ETH Price: $3,269.61 (+1.09%)

Token

VYPER.WIN (VYPER)
 

Overview

Max Total Supply

617,357,313.822948101865997809 VYPER

Holders

1,120 ( 0.089%)

Market

Price

$0.00 @ 0.000001 ETH (-4.95%)

Onchain Market Cap

$1,713,697.47

Circulating Supply Market Cap

$1,713,901.00

Other Info

Token Contract (WITH 18 Decimals)

Balance
101,711.185740079691716768 VYPER

Value
$282.34 ( ~0.0863527750487477 Eth) [0.0165%]
0xea72ecbdd1c278bb6f916689479b98612a1edaff
Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

Vyper is a DeFi project on Volt, using a perpetual auction and hyper-deflationary model with DragonX as the input. It has limited supply, full distribution in 8 days, and a strong buy-and-burn mechanism. Liquidity is bonded with DragonX and Volt, using Treasure Volt tech for sustained value

Market

Volume (24H):$40,440.00
Market Capitalization:$1,713,901.00
Circulating Supply:617,430,131.00 VYPER
Market Data Source: Coinmarketcap

# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
Vyper

Compiler Version
v0.8.27+commit.40a35a09

Optimization Enabled:
Yes with 200 runs

Other Settings:
cancun EvmVersion
File 1 of 57 : Vyper.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

/* === OZ === */
import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

/* = SYSTEM =  */
import {VyperAuction} from "@core/Auction.sol";
import {DragonXVoltInput} from "@core/nexus/DragonXVoltInput.sol";
import {DragonXVoltNexus} from "@core/nexus/DragonXVoltNexus.sol";
import {VyperDragonXNexus} from "@core/nexus/VyperDragonXNexus.sol";
import {VoltVyperNexus} from "@core/nexus/VoltVyperNexus.sol";
import {VyperTreasury} from "@core/VyperTreasury.sol";

/* == ACTIONS == */
import {SwapActionParams} from "./actions/SwapActions.sol";

/* = UNIV3 = */
import {IUniswapV3Pool} from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";
import {INonfungiblePositionManager} from "@uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol";
import {IQuoter} from "@uniswap/v3-periphery/contracts/interfaces/IQuoter.sol";

/* LIBS == */
import {PoolAddress} from "@uniswap/v3-periphery/contracts/libraries/PoolAddress.sol";
import {OracleLibrary} from "@libs/OracleLibrary.sol";

/* == UTILS ==  */
import {sqrt} from "@utils/Math.sol";

/* = CONST = */
import "@const/Constants.sol";

/**
 * @title Vyper
 * @dev ERC20 token contract for VYPER tokens.
 */
contract Vyper is ERC20Burnable, Ownable {
    //========IMMUTABLES========//

    VyperAuction public auction;
    VyperTreasury public treasury;
    DragonXVoltNexus public dragonXVoltNexus;
    DragonXVoltInput public dragonXVoltInput;
    VoltVyperNexus public voltVyperNexus;
    VyperDragonXNexus public vyperDragonXNexus;
    address public voltVyperPool;
    address public dragonXVyperPool;

    //===========ERRORS===========//

    error OnlyAuction();

    //=======CONSTRUCTOR=========//

    constructor(address _v3PositionManager, address _dragonX, address _volt, address _v3Quoter)
        ERC20("VYPER.WIN", "VYPER")
        Ownable(msg.sender)
    {
        _mint(LIQUIDITY_BONDING_ADDR, 95_000_000e18);
        _mint(msg.sender, 100_000_000e18); // Vypers treasury allocation

        (dragonXVyperPool, voltVyperPool) = _createUniswapV3Pools(_dragonX, _volt, _v3PositionManager, _v3Quoter);
    }

    //=======MODIFIERS=========//

    modifier onlyAuction() {
        _onlyAuction();
        _;
    }

    //=======SETTERS=========//

    function setAuction(VyperAuction _auction) external onlyOwner {
        auction = _auction;

        treasury = _auction.treasury();
    }

    function setDragonXVoltNexus(DragonXVoltNexus _dragonXVoltNexus) external onlyOwner {
        dragonXVoltNexus = _dragonXVoltNexus;
    }

    function setVoltVyperNexus(VoltVyperNexus _voltVyperNexus) external onlyOwner {
        voltVyperNexus = _voltVyperNexus;
    }

    function setDragonXVoltInput(DragonXVoltInput _dragonXVoltInput) external onlyOwner {
        dragonXVoltInput = _dragonXVoltInput;
    }

    function setVyperDragonXNexus(VyperDragonXNexus _vyperDragonXNexus) external onlyOwner {
        vyperDragonXNexus = _vyperDragonXNexus;
    }

    //==========================//
    //==========PUBLIC==========//
    //==========================//

    function mint(address _receiver, uint256 _amount) external onlyAuction returns (uint256 minted) {
        minted = _amount;
        _mint(_receiver, _amount);
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    /**
     * @notice Internal function to create and initialize Uniswap V3 pools for VYPER/DRAGONX and VYPER/VOLT.
     * @param _dragonX The address of the DragonX ERC20 contract.
     * @param _volt The address of the Volt ERC20 contract
     * @param _v3PositionManager The address of the Uniswap V3 Position Manager contract.
     * @param _v3Quoter The address of Uniswap V3 Quoter contract
     */
    function _createUniswapV3Pools(address _dragonX, address _volt, address _v3PositionManager, address _v3Quoter)
        internal
        returns (address _dragonXVyperPool, address _voltVyperPool)
    {
        address _vyper = address(this);

        IQuoter quoter = IQuoter(_v3Quoter);

        // Create VYPER/DRAGONX pool
        {
            (address token0, address token1) =
                _vyper < address(_dragonX) ? (_vyper, address(_dragonX)) : (address(_dragonX), _vyper);
            (uint256 amount0, uint256 amount1) = token0 == _vyper
                ? (INITIAL_VYPER_FOR_LP, INITIAL_DRAGONX_FOR_LP)
                : (INITIAL_DRAGONX_FOR_LP, INITIAL_VYPER_FOR_LP);

            uint160 sqrtPX96 = uint160((sqrt((amount1 * 1e18) / amount0) * 2 ** 96) / 1e9);

            INonfungiblePositionManager manager = INonfungiblePositionManager(_v3PositionManager);

            _dragonXVyperPool = manager.createAndInitializePoolIfNecessary(token0, token1, POOL_FEE, sqrtPX96);

            IUniswapV3Pool(_dragonXVyperPool).increaseObservationCardinalityNext(uint16(100));
        }

        // Create VYPER/VOLT pool
        {
            (address token0, address token1) =
                _vyper < address(_volt) ? (_vyper, address(_volt)) : (address(_volt), _vyper);

            bytes memory path = abi.encodePacked(address(_dragonX), POOL_FEE, address(_volt));

            uint256 voltAmount = quoter.quoteExactInput(path, INITIAL_DRAGONX_FOR_LP);

            (uint256 amount0, uint256 amount1) =
                token0 == _vyper ? (INITIAL_VYPER_FOR_LP, voltAmount) : (voltAmount, INITIAL_VYPER_FOR_LP);

            uint160 sqrtPX96 = uint160((sqrt((amount1 * 1e18) / amount0) * 2 ** 96) / 1e9);

            INonfungiblePositionManager manager = INonfungiblePositionManager(_v3PositionManager);

            _voltVyperPool = manager.createAndInitializePoolIfNecessary(token0, token1, POOL_FEE, sqrtPX96);

            IUniswapV3Pool(_voltVyperPool).increaseObservationCardinalityNext(uint16(100));
        }
    }

    function _onlyAuction() internal view {
        require(msg.sender == address(auction), OnlyAuction());
    }
}

File 2 of 57 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC-20
 * applications.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Skips emitting an {Approval} event indicating an allowance update. This is not
     * required by the ERC. See {xref-ERC20-_approve-address-address-uint256-bool-}[_approve].
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     *
     * ```solidity
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 3 of 57 : ERC20Burnable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

File 4 of 57 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)

pragma solidity ^0.8.20;

import {Context} from "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * The initial owner is set to the address provided by the deployer. This can
 * later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    /**
     * @dev The caller account is not authorized to perform an operation.
     */
    error OwnableUnauthorizedAccount(address account);

    /**
     * @dev The owner is not a valid owner account. (eg. `address(0)`)
     */
    error OwnableInvalidOwner(address owner);

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
     */
    constructor(address initialOwner) {
        if (initialOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(initialOwner);
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        if (owner() != _msgSender()) {
            revert OwnableUnauthorizedAccount(_msgSender());
        }
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby disabling any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        if (newOwner == address(0)) {
            revert OwnableInvalidOwner(address(0));
        }
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 5 of 57 : Auction.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

/* == OZ == */
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {Ownable} from "@openzeppelin/contracts/access/Ownable2Step.sol";

/* == ACTIONS == */
import "@actions/SwapActions.sol";

/* == CORE == */
import {Vyper} from "@core/Vyper.sol";
import {VyperTreasury} from "@core/VyperTreasury.sol";

/* == UTILS == */
import {Time} from "@utils/Time.sol";
import {Errors} from "@utils/Errors.sol";

import {wdiv, wmul, sub, sqrt} from "@utils/Math.sol";

/* == CONST == */
import "@const/Constants.sol";

/* == UNIV3 == */
import {TickMath} from "@uniswap/v3-core/contracts/libraries/TickMath.sol";
import {IUniswapV3Pool} from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";
import {INonfungiblePositionManager} from "@uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol";

/* == INTERFACES == */
import {IVyper} from "@interfaces/IVyper.sol";
import {IDragonXBurnProxy} from "@interfaces/IDragonXBurnProxy.sol";
import {IDragonX} from "@interfaces/IDragonX.sol";

struct LP {
    bool hasLP;
    bool isVyperToken0;
    uint240 tokenId;
}

struct LPPools {
    LP vyperVolt;
    LP vyperDragonX;
}

struct DailyStatistic {
    uint128 vyperEmitted;
    uint128 dragonXDeposited;
}

/**
 * @title VyperAuction
 * @dev Contract to auction DragonX to earn a proportional amount of 100M VYPER.
 */
contract VyperAuction is SwapActions {
    using SafeERC20 for *;

    //========IMMUTABLE=========//

    IVyper immutable vyper;
    IDragonX public immutable dragonX;
    ERC20Burnable immutable volt;
    uint32 public immutable startTimestamp;
    IDragonXBurnProxy immutable dxBurnProxy;
    address immutable v3PositionManager;

    //=========STORAGE==========//

    LPPools public lpPools;
    VyperTreasury public immutable treasury;

    uint128 public lpSlippage = WAD - 0.2e18;

    mapping(address => mapping(uint32 day => uint256 amount)) public depositOf;
    mapping(uint32 day => DailyStatistic) public dailyStats;

    //==========ERRORS==========//

    error OnlyClaimableTheNextDay();
    error LiquidityAlreadyAdded();
    error NotStartedYet();
    error NothingToClaim();
    error InvalidSlippage();
    error NotEnoughDragonXForLiquidity();
    error TreasuryVoltIsEmpty();
    error MustStartAt2PMUTC();

    //=========EVENTS==========//

    event UserDeposit(address indexed user, uint256 indexed amount, uint32 indexed day);
    event UserClaimed(address indexed user, uint256 indexed voltAmount, uint32 indexed day);

    //=======CONSTRUCTOR========//

    constructor(
        uint32 _startTimestamp,
        address _vyper,
        address _dragonX,
        address _volt,
        address _dragonXBurnProxy,
        address _v3PositionManager,
        SwapActionParams memory _s
    ) notAddress0(_vyper) notAddress0(_dragonX) notAddress0(_dragonXBurnProxy) SwapActions(_s) {
        // if ((_startTimestamp - 14 hours) % 1 days != 0) revert MustStartAt2PMUTC();

        vyper = IVyper(_vyper);
        volt = ERC20Burnable(_volt);
        v3PositionManager = _v3PositionManager;
        dragonX = IDragonX(_dragonX);
        dxBurnProxy = IDragonXBurnProxy(_dragonXBurnProxy);

        treasury = new VyperTreasury(address(this), address(vyper));
        startTimestamp = _startTimestamp;
    }

