ETH Price: $3,274.49 (+0.44%)

Token

SY swETH-BbAWeth_BalancerLP Aura (SY-swETH-BbAWeth_BalancerLP Aura)
 

Overview

Max Total Supply

204.381537070988981146 SY-swETH-BbAWeth_BalancerLP Aura

Holders

10 (0.00%)

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
Pendle: SY-swETH-BbAWeth_BalancerLP Aura Token 2
Balance
0 SY-swETH-BbAWeth_BalancerLP Aura

Value
$0.00
0xcb6ea7fddfdf2afc2bc6bf715185a33f8e27b96b
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
AuraSwEthBbAWethSYV2

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
default evmVersion
File 1 of 94 : AuraSwEthBbAWethSYV2.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@pendle/core-v2/contracts/core/StandardizedYield/implementations/BalancerStable/base/PendleAuraBalancerStableLPSYV2.sol";
import "@pendle/core-v2/contracts/core/StandardizedYield/implementations/BalancerStable/base/ComposableStable/ComposableStablePreview.sol";
import "@pendle/core-v2/contracts/core/StandardizedYield/implementations/BalancerStable/base/Linear/BbAPoolHelper.sol";

contract AuraSwEthBbAWethSYV2 is PendleAuraBalancerStableLPSYV2, BbAWethHelper {
    uint256 internal constant AURA_PID = 143;
    address internal constant LP = 0xaE8535c23afeDdA9304B03c68a3563B75fc8f92b;
    address internal constant SWETH = 0xf951E335afb289353dc249e82926178EaC7DEd78;

    address internal constant LINEAR_PREVIEW = 0x73187e5b27F2aadD5fFee023d6a9E179365F2ad6;
    address internal constant COMPOSABLE_PREVIEW = 0x4239Ddd3c50463383670E86c119220849BFaF64a;

    address internal constant _BB_A_WETH = 0xbB6881874825E60e1160416D6C426eae65f2459E;
    address internal constant _WA_WETH = 0x03928473f25bb2da6Bc880b07eCBaDC636822264;
    bytes32 internal constant _BB_A_WETH_POOL_ID =
        0xbb6881874825e60e1160416d6c426eae65f2459e000000000000000000000592;

    bool internal constant NO_TOKENS_EXEMPT = true;
    bool internal constant ALL_TOKENS_EXEMPT = false;

    constructor(
        string memory _name,
        string memory _symbol
    )
        BbAWethHelper(LinearPreview(LINEAR_PREVIEW), _BB_A_WETH, _BB_A_WETH_POOL_ID, _WA_WETH)
        PendleAuraBalancerStableLPSYV2(
            _name,
            _symbol,
            LP,
            AURA_PID,
            ComposableStablePreview(COMPOSABLE_PREVIEW)
        )
    //solhint-disable-next-line
    {

    }

    function _deposit(
        address tokenIn,
        uint256 amount
    ) internal override returns (uint256 amountSharesOut) {
        if (tokenIn == NATIVE || tokenIn == WETH || tokenIn == WA_WETH) {
            uint256 amountBbAWeth = _depositBbAWeth(tokenIn, amount);
            amountSharesOut = super._deposit(BB_A_WETH, amountBbAWeth);
        } else {
            amountSharesOut = super._deposit(tokenIn, amount);
        }
    }

    function _redeem(
        address receiver,
        address tokenOut,
        uint256 amountSharesToRedeem
    ) internal override returns (uint256 amountTokenOut) {
        if (tokenOut == NATIVE || tokenOut == WETH || tokenOut == WA_WETH) {
            uint256 amountBbAWeth = super._redeem(address(this), BB_A_WETH, amountSharesToRedeem);
            amountTokenOut = _redeemBbAWeth(receiver, tokenOut, amountBbAWeth);
        } else {
            return super._redeem(receiver, tokenOut, amountSharesToRedeem);
        }
    }

    function _previewDeposit(
        address tokenIn,
        uint256 amountTokenToDeposit
    ) internal view override returns (uint256 amountSharesOut) {
        if (tokenIn == NATIVE || tokenIn == WETH || tokenIn == WA_WETH) {
            uint256 amountBbAWeth = _previewDepositBbAWeth(tokenIn, amountTokenToDeposit);
            amountSharesOut = super._previewDeposit(BB_A_WETH, amountBbAWeth);
        } else {
            amountSharesOut = super._previewDeposit(tokenIn, amountTokenToDeposit);
        }
    }

    function _previewRedeem(
        address tokenOut,
        uint256 amountSharesToRedeem
    ) internal view override returns (uint256 amountTokenOut) {
        if (tokenOut == NATIVE || tokenOut == WETH || tokenOut == WA_WETH) {
            uint256 amountBbAWeth = super._previewRedeem(BB_A_WETH, amountSharesToRedeem);
            amountTokenOut = _previewRedeemBbAWeth(tokenOut, amountBbAWeth);
        } else {
            return super._previewRedeem(tokenOut, amountSharesToRedeem);
        }
    }

    function _getImmutablePoolData() internal pure override returns (bytes memory ret) {
        ComposableStablePreview.ImmutableData memory res;
        res.poolTokens = _getPoolTokenAddresses();
        res.rateProviders = _getRateProviders();
        res.rawScalingFactors = _getRawScalingFactors();
        res.isExemptFromYieldProtocolFee = _getExemption();
        res.LP = LP;
        res.noTokensExempt = NO_TOKENS_EXEMPT;
        res.allTokensExempt = ALL_TOKENS_EXEMPT;
        res.bptIndex = _getBPTIndex();
        res.totalTokens = res.poolTokens.length;

        return abi.encode(res);
    }

    //  --------------------------------- POOL CONSTANTS ---------------------------------
    function _getPoolTokenAddresses() internal pure override returns (address[] memory res) {
        res = new address[](3);
        res[0] = LP;
        res[1] = _BB_A_WETH;
        res[2] = SWETH;
    }

    function _getBPTIndex() internal pure override returns (uint256) {
        return 0;
    }

    function _getRateProviders() internal pure returns (address[] memory res) {
        res = new address[](3);
        res[0] = 0x0000000000000000000000000000000000000000;
        res[1] = 0xbB6881874825E60e1160416D6C426eae65f2459E;
        res[2] = 0xf951E335afb289353dc249e82926178EaC7DEd78;
    }

    function _getRawScalingFactors() internal pure returns (uint256[] memory res) {
        res = new uint256[](3);
        res[0] = res[1] = res[2] = 1e18;
    }

    function _getExemption() internal pure returns (bool[] memory res) {
        res = new bool[](3);
        res[0] = res[1] = res[2] = false;
    }

    function getTokensIn() public view override returns (address[] memory res) {
        res = new address[](6);
        res[0] = NATIVE;
        res[1] = WETH;
        res[2] = WA_WETH;
        res[3] = BB_A_WETH;
        res[4] = SWETH;
        res[5] = LP;
    }

    function getTokensOut() public view override returns (address[] memory res) {
        return getTokensIn();
    }

    function isValidTokenIn(address token) public view override returns (bool) {
        return (token == NATIVE ||
            token == WETH ||
            token == WA_WETH ||
            token == BB_A_WETH ||
            token == SWETH ||
            token == LP);
    }

    function isValidTokenOut(address token) public view override returns (bool) {
        return isValidTokenIn(token);
    }
}

File 2 of 94 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original
     * initialization step. This is essential to configure modules that are added through upgrades and that require
     * initialization.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized < type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }
}

File 3 of 94 : AddressUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 4 of 94 : draft-IERC1822.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)

pragma solidity ^0.8.0;

/**
 * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
 * proxy whose upgrades are fully controlled by the current implementation.
 */
interface IERC1822Proxiable {
    /**
     * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
     * address.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy.
     */
    function proxiableUUID() external view returns (bytes32);
}

File 5 of 94 : IBeacon.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)

pragma solidity ^0.8.0;

/**
 * @dev This is the interface that {BeaconProxy} expects of its beacon.
 */
interface IBeacon {
    /**
     * @dev Must return an address that can be used as a delegate call target.
     *
     * {BeaconProxy} will check that this address is a contract.
     */
    function implementation() external view returns (address);
}

File 6 of 94 : ERC1967Upgrade.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (proxy/ERC1967/ERC1967Upgrade.sol)

pragma solidity ^0.8.2;

import "../beacon/IBeacon.sol";
import "../../interfaces/draft-IERC1822.sol";
import "../../utils/Address.sol";
import "../../utils/StorageSlot.sol";

/**
 * @dev This abstract contract provides getters and event emitting update functions for
 * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
 *
 * _Available since v4.1._
 *
 * @custom:oz-upgrades-unsafe-allow delegatecall
 */
abstract contract ERC1967Upgrade {
    // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
    bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;

    /**
     * @dev Storage slot with the address of the current implementation.
     * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;

    /**
     * @dev Emitted when the implementation is upgraded.
     */
    event Upgraded(address indexed implementation);

    /**
     * @dev Returns the current implementation address.
     */
    function _getImplementation() internal view returns (address) {
        return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 implementation slot.
     */
    function _setImplementation(address newImplementation) private {
        require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
        StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
    }

    /**
     * @dev Perform implementation upgrade
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeTo(address newImplementation) internal {
        _setImplementation(newImplementation);
        emit Upgraded(newImplementation);
    }

    /**
     * @dev Perform implementation upgrade with additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCall(
        address newImplementation,
        bytes memory data,
        bool forceCall
    ) internal {
        _upgradeTo(newImplementation);
        if (data.length > 0 || forceCall) {
            Address.functionDelegateCall(newImplementation, data);
        }
    }

    /**
     * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
     *
     * Emits an {Upgraded} event.
     */
    function _upgradeToAndCallUUPS(
        address newImplementation,
        bytes memory data,
        bool forceCall
    ) internal {
        // Upgrades from old implementations will perform a rollback test. This test requires the new
        // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
        // this special case will break upgrade paths from old UUPS implementation to new ones.
        if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
            _setImplementation(newImplementation);
        } else {
            try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
            } catch {
                revert("ERC1967Upgrade: new implementation is not UUPS");
            }
            _upgradeToAndCall(newImplementation, data, forceCall);
        }
    }

    /**
     * @dev Storage slot with the admin of the contract.
     * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
     * validated in the constructor.
     */
    bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;

    /**
     * @dev Emitted when the admin account has changed.
     */
    event AdminChanged(address previousAdmin, address newAdmin);

    /**
     * @dev Returns the current admin.
     */
    function _getAdmin() internal view returns (address) {
        return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
    }

    /**
     * @dev Stores a new address in the EIP1967 admin slot.
     */
    function _setAdmin(address newAdmin) private {
        require(newAdmin != address(0), "ERC1967: new admin is the zero address");
        StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
    }

    /**
     * @dev Changes the admin of the proxy.
     *
     * Emits an {AdminChanged} event.
     */
    function _changeAdmin(address newAdmin) internal {
        emit AdminChanged(_getAdmin(), newAdmin);
        _setAdmin(newAdmin);
    }

    /**
     * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
     * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
     */
    bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;

    /**
     * @dev Emitted when the beacon is upgraded.
     */
    event BeaconUpgraded(address indexed beacon);

    /**
     * @dev Returns the current beacon.
     */
    function _getBeacon() internal view returns (address) {
        return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
    }

    /**
     * @dev Stores a new beacon in the EIP1967 beacon slot.
     */
    function _setBeacon(address newBeacon) private {
        require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
        require(
            Address.isContract(IBeacon(newBeacon).implementation()),
            "ERC1967: beacon implementation is not a contract"
        );
        StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
    }

    /**
     * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
     * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
     *
     * Emits a {BeaconUpgraded} event.
     */
    function _upgradeBeaconToAndCall(
        address newBeacon,
        bytes memory data,
        bool forceCall
    ) internal {
        _setBeacon(newBeacon);
        emit BeaconUpgraded(newBeacon);
        if (data.length > 0 || forceCall) {
            Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
        }
    }
}

File 7 of 94 : UUPSUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.5.0) (proxy/utils/UUPSUpgradeable.sol)

pragma solidity ^0.8.0;

import "../../interfaces/draft-IERC1822.sol";
import "../ERC1967/ERC1967Upgrade.sol";

/**
 * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an
 * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy.
 *
 * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is
 * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing
 * `UUPSUpgradeable` with a custom implementation of upgrades.
 *
 * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism.
 *
 * _Available since v4.1._
 */
abstract contract UUPSUpgradeable is IERC1822Proxiable, ERC1967Upgrade {
    /// @custom:oz-upgrades-unsafe-allow state-variable-immutable state-variable-assignment
    address private immutable __self = address(this);

    /**
     * @dev Check that the execution is being performed through a delegatecall call and that the execution context is
     * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case
     * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a
     * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to
     * fail.
     */
    modifier onlyProxy() {
        require(address(this) != __self, "Function must be called through delegatecall");
        require(_getImplementation() == __self, "Function must be called through active proxy");
        _;
    }

    /**
     * @dev Check that the execution is not being performed through a delegate call. This allows a function to be
     * callable on the implementing contract but not through proxies.
     */
    modifier notDelegated() {
        require(address(this) == __self, "UUPSUpgradeable: must not be called through delegatecall");
        _;
    }

    /**
     * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the
     * implementation. It is used to validate that the this implementation remains valid after an upgrade.
     *
     * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
     * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
     * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier.
     */
    function proxiableUUID() external view virtual override notDelegated returns (bytes32) {
        return _IMPLEMENTATION_SLOT;
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     */
    function upgradeTo(address newImplementation) external virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, new bytes(0), false);
    }

    /**
     * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call
     * encoded in `data`.
     *
     * Calls {_authorizeUpgrade}.
     *
     * Emits an {Upgraded} event.
     */
    function upgradeToAndCall(address newImplementation, bytes memory data) external payable virtual onlyProxy {
        _authorizeUpgrade(newImplementation);
        _upgradeToAndCallUUPS(newImplementation, data, true);
    }

    /**
     * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by
     * {upgradeTo} and {upgradeToAndCall}.
     *
     * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}.
     *
     * ```solidity
     * function _authorizeUpgrade(address) internal override onlyOwner {}
     * ```
     */
    function _authorizeUpgrade(address newImplementation) internal virtual;
}

File 8 of 94 : Pausable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (security/Pausable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which allows children to implement an emergency stop
 * mechanism that can be triggered by an authorized account.
 *
 * This module is used through inheritance. It will make available the
 * modifiers `whenNotPaused` and `whenPaused`, which can be applied to
 * the functions of your contract. Note that they will not be pausable by
 * simply including this module, only once the modifiers are put in place.
 */
abstract contract Pausable is Context {
    /**
     * @dev Emitted when the pause is triggered by `account`.
     */
    event Paused(address account);

    /**
     * @dev Emitted when the pause is lifted by `account`.
     */
    event Unpaused(address account);

    bool private _paused;

    /**
     * @dev Initializes the contract in unpaused state.
     */
    constructor() {
        _paused = false;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is not paused.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    modifier whenNotPaused() {
        _requireNotPaused();
        _;
    }

    /**
     * @dev Modifier to make a function callable only when the contract is paused.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    modifier whenPaused() {
        _requirePaused();
        _;
    }

    /**
     * @dev Returns true if the contract is paused, and false otherwise.
     */
    function paused() public view virtual returns (bool) {
        return _paused;
    }

    /**
     * @dev Throws if the contract is paused.
     */
    function _requireNotPaused() internal view virtual {
        require(!paused(), "Pausable: paused");
    }

    /**
     * @dev Throws if the contract is not paused.
     */
    function _requirePaused() internal view virtual {
        require(paused(), "Pausable: not paused");
    }

    /**
     * @dev Triggers stopped state.
     *
     * Requirements:
     *
     * - The contract must not be paused.
     */
    function _pause() internal virtual whenNotPaused {
        _paused = true;
        emit Paused(_msgSender());
    }

    /**
     * @dev Returns to normal state.
     *
     * Requirements:
     *
     * - The contract must be paused.
     */
    function _unpause() internal virtual whenPaused {
        _paused = false;
        emit Unpaused(_msgSender());
    }
}

File 9 of 94 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./IERC20.sol";
import "./extensions/IERC20Metadata.sol";
import "../../utils/Context.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * The default value of {decimals} is 18. To select a different value for
     * {decimals} you should overload it.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless this function is
     * overridden;
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual override returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address to, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero");
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
        }
        _balances[to] += amount;

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= amount;

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

File 10 of 94 : draft-ERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/extensions/draft-ERC20Permit.sol)

pragma solidity ^0.8.0;

import "./draft-IERC20Permit.sol";
import "../ERC20.sol";
import "../../../utils/cryptography/draft-EIP712.sol";
import "../../../utils/cryptography/ECDSA.sol";
import "../../../utils/Counters.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    using Counters for Counters.Counter;

    mapping(address => Counters.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
    /**
     * @dev In previous versions `_PERMIT_TYPEHASH` was declared as `immutable`.
     * However, to ensure consistency with the upgradeable transpiler, we will continue
     * to reserve a slot.
     * @custom:oz-renamed-from _PERMIT_TYPEHASH
     */
    // solhint-disable-next-line var-name-mixedcase
    bytes32 private _PERMIT_TYPEHASH_DEPRECATED_SLOT;

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        Counters.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }
}

File 11 of 94 : draft-IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 12 of 94 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 *
 * _Available since v4.1._
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 13 of 94 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `from` to `to` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

File 14 of 94 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.0;

import "../IERC20.sol";
import "../extensions/draft-IERC20Permit.sol";
import "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        require(
            (value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        uint256 newAllowance = token.allowance(address(this), spender) + value;
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(
        IERC20 token,
        address spender,
        uint256 value
    ) internal {
        unchecked {
            uint256 oldAllowance = token.allowance(address(this), spender);
            require(oldAllowance >= value, "SafeERC20: decreased allowance below zero");
            uint256 newAllowance = oldAllowance - value;
            _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
        }
    }

    function safePermit(
        IERC20Permit token,
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        uint256 nonceBefore = token.nonces(owner);
        token.permit(owner, spender, value, deadline, v, r, s);
        uint256 nonceAfter = token.nonces(owner);
        require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed");
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) {
            // Return data is optional
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

File 15 of 94 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 16 of 94 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 17 of 94 : Counters.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Counters.sol)

pragma solidity ^0.8.0;

/**
 * @title Counters
 * @author Matt Condon (@shrugs)
 * @dev Provides counters that can only be incremented, decremented or reset. This can be used e.g. to track the number
 * of elements in a mapping, issuing ERC721 ids, or counting request ids.
 *
 * Include with `using Counters for Counters.Counter;`
 */
library Counters {
    struct Counter {
        // This variable should never be directly accessed by users of the library: interactions must be restricted to
        // the library's function. As of Solidity v0.5.2, this cannot be enforced, though there is a proposal to add
        // this feature: see https://github.com/ethereum/solidity/issues/4637
        uint256 _value; // default: 0
    }

    function current(Counter storage counter) internal view returns (uint256) {
        return counter._value;
    }

    function increment(Counter storage counter) internal {
        unchecked {
            counter._value += 1;
        }
    }

    function decrement(Counter storage counter) internal {
        uint256 value = counter._value;
        require(value > 0, "Counter: decrement overflow");
        unchecked {
            counter._value = value - 1;
        }
    }

    function reset(Counter storage counter) internal {
        counter._value = 0;
    }
}

File 18 of 94 : Create2.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Create2.sol)

pragma solidity ^0.8.0;

/**
 * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer.
 * `CREATE2` can be used to compute in advance the address where a smart
 * contract will be deployed, which allows for interesting new mechanisms known
 * as 'counterfactual interactions'.
 *
 * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more
 * information.
 */
library Create2 {
    /**
     * @dev Deploys a contract using `CREATE2`. The address where the contract
     * will be deployed can be known in advance via {computeAddress}.
     *
     * The bytecode for a contract can be obtained from Solidity with
     * `type(contractName).creationCode`.
     *
     * Requirements:
     *
     * - `bytecode` must not be empty.
     * - `salt` must have not been used for `bytecode` already.
     * - the factory must have a balance of at least `amount`.
     * - if `amount` is non-zero, `bytecode` must have a `payable` constructor.
     */
    function deploy(
        uint256 amount,
        bytes32 salt,
        bytes memory bytecode
    ) internal returns (address) {
        address addr;
        require(address(this).balance >= amount, "Create2: insufficient balance");
        require(bytecode.length != 0, "Create2: bytecode length is zero");
        /// @solidity memory-safe-assembly
        assembly {
            addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt)
        }
        require(addr != address(0), "Create2: Failed on deploy");
        return addr;
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the
     * `bytecodeHash` or `salt` will result in a new destination address.
     */
    function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) {
        return computeAddress(salt, bytecodeHash, address(this));
    }

    /**
     * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at
     * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}.
     */
    function computeAddress(
        bytes32 salt,
        bytes32 bytecodeHash,
        address deployer
    ) internal pure returns (address) {
        bytes32 _data = keccak256(abi.encodePacked(bytes1(0xff), deployer, salt, bytecodeHash));
        return address(uint160(uint256(_data)));
    }
}

File 19 of 94 : draft-EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/cryptography/draft-EIP712.sol)

pragma solidity ^0.8.0;

import "./ECDSA.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _CACHED_DOMAIN_SEPARATOR;
    uint256 private immutable _CACHED_CHAIN_ID;
    address private immutable _CACHED_THIS;

    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        bytes32 hashedName = keccak256(bytes(name));
        bytes32 hashedVersion = keccak256(bytes(version));
        bytes32 typeHash = keccak256(
            "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
        );
        _HASHED_NAME = hashedName;
        _HASHED_VERSION = hashedVersion;
        _CACHED_CHAIN_ID = block.chainid;
        _CACHED_DOMAIN_SEPARATOR = _buildDomainSeparator(typeHash, hashedName, hashedVersion);
        _CACHED_THIS = address(this);
        _TYPE_HASH = typeHash;
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _CACHED_THIS && block.chainid == _CACHED_CHAIN_ID) {
            return _CACHED_DOMAIN_SEPARATOR;
        } else {
            return _buildDomainSeparator(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION);
        }
    }

    function _buildDomainSeparator(
        bytes32 typeHash,
        bytes32 nameHash,
        bytes32 versionHash
    ) private view returns (bytes32) {
        return keccak256(abi.encode(typeHash, nameHash, versionHash, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return ECDSA.toTypedDataHash(_domainSeparatorV4(), structHash);
    }
}

File 20 of 94 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.3) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.0;

import "../Strings.sol";

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS,
        InvalidSignatureV
    }

    function _throwError(RecoverError error) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert("ECDSA: invalid signature");
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert("ECDSA: invalid signature length");
        } else if (error == RecoverError.InvalidSignatureS) {
            revert("ECDSA: invalid signature 's' value");
        } else if (error == RecoverError.InvalidSignatureV) {
            revert("ECDSA: invalid signature 'v' value");
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature` or error string. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     *
     * _Available since v4.3._
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength);
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, signature);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address, RecoverError) {
        bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
        uint8 v = uint8((uint256(vs) >> 255) + 27);
        return tryRecover(hash, v, r, s);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     *
     * _Available since v4.2._
     */
    function recover(
        bytes32 hash,
        bytes32 r,
        bytes32 vs
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, r, vs);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     *
     * _Available since v4.3._
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS);
        }
        if (v != 27 && v != 28) {
            return (address(0), RecoverError.InvalidSignatureV);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature);
        }

        return (signer, RecoverError.NoError);
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address) {
        (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
        _throwError(error);
        return recovered;
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from a `hash`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
        // 32 is the length in bytes of hash,
        // enforced by the type signature above
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n32", hash));
    }

    /**
     * @dev Returns an Ethereum Signed Message, created from `s`. This
     * produces hash corresponding to the one signed with the
     * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
     * JSON-RPC method as part of EIP-191.
     *
     * See {recover}.
     */
    function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19Ethereum Signed Message:\n", Strings.toString(s.length), s));
    }

    /**
     * @dev Returns an Ethereum Signed Typed Data, created from a
     * `domainSeparator` and a `structHash`. This produces hash corresponding
     * to the one signed with the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
     * JSON-RPC method as part of EIP-712.
     *
     * See {recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", domainSeparator, structHash));
    }
}

File 21 of 94 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)

pragma solidity ^0.8.0;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }
}

File 22 of 94 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        // Inspired by OraclizeAPI's implementation - MIT licence
        // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol

        if (value == 0) {
            return "0";
        }
        uint256 temp = value;
        uint256 digits;
        while (temp != 0) {
            digits++;
            temp /= 10;
        }
        bytes memory buffer = new bytes(digits);
        while (value != 0) {
            digits -= 1;
            buffer[digits] = bytes1(uint8(48 + uint256(value % 10)));
            value /= 10;
        }
        return string(buffer);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        if (value == 0) {
            return "0x00";
        }
        uint256 temp = value;
        uint256 length = 0;
        while (temp != 0) {
            length++;
            temp >>= 8;
        }
        return toHexString(value, length);
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _HEX_SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

File 23 of 94 : EnumerableSet.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (utils/structs/EnumerableSet.sol)

pragma solidity ^0.8.0;

/**
 * @dev Library for managing
 * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
 * types.
 *
 * Sets have the following properties:
 *
 * - Elements are added, removed, and checked for existence in constant time
 * (O(1)).
 * - Elements are enumerated in O(n). No guarantees are made on the ordering.
 *
 * ```
 * contract Example {
 *     // Add the library methods
 *     using EnumerableSet for EnumerableSet.AddressSet;
 *
 *     // Declare a set state variable
 *     EnumerableSet.AddressSet private mySet;
 * }
 * ```
 *
 * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
 * and `uint256` (`UintSet`) are supported.
 *
 * [WARNING]
 * ====
 *  Trying to delete such a structure from storage will likely result in data corruption, rendering the structure unusable.
 *  See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
 *
 *  In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an array of EnumerableSet.
 * ====
 */
library EnumerableSet {
    // To implement this library for multiple types with as little code
    // repetition as possible, we write it in terms of a generic Set type with
    // bytes32 values.
    // The Set implementation uses private functions, and user-facing
    // implementations (such as AddressSet) are just wrappers around the
    // underlying Set.
    // This means that we can only create new EnumerableSets for types that fit
    // in bytes32.

    struct Set {
        // Storage of set values
        bytes32[] _values;
        // Position of the value in the `values` array, plus 1 because index 0
        // means a value is not in the set.
        mapping(bytes32 => uint256) _indexes;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function _add(Set storage set, bytes32 value) private returns (bool) {
        if (!_contains(set, value)) {
            set._values.push(value);
            // The value is stored at length-1, but we add 1 to all indexes
            // and use 0 as a sentinel value
            set._indexes[value] = set._values.length;
            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function _remove(Set storage set, bytes32 value) private returns (bool) {
        // We read and store the value's index to prevent multiple reads from the same storage slot
        uint256 valueIndex = set._indexes[value];

        if (valueIndex != 0) {
            // Equivalent to contains(set, value)
            // To delete an element from the _values array in O(1), we swap the element to delete with the last one in
            // the array, and then remove the last element (sometimes called as 'swap and pop').
            // This modifies the order of the array, as noted in {at}.

            uint256 toDeleteIndex = valueIndex - 1;
            uint256 lastIndex = set._values.length - 1;

            if (lastIndex != toDeleteIndex) {
                bytes32 lastValue = set._values[lastIndex];

                // Move the last value to the index where the value to delete is
                set._values[toDeleteIndex] = lastValue;
                // Update the index for the moved value
                set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
            }

            // Delete the slot where the moved value was stored
            set._values.pop();

            // Delete the index for the deleted slot
            delete set._indexes[value];

            return true;
        } else {
            return false;
        }
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function _contains(Set storage set, bytes32 value) private view returns (bool) {
        return set._indexes[value] != 0;
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function _length(Set storage set) private view returns (uint256) {
        return set._values.length;
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function _at(Set storage set, uint256 index) private view returns (bytes32) {
        return set._values[index];
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function _values(Set storage set) private view returns (bytes32[] memory) {
        return set._values;
    }

    // Bytes32Set

    struct Bytes32Set {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _add(set._inner, value);
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {
        return _remove(set._inner, value);
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {
        return _contains(set._inner, value);
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(Bytes32Set storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {
        return _at(set._inner, index);
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {
        return _values(set._inner);
    }

    // AddressSet

    struct AddressSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(AddressSet storage set, address value) internal returns (bool) {
        return _add(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(AddressSet storage set, address value) internal returns (bool) {
        return _remove(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(AddressSet storage set, address value) internal view returns (bool) {
        return _contains(set._inner, bytes32(uint256(uint160(value))));
    }

    /**
     * @dev Returns the number of values in the set. O(1).
     */
    function length(AddressSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(AddressSet storage set, uint256 index) internal view returns (address) {
        return address(uint160(uint256(_at(set._inner, index))));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(AddressSet storage set) internal view returns (address[] memory) {
        bytes32[] memory store = _values(set._inner);
        address[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }

    // UintSet

    struct UintSet {
        Set _inner;
    }

    /**
     * @dev Add a value to a set. O(1).
     *
     * Returns true if the value was added to the set, that is if it was not
     * already present.
     */
    function add(UintSet storage set, uint256 value) internal returns (bool) {
        return _add(set._inner, bytes32(value));
    }

    /**
     * @dev Removes a value from a set. O(1).
     *
     * Returns true if the value was removed from the set, that is if it was
     * present.
     */
    function remove(UintSet storage set, uint256 value) internal returns (bool) {
        return _remove(set._inner, bytes32(value));
    }

    /**
     * @dev Returns true if the value is in the set. O(1).
     */
    function contains(UintSet storage set, uint256 value) internal view returns (bool) {
        return _contains(set._inner, bytes32(value));
    }

    /**
     * @dev Returns the number of values on the set. O(1).
     */
    function length(UintSet storage set) internal view returns (uint256) {
        return _length(set._inner);
    }

    /**
     * @dev Returns the value stored at position `index` in the set. O(1).
     *
     * Note that there are no guarantees on the ordering of values inside the
     * array, and it may change when more values are added or removed.
     *
     * Requirements:
     *
     * - `index` must be strictly less than {length}.
     */
    function at(UintSet storage set, uint256 index) internal view returns (uint256) {
        return uint256(_at(set._inner, index));
    }

    /**
     * @dev Return the entire set in an array
     *
     * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
     * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
     * this function has an unbounded cost, and using it as part of a state-changing function may render the function
     * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
     */
    function values(UintSet storage set) internal view returns (uint256[] memory) {
        bytes32[] memory store = _values(set._inner);
        uint256[] memory result;

        /// @solidity memory-safe-assembly
        assembly {
            result := store
        }

        return result;
    }
}

File 24 of 94 : BulkSellerMathCore.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../libraries/TokenHelper.sol";
import "../libraries/math/Math.sol";
import "../libraries/Errors.sol";

struct BulkSellerState {
    uint256 rateTokenToSy;
    uint256 rateSyToToken;
    uint256 totalToken;
    uint256 totalSy;
    uint256 feeRate;
}

library BulkSellerMathCore {
    using Math for uint256;

    function swapExactTokenForSy(
        BulkSellerState memory state,
        uint256 netTokenIn
    ) internal pure returns (uint256 netSyOut) {
        netSyOut = calcSwapExactTokenForSy(state, netTokenIn);
        state.totalToken += netTokenIn;
        state.totalSy -= netSyOut;
    }

    function swapExactSyForToken(
        BulkSellerState memory state,
        uint256 netSyIn
    ) internal pure returns (uint256 netTokenOut) {
        netTokenOut = calcSwapExactSyForToken(state, netSyIn);
        state.totalSy += netSyIn;
        state.totalToken -= netTokenOut;
    }

    function calcSwapExactTokenForSy(
        BulkSellerState memory state,
        uint256 netTokenIn
    ) internal pure returns (uint256 netSyOut) {
        uint256 postFeeRate = state.rateTokenToSy.mulDown(Math.ONE - state.feeRate);
        assert(postFeeRate != 0);

        netSyOut = netTokenIn.mulDown(postFeeRate);
        if (netSyOut > state.totalSy)
            revert Errors.BulkInsufficientSyForTrade(state.totalSy, netSyOut);
    }

    function calcSwapExactSyForToken(
        BulkSellerState memory state,
        uint256 netSyIn
    ) internal pure returns (uint256 netTokenOut) {
        uint256 postFeeRate = state.rateSyToToken.mulDown(Math.ONE - state.feeRate);
        assert(postFeeRate != 0);

        netTokenOut = netSyIn.mulDown(postFeeRate);
        if (netTokenOut > state.totalToken)
            revert Errors.BulkInsufficientTokenForTrade(state.totalToken, netTokenOut);
    }

    function getTokenProp(BulkSellerState memory state) internal pure returns (uint256) {
        uint256 totalToken = state.totalToken;
        uint256 totalTokenFromSy = state.totalSy.mulDown(state.rateSyToToken);
        return totalToken.divDown(totalToken + totalTokenFromSy);
    }

    function getReBalanceParams(
        BulkSellerState memory state,
        uint256 targetTokenProp
    ) internal pure returns (uint256 netTokenToDeposit, uint256 netSyToRedeem) {
        uint256 currentTokenProp = getTokenProp(state);

        if (currentTokenProp > targetTokenProp) {
            netTokenToDeposit = state
                .totalToken
                .mulDown(currentTokenProp - targetTokenProp)
                .divDown(currentTokenProp);
        } else {
            uint256 currentSyProp = Math.ONE - currentTokenProp;
            netSyToRedeem = state.totalSy.mulDown(targetTokenProp - currentTokenProp).divDown(
                currentSyProp
            );
        }
    }

    function reBalanceTokenToSy(
        BulkSellerState memory state,
        uint256 netTokenToDeposit,
        uint256 netSyFromToken,
        uint256 maxDiff
    ) internal pure {
        uint256 rate = netSyFromToken.divDown(netTokenToDeposit);

        if (!Math.isAApproxB(rate, state.rateTokenToSy, maxDiff))
            revert Errors.BulkBadRateTokenToSy(rate, state.rateTokenToSy, maxDiff);

        state.totalToken -= netTokenToDeposit;
        state.totalSy += netSyFromToken;
    }

    function reBalanceSyToToken(
        BulkSellerState memory state,
        uint256 netSyToRedeem,
        uint256 netTokenFromSy,
        uint256 maxDiff
    ) internal pure {
        uint256 rate = netTokenFromSy.divDown(netSyToRedeem);

        if (!Math.isAApproxB(rate, state.rateSyToToken, maxDiff))
            revert Errors.BulkBadRateSyToToken(rate, state.rateSyToToken, maxDiff);

        state.totalToken += netTokenFromSy;
        state.totalSy -= netSyToRedeem;
    }

    function setRate(
        BulkSellerState memory state,
        uint256 rateSyToToken,
        uint256 rateTokenToSy,
        uint256 maxDiff
    ) internal pure {
        if (
            state.rateTokenToSy != 0 &&
            !Math.isAApproxB(rateTokenToSy, state.rateTokenToSy, maxDiff)
        ) {
            revert Errors.BulkBadRateTokenToSy(rateTokenToSy, state.rateTokenToSy, maxDiff);
        }

        if (
            state.rateSyToToken != 0 &&
            !Math.isAApproxB(rateSyToToken, state.rateSyToToken, maxDiff)
        ) {
            revert Errors.BulkBadRateSyToToken(rateSyToToken, state.rateSyToToken, maxDiff);
        }

        state.rateTokenToSy = rateTokenToSy;
        state.rateSyToToken = rateSyToToken;
    }
}

File 25 of 94 : PendleERC20.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/utils/Context.sol";

/**
 * @dev Pendle's ERC20 implementation, modified from @openzeppelin implementation
 * Changes are:
 * - comes with built-in reentrancy protection, storage-packed with totalSupply variable
 * - delete increaseAllowance / decreaseAllowance
 * - add nonReentrancy protection to transfer / transferFrom functions
 * - allow decimals to be passed in
 * - block self-transfer by default
 */
// solhint-disable
contract PendleERC20 is Context, IERC20, IERC20Metadata {
    uint8 private constant _NOT_ENTERED = 1;
    uint8 private constant _ENTERED = 2;

    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint248 private _totalSupply;
    uint8 private _status;

    string private _name;
    string private _symbol;
    uint8 public immutable decimals;

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        // On the first call to nonReentrant, _notEntered will be true
        require(_status != _ENTERED, "ReentrancyGuard: reentrant call");

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;

        _;

        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Sets the values for {name}, {symbol} and {decimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_, uint8 decimals_) {
        _name = name_;
        _symbol = symbol_;
        decimals = decimals_;
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual override returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(
        address to,
        uint256 amount
    ) external virtual override nonReentrant returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(
        address owner,
        address spender
    ) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) external virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external virtual override nonReentrant returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    /**
     * @dev Moves `amount` of tokens from `sender` to `recipient`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `from` must have a balance of at least `amount`.
     */
    function _transfer(address from, address to, uint256 amount) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");
        require(from != to, "ERC20: transfer to self");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(fromBalance >= amount, "ERC20: transfer amount exceeds balance");
        unchecked {
            _balances[from] = fromBalance - amount;
        }
        _balances[to] += amount;

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += toUint248(amount);
        _balances[account] += amount;
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
        }
        _totalSupply -= toUint248(amount);

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `amount`.
     *
     * Does not update the allowance amount in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Might emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 amount) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(currentAllowance >= amount, "ERC20: insufficient allowance");
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    /**
     * @dev Hook that is called after any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * has been transferred to `to`.
     * - when `from` is zero, `amount` tokens have been minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens have been burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {}

    function toUint248(uint256 x) internal virtual returns (uint248) {
        require(x <= type(uint248).max); // signed, lim = bit-1
        return uint248(x);
    }
}

File 26 of 94 : PendleERC20Permit.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.0;

import "./PendleERC20.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/utils/Context.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/draft-ERC20Permit.sol";
import "@openzeppelin/contracts/utils/cryptography/draft-EIP712.sol";
import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
import "@openzeppelin/contracts/utils/Counters.sol";

/// @dev forked from OZ's ERC20Permit
contract PendleERC20Permit is PendleERC20, IERC20Permit, EIP712 {
    using Counters for Counters.Counter;

    mapping(address => Counters.Counter) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private constant _PERMIT_TYPEHASH =
        keccak256(
            "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
        );

    constructor(
        string memory name_,
        string memory symbol_,
        uint8 decimals_
    ) PendleERC20(name_, symbol_, decimals_) EIP712(name_, "1") {}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        require(block.timestamp <= deadline, "ERC20Permit: expired deadline");

        bytes32 structHash = keccak256(
            abi.encode(_PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline)
        );

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        require(signer == owner, "ERC20Permit: invalid signature");

        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view virtual override returns (uint256) {
        return _nonces[owner].current();
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    /**
     * @dev "Consume a nonce": return the current value and increment.
     *
     * _Available since v4.1._
     */
    function _useNonce(address owner) internal virtual returns (uint256 current) {
        Counters.Counter storage nonce = _nonces[owner];
        current = nonce.current();
        nonce.increment();
    }
}

File 27 of 94 : ArrayLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity >=0.8.0;

library ArrayLib {
    function sum(uint256[] memory input) internal pure returns (uint256) {
        uint256 value = 0;
        for (uint256 i = 0; i < input.length; ) {
            value += input[i];
            unchecked {
                i++;
            }
        }
        return value;
    }

    /// @notice return index of the element if found, else return uint256.max
    function find(address[] memory array, address element) internal pure returns (uint256 index) {
        uint256 length = array.length;
        for (uint256 i = 0; i < length; ) {
            if (array[i] == element) return i;
            unchecked {
                i++;
            }
        }
        return type(uint256).max;
    }

    function append(
        address[] memory inp,
        address element
    ) internal pure returns (address[] memory out) {
        uint256 length = inp.length;
        out = new address[](length + 1);
        for (uint256 i = 0; i < length; ) {
            out[i] = inp[i];
            unchecked {
                i++;
            }
        }
        out[length] = element;
    }

    // various version of contains
    function contains(address[] memory array, address element) internal pure returns (bool) {
        uint256 length = array.length;
        for (uint256 i = 0; i < length; ) {
            if (array[i] == element) return true;
            unchecked {
                i++;
            }
        }
        return false;
    }

    function contains(bytes4[] memory array, bytes4 element) internal pure returns (bool) {
        uint256 length = array.length;
        for (uint256 i = 0; i < length; ) {
            if (array[i] == element) return true;
            unchecked {
                i++;
            }
        }
        return false;
    }
}

File 28 of 94 : BaseSplitCodeFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity 0.8.17;

import "@openzeppelin/contracts/utils/Create2.sol";

library CodeDeployer {
    // During contract construction, the full code supplied exists as code, and can be accessed via `codesize` and
    // `codecopy`. This is not the contract's final code however: whatever the constructor returns is what will be
    // stored as its code.
    //
    // We use this mechanism to have a simple constructor that stores whatever is appended to it. The following opcode
    // sequence corresponds to the creation code of the following equivalent Solidity contract, plus padding to make the
    // full code 32 bytes long:
    //
    // contract CodeDeployer {
    //     constructor() payable {
    //         uint256 size;
    //         assembly {
    //             size := sub(codesize(), 32) // size of appended data, as constructor is 32 bytes long
    //             codecopy(0, 32, size) // copy all appended data to memory at position 0
    //             return(0, size) // return appended data for it to be stored as code
    //         }
    //     }
    // }
    //
    // More specifically, it is composed of the following opcodes (plus padding):
    //
    // [1] PUSH1 0x20
    // [2] CODESIZE
    // [3] SUB
    // [4] DUP1
    // [6] PUSH1 0x20
    // [8] PUSH1 0x00
    // [9] CODECOPY
    // [11] PUSH1 0x00
    // [12] RETURN
    //
    // The padding is just the 0xfe sequence (invalid opcode). It is important as it lets us work in-place, avoiding
    // memory allocation and copying.
    bytes32 private constant _DEPLOYER_CREATION_CODE =
        0x602038038060206000396000f3fefefefefefefefefefefefefefefefefefefe;

    /**
     * @dev Deploys a contract with `code` as its code, returning the destination address.
     *
     * Reverts if deployment fails.
     */
    function deploy(bytes memory code) internal returns (address destination) {
        bytes32 deployerCreationCode = _DEPLOYER_CREATION_CODE;

        // We need to concatenate the deployer creation code and `code` in memory, but want to avoid copying all of
        // `code` (which could be quite long) into a new memory location. Therefore, we operate in-place using
        // assembly.

        // solhint-disable-next-line no-inline-assembly
        assembly {
            let codeLength := mload(code)

            // `code` is composed of length and data. We've already stored its length in `codeLength`, so we simply
            // replace it with the deployer creation code (which is exactly 32 bytes long).
            mstore(code, deployerCreationCode)

            // At this point, `code` now points to the deployer creation code immediately followed by `code`'s data
            // contents. This is exactly what the deployer expects to receive when created.
            destination := create(0, code, add(codeLength, 32))

            // Finally, we restore the original length in order to not mutate `code`.
            mstore(code, codeLength)
        }

        // The create opcode returns the zero address when contract creation fails, so we revert if this happens.
        require(destination != address(0), "DEPLOYMENT_FAILED_BALANCER");
    }
}

library BaseSplitCodeFactory {
    function setCreationCode(
        bytes memory creationCode
    )
        internal
        returns (
            address creationCodeContractA,
            uint256 creationCodeSizeA,
            address creationCodeContractB,
            uint256 creationCodeSizeB
        )
    {
        unchecked {
            require(creationCode.length > 0, "zero length");
            uint256 creationCodeSize = creationCode.length;

            // We are going to deploy two contracts: one with approximately the first half of `creationCode`'s contents
            // (A), and another with the remaining half (B).
            // We store the lengths in both immutable and stack variables, since immutable variables cannot be read during
            // construction.
            creationCodeSizeA = creationCodeSize / 2;

            creationCodeSizeB = creationCodeSize - creationCodeSizeA;

            // To deploy the contracts, we're going to use `CodeDeployer.deploy()`, which expects a memory array with
            // the code to deploy. Note that we cannot simply create arrays for A and B's code by copying or moving
            // `creationCode`'s contents as they are expected to be very large (> 24kB), so we must operate in-place.

            // Memory: [ code length ] [ A.data ] [ B.data ]

            // Creating A's array is simple: we simply replace `creationCode`'s length with A's length. We'll later restore
            // the original length.

            bytes memory creationCodeA;
            assembly {
                creationCodeA := creationCode
                mstore(creationCodeA, creationCodeSizeA)
            }

            // Memory: [ A.length ] [ A.data ] [ B.data ]
            //         ^ creationCodeA

            creationCodeContractA = CodeDeployer.deploy(creationCodeA);

            // Creating B's array is a bit more involved: since we cannot move B's contents, we are going to create a 'new'
            // memory array starting at A's last 32 bytes, which will be replaced with B's length. We'll back-up this last
            // byte to later restore it.

            bytes memory creationCodeB;
            bytes32 lastByteA;

            assembly {
                // `creationCode` points to the array's length, not data, so by adding A's length to it we arrive at A's
                // last 32 bytes.
                creationCodeB := add(creationCode, creationCodeSizeA)
                lastByteA := mload(creationCodeB)
                mstore(creationCodeB, creationCodeSizeB)
            }

            // Memory: [ A.length ] [ A.data[ : -1] ] [ B.length ][ B.data ]
            //         ^ creationCodeA                ^ creationCodeB

            creationCodeContractB = CodeDeployer.deploy(creationCodeB);

            // We now restore the original contents of `creationCode` by writing back the original length and A's last byte.
            assembly {
                mstore(creationCodeA, creationCodeSize)
                mstore(creationCodeB, lastByteA)
            }
        }
    }

    /**
     * @dev Returns the creation code of the contract this factory creates.
     */
    function getCreationCode(
        address creationCodeContractA,
        uint256 creationCodeSizeA,
        address creationCodeContractB,
        uint256 creationCodeSizeB
    ) internal view returns (bytes memory) {
        return
            _getCreationCodeWithArgs(
                "",
                creationCodeContractA,
                creationCodeSizeA,
                creationCodeContractB,
                creationCodeSizeB
            );
    }

    /**
     * @dev Returns the creation code that will result in a contract being deployed with `constructorArgs`.
     */
    function _getCreationCodeWithArgs(
        bytes memory constructorArgs,
        address creationCodeContractA,
        uint256 creationCodeSizeA,
        address creationCodeContractB,
        uint256 creationCodeSizeB
    ) private view returns (bytes memory code) {
        unchecked {
            // This function exists because `abi.encode()` cannot be instructed to place its result at a specific address.
            // We need for the ABI-encoded constructor arguments to be located immediately after the creation code, but
            // cannot rely on `abi.encodePacked()` to perform concatenation as that would involve copying the creation code,
            // which would be prohibitively expensive.
            // Instead, we compute the creation code in a pre-allocated array that is large enough to hold *both* the
            // creation code and the constructor arguments, and then copy the ABI-encoded arguments (which should not be
            // overly long) right after the end of the creation code.

