_218 = 1 << 218; uint256 internal constant _ROLE_219 = 1 << 219; uint256 internal constant _ROLE_220 = 1 << 220; uint256 internal constant _ROLE_221 = 1 << 221; uint256 internal constant _ROLE_222 = 1 << 222; uint256 internal constant _ROLE_223 = 1 << 223; uint256 internal constant _ROLE_224 = 1 << 224; uint256 internal constant _ROLE_225 = 1 << 225; uint256 internal constant _ROLE_226 = 1 << 226; uint256 internal constant _ROLE_227 = 1 << 227; uint256 internal constant _ROLE_228 = 1 << 228; uint256 internal constant _ROLE_229 = 1 << 229; uint256 internal constant _ROLE_230 = 1 << 230; uint256 internal constant _ROLE_231 = 1 << 231; uint256 internal constant _ROLE_232 = 1 << 232; uint256 internal constant _ROLE_233 = 1 << 233; uint256 internal constant _ROLE_234 = 1 << 234; uint256 internal constant _ROLE_235 = 1 << 235; uint256 internal constant _ROLE_236 = 1 << 236; uint256 internal constant _ROLE_237 = 1 << 237; uint256 internal constant _ROLE_238 = 1 << 238; uint256 internal constant _ROLE_239 = 1 << 239; uint256 internal constant _ROLE_240 = 1 << 240; uint256 internal constant _ROLE_241 = 1 << 241; uint256 internal constant _ROLE_242 = 1 << 242; uint256 internal constant _ROLE_243 = 1 << 243; uint256 internal constant _ROLE_244 = 1 << 244; uint256 internal constant _ROLE_245 = 1 << 245; uint256 internal constant _ROLE_246 = 1 << 246; uint256 internal constant _ROLE_247 = 1 << 247; uint256 internal constant _ROLE_248 = 1 << 248; uint256 internal constant _ROLE_249 = 1 << 249; uint256 internal constant _ROLE_250 = 1 << 250; uint256 internal constant _ROLE_251 = 1 << 251; uint256 internal constant _ROLE_252 = 1 << 252; uint256 internal constant _ROLE_253 = 1 << 253; uint256 internal constant _ROLE_254 = 1 << 254; uint256 internal constant _ROLE_255 = 1 << 255; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library to encode strings in Base64. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/Base64.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/Base64.sol) /// @author Modified from (https://github.com/Brechtpd/base64/blob/main/base64.sol) by Brecht Devos - <[email protected]>. library Base64 { /// @dev Encodes `data` using the base64 encoding described in RFC 4648. /// See: https://datatracker.ietf.org/doc/html/rfc4648 /// @param fileSafe Whether to replace '+' with '-' and '/' with '_'. /// @param noPadding Whether to strip away the padding. function encode(bytes memory data, bool fileSafe, bool noPadding) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let dataLength := mload(data) if dataLength { // Multiply by 4/3 rounded up. // The `shl(2, ...)` is equivalent to multiplying by 4. let encodedLength := shl(2, div(add(dataLength, 2), 3)) // Set `result` to point to the start of the free memory. result := mload(0x40) // Store the table into the scratch space. // Offsetted by -1 byte so that the `mload` will load the character. // We will rewrite the free memory pointer at `0x40` later with // the allocated size. // The magic constant 0x0230 will translate "-_" + "+/". mstore(0x1f, "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdef") mstore(0x3f, sub("ghijklmnopqrstuvwxyz0123456789-_", mul(iszero(fileSafe), 0x0230))) // Skip the first slot, which stores the length. let ptr := add(result, 0x20) let end := add(ptr, encodedLength) // Run over the input, 3 bytes at a time. for {} 1 {} { data := add(data, 3) // Advance 3 bytes. let input := mload(data) // Write 4 bytes. Optimized for fewer stack operations. mstore8(ptr, mload(and(shr(18, input), 0x3F))) mstore8(add(ptr, 1), mload(and(shr(12, input), 0x3F))) mstore8(add(ptr, 2), mload(and(shr(6, input), 0x3F))) mstore8(add(ptr, 3), mload(and(input, 0x3F))) ptr := add(ptr, 4) // Advance 4 bytes. if iszero(lt(ptr, end)) { break } } let r := mod(dataLength, 3) switch noPadding case 0 { // Offset `ptr` and pad with '='. We can simply write over the end. mstore8(sub(ptr, iszero(iszero(r))), 0x3d) // Pad at `ptr - 1` if `r > 0`. mstore8(sub(ptr, shl(1, eq(r, 1))), 0x3d) // Pad at `ptr - 2` if `r == 1`. // Write the length of the string. mstore(result, encodedLength) } default { // Write the length of the string. mstore(result, sub(encodedLength, add(iszero(iszero(r)), eq(r, 1)))) } // Allocate the memory for the string. // Add 31 and mask with `not(31)` to round the // free memory pointer up the next multiple of 32. mstore(0x40, and(add(end, 31), not(31))) } } } /// @dev Encodes `data` using the base64 encoding described in RFC 4648. /// Equivalent to `encode(data, false, false)`. function encode(bytes memory data) internal pure returns (string memory result) { result = encode(data, false, false); } /// @dev Encodes `data` using the base64 encoding described in RFC 4648. /// Equivalent to `encode(data, fileSafe, false)`. function encode(bytes memory data, bool fileSafe) internal pure returns (string memory result) { result = encode(data, fileSafe, false); } /// @dev Encodes base64 encoded `data`. /// /// Supports: /// - RFC 4648 (both standard and file-safe mode). /// - RFC 3501 (63: ','). /// /// Does not support: /// - Line breaks. /// /// Note: For performance reasons, /// this function will NOT revert on invalid `data` inputs. /// Outputs for invalid inputs will simply be undefined behaviour. /// It is the user's responsibility to ensure that the `data` /// is a valid base64 encoded string. function decode(string memory data) internal pure returns (bytes memory result) { /// @solidity memory-safe-assembly assembly { let dataLength := mload(data) if dataLength { let end := add(data, dataLength) let decodedLength := mul(shr(2, dataLength), 3) switch and(dataLength, 3) case 0 { // If padded. // forgefmt: disable-next-item decodedLength := sub( decodedLength, add(eq(and(mload(end), 0xFF), 0x3d), eq(and(mload(end), 0xFFFF), 0x3d3d)) ) } default { // If non-padded. decodedLength := add(decodedLength, sub(and(dataLength, 3), 1)) } result := mload(0x40) // Write the length of the string. mstore(result, decodedLength) // Skip the first slot, which stores the length. let ptr := add(result, 0x20) // Load the table into the scratch space. // Constants are optimized for smaller bytecode with zero gas overhead. // `m` also doubles as the mask of the upper 6 bits. let m := 0xfc000000fc00686c7074787c8084888c9094989ca0a4a8acb0b4b8bcc0c4c8cc mstore(0x5b, m) mstore(0x3b, 0x04080c1014181c2024282c3034383c4044484c5054585c6064) mstore(0x1a, 0xf8fcf800fcd0d4d8dce0e4e8ecf0f4) for {} 1 {} { // Read 4 bytes. data := add(data, 4) let input := mload(data) // Write 3 bytes. // forgefmt: disable-next-item mstore(ptr, or( and(m, mload(byte(28, input))), shr(6, or( and(m, mload(byte(29, input))), shr(6, or( and(m, mload(byte(30, input))), shr(6, mload(byte(31, input))) )) )) )) ptr := add(ptr, 3) if iszero(lt(data, end)) { break } } // Allocate the memory for the string. // Add 32 + 31 and mask with `not(31)` to round the // free memory pointer up the next multiple of 32. mstore(0x40, and(add(add(result, decodedLength), 63), not(31))) // Restore the zero slot. mstore(0x60, 0) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/FixedPointMathLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The operation failed, as the output exceeds the maximum value of uint256. error ExpOverflow(); /// @dev The operation failed, as the output exceeds the maximum value of uint256. error FactorialOverflow(); /// @dev The operation failed, due to an multiplication overflow. error MulWadFailed(); /// @dev The operation failed, either due to a /// multiplication overflow, or a division by a zero. error DivWadFailed(); /// @dev The multiply-divide operation failed, either due to a /// multiplication overflow, or a division by a zero. error MulDivFailed(); /// @dev The division failed, as the denominator is zero. error DivFailed(); /// @dev The full precision multiply-divide operation failed, either due /// to the result being larger than 256 bits, or a division by a zero. error FullMulDivFailed(); /// @dev The output is undefined, as the input is less-than-or-equal to zero. error LnWadUndefined(); /// @dev The output is undefined, as the input is zero. error Log2Undefined(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The scalar of ETH and most ERC20s. uint256 internal constant WAD = 1e18; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* SIMPLIFIED FIXED POINT OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Equivalent to `(x * y) / WAD` rounded down. function mulWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { // Store the function selector of `MulWadFailed()`. mstore(0x00, 0xbac65e5b) // Revert with (offset, size). revert(0x1c, 0x04) } z := div(mul(x, y), WAD) } } /// @dev Equivalent to `(x * y) / WAD` rounded up. function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`. if mul(y, gt(x, div(not(0), y))) { // Store the function selector of `MulWadFailed()`. mstore(0x00, 0xbac65e5b) // Revert with (offset, size). revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD)) } } /// @dev Equivalent to `(x * WAD) / y` rounded down. function divWad(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { // Store the function selector of `DivWadFailed()`. mstore(0x00, 0x7c5f487d) // Revert with (offset, size). revert(0x1c, 0x04) } z := div(mul(x, WAD), y) } } /// @dev Equivalent to `(x * WAD) / y` rounded up. function divWadUp(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`. if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) { // Store the function selector of `DivWadFailed()`. mstore(0x00, 0x7c5f487d) // Revert with (offset, size). revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y)) } } /// @dev Equivalent to `x` to the power of `y`. /// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`. function powWad(int256 x, int256 y) internal pure returns (int256) { // Using `ln(x)` means `x` must be greater than 0. return expWad((lnWad(x) * y) / int256(WAD)); } /// @dev Returns `exp(x)`, denominated in `WAD`. function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert ExpOverflow(); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5 ** 18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256( (uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k) ); } } /// @dev Returns `ln(x)`, denominated in `WAD`. function lnWad(int256 x) internal pure returns (int256 r) { unchecked { if (x <= 0) revert LnWadUndefined(); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Compute k = log2(x) - 96. int256 k; /// @solidity memory-safe-assembly assembly { let v := x k := shl(7, lt(0xffffffffffffffffffffffffffffffff, v)) k := or(k, shl(6, lt(0xffffffffffffffff, shr(k, v)))) k := or(k, shl(5, lt(0xffffffff, shr(k, v)))) // For the remaining 32 bits, use a De Bruijn lookup. // See: https://graphics.stanford.edu/~seander/bithacks.html v := shr(k, v) v := or(v, shr(1, v)) v := or(v, shr(2, v)) v := or(v, shr(4, v)) v := or(v, shr(8, v)) v := or(v, shr(16, v)) // forgefmt: disable-next-item k := sub(or(k, byte(shr(251, mul(v, shl(224, 0x07c4acdd))), 0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f)), 96) } // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; /// @solidity memory-safe-assembly assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* GENERAL NUMBER UTILITIES */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Calculates floor(a × b ÷ denominator) with full precision. /// Throws if result overflows a uint256 or when the denominator is zero. /// Credit to Remco Bloemen under MIT license: https://xn--2-umb.com/21/muldiv function fullMulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // forgefmt: disable-next-item for {} 1 {} { // 512-bit multiply [prod1 prod0] = a * b // Compute the product mod 2**256 and mod 2**256 - 1 // then use the Chinese Remainder Theorem to reconstruct // the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2**256 + prod0 // Least significant 256 bits of the product let prod0 := mul(a, b) let mm := mulmod(a, b, not(0)) // Most significant 256 bits of the product let prod1 := sub(sub(mm, prod0), lt(mm, prod0)) // Handle non-overflow cases, 256 by 256 division. if iszero(prod1) { if iszero(denominator) { // Store the function selector of `FullMulDivFailed()`. mstore(0x00, 0xae47f702) // Revert with (offset, size). revert(0x1c, 0x04) } result := div(prod0, denominator) break } // Make sure the result is less than 2**256. // Also prevents `denominator == 0`. if iszero(gt(denominator, prod1)) { // Store the function selector of `FullMulDivFailed()`. mstore(0x00, 0xae47f702) // Revert with (offset, size). revert(0x1c, 0x04) } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. // Compute remainder using mulmod. let remainder := mulmod(a, b, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) // Factor powers of two out of denominator. // Compute largest power of two divisor of denominator. // Always >= 1. let twos := and(denominator, sub(0, denominator)) // Divide denominator by power of two denominator := div(denominator, twos) // Divide [prod1 prod0] by the factors of two prod0 := div(prod0, twos) // Shift in bits from prod1 into prod0. For this we need // to flip `twos` such that it is 2**256 / twos. // If `twos` is zero, then it becomes one. prod0 := or(prod0, mul(prod1, add(div(sub(0, twos), twos), 1))) // Invert denominator mod 2**256 // Now that denominator is an odd number, it has an inverse // modulo 2**256 such that denominator * inv = 1 mod 2**256. // Compute the inverse by starting with a seed that is correct // correct for four bits. That is, denominator * inv = 1 mod 2**4 let inv := xor(mul(3, denominator), 2) // Now use Newton-Raphson iteration to improve the precision. // Thanks to Hensel's lifting lemma, this also works in modular // arithmetic, doubling the correct bits in each step. inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**8 inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**16 inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**32 inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**64 inv := mul(inv, sub(2, mul(denominator, inv))) // inverse mod 2**128 result := mul(prod0, mul(inv, sub(2, mul(denominator, inv)))) // inverse mod 2**256 break } } } /// @dev Calculates floor(a × b ÷ denominator) with full precision, rounded up. /// Throws if result overflows a uint256 or when the denominator is zero. /// Credit to Uniswap-v3-core under MIT license: /// https://github.com/Uniswap/v3-core/blob/contracts/libraries/FullMath.sol function fullMulDivUp(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result) { result = fullMulDiv(a, b, denominator); /// @solidity memory-safe-assembly assembly { if mulmod(a, b, denominator) { if iszero(add(result, 1)) { // Store the function selector of `FullMulDivFailed()`. mstore(0x00, 0xae47f702) // Revert with (offset, size). revert(0x1c, 0x04) } result := add(result, 1) } } } /// @dev Returns `floor(x * y / denominator)`. /// Reverts if `x * y` overflows, or `denominator` is zero. function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(not(0), y)))))) { // Store the function selector of `MulDivFailed()`. mstore(0x00, 0xad251c27) // Revert with (offset, size). revert(0x1c, 0x04) } z := div(mul(x, y), denominator) } } /// @dev Returns `ceil(x * y / denominator)`. /// Reverts if `x * y` overflows, or `denominator` is zero. function mulDivUp(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // Equivalent to require(denominator != 0 && (y == 0 || x <= type(uint256).max / y)) if iszero(mul(denominator, iszero(mul(y, gt(x, div(not(0), y)))))) { // Store the function selector of `MulDivFailed()`. mstore(0x00, 0xad251c27) // Revert with (offset, size). revert(0x1c, 0x04) } z := add(iszero(iszero(mod(mul(x, y), denominator))), div(mul(x, y), denominator)) } } /// @dev Returns `ceil(x / denominator)`. /// Reverts if `denominator` is zero. function divUp(uint256 x, uint256 denominator) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { if iszero(denominator) { // Store the function selector of `DivFailed()`. mstore(0x00, 0x65244e4e) // Revert with (offset, size). revert(0x1c, 0x04) } z := add(iszero(iszero(mod(x, denominator))), div(x, denominator)) } } /// @dev Returns `max(0, x - y)`. function zeroFloorSub(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mul(gt(x, y), sub(x, y)) } } /// @dev Returns the square root of `x`. function sqrt(uint256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // Let `y = x / 2**r`. // We check `y >= 2**(k + 8)` but shift right by `k` bits // each branch to ensure that if `x >= 256`, then `y >= 256`. let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffffff, shr(r, x)))) z := shl(shr(1, r), z) // Goal was to get `z*z*y` within a small factor of `x`. More iterations could // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`. // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small. // That's not possible if `x < 256` but we can just verify those cases