    //==========================//
    //=====EXTERNAL/PUBLIC======//
    //==========================//

    function changeLPSlippage(uint128 _newSlippage) external onlyOwner notAmount0(_newSlippage) {
        if (_newSlippage > WAD) revert InvalidSlippage();
        lpSlippage = _newSlippage;
    }

    function deposit(uint192 _amount) external notAmount0(_amount) {
        if (startTimestamp > Time.blockTs()) revert NotStartedYet();

        _updateAuction();

        uint32 daySinceStart = Time.dayGap(startTimestamp, Time.blockTs()) + 1;

        DailyStatistic storage stats = dailyStats[daySinceStart];

        dragonX.safeTransferFrom(msg.sender, address(this), _amount);

        _distribute(_amount);

        depositOf[msg.sender][daySinceStart] += _amount;

        stats.dragonXDeposited += uint128(_amount);

        emit UserDeposit(msg.sender, _amount, daySinceStart);
    }

    function claim(uint32 _day) public {
        uint32 daySinceStart = Time.dayGap(startTimestamp, Time.blockTs()) + 1;
        if (_day == daySinceStart) revert OnlyClaimableTheNextDay();

        uint256 toClaim = amountToClaim(msg.sender, _day);

        if (toClaim == 0) revert NothingToClaim();

        emit UserClaimed(msg.sender, toClaim, _day);

        vyper.transfer(msg.sender, toClaim);

        depositOf[msg.sender][_day] = 0;
    }

    function batchClaim(uint32[] calldata _days) external {
        for (uint256 i; i < _days.length; ++i) {
            claim(_days[i]);
        }
    }

    function batchClaimableAmount(address _user, uint32[] calldata _days) public view returns (uint256 toClaim) {
        for (uint256 i; i < _days.length; ++i) {
            toClaim += amountToClaim(_user, _days[i]);
        }
    }

    function amountToClaim(address _user, uint32 _day) public view returns (uint256 toClaim) {
        uint32 daySinceStart = Time.dayGap(startTimestamp, Time.blockTs()) + 1;

        if (_day == daySinceStart) return 0;
        uint256 depositAmount = depositOf[_user][_day];

        DailyStatistic memory stats = dailyStats[_day];

        return (depositAmount * stats.vyperEmitted) / stats.dragonXDeposited;
    }

    /**
     * @notice Adds initial liquidity to the VYPER/VOLT and VYPER/DRAGONX Uniswap V3 pools
     * @param _deadline The deadline for the liquidity addition
     */
    function addInitialLiquidity(uint32 _deadline) external onlyOwner notExpired(_deadline) {
        require(!lpPools.vyperVolt.hasLP && !lpPools.vyperDragonX.hasLP, LiquidityAlreadyAdded());
        require(dragonX.balanceOf(address(this)) >= (2 * INITIAL_DRAGONX_FOR_LP), NotEnoughDragonXForLiquidity());

        vyper.mint(address(this), 2 * INITIAL_VYPER_FOR_LP);

        // Add liquidity to VYPER/VOLT pool
        uint256 voltAmount = swapExactInput(address(dragonX), address(volt), INITIAL_DRAGONX_FOR_LP, 0, _deadline);

        _addLiquidityToPool(address(vyper), address(volt), INITIAL_VYPER_FOR_LP, voltAmount, _deadline, true);

        // Add liquidity to VYPER/DRAGONX pool
        _addLiquidityToPool(
            address(vyper), address(dragonX), INITIAL_VYPER_FOR_LP, INITIAL_DRAGONX_FOR_LP, _deadline, false
        );

        _transferOwnership(address(0));
    }

    /**
     * @notice Collects the fees accumulated from the Uniswap V3 liquidity pools
     */
    function collectFees()
        external
        returns (uint256 _vyperAmountVolt, uint256 _voltAmount, uint256 _vyperAmountDragonX, uint256 _dragonXAmount)
    {
        // Collect fees from VYPER/VOLT pool
        (_vyperAmountVolt, _voltAmount) = _collectFeesFromPool(lpPools.vyperVolt);

        // Collect fees from VYPER/DRAGONX pool
        (_vyperAmountDragonX, _dragonXAmount) = _collectFeesFromPool(lpPools.vyperDragonX);

        // Transfer collected VYPER tokens
        uint256 totalVyperAmount = _vyperAmountVolt + _vyperAmountDragonX;

        if (totalVyperAmount > 0) vyper.safeTransfer(LIQUIDITY_BONDING_ADDR, totalVyperAmount);

        // Transfer collected VOLT tokens
        if (_voltAmount > 0) volt.safeTransfer(LIQUIDITY_BONDING_ADDR, _voltAmount);

        // Transfer collected DRAGONX tokens
        if (_dragonXAmount > 0) dragonX.safeTransfer(LIQUIDITY_BONDING_ADDR, _dragonXAmount);
    }

    ///@notice Collects the fees from a pool
    function _collectFeesFromPool(LP memory _lp) internal returns (uint256 vyperAmount, uint256 otherAmount) {
        INonfungiblePositionManager.CollectParams memory params = INonfungiblePositionManager.CollectParams({
            tokenId: _lp.tokenId,
            recipient: address(this),
            amount0Max: type(uint128).max,
            amount1Max: type(uint128).max
        });

        (uint256 amount0, uint256 amount1) = INonfungiblePositionManager(v3PositionManager).collect(params);

        (vyperAmount, otherAmount) = _lp.isVyperToken0 ? (amount0, amount1) : (amount1, amount0);
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    ///@notice - Distributes the tokens
    function _distribute(uint256 _amount) internal {
        uint256 dragonXBalance = dragonX.balanceOf(address(this));
        //@note - If there is no added liquidity, but the balance exceeds the initial for liquidity, we should distribute the difference
        if (!lpPools.vyperVolt.hasLP) {
            if (dragonXBalance <= (INITIAL_DRAGONX_FOR_LP * 2)) return;

            _amount = uint192(dragonXBalance - (INITIAL_DRAGONX_FOR_LP * 2));
        }

        dragonX.transfer(address(dxBurnProxy), wmul(_amount, DX_BURN));
        dxBurnProxy.burn();

        dragonX.transfer(LIQUIDITY_BONDING_ADDR, wmul(_amount, TO_LP));
        dragonX.transfer(DEV_WALLET, wmul(_amount, TO_DEV_WALLET));
        dragonX.transfer(GENESIS_WALLET, wmul(_amount, TO_GENESIS));

        dragonX.approve(address(vyper.dragonXVoltInput()), wmul(_amount, TO_NEXUS_INPUT));
        vyper.dragonXVoltInput().distributeDragonXForBurning(wmul(_amount, TO_NEXUS_INPUT));
    }

    function _addLiquidityToPool(
        address token0,
        address token1,
        uint256 amount0,
        uint256 amount1,
        uint32 deadline,
        bool isVoltPool
    ) internal {
        (
            uint256 amount0Sorted,
            uint256 amount1Sorted,
            uint256 amount0Min,
            uint256 amount1Min,
            address sortedToken0,
            address sortedToken1
        ) = _sortAmounts(token0, token1, amount0, amount1);

        IERC20(sortedToken0).approve(address(v3PositionManager), amount0Sorted);
        IERC20(sortedToken1).approve(address(v3PositionManager), amount1Sorted);

        INonfungiblePositionManager.MintParams memory params = INonfungiblePositionManager.MintParams({
            token0: sortedToken0,
            token1: sortedToken1,
            fee: POOL_FEE,
            tickLower: (TickMath.MIN_TICK / TICK_SPACING) * TICK_SPACING,
            tickUpper: (TickMath.MAX_TICK / TICK_SPACING) * TICK_SPACING,
            amount0Desired: amount0Sorted,
            amount1Desired: amount1Sorted,
            amount0Min: amount0Min,
            amount1Min: amount1Min,
            recipient: address(this),
            deadline: deadline
        });

        (uint256 tokenId,, uint256 amount0Added, uint256 amount1Added) =
            INonfungiblePositionManager(v3PositionManager).mint(params);
        IERC20(sortedToken0).approve(address(v3PositionManager), 0);
        IERC20(sortedToken1).approve(address(v3PositionManager), 0);

        if (amount0Added < amount0Sorted) {
            IERC20(sortedToken0).transfer(owner(), amount0Sorted - amount0Added);
        }
        if (amount1Added < amount0Sorted) {
            IERC20(sortedToken1).transfer(owner(), amount1Sorted - amount1Added);
        }

        LP memory newLP = LP({hasLP: true, tokenId: uint240(tokenId), isVyperToken0: sortedToken0 == address(vyper)});

        if (isVoltPool) {
            lpPools.vyperVolt = newLP;
        } else {
            lpPools.vyperDragonX = newLP;
        }
    }

    ///@notice Emits the needed VYPER
    function _updateAuction() internal {
        uint32 daySinceStart = Time.dayGap(startTimestamp, Time.blockTs()) + 1;

        if (dailyStats[daySinceStart].vyperEmitted != 0) return;

        if (daySinceStart > 8 && vyper.balanceOf(address(treasury)) == 0) revert TreasuryVoltIsEmpty();

        uint256 emitted = daySinceStart <= 8 ? vyper.mint(address(this), AUCTION_EMIT) : treasury.emitForAuction();

        dailyStats[daySinceStart].vyperEmitted = uint128(emitted);
    }

    ///@notice Sorts tokens and amounts for adding liquidity
    function _sortAmounts(address _tokenA, address _tokenB, uint256 _amountA, uint256 _amountB)
        internal
        view
        returns (
            uint256 amount0,
            uint256 amount1,
            uint256 amount0Min,
            uint256 amount1Min,
            address token0,
            address token1
        )
    {
        (token0, token1) = _tokenA < _tokenB ? (_tokenA, _tokenB) : (_tokenB, _tokenA);
        (amount0, amount1) = token0 == _tokenA ? (_amountA, _amountB) : (_amountB, _amountA);

        (amount0Min, amount1Min) = (wmul(amount0, lpSlippage), wmul(amount1, lpSlippage));
    }
}

File 6 of 57 : DragonXVoltInput.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

/* === OZ === */
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

/* == CORE == */
import {Vyper} from "@core/Vyper.sol";

/* === CONST === */
import "@const/Constants.sol";

/* == ACTIONS == */
import {SwapActions, SwapActionParams} from "@actions/SwapActions.sol";

/* == UTILS == */
import {wmul, min} from "@utils/Math.sol";
import {Time} from "@utils/Time.sol";

/**
 * @title DragonXVoltInput
 */
contract DragonXVoltInput is SwapActions {
    using SafeERC20 for *;

    //=============STRUCTS============//

    /// @notice Struct to represent intervals for burning
    struct Interval {
        uint128 amountAllocated;
        uint128 amountBurned;
    }

    //===========IMMUTABLE===========//

    ///@notice The startTimestamp
    uint32 public immutable startTimeStamp;
    Vyper immutable vyper;
    ERC20Burnable public immutable dragonX;
    ERC20Burnable public immutable volt;

    //===========STATE===========//

    /// @notice Timestamp of the last burn call
    uint32 public lastBurnedIntervalStartTimestamp;

    /// @notice Last interval number
    uint32 public lastIntervalNumber;

    /// @notice That last snapshot timestamp
    uint32 lastSnapshot;

    /// @notice Maximum amount of Dragon X to be swapped and then burned
    uint128 public swapCap;

    /// @notice The last burned interval
    uint256 public lastBurnedInterval;

    /// @notice Mapping from interval number to Interval struct
    mapping(uint32 interval => Interval) public intervals;

    /// @notice Total DragonX tokens distributed
    uint256 public totalDragonXDistributed;

    //===========EVENTS===========//

    /// @notice Event emitted when tokens are bought and burnt
    event BuyAndBurn(uint256 indexed dragonXAmount, uint256 indexed voltAmount, address indexed caller);

    //===========ERRORS===========//

    error NotStartedYet();
    error IntervalAlreadyBurned();
    error OnlyEOA();

    //========CONSTRUCTOR========//

    constructor(uint32 startTimestamp, address _dragonX, address _volt, address _vyper, SwapActionParams memory _params)
        SwapActions(_params)
    {
        startTimeStamp = startTimestamp;

        vyper = Vyper(_vyper);

        dragonX = ERC20Burnable(_dragonX);
        volt = ERC20Burnable(_volt);

        swapCap = type(uint128).max;
    }

    //========MODIFIERS=======//

    /// @notice Updates the contract state for intervals
    modifier intervalUpdate() {
        _intervalUpdate();
        _;
    }