            // Immutable variables cannot be used in assembly, so we store them in the stack first.

            uint256 creationCodeSize = creationCodeSizeA + creationCodeSizeB;
            uint256 constructorArgsSize = constructorArgs.length;

            uint256 codeSize = creationCodeSize + constructorArgsSize;

            assembly {
                // First, we allocate memory for `code` by retrieving the free memory pointer and then moving it ahead of
                // `code` by the size of the creation code plus constructor arguments, and 32 bytes for the array length.
                code := mload(0x40)
                mstore(0x40, add(code, add(codeSize, 32)))

                // We now store the length of the code plus constructor arguments.
                mstore(code, codeSize)

                // Next, we concatenate the creation code stored in A and B.
                let dataStart := add(code, 32)
                extcodecopy(creationCodeContractA, dataStart, 0, creationCodeSizeA)
                extcodecopy(
                    creationCodeContractB,
                    add(dataStart, creationCodeSizeA),
                    0,
                    creationCodeSizeB
                )
            }

            // Finally, we copy the constructorArgs to the end of the array. Unfortunately there is no way to avoid this
            // copy, as it is not possible to tell Solidity where to store the result of `abi.encode()`.
            uint256 constructorArgsDataPtr;
            uint256 constructorArgsCodeDataPtr;
            assembly {
                constructorArgsDataPtr := add(constructorArgs, 32)
                constructorArgsCodeDataPtr := add(add(code, 32), creationCodeSize)
            }

            _memcpy(constructorArgsCodeDataPtr, constructorArgsDataPtr, constructorArgsSize);
        }
    }

    /**
     * @dev Deploys a contract with constructor arguments. To create `constructorArgs`, call `abi.encode()` with the
     * contract's constructor arguments, in order.
     */
    function _create2(
        uint256 amount,
        bytes32 salt,
        bytes memory constructorArgs,
        address creationCodeContractA,
        uint256 creationCodeSizeA,
        address creationCodeContractB,
        uint256 creationCodeSizeB
    ) internal returns (address) {
        unchecked {
            bytes memory creationCode = _getCreationCodeWithArgs(
                constructorArgs,
                creationCodeContractA,
                creationCodeSizeA,
                creationCodeContractB,
                creationCodeSizeB
            );
            return Create2.deploy(amount, salt, creationCode);
        }
    }

    // From
    // https://github.com/Arachnid/solidity-stringutils/blob/b9a6f6615cf18a87a823cbc461ce9e140a61c305/src/strings.sol
    function _memcpy(uint256 dest, uint256 src, uint256 len) private pure {
        unchecked {
            // Copy word-length chunks while possible
            for (; len >= 32; len -= 32) {
                assembly {
                    mstore(dest, mload(src))
                }
                dest += 32;
                src += 32;
            }

            // Copy remaining bytes
            uint256 mask = 256 ** (32 - len) - 1;
            assembly {
                let srcpart := and(mload(src), not(mask))
                let destpart := and(mload(dest), mask)
                mstore(dest, or(destpart, srcpart))
            }
        }
    }
}

File 29 of 94 : BoringOwnableUpgradeable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

contract BoringOwnableUpgradeableData {
    address public owner;
    address public pendingOwner;
}

abstract contract BoringOwnableUpgradeable is BoringOwnableUpgradeableData, Initializable {
    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    function __BoringOwnable_init() internal onlyInitializing {
        owner = msg.sender;
    }

    /// @notice Transfers ownership to `newOwner`. Either directly or claimable by the new pending owner.
    /// Can only be invoked by the current `owner`.
    /// @param newOwner Address of the new owner.
    /// @param direct True if `newOwner` should be set immediately. False if `newOwner` needs to use `claimOwnership`.
    /// @param renounce Allows the `newOwner` to be `address(0)` if `direct` and `renounce` is True. Has no effect otherwise.
    function transferOwnership(address newOwner, bool direct, bool renounce) public onlyOwner {
        if (direct) {
            // Checks
            require(newOwner != address(0) || renounce, "Ownable: zero address");

            // Effects
            emit OwnershipTransferred(owner, newOwner);
            owner = newOwner;
            pendingOwner = address(0);
        } else {
            // Effects
            pendingOwner = newOwner;
        }
    }

    /// @notice Needs to be called by `pendingOwner` to claim ownership.
    function claimOwnership() public {
        address _pendingOwner = pendingOwner;

        // Checks
        require(msg.sender == _pendingOwner, "Ownable: caller != pending owner");

        // Effects
        emit OwnershipTransferred(owner, _pendingOwner);
        owner = _pendingOwner;
        pendingOwner = address(0);
    }

    /// @notice Only allows the `owner` to execute the function.
    modifier onlyOwner() {
        require(msg.sender == owner, "Ownable: caller is not the owner");
        _;
    }

    uint256[48] private __gap;
}

File 30 of 94 : Errors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

library Errors {
    // BulkSeller
    error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount);
    error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error BulkNotMaintainer();
    error BulkNotAdmin();
    error BulkSellerAlreadyExisted(address token, address SY, address bulk);
    error BulkSellerInvalidToken(address token, address SY);
    error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps);
    error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps);

    // APPROX
    error ApproxFail();
    error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps);
    error ApproxBinarySearchInputInvalid(
        uint256 approxGuessMin,
        uint256 approxGuessMax,
        uint256 minGuessMin,
        uint256 maxGuessMax
    );

    // MARKET + MARKET MATH CORE
    error MarketExpired();
    error MarketZeroAmountsInput();
    error MarketZeroAmountsOutput();
    error MarketZeroLnImpliedRate();
    error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount);
    error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance);
    error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset);
    error MarketExchangeRateBelowOne(int256 exchangeRate);
    error MarketProportionMustNotEqualOne();
    error MarketRateScalarBelowZero(int256 rateScalar);
    error MarketScalarRootBelowZero(int256 scalarRoot);
    error MarketProportionTooHigh(int256 proportion, int256 maxProportion);

    error OracleUninitialized();
    error OracleTargetTooOld(uint32 target, uint32 oldest);
    error OracleZeroCardinality();

    error MarketFactoryExpiredPt();
    error MarketFactoryInvalidPt();
    error MarketFactoryMarketExists();

    error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot);
    error MarketFactoryReserveFeePercentTooHigh(
        uint8 reserveFeePercent,
        uint8 maxReserveFeePercent
    );
    error MarketFactoryZeroTreasury();
    error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor);

    // ROUTER
    error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut);
    error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut);
    error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut);
    error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut);
    error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut);
    error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);
    error RouterExceededLimitSyIn(uint256 actualSyIn, uint256 limitSyIn);
    error RouterExceededLimitPtIn(uint256 actualPtIn, uint256 limitPtIn);
    error RouterExceededLimitYtIn(uint256 actualYtIn, uint256 limitYtIn);
    error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay);
    error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay);
    error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed);

    error RouterTimeRangeZero();
    error RouterCallbackNotPendleMarket(address caller);
    error RouterInvalidAction(bytes4 selector);
    error RouterInvalidFacet(address facet);

    error RouterKyberSwapDataZero();

    // YIELD CONTRACT
    error YCExpired();
    error YCNotExpired();
    error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy);
    error YCNothingToRedeem();
    error YCPostExpiryDataNotSet();
    error YCNoFloatingSy();

    // YieldFactory
    error YCFactoryInvalidExpiry();
    error YCFactoryYieldContractExisted();
    error YCFactoryZeroExpiryDivisor();
    error YCFactoryZeroTreasury();
    error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate);
    error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate);

    // SY
    error SYInvalidTokenIn(address token);
    error SYInvalidTokenOut(address token);
    error SYZeroDeposit();
    error SYZeroRedeem();
    error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut);
    error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut);

    // SY-specific
    error SYQiTokenMintFailed(uint256 errCode);
    error SYQiTokenRedeemFailed(uint256 errCode);
    error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1);
    error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax);

    error SYCurveInvalidPid();
    error SYCurve3crvPoolNotFound();

    error SYApeDepositAmountTooSmall(uint256 amountDeposited);
    error SYBalancerInvalidPid();
    error SYInvalidRewardToken(address token);

    error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable);

    error SYBalancerReentrancy();

    // Liquidity Mining
    error VCInactivePool(address pool);
    error VCPoolAlreadyActive(address pool);
    error VCZeroVePendle(address user);
    error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight);
    error VCEpochNotFinalized(uint256 wTime);
    error VCPoolAlreadyAddAndRemoved(address pool);

    error VEInvalidNewExpiry(uint256 newExpiry);
    error VEExceededMaxLockTime();
    error VEInsufficientLockTime();
    error VENotAllowedReduceExpiry();
    error VEZeroAmountLocked();
    error VEPositionNotExpired();
    error VEZeroPosition();
    error VEZeroSlope(uint128 bias, uint128 slope);
    error VEReceiveOldSupply(uint256 msgTime);

    error GCNotPendleMarket(address caller);
    error GCNotVotingController(address caller);

    error InvalidWTime(uint256 wTime);
    error ExpiryInThePast(uint256 expiry);
    error ChainNotSupported(uint256 chainId);

    error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount);
    error FDEpochLengthMismatch();
    error FDInvalidPool(address pool);
    error FDPoolAlreadyExists(address pool);
    error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch);
    error FDInvalidStartEpoch(uint256 startEpoch);
    error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime);
    error FDFutureFunding(uint256 lastFunded, uint256 currentWTime);

    error BDInvalidEpoch(uint256 epoch, uint256 startTime);

    // Cross-Chain
    error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path);
    error MsgNotFromReceiveEndpoint(address sender);
    error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee);
    error ApproxDstExecutionGasNotSet();
    error InvalidRetryData();

    // GENERIC MSG
    error ArrayLengthMismatch();
    error ArrayEmpty();
    error ArrayOutOfBounds();
    error ZeroAddress();
    error FailedToSendEther();
    error InvalidMerkleProof();

    error OnlyLayerZeroEndpoint();
    error OnlyYT();
    error OnlyYCFactory();
    error OnlyWhitelisted();

    // Swap Aggregator
    error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual);
    error UnsupportedSelector(uint256 aggregatorType, bytes4 selector);
}

File 31 of 94 : ExpiryUtilsLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

library ExpiryUtils {
    struct Date {
        uint16 year;
        uint8 month;
        uint8 day;
    }

    uint256 private constant DAY_IN_SECONDS = 86400;
    uint256 private constant YEAR_IN_SECONDS = 31536000;
    uint256 private constant LEAP_YEAR_IN_SECONDS = 31622400;
    uint16 private constant ORIGIN_YEAR = 1970;

    /**
     * @notice Concatenates a Pendle token name/symbol, a yield token name/symbol,
     *         and an expiry, using a delimiter (usually "-" or " ").
     * @param _bt The Pendle token name/symbol.
     * @param _yt The yield token name/symbol.
     * @param _expiry The expiry in epoch time.
     * @param _delimiter Can be any delimiter, but usually "-" or " ".
     * @return result Returns the concatenated string.
     **/
    function concat(
        string memory _bt,
        string memory _yt,
        uint256 _expiry,
        string memory _delimiter
    ) internal pure returns (string memory result) {
        result = string(
            abi.encodePacked(_bt, _delimiter, _yt, _delimiter, toRFC2822String(_expiry))
        );
    }

    function toRFC2822String(uint256 _timestamp) internal pure returns (string memory s) {
        Date memory d = parseTimestamp(_timestamp);
        string memory day = uintToString(d.day);
        string memory month = monthName(d);
        string memory year = uintToString(d.year);
        s = string(abi.encodePacked(day, month, year));
    }

    function getDaysInMonth(uint8 _month, uint16 _year) private pure returns (uint8) {
        if (
            _month == 1 ||
            _month == 3 ||
            _month == 5 ||
            _month == 7 ||
            _month == 8 ||
            _month == 10 ||
            _month == 12
        ) {
            return 31;
        } else if (_month == 4 || _month == 6 || _month == 9 || _month == 11) {
            return 30;
        } else if (isLeapYear(_year)) {
            return 29;
        } else {
            return 28;
        }
    }

    function getYear(uint256 _timestamp) private pure returns (uint16) {
        uint256 secondsAccountedFor = 0;
        uint16 year;
        uint256 numLeapYears;

        // Year
        year = uint16(ORIGIN_YEAR + _timestamp / YEAR_IN_SECONDS);
        numLeapYears = leapYearsBefore(year) - leapYearsBefore(ORIGIN_YEAR);

        secondsAccountedFor += LEAP_YEAR_IN_SECONDS * numLeapYears;
        secondsAccountedFor += YEAR_IN_SECONDS * (year - ORIGIN_YEAR - numLeapYears);

        while (secondsAccountedFor > _timestamp) {
            if (isLeapYear(uint16(year - 1))) {
                secondsAccountedFor -= LEAP_YEAR_IN_SECONDS;
            } else {
                secondsAccountedFor -= YEAR_IN_SECONDS;
            }
            year -= 1;
        }
        return year;
    }

    function isLeapYear(uint16 _year) private pure returns (bool) {
        return ((_year % 4 == 0) && (_year % 100 != 0)) || (_year % 400 == 0);
    }

    function leapYearsBefore(uint256 _year) private pure returns (uint256) {
        _year -= 1;
        return _year / 4 - _year / 100 + _year / 400;
    }

    function monthName(Date memory d) private pure returns (string memory) {
        string[12] memory months = [
            "JAN",
            "FEB",
            "MAR",
            "APR",
            "MAY",
            "JUN",
            "JUL",
            "AUG",
            "SEP",
            "OCT",
            "NOV",
            "DEC"
        ];
        return months[d.month - 1];
    }

    function parseTimestamp(uint256 _timestamp) private pure returns (Date memory d) {
        uint256 secondsAccountedFor = 0;
        uint256 buf;
        uint8 i;

        // Year
        d.year = getYear(_timestamp);
        buf = leapYearsBefore(d.year) - leapYearsBefore(ORIGIN_YEAR);

        secondsAccountedFor += LEAP_YEAR_IN_SECONDS * buf;
        secondsAccountedFor += YEAR_IN_SECONDS * (d.year - ORIGIN_YEAR - buf);

        // Month
        uint256 secondsInMonth;
        for (i = 1; i <= 12; i++) {
            secondsInMonth = DAY_IN_SECONDS * getDaysInMonth(i, d.year);
            if (secondsInMonth + secondsAccountedFor > _timestamp) {
                d.month = i;
                break;
            }
            secondsAccountedFor += secondsInMonth;
        }

        // Day
        for (i = 1; i <= getDaysInMonth(d.month, d.year); i++) {
            if (DAY_IN_SECONDS + secondsAccountedFor > _timestamp) {
                d.day = i;
                break;
            }
            secondsAccountedFor += DAY_IN_SECONDS;
        }
    }

    function uintToString(uint256 _i) private pure returns (string memory) {
        if (_i == 0) {
            return "0";
        }
        uint256 j = _i;
        uint256 len;
        while (j != 0) {
            len++;
            j /= 10;
        }
        bytes memory bstr = new bytes(len);
        uint256 k = len - 1;
        while (_i != 0) {
            bstr[k] = bytes1(uint8(48 + (_i % 10)));
            if (k != 0) k--;
            _i /= 10;
        }
        return string(bstr);
    }
}

File 32 of 94 : LogExpMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity 0.8.17;

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        unchecked {
            require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent");

            if (x < 0) {
                // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
                // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
                // Fixed point division requires multiplying by ONE_18.
                return ((ONE_18 * ONE_18) / exp(-x));
            }

            // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
            // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
            // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
            // decomposition.
            // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
            // decomposition, which will be lower than the smallest x_n.
            // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
            // We mutate x by subtracting x_n, making it the remainder of the decomposition.

            // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
            // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
            // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
            // decomposition.

            // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
            // it and compute the accumulated product.

            int256 firstAN;
            if (x >= x0) {
                x -= x0;
                firstAN = a0;
            } else if (x >= x1) {
                x -= x1;
                firstAN = a1;
            } else {
                firstAN = 1; // One with no decimal places
            }

            // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
            // smaller terms.
            x *= 100;

            // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
            // one. Recall that fixed point multiplication requires dividing by ONE_20.
            int256 product = ONE_20;

            if (x >= x2) {
                x -= x2;
                product = (product * a2) / ONE_20;
            }
            if (x >= x3) {
                x -= x3;
                product = (product * a3) / ONE_20;
            }
            if (x >= x4) {
                x -= x4;
                product = (product * a4) / ONE_20;
            }
            if (x >= x5) {
                x -= x5;
                product = (product * a5) / ONE_20;
            }
            if (x >= x6) {
                x -= x6;
                product = (product * a6) / ONE_20;
            }
            if (x >= x7) {
                x -= x7;
                product = (product * a7) / ONE_20;
            }
            if (x >= x8) {
                x -= x8;
                product = (product * a8) / ONE_20;
            }
            if (x >= x9) {
                x -= x9;
                product = (product * a9) / ONE_20;
            }

            // x10 and x11 are unnecessary here since we have high enough precision already.

            // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
            // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

            int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
            int256 term; // Each term in the sum, where the nth term is (x^n / n!).

            // The first term is simply x.
            term = x;
            seriesSum += term;

            // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
            // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

            term = ((term * x) / ONE_20) / 2;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 3;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 4;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 5;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 6;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 7;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 8;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 9;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 10;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 11;
            seriesSum += term;

            term = ((term * x) / ONE_20) / 12;
            seriesSum += term;

            // 12 Taylor terms are sufficient for 18 decimal precision.

            // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
            // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
            // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
            // and then drop two digits to return an 18 decimal value.

            return (((product * seriesSum) / ONE_20) * firstAN) / 100;
        }
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        unchecked {
            // The real natural logarithm is not defined for negative numbers or zero.
            require(a > 0, "out of bounds");
            if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
                return _ln_36(a) / ONE_18;
            } else {
                return _ln(a);
            }
        }
    }

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        unchecked {
            if (y == 0) {
                // We solve the 0^0 indetermination by making it equal one.
                return uint256(ONE_18);
            }

            if (x == 0) {
                return 0;
            }

            // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
            // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
            // x^y = exp(y * ln(x)).

            // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
            require(x < 2 ** 255, "x out of bounds");
            int256 x_int256 = int256(x);

            // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
            // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

            // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
            require(y < MILD_EXPONENT_BOUND, "y out of bounds");
            int256 y_int256 = int256(y);

            int256 logx_times_y;
            if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
                int256 ln_36_x = _ln_36(x_int256);

                // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
                // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
                // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
                // (downscaled) last 18 decimals.
                logx_times_y = ((ln_36_x / ONE_18) *
                    y_int256 +
                    ((ln_36_x % ONE_18) * y_int256) /
                    ONE_18);
            } else {
                logx_times_y = _ln(x_int256) * y_int256;
            }
            logx_times_y /= ONE_18;

            // Finally, we compute exp(y * ln(x)) to arrive at x^y
            require(
                MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
                "product out of bounds"
            );

            return uint256(exp(logx_times_y));
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        unchecked {
            if (a < ONE_18) {
                // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
                // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
                // Fixed point division requires multiplying by ONE_18.
                return (-_ln((ONE_18 * ONE_18) / a));
            }

            // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
            // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
            // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
            // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
            // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
            // decomposition, which will be lower than the smallest a_n.
            // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
            // We mutate a by subtracting a_n, making it the remainder of the decomposition.

            // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
            // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
            // ONE_18 to convert them to fixed point.
            // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
            // by it and compute the accumulated sum.

            int256 sum = 0;
            if (a >= a0 * ONE_18) {
                a /= a0; // Integer, not fixed point division
                sum += x0;
            }

            if (a >= a1 * ONE_18) {
                a /= a1; // Integer, not fixed point division
                sum += x1;
            }

            // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
            sum *= 100;
            a *= 100;

            // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

            if (a >= a2) {
                a = (a * ONE_20) / a2;
                sum += x2;
            }

            if (a >= a3) {
                a = (a * ONE_20) / a3;
                sum += x3;
            }

            if (a >= a4) {
                a = (a * ONE_20) / a4;
                sum += x4;
            }

            if (a >= a5) {
                a = (a * ONE_20) / a5;
                sum += x5;
            }

            if (a >= a6) {
                a = (a * ONE_20) / a6;
                sum += x6;
            }

            if (a >= a7) {
                a = (a * ONE_20) / a7;
                sum += x7;
            }

            if (a >= a8) {
                a = (a * ONE_20) / a8;
                sum += x8;
            }

            if (a >= a9) {
                a = (a * ONE_20) / a9;
                sum += x9;
            }

            if (a >= a10) {
                a = (a * ONE_20) / a10;
                sum += x10;
            }

            if (a >= a11) {
                a = (a * ONE_20) / a11;
                sum += x11;
            }

            // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
            // that converges rapidly for values of `a` close to one - the same one used in ln_36.
            // Let z = (a - 1) / (a + 1).
            // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
            // division by ONE_20.
            int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
            int256 z_squared = (z * z) / ONE_20;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_20;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_20;
            seriesSum += num / 11;

            // 6 Taylor terms are sufficient for 36 decimal precision.

            // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
            seriesSum *= 2;

            // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
            // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
            // value.

            return (sum + seriesSum) / 100;
        }
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        unchecked {
            // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
            // worthwhile.

            // First, we transform x to a 36 digit fixed point value.
            x *= ONE_18;

            // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
            // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

            // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
            // division by ONE_36.
            int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
            int256 z_squared = (z * z) / ONE_36;

            // num is the numerator of the series: the z^(2 * n + 1) term
            int256 num = z;

            // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
            int256 seriesSum = num;

            // In each step, the numerator is multiplied by z^2
            num = (num * z_squared) / ONE_36;
            seriesSum += num / 3;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 5;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 7;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 9;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 11;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 13;

            num = (num * z_squared) / ONE_36;
            seriesSum += num / 15;

            // 8 Taylor terms are sufficient for 36 decimal precision.

            // All that remains is multiplying by 2 (non fixed point).
            return seriesSum * 2;
        }
    }
}

File 33 of 94 : Math.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.8.17;

/* solhint-disable private-vars-leading-underscore, reason-string */

library Math {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    int256 internal constant IONE = 1e18; // 18 decimal places

    function subMax0(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            return (a >= b ? a - b : 0);
        }
    }

    function subNoNeg(int256 a, int256 b) internal pure returns (int256) {
        require(a >= b, "negative");
        return a - b; // no unchecked since if b is very negative, a - b might overflow
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        unchecked {
            return product / ONE;
        }
    }

    function mulDown(int256 a, int256 b) internal pure returns (int256) {
        int256 product = a * b;
        unchecked {
            return product / IONE;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 aInflated = a * ONE;
        unchecked {
            return aInflated / b;
        }
    }

    function divDown(int256 a, int256 b) internal pure returns (int256) {
        int256 aInflated = a * IONE;
        unchecked {
            return aInflated / b;
        }
    }

    function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) {
        return (a + b - 1) / b;
    }

    // @author Uniswap
    function sqrt(uint256 y) internal pure returns (uint256 z) {
        if (y > 3) {
            z = y;
            uint256 x = y / 2 + 1;
            while (x < z) {
                z = x;
                x = (y / x + x) / 2;
            }
        } else if (y != 0) {
            z = 1;
        }
    }

    function square(uint256 x) internal pure returns (uint256) {
        return x * x;
    }

    function squareDown(uint256 x) internal pure returns (uint256) {
        return mulDown(x, x);
    }

    function abs(int256 x) internal pure returns (uint256) {
        return uint256(x > 0 ? x : -x);
    }

    function neg(int256 x) internal pure returns (int256) {
        return x * (-1);
    }

    function neg(uint256 x) internal pure returns (int256) {
        return Int(x) * (-1);
    }

    function max(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x > y ? x : y);
    }

    function max(int256 x, int256 y) internal pure returns (int256) {
        return (x > y ? x : y);
    }

    function min(uint256 x, uint256 y) internal pure returns (uint256) {
        return (x < y ? x : y);
    }

    function min(int256 x, int256 y) internal pure returns (int256) {
        return (x < y ? x : y);
    }

    /*///////////////////////////////////////////////////////////////
                               SIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Int(uint256 x) internal pure returns (int256) {
        require(x <= uint256(type(int256).max));
        return int256(x);
    }

    function Int128(int256 x) internal pure returns (int128) {
        require(type(int128).min <= x && x <= type(int128).max);
        return int128(x);
    }

    function Int128(uint256 x) internal pure returns (int128) {
        return Int128(Int(x));
    }

    /*///////////////////////////////////////////////////////////////
                               UNSIGNED CASTS
    //////////////////////////////////////////////////////////////*/

    function Uint(int256 x) internal pure returns (uint256) {
        require(x >= 0);
        return uint256(x);
    }

    function Uint32(uint256 x) internal pure returns (uint32) {
        require(x <= type(uint32).max);
        return uint32(x);
    }

    function Uint112(uint256 x) internal pure returns (uint112) {
        require(x <= type(uint112).max);
        return uint112(x);
    }

    function Uint96(uint256 x) internal pure returns (uint96) {
        require(x <= type(uint96).max);
        return uint96(x);
    }

    function Uint128(uint256 x) internal pure returns (uint128) {
        require(x <= type(uint128).max);
        return uint128(x);
    }

    function isAApproxB(
        uint256 a,
        uint256 b,
        uint256 eps
    ) internal pure returns (bool) {
        return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps);
    }

    function isAGreaterApproxB(
        uint256 a,
        uint256 b,
        uint256 eps
    ) internal pure returns (bool) {
        return a >= b && a <= mulDown(b, ONE + eps);
    }

    function isASmallerApproxB(
        uint256 a,
        uint256 b,
        uint256 eps
    ) internal pure returns (bool) {
        return a <= b && a >= mulDown(b, ONE - eps);
    }
}

File 34 of 94 : MiniHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

library MiniHelpers {
    function isCurrentlyExpired(uint256 expiry) internal view returns (bool) {
        return (expiry <= block.timestamp);
    }

    function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) {
        return (expiry <= blockTime);
    }

    function isTimeInThePast(uint256 timestamp) internal view returns (bool) {
        return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired
    }
}

File 35 of 94 : StringLib.sol
/*
 * @title String & slice utility library for Solidity contracts.
 * @author Nick Johnson <[email protected]>
 *
 * @dev Functionality in this library is largely implemented using an
 *      abstraction called a 'slice'. A slice represents a part of a string -
 *      anything from the entire string to a single character, or even no
 *      characters at all (a 0-length slice). Since a slice only has to specify
 *      an offset and a length, copying and manipulating slices is a lot less
 *      expensive than copying and manipulating the strings they reference.
 *
 *      To further reduce gas costs, most functions on slice that need to return
 *      a slice modify the original one instead of allocating a new one; for
 *      instance, `s.split(".")` will return the text up to the first '.',
 *      modifying s to only contain the remainder of the string after the '.'.
 *      In situations where you do not want to modify the original slice, you
 *      can make a copy first with `.copy()`, for example:
 *      `s.copy().split(".")`. Try and avoid using this idiom in loops; since
 *      Solidity has no memory management, it will result in allocating many
 *      short-lived slices that are later discarded.
 *
 *      Functions that return two slices come in two versions: a non-allocating
 *      version that takes the second slice as an argument, modifying it in
 *      place, and an allocating version that allocates and returns the second
 *      slice; see `nextRune` for example.
 *
 *      Functions that have to copy string data will return strings rather than
 *      slices; these can be cast back to slices for further processing if
 *      required.
 *
 *      For convenience, some functions are provided with non-modifying
 *      variants that create a new slice and return both; for instance,
 *      `s.splitNew('.')` leaves s unmodified, and returns two values
 *      corresponding to the left and right parts of the string.
 */

pragma solidity ^0.8.0;

library StringLib {
    struct slice {
        uint256 _len;
        uint256 _ptr;
    }

    function memcpy(uint256 dest, uint256 src, uint256 len) private pure {
        // Copy word-length chunks while possible
        for (; len >= 32; len -= 32) {
            assembly {
                mstore(dest, mload(src))
            }
            dest += 32;
            src += 32;
        }

        // Copy remaining bytes
        uint256 mask = type(uint256).max;
        if (len > 0) {
            mask = 256 ** (32 - len) - 1;
        }
        assembly {
            let srcpart := and(mload(src), not(mask))
            let destpart := and(mload(dest), mask)
            mstore(dest, or(destpart, srcpart))
        }
    }

    /*
     * @dev Returns a slice containing the entire string.
     * @param self The string to make a slice from.
     * @return A newly allocated slice containing the entire string.
     */
    function toSlice(string memory self) internal pure returns (slice memory) {
        uint256 ptr;
        assembly {
            ptr := add(self, 0x20)
        }
        return slice(bytes(self).length, ptr);
    }

    /*
     * @dev Returns the length of a null-terminated bytes32 string.
     * @param self The value to find the length of.
     * @return The length of the string, from 0 to 32.
     */
    function len(bytes32 self) internal pure returns (uint256) {
        uint256 ret;
        if (self == 0) return 0;
        if (uint256(self) & type(uint128).max == 0) {
            ret += 16;
            self = bytes32(uint256(self) / 0x100000000000000000000000000000000);
        }
        if (uint256(self) & type(uint64).max == 0) {
            ret += 8;
            self = bytes32(uint256(self) / 0x10000000000000000);
        }
        if (uint256(self) & type(uint32).max == 0) {
            ret += 4;
            self = bytes32(uint256(self) / 0x100000000);
        }
        if (uint256(self) & type(uint16).max == 0) {
            ret += 2;
            self = bytes32(uint256(self) / 0x10000);
        }
        if (uint256(self) & type(uint8).max == 0) {
            ret += 1;
        }
        return 32 - ret;
    }

    /*
     * @dev Returns a slice containing the entire bytes32, interpreted as a
     *      null-terminated utf-8 string.
     * @param self The bytes32 value to convert to a slice.
     * @return A new slice containing the value of the input argument up to the
     *         first null.
     */
    function toSliceB32(bytes32 self) internal pure returns (slice memory ret) {
        // Allocate space for `self` in memory, copy it there, and point ret at it
        assembly {
            let ptr := mload(0x40)
            mstore(0x40, add(ptr, 0x20))
            mstore(ptr, self)
            mstore(add(ret, 0x20), ptr)
        }
        ret._len = len(self);
    }

    /*
     * @dev Returns a new slice containing the same data as the current slice.
     * @param self The slice to copy.
     * @return A new slice containing the same data as `self`.
     */
    function copy(slice memory self) internal pure returns (slice memory) {
        return slice(self._len, self._ptr);
    }

    /*
     * @dev Copies a slice to a new string.
     * @param self The slice to copy.
     * @return A newly allocated string containing the slice's text.
     */
    function toString(slice memory self) internal pure returns (string memory) {
        string memory ret = new string(self._len);
        uint256 retptr;
        assembly {
            retptr := add(ret, 32)
        }

        memcpy(retptr, self._ptr, self._len);
        return ret;
    }

    /*
     * @dev Returns the length in runes of the slice. Note that this operation
     *      takes time proportional to the length of the slice; avoid using it
     *      in loops, and call `slice.empty()` if you only need to know whether
     *      the slice is empty or not.
     * @param self The slice to operate on.
     * @return The length of the slice in runes.
     */
    function len(slice memory self) internal pure returns (uint256 l) {
        // Starting at ptr-31 means the LSB will be the byte we care about
        uint256 ptr = self._ptr - 31;
        uint256 end = ptr + self._len;
        for (l = 0; ptr < end; l++) {
            uint8 b;
            assembly {
                b := and(mload(ptr), 0xFF)
            }
            if (b < 0x80) {
                ptr += 1;
            } else if (b < 0xE0) {
                ptr += 2;
            } else if (b < 0xF0) {
                ptr += 3;
            } else if (b < 0xF8) {
                ptr += 4;
            } else if (b < 0xFC) {
                ptr += 5;
            } else {
                ptr += 6;
            }
        }
    }

    /*
     * @dev Returns true if the slice is empty (has a length of 0).
     * @param self The slice to operate on.
     * @return True if the slice is empty, False otherwise.
     */
    function empty(slice memory self) internal pure returns (bool) {
        return self._len == 0;
    }

    /*
     * @dev Returns a positive number if `other` comes lexicographically after
     *      `self`, a negative number if it comes before, or zero if the
     *      contents of the two slices are equal. Comparison is done per-rune,
     *      on unicode codepoints.
     * @param self The first slice to compare.
     * @param other The second slice to compare.
     * @return The result of the comparison.
     */
    function compare(slice memory self, slice memory other) internal pure returns (int256) {
        uint256 shortest = self._len;
        if (other._len < self._len) shortest = other._len;

        uint256 selfptr = self._ptr;
        uint256 otherptr = other._ptr;
        for (uint256 idx = 0; idx < shortest; idx += 32) {
            uint256 a;
            uint256 b;
            assembly {
                a := mload(selfptr)
                b := mload(otherptr)
            }
            if (a != b) {
                // Mask out irrelevant bytes and check again
                uint256 mask = type(uint256).max; // 0xffff...
                if (shortest < 32) {
                    mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                }
                unchecked {
                    uint256 diff = (a & mask) - (b & mask);
                    if (diff != 0) return int256(diff);
                }
            }
            selfptr += 32;
            otherptr += 32;
        }
        return int256(self._len) - int256(other._len);
    }

    /*
     * @dev Returns true if the two slices contain the same text.
     * @param self The first slice to compare.
     * @param self The second slice to compare.
     * @return True if the slices are equal, false otherwise.
     */
    function equals(slice memory self, slice memory other) internal pure returns (bool) {
        return compare(self, other) == 0;
    }

    /*
     * @dev Extracts the first rune in the slice into `rune`, advancing the
     *      slice to point to the next rune and returning `self`.
     * @param self The slice to operate on.
     * @param rune The slice that will contain the first rune.
     * @return `rune`.
     */
    function nextRune(slice memory self, slice memory rune) internal pure returns (slice memory) {
        rune._ptr = self._ptr;

        if (self._len == 0) {
            rune._len = 0;
            return rune;
        }

        uint256 l;
        uint256 b;
        // Load the first byte of the rune into the LSBs of b
        assembly {
            b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF)
        }
        if (b < 0x80) {
            l = 1;
        } else if (b < 0xE0) {
            l = 2;
        } else if (b < 0xF0) {
            l = 3;
        } else {
            l = 4;
        }

        // Check for truncated codepoints
        if (l > self._len) {
            rune._len = self._len;
            self._ptr += self._len;
            self._len = 0;
            return rune;
        }

        self._ptr += l;
        self._len -= l;
        rune._len = l;
        return rune;
    }

    /*
     * @dev Returns the first rune in the slice, advancing the slice to point
     *      to the next rune.
     * @param self The slice to operate on.
     * @return A slice containing only the first rune from `self`.
     */
    function nextRune(slice memory self) internal pure returns (slice memory ret) {
        nextRune(self, ret);
    }

    /*
     * @dev Returns the number of the first codepoint in the slice.
     * @param self The slice to operate on.
     * @return The number of the first codepoint in the slice.
     */
    function ord(slice memory self) internal pure returns (uint256 ret) {
        if (self._len == 0) {
            return 0;
        }

        uint256 word;
        uint256 length;
        uint256 divisor = 2 ** 248;

        // Load the rune into the MSBs of b
        assembly {
            word := mload(mload(add(self, 32)))
        }
        uint256 b = word / divisor;
        if (b < 0x80) {
            ret = b;
            length = 1;
        } else if (b < 0xE0) {
            ret = b & 0x1F;
            length = 2;
        } else if (b < 0xF0) {
            ret = b & 0x0F;
            length = 3;
        } else {
            ret = b & 0x07;
            length = 4;
        }

        // Check for truncated codepoints
        if (length > self._len) {
            return 0;
        }

        for (uint256 i = 1; i < length; i++) {
            divisor = divisor / 256;
            b = (word / divisor) & 0xFF;
            if (b & 0xC0 != 0x80) {
                // Invalid UTF-8 sequence
                return 0;
            }
            ret = (ret * 64) | (b & 0x3F);
        }

        return ret;
    }

    /*
     * @dev Returns the keccak-256 hash of the slice.
     * @param self The slice to hash.
     * @return The hash of the slice.
     */
    function keccak(slice memory self) internal pure returns (bytes32 ret) {
        assembly {
            ret := keccak256(mload(add(self, 32)), mload(self))
        }
    }

    /*
     * @dev Returns true if `self` starts with `needle`.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return True if the slice starts with the provided text, false otherwise.
     */
    function startsWith(slice memory self, slice memory needle) internal pure returns (bool) {
        if (self._len < needle._len) {
            return false;
        }

        if (self._ptr == needle._ptr) {
            return true;
        }

        bool equal;
        assembly {
            let length := mload(needle)
            let selfptr := mload(add(self, 0x20))
            let needleptr := mload(add(needle, 0x20))
            equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
        }
        return equal;
    }

    /*
     * @dev If `self` starts with `needle`, `needle` is removed from the
     *      beginning of `self`. Otherwise, `self` is unmodified.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return `self`
     */
    function beyond(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }

        bool equal = true;
        if (self._ptr != needle._ptr) {
            assembly {
                let length := mload(needle)
                let selfptr := mload(add(self, 0x20))
                let needleptr := mload(add(needle, 0x20))
                equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }

        if (equal) {
            self._len -= needle._len;
            self._ptr += needle._len;
        }

        return self;
    }

    /*
     * @dev Returns true if the slice ends with `needle`.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return True if the slice starts with the provided text, false otherwise.
     */
    function endsWith(slice memory self, slice memory needle) internal pure returns (bool) {
        if (self._len < needle._len) {
            return false;
        }

        uint256 selfptr = self._ptr + self._len - needle._len;

        if (selfptr == needle._ptr) {
            return true;
        }

        bool equal;
        assembly {
            let length := mload(needle)
            let needleptr := mload(add(needle, 0x20))
            equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
        }

        return equal;
    }

    /*
     * @dev If `self` ends with `needle`, `needle` is removed from the
     *      end of `self`. Otherwise, `self` is unmodified.
     * @param self The slice to operate on.
     * @param needle The slice to search for.
     * @return `self`
     */
    function until(slice memory self, slice memory needle) internal pure returns (slice memory) {
        if (self._len < needle._len) {
            return self;
        }

        uint256 selfptr = self._ptr + self._len - needle._len;
        bool equal = true;
        if (selfptr != needle._ptr) {
            assembly {
                let length := mload(needle)
                let needleptr := mload(add(needle, 0x20))
                equal := eq(keccak256(selfptr, length), keccak256(needleptr, length))
            }
        }

        if (equal) {
            self._len -= needle._len;
        }

        return self;
    }

    // Returns the memory address of the first byte of the first occurrence of
    // `needle` in `self`, or the first byte after `self` if not found.
    function findPtr(
        uint256 selflen,
        uint256 selfptr,
        uint256 needlelen,
        uint256 needleptr
    ) private pure returns (uint256) {
        uint256 ptr = selfptr;
        uint256 idx;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask;
                if (needlelen > 0) {
                    mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
                }

                bytes32 needledata;
                assembly {
                    needledata := and(mload(needleptr), mask)
                }

                uint256 end = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly {
                    ptrdata := and(mload(ptr), mask)
                }

                while (ptrdata != needledata) {
                    if (ptr >= end) return selfptr + selflen;
                    ptr++;
                    assembly {
                        ptrdata := and(mload(ptr), mask)
                    }
                }
                return ptr;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly {
                    hash := keccak256(needleptr, needlelen)
                }

                for (idx = 0; idx <= selflen - needlelen; idx++) {
                    bytes32 testHash;
                    assembly {
                        testHash := keccak256(ptr, needlelen)
                    }
                    if (hash == testHash) return ptr;
                    ptr += 1;
                }
            }
        }
        return selfptr + selflen;
    }

    // Returns the memory address of the first byte after the last occurrence of
    // `needle` in `self`, or the address of `self` if not found.
    function rfindPtr(
        uint256 selflen,
        uint256 selfptr,
        uint256 needlelen,
        uint256 needleptr
    ) private pure returns (uint256) {
        uint256 ptr;

        if (needlelen <= selflen) {
            if (needlelen <= 32) {
                bytes32 mask;
                if (needlelen > 0) {
                    mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
                }

                bytes32 needledata;
                assembly {
                    needledata := and(mload(needleptr), mask)
                }

                ptr = selfptr + selflen - needlelen;
                bytes32 ptrdata;
                assembly {
                    ptrdata := and(mload(ptr), mask)
                }

                while (ptrdata != needledata) {
                    if (ptr <= selfptr) return selfptr;
                    ptr--;
                    assembly {
                        ptrdata := and(mload(ptr), mask)
                    }
                }
                return ptr + needlelen;
            } else {
                // For long needles, use hashing
                bytes32 hash;
                assembly {
                    hash := keccak256(needleptr, needlelen)
                }
                ptr = selfptr + (selflen - needlelen);
                while (ptr >= selfptr) {
                    bytes32 testHash;
                    assembly {
                        testHash := keccak256(ptr, needlelen)
                    }
                    if (hash == testHash) return ptr + needlelen;
                    ptr -= 1;
                }
            }
        }
        return selfptr;
    }

    /*
     * @dev Modifies `self` to contain everything from the first occurrence of
     *      `needle` to the end of the slice. `self` is set to the empty slice
     *      if `needle` is not found.
     * @param self The slice to search and modify.
     * @param needle The text to search for.
     * @return `self`.
     */
    function find(slice memory self, slice memory needle) internal pure returns (slice memory) {
        uint256 ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
        self._len -= ptr - self._ptr;
        self._ptr = ptr;
        return self;
    }

    /*
     * @dev Modifies `self` to contain the part of the string from the start of
     *      `self` to the end of the first occurrence of `needle`. If `needle`
     *      is not found, `self` is set to the empty slice.
     * @param self The slice to search and modify.
     * @param needle The text to search for.
     * @return `self`.
     */
    function rfind(slice memory self, slice memory needle) internal pure returns (slice memory) {
        uint256 ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
        self._len = ptr - self._ptr;
        return self;
    }

    /*
     * @dev Splits the slice, setting `self` to everything after the first
     *      occurrence of `needle`, and `token` to everything before it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and `token` is set to the entirety of `self`.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @param token An output parameter to which the first token is written.
     * @return `token`.
     */
    function split(
        slice memory self,
        slice memory needle,
        slice memory token
    ) internal pure returns (slice memory) {
        uint256 ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr);
        token._ptr = self._ptr;
        token._len = ptr - self._ptr;
        if (ptr == self._ptr + self._len) {
            // Not found
            self._len = 0;
        } else {
            self._len -= token._len + needle._len;
            self._ptr = ptr + needle._len;
        }
        return token;
    }

    /*
     * @dev Splits the slice, setting `self` to everything after the first
     *      occurrence of `needle`, and returning everything before it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and the entirety of `self` is returned.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @return The part of `self` up to the first occurrence of `delim`.
     */
    function split(
        slice memory self,
        slice memory needle
    ) internal pure returns (slice memory token) {
        split(self, needle, token);
    }

    /*
     * @dev Splits the slice, setting `self` to everything before the last
     *      occurrence of `needle`, and `token` to everything after it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and `token` is set to the entirety of `self`.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @param token An output parameter to which the first token is written.
     * @return `token`.
     */
    function rsplit(
        slice memory self,
        slice memory needle,
        slice memory token
    ) internal pure returns (slice memory) {
        uint256 ptr = rfindPtr(self._len, self._ptr, needle._len, needle._ptr);
        token._ptr = ptr;
        token._len = self._len - (ptr - self._ptr);
        if (ptr == self._ptr) {
            // Not found
            self._len = 0;
        } else {
            self._len -= token._len + needle._len;
        }
        return token;
    }

    /*
     * @dev Splits the slice, setting `self` to everything before the last
     *      occurrence of `needle`, and returning everything after it. If
     *      `needle` does not occur in `self`, `self` is set to the empty slice,
     *      and the entirety of `self` is returned.
     * @param self The slice to split.
     * @param needle The text to search for in `self`.
     * @return The part of `self` after the last occurrence of `delim`.
     */
    function rsplit(
        slice memory self,
        slice memory needle
    ) internal pure returns (slice memory token) {
        rsplit(self, needle, token);
    }

    /*
     * @dev Counts the number of nonoverlapping occurrences of `needle` in `self`.
     * @param self The slice to search.
     * @param needle The text to search for in `self`.
     * @return The number of occurrences of `needle` found in `self`.
     */
    function count(slice memory self, slice memory needle) internal pure returns (uint256 cnt) {
        uint256 ptr = findPtr(self._len, self._ptr, needle._len, needle._ptr) + needle._len;
        while (ptr <= self._ptr + self._len) {
            cnt++;
            ptr =
                findPtr(self._len - (ptr - self._ptr), ptr, needle._len, needle._ptr) +
                needle._len;
        }
    }

    /*
     * @dev Returns True if `self` contains `needle`.
     * @param self The slice to search.
     * @param needle The text to search for in `self`.
     * @return True if `needle` is found in `self`, false otherwise.
     */
    function contains(slice memory self, slice memory needle) internal pure returns (bool) {
        return rfindPtr(self._len, self._ptr, needle._len, needle._ptr) != self._ptr;
    }

    /*
     * @dev Returns a newly allocated string containing the concatenation of
     *      `self` and `other`.
     * @param self The first slice to concatenate.
     * @param other The second slice to concatenate.
     * @return The concatenation of the two strings.
     */
    function concat(slice memory self, slice memory other) internal pure returns (string memory) {
        string memory ret = new string(self._len + other._len);
        uint256 retptr;
        assembly {
            retptr := add(ret, 32)
        }
        memcpy(retptr, self._ptr, self._len);
        memcpy(retptr + self._len, other._ptr, other._len);
        return ret;
    }

    /*
     * @dev Joins an array of slices, using `self` as a delimiter, returning a
     *      newly allocated string.
     * @param self The delimiter to use.
     * @param parts A list of slices to join.
     * @return A newly allocated string containing all the slices in `parts`,
     *         joined with `self`.
     */
    function join(slice memory self, slice[] memory parts) internal pure returns (string memory) {
        if (parts.length == 0) return "";

        uint256 length = self._len * (parts.length - 1);
        for (uint256 i = 0; i < parts.length; i++) length += parts[i]._len;

        string memory ret = new string(length);
        uint256 retptr;
        assembly {
            retptr := add(ret, 32)
        }

        for (uint256 i = 0; i < parts.length; i++) {
            memcpy(retptr, parts[i]._ptr, parts[i]._len);
            retptr += parts[i]._len;
            if (i < parts.length - 1) {
                memcpy(retptr, self._ptr, self._len);
                retptr += self._len;
            }
        }

        return ret;
    }
}

File 36 of 94 : TokenHelper.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "../../interfaces/IWETH.sol";

abstract contract TokenHelper {
    using SafeERC20 for IERC20;
    address internal constant NATIVE = address(0);
    uint256 internal constant LOWER_BOUND_APPROVAL = type(uint96).max / 2; // some tokens use 96 bits for approval

    function _transferIn(address token, address from, uint256 amount) internal {
        if (token == NATIVE) require(msg.value == amount, "eth mismatch");
        else if (amount != 0) IERC20(token).safeTransferFrom(from, address(this), amount);
    }

    function _transferFrom(IERC20 token, address from, address to, uint256 amount) internal {
        if (amount != 0) token.safeTransferFrom(from, to, amount);
    }

    function _transferOut(address token, address to, uint256 amount) internal {
        if (amount == 0) return;
        if (token == NATIVE) {
            (bool success, ) = to.call{ value: amount }("");
            require(success, "eth send failed");
        } else {
            IERC20(token).safeTransfer(to, amount);
        }
    }

    function _transferOut(address[] memory tokens, address to, uint256[] memory amounts) internal {
        uint256 numTokens = tokens.length;
        require(numTokens == amounts.length, "length mismatch");
        for (uint256 i = 0; i < numTokens; ) {
            _transferOut(tokens[i], to, amounts[i]);
            unchecked {
                i++;
            }
        }
    }

    function _selfBalance(address token) internal view returns (uint256) {
        return (token == NATIVE) ? address(this).balance : IERC20(token).balanceOf(address(this));
    }

    function _selfBalance(IERC20 token) internal view returns (uint256) {
        return token.balanceOf(address(this));
    }

    /// @notice Approves the stipulated contract to spend the given allowance in the given token
    /// @dev PLS PAY ATTENTION to tokens that requires the approval to be set to 0 before changing it
    function _safeApprove(address token, address to, uint256 value) internal {
        (bool success, bytes memory data) = token.call(
            abi.encodeWithSelector(IERC20.approve.selector, to, value)
        );
        require(success && (data.length == 0 || abi.decode(data, (bool))), "Safe Approve");
    }

    function _safeApproveInf(address token, address to) internal {
        if (token == NATIVE) return;
        if (IERC20(token).allowance(address(this), to) < LOWER_BOUND_APPROVAL) {
            _safeApprove(token, to, 0);
            _safeApprove(token, to, type(uint256).max);
        }
    }

    function _wrap_unwrap_ETH(address tokenIn, address tokenOut, uint256 netTokenIn) internal {
        if (tokenIn == NATIVE) IWETH(tokenOut).deposit{ value: netTokenIn }();
        else IWETH(tokenIn).withdraw(netTokenIn);
    }
}

File 37 of 94 : MarketMathCore.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../libraries/math/Math.sol";
import "../libraries/math/LogExpMath.sol";

import "../StandardizedYield/PYIndex.sol";
import "../libraries/MiniHelpers.sol";
import "../libraries/Errors.sol";

struct MarketState {
    int256 totalPt;
    int256 totalSy;
    int256 totalLp;
    address treasury;
    /// immutable variables ///
    int256 scalarRoot;
    uint256 expiry;
    /// fee data ///
    uint256 lnFeeRateRoot;
    uint256 reserveFeePercent; // base 100
    /// last trade data ///
    uint256 lastLnImpliedRate;
}