exhaustively. // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`. // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`. // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps. // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)` // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`, // with largest error when `s = 1` and when `s = 256` or `1/256`. // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`. // Then we can estimate `sqrt(y)` using // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`. // There is no overflow risk here since `y < 2**136` after the first branch above. z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If `x+1` is a perfect square, the Babylonian method cycles between // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } /// @dev Returns the factorial of `x`. function factorial(uint256 x) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { if iszero(lt(10, x)) { // forgefmt: disable-next-item result := and( shr(mul(22, x), 0x375f0016260009d80004ec0002d00001e0000180000180000200000400001), 0x3fffff ) break } if iszero(lt(57, x)) { let end := 31 result := 8222838654177922817725562880000000 if iszero(lt(end, x)) { end := 10 result := 3628800 } for { let w := not(0) } 1 {} { result := mul(result, x) x := add(x, w) if eq(x, end) { break } } break } // Store the function selector of `FactorialOverflow()`. mstore(0x00, 0xaba0f2a2) // Revert with (offset, size). revert(0x1c, 0x04) } } } /// @dev Returns the log2 of `x`. /// Equivalent to computing the index of the most significant bit (MSB) of `x`. function log2(uint256 x) internal pure returns (uint256 r) { /// @solidity memory-safe-assembly assembly { if iszero(x) { // Store the function selector of `Log2Undefined()`. mstore(0x00, 0x5be3aa5c) // Revert with (offset, size). revert(0x1c, 0x04) } r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) // For the remaining 32 bits, use a De Bruijn lookup. // See: https://graphics.stanford.edu/~seander/bithacks.html x := shr(r, x) x := or(x, shr(1, x)) x := or(x, shr(2, x)) x := or(x, shr(4, x)) x := or(x, shr(8, x)) x := or(x, shr(16, x)) // forgefmt: disable-next-item r := or(r, byte(shr(251, mul(x, shl(224, 0x07c4acdd))), 0x0009010a0d15021d0b0e10121619031e080c141c0f111807131b17061a05041f)) } } /// @dev Returns the log2 of `x`, rounded up. function log2Up(uint256 x) internal pure returns (uint256 r) { unchecked { uint256 isNotPo2; assembly { isNotPo2 := iszero(iszero(and(x, sub(x, 1)))) } return log2(x) + isNotPo2; } } /// @dev Returns the averege of `x` and `y`. function avg(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := add(and(x, y), shr(1, xor(x, y))) } } /// @dev Returns the absolute value of `x`. function abs(int256 x) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let mask := mul(shr(255, x), not(0)) z := xor(mask, add(mask, x)) } } /// @dev Returns the absolute distance between `x` and `y`. function dist(int256 x, int256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { let a := sub(y, x) z := xor(a, mul(xor(a, sub(x, y)), sgt(x, y))) } } /// @dev Returns the minimum of `x` and `y`. function min(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), lt(y, x))) } } /// @dev Returns the maximum of `x` and `y`. function max(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := xor(x, mul(xor(x, y), gt(y, x))) } } /// @dev Returns gcd of `x` and `y`. function gcd(uint256 x, uint256 y) internal pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { // forgefmt: disable-next-item for { z := x } y {} { let t := y y := mod(z, y) z := t } } } /// @dev Returns `x`, bounded to `minValue` and `maxValue`. function clamp(uint256 x, uint256 minValue, uint256 maxValue) internal pure returns (uint256 z) { return min(max(x, minValue), maxValue); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for converting numbers into strings and other string operations. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibString.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/LibString.sol) library LibString { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The `length` of the output is too small to contain all the hex digits. error HexLengthInsufficient(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The constant returned when the `search` is not found in the string. uint256 internal constant NOT_FOUND = type(uint256).max; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* DECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the base 10 decimal representation of `value`. function toString(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { // The maximum value of a uint256 contains 78 digits (1 byte per digit), but // we allocate 0xa0 bytes to keep the free memory pointer 32-byte word aligned. // We will need 1 word for the trailing zeros padding, 1 word for the length, // and 3 words for a maximum of 78 digits. Total: 5 * 0x20 = 0xa0. let m := add(mload(0x40), 0xa0) // Update the free memory pointer to allocate. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end of the memory to calculate the length later. let end := str // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := sub(str, 1) // Write the character to the pointer. // The ASCII index of the '0' character is 48. mstore8(str, add(48, mod(temp, 10))) // Keep dividing `temp` until zero. temp := div(temp, 10) if iszero(temp) { break } } let length := sub(end, str) // Move the pointer 32 bytes leftwards to make room for the length. str := sub(str, 0x20) // Store the length. mstore(str, length) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* HEXADECIMAL OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2 + 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexString(uint256 value, uint256 length) internal pure returns (string memory str) { str = toHexStringNoPrefix(value, length); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`, /// left-padded to an input length of `length` bytes. /// The output is prefixed with "0x" encoded using 2 hexadecimal digits per byte, /// giving a total length of `length * 2` bytes. /// Reverts if `length` is too small for the output to contain all the digits. function toHexStringNoPrefix(uint256 value, uint256 length) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { let start := mload(0x40) // We need 0x20 bytes for the trailing zeros padding, `length * 2` bytes // for the digits, 0x02 bytes for the prefix, and 0x20 bytes for the length. // We add 0x20 to the total and round down to a multiple of 0x20. // (0x20 + 0x20 + 0x02 + 0x20) = 0x62. let m := add(start, and(add(shl(1, length), 0x62), not(0x1f))) // Allocate the memory. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) let temp := value // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for {} 1 {} { str := sub(str, 2) mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) length := sub(length, 1) if iszero(length) { break } } if temp { // Store the function selector of `HexLengthInsufficient()`. mstore(0x00, 0x2194895a) // Revert with (offset, size). revert(0x1c, 0x04) } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2 + 2` bytes. function toHexString(uint256 value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. /// As address are 20 bytes long, the output will left-padded to have /// a length of `20 * 2` bytes. function toHexStringNoPrefix(uint256 value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { let start := mload(0x40) // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x40 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x40) is 0xa0. let m := add(start, 0xa0) // Allocate the memory. mstore(0x40, m) // Assign the `str` to the end. str := sub(m, 0x20) // Zeroize the slot after the string. mstore(str, 0) // Cache the end to calculate the length later. let end := str // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let temp := value } 1 {} { str := sub(str, 2) mstore8(add(str, 1), mload(and(temp, 15))) mstore8(str, mload(and(shr(4, temp), 15))) temp := shr(8, temp) if iszero(temp) { break } } // Compute the string's length. let strLength := sub(end, str) // Move the pointer and write the length. str := sub(str, 0x20) mstore(str, strLength) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x", encoded using 2 hexadecimal digits per byte, /// and the alphabets are capitalized conditionally according to /// https://eips.ethereum.org/EIPS/eip-55 function toHexStringChecksumed(address value) internal pure returns (string memory str) { str = toHexString(value); /// @solidity memory-safe-assembly assembly { let mask := shl(6, div(not(0), 255)) // `0b010000000100000000 ...