    //==========================//
    //==========PUBLIC==========//
    //==========================//

    function setSwapCap(uint128 _newCap) external onlySlippageAdminOrOwner {
        swapCap = _newCap == 0 ? type(uint128).max : _newCap;
    }

    function getCurrentInterval()
        public
        view
        returns (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            uint256 beforeCurrday,
            bool updated
        )
    {
        uint32 startPoint = lastBurnedIntervalStartTimestamp == 0 ? startTimeStamp : lastBurnedIntervalStartTimestamp;
        uint32 timeElapseSinceLastBurn = Time.blockTs() - startPoint;

        if (lastBurnedIntervalStartTimestamp == 0 || timeElapseSinceLastBurn > INTERVAL_TIME) {
            (_lastInterval, _amountAllocated, _missedIntervals, beforeCurrday) =
                _calculateIntervals(timeElapseSinceLastBurn);

            _lastIntervalStartTimestamp = startPoint;
            _missedIntervals += timeElapseSinceLastBurn > INTERVAL_TIME && lastBurnedIntervalStartTimestamp != 0 ? 1 : 0;
            updated = true;
        }
    }

    /**
     * @notice Swaps DragonX for VOLT and disitributes the VOLT tokens
     * @param _deadline The deadline for which the passes should pass
     */
    function swapDragonXToVoltAndDistribute(uint32 _deadline) external intervalUpdate notExpired(_deadline) {
        require(msg.sender == tx.origin, OnlyEOA());

        Interval storage currInterval = intervals[lastIntervalNumber];
        require(currInterval.amountBurned == 0, IntervalAlreadyBurned());

        if (currInterval.amountAllocated > swapCap) currInterval.amountAllocated = swapCap;

        currInterval.amountBurned = currInterval.amountAllocated;

        uint256 incentive = wmul(currInterval.amountAllocated, INCENTIVE_FEE);

        uint256 dragonXToSwapAndBurn = currInterval.amountAllocated - incentive;

        {
            uint256 toVoltTreasury = wmul(dragonXToSwapAndBurn, uint256(0.144e18));

            uint256 voltForVoltTreasury = swapExactInput(address(dragonX), address(volt), toVoltTreasury, 0, _deadline);

            volt.transfer(VOLT_TREASURY, voltForVoltTreasury);
            dragonXToSwapAndBurn -= toVoltTreasury;
        }

        uint256 voltAmount = swapExactInput(address(dragonX), address(volt), dragonXToSwapAndBurn, 0, _deadline);

        dragonX.safeTransfer(msg.sender, incentive);

        volt.approve(address(vyper.voltVyperNexus()), voltAmount);
        vyper.voltVyperNexus().distributeVoltForBurning(voltAmount);

        lastBurnedInterval = lastIntervalNumber;

        emit BuyAndBurn(dragonXToSwapAndBurn, voltAmount, msg.sender);
    }

    /**
     * @notice Distributes DragonX tokens for burning
     * @param _amount The amount of DragonX tokens
     */
    function distributeDragonXForBurning(uint256 _amount) external notAmount0(_amount) {
        dragonX.safeTransferFrom(msg.sender, address(this), _amount);

        if (Time.blockTs() > startTimeStamp && Time.blockTs() - lastBurnedIntervalStartTimestamp > INTERVAL_TIME) {
            _intervalUpdate();
        }
    }

    //==========================//
    //=========GETTERS==========//
    //==========================//

    function getDailyDragonXAllocation(uint32 t) public view returns (uint256 dailyWadAllocation) {
        uint256 STARTING_ALOCATION = 0.24e18;
        uint256 MIN_ALOCATION = 0.15e18;
        uint256 daysSinceStart = Time.dayGap(startTimeStamp, t);

        dailyWadAllocation = daysSinceStart >= 10 ? MIN_ALOCATION : STARTING_ALOCATION - (daysSinceStart * 0.01e18);
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    function _calculateIntervals(uint256 timeElapsedSince)
        internal
        view
        returns (
            uint32 _lastIntervalNumber,
            uint128 _totalAmountForInterval,
            uint16 missedIntervals,
            uint256 beforeCurrDay
        )
    {
        missedIntervals = _calculateMissedIntervals(timeElapsedSince);

        _lastIntervalNumber = lastIntervalNumber + missedIntervals + 1;

        uint32 currentDay = Time.dayGap(startTimeStamp, uint32(block.timestamp));

        uint32 dayOfLastInterval = lastBurnedIntervalStartTimestamp == 0
            ? currentDay
            : Time.dayGap(startTimeStamp, lastBurnedIntervalStartTimestamp);

        if (currentDay == dayOfLastInterval) {
            uint256 dailyAllocation = wmul(totalDragonXDistributed, getDailyDragonXAllocation(Time.blockTs()));

            uint128 _amountPerInterval = uint128(dailyAllocation / INTERVALS_PER_DAY);

            uint128 additionalAmount = _amountPerInterval * missedIntervals;

            _totalAmountForInterval = _amountPerInterval + additionalAmount;
        } else {
            uint32 _lastBurnedIntervalStartTimestamp = lastBurnedIntervalStartTimestamp;

            uint32 theEndOfTheDay = Time.getDayEnd(_lastBurnedIntervalStartTimestamp);

            uint256 balanceOf = dragonX.balanceOf(address(this));

            while (currentDay >= dayOfLastInterval) {
                uint32 end = uint32(Time.blockTs() < theEndOfTheDay ? Time.blockTs() : theEndOfTheDay - 1);

                uint32 accumulatedIntervalsForTheDay = (end - _lastBurnedIntervalStartTimestamp) / INTERVAL_TIME;

                uint256 diff = balanceOf > _totalAmountForInterval ? balanceOf - _totalAmountForInterval : 0;

                //@note - If the day we are looping over the same day as the last interval's use the cached allocation, otherwise use the current balance
                uint256 forAllocation = Time.dayGap(startTimeStamp, lastBurnedIntervalStartTimestamp)
                    == dayOfLastInterval
                    ? totalDragonXDistributed
                    : balanceOf >= _totalAmountForInterval + wmul(diff, getDailyDragonXAllocation(end)) ? diff : 0;

                uint256 dailyAllocation = wmul(forAllocation, getDailyDragonXAllocation(end));

                ///@notice ->  minus INTERVAL_TIME minutes since, at the end of the day the new epoch with new allocation
                _lastBurnedIntervalStartTimestamp = theEndOfTheDay - INTERVAL_TIME;

                ///@notice ->  plus INTERVAL_TIME minutes to flip into the next day
                theEndOfTheDay = Time.getDayEnd(_lastBurnedIntervalStartTimestamp + INTERVAL_TIME);

                if (dayOfLastInterval == currentDay) beforeCurrDay = _totalAmountForInterval;

                _totalAmountForInterval +=
                    uint128((dailyAllocation * accumulatedIntervalsForTheDay) / INTERVALS_PER_DAY);

                dayOfLastInterval++;
            }
        }

        Interval memory prevInt = intervals[lastIntervalNumber];

        //@note - If the last interval was only updated, but not burned add its allocation to the next one.
        uint128 additional = prevInt.amountBurned == 0 ? prevInt.amountAllocated : 0;

        if (_totalAmountForInterval + additional > dragonX.balanceOf(address(this))) {
            _totalAmountForInterval = uint128(dragonX.balanceOf(address(this)));
        } else {
            _totalAmountForInterval += additional;
        }
    }

    function _calculateMissedIntervals(uint256 timeElapsedSince) internal view returns (uint16 _missedIntervals) {
        _missedIntervals = uint16(timeElapsedSince / INTERVAL_TIME);

        if (lastBurnedIntervalStartTimestamp != 0) _missedIntervals--;
    }

    function _updateSnapshot(uint256 deltaAmount) internal {
        if (Time.blockTs() < startTimeStamp || lastSnapshot + 24 hours > Time.blockTs()) return;

        uint32 timeElapsed = Time.blockTs() - startTimeStamp;

        uint32 snapshots = timeElapsed / 24 hours;

        uint256 balance = dragonX.balanceOf(address(this));

        totalDragonXDistributed = deltaAmount > balance ? 0 : balance - deltaAmount;
        lastSnapshot = startTimeStamp + (snapshots * 24 hours);
    }

    /// @notice Updates the contract state for intervals
    function _intervalUpdate() private {
        require(Time.blockTs() >= startTimeStamp, NotStartedYet());

        if (lastSnapshot == 0) _updateSnapshot(0);

        (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            uint256 beforeCurrentDay,
            bool updated
        ) = getCurrentInterval();

        _updateSnapshot(beforeCurrentDay);

        if (updated) {
            lastBurnedIntervalStartTimestamp = _lastIntervalStartTimestamp + (uint32(_missedIntervals) * INTERVAL_TIME);
            intervals[_lastInterval] = Interval({amountAllocated: _amountAllocated, amountBurned: 0});
            lastIntervalNumber = _lastInterval;
        }
    }
}

File 7 of 57 : DragonXVoltNexus.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.27;

/* === SYSTEM === */
import "@actions/SwapActions.sol";

/* === OZ === */
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

/* == UTILS == */
import {wmul} from "@utils/Math.sol";
import {Time} from "@utils/Time.sol";

import {VoltVyperNexus} from "./VoltVyperNexus.sol";

/**
 * @title DragonXVoltNexus
 */
contract DragonXVoltNexus is SwapActions {
    using SafeERC20 for *;

    //=============STRUCTS============//

    /// @notice Struct to represent intervals for burning
    struct Interval {
        uint128 amountAllocated;
        uint128 amountBurned;
    }

    //===========IMMUTABLE===========//

    ///@notice The startTimestamp
    uint32 public immutable startTimeStamp;
    VoltVyperNexus immutable voltVyperNexus;
    ERC20Burnable immutable dragonX;
    ERC20Burnable immutable volt;

    //===========STATE===========//

    /// @notice Timestamp of the last burn call
    uint32 public lastBurnedIntervalStartTimestamp;

    /// @notice Last interval number
    uint32 public lastIntervalNumber;

    /// @notice  Last burned interval
    uint32 public lastBurnedInterval;

    /// @notice That last snapshot timestamp
    uint32 public lastSnapshot;

    ///@notice DRAGONX Swap cap
    uint128 public swapCap;

    /// @notice Mapping from interval number to Interval struct
    mapping(uint32 interval => Interval) public intervals;

    /// @notice Total DRAGONX tokens distributed
    uint256 public totalDragonXDistributed;

    uint256 public toDistribute;

    //===========EVENTS===========//

    /// @notice Event emitted when tokens are bought and burnt
    event BuyAndBurn(uint256 indexed voltAmount, uint256 indexed vyperReceived, address indexed caller);

    //===========ERRORS===========//

    /// @notice Error when the contract has not started yet
    error NotStartedYet();

    /// @notice Error when interval has already been burned
    error IntervalAlreadyBurned();

    error MustStartAt5PMUTC();

    error BuyAndBurn__OnlyEOA();

    //========CONSTRUCTOR========//

    /// @notice Constructor initializes the contract
    constructor(
        uint32 _startTimestamp,
        address _dragonX,
        address _volt,
        address _voltVyperNexus,
        SwapActionParams memory _params
    ) SwapActions(_params) {
        swapCap = type(uint128).max;

        dragonX = ERC20Burnable(_dragonX);
        voltVyperNexus = VoltVyperNexus(_voltVyperNexus);
        volt = ERC20Burnable(_volt);
        startTimeStamp = _startTimestamp;
    }

    //========MODIFIERS=======//

    /// @notice Updates the contract state for intervals
    modifier intervalUpdate() {
        _intervalUpdate();
        _;
    }

    //==========================//
    //==========PUBLIC==========//
    //==========================//

    function changeSwapCap(uint128 _newSwapCap) external onlySlippageAdminOrOwner {
        swapCap = _newSwapCap == 0 ? type(uint128).max : _newSwapCap;
    }

    /**
     * @notice Swaps DragonX for VOLT and sends to VoltVyperNexus
     * @param _deadline The deadline for which the passes should pass
     */
    function swapDragonXToVoltAndDistribute(uint32 _deadline) external intervalUpdate {
        if (msg.sender != tx.origin) revert BuyAndBurn__OnlyEOA();