// params that are expensive to compute, therefore we pre-compute them
struct MarketPreCompute {
    int256 rateScalar;
    int256 totalAsset;
    int256 rateAnchor;
    int256 feeRate;
}

// solhint-disable ordering
library MarketMathCore {
    using Math for uint256;
    using Math for int256;
    using LogExpMath for int256;
    using PYIndexLib for PYIndex;

    int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3;
    int256 internal constant PERCENTAGE_DECIMALS = 100;
    uint256 internal constant DAY = 86400;
    uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY;

    int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100;

    using Math for uint256;
    using Math for int256;

    /*///////////////////////////////////////////////////////////////
                UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidity(
        MarketState memory market,
        uint256 syDesired,
        uint256 ptDesired,
        uint256 blockTime
    )
        internal
        pure
        returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed)
    {
        (
            int256 _lpToReserve,
            int256 _lpToAccount,
            int256 _syUsed,
            int256 _ptUsed
        ) = addLiquidityCore(market, syDesired.Int(), ptDesired.Int(), blockTime);

        lpToReserve = _lpToReserve.Uint();
        lpToAccount = _lpToAccount.Uint();
        syUsed = _syUsed.Uint();
        ptUsed = _ptUsed.Uint();
    }

    function removeLiquidity(
        MarketState memory market,
        uint256 lpToRemove
    ) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) {
        (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int());

        netSyToAccount = _syToAccount.Uint();
        netPtToAccount = _ptToAccount.Uint();
    }

    function swapExactPtForSy(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToMarket,
        uint256 blockTime
    ) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToMarket.neg(),
            blockTime
        );

        netSyToAccount = _netSyToAccount.Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    function swapSyForExactPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtToAccount,
        uint256 blockTime
    ) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore(
            market,
            index,
            exactPtToAccount.Int(),
            blockTime
        );

        netSyToMarket = _netSyToAccount.neg().Uint();
        netSyFee = _netSyFee.Uint();
        netSyToReserve = _netSyToReserve.Uint();
    }

    /*///////////////////////////////////////////////////////////////
                    CORE FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function addLiquidityCore(
        MarketState memory market,
        int256 syDesired,
        int256 ptDesired,
        uint256 blockTime
    )
        internal
        pure
        returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed)
    {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput();
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        if (market.totalLp == 0) {
            lpToAccount = Math.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY;
            lpToReserve = MINIMUM_LIQUIDITY;
            syUsed = syDesired;
            ptUsed = ptDesired;
        } else {
            int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt;
            int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy;
            if (netLpByPt < netLpBySy) {
                lpToAccount = netLpByPt;
                ptUsed = ptDesired;
                syUsed = (market.totalSy * lpToAccount) / market.totalLp;
            } else {
                lpToAccount = netLpBySy;
                syUsed = syDesired;
                ptUsed = (market.totalPt * lpToAccount) / market.totalLp;
            }
        }

        if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalSy += syUsed;
        market.totalPt += ptUsed;
        market.totalLp += lpToAccount + lpToReserve;
    }

    function removeLiquidityCore(
        MarketState memory market,
        int256 lpToRemove
    ) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp;
        netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp;

        if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput();

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.totalLp = market.totalLp.subNoNeg(lpToRemove);
        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount);
    }

    function executeTradeCore(
        MarketState memory market,
        PYIndex index,
        int256 netPtToAccount,
        uint256 blockTime
    ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();
        if (market.totalPt <= netPtToAccount)
            revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount);

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime);

        (netSyToAccount, netSyFee, netSyToReserve) = calcTrade(
            market,
            comp,
            index,
            netPtToAccount
        );

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        _setNewMarketStateTrade(
            market,
            comp,
            index,
            netPtToAccount,
            netSyToAccount,
            netSyToReserve,
            blockTime
        );
    }

    function getMarketPreCompute(
        MarketState memory market,
        PYIndex index,
        uint256 blockTime
    ) internal pure returns (MarketPreCompute memory res) {
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        uint256 timeToExpiry = market.expiry - blockTime;

        res.rateScalar = _getRateScalar(market, timeToExpiry);
        res.totalAsset = index.syToAsset(market.totalSy);

        if (market.totalPt == 0 || res.totalAsset == 0)
            revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset);

        res.rateAnchor = _getRateAnchor(
            market.totalPt,
            market.lastLnImpliedRate,
            res.totalAsset,
            res.rateScalar,
            timeToExpiry
        );
        res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry);
    }

    function calcTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount
    ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) {
        int256 preFeeExchangeRate = _getExchangeRate(
            market.totalPt,
            comp.totalAsset,
            comp.rateScalar,
            comp.rateAnchor,
            netPtToAccount
        );

        int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg();
        int256 fee = comp.feeRate;

        if (netPtToAccount > 0) {
            int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee);
            if (postFeeExchangeRate < Math.IONE)
                revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate);

            fee = preFeeAssetToAccount.mulDown(Math.IONE - fee);
        } else {
            fee = ((preFeeAssetToAccount * (Math.IONE - fee)) / fee).neg();
        }

        int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS;
        int256 netAssetToAccount = preFeeAssetToAccount - fee;

        netSyToAccount = netAssetToAccount < 0
            ? index.assetToSyUp(netAssetToAccount)
            : index.assetToSy(netAssetToAccount);
        netSyFee = index.assetToSy(fee);
        netSyToReserve = index.assetToSy(netAssetToReserve);
    }

    function _setNewMarketStateTrade(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        int256 netPtToAccount,
        int256 netSyToAccount,
        int256 netSyToReserve,
        uint256 blockTime
    ) internal pure {
        uint256 timeToExpiry = market.expiry - blockTime;

        market.totalPt = market.totalPt.subNoNeg(netPtToAccount);
        market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve);

        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            index.syToAsset(market.totalSy),
            comp.rateScalar,
            comp.rateAnchor,
            timeToExpiry
        );

        if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate();
    }

    function _getRateAnchor(
        int256 totalPt,
        uint256 lastLnImpliedRate,
        int256 totalAsset,
        int256 rateScalar,
        uint256 timeToExpiry
    ) internal pure returns (int256 rateAnchor) {
        int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry);

        if (newExchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate);

        {
            int256 proportion = totalPt.divDown(totalPt + totalAsset);

            int256 lnProportion = _logProportion(proportion);

            rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar);
        }
    }

    /// @notice Calculates the current market implied rate.
    /// @return lnImpliedRate the implied rate
    function _getLnImpliedRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        uint256 timeToExpiry
    ) internal pure returns (uint256 lnImpliedRate) {
        // This will check for exchange rates < Math.IONE
        int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0);

        // exchangeRate >= 1 so its ln >= 0
        uint256 lnRate = exchangeRate.ln().Uint();

        lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry;
    }

    /// @notice Converts an implied rate to an exchange rate given a time to expiry. The
    /// formula is E = e^rt
    function _getExchangeRateFromImpliedRate(
        uint256 lnImpliedRate,
        uint256 timeToExpiry
    ) internal pure returns (int256 exchangeRate) {
        uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME;

        exchangeRate = LogExpMath.exp(rt.Int());
    }

    function _getExchangeRate(
        int256 totalPt,
        int256 totalAsset,
        int256 rateScalar,
        int256 rateAnchor,
        int256 netPtToAccount
    ) internal pure returns (int256 exchangeRate) {
        int256 numerator = totalPt.subNoNeg(netPtToAccount);

        int256 proportion = (numerator.divDown(totalPt + totalAsset));

        if (proportion > MAX_MARKET_PROPORTION)
            revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION);

        int256 lnProportion = _logProportion(proportion);

        exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor;

        if (exchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate);
    }

    function _logProportion(int256 proportion) internal pure returns (int256 res) {
        if (proportion == Math.IONE) revert Errors.MarketProportionMustNotEqualOne();

        int256 logitP = proportion.divDown(Math.IONE - proportion);

        res = logitP.ln();
    }

    function _getRateScalar(
        MarketState memory market,
        uint256 timeToExpiry
    ) internal pure returns (int256 rateScalar) {
        rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int();
        if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar);
    }

    function setInitialLnImpliedRate(
        MarketState memory market,
        PYIndex index,
        int256 initialAnchor,
        uint256 blockTime
    ) internal pure {
        /// ------------------------------------------------------------
        /// CHECKS
        /// ------------------------------------------------------------
        if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired();

        /// ------------------------------------------------------------
        /// MATH
        /// ------------------------------------------------------------
        int256 totalAsset = index.syToAsset(market.totalSy);
        uint256 timeToExpiry = market.expiry - blockTime;
        int256 rateScalar = _getRateScalar(market, timeToExpiry);

        /// ------------------------------------------------------------
        /// WRITE
        /// ------------------------------------------------------------
        market.lastLnImpliedRate = _getLnImpliedRate(
            market.totalPt,
            totalAsset,
            rateScalar,
            initialAnchor,
            timeToExpiry
        );
    }
}

File 38 of 94 : PendleMarketFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

import "../../interfaces/IPMarket.sol";
import "../../interfaces/IPYieldContractFactory.sol";
import "../../interfaces/IPMarketFactory.sol";

import "../libraries/BaseSplitCodeFactory.sol";
import "../libraries/Errors.sol";
import "../libraries/BoringOwnableUpgradeable.sol";

contract PendleMarketFactory is BoringOwnableUpgradeable, IPMarketFactory {
    using EnumerableSet for EnumerableSet.AddressSet;

    address public immutable marketCreationCodeContractA;
    uint256 public immutable marketCreationCodeSizeA;
    address public immutable marketCreationCodeContractB;
    uint256 public immutable marketCreationCodeSizeB;

    address public immutable yieldContractFactory;
    uint256 public immutable maxLnFeeRateRoot;
    uint8 public constant maxReserveFeePercent = 100;
    int256 public constant minInitialAnchor = Math.IONE;

    address public treasury;
    FeeConfig public defaultFee;
    /// 1 SLOT

    // router -> overriddenFee
    mapping(address => FeeConfig) public overriddenFee;

    // PT -> scalarRoot -> initialAnchor
    mapping(address => mapping(int256 => mapping(int256 => address))) internal markets;
    EnumerableSet.AddressSet internal allMarkets;
    address public vePendle;
    address public gaugeController;

    constructor(
        address _yieldContractFactory,
        address _marketCreationCodeContractA,
        uint256 _marketCreationCodeSizeA,
        address _marketCreationCodeContractB,
        uint256 _marketCreationCodeSizeB
    ) {
        yieldContractFactory = _yieldContractFactory;
        maxLnFeeRateRoot = uint256(LogExpMath.ln(int256((105 * Math.IONE) / 100))); // ln(1.05)

        marketCreationCodeContractA = _marketCreationCodeContractA;
        marketCreationCodeSizeA = _marketCreationCodeSizeA;
        marketCreationCodeContractB = _marketCreationCodeContractB;
        marketCreationCodeSizeB = _marketCreationCodeSizeB;
    }

    function initialize(
        address _treasury,
        uint80 _defaultLnFeeRateRoot,
        uint8 _defaultReserveFeePercent,
        address newVePendle,
        address newGaugeController
    ) external initializer {
        __BoringOwnable_init();
        setTreasury(_treasury);
        setDefaultFee(_defaultLnFeeRateRoot, _defaultReserveFeePercent);

        vePendle = newVePendle;
        gaugeController = newGaugeController;
    }

    /**
     * @notice Create a market between PT and its corresponding SY with scalar & anchor config.
     * Anyone is allowed to create a market on their own.
     */
    function createNewMarket(
        address PT,
        int256 scalarRoot,
        int256 initialAnchor
    ) external returns (address market) {
        if (!IPYieldContractFactory(yieldContractFactory).isPT(PT))
            revert Errors.MarketFactoryInvalidPt();
        if (IPPrincipalToken(PT).isExpired()) revert Errors.MarketFactoryExpiredPt();

        if (markets[PT][scalarRoot][initialAnchor] != address(0))
            revert Errors.MarketFactoryMarketExists();

        if (initialAnchor < minInitialAnchor)
            revert Errors.MarketFactoryInitialAnchorTooLow(initialAnchor, minInitialAnchor);

        market = BaseSplitCodeFactory._create2(
            0,
            bytes32(block.chainid),
            abi.encode(PT, scalarRoot, initialAnchor, vePendle, gaugeController),
            marketCreationCodeContractA,
            marketCreationCodeSizeA,
            marketCreationCodeContractB,
            marketCreationCodeSizeB
        );

        markets[PT][scalarRoot][initialAnchor] = market;

        if (!allMarkets.add(market)) assert(false);

        emit CreateNewMarket(market, PT, scalarRoot, initialAnchor);
    }

    function getMarketConfig(
        address router
    ) external view returns (address _treasury, uint80 _lnFeeRateRoot, uint8 _reserveFeePercent) {
        (_treasury, _lnFeeRateRoot, _reserveFeePercent) = (
            treasury,
            defaultFee.lnFeeRateRoot,
            defaultFee.reserveFeePercent
        );

        FeeConfig memory over = overriddenFee[router];
        if (over.active) {
            (_lnFeeRateRoot, _reserveFeePercent) = (over.lnFeeRateRoot, over.reserveFeePercent);
        }
    }

    /// @dev for gas-efficient verification of market
    function isValidMarket(address market) external view returns (bool) {
        return allMarkets.contains(market);
    }

    function setTreasury(address newTreasury) public onlyOwner {
        if (newTreasury == address(0)) revert Errors.MarketFactoryZeroTreasury();

        treasury = newTreasury;
        _emitNewMarketConfigEvent();
    }

    function setDefaultFee(uint80 newLnFeeRateRoot, uint8 newReserveFeePercent) public onlyOwner {
        _verifyFeeConfig(newLnFeeRateRoot, newReserveFeePercent);
        defaultFee = FeeConfig(newLnFeeRateRoot, newReserveFeePercent, true);
        _emitNewMarketConfigEvent();
    }

    function setOverriddenFee(
        address router,
        uint80 newLnFeeRateRoot,
        uint8 newReserveFeePercent
    ) public onlyOwner {
        _verifyFeeConfig(newLnFeeRateRoot, newReserveFeePercent);
        overriddenFee[router] = FeeConfig(newLnFeeRateRoot, newReserveFeePercent, true);
        emit SetOverriddenFee(router, newLnFeeRateRoot, newReserveFeePercent);
    }

    function unsetOverriddenFee(address router) external onlyOwner {
        delete overriddenFee[router];
        emit UnsetOverriddenFee(router);
    }

    function _verifyFeeConfig(uint80 newLnFeeRateRoot, uint8 newReserveFeePercent) internal view {
        if (newLnFeeRateRoot > maxLnFeeRateRoot)
            revert Errors.MarketFactoryLnFeeRateRootTooHigh(newLnFeeRateRoot, maxLnFeeRateRoot);
        if (newReserveFeePercent > maxReserveFeePercent)
            revert Errors.MarketFactoryReserveFeePercentTooHigh(
                newReserveFeePercent,
                maxReserveFeePercent
            );
    }

    function _emitNewMarketConfigEvent() internal {
        emit NewMarketConfig(treasury, defaultFee.lnFeeRateRoot, defaultFee.reserveFeePercent);
    }
}

File 39 of 94 : RewardManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "./RewardManagerAbstract.sol";

/// NOTE: This RewardManager is used with SY & YTv2 & PendleMarket. For YTv1, it will use RewardManagerAbstract
/// NOTE: RewardManager must not have duplicated rewardTokens
abstract contract RewardManager is RewardManagerAbstract {
    using Math for uint256;
    using ArrayLib for uint256[];

    uint256 public lastRewardBlock;

    mapping(address => RewardState) public rewardState;

    uint256 internal constant INITIAL_REWARD_INDEX = 1;

    function _updateRewardIndex()
        internal
        virtual
        override
        returns (address[] memory tokens, uint256[] memory indexes)
    {
        tokens = _getRewardTokens();
        indexes = new uint256[](tokens.length);

        if (tokens.length == 0) return (tokens, indexes);

        if (lastRewardBlock != block.number) {
            // if we have not yet update the index for this block
            lastRewardBlock = block.number;

            uint256 totalShares = _rewardSharesTotal();

            _redeemExternalReward();

            for (uint256 i = 0; i < tokens.length; ++i) {
                address token = tokens[i];

                // the entire token balance of the contract must be the rewards of the contract
                uint256 accrued = _selfBalance(tokens[i]) - rewardState[token].lastBalance;
                uint256 index = rewardState[token].index;

                if (index == 0) index = INITIAL_REWARD_INDEX;
                if (totalShares != 0) index += accrued.divDown(totalShares);

                rewardState[token].index = index.Uint128();
                rewardState[token].lastBalance += accrued.Uint128();
            }
        }

        for (uint256 i = 0; i < tokens.length; i++) indexes[i] = rewardState[tokens[i]].index;
    }

    /// @dev this function doesn't need redeemExternal since redeemExternal is bundled in updateRewardIndex
    /// @dev this function also has to update rewardState.lastBalance
    function _doTransferOutRewards(
        address user,
        address receiver
    ) internal virtual override returns (uint256[] memory rewardAmounts) {
        address[] memory tokens = _getRewardTokens();
        rewardAmounts = new uint256[](tokens.length);
        for (uint256 i = 0; i < tokens.length; i++) {
            rewardAmounts[i] = userReward[tokens[i]][user].accrued;
            if (rewardAmounts[i] != 0) {
                userReward[tokens[i]][user].accrued = 0;
                rewardState[tokens[i]].lastBalance -= rewardAmounts[i].Uint128();
                _transferOut(tokens[i], receiver, rewardAmounts[i]);
            }
        }
    }

    function _getRewardTokens() internal view virtual returns (address[] memory);

    function _rewardSharesTotal() internal view virtual returns (uint256);
}

File 40 of 94 : RewardManagerAbstract.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../../interfaces/IRewardManager.sol";

import "../libraries/ArrayLib.sol";
import "../libraries/TokenHelper.sol";
import "../libraries/math/Math.sol";

import "./RewardManagerAbstract.sol";

/// NOTE: RewardManager must not have duplicated rewardTokens
abstract contract RewardManagerAbstract is IRewardManager, TokenHelper {
    using Math for uint256;

    struct RewardState {
        uint128 index;
        uint128 lastBalance;
    }

    struct UserReward {
        uint128 index;
        uint128 accrued;
    }

    // [token] => [user] => (index,accrued)
    mapping(address => mapping(address => UserReward)) public userReward;

    function _updateAndDistributeRewards(address user) internal virtual {
        _updateAndDistributeRewardsForTwo(user, address(0));
    }

    function _updateAndDistributeRewardsForTwo(address user1, address user2) internal virtual {
        (address[] memory tokens, uint256[] memory indexes) = _updateRewardIndex();
        if (tokens.length == 0) return;

        if (user1 != address(0) && user1 != address(this))
            _distributeRewardsPrivate(user1, tokens, indexes);
        if (user2 != address(0) && user2 != address(this))
            _distributeRewardsPrivate(user2, tokens, indexes);
    }

    // should only be callable from `_updateAndDistributeRewardsForTwo` to guarantee user != address(0) && user != address(this)
    function _distributeRewardsPrivate(
        address user,
        address[] memory tokens,
        uint256[] memory indexes
    ) private {
        assert(user != address(0) && user != address(this));

        uint256 userShares = _rewardSharesUser(user);

        for (uint256 i = 0; i < tokens.length; ++i) {
            address token = tokens[i];
            uint256 index = indexes[i];
            uint256 userIndex = userReward[token][user].index;

            if (userIndex == 0) {
                userReward[token][user].index = index.Uint128();
                continue;
            }

            if (userIndex == index) continue;

            uint256 deltaIndex = index - userIndex;
            uint256 rewardDelta = userShares.mulDown(deltaIndex);
            uint256 rewardAccrued = userReward[token][user].accrued + rewardDelta;

            userReward[token][user] = UserReward({
                index: index.Uint128(),
                accrued: rewardAccrued.Uint128()
            });
        }
    }

    function _updateRewardIndex()
        internal
        virtual
        returns (address[] memory tokens, uint256[] memory indexes);

    function _redeemExternalReward() internal virtual;

    function _doTransferOutRewards(
        address user,
        address receiver
    ) internal virtual returns (uint256[] memory rewardAmounts);

    function _rewardSharesUser(address user) internal view virtual returns (uint256);
}

File 41 of 94 : ComposableStableMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;

import "../FixedPoint.sol";

// almost copy-paste from https://etherscan.io/token/0x1e19cf2d73a72ef1332c882f20534b6519be0276#code
library ComposableStableMath {
    using FixedPoint for uint256;

    uint256 internal constant _MIN_AMP = 1;
    uint256 internal constant _MAX_AMP = 5000;
    uint256 internal constant _AMP_PRECISION = 1e3;

    function _calculateInvariant(uint256 amplificationParameter, uint256[] memory balances)
        internal
        pure
        returns (uint256)
    {
        unchecked {
            /**********************************************************************************************
        // invariant                                                                                 //
        // D = invariant                                                  D^(n+1)                    //
        // A = amplification coefficient      A  n^n S + D = A D n^n + -----------                   //
        // S = sum of balances                                             n^n P                     //
        // P = product of balances                                                                   //
        // n = number of tokens                                                                      //
        **********************************************************************************************/

            // Always round down, to match Vyper's arithmetic (which always truncates).

            uint256 sum = 0; // S in the Curve version
            uint256 numTokens = balances.length;
            for (uint256 i = 0; i < numTokens; i++) {
                sum = sum.add(balances[i]);
            }
            if (sum == 0) {
                return 0;
            }

            uint256 prevInvariant; // Dprev in the Curve version
            uint256 invariant = sum; // D in the Curve version
            uint256 ampTimesTotal = amplificationParameter * numTokens; // Ann in the Curve version

            for (uint256 i = 0; i < 255; i++) {
                uint256 D_P = invariant;

                for (uint256 j = 0; j < numTokens; j++) {
                    // (D_P * invariant) / (balances[j] * numTokens)
                    D_P = divDown(mul(D_P, invariant), mul(balances[j], numTokens));
                }

                prevInvariant = invariant;

                invariant = divDown(
                    mul(
                        // (ampTimesTotal * sum) / AMP_PRECISION + D_P * numTokens
                        (
                            divDown(mul(ampTimesTotal, sum), _AMP_PRECISION).add(
                                mul(D_P, numTokens)
                            )
                        ),
                        invariant
                    ),
                    // ((ampTimesTotal - _AMP_PRECISION) * invariant) / _AMP_PRECISION + (numTokens + 1) * D_P
                    (
                        divDown(mul((ampTimesTotal - _AMP_PRECISION), invariant), _AMP_PRECISION)
                            .add(mul((numTokens + 1), D_P))
                    )
                );

                if (invariant > prevInvariant) {
                    if (invariant - prevInvariant <= 1) {
                        return invariant;
                    }
                } else if (prevInvariant - invariant <= 1) {
                    return invariant;
                }
            }

            revert("Stable Invariant did not converge");
        }
    }

    function _calcBptOutGivenExactTokensIn(
        uint256 amp,
        uint256[] memory balances,
        uint256[] memory amountsIn,
        uint256 bptTotalSupply,
        uint256 currentInvariant,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        unchecked {
            // BPT out, so we round down overall.

            // First loop calculates the sum of all token balances, which will be used to calculate
            // the current weights of each token, relative to this sum
            uint256 sumBalances = 0;
            for (uint256 i = 0; i < balances.length; i++) {
                sumBalances = sumBalances.add(balances[i]);
            }

            // Calculate the weighted balance ratio without considering fees
            uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length);
            // The weighted sum of token balance ratios with fee
            uint256 invariantRatioWithFees = 0;
            for (uint256 i = 0; i < balances.length; i++) {
                uint256 currentWeight = balances[i].divDown(sumBalances);
                balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]);
                invariantRatioWithFees = invariantRatioWithFees.add(
                    balanceRatiosWithFee[i].mulDown(currentWeight)
                );
            }

            // Second loop calculates new amounts in, taking into account the fee on the percentage excess
            uint256[] memory newBalances = new uint256[](balances.length);
            for (uint256 i = 0; i < balances.length; i++) {
                uint256 amountInWithoutFee;

                // Check if the balance ratio is greater than the ideal ratio to charge fees or not
                if (balanceRatiosWithFee[i] > invariantRatioWithFees) {
                    uint256 nonTaxableAmount = balances[i].mulDown(
                        invariantRatioWithFees.sub(FixedPoint.ONE)
                    );
                    uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount);
                    // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
                    amountInWithoutFee = nonTaxableAmount.add(
                        taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage)
                    );
                } else {
                    amountInWithoutFee = amountsIn[i];
                }

                newBalances[i] = balances[i].add(amountInWithoutFee);
            }

            uint256 newInvariant = _calculateInvariant(amp, newBalances);
            uint256 invariantRatio = newInvariant.divDown(currentInvariant);

            // If the invariant didn't increase for any reason, we simply don't mint BPT
            if (invariantRatio > FixedPoint.ONE) {
                return bptTotalSupply.mulDown(invariantRatio - FixedPoint.ONE);
            } else {
                return 0;
            }
        }
    }

    function _calcTokenOutGivenExactBptIn(
        uint256 amp,
        uint256[] memory balances,
        uint256 tokenIndex,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 currentInvariant,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        unchecked {
            // Token out, so we round down overall.

            uint256 newInvariant = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply).mulUp(
                currentInvariant
            );

            // Calculate amount out without fee
            uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances(
                amp,
                balances,
                newInvariant,
                tokenIndex
            );
            uint256 amountOutWithoutFee = balances[tokenIndex].sub(newBalanceTokenIndex);

            // First calculate the sum of all token balances, which will be used to calculate
            // the current weight of each token
            uint256 sumBalances = 0;
            for (uint256 i = 0; i < balances.length; i++) {
                sumBalances = sumBalances.add(balances[i]);
            }

            // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result
            // in swap fees.
            uint256 currentWeight = balances[tokenIndex].divDown(sumBalances);
            uint256 taxablePercentage = currentWeight.complement();

            // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it
            // to 'token out'. This results in slightly larger price impact. Fees are rounded up.
            uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage);
            uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount);

            // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
            return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage));
        }
    }

    // This function calculates the balance of a given token (tokenIndex)
    // given all the other balances and the invariant
    function _getTokenBalanceGivenInvariantAndAllOtherBalances(
        uint256 amplificationParameter,
        uint256[] memory balances,
        uint256 invariant,
        uint256 tokenIndex
    ) internal pure returns (uint256) {
        unchecked {
            // Rounds result up overall

            uint256 ampTimesTotal = amplificationParameter * balances.length;
            uint256 sum = balances[0];
            uint256 P_D = balances[0] * balances.length;
            for (uint256 j = 1; j < balances.length; j++) {
                P_D = divDown(mul(mul(P_D, balances[j]), balances.length), invariant);
                sum = sum.add(balances[j]);
            }
            // No need to use safe math, based on the loop above `sum` is greater than or equal to `balances[tokenIndex]`
            sum = sum - balances[tokenIndex];

            uint256 inv2 = mul(invariant, invariant);
            // We remove the balance from c by multiplying it
            uint256 c = mul(
                mul(divUp(inv2, mul(ampTimesTotal, P_D)), _AMP_PRECISION),
                balances[tokenIndex]
            );
            uint256 b = sum.add(mul(divDown(invariant, ampTimesTotal), _AMP_PRECISION));

            // We iterate to find the balance
            uint256 prevTokenBalance = 0;
            // We multiply the first iteration outside the loop with the invariant to set the value of the
            // initial approximation.
            uint256 tokenBalance = divUp(inv2.add(c), invariant.add(b));

            for (uint256 i = 0; i < 255; i++) {
                prevTokenBalance = tokenBalance;

                tokenBalance = divUp(
                    mul(tokenBalance, tokenBalance).add(c),
                    mul(tokenBalance, 2).add(b).sub(invariant)
                );

                if (tokenBalance > prevTokenBalance) {
                    if (tokenBalance - prevTokenBalance <= 1) {
                        return tokenBalance;
                    }
                } else if (prevTokenBalance - tokenBalance <= 1) {
                    return tokenBalance;
                }
            }

            revert("Stable get balance did not converge");
        }
    }

    /*///////////////////////////////////////////////////////////////
                    LEGACY MATH FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            uint256 c = a * b;
            require(a == 0 || c / a == b);
            return c;
        }
    }

    function div(
        uint256 a,
        uint256 b,
        bool roundUp
    ) private pure returns (uint256) {
        return roundUp ? divUp(a, b) : divDown(a, b);
    }

    function divDown(uint256 a, uint256 b) private pure returns (uint256) {
        unchecked {
            require(b != 0);
            return a / b;
        }
    }

    function divUp(uint256 a, uint256 b) private pure returns (uint256) {
        unchecked {
            require(b != 0);

            if (a == 0) {
                return 0;
            } else {
                return 1 + (a - 1) / b;
            }
        }
    }
}

File 42 of 94 : ComposableStablePreview.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";

import "../../../../../../interfaces/Balancer/IComposableStable.sol";

import "../FixedPoint.sol";
import "./ComposableStableMath.sol";
import "../StablePoolUserData.sol";

import "../StablePreviewBase.sol";
import "../../../../../libraries/BoringOwnableUpgradeable.sol";

contract ComposableStablePreview is StablePreviewBase, BoringOwnableUpgradeable, UUPSUpgradeable {
    using ComposableStableMath for uint256;
    using StablePoolUserData for bytes;
    using FixedPoint for uint256;

    struct ImmutableData {
        address[] poolTokens;
        address[] rateProviders;
        uint256[] rawScalingFactors;
        bool[] isExemptFromYieldProtocolFee;
        //
        address LP;
        bool noTokensExempt;
        bool allTokensExempt;
        uint256 bptIndex;
        uint256 totalTokens;
    }

    struct TokenRateCache {
        uint256 currentRate;
        uint256 oldRate;
    }

    constructor() initializer {}

    function initialize() external initializer {
        __BoringOwnable_init();
    }

    function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        bytes memory poolImmutableData
    ) internal view override returns (uint256 bptAmountOut) {
        ImmutableData memory imd = abi.decode(poolImmutableData, (ImmutableData));

        TokenRateCache[] memory caches = _beforeSwapJoinExit(imd);

        uint256[] memory scalingFactors = _scalingFactors(imd, caches);

        // skip totalSupply == 0 case

        _upscaleArray(balances, scalingFactors);
        (bptAmountOut, ) = _onJoinPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            scalingFactors,
            userData,
            imd,
            caches
        );

        // skip _mintPoolTokens, _downscaleUpArray

        // we return bptAmountOut instead of minting
    }

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        bytes memory poolImmutableData
    ) internal view override returns (uint256 amountTokenOut) {
        ImmutableData memory imd = abi.decode(poolImmutableData, (ImmutableData));

        uint256 bptAmountIn;
        uint256[] memory amountsOut;

        // skip recovery mode

        TokenRateCache[] memory caches = _beforeSwapJoinExit(imd);

        uint256[] memory scalingFactors = _scalingFactors(imd, caches);
        _upscaleArray(balances, scalingFactors);

        (bptAmountIn, amountsOut) = _onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage, // assume no recovery mode
            scalingFactors,
            userData,
            imd,
            caches
        );

        _downscaleDownArray(amountsOut, scalingFactors);

        // skip burnPoolTokens

        for (uint256 i = 0; i < amountsOut.length; i++) {
            if (amountsOut[i] > 0) return amountsOut[i];
        }
    }

    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory registeredBalances,
        uint256,
        uint256,
        uint256[] memory scalingFactors,
        bytes memory userData,
        ImmutableData memory imd,
        TokenRateCache[] memory caches
    ) internal view returns (uint256, uint256[] memory) {
        return _onJoinExitPool(true, registeredBalances, scalingFactors, userData, imd, caches);
    }

    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory registeredBalances,
        uint256,
        uint256,
        uint256[] memory scalingFactors,
        bytes memory userData,
        ImmutableData memory imd,
        TokenRateCache[] memory caches
    ) internal view returns (uint256, uint256[] memory) {
        return _onJoinExitPool(false, registeredBalances, scalingFactors, userData, imd, caches);
    }

    /**
     * @return bptAmount
     * @return amountsDelta this will not contain bpt item since it will be discarded on the upper level
     */
    function _onJoinExitPool(
        bool isJoin,
        uint256[] memory registeredBalances,
        uint256[] memory scalingFactors,
        bytes memory userData,
        ImmutableData memory imd,
        TokenRateCache[] memory caches
    ) internal view returns (uint256 bptAmount, uint256[] memory amountsDelta) {
        (
            uint256 preJoinExitSupply,
            uint256[] memory balances,
            uint256 currentAmp,
            uint256 preJoinExitInvariant
        ) = _beforeJoinExit(registeredBalances, imd, caches);

        function(
            uint256[] memory,
            uint256,
            uint256,
            uint256,
            uint256[] memory,
            bytes memory,
            ImmutableData memory
        ) internal view returns (uint256, uint256[] memory) _doJoinOrExit = (
                isJoin ? _doJoin : _doExit
            );

        (bptAmount, amountsDelta) = _doJoinOrExit(
            balances,
            currentAmp,
            preJoinExitSupply,
            preJoinExitInvariant,
            scalingFactors,
            userData,
            imd
        );
        amountsDelta = _addBptItem(amountsDelta, 0, imd);

        // _mutateAmounts

        // skip _updateInvariantAfterJoinExit here
    }

    function _addBptItem(
        uint256[] memory amounts,
        uint256 bptAmount,
        ImmutableData memory imd
    ) internal pure returns (uint256[] memory registeredTokenAmounts) {
        registeredTokenAmounts = new uint256[](amounts.length + 1);
        for (uint256 i = 0; i < registeredTokenAmounts.length; i++) {
            registeredTokenAmounts[i] = i == imd.bptIndex
                ? bptAmount
                : amounts[i < imd.bptIndex ? i : i - 1];
        }
    }

    function _doJoin(
        uint256[] memory balances,
        uint256 currentAmp,
        uint256 preJoinExitSupply,
        uint256 preJoinExitInvariant,
        uint256[] memory scalingFactors,
        bytes memory userData,
        ImmutableData memory imd
    ) internal view returns (uint256, uint256[] memory) {
        // this is always true given Pendle SY context
        return
            _joinExactTokensInForBPTOut(
                preJoinExitSupply,
                preJoinExitInvariant,
                currentAmp,
                balances,
                scalingFactors,
                userData,
                imd
            );
    }

    function _joinExactTokensInForBPTOut(
        uint256 actualSupply,
        uint256 preJoinExitInvariant,
        uint256 currentAmp,
        uint256[] memory balances,
        uint256[] memory scalingFactors,
        bytes memory userData,
        ImmutableData memory imd
    ) private view returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, ) = userData.exactTokensInForBptOut();

        // The user-provided amountsIn is unscaled, so we address that.
        _upscaleArray(amountsIn, _dropBptItem(imd, scalingFactors));

        uint256 bptAmountOut = currentAmp._calcBptOutGivenExactTokensIn(
            balances,
            amountsIn,
            actualSupply,
            preJoinExitInvariant,
            IBasePool(imd.LP).getSwapFeePercentage()
        );
        return (bptAmountOut, amountsIn);
    }

    function _doExit(
        uint256[] memory balances,
        uint256 currentAmp,
        uint256 preJoinExitSupply,
        uint256 preJoinExitInvariant,
        uint256[] memory, /*scalingFactors*/
        bytes memory userData,
        ImmutableData memory imd
    ) internal view returns (uint256, uint256[] memory) {
        // this is always true given Pendle SY context
        return
            _exitExactBPTInForTokenOut(
                preJoinExitSupply,
                preJoinExitInvariant,
                currentAmp,
                balances,
                userData,
                imd
            );
    }

    function _exitExactBPTInForTokenOut(
        uint256 actualSupply,
        uint256 preJoinExitInvariant,
        uint256 currentAmp,
        uint256[] memory balances,
        bytes memory userData,
        ImmutableData memory imd
    ) private view returns (uint256, uint256[] memory) {
        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();

        uint256[] memory amountsOut = new uint256[](balances.length);

        amountsOut[tokenIndex] = currentAmp._calcTokenOutGivenExactBptIn(
            balances,
            tokenIndex,
            bptAmountIn,
            actualSupply,
            preJoinExitInvariant,
            IBasePool(imd.LP).getSwapFeePercentage()
        );

        return (bptAmountIn, amountsOut);
    }

    function _beforeJoinExit(
        uint256[] memory registeredBalances,
        ImmutableData memory imd,
        TokenRateCache[] memory caches
    )
        internal
        view
        returns (
            uint256,
            uint256[] memory,
            uint256,
            uint256
        )
    {
        (uint256 lastJoinExitAmp, uint256 lastPostJoinExitInvariant) = IComposableStable(imd.LP)
            .getLastJoinExitData();

        (
            uint256 preJoinExitSupply,
            uint256[] memory balances,
            uint256 oldAmpPreJoinExitInvariant
        ) = _payProtocolFeesBeforeJoinExit(
                registeredBalances,
                lastJoinExitAmp,
                lastPostJoinExitInvariant,
                imd,
                caches
            );

        (uint256 currentAmp, , ) = IComposableStable(imd.LP).getAmplificationParameter();
        uint256 preJoinExitInvariant = currentAmp == lastJoinExitAmp
            ? oldAmpPreJoinExitInvariant
            : currentAmp._calculateInvariant(balances);

        return (preJoinExitSupply, balances, currentAmp, preJoinExitInvariant);
    }

    function _payProtocolFeesBeforeJoinExit(
        uint256[] memory registeredBalances,
        uint256 lastJoinExitAmp,
        uint256 lastPostJoinExitInvariant,
        ImmutableData memory imd,
        TokenRateCache[] memory caches
    )
        internal
        view
        returns (
            uint256,
            uint256[] memory,
            uint256
        )
    {
        (uint256 virtualSupply, uint256[] memory balances) = _dropBptItemFromBalances(
            imd,
            registeredBalances
        );

        (
            uint256 expectedProtocolOwnershipPercentage,
            uint256 currentInvariantWithLastJoinExitAmp
        ) = _getProtocolPoolOwnershipPercentage(
                balances,
                lastJoinExitAmp,
                lastPostJoinExitInvariant,
                imd,
                caches
            );

        uint256 protocolFeeAmount = _calculateAdjustedProtocolFeeAmount(
            virtualSupply,
            expectedProtocolOwnershipPercentage
        );

        // skip _payProtocolFee, which will make the LP balance from this point onwards to be off

        return (virtualSupply + protocolFeeAmount, balances, currentInvariantWithLastJoinExitAmp);
    }

    function _getProtocolPoolOwnershipPercentage(
        uint256[] memory balances,
        uint256 lastJoinExitAmp,
        uint256 lastPostJoinExitInvariant,
        ImmutableData memory imd,
        TokenRateCache[] memory caches
    ) internal view returns (uint256, uint256) {
        (
            uint256 swapFeeGrowthInvariant,
            uint256 totalNonExemptGrowthInvariant,
            uint256 totalGrowthInvariant
        ) = _getGrowthInvariants(balances, lastJoinExitAmp, imd, caches);

        uint256 swapFeeGrowthInvariantDelta = (swapFeeGrowthInvariant > lastPostJoinExitInvariant)
            ? swapFeeGrowthInvariant - lastPostJoinExitInvariant
            : 0;
        uint256 nonExemptYieldGrowthInvariantDelta = (totalNonExemptGrowthInvariant >
            swapFeeGrowthInvariant)
            ? totalNonExemptGrowthInvariant - swapFeeGrowthInvariant
            : 0;

        uint256 protocolSwapFeePercentage = swapFeeGrowthInvariantDelta
            .divDown(totalGrowthInvariant)
            .mulDown(
                IComposableStable(imd.LP).getProtocolFeePercentageCache(0) // ProtocolFeeType.SWAP // can't get better
            );

        uint256 protocolYieldPercentage = nonExemptYieldGrowthInvariantDelta
            .divDown(totalGrowthInvariant)
            .mulDown(
                IComposableStable(imd.LP).getProtocolFeePercentageCache(2) // ProtocolFeeType.YIELD // can't get better
            );

        // These percentages can then be simply added to compute the total protocol Pool ownership percentage.
        // This is naturally bounded above by FixedPoint.ONE so this addition cannot overflow.
        return (protocolSwapFeePercentage + protocolYieldPercentage, totalGrowthInvariant);
    }

    function _getGrowthInvariants(
        uint256[] memory balances,
        uint256 lastJoinExitAmp,
        ImmutableData memory imd,
        TokenRateCache[] memory caches
    )
        internal
        pure
        returns (
            uint256 swapFeeGrowthInvariant,
            uint256 totalNonExemptGrowthInvariant,
            uint256 totalGrowthInvariant
        )
    {
        swapFeeGrowthInvariant = lastJoinExitAmp._calculateInvariant(
            _getAdjustedBalances(balances, true, imd, caches)
        );

        if (imd.noTokensExempt) {
            totalNonExemptGrowthInvariant = lastJoinExitAmp._calculateInvariant(balances);
            totalGrowthInvariant = totalNonExemptGrowthInvariant;
        } else if (imd.allTokensExempt) {
            totalNonExemptGrowthInvariant = swapFeeGrowthInvariant;
            totalGrowthInvariant = lastJoinExitAmp._calculateInvariant(balances);
        } else {
            totalNonExemptGrowthInvariant = lastJoinExitAmp._calculateInvariant(
                _getAdjustedBalances(balances, false, imd, caches)
            );

            totalGrowthInvariant = lastJoinExitAmp._calculateInvariant(balances);
        }
    }

    function _getAdjustedBalances(
        uint256[] memory balances,
        bool ignoreExemptFlags,
        ImmutableData memory imd,
        TokenRateCache[] memory tokenRateCaches
    ) internal pure returns (uint256[] memory) {
        uint256 totalTokensWithoutBpt = balances.length;
        uint256[] memory adjustedBalances = new uint256[](totalTokensWithoutBpt);

        for (uint256 i = 0; i < totalTokensWithoutBpt; ++i) {
            uint256 skipBptIndex = i >= imd.bptIndex ? i + 1 : i;
            adjustedBalances[i] = _isTokenExemptFromYieldProtocolFee(imd, skipBptIndex) ||
                (ignoreExemptFlags && _hasRateProvider(imd, skipBptIndex))
                ? _adjustedBalance(balances[i], tokenRateCaches[skipBptIndex])
                : balances[i];
        }

        return adjustedBalances;
    }

    function _adjustedBalance(uint256 balance, TokenRateCache memory cache)
        private
        pure
        returns (uint256)
    {
        return (balance * cache.oldRate) / cache.currentRate;
    }

    function _calculateAdjustedProtocolFeeAmount(uint256 supply, uint256 basePercentage)
        internal
        pure
        returns (uint256)
    {
        return supply.mulDown(basePercentage).divDown(basePercentage.complement());
    }

    function _dropBptItemFromBalances(
        ImmutableData memory imd,
        uint256[] memory registeredBalances
    ) internal view returns (uint256, uint256[] memory) {
        return (
            _getVirtualSupply(imd, registeredBalances[imd.bptIndex]),
            _dropBptItem(imd, registeredBalances)
        );
    }

    function _dropBptItem(ImmutableData memory imd, uint256[] memory amounts)
        internal
        pure
        returns (uint256[] memory)
    {
        uint256[] memory amountsWithoutBpt = new uint256[](amounts.length - 1);
        for (uint256 i = 0; i < amountsWithoutBpt.length; i++) {
            amountsWithoutBpt[i] = amounts[i < imd.bptIndex ? i : i + 1];
        }

        return amountsWithoutBpt;
    }

    function _getVirtualSupply(ImmutableData memory imd, uint256 bptBalance)
        internal
        view
        returns (uint256)
    {
        return (IERC20(imd.LP).totalSupply()).sub(bptBalance); // can't get better
    }

    function _beforeSwapJoinExit(ImmutableData memory imd)
        internal
        view
        returns (TokenRateCache[] memory tokenRateCaches)
    {
        return _cacheTokenRatesIfNecessary(imd);
    }

    function _cacheTokenRatesIfNecessary(ImmutableData memory imd)
        internal
        view
        returns (TokenRateCache[] memory tokenRateCaches)
    {
        tokenRateCaches = new TokenRateCache[](imd.totalTokens);

        for (uint256 i = 0; i < imd.totalTokens; ++i) {
            tokenRateCaches[i] = _cacheTokenRateIfNecessary(i, imd);
        }
    }

    /**
     * @dev Caches the rate for a token if necessary. It ignores the call if there is no provider set.
     */
    function _cacheTokenRateIfNecessary(uint256 index, ImmutableData memory imd)
        internal
        view
        returns (TokenRateCache memory res)
    {
        if (index == imd.bptIndex || !_hasRateProvider(imd, index)) return res;

        uint256 expires;
        (res.currentRate, res.oldRate, , expires) = IComposableStable(imd.LP).getTokenRateCache(
            IERC20(imd.poolTokens[index])
        );

        if (block.timestamp > expires) {
            res.currentRate = IRateProvider(imd.rateProviders[index]).getRate();
        }
    }

    function _scalingFactors(ImmutableData memory imd, TokenRateCache[] memory caches)
        internal
        view
        virtual
        returns (uint256[] memory)
    {
        // There is no need to check the arrays length since both are based on `_getTotalTokens`
        uint256[] memory scalingFactors = new uint256[](imd.totalTokens);

        for (uint256 i = 0; i < imd.totalTokens; ++i) {
            scalingFactors[i] = imd.rawScalingFactors[i].mulDown(_getTokenRate(caches, i));
        }

        return scalingFactors;
    }

    function _getTokenRate(TokenRateCache[] memory caches, uint256 index)
        internal
        view
        virtual
        returns (uint256)
    {
        return caches[index].currentRate == 0 ? FixedPoint.ONE : caches[index].currentRate;
    }

    /*///////////////////////////////////////////////////////////////
                               Helpers functions
    //////////////////////////////////////////////////////////////*/

    function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors)
        internal
        pure
    {
        uint256 length = amounts.length;
        for (uint256 i = 0; i < length; ++i) {
            amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
        }
    }

    function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors)
        internal
        pure
    {
        uint256 length = amounts.length;
        for (uint256 i = 0; i < length; ++i) {
            amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]);
        }
    }

    function _hasRateProvider(ImmutableData memory imd, uint256 index)
        internal
        pure
        returns (bool)
    {
        return address(imd.rateProviders[index]) != address(0);
    }

    function _isTokenExemptFromYieldProtocolFee(ImmutableData memory imd, uint256 index)
        internal
        pure
        returns (bool)
    {
        return imd.isExemptFromYieldProtocolFee[index];
    }
}

File 43 of 94 : FixedPoint.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;

/* solhint-disable private-vars-leading-underscore */

/**
 * @dev forked from https://etherscan.io/token/0x8e85e97ed19c0fa13b2549309965291fbbc0048b#code
 * with omitted overflow checks given solidity version
 */

library FixedPoint {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    uint256 internal constant TWO = 2 * ONE;
    uint256 internal constant FOUR = 4 * ONE;

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        return (a * b) / ONE;
    }

    function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        if (product == 0) {
            return 0;
        } else {
            unchecked {
                return ((product - 1) / ONE) + 1;
            }
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b != 0, "Zero division");

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            return aInflated / b;
        }
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b != 0, "Zero division");

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            unchecked {
                return ((aInflated - 1) / b) + 1;
            }
        }
    }

    function complement(uint256 x) internal pure returns (uint256) {
        unchecked {
            return (x < ONE) ? (ONE - x) : 0;
        }
    }
}

File 44 of 94 : BbAPoolHelper.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../../../../../libraries/TokenHelper.sol";
import "../../../../../../interfaces/Balancer/IVault.sol";
import "./LinearPreview.sol";

abstract contract BbAPoolHelper is TokenHelper {
    address private constant BALANCER_VAULT = 0xBA12222222228d8Ba445958a75a0704d566BF2C8;
    bytes private constant EMPTY_BYTES = abi.encode();

    LinearPreview public immutable linearPreviewHelper;

    constructor(LinearPreview _linearPreviewHelper) {
        linearPreviewHelper = _linearPreviewHelper;
    }

    function _safeApproveInfVault(address token) internal {
        _safeApproveInf(token, BALANCER_VAULT);
    }

    function joinExitPool(
        address receiver,
        bytes32 poolId,
        address tokenIn,
        address tokenOut,
        uint256 amountIn
    ) internal returns (uint256 amountOut) {
        return
            IVault(BALANCER_VAULT).swap{ value: (tokenIn == NATIVE ? amountIn : 0) }(
                IVault.SingleSwap({
                    poolId: poolId,
                    kind: IVault.SwapKind.GIVEN_IN,
                    assetIn: IAsset(tokenIn),
                    assetOut: IAsset(tokenOut),
                    amount: amountIn,
                    userData: EMPTY_BYTES
                }),
                IVault.FundManagement({
                    sender: address(this),
                    fromInternalBalance: false,
                    recipient: payable(receiver),
                    toInternalBalance: false
                }),
                0,
                block.timestamp
            );
    }
}

abstract contract BbAWethHelper is BbAPoolHelper {
    address internal constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
    address internal immutable BB_A_WETH;
    bytes32 internal immutable BB_A_WETH_POOL_ID;
    address internal immutable WA_WETH;

    constructor(
        LinearPreview _linearPreviewHelper,
        address _bbAWeth,
        bytes32 _bbAWethPoolId,
        address _waWeth
    ) BbAPoolHelper(_linearPreviewHelper) {
        BB_A_WETH = _bbAWeth;
        BB_A_WETH_POOL_ID = _bbAWethPoolId;
        WA_WETH = _waWeth;

        _safeApproveInfVault(WETH);
        _safeApproveInfVault(WA_WETH);
    }

    function _depositBbAWeth(
        address tokenIn,
        uint256 amountDep
    ) internal virtual returns (uint256 amountOut) {
        amountOut = joinExitPool(address(this), BB_A_WETH_POOL_ID, tokenIn, BB_A_WETH, amountDep);
    }

    function _redeemBbAWeth(
        address receiver,
        address tokenOut,
        uint256 amountRedeem
    ) internal virtual returns (uint256 amountTokenOut) {
        amountTokenOut = joinExitPool(
            receiver,
            BB_A_WETH_POOL_ID,
            BB_A_WETH,
            tokenOut,
            amountRedeem
        );
    }

    function _previewDepositBbAWeth(
        address tokenIn,
        uint256 amountDep
    ) internal view virtual returns (uint256 amountOut) {
        return
            linearPreviewHelper.joinExitPoolPreview(
                BB_A_WETH_POOL_ID,
                tokenIn == NATIVE ? WETH : tokenIn,
                BB_A_WETH,
                amountDep
            );
    }

    function _previewRedeemBbAWeth(
        address tokenOut,
        uint256 amountRedeem
    ) internal view returns (uint256 amountOut) {
        return
            linearPreviewHelper.joinExitPoolPreview(
                BB_A_WETH_POOL_ID,
                BB_A_WETH,
                tokenOut == NATIVE ? WETH : tokenOut,
                amountRedeem
            );
    }
}

File 45 of 94 : LinearMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;
import "../FixedPoint.sol";

// These functions start with an underscore, as if they were part of a contract and not a library. At some point this
// should be fixed.
// solhint-disable private-vars-leading-underscore

library LinearMath {
    using FixedPoint for uint256;

    // A thorough derivation of the formulas and derivations found here exceeds the scope of this file, so only
    // introductory notions will be presented.