` let o := add(str, 0x22) let hashed := and(keccak256(o, 40), mul(34, mask)) // `0b10001000 ... ` let t := shl(240, 136) // `0b10001000 << 240` for { let i := 0 } 1 {} { mstore(add(i, i), mul(t, byte(i, hashed))) i := add(i, 1) if eq(i, 20) { break } } mstore(o, xor(mload(o), shr(1, and(mload(0x00), and(mload(o), mask))))) o := add(o, 0x20) mstore(o, xor(mload(o), shr(1, and(mload(0x20), and(mload(o), mask))))) } } /// @dev Returns the hexadecimal representation of `value`. /// The output is prefixed with "0x" and encoded using 2 hexadecimal digits per byte. function toHexString(address value) internal pure returns (string memory str) { str = toHexStringNoPrefix(value); /// @solidity memory-safe-assembly assembly { let strLength := add(mload(str), 2) // Compute the length. mstore(str, 0x3078) // Write the "0x" prefix. str := sub(str, 2) // Move the pointer. mstore(str, strLength) // Write the length. } } /// @dev Returns the hexadecimal representation of `value`. /// The output is encoded using 2 hexadecimal digits per byte. function toHexStringNoPrefix(address value) internal pure returns (string memory str) { /// @solidity memory-safe-assembly assembly { str := mload(0x40) // Allocate the memory. // We need 0x20 bytes for the trailing zeros padding, 0x20 bytes for the length, // 0x02 bytes for the prefix, and 0x28 bytes for the digits. // The next multiple of 0x20 above (0x20 + 0x20 + 0x02 + 0x28) is 0x80. mstore(0x40, add(str, 0x80)) // Store "0123456789abcdef" in scratch space. mstore(0x0f, 0x30313233343536373839616263646566) str := add(str, 2) mstore(str, 40) let o := add(str, 0x20) mstore(add(o, 40), 0) value := shl(96, value) // We write the string from rightmost digit to leftmost digit. // The following is essentially a do-while loop that also handles the zero case. for { let i := 0 } 1 {} { let p := add(o, add(i, i)) let temp := byte(i, value) mstore8(add(p, 1), mload(and(temp, 15))) mstore8(p, mload(shr(4, temp))) i := add(i, 1) if eq(i, 20) { break } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* RUNE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Returns the number of UTF characters in the string. function runeCount(string memory s) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if mload(s) { mstore(0x00, div(not(0), 255)) mstore(0x20, 0x0202020202020202020202020202020202020202020202020303030304040506) let o := add(s, 0x20) let end := add(o, mload(s)) for { result := 1 } 1 { result := add(result, 1) } { o := add(o, byte(0, mload(shr(250, mload(o))))) if iszero(lt(o, end)) { break } } } } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* BYTE STRING OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ // For performance and bytecode compactness, all indices of the following operations // are byte (ASCII) offsets, not UTF character offsets. /// @dev Returns `subject` all occurrences of `search` replaced with `replacement`. function replace(string memory subject, string memory search, string memory replacement) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) let replacementLength := mload(replacement) subject := add(subject, 0x20) search := add(search, 0x20) replacement := add(replacement, 0x20) result := add(mload(0x40), 0x20) let subjectEnd := add(subject, subjectLength) if iszero(gt(searchLength, subjectLength)) { let subjectSearchEnd := add(sub(subjectEnd, searchLength), 1) let h := 0 if iszero(lt(searchLength, 32)) { h := keccak256(search, searchLength) } let m := shl(3, sub(32, and(searchLength, 31))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Copy the `replacement` one word at a time. for { let o := 0 } 1 {} { mstore(add(result, o), mload(add(replacement, o))) o := add(o, 0x20) if iszero(lt(o, replacementLength)) { break } } result := add(result, replacementLength) subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } mstore(result, t) result := add(result, 1) subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } } let resultRemainder := result result := add(mload(0x40), 0x20) let k := add(sub(resultRemainder, result), sub(subjectEnd, subject)) // Copy the rest of the string one word at a time. for {} lt(subject, subjectEnd) {} { mstore(resultRemainder, mload(subject)) resultRemainder := add(resultRemainder, 0x20) subject := add(subject, 0x20) } result := sub(result, 0x20) // Zeroize the slot after the string. let last := add(add(result, 0x20), k) mstore(last, 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, and(add(last, 31), not(31))) // Store the length of the result. mstore(result, k) } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for { let subjectLength := mload(subject) } 1 {} { if iszero(mload(search)) { // `result = min(from, subjectLength)`. result := xor(from, mul(xor(from, subjectLength), lt(subjectLength, from))) break } let searchLength := mload(search) let subjectStart := add(subject, 0x20) result := not(0) // Initialize to `NOT_FOUND`. subject := add(subjectStart, from) let subjectSearchEnd := add(sub(add(subjectStart, subjectLength), searchLength), 1) let m := shl(3, sub(32, and(searchLength, 31))) let s := mload(add(search, 0x20)) if iszero(lt(subject, subjectSearchEnd)) { break } if iszero(lt(searchLength, 32)) { for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if iszero(shr(m, xor(mload(subject), s))) { if eq(keccak256(subject, searchLength), h) { result := sub(subject, subjectStart) break } } subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } break } for {} 1 {} { if iszero(shr(m, xor(mload(subject), s))) { result := sub(subject, subjectStart) break } subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from left to right. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function indexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = indexOf(subject, search, 0); } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left, starting from `from`. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search, uint256 from) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for {} 1 {} { let searchLength := mload(search) let fromMax := sub(mload(subject), searchLength) if iszero(gt(fromMax, from)) { from := fromMax } if iszero(mload(search)) { result := from break } result := not(0) // Initialize to `NOT_FOUND`. let subjectSearchEnd := sub(add(subject, 0x20), 1) subject := add(add(subject, 0x20), from) if iszero(gt(subject, subjectSearchEnd)) { break } // As this function is not too often used, // we shall simply use keccak256 for smaller bytecode size. for { let h := keccak256(add(search, 0x20), searchLength) } 1 {} { if eq(keccak256(subject, searchLength), h) { result := sub(subject, add(subjectSearchEnd, 1)) break } subject := sub(subject, 1) if iszero(gt(subject, subjectSearchEnd)) { break } } break } } } /// @dev Returns the byte index of the first location of `search` in `subject`, /// searching from right to left. /// Returns `NOT_FOUND` (i.e. `type(uint256).max`) if the `search` is not found. function lastIndexOf(string memory subject, string memory search) internal pure returns (uint256 result) { result = lastIndexOf(subject, search, uint256(int256(-1))); } /// @dev Returns whether `subject` starts with `search`. function startsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( iszero(gt(searchLength, mload(subject))), eq( keccak256(add(subject, 0x20), searchLength), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns whether `subject` ends with `search`. function endsWith(string memory subject, string memory search) internal pure returns (bool result) { /// @solidity memory-safe-assembly assembly { let searchLength := mload(search) let subjectLength := mload(subject) // Whether `search` is not longer than `subject`. let withinRange := iszero(gt(searchLength, subjectLength)) // Just using keccak256 directly is actually cheaper. // forgefmt: disable-next-item result := and( withinRange, eq( keccak256( // `subject + 0x20 + max(subjectLength - searchLength, 0)`. add(add(subject, 0x20), mul(withinRange, sub(subjectLength, searchLength))), searchLength ), keccak256(add(search, 0x20), searchLength) ) ) } } /// @dev Returns `subject` repeated `times`. function repeat(string memory subject, uint256 times) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(or(iszero(times), iszero(subjectLength))) { subject := add(subject, 0x20) result := mload(0x40) let output := add(result, 0x20) for {} 1 {} { // Copy the `subject` one word at a time. for { let o := 0 } 1 {} { mstore(add(output, o), mload(add(subject, o))) o := add(o, 0x20) if iszero(lt(o, subjectLength)) { break } } output := add(output, subjectLength) times := sub(times, 1) if iszero(times) { break } } // Zeroize the slot after the string. mstore(output, 0) // Store the length. let resultLength := sub(output, add(result, 0x20)) mstore(result, resultLength) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(result, and(add(resultLength, 63), not(31)))) } } } /// @dev Returns a copy of `subject` sliced from `start` to `end` (exclusive). /// `start` and `end` are byte offsets. function slice(string memory subject, uint256 start, uint256 end) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) if iszero(gt(subjectLength, end)) { end := subjectLength } if iszero(gt(subjectLength, start)) { start := subjectLength } if lt(start, end) { result := mload(0x40) let resultLength := sub(end, start) mstore(result, resultLength) subject := add(subject, start) let w := not(31) // Copy the `subject` one word at a time, backwards. for { let o := and(add(resultLength, 31), w) } 1 {} { mstore(add(result, o), mload(add(subject, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(result, 0x20), resultLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(result, and(add(resultLength, 63), w))) } } } /// @dev Returns a copy of `subject` sliced from `start` to the end of the string. /// `start` is a byte offset. function slice(string memory subject, uint256 start) internal pure returns (string memory result) { result = slice(subject, start, uint256(int256(-1))); } /// @dev Returns all the indices of `search` in `subject`. /// The indices are byte offsets. function indicesOf(string memory subject, string memory search) internal pure returns (uint256[] memory result) { /// @solidity memory-safe-assembly assembly { let subjectLength := mload(subject) let searchLength := mload(search) if iszero(gt(searchLength, subjectLength)) { subject := add(subject, 0x20) search := add(search, 0x20) result := add(mload(0x40), 0x20) let subjectStart := subject let subjectSearchEnd := add(sub(add(subject, subjectLength), searchLength), 1) let h := 0 if iszero(lt(searchLength, 32)) { h := keccak256(search, searchLength) } let m := shl(3, sub(32, and(searchLength, 31))) let s := mload(search) for {} 1 {} { let t := mload(subject) // Whether the first `searchLength % 32` bytes of // `subject` and `search` matches. if iszero(shr(m, xor(t, s))) { if h { if iszero(eq(keccak256(subject, searchLength), h)) { subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } continue } } // Append to `result`. mstore(result, sub(subject, subjectStart)) result := add(result, 0x20) // Advance `subject` by `searchLength`. subject := add(subject, searchLength) if searchLength { if iszero(lt(subject, subjectSearchEnd)) { break } continue } } subject := add(subject, 1) if iszero(lt(subject, subjectSearchEnd)) { break } } let resultEnd := result // Assign `result` to the free memory pointer. result := mload(0x40) // Store the length of `result`. mstore(result, shr(5, sub(resultEnd, add(result, 0x20)))) // Allocate memory for result. // We allocate one more word, so this array can be recycled for {split}. mstore(0x40, add(resultEnd, 0x20)) } } } /// @dev Returns a arrays of strings based on the `delimiter` inside of the `subject` string. function split(string memory subject, string memory delimiter) internal pure returns (string[] memory result) { uint256[] memory indices = indicesOf(subject, delimiter); /// @solidity memory-safe-assembly assembly { let w := not(31) let indexPtr := add(indices, 0x20) let indicesEnd := add(indexPtr, shl(5, add(mload(indices), 1))) mstore(add(indicesEnd, w), mload(subject)) mstore(indices, add(mload(indices), 1)) let prevIndex := 0 for {} 1 {} { let index := mload(indexPtr) mstore(indexPtr, 0x60) if iszero(eq(index, prevIndex)) { let element := mload(0x40) let elementLength := sub(index, prevIndex) mstore(element, elementLength) // Copy the `subject` one word at a time, backwards. for { let o := and(add(elementLength, 31), w) } 1 {} { mstore(add(element, o), mload(add(add(subject, prevIndex), o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } // Zeroize the slot after the string. mstore(add(add(element, 0x20), elementLength), 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, add(element, and(add(elementLength, 63), w))) // Store the `element` into the array. mstore(indexPtr, element) } prevIndex := add(index, mload(delimiter)) indexPtr := add(indexPtr, 0x20) if iszero(lt(indexPtr, indicesEnd)) { break } } result := indices if iszero(mload(delimiter)) { result := add(indices, 0x20) mstore(result, sub(mload(indices), 2)) } } } /// @dev Returns a concatenated string of `a` and `b`. /// Cheaper than `string.concat()` and does not de-align the free memory pointer. function concat(string memory a, string memory b) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let w := not(31) result := mload(0x40) let aLength := mload(a) // Copy `a` one word at a time, backwards. for { let o := and(add(mload(a), 32), w) } 1 {} { mstore(add(result, o), mload(add(a, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let bLength := mload(b) let output := add(result, mload(a)) // Copy `b` one word at a time, backwards. for { let o := and(add(bLength, 32), w) } 1 {} { mstore(add(output, o), mload(add(b, o))) o := add(o, w) // `sub(o, 0x20)`. if iszero(o) { break } } let totalLength := add(aLength, bLength) let last := add(add(result, 0x20), totalLength) // Zeroize the slot after the string. mstore(last, 0) // Stores the length. mstore(result, totalLength) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, and(add(last, 31), w)) } } /// @dev Returns a copy of the string in either lowercase or UPPERCASE. function toCase(string memory subject, bool toUpper) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { let length := mload(subject) if length { result := add(mload(0x40), 0x20) subject := add(subject, 1) let flags := shl(add(70, shl(5, toUpper)), 67108863) let w := not(0) for { let o := length } 1 {} { o := add(o, w) let b := and(0xff, mload(add(subject, o))) mstore8(add(result, o), xor(b, and(shr(b, flags), 0x20))) if iszero(o) { break } } // Restore the result. result := mload(0x40) // Stores the string length. mstore(result, length) // Zeroize the slot after the string. let last := add(add(result, 0x20), length) mstore(last, 0) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, and(add(last, 31), not(31))) } } } /// @dev Returns a lowercased copy of the string. function lower(string memory subject) internal pure returns (string memory result) { result = toCase(subject, false); } /// @dev Returns an UPPERCASED copy of the string. function upper(string memory subject) internal pure returns (string memory result) { result = toCase(subject, true); } /// @dev Escapes the string to be used within HTML tags. function escapeHTML(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { for { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) // Store the bytes of the packed offsets and strides into the scratch space. // `packed = (stride << 5) | offset`. Max offset is 20. Max stride is 6. mstore(0x1f, 0x900094) mstore(0x08, 0xc0000000a6ab) // Store ""&'<>" into the scratch space. mstore(0x00, shl(64, 0x2671756f743b26616d703b262333393b266c743b2667743b)) } iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) // Not in `["\"","'","&","<",">"]`. if iszero(and(shl(c, 1), 0x500000c400000000)) { mstore8(result, c) result := add(result, 1) continue } let t := shr(248, mload(c)) mstore(result, mload(and(t, 31))) result := add(result, shr(5, t)) } let last := result // Zeroize the slot after the string. mstore(last, 0) // Restore the result to the start of the free memory. result := mload(0x40) // Store the length of the result. mstore(result, sub(last, add(result, 0x20))) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, and(add(last, 31), not(31))) } } /// @dev Escapes the string to be used within double-quotes in a JSON. function escapeJSON(string memory s) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { for { let end := add(s, mload(s)) result := add(mload(0x40), 0x20) // Store "\\u0000" in scratch space. // Store "0123456789abcdef" in scratch space. // Also, store `{0x08:"b", 0x09:"t", 0x0a:"n", 0x0c:"f", 0x0d:"r"}`. // into the scratch space. mstore(0x15, 0x5c75303030303031323334353637383961626364656662746e006672) // Bitmask for detecting `["\"","\\"]`. let e := or(shl(0x22, 1), shl(0x5c, 1)) } iszero(eq(s, end)) {} { s := add(s, 