        Interval storage currInterval = intervals[lastIntervalNumber];

        if (currInterval.amountBurned != 0) revert IntervalAlreadyBurned();

        _updateSnapshot();
        if (currInterval.amountAllocated > swapCap) {
            uint256 difference = currInterval.amountAllocated - swapCap;

            //@note - Add the difference for the next day
            toDistribute += difference;

            currInterval.amountAllocated = swapCap;
        }

        uint256 incentive = wmul(currInterval.amountAllocated, INCENTIVE_FEE);

        currInterval.amountBurned = currInterval.amountAllocated;

        uint256 voltAmount =
            swapExactInput(address(dragonX), address(volt), currInterval.amountAllocated - incentive, 0, _deadline);

        dragonX.safeTransfer(msg.sender, incentive);

        volt.approve(address(voltVyperNexus), voltAmount);
        voltVyperNexus.distributeVoltForBurning(voltAmount);

        lastBurnedInterval = lastIntervalNumber;

        emit BuyAndBurn(currInterval.amountAllocated - incentive, voltAmount, msg.sender);
    }

    /**
     * @notice Distributes DRAGONX tokens for burning
     * @param _amount The amount of DRAGONX tokens
     */
    function distributeDragonXForBurning(uint256 _amount) external notAmount0(_amount) {
        ///@dev - If there are some missed intervals update the accumulated allocation before depositing new DRAGONX

        if (Time.blockTs() > startTimeStamp && Time.blockTs() - lastBurnedIntervalStartTimestamp > INTERVAL_TIME) {
            _intervalUpdate();
        }

        dragonX.safeTransferFrom(msg.sender, address(this), _amount);

        _updateSnapshot();

        toDistribute += _amount;
    }

    //==========================//f
    //=========GETTERS==========//
    //==========================//

    /**
     * @notice Get the day count for a timestamp
     * @param t The timestamp from which to get the timestamp
     */
    function dayCountByT(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cut-off time (2 PM UTC)
        uint32 adjustedTime = t - 14 hours;

        // Calculate the number of days since Unix epoch
        return adjustedTime / 86400;
    }

    /**
     * @notice Gets the end of the day with a cut-off hour of 2 PM UTC
     * @param t The time from where to get the day end
     */
    function getDayEnd(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cutoff time (2 PM UTC)
        uint32 adjustedTime = t - 14 hours;

        // Calculate the number of days since Unix epoch
        uint32 daysSinceEpoch = adjustedTime / 86400;

        // Calculate the start of the next day at 2 PM UTC
        uint32 nextDayStartAt5PM = (daysSinceEpoch + 1) * 86400 + 14 hours;

        // Return the timestamp for 17:00:00 PM UTC of the given day
        return nextDayStartAt5PM;
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    function _calculateIntervals(uint256 timeElapsedSince)
        internal
        view
        returns (uint32 _lastIntervalNumber, uint128 _totalAmountForInterval, uint16 missedIntervals)
    {
        missedIntervals = _calculateMissedIntervals(timeElapsedSince);

        _lastIntervalNumber = lastIntervalNumber + missedIntervals + 1;

        uint32 currentDay = dayCountByT(uint32(block.timestamp));

        uint32 _lastBurnedIntervalTimestamp = lastBurnedIntervalStartTimestamp;

        uint32 dayOfLastInterval =
            _lastBurnedIntervalTimestamp == 0 ? currentDay : dayCountByT(_lastBurnedIntervalTimestamp);

        uint256 _totalDragonXDistributed = totalDragonXDistributed;

        if (currentDay == dayOfLastInterval) {
            uint128 _amountPerInterval = uint128(_totalDragonXDistributed / INTERVALS_PER_DAY);

            uint128 additionalAmount = _amountPerInterval * missedIntervals;

            _totalAmountForInterval = _amountPerInterval + additionalAmount;
        } else {
            uint32 _lastBurnedIntervalStartTimestamp = _lastBurnedIntervalTimestamp;

            uint32 theEndOfTheDay = getDayEnd(_lastBurnedIntervalStartTimestamp);

            uint32 accumulatedIntervalsForTheDay = (theEndOfTheDay - _lastBurnedIntervalStartTimestamp) / INTERVAL_TIME;

            //@note - Calculate the remaining intervals from the last one's day
            _totalAmountForInterval +=
                uint128(_totalDragonXDistributed / INTERVALS_PER_DAY) * accumulatedIntervalsForTheDay;

            //@note - Calculate the upcoming intervals with the to distribute shares
            uint128 _intervalsForNewDay = missedIntervals >= accumulatedIntervalsForTheDay
                ? (missedIntervals - accumulatedIntervalsForTheDay) + 1
                : 0;
            _totalAmountForInterval += (_intervalsForNewDay > INTERVALS_PER_DAY)
                ? uint128(toDistribute)
                : uint128(toDistribute / INTERVALS_PER_DAY) * _intervalsForNewDay;
        }

        Interval memory prevInt = intervals[lastIntervalNumber];

        //@note - If the last interval was only updated, but not burned add its allocation to the next one.
        uint128 additional = prevInt.amountBurned == 0 && prevInt.amountAllocated != 0 ? prevInt.amountAllocated : 0;

        if (_totalAmountForInterval + additional > dragonX.balanceOf(address(this))) {
            _totalAmountForInterval = uint128(dragonX.balanceOf(address(this)));
        } else {
            _totalAmountForInterval += additional;
        }
    }

    function _calculateMissedIntervals(uint256 timeElapsedSince) internal view returns (uint16 _missedIntervals) {
        _missedIntervals = uint16(timeElapsedSince / INTERVAL_TIME);

        if (lastBurnedIntervalStartTimestamp != 0) _missedIntervals--;
    }

    function _updateSnapshot() internal {
        if (Time.blockTs() < startTimeStamp || lastSnapshot + 24 hours > Time.blockTs()) return;

        if (lastSnapshot != 0 && lastSnapshot + 48 hours <= Time.blockTs()) {
            // If we have missed entire snapshot of interacting with the contract
            toDistribute = 0;
        }

        totalDragonXDistributed = toDistribute;

        toDistribute = 0;

        uint32 timeElapsed = Time.blockTs() - startTimeStamp;

        uint32 snapshots = timeElapsed / 24 hours;

        lastSnapshot = startTimeStamp + (snapshots * 24 hours);
    }

    /// @notice Updates the contract state for intervals
    function _intervalUpdate() private {
        if (Time.blockTs() < startTimeStamp) revert NotStartedYet();

        if (lastSnapshot == 0) _updateSnapshot();

        (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            bool updated
        ) = getCurrentInterval();

        if (updated) {
            lastBurnedIntervalStartTimestamp = _lastIntervalStartTimestamp + (uint32(_missedIntervals) * INTERVAL_TIME);
            intervals[_lastInterval] = Interval({amountAllocated: _amountAllocated, amountBurned: 0});
            lastIntervalNumber = _lastInterval;
        }
    }

    function getCurrentInterval()
        public
        view
        returns (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            bool updated
        )
    {
        if (startTimeStamp > Time.blockTs()) return (0, 0, 0, 0, false);

        uint32 startPoint = lastBurnedIntervalStartTimestamp == 0 ? startTimeStamp : lastBurnedIntervalStartTimestamp;

        uint32 timeElapseSinceLastBurn = Time.blockTs() - startPoint;

        if (lastBurnedIntervalStartTimestamp == 0 || timeElapseSinceLastBurn > INTERVAL_TIME) {
            (_lastInterval, _amountAllocated, _missedIntervals) = _calculateIntervals(timeElapseSinceLastBurn);
            _lastIntervalStartTimestamp = startPoint;
            _missedIntervals += timeElapseSinceLastBurn > INTERVAL_TIME && lastBurnedIntervalStartTimestamp != 0 ? 1 : 0;
            updated = true;
        }
    }
}

File 8 of 57 : VyperDragonXNexus.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.27;

/* === SYSTEM === */
import "@actions/SwapActions.sol";

/* === OZ === */
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

/* == UTILS == */
import {wmul} from "@utils/Math.sol";
import {Time} from "@utils/Time.sol";

import {Vyper} from "@core/Vyper.sol";

/**
 * @title VyperDragonXNexus
 */
contract VyperDragonXNexus is SwapActions {
    using SafeERC20 for *;

    //=============STRUCTS============//

    /// @notice Struct to represent intervals for burning
    struct Interval {
        uint128 amountAllocated;
        uint128 amountBurned;
    }

    //===========IMMUTABLE===========//

    ///@notice The startTimestamp
    uint32 public immutable startTimeStamp;

    Vyper immutable vyper;
    ERC20Burnable immutable dragonX;

    //===========STATE===========//

    /// @notice Timestamp of the last burn call
    uint32 public lastBurnedIntervalStartTimestamp;

    /// @notice Last interval number
    uint32 public lastIntervalNumber;

    /// @notice  Last burned interval
    uint32 public lastBurnedInterval;

    /// @notice That last snapshot timestamp
    uint32 public lastSnapshot;

    ///@notice VYPER Swap cap
    uint128 public swapCap;

    /// @notice Mapping from interval number to Interval struct
    mapping(uint32 interval => Interval) public intervals;

    /// @notice Total VYPER tokens distributed
    uint256 public totalVyperDistributed;

    uint256 public toDistribute;

    //===========EVENTS===========//

    /// @notice Event emitted when tokens are bought and burnt
    event BuyAndBurn(uint256 indexed vyperAmount, uint256 indexed dragonXReceived, address indexed caller);

    //===========ERRORS===========//

    /// @notice Error when the contract has not started yet
    error NotStartedYet();

    /// @notice Error when interval has already been burned
    error IntervalAlreadyBurned();

    error MustStartAt5PMUTC();

    error BuyAndBurn__OnlyEOA();

    //========CONSTRUCTOR========//

    /// @notice Constructor initializes the contract
    constructor(uint32 _startTimestamp, address _dragonX, Vyper _vyper, SwapActionParams memory _params)
        SwapActions(_params)
    {
        swapCap = type(uint128).max;

        vyper = _vyper;
        dragonX = ERC20Burnable(_dragonX);
        startTimeStamp = _startTimestamp;
    }

    //========MODIFIERS=======//

    /// @notice Updates the contract state for intervals
    modifier intervalUpdate() {
        _intervalUpdate();
        _;
    }

    //==========================//
    //==========PUBLIC==========//
    //==========================//

    function changeSwapCap(uint128 _newSwapCap) external onlySlippageAdminOrOwner {
        swapCap = _newSwapCap == 0 ? type(uint128).max : _newSwapCap;
    }

    /**
     * @notice Swaps VYPER for DRAGONX and distributes the DRAGONX tokens
     * @param _deadline The deadline for which the passes should pass
     */
    function swapVyperToDragonXAndDistribute(uint32 _deadline) external intervalUpdate {
        if (msg.sender != tx.origin) revert BuyAndBurn__OnlyEOA();

        Interval storage currInterval = intervals[lastIntervalNumber];

        if (currInterval.amountBurned != 0) revert IntervalAlreadyBurned();

        _updateSnapshot();
        if (currInterval.amountAllocated > swapCap) {
            uint256 difference = currInterval.amountAllocated - swapCap;

            //@note - Add the difference for the next day
            toDistribute += difference;

            currInterval.amountAllocated = swapCap;
        }

        uint256 incentive = wmul(currInterval.amountAllocated, INCENTIVE_FEE);

        currInterval.amountBurned = currInterval.amountAllocated;

        uint256 dragonXAmount =
            swapExactInput(address(vyper), address(dragonX), currInterval.amountAllocated - incentive, 0, _deadline);

        vyper.safeTransfer(msg.sender, incentive);

        lastBurnedInterval = lastIntervalNumber;

        dragonX.transfer(LIQUIDITY_BONDING_ADDR, wmul(dragonXAmount, uint256(0.08e18)));

        {
            uint256 toNexus = wmul(dragonXAmount, uint256(0.92e18));
            dragonX.approve(address(vyper.dragonXVoltNexus()), toNexus);
            vyper.dragonXVoltNexus().distributeDragonXForBurning(toNexus);
        }

        emit BuyAndBurn(currInterval.amountAllocated - incentive, dragonXAmount, msg.sender);
    }