    // A Linear Pool holds three tokens: the main token, the wrapped token, and the Pool share token (BPT). It is
    // possible to exchange any of these tokens for any of the other two (so we have three trading pairs) in both
    // directions (the first token of each pair can be bought or sold for the second) and by specifying either the input
    // or output amount (typically referred to as 'given in' or 'given out'). A full description thus requires
    // 3*2*2 = 12 functions.
    // Wrapped tokens have a known, trusted exchange rate to main tokens. All functions here assume such a rate has
    // already been applied, meaning main and wrapped balances can be compared as they are both expressed in the same
    // units (those of main token).
    // Additionally, Linear Pools feature a lower and upper target that represent the desired range of values for the
    // main token balance. Any action that moves the main balance away from this range is charged a proportional fee,
    // and any action that moves it towards this range is incentivized by paying the actor using these collected fees.
    // The collected fees are not stored in a separate data structure: they are a function of the current main balance,
    // targets and fee percentage. The main balance sans fees is known as the 'nominal balance', which is always smaller
    // than the real balance except when the real balance is within the targets.
    // The rule under which Linear Pools conduct trades between main and wrapped tokens is by keeping the sum of nominal
    // main balance and wrapped balance constant: this value is known as the 'invariant'. BPT is backed by nominal
    // reserves, meaning its supply is proportional to the invariant. As the wrapped token appreciates in value and its
    // exchange rate to the main token increases, so does the invariant and thus the value of BPT (in main token units).

    struct Params {
        uint256 fee;
        uint256 lowerTarget;
        uint256 upperTarget;
    }

    function _calcBptOutPerMainIn(
        uint256 mainIn,
        uint256 mainBalance,
        uint256 wrappedBalance,
        uint256 bptSupply,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount out, so we round down overall.

        if (bptSupply == 0) {
            // BPT typically grows in the same ratio the invariant does. The first time liquidity is added however, the
            // BPT supply is initialized to equal the invariant (which in this case is just the nominal main balance as
            // there is no wrapped balance).
            return _toNominal(mainIn, params);
        }

        uint256 previousNominalMain = _toNominal(mainBalance, params);
        uint256 afterNominalMain = _toNominal(mainBalance.add(mainIn), params);
        uint256 deltaNominalMain = afterNominalMain.sub(previousNominalMain);
        uint256 invariant = _calcInvariant(previousNominalMain, wrappedBalance);
        return divDown(mul(bptSupply, deltaNominalMain), invariant);
    }

    function _calcBptInPerMainOut(
        uint256 mainOut,
        uint256 mainBalance,
        uint256 wrappedBalance,
        uint256 bptSupply,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount in, so we round up overall.

        uint256 previousNominalMain = _toNominal(mainBalance, params);
        uint256 afterNominalMain = _toNominal(mainBalance.sub(mainOut), params);
        uint256 deltaNominalMain = previousNominalMain.sub(afterNominalMain);
        uint256 invariant = _calcInvariant(previousNominalMain, wrappedBalance);
        return divUp(mul(bptSupply, deltaNominalMain), invariant);
    }

    function _calcWrappedOutPerMainIn(
        uint256 mainIn,
        uint256 mainBalance,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount out, so we round down overall.

        uint256 previousNominalMain = _toNominal(mainBalance, params);
        uint256 afterNominalMain = _toNominal(mainBalance.add(mainIn), params);
        return afterNominalMain.sub(previousNominalMain);
    }

    function _calcWrappedInPerMainOut(
        uint256 mainOut,
        uint256 mainBalance,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount in, so we round up overall.

        uint256 previousNominalMain = _toNominal(mainBalance, params);
        uint256 afterNominalMain = _toNominal(mainBalance.sub(mainOut), params);
        return previousNominalMain.sub(afterNominalMain);
    }

    function _calcMainInPerBptOut(
        uint256 bptOut,
        uint256 mainBalance,
        uint256 wrappedBalance,
        uint256 bptSupply,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount in, so we round up overall.

        if (bptSupply == 0) {
            // BPT typically grows in the same ratio the invariant does. The first time liquidity is added however, the
            // BPT supply is initialized to equal the invariant (which in this case is just the nominal main balance as
            // there is no wrapped balance).
            return _fromNominal(bptOut, params);
        }

        uint256 previousNominalMain = _toNominal(mainBalance, params);
        uint256 invariant = _calcInvariant(previousNominalMain, wrappedBalance);
        uint256 deltaNominalMain = divUp(mul(invariant, bptOut), bptSupply);
        uint256 afterNominalMain = previousNominalMain.add(deltaNominalMain);
        uint256 newMainBalance = _fromNominal(afterNominalMain, params);
        return newMainBalance.sub(mainBalance);
    }

    function _calcMainOutPerBptIn(
        uint256 bptIn,
        uint256 mainBalance,
        uint256 wrappedBalance,
        uint256 bptSupply,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount out, so we round down overall.

        uint256 previousNominalMain = _toNominal(mainBalance, params);
        uint256 invariant = _calcInvariant(previousNominalMain, wrappedBalance);
        uint256 deltaNominalMain = divDown(mul(invariant, bptIn), bptSupply);
        uint256 afterNominalMain = previousNominalMain.sub(deltaNominalMain);
        uint256 newMainBalance = _fromNominal(afterNominalMain, params);
        return mainBalance.sub(newMainBalance);
    }

    function _calcMainOutPerWrappedIn(
        uint256 wrappedIn,
        uint256 mainBalance,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount out, so we round down overall.

        uint256 previousNominalMain = _toNominal(mainBalance, params);
        uint256 afterNominalMain = previousNominalMain.sub(wrappedIn);
        uint256 newMainBalance = _fromNominal(afterNominalMain, params);
        return mainBalance.sub(newMainBalance);
    }

    function _calcMainInPerWrappedOut(
        uint256 wrappedOut,
        uint256 mainBalance,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount in, so we round up overall.

        uint256 previousNominalMain = _toNominal(mainBalance, params);
        uint256 afterNominalMain = previousNominalMain.add(wrappedOut);
        uint256 newMainBalance = _fromNominal(afterNominalMain, params);
        return newMainBalance.sub(mainBalance);
    }

    function _calcBptOutPerWrappedIn(
        uint256 wrappedIn,
        uint256 mainBalance,
        uint256 wrappedBalance,
        uint256 bptSupply,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount out, so we round down overall.

        if (bptSupply == 0) {
            // BPT typically grows in the same ratio the invariant does. The first time liquidity is added however, the
            // BPT supply is initialized to equal the invariant (which in this case is just the wrapped balance as
            // there is no main balance).
            return wrappedIn;
        }

        uint256 nominalMain = _toNominal(mainBalance, params);
        uint256 previousInvariant = _calcInvariant(nominalMain, wrappedBalance);

        uint256 newWrappedBalance = wrappedBalance.add(wrappedIn);
        uint256 newInvariant = _calcInvariant(nominalMain, newWrappedBalance);

        uint256 newBptBalance = divDown(mul(bptSupply, newInvariant), previousInvariant);

        return newBptBalance.sub(bptSupply);
    }

    function _calcBptInPerWrappedOut(
        uint256 wrappedOut,
        uint256 mainBalance,
        uint256 wrappedBalance,
        uint256 bptSupply,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount in, so we round up overall.

        uint256 nominalMain = _toNominal(mainBalance, params);
        uint256 previousInvariant = _calcInvariant(nominalMain, wrappedBalance);

        uint256 newWrappedBalance = wrappedBalance.sub(wrappedOut);
        uint256 newInvariant = _calcInvariant(nominalMain, newWrappedBalance);

        uint256 newBptBalance = divDown(mul(bptSupply, newInvariant), previousInvariant);

        return bptSupply.sub(newBptBalance);
    }

    function _calcWrappedInPerBptOut(
        uint256 bptOut,
        uint256 mainBalance,
        uint256 wrappedBalance,
        uint256 bptSupply,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount in, so we round up overall.

        if (bptSupply == 0) {
            // BPT typically grows in the same ratio the invariant does. The first time liquidity is added however, the
            // BPT supply is initialized to equal the invariant (which in this case is just the wrapped balance as
            // there is no main balance).
            return bptOut;
        }

        uint256 nominalMain = _toNominal(mainBalance, params);
        uint256 previousInvariant = _calcInvariant(nominalMain, wrappedBalance);

        uint256 newBptBalance = bptSupply.add(bptOut);
        uint256 newWrappedBalance = divUp(mul(newBptBalance, previousInvariant), bptSupply).sub(
            nominalMain
        );

        return newWrappedBalance.sub(wrappedBalance);
    }

    function _calcWrappedOutPerBptIn(
        uint256 bptIn,
        uint256 mainBalance,
        uint256 wrappedBalance,
        uint256 bptSupply,
        Params memory params
    ) internal pure returns (uint256) {
        // Amount out, so we round down overall.

        uint256 nominalMain = _toNominal(mainBalance, params);
        uint256 previousInvariant = _calcInvariant(nominalMain, wrappedBalance);

        uint256 newBptBalance = bptSupply.sub(bptIn);
        uint256 newWrappedBalance = divUp(mul(newBptBalance, previousInvariant), bptSupply).sub(
            nominalMain
        );

        return wrappedBalance.sub(newWrappedBalance);
    }

    function _calcInvariant(uint256 nominalMainBalance, uint256 wrappedBalance)
        internal
        pure
        returns (uint256)
    {
        return nominalMainBalance.add(wrappedBalance);
    }

    function _toNominal(uint256 real, Params memory params) internal pure returns (uint256) {
        unchecked {
            // Fees are always rounded down: either direction would work but we need to be consistent, and rounding down
            // uses less gas.

            if (real < params.lowerTarget) {
                uint256 fees = (params.lowerTarget - real).mulDown(params.fee);
                return real.sub(fees);
            } else if (real <= params.upperTarget) {
                return real;
            } else {
                uint256 fees = (real - params.upperTarget).mulDown(params.fee);
                return real.sub(fees);
            }
        }
    }

    function _fromNominal(uint256 nominal, Params memory params) internal pure returns (uint256) {
        unchecked {
            // Since real = nominal + fees, rounding down fees is equivalent to rounding down real.

            if (nominal < params.lowerTarget) {
                return
                    (nominal.add(params.fee.mulDown(params.lowerTarget))).divDown(
                        FixedPoint.ONE.add(params.fee)
                    );
            } else if (nominal <= params.upperTarget) {
                return nominal;
            } else {
                return (
                    nominal.sub(params.fee.mulDown(params.upperTarget)).divDown(
                        FixedPoint.ONE.sub(params.fee)
                    )
                );
            }
        }
    }

    function _calcTokensOutGivenExactBptIn(
        uint256[] memory balances,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 bptIndex
    ) internal pure returns (uint256[] memory) {
        unchecked {
            /**********************************************************************************************
        // exactBPTInForTokensOut                                                                    //
        // (per token)                                                                               //
        // aO = tokenAmountOut             /        bptIn         \                                  //
        // b = tokenBalance      a0 = b * | ---------------------  |                                 //
        // bptIn = bptAmountIn             \     bptTotalSupply    /                                 //
        // bpt = bptTotalSupply                                                                      //
        **********************************************************************************************/

            // Since we're computing an amount out, we round down overall. This means rounding down on both the
            // multiplication and division.

            uint256 bptRatio = bptAmountIn.divDown(bptTotalSupply);

            uint256[] memory amountsOut = new uint256[](balances.length);
            for (uint256 i = 0; i < balances.length; i++) {
                // BPT is skipped as those tokens are not the LPs, but rather the preminted and undistributed amount.
                if (i != bptIndex) {
                    amountsOut[i] = balances[i].mulDown(bptRatio);
                }
            }

            return amountsOut;
        }
    }

    /*///////////////////////////////////////////////////////////////
                    LEGACY MATH FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            uint256 c = a * b;
            require(a == 0 || c / a == b);
            return c;
        }
    }

    function div(
        uint256 a,
        uint256 b,
        bool roundUp
    ) internal pure returns (uint256) {
        return roundUp ? divUp(a, b) : divDown(a, b);
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            require(b != 0);
            return a / b;
        }
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            require(b != 0);

            if (a == 0) {
                return 0;
            } else {
                return 1 + (a - 1) / b;
            }
        }
    }
}

File 46 of 94 : LinearPreview.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../../../../../../interfaces/Balancer/IVault.sol";
import "../../../../../../interfaces/Balancer/IERC4626LinearPool.sol";
import "../../../../../libraries/BoringOwnableUpgradeable.sol";
import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol";
import "./LinearMath.sol";

contract LinearPreview is BoringOwnableUpgradeable, UUPSUpgradeable {
    using FixedPoint for uint256;

    struct ImmutableData {
        address pool;
        uint256 _BPT_INDEX;
        IERC20 _mainToken;
        uint256 _mainIndex;
        IERC20 _wrappedToken;
        uint256 _wrappedIndex;
    }

    address internal constant BALANCER_VAULT = 0xBA12222222228d8Ba445958a75a0704d566BF2C8;
    bytes internal constant EMPTY_BYTES = abi.encode();

    constructor() initializer {}

    function initialize() external initializer {
        __BoringOwnable_init();
    }

    function _authorizeUpgrade(address newImplementation) internal override onlyOwner {}

    function joinExitPoolPreview(bytes32 poolId, address tokenIn, address tokenOut, uint256 amountIn)
        external
        view
        returns (uint256 amountOut)
    {
        IVault.SwapRequest memory request = IVault.SwapRequest({
            kind: IVault.SwapKind.GIVEN_IN,
            tokenIn: IERC20(tokenIn),
            tokenOut: IERC20(tokenOut),
            amount: amountIn,
            // unused data
            poolId: bytes32(0),
            lastChangeBlock: 0,
            from: address(0),
            to: address(0),
            userData: EMPTY_BYTES
        });

        (IERC20[] memory tokens, uint256[] memory balances,) = IVault(BALANCER_VAULT).getPoolTokens(poolId);
        address pool = address(uint160(uint256(poolId) >> (12 * 8)));
        IERC20 mainToken = IERC20(IERC4626LinearPool(pool).getMainToken());

        uint256 indexIn;
        uint256 indexOut;
        ImmutableData memory imd;

        for (uint256 i = 0; i < tokens.length;) {
            if (tokens[i] == mainToken) {
                imd._mainToken = mainToken;
                imd._mainIndex = i;
            } else if (tokens[i] == IERC20(pool)) {
                imd.pool = pool;
                imd._BPT_INDEX = i;
            } else {
                imd._wrappedToken = tokens[i];
                imd._wrappedIndex = i;
            }

            if (tokens[i] == IERC20(tokenIn)) {
                indexIn = i;
            } else if (tokens[i] == IERC20(tokenOut)) {
                indexOut = i;
            }
            unchecked {
                i++;
            }
        }

        return _onSwapGeneral(request, balances, indexIn, indexOut, imd);
    }

    function _onSwapGeneral(
        IVault.SwapRequest memory request,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut,
        ImmutableData memory imd
    ) internal view returns (uint256) {
        // Upscale balances by the scaling factors (taking into account the wrapped token rate)
        uint256[] memory scalingFactors = IERC4626LinearPool(imd.pool).getScalingFactors();
        _upscaleArray(balances, scalingFactors);

        (uint256 lowerTarget, uint256 upperTarget) = IERC4626LinearPool(imd.pool).getTargets();
        LinearMath.Params memory params = LinearMath.Params({
            fee: IERC4626LinearPool(imd.pool).getSwapFeePercentage(),
            lowerTarget: lowerTarget,
            upperTarget: upperTarget
        });

        assert(request.kind == IVault.SwapKind.GIVEN_IN);
        // The amount given is for token in, the amount calculated is for token out
        request.amount = _upscale(request.amount, scalingFactors[indexIn]);
        uint256 amountOut = _onSwapGivenIn(request, balances, params, imd);

        // amountOut tokens are exiting the Pool, so we round down.
        return _downscaleDown(amountOut, scalingFactors[indexOut]);
    }

    function _onSwapGivenIn(
        IVault.SwapRequest memory request,
        uint256[] memory balances,
        LinearMath.Params memory params,
        ImmutableData memory imd
    ) internal view returns (uint256) {
        if (request.tokenIn == IERC20(imd.pool)) {
            return _swapGivenBptIn(request, balances, params, imd);
        } else if (request.tokenIn == imd._mainToken) {
            return _swapGivenMainIn(request, balances, params, imd);
        } else if (request.tokenIn == imd._wrappedToken) {
            return _swapGivenWrappedIn(request, balances, params, imd);
        } else {
            assert(false);
        }
    }

    function _swapGivenBptIn(
        IVault.SwapRequest memory request,
        uint256[] memory balances,
        LinearMath.Params memory params,
        ImmutableData memory imd
    ) internal view returns (uint256) {
        // _require(
        //     request.tokenOut == _mainToken || request.tokenOut == _wrappedToken,
        //     Errors.INVALID_TOKEN
        // );
        return (
            request.tokenOut == imd._mainToken ? LinearMath._calcMainOutPerBptIn : LinearMath._calcWrappedOutPerBptIn
        )(
            request.amount,
            balances[imd._mainIndex],
            balances[imd._wrappedIndex],
            _getVirtualSupply(balances[imd._BPT_INDEX], imd.pool),
            params
        );
    }

    function _swapGivenMainIn(
        IVault.SwapRequest memory request,
        uint256[] memory balances,
        LinearMath.Params memory params,
        ImmutableData memory imd
    ) internal view returns (uint256) {
        // _require(
        //     request.tokenOut == _wrappedToken || request.tokenOut == this,
        //     Errors.INVALID_TOKEN
        // );
        return request.tokenOut == IERC20(imd.pool)
            ? LinearMath._calcBptOutPerMainIn(
                request.amount,
                balances[imd._mainIndex],
                balances[imd._wrappedIndex],
                _getVirtualSupply(balances[imd._BPT_INDEX], imd.pool),
                params
            )
            : LinearMath._calcWrappedOutPerMainIn(request.amount, balances[imd._mainIndex], params);
    }

    function _swapGivenWrappedIn(
        IVault.SwapRequest memory request,
        uint256[] memory balances,
        LinearMath.Params memory params,
        ImmutableData memory imd
    ) internal view returns (uint256) {
        // _require(request.tokenOut == _mainToken || request.tokenOut == this, Errors.INVALID_TOKEN);
        return request.tokenOut == IERC20(imd.pool)
            ? LinearMath._calcBptOutPerWrappedIn(
                request.amount,
                balances[imd._mainIndex],
                balances[imd._wrappedIndex],
                _getVirtualSupply(balances[imd._BPT_INDEX], imd.pool),
                params
            )
            : LinearMath._calcMainOutPerWrappedIn(request.amount, balances[imd._mainIndex], params);
    }

    function _getVirtualSupply(uint256 bptBalance, address pool) internal view returns (uint256) {
        return (IERC20(pool).totalSupply()).sub(bptBalance);
    }

    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.mulDown(amount, scalingFactor);
    }

    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divDown(amount, scalingFactor);
    }

    function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal pure {
        uint256 length = amounts.length;
        for (uint256 i = 0; i < length; ++i) {
            amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
        }
    }
}

File 47 of 94 : PendleAuraBalancerStableLPSYV2.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

import "../../../../../interfaces/Balancer/IVault.sol";
import "../../../../../interfaces/Balancer/IRateProvider.sol";
import "../../../../../interfaces/Balancer/IBasePool.sol";
import "../../../../../interfaces/Balancer/IBalancerStablePreview.sol";
import "../../../../../interfaces/ConvexCurve/IBooster.sol";
import "../../../../../interfaces/ConvexCurve/IRewards.sol";

import "./StablePoolUserData.sol";
import "../../../../libraries/ArrayLib.sol";
import "../../../SYBaseWithRewards.sol";

abstract contract PendleAuraBalancerStableLPSYV2 is SYBaseWithRewards {
    using ArrayLib for address[];

    address internal constant BAL_TOKEN = 0xba100000625a3754423978a60c9317c58a424e3D;
    address internal constant AURA_TOKEN = 0xC0c293ce456fF0ED870ADd98a0828Dd4d2903DBF;
    address internal constant AURA_BOOSTER = 0xA57b8d98dAE62B26Ec3bcC4a365338157060B234;
    address internal constant BALANCER_VAULT = 0xBA12222222228d8Ba445958a75a0704d566BF2C8;
    uint256 internal constant DEFAULT_GAS_REENTRANCY_CHECK = 7000;

    address public immutable balLp;
    bytes32 public immutable balPoolId;

    uint256 public immutable auraPid;
    address public immutable auraRewardManager;

    IBalancerStablePreview public immutable previewHelper;

    uint256 public gasForReentrancyCheck;
    address[] public extraRewards;

    constructor(
        string memory _name,
        string memory _symbol,
        address _balLp,
        uint256 _auraPid,
        IBalancerStablePreview _previewHelper
    ) SYBaseWithRewards(_name, _symbol, _balLp) {
        balPoolId = IBasePool(_balLp).getPoolId();
        auraPid = _auraPid;

        (balLp, auraRewardManager) = _getPoolInfo(_auraPid);
        if (balLp != _balLp) revert Errors.SYBalancerInvalidPid();

        _safeApproveInf(_balLp, AURA_BOOSTER);

        address[] memory tokens = _getPoolTokenAddresses();
        for (uint256 i = 0; i < tokens.length; ++i) {
            _safeApproveInf(tokens[i], BALANCER_VAULT);
        }

        previewHelper = _previewHelper;
        gasForReentrancyCheck = DEFAULT_GAS_REENTRANCY_CHECK;
    }

    function _getPoolInfo(uint256 _auraPid)
        internal
        view
        returns (address _auraLp, address _auraRewardManager)
    {
        if (_auraPid > IBooster(AURA_BOOSTER).poolLength()) revert Errors.SYBalancerInvalidPid();
        (_auraLp, , , _auraRewardManager, , ) = IBooster(AURA_BOOSTER).poolInfo(_auraPid);
    }

    /*///////////////////////////////////////////////////////////////
                    DEPOSIT/REDEEM USING BASE TOKENS
    //////////////////////////////////////////////////////////////*/

    /**
     * @notice Either wraps LP, or also joins pool using exact tokenIn
     */
    function _deposit(address tokenIn, uint256 amount)
        internal
        virtual
        override
        returns (uint256 amountSharesOut)
    {
        if (tokenIn == balLp) {
            amountSharesOut = amount;
        } else {
            amountSharesOut = _depositToBalancer(tokenIn, amount);
        }
        IBooster(AURA_BOOSTER).deposit(auraPid, amountSharesOut, true);
    }

    /**
     * @notice Either unwraps LP, or also exits pool using exact LP for only `tokenOut`
     */
    function _redeem(
        address receiver,
        address tokenOut,
        uint256 amountSharesToRedeem
    ) internal virtual override returns (uint256 amountTokenOut) {
        IRewards(auraRewardManager).withdrawAndUnwrap(amountSharesToRedeem, false);

        if (tokenOut == balLp) {
            amountTokenOut = amountSharesToRedeem;
            _transferOut(tokenOut, receiver, amountTokenOut);
        } else {
            amountTokenOut = _redeemFromBalancer(receiver, tokenOut, amountSharesToRedeem);
        }
    }

    function exchangeRate() external view override returns (uint256) {
        _checkBalancerReadOnlyReentrancy();
        return IRateProvider(balLp).getRate();
    }

    /*
    * The `manageUserBalance` function is a non-view function that includes a reentrancy guard
        in the form of `_require(_status != _ENTERED, Errors.REENTRANCY);`. To prevent
        read-only reentrancy, it's important to ensure that our `manageUserBalance` has enough gas
        to reach this check, so that it can fail if necessary.

    * On the way to the check, there's at most one `COLD_SLOAD` plus miscellaneous decoding &
        require, which we've found through testing to cost no more than 3200 gas. Therefore,
        attaching 7000 gas should guarantee that it's always possible to reach the check.

    * Once we've reached the check, one of two scenarios can occur:
    1. The call doesn't pass the check, and reverts with error `BAL#400` ⇒ `response.length = 100`.
    2. The call passes the check. Then, the call can either:
        a. continue on to set the `status` variable to 2, causing the EVM to revert (since
        the sub-call is a `staticcall`), and `response.length == 0`
        b. run out of gas, which will also lead to a revert with `response.length == 0`
    In both cases, to differentiate between 1 and 2, we check `response.length != 0`. If it's
    true, then it's a read-only reentrancy. Otherwise, we're good (and we can ignore
    differentiating between 2a and 2b).
    */
    function _checkBalancerReadOnlyReentrancy() internal view {
        IVault.UserBalanceOp[] memory noop = new IVault.UserBalanceOp[](0);

        (bool isSuccess, bytes memory response) = BALANCER_VAULT.staticcall{
            gas: gasForReentrancyCheck
        }(
            abi.encodeWithSignature(
                "manageUserBalance((uint8,address,uint256,address,address)[])",
                noop
            )
        );

        assert(!isSuccess);
        if (response.length != 0) revert Errors.SYBalancerReentrancy();
    }

    function setGasForReentrancyCheck(uint256 newGas) external onlyOwner {
        require(newGas >= DEFAULT_GAS_REENTRANCY_CHECK, "lower than default");
        gasForReentrancyCheck = newGas;
    }

    /*///////////////////////////////////////////////////////////////
                    BALANCER-RELATED FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function _depositToBalancer(address tokenIn, uint256 amountTokenToDeposit)
        internal
        virtual
        returns (uint256)
    {
        IVault.JoinPoolRequest memory request = _assembleJoinRequest(
            tokenIn,
            amountTokenToDeposit
        );
        IVault(BALANCER_VAULT).joinPool(balPoolId, address(this), address(this), request);

        // amount shares out = amount LP received
        return _selfBalance(balLp);
    }

    function _assembleJoinRequest(address tokenIn, uint256 amountTokenToDeposit)
        internal
        view
        virtual
        returns (IVault.JoinPoolRequest memory request)
    {
        // max amounts in
        address[] memory assets = _getPoolTokenAddresses();

        uint256 amountsLength = _getBPTIndex() < type(uint256).max
            ? assets.length - 1
            : assets.length;

        uint256[] memory amountsIn = new uint256[](amountsLength);
        uint256[] memory maxAmountsIn = new uint256[](assets.length);

        uint256 index = assets.find(tokenIn);
        uint256 indexSkipBPT = index > _getBPTIndex() ? index - 1 : index;
        maxAmountsIn[index] = amountsIn[indexSkipBPT] = amountTokenToDeposit;

        // encode user data
        StablePoolUserData.JoinKind joinKind = StablePoolUserData
            .JoinKind
            .EXACT_TOKENS_IN_FOR_BPT_OUT;
        uint256 minimumBPT = 0;

        bytes memory userData = abi.encode(joinKind, amountsIn, minimumBPT);

        // assemble joinpoolrequest
        request = IVault.JoinPoolRequest(assets, maxAmountsIn, userData, false);
    }

    function _redeemFromBalancer(
        address receiver,
        address tokenOut,
        uint256 amountLpToRedeem
    ) internal virtual returns (uint256) {
        uint256 balanceBefore = IERC20(tokenOut).balanceOf(receiver);

        IVault.ExitPoolRequest memory request = _assembleExitRequest(tokenOut, amountLpToRedeem);
        IVault(BALANCER_VAULT).exitPool(balPoolId, address(this), payable(receiver), request);

        // calculate amount of tokens out
        uint256 balanceAfter = IERC20(tokenOut).balanceOf(receiver);
        return balanceAfter - balanceBefore;
    }

    function _assembleExitRequest(address tokenOut, uint256 amountLpToRedeem)
        internal
        view
        virtual
        returns (IVault.ExitPoolRequest memory request)
    {
        address[] memory assets = _getPoolTokenAddresses();
        uint256[] memory minAmountsOut = new uint256[](assets.length);

        // encode user data
        StablePoolUserData.ExitKind exitKind = StablePoolUserData
            .ExitKind
            .EXACT_BPT_IN_FOR_ONE_TOKEN_OUT;
        uint256 bptAmountIn = amountLpToRedeem;
        uint256 exitTokenIndex = assets.find(tokenOut);

        // must drop BPT index as well
        exitTokenIndex = _getBPTIndex() < exitTokenIndex ? exitTokenIndex - 1 : exitTokenIndex;

        bytes memory userData = abi.encode(exitKind, bptAmountIn, exitTokenIndex);

        // assemble exitpoolrequest
        request = IVault.ExitPoolRequest(assets, minAmountsOut, userData, false);
    }

    /// @dev this should return tokens in the same order as `IVault.getPoolTokens()`
    function _getPoolTokenAddresses() internal view virtual returns (address[] memory res);

    /// @dev should be overriden if and only if BPT is one of the pool tokens
    function _getBPTIndex() internal view virtual returns (uint256) {
        return type(uint256).max;
    }

    /*///////////////////////////////////////////////////////////////
                   PREVIEW FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function _previewDeposit(address tokenIn, uint256 amountTokenToDeposit)
        internal
        view
        virtual
        override
        returns (uint256 amountSharesOut)
    {
        if (tokenIn == balLp) {
            amountSharesOut = amountTokenToDeposit;
        } else {
            IVault.JoinPoolRequest memory request = _assembleJoinRequest(
                tokenIn,
                amountTokenToDeposit
            );
            amountSharesOut = previewHelper.joinPoolPreview(
                balPoolId,
                address(this),
                address(this),
                request,
                _getImmutablePoolData()
            );
        }
    }

    function _previewRedeem(address tokenOut, uint256 amountSharesToRedeem)
        internal
        view
        virtual
        override
        returns (uint256 amountTokenOut)
    {
        if (tokenOut == balLp) {
            amountTokenOut = amountSharesToRedeem;
        } else {
            IVault.ExitPoolRequest memory request = _assembleExitRequest(
                tokenOut,
                amountSharesToRedeem
            );

            amountTokenOut = previewHelper.exitPoolPreview(
                balPoolId,
                address(this),
                address(this),
                request,
                _getImmutablePoolData()
            );
        }
    }

    function _getImmutablePoolData() internal view virtual returns (bytes memory);

    /*///////////////////////////////////////////////////////////////
                               REWARDS-RELATED
    //////////////////////////////////////////////////////////////*/

    /// @notice allows owner to add new reward tokens in in case Aura does so with their pools
    function addRewardTokens(address token) external virtual onlyOwner {
        if (token == BAL_TOKEN || token == AURA_TOKEN || extraRewards.contains(token))
            revert Errors.SYInvalidRewardToken(token);

        uint256 nRewardsAura = IRewards(auraRewardManager).extraRewardsLength();
        for (uint256 i = 0; i < nRewardsAura; i++) {
            if (token == IRewards(IRewards(auraRewardManager).extraRewards(i)).rewardToken()) {
                extraRewards.push(token);
                return;
            }
        }

        revert Errors.SYInvalidRewardToken(token);
    }

    function extraRewardsLength() external view virtual returns (uint256) {
        return extraRewards.length;
    }

    function _getRewardTokens() internal view virtual override returns (address[] memory res) {
        uint256 extraRewardsLen = extraRewards.length;
        res = new address[](2 + extraRewardsLen);
        res[0] = BAL_TOKEN;
        res[1] = AURA_TOKEN;
        for (uint256 i = 0; i < extraRewardsLen; i++) {
            res[2 + i] = extraRewards[i];
        }
    }

    /// @dev if there is no extra rewards, we can call getReward with the 2nd arg (_claimExtra) to be false
    /// which helps save even more gas
    function _redeemExternalReward() internal virtual override {
        uint256 extraRewardsLen = extraRewards.length;
        if (extraRewardsLen == 0) IRewards(auraRewardManager).getReward(address(this), false);
        else IRewards(auraRewardManager).getReward(address(this), true);
    }

    /*///////////////////////////////////////////////////////////////
                    MISC FUNCTIONS FOR METADATA
    //////////////////////////////////////////////////////////////*/

    function getTokensIn() public view virtual override returns (address[] memory res);

    function getTokensOut() public view virtual override returns (address[] memory res);

    function isValidTokenIn(address token) public view virtual override returns (bool);

    function isValidTokenOut(address token) public view virtual override returns (bool);

    function assetInfo()
        external
        view
        returns (
            AssetType assetType,
            address assetAddress,
            uint8 assetDecimals
        )
    {
        return (AssetType.LIQUIDITY, balLp, IERC20Metadata(balLp).decimals());
    }
}

File 48 of 94 : StablePoolUserData.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.17;

library StablePoolUserData {
    enum JoinKind {
        INIT,
        EXACT_TOKENS_IN_FOR_BPT_OUT,
        TOKEN_IN_FOR_EXACT_BPT_OUT
    }
    enum ExitKind {
        EXACT_BPT_IN_FOR_ONE_TOKEN_OUT,
        BPT_IN_FOR_EXACT_TOKENS_OUT
    }

    function exactTokensInForBptOut(
        bytes memory self
    ) internal pure returns (uint256[] memory amountsIn, uint256 minBPTAmountOut) {
        (, amountsIn, minBPTAmountOut) = abi.decode(self, (JoinKind, uint256[], uint256));
    }

    function exactBptInForTokenOut(
        bytes memory self
    ) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) {
        (, bptAmountIn, tokenIndex) = abi.decode(self, (ExitKind, uint256, uint256));
    }
}

File 49 of 94 : StablePreviewBase.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "../../../../../interfaces/Balancer/IVault.sol";
import "../../../../../interfaces/Balancer/IBalancerFees.sol";
import "../../../../../interfaces/Balancer/IBalancerStablePreview.sol";

abstract contract StablePreviewBase is IBalancerStablePreview {
    address internal constant BALANCER_VAULT = 0xBA12222222228d8Ba445958a75a0704d566BF2C8;
    address internal constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
    address internal constant FEE_COLLECTOR = 0xce88686553686DA562CE7Cea497CE749DA109f9F;

    enum PoolBalanceChangeKind {
        JOIN,
        EXIT
    }

    struct PoolBalanceChange {
        IAsset[] assets;
        uint256[] limits;
        bytes userData;
        bool useInternalBalance;
    }

    function joinPoolPreview(
        bytes32 poolId,
        address sender,
        address recipient,
        IVault.JoinPoolRequest memory request,
        bytes memory data
    ) external view returns (uint256 amountBptOut) {
        amountBptOut = _joinOrExit(
            PoolBalanceChangeKind.JOIN,
            poolId,
            sender,
            payable(recipient),
            _toPoolBalanceChange(request),
            data
        );
    }

    function exitPoolPreview(
        bytes32 poolId,
        address sender,
        address recipient,
        IVault.ExitPoolRequest memory request,
        bytes memory data
    ) external view returns (uint256 amountTokenOut) {
        amountTokenOut = _joinOrExit(
            PoolBalanceChangeKind.EXIT,
            poolId,
            sender,
            recipient,
            _toPoolBalanceChange(request),
            data
        );
    }

    function _joinOrExit(
        PoolBalanceChangeKind kind,
        bytes32 poolId,
        address sender,
        address recipient,
        PoolBalanceChange memory change,
        bytes memory data
    ) private view returns (uint256 amountBptOrTokensOut) {
        IERC20[] memory tokens = _translateToIERC20(change.assets);
        (uint256[] memory balances, uint256 lastChangeBlock) = _validateTokensAndGetBalances(
            poolId,
            tokens
        );

        amountBptOrTokensOut = _callPoolBalanceChange(
            kind,
            poolId,
            sender,
            recipient,
            change,
            balances,
            lastChangeBlock,
            data
        );
    }

    function _callPoolBalanceChange(
        PoolBalanceChangeKind kind,
        bytes32 poolId,
        address sender,
        address recipient,
        PoolBalanceChange memory change,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        bytes memory data
    ) private view returns (uint256 amountsChanged) {
        if (kind == PoolBalanceChangeKind.JOIN) {
            amountsChanged = onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                _getProtocolSwapFeePercentage(),
                change.userData,
                data
            );
        } else {
            amountsChanged = onExitPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                _getProtocolSwapFeePercentage(),
                change.userData,
                data
            );
        }
    }

    function _getProtocolSwapFeePercentage() private view returns (uint256) {
        return IBalancerFees(FEE_COLLECTOR).getSwapFeePercentage();
    }

    function _validateTokensAndGetBalances(
        bytes32 poolId,
        IERC20[] memory //expectedTokens
    ) private view returns (uint256[] memory, uint256) {
        (, uint256[] memory balances, uint256 lastChangeBlock) = IVault(BALANCER_VAULT)
            .getPoolTokens(poolId);
        return (balances, lastChangeBlock);
    }

    function _translateToIERC20(IAsset[] memory assets) internal pure returns (IERC20[] memory) {
        IERC20[] memory tokens = new IERC20[](assets.length);
        for (uint256 i = 0; i < assets.length; ++i) {
            tokens[i] = _translateToIERC20(assets[i]);
        }
        return tokens;
    }

    function _translateToIERC20(IAsset asset) internal pure returns (IERC20) {
        return address(asset) == address(0) ? IERC20(WETH) : IERC20(address(asset));
    }

    function _toPoolBalanceChange(
        IVault.JoinPoolRequest memory request
    ) private pure returns (PoolBalanceChange memory change) {
        // solhint-disable-next-line no-inline-assembly
        assembly {
            change := request
        }
    }

    function _toPoolBalanceChange(
        IVault.ExitPoolRequest memory request
    ) private pure returns (PoolBalanceChange memory change) {
        // solhint-disable-next-line no-inline-assembly
        assembly {
            change := request
        }
    }

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        bytes memory data
    ) internal view virtual returns (uint256 bptAmountOut);

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        bytes memory data
    ) internal view virtual returns (uint256 amountTokenOut);
}

File 50 of 94 : PYIndex.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPPrincipalToken.sol";

import "./SYUtils.sol";
import "../libraries/math/Math.sol";

type PYIndex is uint256;

library PYIndexLib {
    using Math for uint256;
    using Math for int256;

    function newIndex(IPYieldToken YT) internal returns (PYIndex) {
        return PYIndex.wrap(YT.pyIndexCurrent());
    }

    function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
        return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount);
    }

    function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
        return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount);
    }

    function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) {
        return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount);
    }

    function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) {
        uint256 _index = PYIndex.unwrap(index);
        return SYUtils.syToAssetUp(_index, syAmount);
    }

    function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) {
        int256 sign = syAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int();
    }

    function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }

    function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) {
        int256 sign = assetAmount < 0 ? int256(-1) : int256(1);
        return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int();
    }
}

File 51 of 94 : SYBase.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "../../interfaces/IStandardizedYield.sol";

import "../erc20/PendleERC20Permit.sol";

import "../libraries/math/Math.sol";
import "../libraries/TokenHelper.sol";
import "../libraries/Errors.sol";
import "../libraries/BoringOwnableUpgradeable.sol";
import "@openzeppelin/contracts/security/Pausable.sol";

abstract contract SYBase is
    IStandardizedYield,
    PendleERC20Permit,
    TokenHelper,
    BoringOwnableUpgradeable,
    Pausable
{
    using Math for uint256;

    address public immutable yieldToken;

    constructor(
        string memory _name,
        string memory _symbol,
        address _yieldToken
    ) PendleERC20Permit(_name, _symbol, IERC20Metadata(_yieldToken).decimals()) initializer {
        yieldToken = _yieldToken;
        __BoringOwnable_init();
    }

    // solhint-disable no-empty-blocks
    receive() external payable {}

    /*///////////////////////////////////////////////////////////////
                    DEPOSIT/REDEEM USING BASE TOKENS
    //////////////////////////////////////////////////////////////*/

    /**
     * @dev See {IStandardizedYield-deposit}
     */
    function deposit(
        address receiver,
        address tokenIn,
        uint256 amountTokenToDeposit,
        uint256 minSharesOut
    ) external payable nonReentrant returns (uint256 amountSharesOut) {
        if (!isValidTokenIn(tokenIn)) revert Errors.SYInvalidTokenIn(tokenIn);
        if (amountTokenToDeposit == 0) revert Errors.SYZeroDeposit();

        _transferIn(tokenIn, msg.sender, amountTokenToDeposit);

        amountSharesOut = _deposit(tokenIn, amountTokenToDeposit);
        if (amountSharesOut < minSharesOut)
            revert Errors.SYInsufficientSharesOut(amountSharesOut, minSharesOut);

        _mint(receiver, amountSharesOut);
        emit Deposit(msg.sender, receiver, tokenIn, amountTokenToDeposit, amountSharesOut);
    }

    /**
     * @dev See {IStandardizedYield-redeem}
     */
    function redeem(
        address receiver,
        uint256 amountSharesToRedeem,
        address tokenOut,
        uint256 minTokenOut,
        bool burnFromInternalBalance
    ) external nonReentrant returns (uint256 amountTokenOut) {
        if (!isValidTokenOut(tokenOut)) revert Errors.SYInvalidTokenOut(tokenOut);
        if (amountSharesToRedeem == 0) revert Errors.SYZeroRedeem();

        if (burnFromInternalBalance) {
            _burn(address(this), amountSharesToRedeem);
        } else {
            _burn(msg.sender, amountSharesToRedeem);
        }

        amountTokenOut = _redeem(receiver, tokenOut, amountSharesToRedeem);
        if (amountTokenOut < minTokenOut)
            revert Errors.SYInsufficientTokenOut(amountTokenOut, minTokenOut);
        emit Redeem(msg.sender, receiver, tokenOut, amountSharesToRedeem, amountTokenOut);
    }

    /**
     * @notice mint shares based on the deposited base tokens
     * @param tokenIn base token address used to mint shares
     * @param amountDeposited amount of base tokens deposited
     * @return amountSharesOut amount of shares minted
     */
    function _deposit(
        address tokenIn,
        uint256 amountDeposited
    ) internal virtual returns (uint256 amountSharesOut);

    /**
     * @notice redeems base tokens based on amount of shares to be burned
     * @param tokenOut address of the base token to be redeemed
     * @param amountSharesToRedeem amount of shares to be burned
     * @return amountTokenOut amount of base tokens redeemed
     */
    function _redeem(
        address receiver,
        address tokenOut,
        uint256 amountSharesToRedeem
    ) internal virtual returns (uint256 amountTokenOut);

    /*///////////////////////////////////////////////////////////////
                               EXCHANGE-RATE
    //////////////////////////////////////////////////////////////*/

    /**
     * @dev See {IStandardizedYield-exchangeRate}
     */
    function exchangeRate() external view virtual override returns (uint256 res);

    /*///////////////////////////////////////////////////////////////
                               REWARDS-RELATED
    //////////////////////////////////////////////////////////////*/

    /**
     * @dev See {IStandardizedYield-claimRewards}
     */
    function claimRewards(
        address /*user*/
    ) external virtual override returns (uint256[] memory rewardAmounts) {
        rewardAmounts = new uint256[](0);
    }

    /**
     * @dev See {IStandardizedYield-getRewardTokens}
     */
    function getRewardTokens()
        external
        view
        virtual
        override
        returns (address[] memory rewardTokens)
    {
        rewardTokens = new address[](0);
    }

    /**
     * @dev See {IStandardizedYield-accruedRewards}
     */
    function accruedRewards(
        address /*user*/
    ) external view virtual override returns (uint256[] memory rewardAmounts) {
        rewardAmounts = new uint256[](0);
    }

    function rewardIndexesCurrent() external virtual override returns (uint256[] memory indexes) {
        indexes = new uint256[](0);
    }

    function rewardIndexesStored()
        external
        view
        virtual
        override
        returns (uint256[] memory indexes)
    {
        indexes = new uint256[](0);
    }

    /*///////////////////////////////////////////////////////////////
                MISC METADATA FUNCTIONS
    //////////////////////////////////////////////////////////////*/

    function previewDeposit(
        address tokenIn,
        uint256 amountTokenToDeposit
    ) external view virtual returns (uint256 amountSharesOut) {
        if (!isValidTokenIn(tokenIn)) revert Errors.SYInvalidTokenIn(tokenIn);
        return _previewDeposit(tokenIn, amountTokenToDeposit);
    }

    function previewRedeem(
        address tokenOut,
        uint256 amountSharesToRedeem
    ) external view virtual returns (uint256 amountTokenOut) {
        if (!isValidTokenOut(tokenOut)) revert Errors.SYInvalidTokenOut(tokenOut);
        return _previewRedeem(tokenOut, amountSharesToRedeem);
    }

    function pause() external onlyOwner {
        _pause();
    }

    function unpause() external onlyOwner {
        _unpause();
    }

    function _beforeTokenTransfer(
        address,
        address,
        uint256
    ) internal virtual override whenNotPaused {}

    function _previewDeposit(
        address tokenIn,
        uint256 amountTokenToDeposit
    ) internal view virtual returns (uint256 amountSharesOut);

    function _previewRedeem(
        address tokenOut,
        uint256 amountSharesToRedeem
    ) internal view virtual returns (uint256 amountTokenOut);

    function getTokensIn() public view virtual returns (address[] memory res);

    function getTokensOut() public view virtual returns (address[] memory res);

    function isValidTokenIn(address token) public view virtual returns (bool);

    function isValidTokenOut(address token) public view virtual returns (bool);
}

File 52 of 94 : SYBaseWithRewards.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../RewardManager/RewardManager.sol";
import "./SYBase.sol";

/// NOTE: yieldToken MUST NEVER BE a rewardToken, else the rewardManager will behave erroneously
abstract contract SYBaseWithRewards is SYBase, RewardManager {
    using Math for uint256;
    using ArrayLib for address[];

    constructor(
        string memory _name,
        string memory _symbol,
        address _yieldToken
    )
        SYBase(_name, _symbol, _yieldToken) // solhint-disable-next-line no-empty-blocks
    {}

    /*///////////////////////////////////////////////////////////////
                               REWARDS-RELATED
    //////////////////////////////////////////////////////////////*/

    /**
     * @dev See {IStandardizedYield-claimRewards}
     */
    function claimRewards(address user)
        external
        virtual
        override
        nonReentrant
        returns (uint256[] memory rewardAmounts)
    {
        _updateAndDistributeRewards(user);
        rewardAmounts = _doTransferOutRewards(user, user);

        emit ClaimRewards(user, _getRewardTokens(), rewardAmounts);
    }

    /**
     * @dev See {IStandardizedYield-getRewardTokens}
     */
    function getRewardTokens()
        external
        view
        virtual
        override
        returns (address[] memory rewardTokens)
    {
        rewardTokens = _getRewardTokens();
    }

    /**
     * @dev See {IStandardizedYield-accruedRewards}
     */
    function accruedRewards(address user)
        external
        view
        virtual
        override
        returns (uint256[] memory rewardAmounts)
    {
        address[] memory rewardTokens = _getRewardTokens();
        rewardAmounts = new uint256[](rewardTokens.length);
        for (uint256 i = 0; i < rewardTokens.length; ) {
            rewardAmounts[i] = userReward[rewardTokens[i]][user].accrued;
            unchecked {
                i++;
            }
        }
    }

    function rewardIndexesCurrent()
        external
        override
        nonReentrant
        returns (uint256[] memory indexes)
    {
        _updateRewardIndex();
        return rewardIndexesStored();
    }

    function rewardIndexesStored()
        public
        view
        virtual
        override
        returns (uint256[] memory indexes)
    {
        address[] memory rewardTokens = _getRewardTokens();
        indexes = new uint256[](rewardTokens.length);
        for (uint256 i = 0; i < rewardTokens.length; ) {
            indexes[i] = rewardState[rewardTokens[i]].index;
            unchecked {
                i++;
            }
        }
    }

    /**
     * @notice returns the total number of reward shares
     * @dev this is simply the total supply of shares, as rewards shares are equivalent to SY shares
     */
    function _rewardSharesTotal() internal view virtual override returns (uint256) {
        return totalSupply();
    }

    /**
     * @notice returns the reward shares of (`user`)
     * @dev this is simply the SY balance of (`user`), as rewards shares are equivalent to SY shares
     */
    function _rewardSharesUser(address user) internal view virtual override returns (uint256) {
        return balanceOf(user);
    }

    /*///////////////////////////////////////////////////////////////
                            TRANSFER HOOKS
    //////////////////////////////////////////////////////////////*/
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256
    ) internal virtual override whenNotPaused {
        _updateAndDistributeRewardsForTwo(from, to);
    }
}

File 53 of 94 : SYUtils.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

library SYUtils {
    uint256 internal constant ONE = 1e18;

    function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate) / ONE;
    }

    function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) {
        return (syAmount * exchangeRate + ONE - 1) / ONE;
    }

    function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) {
        return (assetAmount * ONE) / exchangeRate;
    }

    function assetToSyUp(
        uint256 exchangeRate,
        uint256 assetAmount
    ) internal pure returns (uint256) {
        return (assetAmount * ONE + exchangeRate - 1) / exchangeRate;
    }
}

File 54 of 94 : InterestManagerYT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPPrincipalToken.sol";
import "../../interfaces/IPInterestManagerYT.sol";
import "../../interfaces/IPYieldContractFactory.sol";

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import "../libraries/math/Math.sol";
import "../libraries/TokenHelper.sol";
import "../StandardizedYield/SYUtils.sol";

/*
With YT yielding more SYs overtime, which is allowed to be redeemed by users, the reward distribution should
be based on the amount of SYs that their YT currently represent, plus with their dueInterest.