1) let c := and(mload(s), 0xff) if iszero(lt(c, 0x20)) { if iszero(and(shl(c, 1), e)) { // Not in `["\"","\\"]`. mstore8(result, c) result := add(result, 1) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), c) result := add(result, 2) continue } if iszero(and(shl(c, 1), 0x3700)) { // Not in `["\b","\t","\n","\f","\d"]`. mstore8(0x1d, mload(shr(4, c))) // Hex value. mstore8(0x1e, mload(and(c, 15))) // Hex value. mstore(result, mload(0x19)) // "\\u00XX". result := add(result, 6) continue } mstore8(result, 0x5c) // "\\". mstore8(add(result, 1), mload(add(c, 8))) result := add(result, 2) } let last := result // Zeroize the slot after the string. mstore(last, 0) // Restore the result to the start of the free memory. result := mload(0x40) // Store the length of the result. mstore(result, sub(last, add(result, 0x20))) // Allocate memory for the length and the bytes, // rounded up to a multiple of 32. mstore(0x40, and(add(last, 31), not(31))) } } /// @dev Returns whether `a` equals `b`. function eq(string memory a, string memory b) internal pure returns (bool result) { assembly { result := eq(keccak256(add(a, 0x20), mload(a)), keccak256(add(b, 0x20), mload(b))) } } /// @dev Packs a single string with its length into a single word. /// Returns `bytes32(0)` if the length is zero or greater than 31. function packOne(string memory a) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { // We don't need to zero right pad the string, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes. mload(add(a, 0x1f)), // `length != 0 && length < 32`. Abuses underflow. // Assumes that the length is valid and within the block gas limit. lt(sub(mload(a), 1), 0x1f) ) } } /// @dev Unpacks a string packed using {packOne}. /// Returns the empty string if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packOne}, the output behaviour is undefined. function unpackOne(bytes32 packed) internal pure returns (string memory result) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. result := mload(0x40) // Allocate 2 words (1 for the length, 1 for the bytes). mstore(0x40, add(result, 0x40)) // Zeroize the length slot. mstore(result, 0) // Store the length and bytes. mstore(add(result, 0x1f), packed) // Right pad with zeroes. mstore(add(add(result, 0x20), mload(result)), 0) } } /// @dev Packs two strings with their lengths into a single word. /// Returns `bytes32(0)` if combined length is zero or greater than 30. function packTwo(string memory a, string memory b) internal pure returns (bytes32 result) { /// @solidity memory-safe-assembly assembly { let aLength := mload(a) // We don't need to zero right pad the strings, // since this is our own custom non-standard packing scheme. result := mul( // Load the length and the bytes of `a` and `b`. or( shl(shl(3, sub(0x1f, aLength)), mload(add(a, aLength))), mload(sub(add(b, 0x1e), aLength)) ), // `totalLength != 0 && totalLength < 31`. Abuses underflow. // Assumes that the lengths are valid and within the block gas limit. lt(sub(add(aLength, mload(b)), 1), 0x1e) ) } } /// @dev Unpacks strings packed using {packTwo}. /// Returns the empty strings if `packed` is `bytes32(0)`. /// If `packed` is not an output of {packTwo}, the output behaviour is undefined. function unpackTwo(bytes32 packed) internal pure returns (string memory resultA, string memory resultB) { /// @solidity memory-safe-assembly assembly { // Grab the free memory pointer. resultA := mload(0x40) resultB := add(resultA, 0x40) // Allocate 2 words for each string (1 for the length, 1 for the byte). Total 4 words. mstore(0x40, add(resultB, 0x40)) // Zeroize the length slots. mstore(resultA, 0) mstore(resultB, 0) // Store the lengths and bytes. mstore(add(resultA, 0x1f), packed) mstore(add(resultB, 0x1f), mload(add(add(resultA, 0x20), mload(resultA)))) // Right pad with zeroes. mstore(add(add(resultA, 0x20), mload(resultA)), 0) mstore(add(add(resultB, 0x20), mload(resultB)), 0) } } /// @dev Directly returns `a` without copying. function directReturn(string memory a) internal pure { assembly { // Assumes that the string does not start from the scratch space. let retStart := sub(a, 0x20) let retSize := add(mload(a), 0x40) // Right pad with zeroes. Just in case the string is produced // by a method that doesn't zero right pad. mstore(add(retStart, retSize), 0) // Store the return offset. mstore(retStart, 0x20) // End the transaction, returning the string. return(retStart, retSize) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeTransferLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/SafeTransferLib.sol) /// @dev Caution! This library won't check that a token has code, responsibility is delegated to the caller. library SafeTransferLib { /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev The ETH transfer has failed. error ETHTransferFailed(); /// @dev The ERC20 `transferFrom` has failed. error TransferFromFailed(); /// @dev The ERC20 `transfer` has failed. error TransferFailed(); /// @dev The ERC20 `approve` has failed. error ApproveFailed(); /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Suggested gas stipend for contract receiving ETH /// that disallows any storage writes. uint256 internal constant _GAS_STIPEND_NO_STORAGE_WRITES = 2300; /// @dev Suggested gas stipend for contract receiving ETH to perform a few /// storage reads and writes, but low enough to prevent griefing. /// Multiply by a small constant (e.g. 2), if needed. uint256 internal constant _GAS_STIPEND_NO_GRIEF = 100000; /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ETH OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sends `amount` (in wei) ETH to `to`. /// Reverts upon failure. function safeTransferETH(address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { // Transfer the ETH and check if it succeeded or not. if iszero(call(gas(), to, amount, 0, 0, 0, 0)) { // Store the function selector of `ETHTransferFailed()`. mstore(0x00, 0xb12d13eb) // Revert with (offset, size). revert(0x1c, 0x04) } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with a `gasStipend`. /// The `gasStipend` can be set to a low enough value to prevent /// storage writes or gas griefing. /// /// If sending via the normal procedure fails, force sends the ETH by /// creating a temporary contract which uses `SELFDESTRUCT` to force send the ETH. /// /// Reverts if the current contract has insufficient balance. function forceSafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal { /// @solidity memory-safe-assembly assembly { // If insufficient balance, revert. if lt(selfbalance(), amount) { // Store the function selector of `ETHTransferFailed()`. mstore(0x00, 0xb12d13eb) // Revert with (offset, size). revert(0x1c, 0x04) } // Transfer the ETH and check if it succeeded or not. if iszero(call(gasStipend, to, amount, 0, 0, 0, 0)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. // We can directly use `SELFDESTRUCT` in the contract creation. // We don't check and revert upon failure here, just in case // `SELFDESTRUCT`'s behavior is changed some day in the future. // (If that ever happens, we will riot, and port the code to use WETH). pop(create(amount, 0x0b, 0x16)) } } } /// @dev Force sends `amount` (in wei) ETH to `to`, with a gas stipend /// equal to `_GAS_STIPEND_NO_GRIEF`. This gas stipend is a reasonable default /// for 99% of cases and can be overriden with the three-argument version of this /// function if necessary. /// /// If sending via the normal procedure fails, force sends the ETH by /// creating a temporary contract which uses `SELFDESTRUCT` to force send the ETH. /// /// Reverts if the current contract has insufficient balance. function forceSafeTransferETH(address to, uint256 amount) internal { // Manually inlined because the compiler doesn't inline functions with branches. /// @solidity memory-safe-assembly assembly { // If insufficient balance, revert. if lt(selfbalance(), amount) { // Store the function selector of `ETHTransferFailed()`. mstore(0x00, 0xb12d13eb) // Revert with (offset, size). revert(0x1c, 0x04) } // Transfer the ETH and check if it succeeded or not. if iszero(call(_GAS_STIPEND_NO_GRIEF, to, amount, 0, 0, 0, 0)) { mstore(0x00, to) // Store the address in scratch space. mstore8(0x0b, 0x73) // Opcode `PUSH20`. mstore8(0x20, 0xff) // Opcode `SELFDESTRUCT`. // We can directly use `SELFDESTRUCT` in the contract creation. // We don't check and revert upon failure here, just in case // `SELFDESTRUCT`'s behavior is changed some day in the future. // (If that ever happens, we will riot, and port the code to use WETH). pop(create(amount, 0x0b, 0x16)) } } } /// @dev Sends `amount` (in wei) ETH to `to`, with a `gasStipend`. /// The `gasStipend` can be set to a low enough value to prevent /// storage writes or gas griefing. /// /// Simply use `gasleft()` for `gasStipend` if you don't need a gas stipend. /// /// Note: Does NOT revert upon failure. /// Returns whether the transfer of ETH is successful instead. function trySafeTransferETH(address to, uint256 amount, uint256 gasStipend) internal returns (bool success) { /// @solidity memory-safe-assembly assembly { // Transfer the ETH and check if it succeeded or not. success := call(gasStipend, to, amount, 0, 0, 0, 0) } } /*´:°•.