    /**
     * @notice Distributes VYPER tokens for burning
     * @param _amount The amount of VYPER tokens
     */
    function distributeVyperForBurning(uint256 _amount) external notAmount0(_amount) {
        ///@dev - If there are some missed intervals update the accumulated allocation before depositing new VYPER

        if (Time.blockTs() > startTimeStamp && Time.blockTs() - lastBurnedIntervalStartTimestamp > INTERVAL_TIME) {
            _intervalUpdate();
        }

        vyper.safeTransferFrom(msg.sender, address(this), _amount);

        _updateSnapshot();

        toDistribute += _amount;
    }

    //==========================//
    //=========GETTERS==========//
    //==========================//

    /**
     * @notice Get the day count for a timestamp
     * @param t The timestamp from which to get the timestamp
     */
    function dayCountByT(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cut-off time (2 PM UTC)
        uint32 adjustedTime = t - 14 hours;

        // Calculate the number of days since Unix epoch
        return adjustedTime / 86400;
    }

    /**
     * @notice Gets the end of the day with a cut-off hour of 2 PM UTC
     * @param t The time from where to get the day end
     */
    function getDayEnd(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cutoff time (2 PM UTC)
        uint32 adjustedTime = t - 14 hours;

        // Calculate the number of days since Unix epoch
        uint32 daysSinceEpoch = adjustedTime / 86400;

        // Calculate the start of the next day at 2 PM UTC
        uint32 nextDayStartAt5PM = (daysSinceEpoch + 1) * 86400 + 14 hours;

        // Return the timestamp for 17:00:00 PM UTC of the given day
        return nextDayStartAt5PM;
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    function _calculateIntervals(uint256 timeElapsedSince)
        internal
        view
        returns (uint32 _lastIntervalNumber, uint128 _totalAmountForInterval, uint16 missedIntervals)
    {
        missedIntervals = _calculateMissedIntervals(timeElapsedSince);

        _lastIntervalNumber = lastIntervalNumber + missedIntervals + 1;

        uint32 currentDay = dayCountByT(uint32(block.timestamp));

        uint32 _lastBurnedIntervalTimestamp = lastBurnedIntervalStartTimestamp;

        uint32 dayOfLastInterval =
            _lastBurnedIntervalTimestamp == 0 ? currentDay : dayCountByT(_lastBurnedIntervalTimestamp);

        uint256 _totalVyperDistributed = totalVyperDistributed;

        if (currentDay == dayOfLastInterval) {
            uint128 _amountPerInterval = uint128(_totalVyperDistributed / INTERVALS_PER_DAY);

            uint128 additionalAmount = _amountPerInterval * missedIntervals;

            _totalAmountForInterval = _amountPerInterval + additionalAmount;
        } else {
            uint32 _lastBurnedIntervalStartTimestamp = _lastBurnedIntervalTimestamp;

            uint32 theEndOfTheDay = getDayEnd(_lastBurnedIntervalStartTimestamp);

            uint32 accumulatedIntervalsForTheDay = (theEndOfTheDay - _lastBurnedIntervalStartTimestamp) / INTERVAL_TIME;

            //@note - Calculate the remaining intervals from the last one's day
            _totalAmountForInterval +=
                uint128(_totalVyperDistributed / INTERVALS_PER_DAY) * accumulatedIntervalsForTheDay;

            //@note - Calculate the upcoming intervals with the to distribute shares
            uint128 _intervalsForNewDay = missedIntervals >= accumulatedIntervalsForTheDay
                ? (missedIntervals - accumulatedIntervalsForTheDay) + 1
                : 0;

            _totalAmountForInterval += (_intervalsForNewDay > INTERVALS_PER_DAY)
                ? uint128(toDistribute)
                : uint128(toDistribute / INTERVALS_PER_DAY) * _intervalsForNewDay;
        }

        Interval memory prevInt = intervals[lastIntervalNumber];

        //@note - If the last interval was only updated, but not burned add its allocation to the next one.
        uint128 additional = prevInt.amountBurned == 0 && prevInt.amountAllocated != 0 ? prevInt.amountAllocated : 0;

        if (_totalAmountForInterval + additional > vyper.balanceOf(address(this))) {
            _totalAmountForInterval = uint128(vyper.balanceOf(address(this)));
        } else {
            _totalAmountForInterval += additional;
        }
    }

    function _calculateMissedIntervals(uint256 timeElapsedSince) internal view returns (uint16 _missedIntervals) {
        _missedIntervals = uint16(timeElapsedSince / INTERVAL_TIME);

        if (lastBurnedIntervalStartTimestamp != 0) _missedIntervals--;
    }

    function _updateSnapshot() internal {
        if (Time.blockTs() < startTimeStamp || lastSnapshot + 24 hours > Time.blockTs()) return;

        if (lastSnapshot != 0 && lastSnapshot + 48 hours <= Time.blockTs()) {
            // If we have missed entire snapshot of interacting with the contract
            toDistribute = 0;
        }

        totalVyperDistributed = toDistribute;

        toDistribute = 0;

        uint32 timeElapsed = Time.blockTs() - startTimeStamp;

        uint32 snapshots = timeElapsed / 24 hours;

        lastSnapshot = startTimeStamp + (snapshots * 24 hours);
    }

    /// @notice Updates the contract state for intervals
    function _intervalUpdate() private {
        if (Time.blockTs() < startTimeStamp) revert NotStartedYet();

        if (lastSnapshot == 0) _updateSnapshot();

        (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            bool updated
        ) = getCurrentInterval();

        if (updated) {
            lastBurnedIntervalStartTimestamp = _lastIntervalStartTimestamp + (uint32(_missedIntervals) * INTERVAL_TIME);
            intervals[_lastInterval] = Interval({amountAllocated: _amountAllocated, amountBurned: 0});
            lastIntervalNumber = _lastInterval;
        }
    }

    function getCurrentInterval()
        public
        view
        returns (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            bool updated
        )
    {
        if (startTimeStamp > Time.blockTs()) return (0, 0, 0, 0, false);

        uint32 startPoint = lastBurnedIntervalStartTimestamp == 0 ? startTimeStamp : lastBurnedIntervalStartTimestamp;

        uint32 timeElapseSinceLastBurn = Time.blockTs() - startPoint;

        if (lastBurnedIntervalStartTimestamp == 0 || timeElapseSinceLastBurn > INTERVAL_TIME) {
            (_lastInterval, _amountAllocated, _missedIntervals) = _calculateIntervals(timeElapseSinceLastBurn);
            _lastIntervalStartTimestamp = startPoint;
            _missedIntervals += timeElapseSinceLastBurn > INTERVAL_TIME && lastBurnedIntervalStartTimestamp != 0 ? 1 : 0;
            updated = true;
        }
    }
}

File 9 of 57 : VoltVyperNexus.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.27;

/* === SYSTEM === */
import "@actions/SwapActions.sol";

/* === OZ === */
import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

/* == UTILS == */
import {wmul} from "@utils/Math.sol";
import {Time} from "@utils/Time.sol";

import {Vyper} from "@core/Vyper.sol";

/**
 * @title VoltVyperNexus
 */
contract VoltVyperNexus is SwapActions {
    using SafeERC20 for *;

    //=============STRUCTS============//

    /// @notice Struct to represent intervals for burning
    struct Interval {
        uint128 amountAllocated;
        uint128 amountBurned;
    }

    //===========IMMUTABLE===========//

    ///@notice The startTimestamp
    uint32 public immutable startTimeStamp;

    Vyper immutable vyper;
    ERC20Burnable public immutable volt;

    //===========STATE===========//

    /// @notice Timestamp of the last burn call
    uint32 public lastBurnedIntervalStartTimestamp;

    /// @notice Last interval number
    uint32 public lastIntervalNumber;

    /// @notice  Last burned interval
    uint32 public lastBurnedInterval;

    /// @notice That last snapshot timestamp
    uint32 public lastSnapshot;

    ///@notice VOLT Swap cap
    uint128 public swapCap;

    /// @notice Total amount of VYPER tokens burnt
    uint256 public totalVyperBurnt;

    /// @notice Mapping from interval number to Interval struct
    mapping(uint32 interval => Interval) public intervals;

    /// @notice Total VOLT tokens distributed
    uint256 public totalVoltDistributed;

    uint256 public toDistribute;

    //===========EVENTS===========//

    /// @notice Event emitted when tokens are bought and burnt
    event BuyAndBurn(uint256 indexed voltAmount, uint256 indexed vyperReceived, address indexed caller);

    //===========ERRORS===========//

    /// @notice Error when the contract has not started yet
    error NotStartedYet();

    /// @notice Error when interval has already been burned
    error IntervalAlreadyBurned();

    error MustStartAt5PMUTC();

    error BuyAndBurn__OnlyEOA();

    //========CONSTRUCTOR========//

    /// @notice Constructor initializes the contract
    constructor(uint32 _startTimestamp, address _volt, Vyper _vyper, SwapActionParams memory _params)
        SwapActions(_params)
    {
        swapCap = type(uint128).max;

        vyper = _vyper;
        volt = ERC20Burnable(_volt);
        startTimeStamp = _startTimestamp;
    }

    //========MODIFIERS=======//

    /// @notice Updates the contract state for intervals
    modifier intervalUpdate() {
        _intervalUpdate();
        _;
    }

    //==========================//
    //==========PUBLIC==========//
    //==========================//

    function changeSwapCap(uint128 _newSwapCap) external onlySlippageAdminOrOwner {
        swapCap = _newSwapCap == 0 ? type(uint128).max : _newSwapCap;
    }

    /**
     * @notice Swaps VOLT for VYPER and distributes the vyper tokens
     * @param _deadline The deadline for which the passes should pass
     */
    function swapVoltToVyperAndDistribute(uint32 _deadline) external intervalUpdate {
        if (msg.sender != tx.origin) revert BuyAndBurn__OnlyEOA();

        Interval storage currInterval = intervals[lastIntervalNumber];

        if (currInterval.amountBurned != 0) revert IntervalAlreadyBurned();

        _updateSnapshot();
        if (currInterval.amountAllocated > swapCap) {
            uint256 difference = currInterval.amountAllocated - swapCap;

            //@note - Add the difference for the next day
            toDistribute += difference;

            currInterval.amountAllocated = swapCap;
        }

        uint256 incentive = wmul(currInterval.amountAllocated, INCENTIVE_FEE);

        currInterval.amountBurned = currInterval.amountAllocated;

        uint256 vyperAmount =
            swapExactInput(address(volt), address(vyper), currInterval.amountAllocated - incentive, 0, _deadline);

        volt.safeTransfer(msg.sender, incentive);

        lastBurnedInterval = lastIntervalNumber;

        vyper.transfer(GENESIS_WALLET, wmul(vyperAmount, uint256(0.03e18)));
        vyper.transfer(LIQUIDITY_BONDING_ADDR, wmul(vyperAmount, uint256(0.07e18)));
        vyper.transfer(address(vyper.treasury()), wmul(vyperAmount, uint256(0.2e18)));

        {
            uint256 toNexus = wmul(vyperAmount, uint256(0.6e18));
            vyper.approve(address(vyper.vyperDragonXNexus()), toNexus);
            vyper.vyperDragonXNexus().distributeVyperForBurning(toNexus);
        }

        burnVyper();

        emit BuyAndBurn(currInterval.amountAllocated - incentive, vyperAmount, msg.sender);
    }

    /// @notice Burns VYPER tokens held by the contract
    function burnVyper() public {
        uint256 vyperToBurn = vyper.balanceOf(address(this));

        totalVyperBurnt = totalVyperBurnt + vyperToBurn;
        vyper.burn(vyperToBurn);
    }

    /**
     * @notice Distributes Volt tokens for burning
     * @param _amount The amount of VOLT tokens
     */
    function distributeVoltForBurning(uint256 _amount) external notAmount0(_amount) {
        ///@dev - If there are some missed intervals update the accumulated allocation before depositing new Volt

        if (Time.blockTs() > startTimeStamp && Time.blockTs() - lastBurnedIntervalStartTimestamp > INTERVAL_TIME) {
            _intervalUpdate();
        }

        volt.safeTransferFrom(msg.sender, address(this), _amount);

        _updateSnapshot();

        toDistribute += _amount;
    }

    //==========================//f
    //=========GETTERS==========//
    //==========================//

    /**
     * @notice Get the day count for a timestamp
     * @param t The timestamp from which to get the timestamp
     */
    function dayCountByT(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cut-off time (2 PM UTC)
        uint32 adjustedTime = t - 14 hours;