It has been proven and tested that totalSyRedeemable will not change over time, unless users redeem their interest or redeemPY.

Due to this, it is required to update users' accruedReward STRICTLY BEFORE redeeming their interest.
*/
abstract contract InterestManagerYT is TokenHelper, IPInterestManagerYT {
    using Math for uint256;

    struct UserInterest {
        uint128 index;
        uint128 accrued;
    }

    mapping(address => UserInterest) public userInterest;

    function _distributeInterest(address user) internal {
        _distributeInterestForTwo(user, address(0));
    }

    function _distributeInterestForTwo(address user1, address user2) internal {
        uint256 index = _getInterestIndex();
        if (user1 != address(0) && user1 != address(this))
            _distributeInterestPrivate(user1, index);
        if (user2 != address(0) && user2 != address(this))
            _distributeInterestPrivate(user2, index);
    }

    function _doTransferOutInterest(
        address user,
        address SY,
        address factory
    ) internal returns (uint256 interestAmount) {
        address treasury = IPYieldContractFactory(factory).treasury();
        uint256 feeRate = IPYieldContractFactory(factory).interestFeeRate();

        uint256 interestPreFee = userInterest[user].accrued;
        userInterest[user].accrued = 0;

        uint256 feeAmount = interestPreFee.mulDown(feeRate);
        interestAmount = interestPreFee - feeAmount;

        _transferOut(SY, treasury, feeAmount);
        _transferOut(SY, user, interestAmount);
    }

    // should only be callable from `_distributeInterestForTwo` & make sure user != address(0) && user != address(this)
    function _distributeInterestPrivate(address user, uint256 currentIndex) private {
        assert(user != address(0) && user != address(this));

        uint256 prevIndex = userInterest[user].index;

        if (prevIndex == currentIndex) return;
        if (prevIndex == 0) {
            userInterest[user].index = currentIndex.Uint128();
            return;
        }

        uint256 principal = _YTbalance(user);

        uint256 interestFromYT = (principal * (currentIndex - prevIndex)).divDown(
            prevIndex * currentIndex
        );

        userInterest[user].accrued += interestFromYT.Uint128();
        userInterest[user].index = currentIndex.Uint128();
    }

    function _getInterestIndex() internal virtual returns (uint256 index);

    function _YTbalance(address user) internal view virtual returns (uint256);
}

File 55 of 94 : PendlePrincipalToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../../interfaces/IPPrincipalToken.sol";
import "../../interfaces/IPYieldToken.sol";

import "../libraries/MiniHelpers.sol";
import "../libraries/Errors.sol";

import "../erc20/PendleERC20Permit.sol";

import "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

contract PendlePrincipalToken is PendleERC20Permit, Initializable, IPPrincipalToken {
    address public immutable SY;
    address public immutable factory;
    uint256 public immutable expiry;
    address public YT;

    modifier onlyYT() {
        if (msg.sender != YT) revert Errors.OnlyYT();
        _;
    }

    modifier onlyYieldFactory() {
        if (msg.sender != factory) revert Errors.OnlyYCFactory();
        _;
    }

    constructor(
        address _SY,
        string memory _name,
        string memory _symbol,
        uint8 __decimals,
        uint256 _expiry
    ) PendleERC20Permit(_name, _symbol, __decimals) {
        SY = _SY;
        expiry = _expiry;
        factory = msg.sender;
    }

    function initialize(address _YT) external initializer onlyYieldFactory {
        YT = _YT;
    }

    /**
     * @dev only callable by the YT correspond to this PT
     */
    function burnByYT(address user, uint256 amount) external onlyYT {
        _burn(user, amount);
    }

    /**
     * @dev only callable by the YT correspond to this PT
     */
    function mintByYT(address user, uint256 amount) external onlyYT {
        _mint(user, amount);
    }

    function isExpired() public view returns (bool) {
        return MiniHelpers.isCurrentlyExpired(expiry);
    }
}

File 56 of 94 : PendleYieldContractFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
/*
 * MIT License
 * ===========
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 */

pragma solidity 0.8.17;

import "../../interfaces/IPYieldContractFactory.sol";

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/utils/structs/EnumerableSet.sol";

import "../libraries/ExpiryUtilsLib.sol";
import "../libraries/BaseSplitCodeFactory.sol";
import "../libraries/MiniHelpers.sol";
import "../libraries/Errors.sol";
import "../libraries/BoringOwnableUpgradeable.sol";
import "../libraries/StringLib.sol";

import "./PendlePrincipalToken.sol";
import "./PendleYieldToken.sol";

/// @dev If this contract is ever made upgradeable, please pay attention to the numContractDeployed variable
contract PendleYieldContractFactory is BoringOwnableUpgradeable, IPYieldContractFactory {
    using ExpiryUtils for string;
    using StringLib for string;
    using StringLib for StringLib.slice;

    string private constant PT_PREFIX = "PT";
    string private constant YT_PREFIX = "YT";
    string private constant SY_SYMBOL_PREF = "SY-";
    string private constant SY_NAME_PREF = "SY ";

    address public immutable ytCreationCodeContractA;
    uint256 public immutable ytCreationCodeSizeA;
    address public immutable ytCreationCodeContractB;
    uint256 public immutable ytCreationCodeSizeB;

    // 1 SLOT
    uint128 public interestFeeRate; // a fixed point number
    uint128 public rewardFeeRate; // a fixed point number

    // 1 SLOT
    address public treasury;
    uint96 public expiryDivisor;

    // SY => expiry => address
    // returns address(0) if not created
    mapping(address => mapping(uint256 => address)) public getPT;
    mapping(address => mapping(uint256 => address)) public getYT;
    mapping(address => bool) public isPT;
    mapping(address => bool) public isYT;

    uint256 public constant maxInterestFeeRate = 2e17; // 20%
    uint256 public constant maxRewardFeeRate = 2e17; // 20%

    constructor(
        address _ytCreationCodeContractA,
        uint256 _ytCreationCodeSizeA,
        address _ytCreationCodeContractB,
        uint256 _ytCreationCodeSizeB
    ) {
        ytCreationCodeContractA = _ytCreationCodeContractA;
        ytCreationCodeSizeA = _ytCreationCodeSizeA;
        ytCreationCodeContractB = _ytCreationCodeContractB;
        ytCreationCodeSizeB = _ytCreationCodeSizeB;
    }

    function initialize(
        uint96 _expiryDivisor,
        uint128 _interestFeeRate,
        uint128 _rewardFeeRate,
        address _treasury
    ) external initializer {
        __BoringOwnable_init();
        setExpiryDivisor(_expiryDivisor);
        setInterestFeeRate(_interestFeeRate);
        setRewardFeeRate(_rewardFeeRate);
        setTreasury(_treasury);
    }

    /**
     * @notice Create a pair of (PT, YT) from any SY and valid expiry. Anyone can create a yield contract
     * @dev It's intentional to make expiry an uint32 to guard against fat fingers. uint32.max is year 2106
     */
    function createYieldContract(
        address SY,
        uint32 expiry,
        bool doCacheIndexSameBlock
    ) external returns (address PT, address YT) {
        if (MiniHelpers.isTimeInThePast(expiry) || expiry % expiryDivisor != 0)
            revert Errors.YCFactoryInvalidExpiry();

        if (getPT[SY][expiry] != address(0)) revert Errors.YCFactoryYieldContractExisted();

        IStandardizedYield _SY = IStandardizedYield(SY);

        (, , uint8 assetDecimals) = _SY.assetInfo();

        string memory syCoreName = _stripSYPrefix(_SY.name());
        string memory syCoreSymbol = _stripSYPrefix(_SY.symbol());

        PT = Create2.deploy(
            0,
            bytes32(block.chainid),
            abi.encodePacked(
                type(PendlePrincipalToken).creationCode,
                abi.encode(
                    SY,
                    PT_PREFIX.concat(syCoreName, expiry, " "),
                    PT_PREFIX.concat(syCoreSymbol, expiry, "-"),
                    assetDecimals,
                    expiry
                )
            )
        );

        YT = BaseSplitCodeFactory._create2(
            0,
            bytes32(block.chainid),
            abi.encode(
                SY,
                PT,
                YT_PREFIX.concat(syCoreName, expiry, " "),
                YT_PREFIX.concat(syCoreSymbol, expiry, "-"),
                assetDecimals,
                expiry,
                doCacheIndexSameBlock
            ),
            ytCreationCodeContractA,
            ytCreationCodeSizeA,
            ytCreationCodeContractB,
            ytCreationCodeSizeB
        );

        IPPrincipalToken(PT).initialize(YT);

        getPT[SY][expiry] = PT;
        getYT[SY][expiry] = YT;
        isPT[PT] = true;
        isYT[YT] = true;

        emit CreateYieldContract(SY, expiry, PT, YT);
    }

    function setExpiryDivisor(uint96 newExpiryDivisor) public onlyOwner {
        if (newExpiryDivisor == 0) revert Errors.YCFactoryZeroExpiryDivisor();

        expiryDivisor = newExpiryDivisor;
        emit SetExpiryDivisor(newExpiryDivisor);
    }

    function setInterestFeeRate(uint128 newInterestFeeRate) public onlyOwner {
        if (newInterestFeeRate > maxInterestFeeRate)
            revert Errors.YCFactoryInterestFeeRateTooHigh(newInterestFeeRate, maxInterestFeeRate);

        interestFeeRate = newInterestFeeRate;
        emit SetInterestFeeRate(newInterestFeeRate);
    }

    function setRewardFeeRate(uint128 newRewardFeeRate) public onlyOwner {
        if (newRewardFeeRate > maxRewardFeeRate)
            revert Errors.YCFactoryRewardFeeRateTooHigh(newRewardFeeRate, maxRewardFeeRate);

        rewardFeeRate = newRewardFeeRate;
        emit SetRewardFeeRate(newRewardFeeRate);
    }

    function setTreasury(address newTreasury) public onlyOwner {
        if (newTreasury == address(0)) revert Errors.YCFactoryZeroTreasury();

        treasury = newTreasury;
        emit SetTreasury(newTreasury);
    }

    function _stripSYPrefix(string memory _str) internal pure returns (string memory) {
        StringLib.slice memory str = _str.toSlice();
        StringLib.slice memory delim_name = SY_NAME_PREF.toSlice();
        StringLib.slice memory delim_symbol = SY_SYMBOL_PREF.toSlice();
        return str.beyond(delim_name).beyond(delim_symbol).toString();
    }
}

File 57 of 94 : PendleYieldToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import "../../interfaces/IStandardizedYield.sol";
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPPrincipalToken.sol";

import "../libraries/math/Math.sol";
import "../libraries/ArrayLib.sol";
import "../../interfaces/IPYieldContractFactory.sol";
import "../StandardizedYield/SYUtils.sol";
import "../libraries/Errors.sol";
import "../libraries/MiniHelpers.sol";

import "../RewardManager/RewardManagerAbstract.sol";
import "../erc20/PendleERC20Permit.sol";
import "./InterestManagerYT.sol";

/**
Invariance to maintain:
- address(0) & address(this) should never have any rewards & activeBalance accounting done. This is
    guaranteed by address(0) & address(this) check in each updateForTwo function
*/
contract PendleYieldToken is
    IPYieldToken,
    PendleERC20Permit,
    RewardManagerAbstract,
    InterestManagerYT
{
    using Math for uint256;
    using SafeERC20 for IERC20;
    using ArrayLib for uint256[];

    struct PostExpiryData {
        uint128 firstPYIndex;
        uint128 totalSyInterestForTreasury;
        mapping(address => uint256) firstRewardIndex;
        mapping(address => uint256) userRewardOwed;
    }

    address public immutable SY;
    address public immutable PT;
    address public immutable factory;
    uint256 public immutable expiry;

    bool public immutable doCacheIndexSameBlock;

    uint256 public syReserve;

    uint128 public pyIndexLastUpdatedBlock;
    uint128 internal _pyIndexStored;

    PostExpiryData public postExpiry;

    modifier updateData() {
        if (isExpired()) _setPostExpiryData();
        _;
        _updateSyReserve();
    }

    modifier notExpired() {
        if (isExpired()) revert Errors.YCExpired();
        _;
    }

    /**
     * @param _doCacheIndexSameBlock if true, the PY index is cached for each block, and thus is
     * constant for all txs within the same block. Otherwise, the PY index is recalculated for
     * every tx.
     */
    constructor(
        address _SY,
        address _PT,
        string memory _name,
        string memory _symbol,
        uint8 __decimals,
        uint256 _expiry,
        bool _doCacheIndexSameBlock
    ) PendleERC20Permit(_name, _symbol, __decimals) {
        SY = _SY;
        PT = _PT;
        expiry = _expiry;
        factory = msg.sender;
        doCacheIndexSameBlock = _doCacheIndexSameBlock;
    }

    /**
     * @notice Tokenize SY into PT + YT of equal qty. Every unit of asset of SY will create 1 PT + 1 YT
     * @dev SY must be transferred to this contract prior to calling
     */
    function mintPY(
        address receiverPT,
        address receiverYT
    ) external nonReentrant notExpired updateData returns (uint256 amountPYOut) {
        address[] memory receiverPTs = new address[](1);
        address[] memory receiverYTs = new address[](1);
        uint256[] memory amountSyToMints = new uint256[](1);

        (receiverPTs[0], receiverYTs[0], amountSyToMints[0]) = (
            receiverPT,
            receiverYT,
            _getFloatingSyAmount()
        );

        uint256[] memory amountPYOuts = _mintPY(receiverPTs, receiverYTs, amountSyToMints);
        amountPYOut = amountPYOuts[0];
    }

    /// @notice Tokenize SY into PT + YT for multiple receivers. See `mintPY()` for more details
    function mintPYMulti(
        address[] calldata receiverPTs,
        address[] calldata receiverYTs,
        uint256[] calldata amountSyToMints
    ) external nonReentrant notExpired updateData returns (uint256[] memory amountPYOuts) {
        uint256 length = receiverPTs.length;

        if (length == 0) revert Errors.ArrayEmpty();
        if (receiverYTs.length != length || amountSyToMints.length != length)
            revert Errors.ArrayLengthMismatch();

        uint256 totalSyToMint = amountSyToMints.sum();
        if (totalSyToMint > _getFloatingSyAmount())
            revert Errors.YieldContractInsufficientSy(totalSyToMint, _getFloatingSyAmount());

        amountPYOuts = _mintPY(receiverPTs, receiverYTs, amountSyToMints);
    }

    /**
     * @notice converts PT(+YT) tokens into SY, but interests & rewards are not redeemed at the
     * same time
     * @dev PT/YT must be transferred to this contract prior to calling
     */
    function redeemPY(
        address receiver
    ) external nonReentrant updateData returns (uint256 amountSyOut) {
        address[] memory receivers = new address[](1);
        uint256[] memory amounts = new uint256[](1);
        (receivers[0], amounts[0]) = (receiver, _getAmountPYToRedeem());

        uint256[] memory amountSyOuts;
        amountSyOuts = _redeemPY(receivers, amounts);

        amountSyOut = amountSyOuts[0];
    }

    /**
     * @notice redeems PT(+YT) for multiple users. See `redeemPY()`
     * @dev PT/YT must be transferred to this contract prior to calling
     * @dev fails if unable to redeem the total PY amount in `amountPYToRedeems`
     */
    function redeemPYMulti(
        address[] calldata receivers,
        uint256[] calldata amountPYToRedeems
    ) external nonReentrant updateData returns (uint256[] memory amountSyOuts) {
        if (receivers.length != amountPYToRedeems.length) revert Errors.ArrayLengthMismatch();
        if (receivers.length == 0) revert Errors.ArrayEmpty();
        amountSyOuts = _redeemPY(receivers, amountPYToRedeems);
    }

    /**
     * @notice Redeems interests and rewards for `user`
     * @param redeemInterest will only transfer out interest for user if true
     * @param redeemRewards will only transfer out rewards for user if true
     * @dev With YT yielding interest in the form of SY, which is redeemable by users, the reward
     * distribution should be based on the amount of SYs that their YT currently represent, plus
     * their dueInterest. It has been proven and tested that _rewardSharesUser will not change over
     * time, unless users redeem their dueInterest or redeemPY. Due to this, it is required to
     * update users' accruedReward STRICTLY BEFORE transferring out their interest.
     */
    function redeemDueInterestAndRewards(
        address user,
        bool redeemInterest,
        bool redeemRewards
    ) external nonReentrant updateData returns (uint256 interestOut, uint256[] memory rewardsOut) {
        if (!redeemInterest && !redeemRewards) revert Errors.YCNothingToRedeem();

        // if redeemRewards == true, this line must be here for obvious reason
        // if redeemInterest == true, this line must be here because of the reason above
        _updateAndDistributeRewards(user);

        if (redeemRewards) {
            rewardsOut = _doTransferOutRewards(user, user);
            emit RedeemRewards(user, rewardsOut);
        } else {
            address[] memory tokens = getRewardTokens();
            rewardsOut = new uint256[](tokens.length);
        }

        if (redeemInterest) {
            _distributeInterest(user);
            interestOut = _doTransferOutInterest(user, SY, factory);
            emit RedeemInterest(user, interestOut);
        } else {
            interestOut = 0;
        }
    }

    /**
     * @dev All rewards and interests accrued post-expiry goes to the treasury.
     * Reverts if called pre-expiry.
     */
    function redeemInterestAndRewardsPostExpiryForTreasury()
        external
        nonReentrant
        updateData
        returns (uint256 interestOut, uint256[] memory rewardsOut)
    {
        if (!isExpired()) revert Errors.YCNotExpired();

        address treasury = IPYieldContractFactory(factory).treasury();

        address[] memory tokens = getRewardTokens();
        rewardsOut = new uint256[](tokens.length);

        _redeemExternalReward();

        for (uint256 i = 0; i < tokens.length; i++) {
            rewardsOut[i] = _selfBalance(tokens[i]) - postExpiry.userRewardOwed[tokens[i]];
        }

        _transferOut(tokens, treasury, rewardsOut);

        interestOut = postExpiry.totalSyInterestForTreasury;
        postExpiry.totalSyInterestForTreasury = 0;
        _transferOut(SY, treasury, interestOut);
    }

    /// @notice updates and returns the reward indexes
    function rewardIndexesCurrent() external override nonReentrant returns (uint256[] memory) {
        return IStandardizedYield(SY).rewardIndexesCurrent();
    }

    /**
     * @notice updates and returns the current PY index
     * @dev this function maximizes the current PY index with the previous index, guaranteeing
     * non-decreasing PY index
     * @dev if `doCacheIndexSameBlock` is true, PY index only updates at most once per block,
     * and has no state changes on the second call onwards (within the same block).
     * @dev see `pyIndexStored()` for view function for cached value.
     */
    function pyIndexCurrent() public nonReentrant returns (uint256 currentIndex) {
        currentIndex = _pyIndexCurrent();
    }

    /// @notice returns the last-updated PY index
    function pyIndexStored() public view returns (uint256) {
        return _pyIndexStored;
    }

    /**
     * @notice do a final rewards redeeming, and sets post-expiry data
     * @dev has no effect if called pre-expiry
     */
    function setPostExpiryData() external nonReentrant {
        if (isExpired()) {
            _setPostExpiryData();
        }
    }

    /**
     * @notice returns the current data post-expiry, if exists
     * @dev reverts if post-expiry data not set (see `setPostExpiryData()`)
     * @return firstPYIndex the earliest PY index post-expiry
     * @return totalSyInterestForTreasury current amount of SY interests post-expiry for treasury
     * @return firstRewardIndexes the earliest reward indices post-expiry, for each reward token
     * @return userRewardOwed amount of unclaimed user rewards, for each reward token
     */
    function getPostExpiryData()
        external
        view
        returns (
            uint256 firstPYIndex,
            uint256 totalSyInterestForTreasury,
            uint256[] memory firstRewardIndexes,
            uint256[] memory userRewardOwed
        )
    {
        if (postExpiry.firstPYIndex == 0) revert Errors.YCPostExpiryDataNotSet();

        firstPYIndex = postExpiry.firstPYIndex;
        totalSyInterestForTreasury = postExpiry.totalSyInterestForTreasury;

        address[] memory tokens = getRewardTokens();
        firstRewardIndexes = new uint256[](tokens.length);
        userRewardOwed = new uint256[](tokens.length);

        for (uint256 i = 0; i < tokens.length; ++i) {
            firstRewardIndexes[i] = postExpiry.firstRewardIndex[tokens[i]];
            userRewardOwed[i] = postExpiry.userRewardOwed[tokens[i]];
        }
    }

    function _mintPY(
        address[] memory receiverPTs,
        address[] memory receiverYTs,
        uint256[] memory amountSyToMints
    ) internal returns (uint256[] memory amountPYOuts) {
        amountPYOuts = new uint256[](amountSyToMints.length);

        uint256 index = _pyIndexCurrent();

        for (uint256 i = 0; i < amountSyToMints.length; i++) {
            amountPYOuts[i] = _calcPYToMint(amountSyToMints[i], index);

            _mint(receiverYTs[i], amountPYOuts[i]);
            IPPrincipalToken(PT).mintByYT(receiverPTs[i], amountPYOuts[i]);

            emit Mint(
                msg.sender,
                receiverPTs[i],
                receiverYTs[i],
                amountSyToMints[i],
                amountPYOuts[i]
            );
        }
    }

    function isExpired() public view returns (bool) {
        return MiniHelpers.isCurrentlyExpired(expiry);
    }

    function _redeemPY(
        address[] memory receivers,
        uint256[] memory amountPYToRedeems
    ) internal returns (uint256[] memory amountSyOuts) {
        uint256 totalAmountPYToRedeem = amountPYToRedeems.sum();
        IPPrincipalToken(PT).burnByYT(address(this), totalAmountPYToRedeem);
        if (!isExpired()) _burn(address(this), totalAmountPYToRedeem);

        uint256 index = _pyIndexCurrent();
        uint256 totalSyInterestPostExpiry;
        amountSyOuts = new uint256[](receivers.length);

        for (uint256 i = 0; i < receivers.length; i++) {
            uint256 syInterestPostExpiry;
            (amountSyOuts[i], syInterestPostExpiry) = _calcSyRedeemableFromPY(
                amountPYToRedeems[i],
                index
            );
            _transferOut(SY, receivers[i], amountSyOuts[i]);
            totalSyInterestPostExpiry += syInterestPostExpiry;

            emit Burn(msg.sender, receivers[i], amountPYToRedeems[i], amountSyOuts[i]);
        }
        if (totalSyInterestPostExpiry != 0) {
            postExpiry.totalSyInterestForTreasury += totalSyInterestPostExpiry.Uint128();
        }
    }

    function _calcPYToMint(
        uint256 amountSy,
        uint256 indexCurrent
    ) internal pure returns (uint256 amountPY) {
        // doesn't matter before or after expiry, since mintPY is only allowed before expiry
        return SYUtils.syToAsset(indexCurrent, amountSy);
    }

    function _calcSyRedeemableFromPY(
        uint256 amountPY,
        uint256 indexCurrent
    ) internal view returns (uint256 syToUser, uint256 syInterestPostExpiry) {
        syToUser = SYUtils.assetToSy(indexCurrent, amountPY);
        if (isExpired()) {
            uint256 totalSyRedeemable = SYUtils.assetToSy(postExpiry.firstPYIndex, amountPY);
            syInterestPostExpiry = totalSyRedeemable - syToUser;
        }
    }

    function _getAmountPYToRedeem() internal view returns (uint256) {
        if (!isExpired()) return Math.min(_selfBalance(PT), balanceOf(address(this)));
        else return _selfBalance(PT);
    }

    function _updateSyReserve() internal virtual {
        syReserve = _selfBalance(SY);
    }

    function _getFloatingSyAmount() internal view returns (uint256 amount) {
        amount = _selfBalance(SY) - syReserve;
        if (amount == 0) revert Errors.YCNoFloatingSy();
    }

    function _setPostExpiryData() internal {
        PostExpiryData storage local = postExpiry;
        if (local.firstPYIndex != 0) return; // already set

        _redeemExternalReward(); // do a final redeem. All the future reward income will belong to the treasury

        local.firstPYIndex = _pyIndexCurrent().Uint128();
        address[] memory rewardTokens = IStandardizedYield(SY).getRewardTokens();
        uint256[] memory rewardIndexes = IStandardizedYield(SY).rewardIndexesCurrent();
        for (uint256 i = 0; i < rewardTokens.length; i++) {
            local.firstRewardIndex[rewardTokens[i]] = rewardIndexes[i];
            local.userRewardOwed[rewardTokens[i]] = _selfBalance(rewardTokens[i]);
        }
    }

    /*///////////////////////////////////////////////////////////////
                               INTEREST-RELATED
    //////////////////////////////////////////////////////////////*/

    function _getInterestIndex() internal virtual override returns (uint256 index) {
        if (isExpired()) index = postExpiry.firstPYIndex;
        else index = _pyIndexCurrent();
    }

    function _pyIndexCurrent() internal returns (uint256 currentIndex) {
        if (doCacheIndexSameBlock && pyIndexLastUpdatedBlock == block.number)
            return _pyIndexStored;

        uint128 index128 = Math
            .max(IStandardizedYield(SY).exchangeRate(), _pyIndexStored)
            .Uint128();

        currentIndex = index128;
        _pyIndexStored = index128;
        pyIndexLastUpdatedBlock = uint128(block.number);

        emit NewInterestIndex(currentIndex);
    }

    function _YTbalance(address user) internal view override returns (uint256) {
        return balanceOf(user);
    }

    /*///////////////////////////////////////////////////////////////
                               REWARDS-RELATED
    //////////////////////////////////////////////////////////////*/

    function getRewardTokens() public view returns (address[] memory) {
        return IStandardizedYield(SY).getRewardTokens();
    }

    function _doTransferOutRewards(
        address user,
        address receiver
    ) internal virtual override returns (uint256[] memory rewardAmounts) {
        address[] memory tokens = getRewardTokens();

        if (isExpired()) {
            // post-expiry, all incoming rewards will go to the treasury
            // hence, we can save users one _redeemExternal here
            for (uint256 i = 0; i < tokens.length; i++)
                postExpiry.userRewardOwed[tokens[i]] -= userReward[tokens[i]][user].accrued;
            rewardAmounts = __doTransferOutRewardsLocal(tokens, user, receiver, false);
        } else {
            rewardAmounts = __doTransferOutRewardsLocal(tokens, user, receiver, true);
        }
    }

    function __doTransferOutRewardsLocal(
        address[] memory tokens,
        address user,
        address receiver,
        bool allowedToRedeemExternalReward
    ) internal returns (uint256[] memory rewardAmounts) {
        address treasury = IPYieldContractFactory(factory).treasury();
        uint256 feeRate = IPYieldContractFactory(factory).rewardFeeRate();
        bool redeemExternalThisRound;

        rewardAmounts = new uint256[](tokens.length);
        for (uint256 i = 0; i < tokens.length; i++) {
            uint256 rewardPreFee = userReward[tokens[i]][user].accrued;
            userReward[tokens[i]][user].accrued = 0;

            uint256 feeAmount = rewardPreFee.mulDown(feeRate);
            rewardAmounts[i] = rewardPreFee - feeAmount;

            if (!redeemExternalThisRound && allowedToRedeemExternalReward) {
                if (_selfBalance(tokens[i]) < rewardPreFee) {
                    _redeemExternalReward();
                    redeemExternalThisRound = true;
                }
            }

            _transferOut(tokens[i], treasury, feeAmount);
            _transferOut(tokens[i], receiver, rewardAmounts[i]);
        }
    }

    function _redeemExternalReward() internal virtual override {
        IStandardizedYield(SY).claimRewards(address(this));
    }

    /// @dev effectively returning the amount of SY generating rewards for this user
    function _rewardSharesUser(address user) internal view virtual override returns (uint256) {
        uint256 index = userInterest[user].index;
        if (index == 0) return 0;
        return SYUtils.assetToSy(index, balanceOf(user)) + userInterest[user].accrued;
    }

    function _updateRewardIndex()
        internal
        override
        returns (address[] memory tokens, uint256[] memory indexes)
    {
        tokens = getRewardTokens();
        if (isExpired()) {
            indexes = new uint256[](tokens.length);
            for (uint256 i = 0; i < tokens.length; i++)
                indexes[i] = postExpiry.firstRewardIndex[tokens[i]];
        } else {
            indexes = IStandardizedYield(SY).rewardIndexesCurrent();
        }
    }

    //solhint-disable-next-line ordering
    function _beforeTokenTransfer(address from, address to, uint256) internal override {
        if (isExpired()) _setPostExpiryData();
        _updateAndDistributeRewardsForTwo(from, to);
        _distributeInterestForTwo(from, to);
    }
}

File 58 of 94 : IAsset.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IAsset {}

File 59 of 94 : IBalancerFees.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IBalancerFees {
    function getSwapFeePercentage() external view returns (uint256);
}

File 60 of 94 : IBalancerStablePreview.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "./IVault.sol";

interface IBalancerStablePreview {
    function joinPoolPreview(
        bytes32 poolId,
        address sender,
        address recipient,
        IVault.JoinPoolRequest memory request,
        bytes memory data
    ) external view returns (uint256 amountBptOut);

    function exitPoolPreview(
        bytes32 poolId,
        address sender,
        address recipient,
        IVault.ExitPoolRequest memory request,
        bytes memory data
    ) external view returns (uint256 amountTokenOut);
}

File 61 of 94 : IBasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IBasePool is IERC20 {
    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);

    function getPoolId() external view returns (bytes32);

    function getSwapFeePercentage() external view returns (uint256);
}

File 62 of 94 : IComposableStable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "./IBasePool.sol";
import "./IRateProvider.sol";

interface IComposableStable is IBasePool {
    function getLastJoinExitData()
        external
        view
        returns (uint256 lastJoinExitAmplification, uint256 lastPostJoinExitInvariant);

    function getAmplificationParameter()
        external
        view
        returns (uint256 value, bool isUpdating, uint256 precision);

    function getProtocolFeePercentageCache(uint256 feeType) external view returns (uint256);

    function isTokenExemptFromYieldProtocolFee(IERC20 token) external view returns (bool);

    function getTokenRateCache(
        IERC20 token
    ) external view returns (uint256 rate, uint256 oldRate, uint256 duration, uint256 expires);

    function getRateProviders() external view returns (IRateProvider[] memory);

    function getBptIndex() external view returns (uint256);
}

File 63 of 94 : IERC4626LinearPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IERC4626LinearPool {
    event Approval(address indexed owner, address indexed spender, uint256 value);
    event PausedStateChanged(bool paused);
    event RecoveryModeStateChanged(bool enabled);
    event SwapFeePercentageChanged(uint256 swapFeePercentage);
    event TargetsSet(address indexed token, uint256 lowerTarget, uint256 upperTarget);
    event Transfer(address indexed from, address indexed to, uint256 value);

    struct SwapRequest {
        uint8 kind;
        address tokenIn;
        address tokenOut;
        uint256 amount;
        bytes32 poolId;
        uint256 lastChangeBlock;
        address from;
        address to;
        bytes userData;
    }

    function DOMAIN_SEPARATOR() external view returns (bytes32);

    function allowance(address owner, address spender) external view returns (uint256);

    function approve(address spender, uint256 amount) external returns (bool);

    function balanceOf(address account) external view returns (uint256);

    function decimals() external view returns (uint8);

    function decreaseAllowance(address spender, uint256 amount) external returns (bool);

    function disableRecoveryMode() external;

    function enableRecoveryMode() external;

    function getActionId(bytes4 selector) external view returns (bytes32);

    function getAuthorizer() external view returns (address);

    function getBptIndex() external pure returns (uint256);

    function getDomainSeparator() external view returns (bytes32);

    function getMainIndex() external view returns (uint256);

    function getMainToken() external view returns (address);

    function getNextNonce(address account) external view returns (uint256);

    function getOwner() external view returns (address);

    function getPausedState()
        external
        view
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        );

    function getPoolId() external view returns (bytes32);

    function getProtocolFeesCollector() external view returns (address);

    function getRate() external view returns (uint256);

    function getScalingFactors() external view returns (uint256[] memory);

    function getSwapFeePercentage() external view returns (uint256);

    function getTargets() external view returns (uint256 lowerTarget, uint256 upperTarget);

    function getVault() external view returns (address);

    function getVirtualSupply() external view returns (uint256);

    function getWrappedIndex() external view returns (uint256);

    function getWrappedToken() external view returns (address);

    function getWrappedTokenRate() external view returns (uint256);

    function inRecoveryMode() external view returns (bool);

    function increaseAllowance(address spender, uint256 addedValue) external returns (bool);

    function initialize() external;

    function name() external view returns (string memory);

    function nonces(address owner) external view returns (uint256);

    function onExitPool(
        bytes32 poolId,
        address sender,
        address,
        uint256[] memory balances,
        uint256,
        uint256,
        bytes memory userData
    ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFees);

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256,
        uint256,
        bytes memory userData
    ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFees);

    function onSwap(
        SwapRequest memory request,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) external returns (uint256);

    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) external returns (uint256);

    function pause() external;

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    function queryExit(
        bytes32,
        address sender,
        address,
        uint256[] memory balances,
        uint256,
        uint256,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut);

    function queryJoin(
        bytes32,
        address sender,
        address,
        uint256[] memory balances,
        uint256,
        uint256,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn);

    function setSwapFeePercentage(uint256 swapFeePercentage) external;

    function setTargets(uint256 newLowerTarget, uint256 newUpperTarget) external;

    function symbol() external view returns (string memory);

    function totalSupply() external view returns (uint256);

    function transfer(address recipient, uint256 amount) external returns (bool);

    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    function unpause() external;

    function version() external view returns (string memory);
}

File 64 of 94 : IRateProvider.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IRateProvider {
    function getRate() external view returns (uint256);
}

File 65 of 94 : IVault.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "./IAsset.sol";

interface IVault {
    enum UserBalanceOpKind {
        DEPOSIT_INTERNAL,
        WITHDRAW_INTERNAL,
        TRANSFER_INTERNAL,
        TRANSFER_EXTERNAL
    }

    struct UserBalanceOp {
        UserBalanceOpKind kind;
        IAsset asset;
        uint256 amount;
        address sender;
        address payable recipient;
    }

    struct JoinPoolRequest {
        address[] assets;
        uint256[] maxAmountsIn;
        bytes userData;
        bool fromInternalBalance;
    }

    struct SwapRequest {
        IVault.SwapKind kind;
        IERC20 tokenIn;
        IERC20 tokenOut;
        uint256 amount;
        // Misc data
        bytes32 poolId;
        uint256 lastChangeBlock;
        address from;
        address to;
        bytes userData;
    }

    function joinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        JoinPoolRequest memory request
    ) external payable;

    struct ExitPoolRequest {
        address[] assets;
        uint256[] minAmountsOut;
        bytes userData;
        bool toInternalBalance;
    }

    function exitPool(
        bytes32 poolId,
        address sender,
        address payable recipient,
        ExitPoolRequest memory request
    ) external;

    enum SwapKind {
        GIVEN_IN,
        GIVEN_OUT
    }

    struct SingleSwap {
        bytes32 poolId;
        SwapKind kind;
        IAsset assetIn;
        IAsset assetOut;
        uint256 amount;
        bytes userData;
    }

    struct FundManagement {
        address sender;
        bool fromInternalBalance;
        address payable recipient;
        bool toInternalBalance;
    }

    function swap(
        SingleSwap memory singleSwap,
        FundManagement memory funds,
        uint256 limit,
        uint256 deadline
    ) external payable returns (uint256);

    function getPoolTokens(bytes32 poolId)
        external
        view
        returns (
            IERC20[] memory tokens,
            uint256[] memory balances,
            uint256 lastChangeBlock
        );

    function WETH() external view returns (IERC20);

    function getPool(bytes32 poolId) external view returns (address, uint8);

    function getProtocolFeesCollector() external view returns (address);
}

File 66 of 94 : IBooster.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IBooster {
    function crv() external view returns (address);

    function poolLength() external view returns (uint256);

    function poolInfo(
        uint256
    ) external view returns (address lpToken, address, address, address, address, bool);

    function deposit(uint256 _pid, uint256 _amount, bool _stake) external returns (bool);

    function depositAll(uint256 _pid, bool _stake) external returns (bool);

    function withdraw(uint256 _pid, uint256 _amount) external returns (bool);

    function withdrawAll(uint256 _pid) external returns (bool);
}

File 67 of 94 : IRewards.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IRewards {
    function operator() external view returns (address);

    function stake(address, uint256) external;

    function stakeFor(address, uint256) external;

    function withdraw(uint256, bool) external returns (bool);

    function withdrawAndUnwrap(uint256, bool) external returns (bool);

    function exit(address) external;

    function getReward(address /*_account*/, bool /*_claimExtras*/) external;

    function getReward() external;

    function queueNewRewards(uint256) external;

    function notifyRewardAmount(uint256) external;

    function addExtraReward(address) external;

    function rewardToken() external returns (address);

    function rewardPerToken() external returns (uint256);

    function rewardPerTokenStored() external view returns (uint256);

    function extraRewardsLength() external view returns (uint256);

    function extraRewards(uint256) external returns (address);

    function stakingToken() external returns (address);

    function lastTimeRewardApplicable() external view returns (uint256);
}

File 68 of 94 : IDiamondLoupe.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/******************************************************************************\
* Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen)
* EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535
/******************************************************************************/

// A loupe is a small magnifying glass used to look at diamonds.
// These functions look at diamonds
interface IDiamondLoupe {
    /// These functions are expected to be called frequently
    /// by tools.

    struct Facet {
        address facetAddress;
        bytes4[] functionSelectors;
    }

    /// @notice Gets all facet addresses and their four byte function selectors.
    /// @return facets_ Facet
    function facets() external view returns (Facet[] memory facets_);

    /// @notice Gets all the function selectors supported by a specific facet.
    /// @param _facet The facet address.
    /// @return facetFunctionSelectors_
    function facetFunctionSelectors(
        address _facet
    ) external view returns (bytes4[] memory facetFunctionSelectors_);

    /// @notice Get all the facet addresses used by a diamond.
    /// @return facetAddresses_
    function facetAddresses() external view returns (address[] memory facetAddresses_);

    /// @notice Gets the facet that supports the given selector.
    /// @dev If facet is not found return address(0).
    /// @param _functionSelector The function selector.
    /// @return facetAddress_ The facet address.
    function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_);
}

File 69 of 94 : IPActionAddRemoveLiq.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../router/base/MarketApproxLib.sol";
import "../router/base/ActionBaseMintRedeem.sol";

interface IPActionAddRemoveLiq {
    event AddLiquidityDualSyAndPt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netSyUsed,
        uint256 netPtUsed,
        uint256 netLpOut
    );

    event AddLiquidityDualTokenAndPt(
        address indexed caller,
        address indexed market,
        address indexed tokenIn,
        address receiver,
        uint256 netTokenUsed,
        uint256 netPtUsed,
        uint256 netLpOut
    );

    event AddLiquiditySinglePt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netPtIn,
        uint256 netLpOut
    );

    event AddLiquiditySingleSy(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netSyIn,
        uint256 netLpOut
    );

    event AddLiquiditySingleToken(
        address indexed caller,
        address indexed market,
        address indexed token,
        address receiver,
        uint256 netTokenIn,
        uint256 netLpOut
    );

    event AddLiquiditySingleSyKeepYt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netSyIn,
        uint256 netLpOut,
        uint256 netYtOut
    );

    event AddLiquiditySingleTokenKeepYt(
        address indexed caller,
        address indexed market,
        address indexed token,
        address receiver,
        uint256 netTokenIn,
        uint256 netLpOut,
        uint256 netYtOut
    );

    event RemoveLiquidityDualSyAndPt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netLpToRemove,
        uint256 netPtOut,
        uint256 netSyOut
    );

    event RemoveLiquidityDualTokenAndPt(
        address indexed caller,
        address indexed market,
        address indexed tokenOut,
        address receiver,
        uint256 netLpToRemove,
        uint256 netPtOut,
        uint256 netTokenOut
    );

    event RemoveLiquiditySinglePt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netLpToRemove,
        uint256 netPtOut
    );

    event RemoveLiquiditySingleSy(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        uint256 netLpToRemove,
        uint256 netSyOut
    );

    event RemoveLiquiditySingleToken(
        address indexed caller,
        address indexed market,
        address indexed token,
        address receiver,
        uint256 netLpToRemove,
        uint256 netTokenOut
    );

    function addLiquidityDualSyAndPt(
        address receiver,
        address market,
        uint256 netSyDesired,
        uint256 netPtDesired,
        uint256 minLpOut
    ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed);

    function addLiquidityDualTokenAndPt(
        address receiver,
        address market,
        TokenInput calldata input,
        uint256 netPtDesired,
        uint256 minLpOut
    ) external payable returns (uint256 netLpOut, uint256 netTokenUsed, uint256 netPtUsed);

    function addLiquiditySinglePt(
        address receiver,
        address market,
        uint256 netPtIn,
        uint256 minLpOut,
        ApproxParams calldata guessPtSwapToSy
    ) external returns (uint256 netLpOut, uint256 netSyFee);

    function addLiquiditySingleSy(
        address receiver,
        address market,
        uint256 netSyIn,
        uint256 minLpOut,
        ApproxParams calldata guessPtReceivedFromSy
    ) external returns (uint256 netLpOut, uint256 netSyFee);

    function addLiquiditySingleToken(
        address receiver,
        address market,
        uint256 minLpOut,
        ApproxParams calldata guessPtReceivedFromSy,
        TokenInput calldata input
    ) external payable returns (uint256 netLpOut, uint256 netSyFee);

    function addLiquiditySingleSyKeepYt(
        address receiver,
        address market,
        uint256 netSyIn,
        uint256 minLpOut,
        uint256 minYtOut
    ) external returns (uint256 netLpOut, uint256 netYtOut);

    function addLiquiditySingleTokenKeepYt(
        address receiver,
        address market,
        uint256 minLpOut,
        uint256 minYtOut,
        TokenInput calldata input
    ) external returns (uint256 netLpOut, uint256 netYtOut);

    function removeLiquidityDualSyAndPt(
        address receiver,
        address market,
        uint256 netLpToRemove,
        uint256 minSyOut,
        uint256 minPtOut
    ) external returns (uint256 netSyOut, uint256 netPtOut);

    function removeLiquidityDualTokenAndPt(
        address receiver,
        address market,
        uint256 netLpToRemove,
        TokenOutput calldata output,
        uint256 minPtOut
    ) external returns (uint256 netTokenOut, uint256 netPtOut);

    function removeLiquiditySinglePt(
        address receiver,
        address market,
        uint256 netLpToRemove,
        uint256 minPtOut,
        ApproxParams calldata guessPtOut
    ) external returns (uint256 netPtOut, uint256 netSyFee);

    function removeLiquiditySingleSy(
        address receiver,
        address market,
        uint256 netLpToRemove,
        uint256 minSyOut
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function removeLiquiditySingleToken(
        address receiver,
        address market,
        uint256 netLpToRemove,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut, uint256 netSyFee);
}

File 70 of 94 : IPActionMintRedeem.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../router/base/MarketApproxLib.sol";
import "../router/base/ActionBaseMintRedeem.sol";

interface IPActionMintRedeem {
    event MintSyFromToken(
        address indexed caller,
        address indexed tokenIn,
        address indexed SY,
        address receiver,
        uint256 netTokenIn,
        uint256 netSyOut
    );

    event RedeemSyToToken(
        address indexed caller,
        address indexed tokenOut,
        address indexed SY,
        address receiver,
        uint256 netSyIn,
        uint256 netTokenOut
    );

    event MintPyFromSy(
        address indexed caller,
        address indexed receiver,
        address indexed YT,
        uint256 netSyIn,
        uint256 netPyOut
    );

    event RedeemPyToSy(
        address indexed caller,
        address indexed receiver,
        address indexed YT,
        uint256 netPyIn,
        uint256 netSyOut
    );

    event MintPyFromToken(
        address indexed caller,
        address indexed tokenIn,
        address indexed YT,
        address receiver,
        uint256 netTokenIn,
        uint256 netPyOut
    );

    event RedeemPyToToken(
        address indexed caller,
        address indexed tokenOut,
        address indexed YT,
        address receiver,
        uint256 netPyIn,
        uint256 netTokenOut
    );

    function mintSyFromToken(
        address receiver,
        address SY,
        uint256 minSyOut,
        TokenInput calldata input
    ) external payable returns (uint256 netSyOut);

    function redeemSyToToken(
        address receiver,
        address SY,
        uint256 netSyIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut);

    function mintPyFromToken(
        address receiver,
        address YT,
        uint256 minPyOut,
        TokenInput calldata input
    ) external payable returns (uint256 netPyOut);

    function redeemPyToToken(
        address receiver,
        address YT,
        uint256 netPyIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut);

    function mintPyFromSy(
        address receiver,
        address YT,
        uint256 netSyIn,
        uint256 minPyOut
    ) external returns (uint256 netPyOut);

    function redeemPyToSy(
        address receiver,
        address YT,
        uint256 netPyIn,
        uint256 minSyOut
    ) external returns (uint256 netSyOut);

    function redeemDueInterestAndRewards(
        address user,
        address[] calldata sys,
        address[] calldata yts,
        address[] calldata markets
    ) external;
}