°+.*•´.*:˚.°*.˚•´.°:°•.°•.*•´.*:˚.°*.˚•´.°:°•.°+.*•´.*:*/ /* ERC20 OPERATIONS */ /*.•°:°.´+˚.*°.˚:*.´•*.+°.•°:´*.´•*.•°.•°:°.´:•˚°.*°.˚:*.´+°.•*/ /// @dev Sends `amount` of ERC20 `token` from `from` to `to`. /// Reverts upon failure. /// /// The `from` account must have at least `amount` approved for /// the current contract to manage. function safeTransferFrom(address token, address from, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { // We'll write our calldata to this slot below, but restore it later. let memPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(0x00, 0x23b872dd) mstore(0x20, from) // Append the "from" argument. mstore(0x40, to) // Append the "to" argument. mstore(0x60, amount) // Append the "amount" argument. if iszero( and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(eq(mload(0x00), 1), iszero(returndatasize())), // We use 0x64 because that's the total length of our calldata (0x04 + 0x20 * 3) // Counterintuitively, this call() must be positioned after the or() in the // surrounding and() because and() evaluates its arguments from right to left. call(gas(), token, 0, 0x1c, 0x64, 0x00, 0x20) ) ) { // Store the function selector of `TransferFromFailed()`. mstore(0x00, 0x7939f424) // Revert with (offset, size). revert(0x1c, 0x04) } mstore(0x60, 0) // Restore the zero slot to zero. mstore(0x40, memPointer) // Restore the memPointer. } } /// @dev Sends `amount` of ERC20 `token` from the current contract to `to`. /// Reverts upon failure. function safeTransfer(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { // We'll write our calldata to this slot below, but restore it later. let memPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(0x00, 0xa9059cbb) mstore(0x20, to) // Append the "to" argument. mstore(0x40, amount) // Append the "amount" argument. if iszero( and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(eq(mload(0x00), 1), iszero(returndatasize())), // We use 0x44 because that's the total length of our calldata (0x04 + 0x20 * 2) // Counterintuitively, this call() must be positioned after the or() in the // surrounding and() because and() evaluates its arguments from right to left. call(gas(), token, 0, 0x1c, 0x44, 0x00, 0x20) ) ) { // Store the function selector of `TransferFailed()`. mstore(0x00, 0x90b8ec18) // Revert with (offset, size). revert(0x1c, 0x04) } mstore(0x40, memPointer) // Restore the memPointer. } } /// @dev Sets `amount` of ERC20 `token` for `to` to manage on behalf of the current contract. /// Reverts upon failure. function safeApprove(address token, address to, uint256 amount) internal { /// @solidity memory-safe-assembly assembly { // We'll write our calldata to this slot below, but restore it later. let memPointer := mload(0x40) // Write the abi-encoded calldata into memory, beginning with the function selector. mstore(0x00, 0x095ea7b3) mstore(0x20, to) // Append the "to" argument. mstore(0x40, amount) // Append the "amount" argument. if iszero( and( // Set success to whether the call reverted, if not we check it either // returned exactly 1 (can't just be non-zero data), or had no return data. or(eq(mload(0x00), 1), iszero(returndatasize())), // We use 0x44 because that's the total length of our calldata (0x04 + 0x20 * 2) // Counterintuitively, this call() must be positioned after the or() in the // surrounding and() because and() evaluates its arguments from right to left. call(gas(), token, 0, 0x1c, 0x44, 0x00, 0x20) ) ) { // Store the function selector of `ApproveFailed()`. mstore(0x00, 0x3e3f8f73) // Revert with (offset, size). revert(0x1c, 0x04) } mstore(0x40, memPointer) // Restore the memPointer. } } }
{ "remappings": [ "@core/=contracts/core/", "@modules/=contracts/modules/", "ERC721A-Upgradeable/=lib/ERC721A-Upgradeable/contracts/", "chiru-labs/ERC721A-Upgradeable/=lib/ERC721A-Upgradeable/contracts/", "closedsea/=lib/closedsea/src/", "ds-test/=lib/forge-std/lib/ds-test/src/", "erc4626-tests/=lib/closedsea/lib/openzeppelin-contracts/lib/erc4626-tests/", "erc721a-upgradeable/=lib/closedsea/lib/erc721a-upgradeable/contracts/", "erc721a/=lib/closedsea/lib/erc721a/contracts/", "forge-std/=lib/forge-std/src/", "murky/=lib/murky/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "openzeppelin-contracts/=lib/openzeppelin-contracts/", "openzeppelin-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "openzeppelin/=lib/openzeppelin-contracts/contracts/", "operator-filter-registry/=lib/closedsea/lib/operator-filter-registry/src/", "solady/=lib/solady/src/", "solmate/=lib/solady/lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 1000 }, "metadata": { "bytecodeHash": "ipfs" }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "libraries": {} }
[{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"ExceedsAddressBatchMintLimit","type":"error"},{"inputs":[{"internalType":"uint32","name":"available","type":"uint32"}],"name":"ExceedsEditionAvailableSupply","type":"error"},{"inputs":[],"name":"InvalidAmount","type":"error"},{"inputs":[],"name":"InvalidEditionMaxMintableRange","type":"error"},{"inputs":[],"name":"InvalidFundingRecipient","type":"error"},{"inputs":[],"name":"InvalidQueryRange","type":"error"},{"inputs":[],"name":"InvalidRandomnessLock","type":"error"},{"inputs":[],"name":"InvalidRoyaltyBPS","type":"error"},{"inputs":[],"name":"MaximumHasAlreadyBeenReached","type":"error"},{"inputs":[],"name":"MetadataIsFrozen","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintHasConcluded","type":"error"},{"inputs":[],"name":"MintRandomnessAlreadyRevealed","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[],"name":"MintsAlreadyExist","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoAddressesToAirdrop","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address[]","name":"to","type":"address[]"},{"indexed":false,"internalType":"uint256","name":"quantity","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fromTokenId","type":"uint256"}],"name":"Airdropped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"baseURI","type":"string"}],"name":"BaseURISet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"string","name":"contractURI","type":"string"}],"name":"ContractURISet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"address[]","name":"tokens","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"ERC20Withdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"},{"indexed":false,"internalType":"address","name":"caller","type":"address"}],"name":"ETHWithdrawn","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32","name":"editionCutoffTime_","type":"uint32"}],"name":"EditionCutoffTimeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint32","name":"editionMaxMintableLower_","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"editionMaxMintableUpper_","type":"uint32"}],"name":"EditionMaxMintableRangeSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"fundingRecipient","type":"address"}],"name":"FundingRecipientSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"metadataModule","type":"address"},{"indexed":false,"internalType":"string","name":"baseURI","type":"string"},{"indexed":false,"internalType":"string","name":"contractURI","type":"string"}],"name":"MetadataFrozen","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"metadataModule","type":"address"}],"name":"MetadataModuleSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"mintRandomnessEnabled_","type":"bool"}],"name":"MintRandomnessEnabledSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"quantity","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"fromTokenId","type":"uint256"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"operatorFilteringEnabled_","type":"bool"}],"name":"OperatorFilteringEnablededSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