        // Calculate the number of days since Unix epoch
        return adjustedTime / 86400;
    }

    /**
     * @notice Gets the end of the day with a cut-off hour of 2 PM UTC
     * @param t The time from where to get the day end
     */
    function getDayEnd(uint32 t) public pure returns (uint32) {
        // Adjust the timestamp to the cutoff time (2 PM UTC)
        uint32 adjustedTime = t - 14 hours;

        // Calculate the number of days since Unix epoch
        uint32 daysSinceEpoch = adjustedTime / 86400;

        // Calculate the start of the next day at 2 PM UTC
        uint32 nextDayStartAt5PM = (daysSinceEpoch + 1) * 86400 + 14 hours;

        // Return the timestamp for 17:00:00 PM UTC of the given day
        return nextDayStartAt5PM;
    }

    //==========================//
    //=========INTERNAL=========//
    //==========================//

    function _calculateIntervals(uint256 timeElapsedSince)
        internal
        view
        returns (uint32 _lastIntervalNumber, uint128 _totalAmountForInterval, uint16 missedIntervals)
    {
        missedIntervals = _calculateMissedIntervals(timeElapsedSince);

        _lastIntervalNumber = lastIntervalNumber + missedIntervals + 1;

        uint32 currentDay = dayCountByT(uint32(block.timestamp));

        uint32 _lastBurnedIntervalTimestamp = lastBurnedIntervalStartTimestamp;

        uint32 dayOfLastInterval =
            _lastBurnedIntervalTimestamp == 0 ? currentDay : dayCountByT(_lastBurnedIntervalTimestamp);

        uint256 _totalVoltDistributed = totalVoltDistributed;

        if (currentDay == dayOfLastInterval) {
            uint128 _amountPerInterval = uint128(_totalVoltDistributed / INTERVALS_PER_DAY);

            uint128 additionalAmount = _amountPerInterval * missedIntervals;

            _totalAmountForInterval = _amountPerInterval + additionalAmount;
        } else {
            uint32 _lastBurnedIntervalStartTimestamp = _lastBurnedIntervalTimestamp;

            uint32 theEndOfTheDay = getDayEnd(_lastBurnedIntervalStartTimestamp);

            uint32 accumulatedIntervalsForTheDay = (theEndOfTheDay - _lastBurnedIntervalStartTimestamp) / INTERVAL_TIME;

            //@note - Calculate the remaining intervals from the last one's day
            _totalAmountForInterval +=
                uint128(_totalVoltDistributed / INTERVALS_PER_DAY) * accumulatedIntervalsForTheDay;

            //@note - Calculate the upcoming intervals with the to distribute shares
            uint128 _intervalsForNewDay = missedIntervals >= accumulatedIntervalsForTheDay
                ? (missedIntervals - accumulatedIntervalsForTheDay) + 1
                : 0;

            _totalAmountForInterval += (_intervalsForNewDay > INTERVALS_PER_DAY)
                ? uint128(toDistribute)
                : uint128(toDistribute / INTERVALS_PER_DAY) * _intervalsForNewDay;
        }

        Interval memory prevInt = intervals[lastIntervalNumber];

        //@note - If the last interval was only updated, but not burned add its allocation to the next one.
        uint128 additional = prevInt.amountBurned == 0 && prevInt.amountAllocated != 0 ? prevInt.amountAllocated : 0;

        if (_totalAmountForInterval + additional > volt.balanceOf(address(this))) {
            _totalAmountForInterval = uint128(volt.balanceOf(address(this)));
        } else {
            _totalAmountForInterval += additional;
        }
    }

    function _calculateMissedIntervals(uint256 timeElapsedSince) internal view returns (uint16 _missedIntervals) {
        _missedIntervals = uint16(timeElapsedSince / INTERVAL_TIME);

        if (lastBurnedIntervalStartTimestamp != 0) _missedIntervals--;
    }

    function _updateSnapshot() internal {
        if (Time.blockTs() < startTimeStamp || lastSnapshot + 24 hours > Time.blockTs()) return;

        if (lastSnapshot != 0 && lastSnapshot + 48 hours <= Time.blockTs()) {
            // If we have missed entire snapshot of interacting with the contract
            toDistribute = 0;
        }

        totalVoltDistributed = toDistribute;

        toDistribute = 0;

        uint32 timeElapsed = Time.blockTs() - startTimeStamp;

        uint32 snapshots = timeElapsed / 24 hours;

        lastSnapshot = startTimeStamp + (snapshots * 24 hours);
    }

    /// @notice Updates the contract state for intervals
    function _intervalUpdate() private {
        if (Time.blockTs() < startTimeStamp) revert NotStartedYet();

        if (lastSnapshot == 0) _updateSnapshot();

        (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            bool updated
        ) = getCurrentInterval();

        if (updated) {
            lastBurnedIntervalStartTimestamp = _lastIntervalStartTimestamp + (uint32(_missedIntervals) * INTERVAL_TIME);
            intervals[_lastInterval] = Interval({amountAllocated: _amountAllocated, amountBurned: 0});
            lastIntervalNumber = _lastInterval;
        }
    }

    function getCurrentInterval()
        public
        view
        returns (
            uint32 _lastInterval,
            uint128 _amountAllocated,
            uint16 _missedIntervals,
            uint32 _lastIntervalStartTimestamp,
            bool updated
        )
    {
        if (startTimeStamp > Time.blockTs()) return (0, 0, 0, 0, false);

        uint32 startPoint = lastBurnedIntervalStartTimestamp == 0 ? startTimeStamp : lastBurnedIntervalStartTimestamp;

        uint32 timeElapseSinceLastBurn = Time.blockTs() - startPoint;

        if (lastBurnedIntervalStartTimestamp == 0 || timeElapseSinceLastBurn > INTERVAL_TIME) {
            (_lastInterval, _amountAllocated, _missedIntervals) = _calculateIntervals(timeElapseSinceLastBurn);
            _lastIntervalStartTimestamp = startPoint;
            _missedIntervals += timeElapseSinceLastBurn > INTERVAL_TIME && lastBurnedIntervalStartTimestamp != 0 ? 1 : 0;
            updated = true;
        }
    }
}

File 10 of 57 : VyperTreasury.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

/* == UTILS == */
import {wmul} from "./utils/Math.sol";

/* == OZ == */
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

import {Vyper} from "@core/Vyper.sol";

/* == CONST == */
import "./const/Constants.sol";

/**
 * @title VyperTreasury
 */
contract VyperTreasury {
    using SafeERC20 for Vyper;

    uint64 public constant DISTRIBUTION = 0.2e18; // 20%

    /* === IMMUTABLES === */
    Vyper public immutable vyper;
    address public immutable auction;

    /* === ERRORS === */
    error VyperTreasury__OnlyAuction();

    /* === CONSTRUCTOR === */
    constructor(address _auction, address _vyper) {
        auction = _auction;
        vyper = Vyper(_vyper);
    }

    /* === MODIFIERS === */

    modifier onlyAuction() {
        _onlyAuction();
        _;
    }

    /* === EXTERNAL === */
    function emitForAuction() external onlyAuction returns (uint256 emitted) {
        uint256 balanceOf = vyper.balanceOf(address(this));

        emitted = wmul(balanceOf, DISTRIBUTION);

        vyper.safeTransfer(msg.sender, emitted);
    }

    /* === INTERNAL === */
    function _onlyAuction() internal view {
        if (msg.sender != auction) revert VyperTreasury__OnlyAuction();
    }
}

File 11 of 57 : SwapActions.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

/* == OZ == */
import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol";

/* LIBS == */
import {PoolAddress} from "@libs/PoolAddress.sol";
import {OracleLibrary} from "@libs/OracleLibrary.sol";

/* == UTILS == */
import {wmul, min} from "@utils/Math.sol";
import {Errors} from "@utils/Errors.sol";

/* == UNIV3 == */
import {TickMath} from "@uniswap/v3-core/contracts/libraries/TickMath.sol";

/* == INTERFACES */
import {ISwapRouter} from "@uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol";
// import {ISwapRouter} from "../../test/mocks/ISwapRouter.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";

/* == CONST == */
import "@const/Constants.sol";

/// @notice Struct representing slippage settings for a pool.
struct Slippage {
    uint224 slippage; //< Slippage in WAD (scaled by 1e18)
    uint32 twapLookback; //< TWAP lookback period in minutes (used as seconds in code)
}

struct SwapActionParams {
    address _v3Router;
    address _v3Factory;
    address _owner;
}

/**
 * @title SwapActions
 * @notice A contract that facilitates token swapping on Uniswap V3 with slippage management.
 * @dev Uses Uniswap V3 Router and Oracle libraries for swap actions and TWAP calculations.
 */
contract SwapActions is Ownable, Errors {
    //==========IMMUTABLE==========//

    /// @notice Address of the Uniswap V3 Router
    address public immutable uniswapV3Router;

    /// @notice Address of the Uniswap V3 Factory
    address public immutable v3Factory;

    //==========STATE==========//

    /// @notice Address of the admin responsible for managing slippage
    address public slippageAdmin;

    /// @notice Mapping of pool addresses to their respective slippage settings
    mapping(address pool => Slippage) public slippageConfigs;

    //==========ERRORS==========//

    /// @notice Thrown when an invalid slippage is provided
    error SwapActions__InvalidSlippage();

    /// @notice Thrown when a non-admin/non-owner attempts to perform slippage actions
    error SwapActions__OnlySlippageAdmin();

    //==========EVENTS===========//

    event SlippageAdminChanged(address indexed oldAdmin, address indexed newAdmin);
    event SlippageConfigChanged(address indexed pool, uint224 indexed newSlippage, uint32 indexed newLookback);

    //========MODIFIERS==========//

    /**
     * @dev Ensures the caller is either the slippage admin or the contract owner.
     */
    modifier onlySlippageAdminOrOwner() {
        _onlySlippageAdminOrOwner();
        _;
    }

    //========CONSTRUCTOR==========//

    /**
     * @param params The aprams to initialize the SwapAcitons contract.
     */
    constructor(SwapActionParams memory params) Ownable(params._owner) {
        uniswapV3Router = params._v3Router;
        v3Factory = params._v3Factory;
        slippageAdmin = params._owner;
    }

    //========EXTERNAL/PUBLIC==========//

    /**
     * @notice Change the address of the slippage admin.
     * @param _new New slippage admin address.
     * @dev Only callable by the contract owner.
     */
    function changeSlippageAdmin(address _new) external notAddress0(_new) onlyOwner {
        emit SlippageAdminChanged(slippageAdmin, _new);

        slippageAdmin = _new;
    }

    /**
     * @notice Change slippage configuration for a specific pool.
     * @param pool Address of the Uniswap V3 pool.
     * @param _newSlippage New slippage value (in WAD).
     * @param _newLookBack New TWAP lookback period (in minutes).
     * @dev Only callable by the slippage admin or the owner.
     */
    function changeSlippageConfig(address pool, uint224 _newSlippage, uint32 _newLookBack)
        external
        notAmount0(_newLookBack)
        onlySlippageAdminOrOwner
    {
        require(_newSlippage <= WAD, SwapActions__InvalidSlippage());

        emit SlippageConfigChanged(pool, _newSlippage, _newLookBack);

        slippageConfigs[pool] = Slippage({slippage: _newSlippage, twapLookback: _newLookBack});
    }

    //========INTERNAL/PRIVATE==========//

    /**
     * @notice Perform an exact input swap on Uniswap V3.
     * @param tokenIn Address of the input token.
     * @param tokenOut Address of the output token.
     * @param tokenInAmount Amount of the input token to swap.
     * @param minAmountOut Optional minimum amount out, if it's 0 it uses the twap
     * @param deadline Deadline timestamp for the swap.
     * @return amountReceived Amount of the output token received.
     * @dev The function uses the TWAP (Time-Weighted Average Price) to ensure the swap is performed within slippage tolerance.
     */
    function swapExactInput(
        address tokenIn,
        address tokenOut,
        uint256 tokenInAmount,
        uint256 minAmountOut,
        uint32 deadline
    ) internal returns (uint256 amountReceived) {
        IERC20(tokenIn).approve(uniswapV3Router, tokenInAmount);

        bytes memory path = abi.encodePacked(tokenIn, POOL_FEE, tokenOut);