File 71 of 94 : IPActionMisc.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IPActionMisc {
    struct MultiApproval {
        address[] tokens;
        address spender;
    }

    struct Call3 {
        bool allowFailure;
        bytes callData;
    }

    struct Result {
        bool success;
        bytes returnData;
    }

    function approveInf(MultiApproval[] calldata) external;

    function batchExec(Call3[] calldata calls) external returns (Result[] memory returnData);
}

File 72 of 94 : IPActionSwapPT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../router/base/MarketApproxLib.sol";
import "../router/base/ActionBaseMintRedeem.sol";

interface IPActionSwapPT {
    event SwapPtAndSy(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        int256 netPtToAccount,
        int256 netSyToAccount
    );

    event SwapPtAndToken(
        address indexed caller,
        address indexed market,
        address indexed token,
        address receiver,
        int256 netPtToAccount,
        int256 netTokenToAccount
    );

    function swapExactPtForSy(
        address receiver,
        address market,
        uint256 exactPtIn,
        uint256 minSyOut
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function swapPtForExactSy(
        address receiver,
        address market,
        uint256 exactSyOut,
        uint256 maxPtIn,
        ApproxParams calldata guessPtIn
    ) external returns (uint256 netPtIn, uint256 netSyFee);

    function swapSyForExactPt(
        address receiver,
        address market,
        uint256 exactPtOut,
        uint256 maxSyIn
    ) external returns (uint256 netSyIn, uint256 netSyFee);

    function swapExactSyForPt(
        address receiver,
        address market,
        uint256 exactSyIn,
        uint256 minPtOut,
        ApproxParams calldata guessPtOut
    ) external returns (uint256 netPtOut, uint256 netSyFee);

    function swapExactTokenForPt(
        address receiver,
        address market,
        uint256 minPtOut,
        ApproxParams calldata guessPtOut,
        TokenInput calldata input
    ) external payable returns (uint256 netPtOut, uint256 netSyFee);

    function swapExactPtForToken(
        address receiver,
        address market,
        uint256 exactPtIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut, uint256 netSyFee);
}

File 73 of 94 : IPActionSwapYT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../router/base/MarketApproxLib.sol";
import "../router/base/ActionBaseMintRedeem.sol";

interface IPActionSwapYT {
    event SwapYtAndSy(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        int256 netYtToAccount,
        int256 netSyToAccount
    );

    event SwapYtAndToken(
        address indexed caller,
        address indexed market,
        address indexed token,
        address receiver,
        int256 netYtToAccount,
        int256 netTokenToAccount
    );

    event SwapPtAndYt(
        address indexed caller,
        address indexed market,
        address indexed receiver,
        int256 netPtToAccount,
        int256 netYtToAccount
    );

    function swapExactSyForYt(
        address receiver,
        address market,
        uint256 exactSyIn,
        uint256 minYtOut,
        ApproxParams calldata guessYtOut
    ) external returns (uint256 netYtOut, uint256 netSyFee);

    function swapExactYtForSy(
        address receiver,
        address market,
        uint256 exactYtIn,
        uint256 minSyOut
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function swapSyForExactYt(
        address receiver,
        address market,
        uint256 exactYtOut,
        uint256 maxSyIn
    ) external returns (uint256 netSyIn, uint256 netSyFee);

    function swapYtForExactSy(
        address receiver,
        address market,
        uint256 exactSyOut,
        uint256 maxYtIn,
        ApproxParams calldata guessYtIn
    ) external returns (uint256 netYtIn, uint256 netSyFee);

    function swapExactTokenForYt(
        address receiver,
        address market,
        uint256 minYtOut,
        ApproxParams calldata guessYtOut,
        TokenInput calldata input
    ) external payable returns (uint256 netYtOut, uint256 netSyFee);

    function swapExactYtForToken(
        address receiver,
        address market,
        uint256 netYtIn,
        TokenOutput calldata output
    ) external returns (uint256 netTokenOut, uint256 netSyFee);

    function swapExactPtForYt(
        address receiver,
        address market,
        uint256 exactPtIn,
        uint256 minYtOut,
        ApproxParams calldata guessTotalPtToSwap
    ) external returns (uint256 netYtOut, uint256 netSyFee);

    function swapExactYtForPt(
        address receiver,
        address market,
        uint256 exactYtIn,
        uint256 minPtOut,
        ApproxParams calldata guessTotalPtSwapped
    ) external returns (uint256 netPtOut, uint256 netSyFee);
}

File 74 of 94 : IPAllAction.sol
// SPDX-License-Identifier: GPL-3.0-or-later

pragma solidity 0.8.17;

import "./IPActionAddRemoveLiq.sol";
import "./IPActionSwapPT.sol";
import "./IPActionSwapYT.sol";
import "./IPActionMintRedeem.sol";
import "./IPActionMisc.sol";
import "./IPMarketSwapCallback.sol";
import "./IDiamondLoupe.sol";

interface IPAllAction is
    IPActionAddRemoveLiq,
    IPActionSwapPT,
    IPActionSwapYT,
    IPActionMintRedeem,
    IPActionMisc,
    IPMarketSwapCallback,
    IDiamondLoupe
{}

File 75 of 94 : IPBulkSeller.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../core/BulkSeller/BulkSellerMathCore.sol";

interface IPBulkSeller {
    event SwapExactTokenForSy(address receiver, uint256 netTokenIn, uint256 netSyOut);
    event SwapExactSyForToken(address receiver, uint256 netSyIn, uint256 netTokenOut);
    event RateUpdated(
        uint256 newRateTokenToSy,
        uint256 newRateSyToToken,
        uint256 oldRateTokenToSy,
        uint256 oldRateSyToToken
    );
    event ReBalanceTokenToSy(
        uint256 netTokenDeposit,
        uint256 netSyFromToken,
        uint256 newTokenProp,
        uint256 oldTokenProp
    );
    event ReBalanceSyToToken(
        uint256 netSyRedeem,
        uint256 netTokenFromSy,
        uint256 newTokenProp,
        uint256 oldTokenProp
    );
    event ReserveUpdated(uint256 totalToken, uint256 totalSy);
    event FeeRateUpdated(uint256 newFeeRate, uint256 oldFeeRate);

    function swapExactTokenForSy(
        address receiver,
        uint256 netTokenIn,
        uint256 minSyOut
    ) external payable returns (uint256 netSyOut);

    function swapExactSyForToken(
        address receiver,
        uint256 exactSyIn,
        uint256 minTokenOut,
        bool swapFromInternalBalance
    ) external returns (uint256 netTokenOut);

    function SY() external view returns (address);

    function token() external view returns (address);

    function readState() external view returns (BulkSellerState memory);
}

File 76 of 94 : IPGauge.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IPGauge {
    function totalActiveSupply() external view returns (uint256);

    function activeBalance(address user) external view returns (uint256);

    // only available for newer factories. please check the verified contracts
    event RedeemRewards(address indexed user, uint256[] rewardsOut);
}

File 77 of 94 : IPInterestManagerYT.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IPInterestManagerYT {
    function userInterest(
        address user
    ) external view returns (uint128 lastPYIndex, uint128 accruedInterest);
}

File 78 of 94 : IPMarket.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IPPrincipalToken.sol";
import "./IPYieldToken.sol";
import "./IStandardizedYield.sol";
import "./IPGauge.sol";
import "../core/Market/MarketMathCore.sol";

interface IPMarket is IERC20Metadata, IPGauge {
    event Mint(
        address indexed receiver,
        uint256 netLpMinted,
        uint256 netSyUsed,
        uint256 netPtUsed
    );

    event Burn(
        address indexed receiverSy,
        address indexed receiverPt,
        uint256 netLpBurned,
        uint256 netSyOut,
        uint256 netPtOut
    );

    event Swap(
        address indexed caller,
        address indexed receiver,
        int256 netPtOut,
        int256 netSyOut,
        uint256 netSyFee,
        uint256 netSyToReserve
    );

    event UpdateImpliedRate(uint256 indexed timestamp, uint256 lnLastImpliedRate);

    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    function mint(
        address receiver,
        uint256 netSyDesired,
        uint256 netPtDesired
    ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed);

    function burn(
        address receiverSy,
        address receiverPt,
        uint256 netLpToBurn
    ) external returns (uint256 netSyOut, uint256 netPtOut);

    function swapExactPtForSy(
        address receiver,
        uint256 exactPtIn,
        bytes calldata data
    ) external returns (uint256 netSyOut, uint256 netSyFee);

    function swapSyForExactPt(
        address receiver,
        uint256 exactPtOut,
        bytes calldata data
    ) external returns (uint256 netSyIn, uint256 netSyFee);

    function redeemRewards(address user) external returns (uint256[] memory);

    function readState(address router) external view returns (MarketState memory market);

    function observe(
        uint32[] memory secondsAgos
    ) external view returns (uint216[] memory lnImpliedRateCumulative);

    function increaseObservationsCardinalityNext(uint16 cardinalityNext) external;

    function readTokens()
        external
        view
        returns (IStandardizedYield _SY, IPPrincipalToken _PT, IPYieldToken _YT);

    function getRewardTokens() external view returns (address[] memory);

    function isExpired() external view returns (bool);

    function expiry() external view returns (uint256);

    function observations(
        uint256 index
    )
        external
        view
        returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized);

    function _storage()
        external
        view
        returns (
            int128 totalPt,
            int128 totalSy,
            uint96 lastLnImpliedRate,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext
        );
}

File 79 of 94 : IPMarketFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IPMarketFactory {
    struct FeeConfig {
        uint80 lnFeeRateRoot;
        uint8 reserveFeePercent;
        bool active;
    }

    event NewMarketConfig(
        address indexed treasury,
        uint80 defaultLnFeeRateRoot,
        uint8 reserveFeePercent
    );
    event SetOverriddenFee(address indexed router, uint80 lnFeeRateRoot, uint8 reserveFeePercent);
    event UnsetOverriddenFee(address indexed router);

    event CreateNewMarket(
        address indexed market,
        address indexed PT,
        int256 scalarRoot,
        int256 initialAnchor
    );

    function isValidMarket(address market) external view returns (bool);

    // If this is changed, change the readState function in market as well
    function getMarketConfig(
        address router
    ) external view returns (address treasury, uint80 lnFeeRateRoot, uint8 reserveFeePercent);
}

File 80 of 94 : IPMarketSwapCallback.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IPMarketSwapCallback {
    function swapCallback(int256 ptToAccount, int256 syToAccount, bytes calldata data) external;
}

File 81 of 94 : IPPrincipalToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

interface IPPrincipalToken is IERC20Metadata {
    function burnByYT(address user, uint256 amount) external;

    function mintByYT(address user, uint256 amount) external;

    function initialize(address _YT) external;

    function SY() external view returns (address);

    function YT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);
}

File 82 of 94 : IPYieldContractFactory.sol
// SPDX-License-Identifier: GPL-3.0-or-later
/*
 * MIT License
 * ===========
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 */

pragma solidity 0.8.17;

interface IPYieldContractFactory {
    event CreateYieldContract(address indexed SY, uint256 indexed expiry, address PT, address YT);

    event SetExpiryDivisor(uint256 newExpiryDivisor);

    event SetInterestFeeRate(uint256 newInterestFeeRate);

    event SetRewardFeeRate(uint256 newRewardFeeRate);

    event SetTreasury(address indexed treasury);

    function getPT(address SY, uint256 expiry) external view returns (address);

    function getYT(address SY, uint256 expiry) external view returns (address);

    function expiryDivisor() external view returns (uint96);

    function interestFeeRate() external view returns (uint128);

    function rewardFeeRate() external view returns (uint128);

    function treasury() external view returns (address);

    function isPT(address) external view returns (bool);

    function isYT(address) external view returns (bool);
}

File 83 of 94 : IPYieldToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import "./IRewardManager.sol";
import "./IPInterestManagerYT.sol";

interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT {
    event NewInterestIndex(uint256 indexed newIndex);

    event Mint(
        address indexed caller,
        address indexed receiverPT,
        address indexed receiverYT,
        uint256 amountSyToMint,
        uint256 amountPYOut
    );

    event Burn(
        address indexed caller,
        address indexed receiver,
        uint256 amountPYToRedeem,
        uint256 amountSyOut
    );

    event RedeemRewards(address indexed user, uint256[] amountRewardsOut);

    event RedeemInterest(address indexed user, uint256 interestOut);

    event WithdrawFeeToTreasury(uint256[] amountRewardsOut, uint256 syOut);

    function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut);

    function redeemPY(address receiver) external returns (uint256 amountSyOut);

    function redeemPYMulti(
        address[] calldata receivers,
        uint256[] calldata amountPYToRedeems
    ) external returns (uint256[] memory amountSyOuts);

    function redeemDueInterestAndRewards(
        address user,
        bool redeemInterest,
        bool redeemRewards
    ) external returns (uint256 interestOut, uint256[] memory rewardsOut);

    function rewardIndexesCurrent() external returns (uint256[] memory);

    function pyIndexCurrent() external returns (uint256);

    function pyIndexStored() external view returns (uint256);

    function getRewardTokens() external view returns (address[] memory);

    function SY() external view returns (address);

    function PT() external view returns (address);

    function factory() external view returns (address);

    function expiry() external view returns (uint256);

    function isExpired() external view returns (bool);

    function doCacheIndexSameBlock() external view returns (bool);

    function pyIndexLastUpdatedBlock() external view returns (uint128);

}

File 84 of 94 : IRewardManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface IRewardManager {
    function userReward(
        address token,
        address user
    ) external view returns (uint128 index, uint128 accrued);
}

File 85 of 94 : IStandardizedYield.sol
// SPDX-License-Identifier: GPL-3.0-or-later
/*
 * MIT License
 * ===========
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 */

pragma solidity 0.8.17;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";

interface IStandardizedYield is IERC20Metadata {
    /// @dev Emitted when any base tokens is deposited to mint shares
    event Deposit(
        address indexed caller,
        address indexed receiver,
        address indexed tokenIn,
        uint256 amountDeposited,
        uint256 amountSyOut
    );

    /// @dev Emitted when any shares are redeemed for base tokens
    event Redeem(
        address indexed caller,
        address indexed receiver,
        address indexed tokenOut,
        uint256 amountSyToRedeem,
        uint256 amountTokenOut
    );

    /// @dev check `assetInfo()` for more information
    enum AssetType {
        TOKEN,
        LIQUIDITY
    }

    /// @dev Emitted when (`user`) claims their rewards
    event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts);

    /**
     * @notice mints an amount of shares by depositing a base token.
     * @param receiver shares recipient address
     * @param tokenIn address of the base tokens to mint shares
     * @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`)
     * @param minSharesOut reverts if amount of shares minted is lower than this
     * @return amountSharesOut amount of shares minted
     * @dev Emits a {Deposit} event
     *
     * Requirements:
     * - (`tokenIn`) must be a valid base token.
     */
    function deposit(
        address receiver,
        address tokenIn,
        uint256 amountTokenToDeposit,
        uint256 minSharesOut
    ) external payable returns (uint256 amountSharesOut);

    /**
     * @notice redeems an amount of base tokens by burning some shares
     * @param receiver recipient address
     * @param amountSharesToRedeem amount of shares to be burned
     * @param tokenOut address of the base token to be redeemed
     * @param minTokenOut reverts if amount of base token redeemed is lower than this
     * @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender`
     * @return amountTokenOut amount of base tokens redeemed
     * @dev Emits a {Redeem} event
     *
     * Requirements:
     * - (`tokenOut`) must be a valid base token.
     */
    function redeem(
        address receiver,
        uint256 amountSharesToRedeem,
        address tokenOut,
        uint256 minTokenOut,
        bool burnFromInternalBalance
    ) external returns (uint256 amountTokenOut);

    /**
     * @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account
     * @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy
     he can mint must be X * exchangeRate / 1e18
     * @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication
     & division
     */
    function exchangeRate() external view returns (uint256 res);

    /**
     * @notice claims reward for (`user`)
     * @param user the user receiving their rewards
     * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
     * @dev
     * Emits a `ClaimRewards` event
     * See {getRewardTokens} for list of reward tokens
     */
    function claimRewards(address user) external returns (uint256[] memory rewardAmounts);

    /**
     * @notice get the amount of unclaimed rewards for (`user`)
     * @param user the user to check for
     * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens`
     */
    function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts);

    function rewardIndexesCurrent() external returns (uint256[] memory indexes);

    function rewardIndexesStored() external view returns (uint256[] memory indexes);

    /**
     * @notice returns the list of reward token addresses
     */
    function getRewardTokens() external view returns (address[] memory);

    /**
     * @notice returns the address of the underlying yield token
     */
    function yieldToken() external view returns (address);

    /**
     * @notice returns all tokens that can mint this SY
     */
    function getTokensIn() external view returns (address[] memory res);

    /**
     * @notice returns all tokens that can be redeemed by this SY
     */
    function getTokensOut() external view returns (address[] memory res);

    function isValidTokenIn(address token) external view returns (bool);

    function isValidTokenOut(address token) external view returns (bool);

    function previewDeposit(address tokenIn, uint256 amountTokenToDeposit)
        external
        view
        returns (uint256 amountSharesOut);

    function previewRedeem(address tokenOut, uint256 amountSharesToRedeem)
        external
        view
        returns (uint256 amountTokenOut);

    /**
     * @notice This function contains information to interpret what the asset is
     * @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens,
        2 for bridged yield bearing tokens like wstETH, rETH on Arbi whose the underlying asset doesn't exist on the chain)
     * @return assetAddress the address of the asset
     * @return assetDecimals the decimals of the asset
     */
    function assetInfo()
        external
        view
        returns (
            AssetType assetType,
            address assetAddress,
            uint8 assetDecimals
        );
}

File 86 of 94 : IWETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later
/*
 * MIT License
 * ===========
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 */
pragma solidity 0.8.17;

import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface IWETH is IERC20 {
    event Deposit(address indexed dst, uint256 wad);
    event Withdrawal(address indexed src, uint256 wad);

    function deposit() external payable;

    function withdraw(uint256 wad) external;
}

File 87 of 94 : ActionBaseMintRedeem.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../../core/libraries/TokenHelper.sol";
import "../../interfaces/IStandardizedYield.sol";
import "../../interfaces/IPYieldToken.sol";
import "../../interfaces/IPBulkSeller.sol";

import "../../core/libraries/Errors.sol";
import "../swap-aggregator/IPSwapAggregator.sol";

struct TokenInput {
    // Token/Sy data
    address tokenIn;
    uint256 netTokenIn;
    address tokenMintSy;
    address bulk;
    // aggregator data
    address pendleSwap;
    SwapData swapData;
}

struct TokenOutput {
    // Token/Sy data
    address tokenOut;
    uint256 minTokenOut;
    address tokenRedeemSy;
    address bulk;
    // aggregator data
    address pendleSwap;
    SwapData swapData;
}

// solhint-disable no-empty-blocks
abstract contract ActionBaseMintRedeem is TokenHelper {
    bytes internal constant EMPTY_BYTES = abi.encode();

    function _mintSyFromToken(
        address receiver,
        address SY,
        uint256 minSyOut,
        TokenInput calldata inp
    ) internal returns (uint256 netSyOut) {
        SwapType swapType = inp.swapData.swapType;

        uint256 netTokenMintSy;

        if (swapType == SwapType.NONE) {
            _transferIn(inp.tokenIn, msg.sender, inp.netTokenIn);
            netTokenMintSy = inp.netTokenIn;
        } else if (swapType == SwapType.ETH_WETH) {
            _transferIn(inp.tokenIn, msg.sender, inp.netTokenIn);
            _wrap_unwrap_ETH(inp.tokenIn, inp.tokenMintSy, inp.netTokenIn);
            netTokenMintSy = inp.netTokenIn;
        } else {
            if (inp.tokenIn == NATIVE) _transferIn(NATIVE, msg.sender, inp.netTokenIn);
            else _transferFrom(IERC20(inp.tokenIn), msg.sender, inp.pendleSwap, inp.netTokenIn);

            IPSwapAggregator(inp.pendleSwap).swap{
                value: inp.tokenIn == NATIVE ? inp.netTokenIn : 0
            }(inp.tokenIn, inp.netTokenIn, inp.swapData);
            netTokenMintSy = _selfBalance(inp.tokenMintSy);
        }

        // outcome of all branches: satisfy pre-condition of __mintSy

        netSyOut = __mintSy(receiver, SY, netTokenMintSy, minSyOut, inp);
    }

    /// @dev pre-condition: having netTokenMintSy of tokens in this contract
    function __mintSy(
        address receiver,
        address SY,
        uint256 netTokenMintSy,
        uint256 minSyOut,
        TokenInput calldata inp
    ) private returns (uint256 netSyOut) {
        uint256 netNative = inp.tokenMintSy == NATIVE ? netTokenMintSy : 0;

        if (inp.bulk != address(0)) {
            netSyOut = IPBulkSeller(inp.bulk).swapExactTokenForSy{ value: netNative }(
                receiver,
                netTokenMintSy,
                minSyOut
            );
        } else {
            netSyOut = IStandardizedYield(SY).deposit{ value: netNative }(
                receiver,
                inp.tokenMintSy,
                netTokenMintSy,
                minSyOut
            );
        }
    }

    function _redeemSyToToken(
        address receiver,
        address SY,
        uint256 netSyIn,
        TokenOutput calldata out,
        bool doPull
    ) internal returns (uint256 netTokenOut) {
        SwapType swapType = out.swapData.swapType;

        if (swapType == SwapType.NONE) {
            netTokenOut = __redeemSy(receiver, SY, netSyIn, out, doPull);
        } else if (swapType == SwapType.ETH_WETH) {
            netTokenOut = __redeemSy(address(this), SY, netSyIn, out, doPull); // ETH:WETH is 1:1

            _wrap_unwrap_ETH(out.tokenRedeemSy, out.tokenOut, netTokenOut);

            _transferOut(out.tokenOut, receiver, netTokenOut);
        } else {
            uint256 netTokenRedeemed = __redeemSy(out.pendleSwap, SY, netSyIn, out, doPull);

            IPSwapAggregator(out.pendleSwap).swap(
                out.tokenRedeemSy,
                netTokenRedeemed,
                out.swapData
            );

            netTokenOut = _selfBalance(out.tokenOut);

            _transferOut(out.tokenOut, receiver, netTokenOut);
        }

        // outcome of all branches: netTokenOut of tokens goes back to receiver

        if (netTokenOut < out.minTokenOut) {
            revert Errors.RouterInsufficientTokenOut(netTokenOut, out.minTokenOut);
        }
    }

    function __redeemSy(
        address receiver,
        address SY,
        uint256 netSyIn,
        TokenOutput calldata out,
        bool doPull
    ) private returns (uint256 netTokenRedeemed) {
        if (doPull) {
            _transferFrom(IERC20(SY), msg.sender, _syOrBulk(SY, out), netSyIn);
        }

        if (out.bulk != address(0)) {
            netTokenRedeemed = IPBulkSeller(out.bulk).swapExactSyForToken(
                receiver,
                netSyIn,
                0,
                true
            );
        } else {
            netTokenRedeemed = IStandardizedYield(SY).redeem(
                receiver,
                netSyIn,
                out.tokenRedeemSy,
                0,
                true
            );
        }
    }

    function _mintPyFromSy(
        address receiver,
        address SY,
        address YT,
        uint256 netSyIn,
        uint256 minPyOut,
        bool doPull
    ) internal returns (uint256 netPyOut) {
        if (doPull) {
            _transferFrom(IERC20(SY), msg.sender, YT, netSyIn);
        }

        netPyOut = IPYieldToken(YT).mintPY(receiver, receiver);
        if (netPyOut < minPyOut) revert Errors.RouterInsufficientPYOut(netPyOut, minPyOut);
    }

    function _redeemPyToSy(
        address receiver,
        address YT,
        uint256 netPyIn,
        uint256 minSyOut
    ) internal returns (uint256 netSyOut) {
        address PT = IPYieldToken(YT).PT();

        _transferFrom(IERC20(PT), msg.sender, YT, netPyIn);

        bool needToBurnYt = (!IPYieldToken(YT).isExpired());
        if (needToBurnYt) _transferFrom(IERC20(YT), msg.sender, YT, netPyIn);

        netSyOut = IPYieldToken(YT).redeemPY(receiver);
        if (netSyOut < minSyOut) revert Errors.RouterInsufficientSyOut(netSyOut, minSyOut);
    }

    function _syOrBulk(address SY, TokenOutput calldata output)
        internal
        pure
        returns (address addr)
    {
        return output.bulk != address(0) ? output.bulk : SY;
    }
}

File 88 of 94 : MarketApproxLib.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "../../core/libraries/math/Math.sol";
import "../../core/Market/MarketMathCore.sol";

struct ApproxParams {
    uint256 guessMin;
    uint256 guessMax;
    uint256 guessOffchain; // pass 0 in to skip this variable
    uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2
    uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set
    // to 1e15 (1e18/1000 = 0.1%)

    /// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out,
    /// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula
    /// To approx, the 5 values above will have to be provided, and the approx process will run as follows:
    /// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out
    /// netSyNeed = calcSwapSyForExactPt(mid)
    /// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn
    /// else guessMin = mid (1)
    /// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of
    /// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result

    /// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result
    /// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the
    /// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases
    /// except in cases that there is a trade in the same market right before the tx
}

library MarketApproxPtInLib {
    using MarketMathCore for MarketState;
    using PYIndexLib for PYIndex;
    using Math for uint256;
    using Math for int256;
    using LogExpMath for int256;

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swap in
        - Try swapping & get netSyOut
        - Stop when netSyOut greater & approx minSyOut
        - guess & approx is for netPtIn
     */
    function approxSwapPtForExactSy(
        MarketState memory market,
        PYIndex index,
        uint256 minSyOut,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256 /*netPtIn*/, uint256 /*netSyOut*/, uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);
            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);

            if (netSyOut >= minSyOut) {
                if (Math.isAGreaterApproxB(netSyOut, minSyOut, approx.eps))
                    return (guess, netSyOut, netSyFee);
                approx.guessMax = guess;
            } else {
                approx.guessMin = guess;
            }
        }
        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swap in
        - Flashswap the corresponding amount of SY out
        - Pair those amount with exactSyIn SY to tokenize into PT & YT
        - PT to repay the flashswap, YT transferred to user
        - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn
        - guess & approx is for netYtOut (also netPtIn)
     */
    function approxSwapExactSyForYt(
        MarketState memory market,
        PYIndex index,
        uint256 exactSyIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256 /*netYtOut*/, uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            approx.guessMin = Math.max(approx.guessMin, index.syToAsset(exactSyIn));
            approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp));
            validateApprox(approx);
        }

        // at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);

            uint256 netSyToTokenizePt = index.assetToSyUp(guess);

            // for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY
            uint256 netSyToPull = netSyToTokenizePt - netSyOut;

            if (netSyToPull <= exactSyIn) {
                if (Math.isASmallerApproxB(netSyToPull, exactSyIn, approx.eps))
                    return (guess, netSyFee);
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swap to SY
        - Swap PT to SY
        - Pair the remaining PT with the SY to add liquidity
        - Stop when the ratio of PT / totalPt & SY / totalSy is approx
        - guess & approx is for netPtSwap
     */
    function approxSwapPtToAddLiquidity(
        MarketState memory market,
        PYIndex index,
        uint256 totalPtIn,
        uint256 blockTime,
        ApproxParams memory approx
    )
        internal
        pure
        returns (uint256 /*netPtSwap*/, uint256 /*netSyFromSwap*/, uint256 /*netSyFee*/)
    {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp));
            approx.guessMax = Math.min(approx.guessMax, totalPtIn);
            validateApprox(approx);
            require(market.totalLp != 0, "no existing lp");
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (
                uint256 syNumerator,
                uint256 ptNumerator,
                uint256 netSyOut,
                uint256 netSyFee,

            ) = calcNumerators(market, index, totalPtIn, comp, guess);

            if (Math.isAApproxB(syNumerator, ptNumerator, approx.eps))
                return (guess, netSyOut, netSyFee);

            if (syNumerator <= ptNumerator) {
                // needs more SY --> swap more PT
                approx.guessMin = guess + 1;
            } else {
                // needs less SY --> swap less PT
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    function calcNumerators(
        MarketState memory market,
        PYIndex index,
        uint256 totalPtIn,
        MarketPreCompute memory comp,
        uint256 guess
    )
        internal
        pure
        returns (
            uint256 syNumerator,
            uint256 ptNumerator,
            uint256 netSyOut,
            uint256 netSyFee,
            uint256 netSyToReserve
        )
    {
        (netSyOut, netSyFee, netSyToReserve) = calcSyOut(market, comp, index, guess);

        uint256 newTotalPt = uint256(market.totalPt) + guess;
        uint256 newTotalSy = (uint256(market.totalSy) - netSyOut - netSyToReserve);

        // it is desired that
        // netSyOut / newTotalSy = netPtRemaining / newTotalPt
        // which is equivalent to
        // netSyOut * newTotalPt = netPtRemaining * newTotalSy

        syNumerator = netSyOut * newTotalPt;
        ptNumerator = (totalPtIn - guess) * newTotalSy;
    }

    struct Args7 {
        MarketState market;
        PYIndex index;
        uint256 exactPtIn;
        uint256 blockTime;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swap to SY
        - Flashswap the corresponding amount of SY out
        - Tokenize all the SY into PT + YT
        - PT to repay the flashswap, YT transferred to user
        - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn
        - guess & approx is for totalPtToSwap
     */
    function approxSwapExactPtForYt(
        MarketState memory market,
        PYIndex index,
        uint256 exactPtIn,
        uint256 blockTime,
        ApproxParams memory approx
    )
        internal
        pure
        returns (uint256 /*netYtOut*/, uint256 /*totalPtToSwap*/, uint256 /*netSyFee*/)
    {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            approx.guessMin = Math.max(approx.guessMin, exactPtIn);
            approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess);

            uint256 netAssetOut = index.syToAsset(netSyOut);

            // guess >= netAssetOut since we are swapping PT to SY
            uint256 netPtToPull = guess - netAssetOut;

            if (netPtToPull <= exactPtIn) {
                if (Math.isASmallerApproxB(netPtToPull, exactPtIn, approx.eps))
                    return (netAssetOut, guess, netSyFee);
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    ////////////////////////////////////////////////////////////////////////////////

    function calcSyOut(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        uint256 netPtIn
    ) internal pure returns (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(
            comp,
            index,
            -int256(netPtIn)
        );
        netSyOut = uint256(_netSyOut);
        netSyFee = uint256(_netSyFee);
        netSyToReserve = uint256(_netSyToReserve);
    }

    function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) {
        if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain;
        if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2;
        revert Errors.ApproxFail();
    }

    /// INTENDED TO BE CALLED BY WHEN GUESS.OFFCHAIN == 0 ONLY ///

    function validateApprox(ApproxParams memory approx) internal pure {
        if (approx.guessMin > approx.guessMax || approx.eps > Math.ONE)
            revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps);
    }

    function calcMaxPtIn(
        MarketState memory market,
        MarketPreCompute memory comp
    ) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 hi = uint256(comp.totalAsset) - 1;

        while (low != hi) {
            uint256 mid = (low + hi + 1) / 2;
            if (calcSlope(comp, market.totalPt, int256(mid)) < 0) hi = mid - 1;
            else low = mid;
        }
        return low;
    }

    function calcSlope(
        MarketPreCompute memory comp,
        int256 totalPt,
        int256 ptToMarket
    ) internal pure returns (int256) {
        int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket;
        int256 sumPt = ptToMarket + totalPt;

        require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket");

        int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown(
            sumPt * diffAssetPtToMarket
        );

        int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln();
        int256 part3 = Math.IONE.divDown(comp.rateScalar);

        return comp.rateAnchor - (part1 - part2).mulDown(part3);
    }
}

library MarketApproxPtOutLib {
    using MarketMathCore for MarketState;
    using PYIndexLib for PYIndex;
    using Math for uint256;
    using Math for int256;
    using LogExpMath for int256;

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swapExactOut
        - Calculate the amount of SY needed
        - Stop when the netSyIn is smaller approx exactSyIn
        - guess & approx is for netSyIn
     */
    function approxSwapExactSyForPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactSyIn,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256 /*netPtOut*/, uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = Math.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyIn, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);

            if (netSyIn <= exactSyIn) {
                if (Math.isASmallerApproxB(netSyIn, exactSyIn, approx.eps))
                    return (guess, netSyFee);
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }

        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swapExactOut
        - Flashswap that amount of PT & pair with YT to redeem SY
        - Use the SY to repay the flashswap debt and the remaining is transferred to user
        - Stop when the netSyOut is greater approx the minSyOut
        - guess & approx is for netSyOut
     */
    function approxSwapYtForExactSy(
        MarketState memory market,
        PYIndex index,
        uint256 minSyOut,
        uint256 blockTime,
        ApproxParams memory approx
    ) internal pure returns (uint256 /*netYtIn*/, uint256 /*netSyOut*/, uint256 /*netSyFee*/) {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            // no limit on min
            approx.guessMax = Math.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);

            uint256 netAssetToRepay = index.syToAssetUp(netSyOwed);
            uint256 netSyOut = index.assetToSy(guess - netAssetToRepay);

            if (netSyOut >= minSyOut) {
                if (Math.isAGreaterApproxB(netSyOut, minSyOut, approx.eps))
                    return (guess, netSyOut, netSyFee);
                approx.guessMax = guess;
            } else {
                approx.guessMin = guess + 1;
            }
        }
        revert Errors.ApproxFail();
    }

    struct Args6 {
        MarketState market;
        PYIndex index;
        uint256 totalSyIn;
        uint256 blockTime;
        ApproxParams approx;
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swapExactOut
        - Swap that amount of PT out
        - Pair the remaining PT with the SY to add liquidity
        - Stop when the ratio of PT / totalPt & SY / totalSy is approx
        - guess & approx is for netPtFromSwap
     */
    function approxSwapSyToAddLiquidity(
        MarketState memory _market,
        PYIndex _index,
        uint256 _totalSyIn,
        uint256 _blockTime,
        ApproxParams memory _approx
    )
        internal
        pure
        returns (uint256 /*netPtFromSwap*/, uint256 /*netSySwap*/, uint256 /*netSyFee*/)
    {
        Args6 memory a = Args6(_market, _index, _totalSyIn, _blockTime, _approx);

        MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime);
        if (a.approx.guessOffchain == 0) {
            // no limit on min
            a.approx.guessMax = Math.min(a.approx.guessMax, calcMaxPtOut(comp, a.market.totalPt));
            validateApprox(a.approx);
            require(a.market.totalLp != 0, "no existing lp");
        }

        for (uint256 iter = 0; iter < a.approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(a.approx, iter);

            (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn(
                a.market,
                comp,
                a.index,
                guess
            );

            if (netSyIn > a.totalSyIn) {
                a.approx.guessMax = guess - 1;
                continue;
            }

            uint256 syNumerator;
            uint256 ptNumerator;

            {
                uint256 newTotalPt = uint256(a.market.totalPt) - guess;
                uint256 netTotalSy = uint256(a.market.totalSy) + netSyIn - netSyToReserve;

                // it is desired that
                // netPtFromSwap / newTotalPt = netSyRemaining / netTotalSy
                // which is equivalent to
                // netPtFromSwap * netTotalSy = netSyRemaining * newTotalPt

                ptNumerator = guess * netTotalSy;
                syNumerator = (a.totalSyIn - netSyIn) * newTotalPt;
            }

            if (Math.isAApproxB(ptNumerator, syNumerator, a.approx.eps))
                return (guess, netSyIn, netSyFee);

            if (ptNumerator <= syNumerator) {
                // needs more PT
                a.approx.guessMin = guess + 1;
            } else {
                // needs less PT
                a.approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    /**
     * @dev algorithm:
        - Bin search the amount of PT to swapExactOut
        - Flashswap that amount of PT out
        - Pair all the PT with the YT to redeem SY
        - Use the SY to repay the flashswap debt
        - Stop when the amount of YT required to pair with PT is approx exactYtIn
        - guess & approx is for netPtFromSwap
     */
    function approxSwapExactYtForPt(
        MarketState memory market,
        PYIndex index,
        uint256 exactYtIn,
        uint256 blockTime,
        ApproxParams memory approx
    )
        internal
        pure
        returns (uint256 /*netPtOut*/, uint256 /*totalPtSwapped*/, uint256 /*netSyFee*/)
    {
        MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime);
        if (approx.guessOffchain == 0) {
            approx.guessMin = Math.max(approx.guessMin, exactYtIn);
            approx.guessMax = Math.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt));
            validateApprox(approx);
        }

        for (uint256 iter = 0; iter < approx.maxIteration; ++iter) {
            uint256 guess = nextGuess(approx, iter);

            (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess);

            uint256 netYtToPull = index.syToAssetUp(netSyOwed);

            if (netYtToPull <= exactYtIn) {
                if (Math.isASmallerApproxB(netYtToPull, exactYtIn, approx.eps))
                    return (guess - netYtToPull, guess, netSyFee);
                approx.guessMin = guess;
            } else {
                approx.guessMax = guess - 1;
            }
        }
        revert Errors.ApproxFail();
    }

    ////////////////////////////////////////////////////////////////////////////////

    function calcSyIn(
        MarketState memory market,
        MarketPreCompute memory comp,
        PYIndex index,
        uint256 netPtOut
    ) internal pure returns (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) {
        (int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade(
            comp,
            index,
            int256(netPtOut)
        );

        // all safe since totalPt and totalSy is int128
        netSyIn = uint256(-_netSyIn);
        netSyFee = uint256(_netSyFee);
        netSyToReserve = uint256(_netSyToReserve);
    }

    function calcMaxPtOut(
        MarketPreCompute memory comp,
        int256 totalPt
    ) internal pure returns (uint256) {
        int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp();
        int256 proportion = logitP.divDown(logitP + Math.IONE);
        int256 numerator = proportion.mulDown(totalPt + comp.totalAsset);
        int256 maxPtOut = totalPt - numerator;
        // only get 99.9% of the theoretical max to accommodate some precision issues
        return (uint256(maxPtOut) * 999) / 1000;
    }

    function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) {
        if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain;
        if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2;
        revert Errors.ApproxFail();
    }

    function validateApprox(ApproxParams memory approx) internal pure {
        if (approx.guessMin > approx.guessMax || approx.eps > Math.ONE)
            revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps);
    }
}

File 89 of 94 : IPSwapAggregator.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

struct SwapData {
    SwapType swapType;
    address extRouter;
    bytes extCalldata;
    bool needScale;
}

enum SwapType {
    NONE,
    KYBERSWAP,
    ONE_INCH,
    // ETH_WETH not used in Aggregator
    ETH_WETH
}

interface IPSwapAggregator {
    function swap(address tokenIn, uint256 amountIn, SwapData calldata swapData) external payable;
}

File 90 of 94 : AuraEthxBbAWethSY.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@pendle/core-v2/contracts/core/StandardizedYield/implementations/BalancerStable/base/PendleAuraBalancerStableLPSYV2.sol";
import "@pendle/core-v2/contracts/core/StandardizedYield/implementations/BalancerStable/base/ComposableStable/ComposableStablePreview.sol";
import "@pendle/core-v2/contracts/core/StandardizedYield/implementations/BalancerStable/base/Linear/BbAPoolHelper.sol";

contract AuraEthxBbAWethSY is PendleAuraBalancerStableLPSYV2, BbAWethHelper {
    uint256 internal constant AURA_PID = 134;
    address internal constant LP = 0x4CbdE5C4B4B53EBE4aF4adB85404725985406163;
    address internal constant ETHx = 0xA35b1B31Ce002FBF2058D22F30f95D405200A15b;

    address internal constant LINEAR_PREVIEW = 0x73187e5b27F2aadD5fFee023d6a9E179365F2ad6;
    address internal constant COMPOSABLE_PREVIEW = 0x4239Ddd3c50463383670E86c119220849BFaF64a;

    address internal constant _BB_A_WETH = 0xbB6881874825E60e1160416D6C426eae65f2459E;
    address internal constant _WA_WETH = 0x03928473f25bb2da6Bc880b07eCBaDC636822264;
    bytes32 internal constant _BB_A_WETH_POOL_ID =
        0xbb6881874825e60e1160416d6c426eae65f2459e000000000000000000000592;

    bool internal constant NO_TOKENS_EXEMPT = true;
    bool internal constant ALL_TOKENS_EXEMPT = false;

    constructor(
        string memory _name,
        string memory _symbol
    )
        BbAWethHelper(LinearPreview(LINEAR_PREVIEW), _BB_A_WETH, _BB_A_WETH_POOL_ID, _WA_WETH)
        PendleAuraBalancerStableLPSYV2(
            _name,
            _symbol,
            LP,
            AURA_PID,
            ComposableStablePreview(COMPOSABLE_PREVIEW)
        )
    //solhint-disable-next-line
    {

    }

    function _deposit(
        address tokenIn,
        uint256 amount
    ) internal override returns (uint256 amountSharesOut) {
        if (tokenIn == NATIVE || tokenIn == WETH || tokenIn == WA_WETH) {
            uint256 amountBbAWeth = _depositBbAWeth(tokenIn, amount);
            amountSharesOut = super._deposit(BB_A_WETH, amountBbAWeth);
        } else {
            amountSharesOut = super._deposit(tokenIn, amount);
        }
    }

    function _redeem(
        address receiver,
        address tokenOut,
        uint256 amountSharesToRedeem
    ) internal override returns (uint256 amountTokenOut) {
        if (tokenOut == NATIVE || tokenOut == WETH || tokenOut == WA_WETH) {
            uint256 amountBbAWeth = super._redeem(address(this), BB_A_WETH, amountSharesToRedeem);
            amountTokenOut = _redeemBbAWeth(receiver, tokenOut, amountBbAWeth);
        } else {
            return super._redeem(receiver, tokenOut, amountSharesToRedeem);
        }
    }

    function _previewDeposit(
        address tokenIn,
        uint256 amountTokenToDeposit
    ) internal view override returns (uint256 amountSharesOut) {
        if (tokenIn == NATIVE || tokenIn == WETH || tokenIn == WA_WETH) {
            uint256 amountBbAWeth = _previewDepositBbAWeth(tokenIn, amountTokenToDeposit);
            amountSharesOut = super._previewDeposit(BB_A_WETH, amountBbAWeth);
        } else {
            amountSharesOut = super._previewDeposit(tokenIn, amountTokenToDeposit);
        }
    }

    function _previewRedeem(
        address tokenOut,
        uint256 amountSharesToRedeem
    ) internal view override returns (uint256 amountTokenOut) {
        if (tokenOut == NATIVE || tokenOut == WETH || tokenOut == WA_WETH) {
            uint256 amountBbAWeth = super._previewRedeem(BB_A_WETH, amountSharesToRedeem);
            amountTokenOut = _previewRedeemBbAWeth(tokenOut, amountBbAWeth);
        } else {
            return super._previewRedeem(tokenOut, amountSharesToRedeem);
        }
    }

    function _getImmutablePoolData() internal pure override returns (bytes memory ret) {
        ComposableStablePreview.ImmutableData memory res;
        res.poolTokens = _getPoolTokenAddresses();
        res.rateProviders = _getRateProviders();
        res.rawScalingFactors = _getRawScalingFactors();
        res.isExemptFromYieldProtocolFee = _getExemption();
        res.LP = LP;
        res.noTokensExempt = NO_TOKENS_EXEMPT;
        res.allTokensExempt = ALL_TOKENS_EXEMPT;
        res.bptIndex = _getBPTIndex();
        res.totalTokens = res.poolTokens.length;

        return abi.encode(res);
    }

    //  --------------------------------- POOL CONSTANTS ---------------------------------
    function _getPoolTokenAddresses() internal pure override returns (address[] memory res) {
        res = new address[](3);
        res[0] = LP;
        res[1] = ETHx;
        res[2] = _BB_A_WETH;
    }

    function _getBPTIndex() internal pure override returns (uint256) {
        return 0;
    }

    function _getRateProviders() internal pure returns (address[] memory res) {
        res = new address[](3);
        res[0] = 0x0000000000000000000000000000000000000000;
        res[1] = 0xAAE054B9b822554dd1D9d1F48f892B4585D3bbf0;
        res[2] = 0xbB6881874825E60e1160416D6C426eae65f2459E;
    }

    function _getRawScalingFactors() internal pure returns (uint256[] memory res) {
        res = new uint256[](3);
        res[0] = res[1] = res[2] = 1e18;
    }

    function _getExemption() internal pure returns (bool[] memory res) {
        res = new bool[](3);
        res[0] = res[1] = res[2] = false;
    }

    function getTokensIn() public view override returns (address[] memory res) {
        res = new address[](6);
        res[0] = NATIVE;
        res[1] = WETH;
        res[2] = WA_WETH;
        res[3] = BB_A_WETH;
        res[4] = ETHx;
        res[5] = LP;
    }

    function getTokensOut() public view override returns (address[] memory res) {
        return getTokensIn();
    }

    function isValidTokenIn(address token) public view override returns (bool) {
        return (token == NATIVE ||
            token == WETH ||
            token == WA_WETH ||
            token == BB_A_WETH ||
            token == ETHx ||
            token == LP);
    }

    function isValidTokenOut(address token) public view override returns (bool) {
        return isValidTokenIn(token);
    }
}

File 91 of 94 : AuraVethWethSY.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@pendle/core-v2/contracts/core/StandardizedYield/implementations/BalancerStable/base/PendleAuraBalancerStableLPSYV2.sol";
import "@pendle/core-v2/contracts/core/StandardizedYield/implementations/BalancerStable/base/ComposableStable/ComposableStablePreview.sol";

contract AuraWethVethSY is PendleAuraBalancerStableLPSYV2 {
    address internal constant VETH = 0x4Bc3263Eb5bb2Ef7Ad9aB6FB68be80E43b43801F;
    address internal constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;

    uint256 internal constant AURA_PID = 128;
    address internal constant LP = 0x156C02f3f7fEf64a3A9D80CCF7085f23ccE91D76;

    address internal constant COMPOSABLE_PREVIEW = 0x4239Ddd3c50463383670E86c119220849BFaF64a;

    bool internal constant NO_TOKENS_EXEMPT = true;
    bool internal constant ALL_TOKENS_EXEMPT = false;

    constructor(
        string memory _name,
        string memory _symbol
    )
        PendleAuraBalancerStableLPSYV2(
            _name,
            _symbol,
            LP,
            AURA_PID,
            ComposableStablePreview(COMPOSABLE_PREVIEW)
        )
    //solhint-disable-next-line
    {