"roles","type":"uint256"}],"name":"RolesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint16","name":"bps","type":"uint16"}],"name":"RoyaltySet","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"edition_","type":"address"},{"indexed":false,"internalType":"string","name":"name_","type":"string"},{"indexed":false,"internalType":"string","name":"symbol_","type":"string"},{"indexed":false,"internalType":"address","name":"metadataModule_","type":"address"},{"indexed":false,"internalType":"string","name":"baseURI_","type":"string"},{"indexed":false,"internalType":"string","name":"contractURI_","type":"string"},{"indexed":false,"internalType":"address","name":"fundingRecipient_","type":"address"},{"indexed":false,"internalType":"uint16","name":"royaltyBPS_","type":"uint16"},{"indexed":false,"internalType":"uint32","name":"editionMaxMintableLower_","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"editionMaxMintableUpper_","type":"uint32"},{"indexed":false,"internalType":"uint32","name":"editionCutoffTime_","type":"uint32"},{"indexed":false,"internalType":"uint8","name":"flags_","type":"uint8"}],"name":"SoundEditionInitialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"ADDRESS_BATCH_MINT_LIMIT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ADMIN_ROLE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"METADATA_IS_FROZEN_FLAG","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINTER_ROLE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINT_RANDOMNESS_ENABLED_FLAG","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OPERATOR_FILTERING_ENABLED_FLAG","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"to","type":"address[]"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"airdrop","outputs":[{"internalType":"uint256","name":"fromTokenId","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionCutoffTime","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionInfo","outputs":[{"components":[{"internalType":"string","name":"baseURI","type":"string"},{"internalType":"string","name":"contractURI","type":"string"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"address","name":"fundingRecipient","type":"address"},{"internalType":"uint32","name":"editionMaxMintable","type":"uint32"},{"internalType":"uint32","name":"editionMaxMintableUpper","type":"uint32"},{"internalType":"uint32","name":"editionMaxMintableLower","type":"uint32"},{"internalType":"uint32","name":"editionCutoffTime","type":"uint32"},{"internalType":"address","name":"metadataModule","type":"address"},{"internalType":"uint256","name":"mintRandomness","type":"uint256"},{"internalType":"uint16","name":"royaltyBPS","type":"uint16"},{"internalType":"bool","name":"mintRandomnessEnabled","type":"bool"},{"internalType":"bool","name":"mintConcluded","type":"bool"},{"internalType":"bool","name":"isMetadataFrozen","type":"bool"},{"internalType":"uint256","name":"nextTokenId","type":"uint256"},{"internalType":"uint256","name":"totalBurned","type":"uint256"},{"internalType":"uint256","name":"totalMinted","type":"uint256"},{"internalType":"uint256","name":"totalSupply","type":"uint256"}],"internalType":"struct EditionInfo","name":"info","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionMaxMintable","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionMaxMintableLower","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"editionMaxMintableUpper","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"explicitOwnershipOf","outputs":[{"components":[{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"bool","name":"burned","type":"bool"},{"internalType":"uint24","name":"extraData","type":"uint24"}],"internalType":"struct IERC721AUpgradeable.TokenOwnership","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"}],"name":"explicitOwnershipsOf","outputs":[{"components":[{"internalType":"address","name":"addr","type":"address"},{"internalType":"uint64","name":"startTimestamp","type":"uint64"},{"internalType":"bool","name":"burned","type":"bool"},{"internalType":"uint24","name":"extraData","type":"uint24"}],"internalType":"struct IERC721AUpgradeable.TokenOwnership[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"freezeMetadata","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fundingRecipient","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"grantRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAllRoles","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAnyRole","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"name_","type":"string"},{"internalType":"string","name":"symbol_","type":"string"},{"internalType":"address","name":"metadataModule_","type":"address"},{"internalType":"string","name":"baseURI_","type":"string"},{"internalType":"string","name":"contractURI_","type":"string"},{"internalType":"address","name":"fundingRecipient_","type":"address"},{"internalType":"uint16","name":"royaltyBPS_","type":"uint16"},{"internalType":"uint32","name":"editionMaxMintableLower_","type":"uint32"},{"internalType":"uint32","name":"editionMaxMintableUpper_","type":"uint32"},{"internalType":"uint32","name":"editionCutoffTime_","type":"uint32"},{"internalType":"uint8","name":"flags_","type":"uint8"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isMetadataFrozen","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadataModule","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mint","outputs":[{"internalType":"uint256","name":"fromTokenId","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"mintConcluded","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintRandomness","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"mintRandomnessEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"nextTokenId","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"numberBurned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"numberMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"operatorFilteringEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"ordinalsFromRoles","outputs":[{"internalType":"uint8[]","name":"ordinals","type":"uint8[]"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"ownershipHandoverValidFor","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"renounceRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"revokeRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint8[]","name":"ordinals","type":"uint8[]"}],"name":"rolesFromOrdinals","outputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"rolesOf","outputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"royaltyBPS","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"},{"internalType":"uint256","name":"salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"fundingRecipient_","type":"address"},{"internalType":"uint256","name":"royaltyAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"baseURI_","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"contractURI_","type":"string"}],"name":"setContractURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"editionCutoffTime_","type":"uint32"}],"name":"setEditionCutoffTime","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint32","name":"editionMaxMintableLower_","type":"uint32"},{"internalType":"uint32","name":"editionMaxMintableUpper_","type":"uint32"}],"name":"setEditionMaxMintableRange","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"fundingRecipient_","type":"address"}],"name":"setFundingRecipient","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"metadataModule_","type":"address"}],"name":"setMetadataModule","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"mintRandomnessEnabled_","type":"bool"}],"name":"setMintRandomnessEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"operatorFilteringEnabled_","type":"bool"}],"name":"setOperatorFilteringEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint16","name":"royaltyBPS_","type":"uint16"}],"name":"setRoyalty","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"tokensOfOwner","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"start","type":"uint256"},{"internalType":"uint256","name":"stop","type":"uint256"}],"name":"tokensOfOwnerIn","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalBurned","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalMinted","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address[]","name":"tokens","type":"address[]"}],"name":"withdrawERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawETH","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.