        (uint256 twapAmount, uint224 slippage) = getTwapAmount(tokenIn, tokenOut, tokenInAmount);

        uint256 minAmount = minAmountOut == 0 ? wmul(twapAmount, slippage) : minAmountOut;

        ISwapRouter.ExactInputParams memory params = ISwapRouter.ExactInputParams({
            path: path,
            recipient: address(this),
            deadline: deadline,
            amountIn: tokenInAmount,
            amountOutMinimum: minAmount
        });

        return ISwapRouter(uniswapV3Router).exactInput(params);
    }

    /**
     * @notice Get the TWAP (Time-Weighted Average Price) and slippage for a given token pair.
     * @param tokenIn Address of the input token.
     * @param tokenOut Address of the output token.
     * @param amount Amount of the input token.
     * @return twapAmount The TWAP amount of the output token for the given input.
     * @return slippage The slippage tolerance for the pool.
     */
    function getTwapAmount(address tokenIn, address tokenOut, uint256 amount)
        public
        view
        returns (uint256 twapAmount, uint224 slippage)
    {
        address poolAddress = PoolAddress.computeAddress(v3Factory, PoolAddress.getPoolKey(tokenIn, tokenOut, POOL_FEE));

        Slippage memory slippageConfig = slippageConfigs[poolAddress];

        if (slippageConfig.twapLookback == 0 && slippageConfig.slippage == 0) {
            slippageConfig = Slippage({twapLookback: 15, slippage: WAD - 0.2e18});
        }

        uint32 secondsAgo = slippageConfig.twapLookback * 60;
        uint32 oldestObservation = OracleLibrary.getOldestObservationSecondsAgo(poolAddress);
        if (oldestObservation < secondsAgo) secondsAgo = oldestObservation;

        (int24 arithmeticMeanTick,) = OracleLibrary.consult(poolAddress, secondsAgo);
        uint160 sqrtPriceX96 = TickMath.getSqrtRatioAtTick(arithmeticMeanTick);

        slippage = slippageConfig.slippage;
        twapAmount = OracleLibrary.getQuoteForSqrtRatioX96(sqrtPriceX96, amount, tokenIn, tokenOut);
    }

    function computePoolAddress(address token0, address token1) public view returns (address pool) {
        pool = PoolAddress.computeAddress(v3Factory, PoolAddress.getPoolKey(token0, token1, POOL_FEE));
    }

    /// @dev Internal function to check if the caller is the slippage admin or contract owner.
    function _onlySlippageAdminOrOwner() private view {
        require(msg.sender == slippageAdmin || msg.sender == owner(), SwapActions__OnlySlippageAdmin());
    }
}

File 12 of 57 : IUniswapV3Pool.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

import {IUniswapV3PoolImmutables} from './pool/IUniswapV3PoolImmutables.sol';
import {IUniswapV3PoolState} from './pool/IUniswapV3PoolState.sol';
import {IUniswapV3PoolDerivedState} from './pool/IUniswapV3PoolDerivedState.sol';
import {IUniswapV3PoolActions} from './pool/IUniswapV3PoolActions.sol';
import {IUniswapV3PoolOwnerActions} from './pool/IUniswapV3PoolOwnerActions.sol';
import {IUniswapV3PoolErrors} from './pool/IUniswapV3PoolErrors.sol';
import {IUniswapV3PoolEvents} from './pool/IUniswapV3PoolEvents.sol';

/// @title The interface for a Uniswap V3 Pool
/// @notice A Uniswap pool facilitates swapping and automated market making between any two assets that strictly conform
/// to the ERC20 specification
/// @dev The pool interface is broken up into many smaller pieces
interface IUniswapV3Pool is
    IUniswapV3PoolImmutables,
    IUniswapV3PoolState,
    IUniswapV3PoolDerivedState,
    IUniswapV3PoolActions,
    IUniswapV3PoolOwnerActions,
    IUniswapV3PoolErrors,
    IUniswapV3PoolEvents
{

}

File 13 of 57 : INonfungiblePositionManager.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Metadata.sol';
import '@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol';

import './IPoolInitializer.sol';
import './IERC721Permit.sol';
import './IPeripheryPayments.sol';
import './IPeripheryImmutableState.sol';
import '../libraries/PoolAddress.sol';

/// @title Non-fungible token for positions
/// @notice Wraps Uniswap V3 positions in a non-fungible token interface which allows for them to be transferred
/// and authorized.
interface INonfungiblePositionManager is
    IPoolInitializer,
    IPeripheryPayments,
    IPeripheryImmutableState,
    IERC721Metadata,
    IERC721Enumerable,
    IERC721Permit
{
    /// @notice Emitted when liquidity is increased for a position NFT
    /// @dev Also emitted when a token is minted
    /// @param tokenId The ID of the token for which liquidity was increased
    /// @param liquidity The amount by which liquidity for the NFT position was increased
    /// @param amount0 The amount of token0 that was paid for the increase in liquidity
    /// @param amount1 The amount of token1 that was paid for the increase in liquidity
    event IncreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
    /// @notice Emitted when liquidity is decreased for a position NFT
    /// @param tokenId The ID of the token for which liquidity was decreased
    /// @param liquidity The amount by which liquidity for the NFT position was decreased
    /// @param amount0 The amount of token0 that was accounted for the decrease in liquidity
    /// @param amount1 The amount of token1 that was accounted for the decrease in liquidity
    event DecreaseLiquidity(uint256 indexed tokenId, uint128 liquidity, uint256 amount0, uint256 amount1);
    /// @notice Emitted when tokens are collected for a position NFT
    /// @dev The amounts reported may not be exactly equivalent to the amounts transferred, due to rounding behavior
    /// @param tokenId The ID of the token for which underlying tokens were collected
    /// @param recipient The address of the account that received the collected tokens
    /// @param amount0 The amount of token0 owed to the position that was collected
    /// @param amount1 The amount of token1 owed to the position that was collected
    event Collect(uint256 indexed tokenId, address recipient, uint256 amount0, uint256 amount1);

    /// @notice Returns the position information associated with a given token ID.
    /// @dev Throws if the token ID is not valid.
    /// @param tokenId The ID of the token that represents the position
    /// @return nonce The nonce for permits
    /// @return operator The address that is approved for spending
    /// @return token0 The address of the token0 for a specific pool
    /// @return token1 The address of the token1 for a specific pool
    /// @return fee The fee associated with the pool
    /// @return tickLower The lower end of the tick range for the position
    /// @return tickUpper The higher end of the tick range for the position
    /// @return liquidity The liquidity of the position
    /// @return feeGrowthInside0LastX128 The fee growth of token0 as of the last action on the individual position
    /// @return feeGrowthInside1LastX128 The fee growth of token1 as of the last action on the individual position
    /// @return tokensOwed0 The uncollected amount of token0 owed to the position as of the last computation
    /// @return tokensOwed1 The uncollected amount of token1 owed to the position as of the last computation
    function positions(uint256 tokenId)
        external
        view
        returns (
            uint96 nonce,
            address operator,
            address token0,
            address token1,
            uint24 fee,
            int24 tickLower,
            int24 tickUpper,
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    struct MintParams {
        address token0;
        address token1;
        uint24 fee;
        int24 tickLower;
        int24 tickUpper;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        address recipient;
        uint256 deadline;
    }

    /// @notice Creates a new position wrapped in a NFT
    /// @dev Call this when the pool does exist and is initialized. Note that if the pool is created but not initialized
    /// a method does not exist, i.e. the pool is assumed to be initialized.
    /// @param params The params necessary to mint a position, encoded as `MintParams` in calldata
    /// @return tokenId The ID of the token that represents the minted position
    /// @return liquidity The amount of liquidity for this position
    /// @return amount0 The amount of token0
    /// @return amount1 The amount of token1
    function mint(MintParams calldata params)
        external
        payable
        returns (
            uint256 tokenId,
            uint128 liquidity,
            uint256 amount0,
            uint256 amount1
        );

    struct IncreaseLiquidityParams {
        uint256 tokenId;
        uint256 amount0Desired;
        uint256 amount1Desired;
        uint256 amount0Min;
        uint256 amount1Min;
        uint256 deadline;
    }

    /// @notice Increases the amount of liquidity in a position, with tokens paid by the `msg.sender`
    /// @param params tokenId The ID of the token for which liquidity is being increased,
    /// amount0Desired The desired amount of token0 to be spent,
    /// amount1Desired The desired amount of token1 to be spent,
    /// amount0Min The minimum amount of token0 to spend, which serves as a slippage check,
    /// amount1Min The minimum amount of token1 to spend, which serves as a slippage check,
    /// deadline The time by which the transaction must be included to effect the change
    /// @return liquidity The new liquidity amount as a result of the increase
    /// @return amount0 The amount of token0 to acheive resulting liquidity
    /// @return amount1 The amount of token1 to acheive resulting liquidity
    function increaseLiquidity(IncreaseLiquidityParams calldata params)
        external
        payable
        returns (
            uint128 liquidity,
            uint256 amount0,
            uint256 amount1
        );

    struct DecreaseLiquidityParams {
        uint256 tokenId;
        uint128 liquidity;
        uint256 amount0Min;
        uint256 amount1Min;
        uint256 deadline;
    }

    /// @notice Decreases the amount of liquidity in a position and accounts it to the position
    /// @param params tokenId The ID of the token for which liquidity is being decreased,
    /// amount The amount by which liquidity will be decreased,
    /// amount0Min The minimum amount of token0 that should be accounted for the burned liquidity,
    /// amount1Min The minimum amount of token1 that should be accounted for the burned liquidity,
    /// deadline The time by which the transaction must be included to effect the change
    /// @return amount0 The amount of token0 accounted to the position's tokens owed
    /// @return amount1 The amount of token1 accounted to the position's tokens owed
    function decreaseLiquidity(DecreaseLiquidityParams calldata params)
        external
        payable
        returns (uint256 amount0, uint256 amount1);

    struct CollectParams {
        uint256 tokenId;
        address recipient;
        uint128 amount0Max;
        uint128 amount1Max;
    }

    /// @notice Collects up to a maximum amount of fees owed to a specific position to the recipient
    /// @param params tokenId The ID of the NFT for which tokens are being collected,
    /// recipient The account that should receive the tokens,
    /// amount0Max The maximum amount of token0 to collect,
    /// amount1Max The maximum amount of token1 to collect
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(CollectParams calldata params) external payable returns (uint256 amount0, uint256 amount1);

    /// @notice Burns a token ID, which deletes it from the NFT contract. The token must have 0 liquidity and all tokens
    /// must be collected first.
    /// @param tokenId The ID of the token that is being burned
    function burn(uint256 tokenId) external payable;
}

File 14 of 57 : IQuoter.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

/// @title Quoter Interface
/// @notice Supports quoting the calculated amounts from exact input or exact output swaps
/// @dev These functions are not marked view because they rely on calling non-view functions and reverting
/// to compute the result. They are also not gas efficient and should not be called on-chain.
interface IQuoter {
    /// @notice Returns the amount out received for a given exact input swap without executing the swap
    /// @param path The path of the swap, i.e. each token pair and the pool fee
    /// @param amountIn The amount of the first token to swap
    /// @return amountOut The amount of the last token that would be received
    function quoteExactInput(bytes memory path, uint256 amountIn) external returns (uint256 amountOut);

    /// @notice Returns the amount out received for a given exact input but for a swap of a single pool
    /// @param tokenIn The token being swapped in
    /// @param tokenOut The token being swapped out
    /// @param fee The fee of the token pool to consider for the pair
    /// @param amountIn The desired input amount
    /// @param sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
    /// @return amountOut The amount of `tokenOut` that would be received
    function quoteExactInputSingle(
        address tokenIn,
        address tokenOut,
        uint24 fee,
        uint256 amountIn,
        uint160 sqrtPriceLimitX96
    ) external returns (uint256 amountOut);

    /// @notice Returns the amount in required for a given exact output swap without executing the swap
    /// @param path The path of the swap, i.e. each token pair and the pool fee. Path must be provided in reverse order
    /// @param amountOut The amount of the last token to receive
    /// @return amountIn The amount of first token required to be paid
    function quoteExactOutput(bytes memory path, uint256 amountOut) external returns (uint256 amountIn);