    }

    function _deposit(
        address tokenIn,
        uint256 amount
    ) internal virtual override returns (uint256 amountSharesOut) {
        if (tokenIn == NATIVE) {
            IWETH(WETH).deposit{ value: amount }();
            amountSharesOut = super._deposit(WETH, amount);
        } else {
            amountSharesOut = super._deposit(tokenIn, amount);
        }
    }

    function _redeem(
        address receiver,
        address tokenOut,
        uint256 amountSharesToRedeem
    ) internal virtual override returns (uint256) {
        if (tokenOut == NATIVE) {
            uint256 amountTokenOut = super._redeem(address(this), WETH, amountSharesToRedeem);
            IWETH(WETH).withdraw(amountTokenOut);
            _transferOut(NATIVE, receiver, amountTokenOut);
            return amountTokenOut;
        } else {
            return super._redeem(receiver, tokenOut, amountSharesToRedeem);
        }
    }

    function _previewDeposit(
        address tokenIn,
        uint256 amountTokenToDeposit
    ) internal view virtual override returns (uint256 amountSharesOut) {
        if (tokenIn == NATIVE) {
            amountSharesOut = super._previewDeposit(WETH, amountTokenToDeposit);
        } else {
            amountSharesOut = super._previewDeposit(tokenIn, amountTokenToDeposit);
        }
    }

    function _previewRedeem(
        address tokenOut,
        uint256 amountSharesToRedeem
    ) internal view virtual override returns (uint256 amountTokenOut) {
        if (tokenOut == NATIVE) {
            amountTokenOut = super._previewRedeem(WETH, amountSharesToRedeem);
        } else {
            amountTokenOut = super._previewRedeem(tokenOut, amountSharesToRedeem);
        }
    }

    function _getImmutablePoolData() internal pure override returns (bytes memory ret) {
        ComposableStablePreview.ImmutableData memory res;
        res.poolTokens = _getPoolTokenAddresses();
        res.rateProviders = _getRateProviders();
        res.rawScalingFactors = _getRawScalingFactors();
        res.isExemptFromYieldProtocolFee = _getExemption();
        res.LP = LP;
        res.noTokensExempt = NO_TOKENS_EXEMPT;
        res.allTokensExempt = ALL_TOKENS_EXEMPT;
        res.bptIndex = _getBPTIndex();
        res.totalTokens = res.poolTokens.length;

        return abi.encode(res);
    }

    //  --------------------------------- POOL CONSTANTS ---------------------------------
    function _getPoolTokenAddresses() internal pure override returns (address[] memory res) {
        res = new address[](3);
        res[0] = LP;
        res[1] = VETH;
        res[2] = WETH;
    }

    function _getBPTIndex() internal pure override returns (uint256) {
        return 0;
    }

    function _getRateProviders() internal pure returns (address[] memory res) {
        res = new address[](3);
        res[0] = 0x0000000000000000000000000000000000000000;
        res[1] = 0x12589A727aeFAc3fbE5025F890f1CB97c269BEc2;
        res[2] = 0x0000000000000000000000000000000000000000;
    }

    function _getRawScalingFactors() internal pure returns (uint256[] memory res) {
        res = new uint256[](3);
        res[0] = res[1] = res[2] = 1e18;
    }

    function _getExemption() internal pure returns (bool[] memory res) {
        res = new bool[](3);
        res[0] = res[1] = res[2] = false;
    }

    function getTokensIn() public view virtual override returns (address[] memory res) {
        res = new address[](4);
        res[0] = LP;
        res[1] = WETH;
        res[2] = VETH;
        res[3] = NATIVE;
    }

    function getTokensOut() public view virtual override returns (address[] memory res) {
        return getTokensIn();
    }

    function isValidTokenIn(address token) public view virtual override returns (bool) {
        return (token == LP || token == WETH || token == VETH || token == NATIVE);
    }

    function isValidTokenOut(address token) public view virtual override returns (bool) {
        return isValidTokenIn(token);
    }
}

File 92 of 94 : IPInterfaces.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

import "@pendle/core-v2/contracts/interfaces/IPAllAction.sol";
import "@pendle/core-v2/contracts/core/Market/PendleMarketFactory.sol";
import "@pendle/core-v2/contracts/core/YieldContracts/PendleYieldContractFactory.sol";

File 93 of 94 : ISwETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;

interface ISwETH {
    function deposit() external payable;

    function getRate() external view returns (uint256);

    function ethToSwETHRate() external view returns (uint256);
}

File 94 of 94 : SwETHSY.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity 0.8.17;
import "@pendle/core-v2/contracts/core/StandardizedYield/SYBase.sol";
import "./interfaces/ISwETH.sol";

contract SwETHSY is SYBase {
    using Math for uint256;

    address public immutable swETH;

    constructor(
        string memory _name,
        string memory _symbol,
        address _swETH
    ) SYBase(_name, _symbol, _swETH) {
        swETH = _swETH;
    }

    /*///////////////////////////////////////////////////////////////
                    DEPOSIT/REDEEM USING BASE TOKENS
    //////////////////////////////////////////////////////////////*/

    function _deposit(
        address tokenIn,
        uint256 amountDeposited
    ) internal virtual override returns (uint256 /*amountSharesOut*/) {
        if (tokenIn == NATIVE) {
            uint256 preBalance = _selfBalance(swETH);
            ISwETH(swETH).deposit{ value: amountDeposited }();
            return _selfBalance(swETH) - preBalance;
        } else {
            // sweth
            return amountDeposited;
        }
    }

    function _redeem(
        address receiver,
        address /*tokenOut*/,
        uint256 amountSharesToRedeem
    ) internal virtual override returns (uint256 /*amountTokenOut*/) {
        _transferOut(swETH, receiver, amountSharesToRedeem);
        return amountSharesToRedeem;
    }

    /*///////////////////////////////////////////////////////////////
                               EXCHANGE-RATE
    //////////////////////////////////////////////////////////////*/

    function exchangeRate() public view virtual override returns (uint256) {
        return ISwETH(swETH).getRate();
    }

    /*///////////////////////////////////////////////////////////////
                MISC FUNCTIONS FOR METADATA
    //////////////////////////////////////////////////////////////*/

    function _previewDeposit(
        address tokenIn,
        uint256 amountTokenToDeposit
    ) internal view override returns (uint256 /*amountSharesOut*/) {
        if (tokenIn == NATIVE) {
            return amountTokenToDeposit.divDown(ISwETH(swETH).getRate());
        } else {
            return amountTokenToDeposit;
        }
    }

    function _previewRedeem(
        address /*tokenOut*/,
        uint256 amountSharesToRedeem
    ) internal pure override returns (uint256 /*amountTokenOut*/) {
        return amountSharesToRedeem;
    }

    function getTokensIn() public view virtual override returns (address[] memory res) {
        res = new address[](2);
        res[0] = swETH;
        res[1] = NATIVE;
    }

    function getTokensOut() public view virtual override returns (address[] memory res) {
        res = new address[](1);
        res[0] = swETH;
    }

    function isValidTokenIn(address token) public view virtual override returns (bool) {
        return token == NATIVE || token == swETH;
    }

    function isValidTokenOut(address token) public view virtual override returns (bool) {
        return token == swETH;
    }

    function assetInfo()
        external
        pure
        returns (AssetType assetType, address assetAddress, uint8 assetDecimals)
    {
        return (AssetType.TOKEN, NATIVE, 18);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 1000000
  },
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"string","name":"_name","type":"string"},{"internalType":"string","name":"_symbol","type":"string"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"SYBalancerInvalidPid","type":"error"},{"inputs":[],"name":"SYBalancerReentrancy","type":"error"},{"inputs":[{"internalType":"uint256","name":"actualSharesOut","type":"uint256"},{"internalType":"uint256","name":"requiredSharesOut","type":"uint256"}],"name":"SYInsufficientSharesOut","type":"error"},{"inputs":[{"internalType":"uint256","name":"actualTokenOut","type":"uint256"},{"internalType":"uint256","name":"requiredTokenOut","type":"uint256"}],"name":"SYInsufficientTokenOut","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SYInvalidRewardToken","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SYInvalidTokenIn","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SYInvalidTokenOut","type":"error"},{"inputs":[],"name":"SYZeroDeposit","type":"error"},{"inputs":[],"name":"SYZeroRedeem","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"address[]","name":"rewardTokens","type":"address[]"},{"indexed":false,"internalType":"uint256[]","name":"rewardAmounts","type":"uint256[]"}],"name":"ClaimRewards","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"tokenIn","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountDeposited","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountSyOut","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Paused","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"caller","type":"address"},{"indexed":true,"internalType":"address","name":"receiver","type":"address"},{"indexed":true,"internalType":"address","name":"tokenOut","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountSyToRedeem","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountTokenOut","type":"uint256"}],"name":"Redeem","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"account","type":"address"}],"name":"Unpaused","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"accruedRewards","outputs":[{"internalType":"uint256[]","name":"rewardAmounts","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"addRewardTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"assetInfo","outputs":[{"internalType":"enum IStandardizedYield.AssetType","name":"assetType","type":"uint8"},{"internalType":"address","name":"assetAddress","type":"address"},{"internalType":"uint8","name":"assetDecimals","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"auraPid","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"auraRewardManager","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balLp","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"balPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"claimRewards","outputs":[{"internalType":"uint256[]","name":"rewardAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountTokenToDeposit","type":"uint256"},{"internalType":"uint256","name":"minSharesOut","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"amountSharesOut","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"exchangeRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"extraRewards","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"extraRewardsLength","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"gasForReentrancyCheck","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRewardTokens","outputs":[{"internalType":"address[]","name":"rewardTokens","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokensIn","outputs":[{"internalType":"address[]","name":"res","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokensOut","outputs":[{"internalType":"address[]","name":"res","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"isValidTokenIn","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"isValidTokenOut","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"lastRewardBlock","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"linearPreviewHelper","outputs":[{"internalType":"contract LinearPreview","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"paused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"pendingOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"tokenIn","type":"address"},{"internalType":"uint256","name":"amountTokenToDeposit","type":"uint256"}],"name":"previewDeposit","outputs":[{"internalType":"uint256","name":"amountSharesOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"previewHelper","outputs":[{"internalType":"contract IBalancerStablePreview","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amountSharesToRedeem","type":"uint256"}],"name":"previewRedeem","outputs":[{"internalType":"uint256","name":"amountTokenOut","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"amountSharesToRedeem","type":"uint256"},{"internalType":"address","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"minTokenOut","type":"uint256"},{"internalType":"bool","name":"burnFromInternalBalance","type":"bool"}],"name":"redeem","outputs":[{"internalType":"uint256","name":"amountTokenOut","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardIndexesCurrent","outputs":[{"internalType":"uint256[]","name":"indexes","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"rewardIndexesStored","outputs":[{"internalType":"uint256[]","name":"indexes","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"rewardState","outputs":[{"internalType":"uint128","name":"index","type":"uint128"},{"internalType":"uint128","name":"lastBalance","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newGas","type":"uint256"}],"name":"setGasForReentrancyCheck","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"},{"internalType":"bool","name":"direct","type":"bool"},{"internalType":"bool","name":"renounce","type":"bool"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"unpause","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"userReward","outputs":[{"internalType":"uint128","name":"index","type":"uint128"},{"internalType":"uint128","name":"accrued","type":"uint128"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"yieldToken","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"stateMutability":"payable","type":"receive"}]

6102a080604052346200091a57620071ba8038038091620000218285620010b6565b833981016040828203126200091a5781516001600160401b0392908381116200091a578262000052918301620010f6565b9160208201518481116200091a576200006c9201620010f6565b60405163313ce56760e01b8152916020836004816000805160206200717a8339815191525afa928315620009a75760009362001053575b5060405192604084018481108682111762000e4057604052600184526020840192603160f81b845282519086821162000e405760035491600183811c9316801562001048575b602084101462000f4757601f9283811162000ffd575b5080602084821160011462000f745760009162000f68575b508160011b916000199060031b1c1916176003555b80519187831162000e405760045491600183811c9316801562000f5d575b602084101462000f4757828285941162000eed575b50602091831160011462000e625760009262000e56575b50508160011b916000199060031b1c1916176004555b608052600160f81b60018060f81b0360025416176002556020815191012091519020816101005280610120524660c0526040519260208401917f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f93848452604086015260608501524660808501523060a085015260a084528360c08101109060c08501111762000e405760c083016040528251902060a0523060e0526101405260ff196038541660385560075460ff8160a81c16159182809362000e2f575b801562000e13575b1562000db3575060ff60a01b198116600160a01b176007558162000d9a575b506000805160206200717a833981519152610160526007549060ff8260a81c161562000d4157600680546001600160a01b0319163317905562000d03575b5060405163038fff2d60e41b81526020816004816000805160206200717a8339815191525afa908115620009a75760009162000ccb575b506101a052608f6101c05260405163040f1f6d60e11b81526020816004816000805160206200719a8339815191525afa908115620009a75760009162000c93575b50608f1162000bdf57604051631526fe2760e01b8152608f600482015260c0816024816000805160206200719a8339815191525afa8015620009a757600090819062000bf1575b6101e0526101808190526001600160a01b031673ae8535c23afedda9304b03c68a3563b75fc8f92a1901905062000bdf57604051636eb1769f60e11b81523060048201526000805160206200719a83398151915260248201526020816044816000805160206200717a8339815191525afa908115620009a75760009162000ba7575b5060016001605f1b0311620009c9575b6040516200040f816200109a565b600381526060366020830137805115620009b3576000805160206200717a8339815191526020820152805160011015620009b35773bb6881874825e60e1160416d6c426eae65f2459e6040820152805160021015620009b35773f951e335afb289353dc249e82926178eac7ded78606082015260005b8151811015620004d757600581901b820160200151620004ae906001600160a01b031662001183565b6000198114620004c15760010162000485565b634e487b7160e01b600052601160045260246000fd5b734239ddd3c50463383670e86c119220849bfaf64a61020052611b58603c557373187e5b27f2aadd5ffee023d6a9e179365f2ad66102205273bb6881874825e60e1160416d6c426eae65f2459e610240527fbb6881874825e60e1160416d6c426eae65f2459e000000000000000000000592610260527303928473f25bb2da6bc880b07ecbadc63682226461028052604051636eb1769f60e11b815230600482015273ba12222222228d8ba445958a75a0704d566bf2c8602482015260208160448173c02aaa39b223fe8d0a0e5c4f27ead9083c756cc25afa908115620009a7576000916200096c575b5060016001605f1b03116200077a575b61028051620005e9906001600160a01b031662001183565b604051615d6d6200140d823960805181611ec6015260a051816146e9015260c051816147b5015260e051816146ba015261010051816147380152610120518161475e01526101405181614715015261016051816114da015261018051818181611047015281816112c501528181611cdf01528181614d86015281816152c5015281816155cd015261587501526101a0518181816117a501528181614ee4015281816153a70152818161564201526158ea01526101c0518181816117fe0152614df201526101e0518181816107ed015281816132fe01528181613586015281816139e30152615291015261020051818181612ada015261566e015261022051818181610cf801528181611f3501526157ca015261024051818181610cbc0152818161229c01528181612c6a01528181615190015281816156fa0152615cc3015261026051818181610c78015281816122bf015281816151ba015261576d015261028051818181610d9f015281816124c501528181612c3c015281816151ee015281816158150152615cef0152615d6d90f35b6040516000806020830163095ea7b360e01b9384825273ba12222222228d8ba445958a75a0704d566bf2c8602482015282604482015260448152620007bf816200109a565b51908273c02aaa39b223fe8d0a0e5c4f27ead9083c756cc25af13d1562000964573d620007ec81620010da565b90620007fc6040519283620010b6565b81523d6000602083013e5b8162000927575b5015620008a957600080916040516020810191825273ba12222222228d8ba445958a75a0704d566bf2c86024820152821960448201526044815262000853816200109a565b51908273c02aaa39b223fe8d0a0e5c4f27ead9083c756cc25af13d156200091f573d6200088081620010da565b90620008906040519283620010b6565b81523d6000602083013e5b81620008dd575b50620005d1575b60405162461bcd60e51b815260206004820152600c60248201526b5361666520417070726f766560a01b6044820152606490fd5b8051801592508215620008f4575b505081620008a2565b81925090602091810103126200091a57602062000912910162001175565b8180620008eb565b600080fd5b60606200089b565b80518015925082156200093e575b5050826200080e565b81925090602091810103126200091a5760206200095c910162001175565b828062000935565b606062000807565b906020823d6020116200099e575b816200098960209383620010b6565b810103126200099b57505181620005c1565b80fd5b3d91506200097a565b6040513d6000823e3d90fd5b634e487b7160e01b600052603260045260246000fd5b600080604051602081019063095ea7b360e01b82526000805160206200719a83398151915260248201528260448201526044815262000a08816200109a565b5190826000805160206200717a8339815191525af13d1562000b9f573d62000a3081620010da565b9062000a406040519283620010b6565b81523d6000602083013e5b8162000b62575b5015620008a957600080604051602081019063095ea7b360e01b82526000805160206200719a8339815191526024820152821960448201526044815262000a99816200109a565b5190826000805160206200717a8339815191525af13d1562000b5a573d62000ac181620010da565b9062000ad16040519283620010b6565b81523d6000602083013e5b8162000b1d575b50620004015760405162461bcd60e51b815260206004820152600c60248201526b5361666520417070726f766560a01b6044820152606490fd5b805180159250821562000b34575b50503862000ae3565b81925090602091810103126200091a57602062000b52910162001175565b388062000b2b565b606062000adc565b805180159250821562000b79575b50503862000a52565b81925090602091810103126200091a57602062000b97910162001175565b388062000b70565b606062000a4b565b906020823d60201162000bd6575b8162000bc460209383620010b6565b810103126200099b57505138620003f1565b3d915062000bb5565b604051636467ac9d60e11b8152600490fd5b509060c0813d60c01162000c8a575b8162000c0f60c09383620010b6565b8101031262000c86576000805160206200717a833981519152915062000c358162001160565b62000c436020830162001160565b5062000c526040830162001160565b5062000c7e60a062000c676060850162001160565b9362000c766080820162001160565b500162001175565b50906200036f565b5080fd5b3d915062000c00565b906020823d60201162000cc2575b8162000cb060209383620010b6565b810103126200099b5750513862000328565b3d915062000ca1565b906020823d60201162000cfa575b8162000ce860209383620010b6565b810103126200099b57505138620002e7565b3d915062000cd9565b60ff60a81b1916600755604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb384740249890602090a138620002b0565b60405162461bcd60e51b815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201526a6e697469616c697a696e6760a81b6064820152608490fd5b61ffff60a01b191661010160a01b176007553862000272565b60c060849162461bcd60e51b82820152602060c4820152602e60e48201527f496e697469616c697a61626c653a20636f6e747261637420697320616c7265616101048201526d191e481a5b9a5d1a585b1a5e995960921b61012482015201fd5b50303b158015620002535750600160ff8360a01c161462000253565b50600160ff8360a01c16106200024b565b634e487b7160e01b600052604160045260246000fd5b01519050388062000176565b600460009081527f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b9350601f198516905b81811062000ed4575090846001959493921062000eba575b505050811b016004556200018c565b015160001960f88460031b161c1916905538808062000eab565b9293602060018192878601518155019501930162000e93565b90919250600460005260206000208380860160051c8201926020871062000f3d575b94869594939291940160051c01905b81811062000f2d57506200015f565b6000815585945060010162000f1e565b9250819262000f0f565b634e487b7160e01b600052602260045260246000fd5b92607f16926200014a565b90508501513862000117565b600360009081527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b9250601f198416905b81811062000fe45750908360019493921062000fca575b5050811b016003556200012c565b87015160001960f88460031b161c19169055388062000fbc565b9192602060018192868c01518155019401920162000fa5565b600360005260206000208480840160051c820192602085106200103e575b0160051c01905b818110620010315750620000ff565b6000815560010162001022565b925081926200101b565b92607f1692620000e9565b6020939193813d60201162001091575b816200107260209383620010b6565b8101031262000c8657519060ff821682036200099b57509138620000a3565b3d915062001063565b608081019081106001600160401b0382111762000e4057604052565b601f909101601f19168101906001600160401b0382119082101762000e4057604052565b6001600160401b03811162000e4057601f01601f191660200190565b919080601f840112156200091a578251906200111282620010da565b91620011226040519384620010b6565b8083526020918282870101116200091a5760005b8181106200114c57508260009394955001015290565b858101830151848201840152820162001136565b51906001600160a01b03821682036200091a57565b519081151582036200091a57565b6001600160a01b0381168015620014085760408051928392636eb1769f60e11b84523060048501528373ba12222222228d8ba445958a75a0704d566bf2c891826024830152602096879160449788915afa908115620013fd57600091620013ca575b5060016001605f1b0311620011fc575b5050505050565b82519060008087840163095ea7b360e01b9485825284602482015282898201528881526200122a816200109a565b519082875af13d15620013c2573d6200124381620010da565b906200125287519283620010b6565b81523d60008983013e5b8162001384575b501562001352579160009291838093865190898201938452602482015281198882015287815262001294816200109a565b51925af13d156200134a573d620012ab81620010da565b90620012ba84519283620010b6565b81523d60008683013e5b816200130c575b5015620012da578080620011f5565b5162461bcd60e51b81526004810192909252600c60248301526b5361666520417070726f766560a01b90820152606490fd5b8091505184811591821562001327575b5050905038620012cb565b83809293500103126200091a578362001341910162001175565b8084386200131c565b6060620012c4565b835162461bcd60e51b815260048101879052600c60248201526b5361666520417070726f766560a01b81870152606490fd5b809150518781159182156200139f575b505090503862001263565b83809293500103126200091a5786620013b9910162001175565b80873862001394565b60606200125c565b908682813d8311620013f5575b620013e38183620010b6565b810103126200099b57505138620011e5565b503d620013d7565b84513d6000823e3d90fd5b505056fe6080604081815260049182361015610022575b505050361561002057600080fd5b005b600092833560e01c9182630390c83914612a905750816306fdde031461295f578163071bc3c91461218c578163078dfbe7146127d1578163095ea7b314612782578163128fced1146126c657816318160ddd1461266857816320e8c5651461219f578163213cae631461218c57816323b872dd14611fbc5781632a5e141e14611f595781632b338c0414611eea578163313ce56714611e8e578163318a8f8f14611e515781633644e51514611e165781633ba0b9a914611ba55781633f4ba83a14611a9557816340c3544614611a125781634e71e0c8146119035781635c975abb146118c15781635cbadbe414611821578163619002ce146117c8578163655864521461176f57816370a0823114611709578163769f8e5d146114fe57816376d5de851461148f578163784367d6146114505781637ecebe00146113ee5781638456cb591461133c5781638da5cb5b146112e95781638efabee01461127a57816395d89b411461110e578163a40bee5014611000578163a44517c814610f3b578163a9059cbb14610e67578163a9f8d18114610e2a578163b8f82b2614610bb3578163c4f59f9b14610b64578163cbe52ae314610abe578163d505accf1461089d578163d55a23f414610860578163da88ecb414610811578163dc616e3e146107a2578163dd62ed3e1461072e578163e30c3978146106db578163ea64a8201461064f578163ef5cfb8c1461037e57508063f8b2f9911461029d5763fa5a4f061461024e575b80610012565b346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209061029061028b612d4c565b615c46565b90519015158152f35b5080fd5b503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995761037a90600254906102e460028360f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80931617600255610334613221565b50507f010000000000000000000000000000000000000000000000000000000000000061035f613871565b92600254161760025551918291602083526020830190612d92565b0390f35b83833461029957602090817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b57916103ba612d4c565b90600254936103cf60028660f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809616176002556104208361313c565b610428613cc6565b906104338251613050565b9473ffffffffffffffffffffffffffffffffffffffff93858516815b85518110156105bb57866104638288613128565b51168352603980855285842083855285528584205490608091821c610488848d613128565b52610493838c613128565b516104a9575b50506104a49061309f565b61044f565b886104b4848a613128565b5116855285528584208385528552858420906fffffffffffffffffffffffffffffffff918281541690556104e8838c613128565b51908282116105b757896104fc858b613128565b51168652603b8752828887209216908254901c0391821161058b578a8a61057d858c610575828e6105706104a49b9a6105849a906fffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffff0000000000000000000000000000000083549260801b169116179055565b613128565b511693613128565b5191614a31565b908c610499565b60248560118f7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8580fd5b888461037a877f01000000000000000000000000000000000000000000000000000000000000008e877f2193aa20a3717f5f4ac79482f4f553e5f0afe8f4e6ec3e3d1aa2e138adc4763f610624610610613cc6565b610631875192839289845289840190612b5c565b8281038b8401528b612d92565b0390a2600254161760025551928284938452830190612d92565b8280fd5b5050346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299578061037a9273ffffffffffffffffffffffffffffffffffffffff6106a2612d4c565b168152603b60209081529190205491516fffffffffffffffffffffffffffffffff8316815260809290921c908201529081906040820190565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209073ffffffffffffffffffffffffffffffffffffffff600754169051908152f35b50503461029957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299578060209261076a612d4c565b610772612d6f565b73ffffffffffffffffffffffffffffffffffffffff91821683526001865283832091168252845220549051908152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995761037a9061084d613871565b9051918291602083526020830190612d92565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090603d549051908152f35b839150346102995760e07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576108d7612d4c565b6108df612d6f565b906044359260643560843560ff81168103610aba57814211610a5d576109eb6109e373ffffffffffffffffffffffffffffffffffffffff928a84881695868c526005602052818c20908154916001830190558251918860208401947f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98652840152878c1660608401528c608084015260a083015260c082015260c0815261098581612fdb565b5190206109906146a3565b918c519160208301937f1901000000000000000000000000000000000000000000000000000000000000855260228401526042830152604282526109d382612fa3565b60c4359260a435925190206145e1565b9190916143bc565b1603610a0057506109fd939450614247565b80f35b60649060208751917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601e60248201527f45524332305065726d69743a20696e76616c6964207369676e617475726500006044820152fd5b60648360208a51917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601d60248201527f45524332305065726d69743a206578706972656420646561646c696e650000006044820152fd5b8680fd5b90508234610b6157827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b615750610af8612d4c565b90610b0282615c46565b15610b1d57602083610b16602435856156ba565b9051908152f35b73ffffffffffffffffffffffffffffffffffffffff60249351927f88a505610000000000000000000000000000000000000000000000000000000084521690820152fd5b80fd5b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995761037a90610ba0613cc6565b9051918291602083526020830190612b5c565b828434610b6157817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b6157610beb612d4c565b9260243590610bf985615c46565b15610de45773ffffffffffffffffffffffffffffffffffffffff94858116801580918115610dc6575b8115610d9a575b5015610d8357602092919015610d7d575073c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2955b85517f57a3033b0000000000000000000000000000000000000000000000000000000081527f000000000000000000000000000000000000000000000000000000000000000092810192835273ffffffffffffffffffffffffffffffffffffffff97881660208401527f00000000000000000000000000000000000000000000000000000000000000009788166040840152606083019490945283918290819060800103917f0000000000000000000000000000000000000000000000000000000000000000165afa918215610d72578092610d3c575b5050610b16906020936155b2565b51908152f35b9091506020823d8211610d6a575b81610d5760209383612ff7565b81010312610b6157505182610b16610d28565b3d9150610d4a565b8351903d90823e3d90fd5b95610c51565b50905060209450610d9492506155b2565b90610d36565b9050877f0000000000000000000000000000000000000000000000000000000000000000161488610c29565b73c02aaa39b223fe8d0a0e5c4f27ead9083c756cc281149150610c22565b8460249173ffffffffffffffffffffffffffffffffffffffff8651927faeabe7180000000000000000000000000000000000000000000000000000000084521690820152fd5b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090603a549051908152f35b50503461029957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020907f0100000000000000000000000000000000000000000000000000000000000000610ec3612d4c565b610f2c60025491610eda60028460f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809416176002556024359033613da2565b60025416176002555160018152f35b90503461064b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b57803591610f9273ffffffffffffffffffffffffffffffffffffffff600654163314612e91565b611b588310610fa3575050603c5580f35b90602060649251917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601260248201527f6c6f776572207468616e2064656661756c7400000000000000000000000000006044820152fd5b83833461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016916020825180957f313ce56700000000000000000000000000000000000000000000000000000000825281865afa9384156111025781946110bd575b505060ff6060938251936001855260208501521690820152f35b9093506020813d82116110fa575b816110d860209383612ff7565b810103126110f657519260ff84168403610b61575060ff60606110a3565b8380fd5b3d91506110cb565b509051903d90823e3d90fd5b828434610b6157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b615781519181845492600184811c91818616958615611270575b6020968785108114611244579087899a92868b999a9b5291826000146111fc5750506001146111a1575b858861037a89611192848a0385612ff7565b51928284938452830190612afe565b815286935091907f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b8284106111e4575050508201018161119261037a88611180565b8054848a0186015288955087949093019281016111ca565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168882015294151560051b87019094019450859350611192925061037a9150899050611180565b60248360228c7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b92607f1692611156565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209073ffffffffffffffffffffffffffffffffffffffff600654169051908152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760207f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258916113b373ffffffffffffffffffffffffffffffffffffffff600654163314612e91565b6113bb612ef6565b60017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00603854161760385551338152a180f35b5050346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299578060209273ffffffffffffffffffffffffffffffffffffffff611440612d4c565b1681526005845220549051908152f35b5050346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209061029061028b612d4c565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b90508234610b615760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b6157611538612d4c565b6044359273ffffffffffffffffffffffffffffffffffffffff80851692602435928487036105b75760643596608435968715158803610b6157506002549661158660028960f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809916176002556115d782615c46565b156116da5785156116b2576115fd918691156116a3576115f78230614032565b84615156565b9680881061166e576020888a7f01000000000000000000000000000000000000000000000000000000000000008a8a8a8a8a8651928352878984015216907faee47cdf925cf525fdae94f9777ee5a06cac37e1c41220d0a8a89ed154f62d1c863392a4600254161760025551908152f35b60449250878951927fbfee4ca00000000000000000000000000000000000000000000000000000000084528301526024820152fd5b6116ad8233614032565b6115f7565b828a517fc3d83b07000000000000000000000000000000000000000000000000000000008152fd5b602483888c51917f88a50561000000000000000000000000000000000000000000000000000000008352820152fd5b5050346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090610b16611748612d4c565b73ffffffffffffffffffffffffffffffffffffffff16600052600060205260406000205490565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090517f00000000000000000000000000000000000000000000000000000000000000008152f35b50503461029957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299578061037a9261185e612d4c565b611866612d6f565b73ffffffffffffffffffffffffffffffffffffffff91821683526039602090815284842091909216835281529190205491516fffffffffffffffffffffffffffffffff8316815260809290921c908201529081906040820190565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209060ff6038541690519015158152f35b9190503461064b57827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b576007549073ffffffffffffffffffffffffffffffffffffffff92838316918233036119b5575050806006549384167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08680a37fffffffffffffffffffffffff0000000000000000000000000000000000000000809316176006551660075580f35b90602060649251917f08c379a0000000000000000000000000000000000000000000000000000000008352820152602060248201527f4f776e61626c653a2063616c6c657220213d2070656e64696e67206f776e65726044820152fd5b90503461064b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b5735603d5481101561064b5773ffffffffffffffffffffffffffffffffffffffff90603d602094527fece66cfdbd22e3f37d348a3d8e19074452862cd65fd4b9a11f0336d1ac6d1dc30154169051908152f35b90503461064b57827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b57611ae873ffffffffffffffffffffffffffffffffffffffff600654163314612e91565b6038549060ff821615611b4857507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff006020921660385551338152a180f35b60649060208451917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601460248201527f5061757361626c653a206e6f74207061757365640000000000000000000000006044820152fd5b83833461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957805192611be184612fbf565b828452603c549383835195602096878101907f0e8e3e84000000000000000000000000000000000000000000000000000000008252604481016024908a8284015286518091528a6064840197019186905b828210611d7b575050505080611c8573ba12222222228d8ba445958a75a0704d566bf2c8928697037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101835282612ff7565b5192fa611c9a611c936138e6565b911561361b565b51611d545783825180927f679aefce0000000000000000000000000000000000000000000000000000000082528173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa928315611d49578093611d17575b505051908152f35b909192508382813d8311611d42575b611d308183612ff7565b81010312610b61575051908380611d0f565b503d611d26565b8251903d90823e3d90fd5b90517f71c97104000000000000000000000000000000000000000000000000000000008152fd5b919395979092809597505180518a811015611deb57828e9260a092600195528d73ffffffffffffffffffffffffffffffffffffffff90818684015116868501528083015190840152606081818401511690840152608080920151169082015201950192018a969497959391611c32565b838d60218d7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090610b166146a3565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090603c549051908152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905160ff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b8334610b615760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b61576109fd611f94612d4c565b611fb773ffffffffffffffffffffffffffffffffffffffff600654163314612e91565b613970565b839150346102995760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957611ff6612d4c565b611ffe612d6f565b9060443592856002549561201860028860f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8098161760025573ffffffffffffffffffffffffffffffffffffffff8416815260016020528181203382526020522054907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036120e2575b6020877f010000000000000000000000000000000000000000000000000000000000000088610f2c898989613da2565b84821061212f5750926020959492610f2c92612122837f010000000000000000000000000000000000000000000000000000000000000097033383614247565b92509294958194506120b2565b60649060208851917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152fd5b50505050612198612ba6565b3880610248565b838360807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576121d3612d4c565b916121dc612d6f565b60443593606435946002938454976121f9868a60f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809a1617865561224985615c46565b156126225782156125fb5773ffffffffffffffffffffffffffffffffffffffff8581169586158015612566578534036125095785905b80156124ec575b80156124c1575b156124b257906122e46122ea927f000000000000000000000000000000000000000000000000000000000000000080937f000000000000000000000000000000000000000000000000000000000000000030614bc3565b90614d84565b985b808a1061247d575084169384156124205761230e90612309612ef6565b61313c565b888811610299578554908989168a831601908a82116123f457509380927f01000000000000000000000000000000000000000000000000000000000000009694927fff000000000000000000000000000000000000000000000000000000000000008c60209d98169116178855818152808b5288812061238f8b8254613214565b90557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8b8a518c8152a3865190815287898201527f5fe47ed6d4225326d3303476197d782ded5a4e9c14f479dc9ec4992af4e85d59873392a482541617905551908152f35b8360116024927f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b60648260208a51917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f2061646472657373006044820152fd5b826044918b8b51927fbc71f2ba0000000000000000000000000000000000000000000000000000000084528301526024820152fd5b6124bb91614d84565b986122ec565b50827f000000000000000000000000000000000000000000000000000000000000000016881461228d565b5073c02aaa39b223fe8d0a0e5c4f27ead9083c756cc28814612286565b60648460208c51917f08c379a0000000000000000000000000000000000000000000000000000000008352820152600c60248201527f657468206d69736d6174636800000000000000000000000000000000000000006044820152fd5b89517f23b872dd0000000000000000000000000000000000000000000000000000000060208201523360248201523060448201528660648201526064815260a0810181811067ffffffffffffffff8211176125cf578792916125ca918d528a614845565b61227f565b6024876041887f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b86517fa907f2f0000000000000000000000000000000000000000000000000000000008152fd5b8460249173ffffffffffffffffffffffffffffffffffffffff8951927faeabe7180000000000000000000000000000000000000000000000000000000084521690820152fd5b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020907effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600254169051908152f35b828434610b6157602091827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957612701612d4c565b9161270a613cc6565b926127158451613050565b9473ffffffffffffffffffffffffffffffffffffffff91821691835b86518110156127705780826127486001938a613128565b511686526039845286862085875284528686205460801c612769828b613128565b5201612731565b85518381528061037a8186018b612d92565b50503461029957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020906127ca6127c0612d4c565b6024359033614247565b5160018152f35b9190503461064b5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b5761280b612d4c565b9160243591821515830361295b576044359283151584036105b75773ffffffffffffffffffffffffffffffffffffffff94859161284d83600654163314612e91565b15612929571692831590811591612921575b50156128c4575050806006549283167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a37fffffffffffffffffffffffff0000000000000000000000000000000000000000809216176006556007541660075580f35b90602060649251917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601560248201527f4f776e61626c653a207a65726f206164647265737300000000000000000000006044820152fd5b90503861285f565b9350505050167fffffffffffffffffffffffff0000000000000000000000000000000000000000600754161760075580f35b8480fd5b828434610b6157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b61578151918160035492600184811c91818616958615612a86575b6020968785108114611244578899509688969785829a529182600014612a415750506001146129e5575b50505061037a9291611192910385612ff7565b9190869350600383527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b828410612a29575050508201018161119261037a6129d2565b8054848a018601528895508794909301928101612a10565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168782015293151560051b86019093019350849250611192915061037a90506129d2565b92607f16926129a8565b84903461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b919082519283825260005b848110612b485750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b602081830181015184830182015201612b09565b90815180825260208080930193019160005b828110612b7c575050505090565b835173ffffffffffffffffffffffffffffffffffffffff1685529381019392810192600101612b6e565b5034612d47576000807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b615760405190612be482612fdb565b6006825260c036602084013780612bfa836130fb565b5273c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2612c1983613108565b52612c2382613118565b73ffffffffffffffffffffffffffffffffffffffff90817f0000000000000000000000000000000000000000000000000000000000000000169052825160031015612d1a577f0000000000000000000000000000000000000000000000000000000000000000166080830152815160041015612ced5773f951e335afb289353dc249e82926178eac7ded7860a0830152815160051015612ced5773ae8535c23afedda9304b03c68a3563b75fc8f92b60c08301526040516020808252819061037a90820185612b5c565b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526032600452fd5b6024827f4e487b710000000000000000000000000000000000000000000000000000000081526032600452fd5b600080fd5b6004359073ffffffffffffffffffffffffffffffffffffffff82168203612d4757565b6024359073ffffffffffffffffffffffffffffffffffffffff82168203612d4757565b90815180825260208080930193019160005b828110612db2575050505090565b835185529381019392810192600101612da4565b603d54811015612dfd57603d6000527fece66cfdbd22e3f37d348a3d8e19074452862cd65fd4b9a11f0336d1ac6d1dc30190600090565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b15612e3357565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152fd5b15612e9857565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b60ff60385416612f0257565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f5061757361626c653a20706175736564000000000000000000000000000000006044820152fd5b67ffffffffffffffff8111612f7457604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6080810190811067ffffffffffffffff821117612f7457604052565b6020810190811067ffffffffffffffff821117612f7457604052565b60e0810190811067ffffffffffffffff821117612f7457604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117612f7457604052565b67ffffffffffffffff8111612f745760051b60200190565b9061305a82613038565b6130676040519182612ff7565b8281527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe06130958294613038565b0190602036910137565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146130cc5760010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b805115612dfd5760200190565b805160011015612dfd5760400190565b805160021015612dfd5760600190565b8051821015612dfd5760209160051b010190565b613144613221565b9080511561318d5773ffffffffffffffffffffffffffffffffffffffff83168015159081613182575b5061317757505050565b61318092613651565b565b90503014153861316d565b505050565b61319a613221565b918151156132015773ffffffffffffffffffffffffffffffffffffffff90838383831680151590816131f6575b506131e5575b50505083168015159081613182575061317757505050565b6131ee92613651565b3883836131cd565b9050301415386131c7565b50505050565b919082039182116130cc57565b919082018092116130cc57565b613229613cc6565b906132348251613050565b82516000901561361757603a5443036132b0575b805b84518110156132ab578073ffffffffffffffffffffffffffffffffffffffff6132766132a69388613128565b51168352603b6020526fffffffffffffffffffffffffffffffff6040842054166132a08286613128565b5261309f565b61324a565b505090565b91909143603a557effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6002541693603d541560001461356e5773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016803b1561064b578280916044604051809481937f7050ccd90000000000000000000000000000000000000000000000000000000083523060048401528160248401525af180156135635790839161354f575b50505b818515938415915b83518110156135435773ffffffffffffffffffffffffffffffffffffffff6133bb816133a78488613128565b5116916133b48488613128565b5116614b1a565b818752603b906020928284526133da604092838b205460801c90613207565b92818a528085526fffffffffffffffffffffffffffffffff9485848c2054169289841561353a575b6134d9575b868411612d47578b525283828a2091167fffffffffffffffffffffffffffffffff00000000000000000000000000000000825416179055828211612d4757829088209116815460801c019182116134ac576134a792916134a291906fffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffff0000000000000000000000000000000083549260801b169116179055565b61309f565b61337b565b6024877f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b92670de0b6b3a7640000908187029187830414871517156130cc578d61350b578f613505920490613214565b92613407565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b60019450613402565b50949350509350613248565b61355890612f60565b610299578138613370565b6040513d85823e3d90fd5b9073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000000000000000000000000000000000000000000016803b15610299578180916044604051809481937f7050ccd9000000000000000000000000000000000000000000000000000000008352306004840152600160248401525af1801561360c576135fd575b5090613373565b61360690612f60565b386135f6565b6040513d84823e3d90fd5b5090565b1561362257565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052600160045260246000fd5b90919273ffffffffffffffffffffffffffffffffffffffff906136868284169384151580613867575b6117489096939661361b565b9182159160005b815181101561385d57826136a18284613128565b5116906136ae818a613128565b5191806000526039926020908482526040806000208b60005283526fffffffffffffffffffffffffffffffff9182826000205416801561380b578181146137fb576136f99082613207565b808c02908c8204148b17156130cc57670de0b6b3a7640000613735918e886000528a88528560002090600052875204836000205460801c613214565b91838211612d4757838311612d47578051948186019086821067ffffffffffffffff831117612f74576137f6998f92988780966134a29b875216895285838a019716875260005281528260002091600052526000209351167fffffffffffffffffffffffffffffffff0000000000000000000000000000000084541617835551166fffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffff0000000000000000000000000000000083549260801b169116179055565b61368d565b5050505050506137f6915061309f565b50939582859492939411612d47576137f696600052815281600020908b6000525260002091167fffffffffffffffffffffffffffffffff0000000000000000000000000000000082541617905561309f565b5050505050509050565b503085141561367a565b613879613cc6565b906138848251613050565b91600090815b815181101561318d578073ffffffffffffffffffffffffffffffffffffffff6138b560019385613128565b51168452603b6020526fffffffffffffffffffffffffffffffff6040852054166138df8288613128565b520161388a565b3d1561393f573d9067ffffffffffffffff8211612f74576040519161393360207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8401160184612ff7565b82523d6000602084013e565b606090565b90816020910312612d47575173ffffffffffffffffffffffffffffffffffffffff81168103612d475790565b73ffffffffffffffffffffffffffffffffffffffff908181169073ba100000625a3754423978a60c9317c58a424e3d8214908115613ca8575b8115613c2a575b50613bf957604080517fd55a23f400000000000000000000000000000000000000000000000000000000815260049360207f0000000000000000000000000000000000000000000000000000000000000000821681848881845afa938415613bee57600094613bbf575b5060005b848110613a5457602488888851917fd2dca630000000000000000000000000000000000000000000000000000000008352820152fd5b85517f40c354460000000000000000000000000000000000000000000000000000000081528189820152602490848183816000885af1908115613b9757868b60009388938591613ba2575b508b5194859384927ff7c618c1000000000000000000000000000000000000000000000000000000008452165af1908115613b9757908691600091613b6a575b50168814613af65750613af19061309f565b613a1e565b9450505050939150603d9081549268010000000000000000841015613b3e575050600182019055613b2690612dc6565b909283549160031b90811b9283911b16911916179055565b6041907f4e487b7100000000000000000000000000000000000000000000000000000000600052526000fd5b613b8a9150863d8811613b90575b613b828183612ff7565b810190613944565b38613adf565b503d613b78565b88513d6000823e3d90fd5b613bb99150843d8611613b9057613b828183612ff7565b38613a9f565b90938282813d8311613be7575b613bd68183612ff7565b81010312610b615750519238613a1a565b503d613bcc565b85513d6000823e3d90fd5b602490604051907fd2dca6300000000000000000000000000000000000000000000000000000000082526004820152fd5b905060405180603d5490818152602080910191603d6000527fece66cfdbd22e3f37d348a3d8e19074452862cd65fd4b9a11f0336d1ac6d1dc3916000905b828210613c8f575050505090613c8481613c8994930382612ff7565b6147db565b386139b0565b8354891685529384019360019384019390910190613c68565b73c0c293ce456ff0ed870add98a0828dd4d2903dbf831491506139a9565b603d549060028281018082116130cc57613cdf90613050565b9273ba100000625a3754423978a60c9317c58a424e3d613cfe856130fb565b5273c0c293ce456ff0ed870add98a0828dd4d2903dbf613d1d85613108565b526000805b828110613d2f5750505050565b613d3881612dc6565b905482860191828711613d755773ffffffffffffffffffffffffffffffffffffffff613d709493926132a09260031b1c169189613128565b613d22565b6024857f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b909173ffffffffffffffffffffffffffffffffffffffff91828116928315613fae578416938415613f2a57848414613ecc57613de591613de0612ef6565b613192565b600082815280602052604081205491808310613e4857604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815220613e3d828254613214565b9055604051908152a3565b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e742065786365656473206260448201527f616c616e636500000000000000000000000000000000000000000000000000006064820152fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601760248201527f45524332303a207472616e7366657220746f2073656c660000000000000000006044820152fd5b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201527f65737300000000000000000000000000000000000000000000000000000000006064820152fd5b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f20616460448201527f64726573730000000000000000000000000000000000000000000000000000006064820152fd5b73ffffffffffffffffffffffffffffffffffffffff81169081156141c35761405c90612309612ef6565b60009181835282602052604083205481811061413f578190838552846020520360408420557effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8082116110f657600254908083168183160381811161411257917fff000000000000000000000000000000000000000000000000000000000000007fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef949260209416911617600255604051908152a3565b6024867f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e60448201527f63650000000000000000000000000000000000000000000000000000000000006064820152fd5b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f2061646472657360448201527f73000000000000000000000000000000000000000000000000000000000000006064820152fd5b73ffffffffffffffffffffffffffffffffffffffff80911691821561433957169182156142b55760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925918360005260018252604060002085600052825280604060002055604051908152a3565b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f20616464726560448201527f73730000000000000000000000000000000000000000000000000000000000006064820152fd5b60846040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f2061646460448201527f72657373000000000000000000000000000000000000000000000000000000006064820152fd5b60058110156145b257806143cd5750565b600181036144335760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152fd5b600281036144995760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152fd5b600381036145255760846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c60448201527f75650000000000000000000000000000000000000000000000000000000000006064820152fd5b60041461452e57565b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202776272076616c60448201527f75650000000000000000000000000000000000000000000000000000000000006064820152fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083116146975760ff16601b8114158061468c575b614680579160809493916020936040519384528484015260408301526060820152600093849182805260015afa1561467357815173ffffffffffffffffffffffffffffffffffffffff81161561466d579190565b50600190565b50604051903d90823e3d90fd5b50505050600090600490565b50601c811415614619565b50505050600090600390565b73ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000163014806147b2575b1561470b577f000000000000000000000000000000000000000000000000000000000000000090565b60405160208101907f000000000000000000000000000000000000000000000000000000000000000082527f000000000000000000000000000000000000000000000000000000000000000060408201527f000000000000000000000000000000000000000000000000000000000000000060608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff821117612f745760405251902090565b507f000000000000000000000000000000000000000000000000000000000000000046146146e2565b9081519160005b8381106147f25750505050600090565b73ffffffffffffffffffffffffffffffffffffffff806148128385613128565b511690841614614824576001016147e2565b50505050600190565b90816020910312612d4757518015158103612d475790565b73ffffffffffffffffffffffffffffffffffffffff1690604051906040820182811067ffffffffffffffff821117612f74576040526020928383527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656484840152803b1561497557600082819282876148cc9796519301915af16148c66138e6565b906149d3565b805190816148d957505050565b82806148e993830101910161482d565b156148f15750565b608490604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b606484604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b909190156149df575090565b8151156149ef5750805190602001fd5b614a2d906040519182917f08c379a0000000000000000000000000000000000000000000000000000000008352602060048401526024830190612afe565b0390fd5b821561318d5773ffffffffffffffffffffffffffffffffffffffff9081169081614ace575050600080809381935af1614a686138e6565b5015614a7057565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f6574682073656e64206661696c656400000000000000000000000000000000006044820152fd5b9261318093604051937fa9059cbb000000000000000000000000000000000000000000000000000000006020860152166024840152604483015260448252614b1582612fa3565b614845565b60009073ffffffffffffffffffffffffffffffffffffffff1680614b3e5750504790565b6020602491604051928380927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa918215614bb7578092614b8757505090565b9091506020823d8211614baf575b81614ba260209383612ff7565b81010312610b6157505190565b3d9150614b95565b604051903d90823e3d90fd5b909373ffffffffffffffffffffffffffffffffffffffff928316939190600085614d7e5750805b60409586519360008552614bfd85612fbf565b875160c0810199818b1067ffffffffffffffff8c1117612f745760e49a8a52815260209788820192600084528a83019485528160608401991689526080830195865260a083019788528a5193614c5285612fa3565b3085528a85019060008252838d8701931683526060860194600086528d519e8f917f52bbbe2900000000000000000000000000000000000000000000000000000000835260e0600484015251910152519960028b10156145b257614ced8e9a8b99868f9e94818d9c81976101048f015251166101248d015251166101448b0152516101648a01525160c06101848a01526101a4890190612afe565b95511660248701525115156044860152511660648401525115156084830152600060a48301524260c4830152039173ba12222222228d8ba445958a75a0704d566bf2c85af1918215614d745750600091614d48575b50905090565b82813d8311614d6d575b614d5c8183612ff7565b81010312610b615750518038614d42565b503d614d52565b513d6000823e3d90fd5b90614bea565b7f00000000000000000000000000000000000000000000000000000000000000009073ffffffffffffffffffffffffffffffffffffffff80821690831603614e85575050905b6040517f43a0d0660000000000000000000000000000000000000000000000000000000081527f0000000000000000000000000000000000000000000000000000000000000000600482015282602482015260016044820152602081606481600073a57b8d98dae62b26ec3bcc4a365338157060b2345af18015614e7957614e4f5750565b614e6f9060203d8111614e72575b614e678183612ff7565b81019061482d565b50565b503d614e5d565b6040513d6000823e3d90fd5b91614e909192614fd0565b9073ba12222222228d8ba445958a75a0704d566bf2c8803b15612d4757614f256000939184926040519586809481937fb95cac280000000000000000000000000000000000000000000000000000000083527f00000000000000000000000000000000000000000000000000000000000000006004840152306024840152306044840152608060648401526084830190614f5f565b03925af18015614e7957614f44575b614f3e9150614b1a565b90614dca565b67ffffffffffffffff8211612f7457614f3e91604052614f34565b90606080614fa0614f8e614f7c8651608087526080870190612b5c565b60208701518682036020880152612d92565b60408601518582036040870152612afe565b930151151591015290565b60405190614fb882612fa3565b60006060838181528160208201528160408201520152565b90614fd9614fab565b50614fe2615bce565b9182517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff908181019081116130cc5761501a90613050565b61502e6150278651613050565b93866150e7565b9182156150d1578201938285116130cc5761505c6150ae938261505561507b985b86613128565b5285613128565b5260405193849160016020840152606060408401526080830190612d92565b60006060830152037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101845283612ff7565b604051926150bb84612fa3565b8352602083015260408201526000606082015290565b508361505c8361507b966150556150ae9661504f565b9081519160005b83811061511d57505050507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90565b73ffffffffffffffffffffffffffffffffffffffff8061513d8385613128565b51169084161461514f576001016150ee565b9250505090565b9073ffffffffffffffffffffffffffffffffffffffff8082168015918215615218575b82156151ec575b5050156151e2576151df926151b77f0000000000000000000000000000000000000000000000000000000000000000918230615236565b927f000000000000000000000000000000000000000000000000000000000000000090614bc3565b90565b6151df9291615236565b7f0000000000000000000000000000000000000000000000000000000000000000161490503880615180565b73c02aaa39b223fe8d0a0e5c4f27ead9083c756cc282149250615179565b92919092604080517fc32e7202000000000000000000000000000000000000000000000000000000008152600091846004830152826024830152602073ffffffffffffffffffffffffffffffffffffffff92818160448188887f0000000000000000000000000000000000000000000000000000000000000000165af180156154d9576154bc575b50878316937f0000000000000000000000000000000000000000000000000000000000000000841685036152fd57505050505090613180918194614a31565b92958295919497989251967f70a082310000000000000000000000000000000000000000000000000000000092838952169283600489015285886024818c5afa9788156154b2578598615481575b5090615356916154e3565b73ba12222222228d8ba445958a75a0704d566bf2c890813b1561295b576153e88592839289519485809481937f8bdb39130000000000000000000000000000000000000000000000000000000083527f000000000000000000000000000000000000000000000000000000000000000060048401523060248401528a6044840152608060648401526084830190614f5f565b03925af18015615477579085939291615463575b5060249086519889938492835260048301525afa928315615459575091615429575b506151df9250613207565b905082813d8311615452575b61543f8183612ff7565b81010312612d47576151df91513861541e565b503d615435565b51903d90823e3d90fd5b9361547060249295612f60565b93906153fc565b86513d86823e3d90fd5b9097508581813d83116154ab575b6154998183612ff7565b8101031261295b57519661535661534b565b503d61548f565b87513d87823e3d90fd5b6154d290823d8411614e7257614e678183612ff7565b50386152be565b83513d87823e3d90fd5b906154ec614fab565b506154f5615bce565b9161550a6155038451613050565b91846150e7565b801561555d577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81019081116130cc575b604051926000602085015260408401526060830152606082526150ae82612fa3565b61553b565b9390916151df95936155a493865273ffffffffffffffffffffffffffffffffffffffff809216602087015216604085015260a0606085015260a0840190614f5f565b916080818403910152612afe565b73ffffffffffffffffffffffffffffffffffffffff908082167f00000000000000000000000000000000000000000000000000000000000000008316036155f857505090565b9061560861566a93602093614fd0565b90615611615912565b916040518095819482937f6669506000000000000000000000000000000000000000000000000000000000845230307f000000000000000000000000000000000000000000000000000000000000000060048701615562565b03917f0000000000000000000000000000000000000000000000000000000000000000165afa908115614e79576000916156a2575090565b906020823d8211614baf5781614ba260209383612ff7565b9073ffffffffffffffffffffffffffffffffffffffff8083169182158093811561583c575b8115615810575b50156158045790602092916157c6946157207f0000000000000000000000000000000000000000000000000000000000000000928361585a565b93156157fe575073c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2905b604051958694859384937f57a3033b0000000000000000000000000000000000000000000000000000000085527f00000000000000000000000000000000000000000000000000000000000000006004860190949392916060926080830196835273ffffffffffffffffffffffffffffffffffffffff80921660208401521660408201520152565b03917f0000000000000000000000000000000000000000000000000000000000000000165afa908115614e79576000916156a2575090565b9061573e565b9150506151df9161585a565b9050827f00000000000000000000000000000000000000000000000000000000000000001614386156e6565b73c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2811491506156df565b73ffffffffffffffffffffffffffffffffffffffff908082167f00000000000000000000000000000000000000000000000000000000000000008316036158a057505090565b906158b061566a936020936154e3565b906158b9615912565b916040518095819482937f6261173000000000000000000000000000000000000000000000000000000000845230307f000000000000000000000000000000000000000000000000000000000000000060048701615562565b604051610120810181811067ffffffffffffffff821117612f7457604052606081526060602082015260606040820152606080820152608081019060008252600060a0820152600060c0820152600060e08201526000610100820152615976615bce565b815260405161598481612fa3565b600381526060366020830137600061599b826130fb565b5273bb6881874825e60e1160416d6c426eae65f2459e6159ba82613108565b5273f951e335afb289353dc249e82926178eac7ded786159d982613118565b5260208201526040516159eb81612fa3565b600381526060366020830137670de0b6b3a764000080615a0a83613118565b5280615a1583613108565b52615a1f826130fb565b526040820152604051615a3181612fa3565b6003815260603660208301376000615a4882613118565b526000615a5482613108565b526000615a60826130fb565b52606082015273ae8535c23afedda9304b03c68a3563b75fc8f92b8252600160a0820152600060c0820152600060e08201528051516101008201526040518092602080830152615abe83516101206040850152610160840190612b5c565b90615b10615afc6020860151937fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc09485878303016060880152612b5c565b604086015184868303016080870152612d92565b6060850151928482030160a08501526020808451928381520193019060005b818110615bb3575050506151df9373ffffffffffffffffffffffffffffffffffffffff61010092511660c085015260a0810151151560e085015260c081015115158285015260e08101516101208501520151610140830152037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101835282612ff7565b82511515855287955060209485019490920191600101615b2f565b60405190615bdb82612fa3565b60038252606036602084013773f951e335afb289353dc249e82926178eac7ded78615c438373ae8535c23afedda9304b03c68a3563b75fc8f92b615c1e826130fb565b5273bb6881874825e60e1160416d6c426eae65f2459e615c3d82613108565b52613118565b52565b73ffffffffffffffffffffffffffffffffffffffff8091168015918215615d19575b8215615ced575b8215615cc1575b508115615ca3575b8115615c88575090565b73ae8535c23afedda9304b03c68a3563b75fc8f92b91501490565b73f951e335afb289353dc249e82926178eac7ded7881149150615c7e565b7f0000000000000000000000000000000000000000000000000000000000000000168114915038615c76565b7f0000000000000000000000000000000000000000000000000000000000000000811682149250615c6f565b73c02aaa39b223fe8d0a0e5c4f27ead9083c756cc282149250615c6856fea264697066735822122037ffce2cdeda62e1f342ddbe084f9ccda36b83b593d268f7cf0330dfc879c53c64736f6c63430008110033000000000000000000000000ae8535c23afedda9304b03c68a3563b75fc8f92b000000000000000000000000a57b8d98dae62b26ec3bcc4a365338157060b23400000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000002053592073774554482d426241576574685f42616c616e6365724c502041757261000000000000000000000000000000000000000000000000000000000000002053592d73774554482d426241576574685f42616c616e6365724c502041757261

Deployed Bytecode

0x6080604081815260049182361015610022575b505050361561002057600080fd5b005b600092833560e01c9182630390c83914612a905750816306fdde031461295f578163071bc3c91461218c578163078dfbe7146127d1578163095ea7b314612782578163128fced1146126c657816318160ddd1461266857816320e8c5651461219f578163213cae631461218c57816323b872dd14611fbc5781632a5e141e14611f595781632b338c0414611eea578163313ce56714611e8e578163318a8f8f14611e515781633644e51514611e165781633ba0b9a914611ba55781633f4ba83a14611a9557816340c3544614611a125781634e71e0c8146119035781635c975abb146118c15781635cbadbe414611821578163619002ce146117c8578163655864521461176f57816370a0823114611709578163769f8e5d146114fe57816376d5de851461148f578163784367d6146114505781637ecebe00146113ee5781638456cb591461133c5781638da5cb5b146112e95781638efabee01461127a57816395d89b411461110e578163a40bee5014611000578163a44517c814610f3b578163a9059cbb14610e67578163a9f8d18114610e2a578163b8f82b2614610bb3578163c4f59f9b14610b64578163cbe52ae314610abe578163d505accf1461089d578163d55a23f414610860578163da88ecb414610811578163dc616e3e146107a2578163dd62ed3e1461072e578163e30c3978146106db578163ea64a8201461064f578163ef5cfb8c1461037e57508063f8b2f9911461029d5763fa5a4f061461024e575b80610012565b346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209061029061028b612d4c565b615c46565b90519015158152f35b5080fd5b503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995761037a90600254906102e460028360f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff80931617600255610334613221565b50507f010000000000000000000000000000000000000000000000000000000000000061035f613871565b92600254161760025551918291602083526020830190612d92565b0390f35b83833461029957602090817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b57916103ba612d4c565b90600254936103cf60028660f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809616176002556104208361313c565b610428613cc6565b906104338251613050565b9473ffffffffffffffffffffffffffffffffffffffff93858516815b85518110156105bb57866104638288613128565b51168352603980855285842083855285528584205490608091821c610488848d613128565b52610493838c613128565b516104a9575b50506104a49061309f565b61044f565b886104b4848a613128565b5116855285528584208385528552858420906fffffffffffffffffffffffffffffffff918281541690556104e8838c613128565b51908282116105b757896104fc858b613128565b51168652603b8752828887209216908254901c0391821161058b578a8a61057d858c610575828e6105706104a49b9a6105849a906fffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffff0000000000000000000000000000000083549260801b169116179055565b613128565b511693613128565b5191614a31565b908c610499565b60248560118f7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8580fd5b888461037a877f01000000000000000000000000000000000000000000000000000000000000008e877f2193aa20a3717f5f4ac79482f4f553e5f0afe8f4e6ec3e3d1aa2e138adc4763f610624610610613cc6565b610631875192839289845289840190612b5c565b8281038b8401528b612d92565b0390a2600254161760025551928284938452830190612d92565b8280fd5b5050346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299578061037a9273ffffffffffffffffffffffffffffffffffffffff6106a2612d4c565b168152603b60209081529190205491516fffffffffffffffffffffffffffffffff8316815260809290921c908201529081906040820190565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209073ffffffffffffffffffffffffffffffffffffffff600754169051908152f35b50503461029957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299578060209261076a612d4c565b610772612d6f565b73ffffffffffffffffffffffffffffffffffffffff91821683526001865283832091168252845220549051908152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000d48a0484730d867f551e6fcac4926f88f27af4fd168152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995761037a9061084d613871565b9051918291602083526020830190612d92565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090603d549051908152f35b839150346102995760e07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576108d7612d4c565b6108df612d6f565b906044359260643560843560ff81168103610aba57814211610a5d576109eb6109e373ffffffffffffffffffffffffffffffffffffffff928a84881695868c526005602052818c20908154916001830190558251918860208401947f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c98652840152878c1660608401528c608084015260a083015260c082015260c0815261098581612fdb565b5190206109906146a3565b918c519160208301937f1901000000000000000000000000000000000000000000000000000000000000855260228401526042830152604282526109d382612fa3565b60c4359260a435925190206145e1565b9190916143bc565b1603610a0057506109fd939450614247565b80f35b60649060208751917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601e60248201527f45524332305065726d69743a20696e76616c6964207369676e617475726500006044820152fd5b60648360208a51917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601d60248201527f45524332305065726d69743a206578706972656420646561646c696e650000006044820152fd5b8680fd5b90508234610b6157827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b615750610af8612d4c565b90610b0282615c46565b15610b1d57602083610b16602435856156ba565b9051908152f35b73ffffffffffffffffffffffffffffffffffffffff60249351927f88a505610000000000000000000000000000000000000000000000000000000084521690820152fd5b80fd5b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995761037a90610ba0613cc6565b9051918291602083526020830190612b5c565b828434610b6157817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b6157610beb612d4c565b9260243590610bf985615c46565b15610de45773ffffffffffffffffffffffffffffffffffffffff94858116801580918115610dc6575b8115610d9a575b5015610d8357602092919015610d7d575073c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2955b85517f57a3033b0000000000000000000000000000000000000000000000000000000081527fbb6881874825e60e1160416d6c426eae65f2459e00000000000000000000059292810192835273ffffffffffffffffffffffffffffffffffffffff97881660208401527f000000000000000000000000bb6881874825e60e1160416d6c426eae65f2459e9788166040840152606083019490945283918290819060800103917f00000000000000000000000073187e5b27f2aadd5ffee023d6a9e179365f2ad6165afa918215610d72578092610d3c575b5050610b16906020936155b2565b51908152f35b9091506020823d8211610d6a575b81610d5760209383612ff7565b81010312610b6157505182610b16610d28565b3d9150610d4a565b8351903d90823e3d90fd5b95610c51565b50905060209450610d9492506155b2565b90610d36565b9050877f00000000000000000000000003928473f25bb2da6bc880b07ecbadc636822264161488610c29565b73c02aaa39b223fe8d0a0e5c4f27ead9083c756cc281149150610c22565b8460249173ffffffffffffffffffffffffffffffffffffffff8651927faeabe7180000000000000000000000000000000000000000000000000000000084521690820152fd5b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090603a549051908152f35b50503461029957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020907f0100000000000000000000000000000000000000000000000000000000000000610ec3612d4c565b610f2c60025491610eda60028460f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809416176002556024359033613da2565b60025416176002555160018152f35b90503461064b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b57803591610f9273ffffffffffffffffffffffffffffffffffffffff600654163314612e91565b611b588310610fa3575050603c5580f35b90602060649251917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601260248201527f6c6f776572207468616e2064656661756c7400000000000000000000000000006044820152fd5b83833461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ae8535c23afedda9304b03c68a3563b75fc8f92b16916020825180957f313ce56700000000000000000000000000000000000000000000000000000000825281865afa9384156111025781946110bd575b505060ff6060938251936001855260208501521690820152f35b9093506020813d82116110fa575b816110d860209383612ff7565b810103126110f657519260ff84168403610b61575060ff60606110a3565b8380fd5b3d91506110cb565b509051903d90823e3d90fd5b828434610b6157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b615781519181845492600184811c91818616958615611270575b6020968785108114611244579087899a92868b999a9b5291826000146111fc5750506001146111a1575b858861037a89611192848a0385612ff7565b51928284938452830190612afe565b815286935091907f8a35acfbc15ff81a39ae7d344fd709f28e8600b4aa8c65c6b64bfe7fe36bd19b5b8284106111e4575050508201018161119261037a88611180565b8054848a0186015288955087949093019281016111ca565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168882015294151560051b87019094019450859350611192925061037a9150899050611180565b60248360228c7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b92607f1692611156565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ae8535c23afedda9304b03c68a3563b75fc8f92b168152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209073ffffffffffffffffffffffffffffffffffffffff600654169051908152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760207f62e78cea01bee320cd4e420270b5ea74000d11b0c9f74754ebdbfc544b05a258916113b373ffffffffffffffffffffffffffffffffffffffff600654163314612e91565b6113bb612ef6565b60017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00603854161760385551338152a180f35b5050346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299578060209273ffffffffffffffffffffffffffffffffffffffff611440612d4c565b1681526005845220549051908152f35b5050346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209061029061028b612d4c565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ae8535c23afedda9304b03c68a3563b75fc8f92b168152f35b90508234610b615760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b6157611538612d4c565b6044359273ffffffffffffffffffffffffffffffffffffffff80851692602435928487036105b75760643596608435968715158803610b6157506002549661158660028960f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809916176002556115d782615c46565b156116da5785156116b2576115fd918691156116a3576115f78230614032565b84615156565b9680881061166e576020888a7f01000000000000000000000000000000000000000000000000000000000000008a8a8a8a8a8651928352878984015216907faee47cdf925cf525fdae94f9777ee5a06cac37e1c41220d0a8a89ed154f62d1c863392a4600254161760025551908152f35b60449250878951927fbfee4ca00000000000000000000000000000000000000000000000000000000084528301526024820152fd5b6116ad8233614032565b6115f7565b828a517fc3d83b07000000000000000000000000000000000000000000000000000000008152fd5b602483888c51917f88a50561000000000000000000000000000000000000000000000000000000008352820152fd5b5050346102995760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090610b16611748612d4c565b73ffffffffffffffffffffffffffffffffffffffff16600052600060205260406000205490565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090517fae8535c23afedda9304b03c68a3563b75fc8f92b0000000000000000000005a08152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090517f000000000000000000000000000000000000000000000000000000000000008f8152f35b50503461029957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299578061037a9261185e612d4c565b611866612d6f565b73ffffffffffffffffffffffffffffffffffffffff91821683526039602090815284842091909216835281529190205491516fffffffffffffffffffffffffffffffff8316815260809290921c908201529081906040820190565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209060ff6038541690519015158152f35b9190503461064b57827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b576007549073ffffffffffffffffffffffffffffffffffffffff92838316918233036119b5575050806006549384167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08680a37fffffffffffffffffffffffff0000000000000000000000000000000000000000809316176006551660075580f35b90602060649251917f08c379a0000000000000000000000000000000000000000000000000000000008352820152602060248201527f4f776e61626c653a2063616c6c657220213d2070656e64696e67206f776e65726044820152fd5b90503461064b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b5735603d5481101561064b5773ffffffffffffffffffffffffffffffffffffffff90603d602094527fece66cfdbd22e3f37d348a3d8e19074452862cd65fd4b9a11f0336d1ac6d1dc30154169051908152f35b90503461064b57827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b57611ae873ffffffffffffffffffffffffffffffffffffffff600654163314612e91565b6038549060ff821615611b4857507f5db9ee0a495bf2e6ff9c91a7834c1ba4fdd244a5e8aa4e537bd38aeae4b073aa917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff006020921660385551338152a180f35b60649060208451917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601460248201527f5061757361626c653a206e6f74207061757365640000000000000000000000006044820152fd5b83833461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957805192611be184612fbf565b828452603c549383835195602096878101907f0e8e3e84000000000000000000000000000000000000000000000000000000008252604481016024908a8284015286518091528a6064840197019186905b828210611d7b575050505080611c8573ba12222222228d8ba445958a75a0704d566bf2c8928697037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101835282612ff7565b5192fa611c9a611c936138e6565b911561361b565b51611d545783825180927f679aefce0000000000000000000000000000000000000000000000000000000082528173ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000ae8535c23afedda9304b03c68a3563b75fc8f92b165afa928315611d49578093611d17575b505051908152f35b909192508382813d8311611d42575b611d308183612ff7565b81010312610b61575051908380611d0f565b503d611d26565b8251903d90823e3d90fd5b90517f71c97104000000000000000000000000000000000000000000000000000000008152fd5b919395979092809597505180518a811015611deb57828e9260a092600195528d73ffffffffffffffffffffffffffffffffffffffff90818684015116868501528083015190840152606081818401511690840152608080920151169082015201950192018a969497959391611c32565b838d60218d7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090610b166146a3565b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957602090603c549051908152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905160ff7f0000000000000000000000000000000000000000000000000000000000000012168152f35b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020905173ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000073187e5b27f2aadd5ffee023d6a9e179365f2ad6168152f35b8334610b615760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b61576109fd611f94612d4c565b611fb773ffffffffffffffffffffffffffffffffffffffff600654163314612e91565b613970565b839150346102995760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957611ff6612d4c565b611ffe612d6f565b9060443592856002549561201860028860f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8098161760025573ffffffffffffffffffffffffffffffffffffffff8416815260016020528181203382526020522054907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82036120e2575b6020877f010000000000000000000000000000000000000000000000000000000000000088610f2c898989613da2565b84821061212f5750926020959492610f2c92612122837f010000000000000000000000000000000000000000000000000000000000000097033383614247565b92509294958194506120b2565b60649060208851917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152fd5b50505050612198612ba6565b3880610248565b838360807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576121d3612d4c565b916121dc612d6f565b60443593606435946002938454976121f9868a60f81c1415612e2c565b7f02000000000000000000000000000000000000000000000000000000000000007effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff809a1617865561224985615c46565b156126225782156125fb5773ffffffffffffffffffffffffffffffffffffffff8581169586158015612566578534036125095785905b80156124ec575b80156124c1575b156124b257906122e46122ea927f000000000000000000000000bb6881874825e60e1160416d6c426eae65f2459e80937fbb6881874825e60e1160416d6c426eae65f2459e00000000000000000000059230614bc3565b90614d84565b985b808a1061247d575084169384156124205761230e90612309612ef6565b61313c565b888811610299578554908989168a831601908a82116123f457509380927f01000000000000000000000000000000000000000000000000000000000000009694927fff000000000000000000000000000000000000000000000000000000000000008c60209d98169116178855818152808b5288812061238f8b8254613214565b90557fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8b8a518c8152a3865190815287898201527f5fe47ed6d4225326d3303476197d782ded5a4e9c14f479dc9ec4992af4e85d59873392a482541617905551908152f35b8360116024927f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b60648260208a51917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f2061646472657373006044820152fd5b826044918b8b51927fbc71f2ba0000000000000000000000000000000000000000000000000000000084528301526024820152fd5b6124bb91614d84565b986122ec565b50827f00000000000000000000000003928473f25bb2da6bc880b07ecbadc63682226416881461228d565b5073c02aaa39b223fe8d0a0e5c4f27ead9083c756cc28814612286565b60648460208c51917f08c379a0000000000000000000000000000000000000000000000000000000008352820152600c60248201527f657468206d69736d6174636800000000000000000000000000000000000000006044820152fd5b89517f23b872dd0000000000000000000000000000000000000000000000000000000060208201523360248201523060448201528660648201526064815260a0810181811067ffffffffffffffff8211176125cf578792916125ca918d528a614845565b61227f565b6024876041887f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b86517fa907f2f0000000000000000000000000000000000000000000000000000000008152fd5b8460249173ffffffffffffffffffffffffffffffffffffffff8951927faeabe7180000000000000000000000000000000000000000000000000000000084521690820152fd5b50503461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020907effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff600254169051908152f35b828434610b6157602091827ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261029957612701612d4c565b9161270a613cc6565b926127158451613050565b9473ffffffffffffffffffffffffffffffffffffffff91821691835b86518110156127705780826127486001938a613128565b511686526039845286862085875284528686205460801c612769828b613128565b5201612731565b85518381528061037a8186018b612d92565b50503461029957807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610299576020906127ca6127c0612d4c565b6024359033614247565b5160018152f35b9190503461064b5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261064b5761280b612d4c565b9160243591821515830361295b576044359283151584036105b75773ffffffffffffffffffffffffffffffffffffffff94859161284d83600654163314612e91565b15612929571692831590811591612921575b50156128c4575050806006549283167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e08580a37fffffffffffffffffffffffff0000000000000000000000000000000000000000809216176006556007541660075580f35b90602060649251917f08c379a0000000000000000000000000000000000000000000000000000000008352820152601560248201527f4f776e61626c653a207a65726f206164647265737300000000000000000000006044820152fd5b90503861285f565b9350505050167fffffffffffffffffffffffff0000000000000000000000000000000000000000600754161760075580f35b8480fd5b828434610b6157807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b61578151918160035492600184811c91818616958615612a86575b6020968785108114611244578899509688969785829a529182600014612a415750506001146129e5575b50505061037a9291611192910385612ff7565b9190869350600383527fc2575a0e9e593c00f959f8c92f12db2869c3395a3b0502d05e2516446f71f85b5b828410612a29575050508201018161119261037a6129d2565b8054848a018601528895508794909301928101612a10565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168782015293151560051b86019093019350849250611192915061037a90506129d2565b92607f16926129a8565b84903461029957817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126102995760209073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000004239ddd3c50463383670e86c119220849bfaf64a168152f35b919082519283825260005b848110612b485750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b602081830181015184830182015201612b09565b90815180825260208080930193019160005b828110612b7c575050505090565b835173ffffffffffffffffffffffffffffffffffffffff1685529381019392810192600101612b6e565b5034612d47576000807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc360112610b615760405190612be482612fdb565b6006825260c036602084013780612bfa836130fb565b5273c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2612c1983613108565b52612c2382613118565b73ffffffffffffffffffffffffffffffffffffffff90817f00000000000000000000000003928473f25bb2da6bc880b07ecbadc636822264169052825160031015612d1a577f000000000000000000000000bb6881874825e60e1160416d6c426eae65f2459e166080830152815160041015612ced5773f951e335afb289353dc249e82926178eac7ded7860a0830152815160051015612ced5773ae8535c23afedda9304b03c68a3563b75fc8f92b60c08301526040516020808252819061037a90820185612b5c565b807f4e487b7100000000000000000000000000000000000000000000000000000000602492526032600452fd5b6024827f4e487b710000000000000000000000000000000000000000000000000000000081526032600452fd5b600080fd5b6004359073ffffffffffffffffffffffffffffffffffffffff82168203612d4757565b6024359073ffffffffffffffffffffffffffffffffffffffff82168203612d4757565b90815180825260208080930193019160005b828110612db2575050505090565b835185529381019392810192600101612da4565b603d54811015612dfd57603d6000527fece66cfdbd22e3f37d348a3d8e19074452862cd65fd4b9a11f0336d1ac6d1dc30190600090565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b15612e3357565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f5265656e7472616e637947756172643a207265656e7472616e742063616c6c006044820152fd5b15612e9857565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152fd5b60ff60385416612f0257565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601060248201527f5061757361626c653a20706175736564000000000000000000000000000000006044820152fd5b67ffffffffffffffff8111612f7457604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b6080810190811067ffffffffffffffff821117612f7457604052565b6020810190811067ffffffffffffffff821117612f7457604052565b60e0810190811067ffffffffffffffff821117612f7457604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff821117612f7457604052565b67ffffffffffffffff8111612f745760051b60200190565b9061305a82613038565b6130676040519182612ff7565b8281527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe06130958294613038565b0190602036910137565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146130cc5760010190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b805115612dfd5760200190565b805160011015612dfd5760400190565b805160021015612dfd5760600190565b8051821015612dfd5760209160051b010190565b613144613221565b9080511561318d5773ffffffffffffffffffffffffffffffffffffffff83168015159081613182575b5061317757505050565b61318092613651565b565b90503014153861316d565b505050565b61319a613221565b918151156132015773ffffffffffffffffffffffffffffffffffffffff90838383831680151590816131f6575b506131e5575b50505083168015159081613182575061317757505050565b6131ee92613651565b3883836131cd565b9050301415386131c7565b50505050565b919082039182116130cc57565b919082018092116130cc57565b613229613cc6565b906132348251613050565b82516000901561361757603a5443036132b0575b805b84518110156132ab578073ffffffffffffffffffffffffffffffffffffffff6132766132a69388613128565b51168352603b6020526fffffffffffffffffffffffffffffffff6040842054166132a08286613128565b5261309f565b61324a565b505090565b91909143603a557effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff6002541693603d541560001461356e5773ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000d48a0484730d867f551e6fcac4926f88f27af4fd16803b1561064b578280916044604051809481937f7050ccd90000000000000000000000000000000000000000000000000000000083523060048401528160248401525af180156135635790839161354f575b50505b818515938415915b83518110156135435773ffffffffffffffffffffffffffffffffffffffff6133bb816133a78488613128565b5116916133b48488613128565b5116614b1a565b818752603b906020928284526133da604092838b205460801c90613207565b92818a528085526fffffffffffffffffffffffffffffffff9485848c2054169289841561353a575b6134d9575b868411612d47578b525283828a2091167fffffffffffffffffffffffffffffffff00000000000000000000000000000000825416179055828211612d4757829088209116815460801c019182116134ac576134a792916134a291906fffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffff0000000000000000000000000000000083549260801b169116179055565b61309f565b61337b565b6024877f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b92670de0b6b3a7640000908187029187830414871517156130cc578d61350b578f613505920490613214565b92613407565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b60019450613402565b50949350509350613248565b61355890612f60565b610299578138613370565b6040513d85823e3d90fd5b9073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000d48a0484730d867f551e6fcac4926f88f27af4fd16803b15610299578180916044604051809481937f7050ccd9000000000000000000000000000000000000000000000000000000008352306004840152600160248401525af1801561360c576135fd575b5090613373565b61360690612f60565b386135f6565b6040513d84823e3d90fd5b5090565b1561362257565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052600160045260246000fd5b90919273ffffffffffffffffffffffffffffffffffffffff906136868284169384151580613867575b6117489096939661361b565b9182159160005b815181101561385d57826136a18284613128565b5116906136ae818a613128565b5191806000526039926020908482526040806000208b60005283526fffffffffffffffffffffffffffffffff9182826000205416801561380b578181146137fb576136f99082613207565b808c02908c8204148b17156130cc57670de0b6b3a7640000613735918e886000528a88528560002090600052875204836000205460801c613214565b91838211612d4757838311612d47578051948186019086821067ffffffffffffffff831117612f74576137f6998f92988780966134a29b875216895285838a019716875260005281528260002091600052526000209351167fffffffffffffffffffffffffffffffff0000000000000000000000000000000084541617835551166fffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffff0000000000000000000000000000000083549260801b169116179055565b61368d565b5050505050506137f6915061309f565b50939582859492939411612d47576137f696600052815281600020908b6000525260002091167fffffffffffffffffffffffffffffffff0000000000000000000000000000000082541617905561309f565b5050505050509050565b503085141561367a565b613879613cc6565b906138848251613050565b91600090815b815181101561318d578073ffffffffffffffffffffffffffffffffffffffff6138b560019385613128565b51168452603b6020526fffffffffffffffffffffffffffffffff6040852054166138df8288613128565b520161388a565b3d1561393f573d9067ffffffffffffffff8211612f74576040519161393360207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8401160184612ff7565b82523d6000602084013e565b606090565b90816020910312612d47575173ffffffffffffffffffffffffffffffffffffffff81168103612d475790565b73ffffffffffffffffffffffffffffffffffffffff908181169073ba100000625a3754423978a60c9317c58a424e3d8214908115613ca8575b8115613c2a575b50613bf957604080517fd55a23f400000000000000000000000000000000000000000000000000000000815260049360207f000000000000000000000000d48a0484730d867f551e6fcac4926f88f27af4fd821681848881845afa938415613bee57600094613bbf575b5060005b848110613a5457602488888851917fd2dca630000000000000000000000000000000000000000000000000000000008352820152fd5b85517f40c354460000000000000000000000000000000000000000000000000000000081528189820152602490848183816000885af1908115613b9757868b60009388938591613ba2575b508b5194859384927ff7c618c1000000000000000000000000000000000000000000000000000000008452165af1908115613b9757908691600091613b6a575b50168814613af65750613af19061309f565b613a1e565b9450505050939150603d9081549268010000000000000000841015613b3e575050600182019055613b2690612dc6565b909283549160031b90811b9283911b16911916179055565b6041907f4e487b7100000000000000000000000000000000000000000000000000000000600052526000fd5b613b8a9150863d8811613b90575b613b828183612ff7565b810190613944565b38613adf565b503d613b78565b88513d6000823e3d90fd5b613bb99150843d8611613b9057613b828183612ff7565b38613a9f565b90938282813d8311613be7575b613bd68183612ff7565b81010312610b615750519238613a1a565b503d613bcc565b85513d6000823e3d90fd5b602490604051907fd2dca6300000000000000000000000000000000000000000000000000000000082526004820152fd5b905060405180603d5490818152602080910191603d6000527fece66cfdbd22e3f37d348a3d8e19074452862cd65fd4b9a11f0336d1ac6d1dc3916000905b828210613c8f575050505090613c8481613c8994930382612ff7565b6147db565b386139b0565b8354891685529384019360019384019390910190613c68565b73c0c293ce456ff0ed870add98a0828dd4d2903dbf831491506139a9565b603d549060028281018082116130cc57613cdf90613050565b9273ba100000625a3754423978a60c9317c58a424e3d613cfe856130fb565b5273c0c293ce456ff0ed870add98a0828dd4d2903dbf613d1d85613108565b526000805b828110613d2f5750505050565b613d3881612dc6565b905482860191828711613d755773ffffffffffffffffffffffffffffffffffffffff613d709493926132a09260031b1c169189613128565b613d22565b6024857f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b909173ffffffffffffffffffffffffffffffffffffffff91828116928315613fae578416938415613f2a57848414613ecc57613de591613de0612ef6565b613192565b600082815280602052604081205491808310613e4857604082827fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef958760209652828652038282205586815220613e3d828254613214565b9055604051908152a3565b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e742065786365656473206260448201527f616c616e636500000000000000000000000000000000000000000000000000006064820152fd5b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601760248201527f45524332303a207472616e7366657220746f2073656c660000000000000000006044820152fd5b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201527f65737300000000000000000000000000000000000000000000000000000000006064820152fd5b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f20616460448201527f64726573730000000000000000000000000000000000000000000000000000006064820152fd5b73ffffffffffffffffffffffffffffffffffffffff81169081156141c35761405c90612309612ef6565b60009181835282602052604083205481811061413f578190838552846020520360408420557effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8082116110f657600254908083168183160381811161411257917fff000000000000000000000000000000000000000000000000000000000000007fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef949260209416911617600255604051908152a3565b6024867f4e487b710000000000000000000000000000000000000000000000000000000081526011600452fd5b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e60448201527f63650000000000000000000000000000000000000000000000000000000000006064820152fd5b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f2061646472657360448201527f73000000000000000000000000000000000000000000000000000000000000006064820152fd5b73ffffffffffffffffffffffffffffffffffffffff80911691821561433957169182156142b55760207f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925918360005260018252604060002085600052825280604060002055604051908152a3565b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f20616464726560448201527f73730000000000000000000000000000000000000000000000000000000000006064820152fd5b60846040517f08c379a0000000000000000000000000000000000000000000000000000000008152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f2061646460448201527f72657373000000000000000000000000000000000000000000000000000000006064820152fd5b60058110156145b257806143cd5750565b600181036144335760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601860248201527f45434453413a20696e76616c6964207369676e617475726500000000000000006044820152fd5b600281036144995760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601f60248201527f45434453413a20696e76616c6964207369676e6174757265206c656e677468006044820152fd5b600381036145255760846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202773272076616c60448201527f75650000000000000000000000000000000000000000000000000000000000006064820152fd5b60041461452e57565b60846040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602260248201527f45434453413a20696e76616c6964207369676e6174757265202776272076616c60448201527f75650000000000000000000000000000000000000000000000000000000000006064820152fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b9291907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a083116146975760ff16601b8114158061468c575b614680579160809493916020936040519384528484015260408301526060820152600093849182805260015afa1561467357815173ffffffffffffffffffffffffffffffffffffffff81161561466d579190565b50600190565b50604051903d90823e3d90fd5b50505050600090600490565b50601c811415614619565b50505050600090600390565b73ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000cb6ea7fddfdf2afc2bc6bf715185a33f8e27b96b163014806147b2575b1561470b577f884e0fe0abf359a0a692ffc23e5d34b2a5f79c60e4c3d0bce1ef1694dd118d9a90565b60405160208101907f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f82527fe0982889fd84457fb2ecf8180c30cc2922deb951a7b711f1bdcfe4d38c5243f060408201527fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc660608201524660808201523060a082015260a0815260c0810181811067ffffffffffffffff821117612f745760405251902090565b507f000000000000000000000000000000000000000000000000000000000000000146146146e2565b9081519160005b8381106147f25750505050600090565b73ffffffffffffffffffffffffffffffffffffffff806148128385613128565b511690841614614824576001016147e2565b50505050600190565b90816020910312612d4757518015158103612d475790565b73ffffffffffffffffffffffffffffffffffffffff1690604051906040820182811067ffffffffffffffff821117612f74576040526020928383527f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c656484840152803b1561497557600082819282876148cc9796519301915af16148c66138e6565b906149d3565b805190816148d957505050565b82806148e993830101910161482d565b156148f15750565b608490604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152602a60248201527f5361666545524332303a204552433230206f7065726174696f6e20646964206e60448201527f6f742073756363656564000000000000000000000000000000000000000000006064820152fd5b606484604051907f08c379a00000000000000000000000000000000000000000000000000000000082526004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e74726163740000006044820152fd5b909190156149df575090565b8151156149ef5750805190602001fd5b614a2d906040519182917f08c379a0000000000000000000000000000000000000000000000000000000008352602060048401526024830190612afe565b0390fd5b821561318d5773ffffffffffffffffffffffffffffffffffffffff9081169081614ace575050600080809381935af1614a686138e6565b5015614a7057565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600f60248201527f6574682073656e64206661696c656400000000000000000000000000000000006044820152fd5b9261318093604051937fa9059cbb000000000000000000000000000000000000000000000000000000006020860152166024840152604483015260448252614b1582612fa3565b614845565b60009073ffffffffffffffffffffffffffffffffffffffff1680614b3e5750504790565b6020602491604051928380927f70a082310000000000000000000000000000000000000000000000000000000082523060048301525afa918215614bb7578092614b8757505090565b9091506020823d8211614baf575b81614ba260209383612ff7565b81010312610b6157505190565b3d9150614b95565b604051903d90823e3d90fd5b909373ffffffffffffffffffffffffffffffffffffffff928316939190600085614d7e5750805b60409586519360008552614bfd85612fbf565b875160c0810199818b1067ffffffffffffffff8c1117612f745760e49a8a52815260209788820192600084528a83019485528160608401991689526080830195865260a083019788528a5193614c5285612fa3565b3085528a85019060008252838d8701931683526060860194600086528d519e8f917f52bbbe2900000000000000000000000000000000000000000000000000000000835260e0600484015251910152519960028b10156145b257614ced8e9a8b99868f9e94818d9c81976101048f015251166101248d015251166101448b0152516101648a01525160c06101848a01526101a4890190612afe565b95511660248701525115156044860152511660648401525115156084830152600060a48301524260c4830152039173ba12222222228d8ba445958a75a0704d566bf2c85af1918215614d745750600091614d48575b50905090565b82813d8311614d6d575b614d5c8183612ff7565b81010312610b615750518038614d42565b503d614d52565b513d6000823e3d90fd5b90614bea565b7f000000000000000000000000ae8535c23afedda9304b03c68a3563b75fc8f92b9073ffffffffffffffffffffffffffffffffffffffff80821690831603614e85575050905b6040517f43a0d0660000000000000000000000000000000000000000000000000000000081527f000000000000000000000000000000000000000000000000000000000000008f600482015282602482015260016044820152602081606481600073a57b8d98dae62b26ec3bcc4a365338157060b2345af18015614e7957614e4f5750565b614e6f9060203d8111614e72575b614e678183612ff7565b81019061482d565b50565b503d614e5d565b6040513d6000823e3d90fd5b91614e909192614fd0565b9073ba12222222228d8ba445958a75a0704d566bf2c8803b15612d4757614f256000939184926040519586809481937fb95cac280000000000000000000000000000000000000000000000000000000083527fae8535c23afedda9304b03c68a3563b75fc8f92b0000000000000000000005a06004840152306024840152306044840152608060648401526084830190614f5f565b03925af18015614e7957614f44575b614f3e9150614b1a565b90614dca565b67ffffffffffffffff8211612f7457614f3e91604052614f34565b90606080614fa0614f8e614f7c8651608087526080870190612b5c565b60208701518682036020880152612d92565b60408601518582036040870152612afe565b930151151591015290565b60405190614fb882612fa3565b60006060838181528160208201528160408201520152565b90614fd9614fab565b50614fe2615bce565b9182517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff908181019081116130cc5761501a90613050565b61502e6150278651613050565b93866150e7565b9182156150d1578201938285116130cc5761505c6150ae938261505561507b985b86613128565b5285613128565b5260405193849160016020840152606060408401526080830190612d92565b60006060830152037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101845283612ff7565b604051926150bb84612fa3565b8352602083015260408201526000606082015290565b508361505c8361507b966150556150ae9661504f565b9081519160005b83811061511d57505050507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff90565b73ffffffffffffffffffffffffffffffffffffffff8061513d8385613128565b51169084161461514f576001016150ee565b9250505090565b9073ffffffffffffffffffffffffffffffffffffffff8082168015918215615218575b82156151ec575b5050156151e2576151df926151b77f000000000000000000000000bb6881874825e60e1160416d6c426eae65f2459e918230615236565b927fbb6881874825e60e1160416d6c426eae65f2459e00000000000000000000059290614bc3565b90565b6151df9291615236565b7f00000000000000000000000003928473f25bb2da6bc880b07ecbadc636822264161490503880615180565b73c02aaa39b223fe8d0a0e5c4f27ead9083c756cc282149250615179565b92919092604080517fc32e7202000000000000000000000000000000000000000000000000000000008152600091846004830152826024830152602073ffffffffffffffffffffffffffffffffffffffff92818160448188887f000000000000000000000000d48a0484730d867f551e6fcac4926f88f27af4fd165af180156154d9576154bc575b50878316937f000000000000000000000000ae8535c23afedda9304b03c68a3563b75fc8f92b841685036152fd57505050505090613180918194614a31565b92958295919497989251967f70a082310000000000000000000000000000000000000000000000000000000092838952169283600489015285886024818c5afa9788156154b2578598615481575b5090615356916154e3565b73ba12222222228d8ba445958a75a0704d566bf2c890813b1561295b576153e88592839289519485809481937f8bdb39130000000000000000000000000000000000000000000000000000000083527fae8535c23afedda9304b03c68a3563b75fc8f92b0000000000000000000005a060048401523060248401528a6044840152608060648401526084830190614f5f565b03925af18015615477579085939291615463575b5060249086519889938492835260048301525afa928315615459575091615429575b506151df9250613207565b905082813d8311615452575b61543f8183612ff7565b81010312612d47576151df91513861541e565b503d615435565b51903d90823e3d90fd5b9361547060249295612f60565b93906153fc565b86513d86823e3d90fd5b9097508581813d83116154ab575b6154998183612ff7565b8101031261295b57519661535661534b565b503d61548f565b87513d87823e3d90fd5b6154d290823d8411614e7257614e678183612ff7565b50386152be565b83513d87823e3d90fd5b906154ec614fab565b506154f5615bce565b9161550a6155038451613050565b91846150e7565b801561555d577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81019081116130cc575b604051926000602085015260408401526060830152606082526150ae82612fa3565b61553b565b9390916151df95936155a493865273ffffffffffffffffffffffffffffffffffffffff809216602087015216604085015260a0606085015260a0840190614f5f565b916080818403910152612afe565b73ffffffffffffffffffffffffffffffffffffffff908082167f000000000000000000000000ae8535c23afedda9304b03c68a3563b75fc8f92b8316036155f857505090565b9061560861566a93602093614fd0565b90615611615912565b916040518095819482937f6669506000000000000000000000000000000000000000000000000000000000845230307fae8535c23afedda9304b03c68a3563b75fc8f92b0000000000000000000005a060048701615562565b03917f0000000000000000000000004239ddd3c50463383670e86c119220849bfaf64a165afa908115614e79576000916156a2575090565b906020823d8211614baf5781614ba260209383612ff7565b9073ffffffffffffffffffffffffffffffffffffffff8083169182158093811561583c575b8115615810575b50156158045790602092916157c6946157207f000000000000000000000000bb6881874825e60e1160416d6c426eae65f2459e928361585a565b93156157fe575073c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2905b604051958694859384937f57a3033b0000000000000000000000000000000000000000000000000000000085527fbb6881874825e60e1160416d6c426eae65f2459e0000000000000000000005926004860190949392916060926080830196835273ffffffffffffffffffffffffffffffffffffffff80921660208401521660408201520152565b03917f00000000000000000000000073187e5b27f2aadd5ffee023d6a9e179365f2ad6165afa908115614e79576000916156a2575090565b9061573e565b9150506151df9161585a565b9050827f00000000000000000000000003928473f25bb2da6bc880b07ecbadc6368222641614386156e6565b73c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2811491506156df565b73ffffffffffffffffffffffffffffffffffffffff908082167f000000000000000000000000ae8535c23afedda9304b03c68a3563b75fc8f92b8316036158a057505090565b906158b061566a936020936154e3565b906158b9615912565b916040518095819482937f6261173000000000000000000000000000000000000000000000000000000000845230307fae8535c23afedda9304b03c68a3563b75fc8f92b0000000000000000000005a060048701615562565b604051610120810181811067ffffffffffffffff821117612f7457604052606081526060602082015260606040820152606080820152608081019060008252600060a0820152600060c0820152600060e08201526000610100820152615976615bce565b815260405161598481612fa3565b600381526060366020830137600061599b826130fb565b5273bb6881874825e60e1160416d6c426eae65f2459e6159ba82613108565b5273f951e335afb289353dc249e82926178eac7ded786159d982613118565b5260208201526040516159eb81612fa3565b600381526060366020830137670de0b6b3a764000080615a0a83613118565b5280615a1583613108565b52615a1f826130fb565b526040820152604051615a3181612fa3565b6003815260603660208301376000615a4882613118565b526000615a5482613108565b526000615a60826130fb565b52606082015273ae8535c23afedda9304b03c68a3563b75fc8f92b8252600160a0820152600060c0820152600060e08201528051516101008201526040518092602080830152615abe83516101206040850152610160840190612b5c565b90615b10615afc6020860151937fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc09485878303016060880152612b5c565b604086015184868303016080870152612d92565b6060850151928482030160a08501526020808451928381520193019060005b818110615bb3575050506151df9373ffffffffffffffffffffffffffffffffffffffff61010092511660c085015260a0810151151560e085015260c081015115158285015260e08101516101208501520151610140830152037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101835282612ff7565b82511515855287955060209485019490920191600101615b2f565b60405190615bdb82612fa3565b60038252606036602084013773f951e335afb289353dc249e82926178eac7ded78615c438373ae8535c23afedda9304b03c68a3563b75fc8f92b615c1e826130fb565b5273bb6881874825e60e1160416d6c426eae65f2459e615c3d82613108565b52613118565b52565b73ffffffffffffffffffffffffffffffffffffffff8091168015918215615d19575b8215615ced575b8215615cc1575b508115615ca3575b8115615c88575090565b73ae8535c23afedda9304b03c68a3563b75fc8f92b91501490565b73f951e335afb289353dc249e82926178eac7ded7881149150615c7e565b7f000000000000000000000000bb6881874825e60e1160416d6c426eae65f2459e168114915038615c76565b7f00000000000000000000000003928473f25bb2da6bc880b07ecbadc636822264811682149250615c6f565b73c02aaa39b223fe8d0a0e5c4f27ead9083c756cc282149250615c6856fea264697066735822122037ffce2cdeda62e1f342ddbe084f9ccda36b83b593d268f7cf0330dfc879c53c64736f6c63430008110033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000000000080000000000000000000000000000000000000000000000000000000000000002053592073774554482d426241576574685f42616c616e6365724c502041757261000000000000000000000000000000000000000000000000000000000000002053592d73774554482d426241576574685f42616c616e6365724c502041757261

-----Decoded View---------------
Arg [0] : _name (string): SY swETH-BbAWeth_BalancerLP Aura
Arg [1] : _symbol (string): SY-swETH-BbAWeth_BalancerLP Aura

-----Encoded View---------------
6 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000040
Arg [1] : 0000000000000000000000000000000000000000000000000000000000000080
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [3] : 53592073774554482d426241576574685f42616c616e6365724c502041757261
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [5] : 53592d73774554482d426241576574685f42616c616e6365724c502041757261


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.