    /// @notice Returns the amount in required to receive the given exact output amount but for a swap of a single pool
    /// @param tokenIn The token being swapped in
    /// @param tokenOut The token being swapped out
    /// @param fee The fee of the token pool to consider for the pair
    /// @param amountOut The desired output amount
    /// @param sqrtPriceLimitX96 The price limit of the pool that cannot be exceeded by the swap
    /// @return amountIn The amount required as the input for the swap in order to receive `amountOut`
    function quoteExactOutputSingle(
        address tokenIn,
        address tokenOut,
        uint24 fee,
        uint256 amountOut,
        uint160 sqrtPriceLimitX96
    ) external returns (uint256 amountIn);
}

File 15 of 57 : PoolAddress.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
    bytes32 internal constant POOL_INIT_CODE_HASH = 0xa598dd2fba360510c5a8f02f44423a4468e902df5857dbce3ca162a43a3a31ff;

    /// @notice The identifying key of the pool
    struct PoolKey {
        address token0;
        address token1;
        uint24 fee;
    }

    /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
    /// @param tokenA The first token of a pool, unsorted
    /// @param tokenB The second token of a pool, unsorted
    /// @param fee The fee level of the pool
    /// @return Poolkey The pool details with ordered token0 and token1 assignments
    function getPoolKey(
        address tokenA,
        address tokenB,
        uint24 fee
    ) internal pure returns (PoolKey memory) {
        if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
        return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
    }

    /// @notice Deterministically computes the pool address given the factory and PoolKey
    /// @param factory The Uniswap V3 factory contract address
    /// @param key The PoolKey
    /// @return pool The contract address of the V3 pool
    function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
        require(key.token0 < key.token1);
        pool = address(
            uint160(
                uint256(
                    keccak256(
                        abi.encodePacked(
                            hex'ff',
                            factory,
                            keccak256(abi.encode(key.token0, key.token1, key.fee)),
                            POOL_INIT_CODE_HASH
                        )
                    )
                )
            )
        );
    }
}

File 16 of 57 : OracleLibrary.sol
// SPDX-License-Identifier: UNLICENSED
pragma solidity 0.8.27;

// Uniswap
import {IUniswapV3Pool} from "@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";

// OpenZeppelin
import {Math} from "@openzeppelin/contracts/utils/math/Math.sol";

/**
 * @notice Adapted Uniswap V3 OracleLibrary computation to be compliant with Solidity 0.8.x and later.
 *
 * Documentation for Auditors:
 *
 * Solidity Version: Updated the Solidity version pragma to ^0.8.0. This change ensures compatibility
 * with Solidity version 0.8.x.
 *
 * Safe Arithmetic Operations: Solidity 0.8.x automatically checks for arithmetic overflows/underflows.
 * Therefore, the code no longer needs to use SafeMath library (or similar) for basic arithmetic operations.
 * This change simplifies the code and reduces the potential for errors related to manual overflow/underflow checking.
 *
 * Overflow/Underflow: With the introduction of automatic overflow/underflow checks in Solidity 0.8.x, the code is inherently
 * safer and less prone to certain types of arithmetic errors.
 *
 * Removal of SafeMath Library: Since Solidity 0.8.x handles arithmetic operations safely, the use of SafeMath library
 * is omitted in this update.
 *
 * Git-style diff for the `consult` function:
 *
 * ```diff
 * function consult(address pool, uint32 secondsAgo)
 *     internal
 *     view
 *     returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
 * {
 *     require(secondsAgo != 0, 'BP');
 *
 *     uint32[] memory secondsAgos = new uint32[](2);
 *     secondsAgos[0] = secondsAgo;
 *     secondsAgos[1] = 0;
 *
 *     (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s) =
 *         IUniswapV3Pool(pool).observe(secondsAgos);
 *
 *     int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
 *     uint160 secondsPerLiquidityCumulativesDelta =
 *         secondsPerLiquidityCumulativeX128s[1] - secondsPerLiquidityCumulativeX128s[0];
 *
 * -   arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgo);
 * +   int56 secondsAgoInt56 = int56(uint56(secondsAgo));
 * +   arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56);
 *     // Always round to negative infinity
 * -   if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgo != 0)) arithmeticMeanTick--;
 * +   if (tickCumulativesDelta < 0 && (tickCumulativesDelta % secondsAgoInt56 != 0)) arithmeticMeanTick--;
 *
 * -   uint192 secondsAgoX160 = uint192(secondsAgo) * type(uint160).max;
 * +   uint192 secondsAgoUint192 = uint192(secondsAgo);
 * +   uint192 secondsAgoX160 = secondsAgoUint192 * type(uint160).max;
 *     harmonicMeanLiquidity = uint128(secondsAgoX160 / (uint192(secondsPerLiquidityCumulativesDelta) << 32));
 * }
 * ```
 */

/// @title Oracle library
/// @notice Provides functions to integrate with V3 pool oracle
library OracleLibrary {
    /// @notice Calculates time-weighted means of tick and liquidity for a given Uniswap V3 pool
    /// @param pool Address of the pool that we want to observe
    /// @param secondsAgo Number of seconds in the past from which to calculate the time-weighted means
    /// @return arithmeticMeanTick The arithmetic mean tick from (block.timestamp - secondsAgo) to block.timestamp
    /// @return harmonicMeanLiquidity The harmonic mean liquidity from (block.timestamp - secondsAgo) to block.timestamp
    function consult(
        address pool,
        uint32 secondsAgo
    )
        internal
        view
        returns (int24 arithmeticMeanTick, uint128 harmonicMeanLiquidity)
    {
        require(secondsAgo != 0, "BP");

        uint32[] memory secondsAgos = new uint32[](2);
        secondsAgos[0] = secondsAgo;
        secondsAgos[1] = 0;

        (
            int56[] memory tickCumulatives,
            uint160[] memory secondsPerLiquidityCumulativeX128s
        ) = IUniswapV3Pool(pool).observe(secondsAgos);

        int56 tickCumulativesDelta = tickCumulatives[1] - tickCumulatives[0];
        uint160 secondsPerLiquidityCumulativesDelta = secondsPerLiquidityCumulativeX128s[
                1
            ] - secondsPerLiquidityCumulativeX128s[0];

        // Safe casting of secondsAgo to int56 for division
        int56 secondsAgoInt56 = int56(uint56(secondsAgo));
        arithmeticMeanTick = int24(tickCumulativesDelta / secondsAgoInt56);
        // Always round to negative infinity
        if (
            tickCumulativesDelta < 0 &&
            (tickCumulativesDelta % secondsAgoInt56 != 0)
        ) arithmeticMeanTick--;

        // Safe casting of secondsAgo to uint192 for multiplication
        uint192 secondsAgoUint192 = uint192(secondsAgo);
        harmonicMeanLiquidity = uint128(
            (secondsAgoUint192 * uint192(type(uint160).max)) /
                (uint192(secondsPerLiquidityCumulativesDelta) << 32)
        );
    }

    /// @notice Given a pool, it returns the number of seconds ago of the oldest stored observation
    /// @param pool Address of Uniswap V3 pool that we want to observe
    /// @return secondsAgo The number of seconds ago of the oldest observation stored for the pool
    function getOldestObservationSecondsAgo(
        address pool
    ) internal view returns (uint32 secondsAgo) {
        (
            ,
            ,
            uint16 observationIndex,
            uint16 observationCardinality,
            ,
            ,

        ) = IUniswapV3Pool(pool).slot0();
        require(observationCardinality > 0, "NI");

        (uint32 observationTimestamp, , , bool initialized) = IUniswapV3Pool(
            pool
        ).observations((observationIndex + 1) % observationCardinality);

        // The next index might not be initialized if the cardinality is in the process of increasing
        // In this case the oldest observation is always in index 0
        if (!initialized) {
            (observationTimestamp, , , ) = IUniswapV3Pool(pool).observations(0);
        }

        secondsAgo = uint32(block.timestamp) - observationTimestamp;
    }

    /// @notice Given a tick and a token amount, calculates the amount of token received in exchange
    /// a slightly modified version of the UniSwap library getQuoteAtTick to accept a sqrtRatioX96 as input parameter
    /// @param sqrtRatioX96 The sqrt ration
    /// @param baseAmount Amount of token to be converted
    /// @param baseToken Address of an ERC20 token contract used as the baseAmount denomination
    /// @param quoteToken Address of an ERC20 token contract used as the quoteAmount denomination
    /// @return quoteAmount Amount of quoteToken received for baseAmount of baseToken
    function getQuoteForSqrtRatioX96(
        uint160 sqrtRatioX96,
        uint256 baseAmount,
        address baseToken,
        address quoteToken
    ) internal pure returns (uint256 quoteAmount) {
        // Calculate quoteAmount with better precision if it doesn't overflow when multiplied by itself
        if (sqrtRatioX96 <= type(uint128).max) {
            uint256 ratioX192 = uint256(sqrtRatioX96) ** 2;
            quoteAmount = baseToken < quoteToken
                ? Math.mulDiv(ratioX192, baseAmount, 1 << 192)
                : Math.mulDiv(1 << 192, baseAmount, ratioX192);
        } else {
            uint256 ratioX128 = Math.mulDiv(
                sqrtRatioX96,
                sqrtRatioX96,
                1 << 64
            );
            quoteAmount = baseToken < quoteToken
                ? Math.mulDiv(ratioX128, baseAmount, 1 << 128)
                : Math.mulDiv(1 << 128, baseAmount, ratioX128);
        }
    }
}

File 17 of 57 : Math.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

/* solhint-disable func-visibility, no-inline-assembly */

error Math__toInt256_overflow();
error Math__toUint64_overflow();
error Math__add_overflow_signed();
error Math__sub_overflow_signed();
error Math__mul_overflow_signed();
error Math__mul_overflow();
error Math__div_overflow();

uint256 constant WAD = 1e18;

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L367
function toInt256(uint256 x) pure returns (int256) {
    if (x >= 1 << 255) revert Math__toInt256_overflow();
    return int256(x);
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/SafeCastLib.sol#L53
function toUint64(uint256 x) pure returns (uint64) {
    if (x >= 1 << 64) revert Math__toUint64_overflow();
    return uint64(x);
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L602
function abs(int256 x) pure returns (uint256 z) {
    assembly ("memory-safe") {
        let mask := sub(0, shr(255, x))
        z := xor(mask, add(mask, x))
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L620
function min(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := xor(x, mul(xor(x, y), lt(y, x)))
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L628
function min(int256 x, int256 y) pure returns (int256 z) {
    assembly ("memory-safe") {
        z := xor(x, mul(xor(x, y), slt(y, x)))
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L636
function max(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := xor(x, mul(xor(x, y), gt(y, x)))
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L74
function add(uint256 x, int256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := add(x, y)
    }
    if ((y > 0 && z < x) || (y < 0 && z > x)) {
        revert Math__add_overflow_signed();
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L79
function sub(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        z := sub(x, y)
    }
    if ((y > 0 && z > x) || (y < 0 && z < x)) {
        revert Math__sub_overflow_signed();
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/vat.sol#L84
function mul(uint256 x, int256 y) pure returns (int256 z) {
    unchecked {
        z = int256(x) * y;
        if (int256(x) < 0 || (y != 0 && z / y != int256(x))) {
            revert Math__mul_overflow_signed();
        }
    }
}

/// @dev Equivalent to `(x * y) / WAD` rounded down.
/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L54
function wmul(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
        if mul(y, gt(x, div(not(0), y))) {
            // Store the function selector of `Math__mul_overflow()`.
            mstore(0x00, 0xc4c5d7f5)

            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := div(mul(x, y), WAD)
    }
}

function wmul(uint256 x, int256 y) pure returns (int256 z) {
    unchecked {
        z = mul(x, y) / int256(WAD);
    }
}

/// @dev Equivalent to `(x * y) / WAD` rounded up.
/// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L69C22-L69C22
function wmulUp(uint256 x, uint256 y) pure returns (uint256 z) {
    /// @solidity memory-safe-assembly
    assembly {
        // Equivalent to `require(y == 0 || x <= type(uint256).max / y)`.
        if mul(y, gt(x, div(not(0), y))) {
            // Store the function selector of `Math__mul_overflow()`.
            mstore(0x00, 0xc4c5d7f5)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := add(iszero(iszero(mod(mul(x, y), WAD))), div(mul(x, y), WAD))
    }
}

/// @dev Equivalent to `(x * WAD) / y` rounded down.
/// @dev Taken from https://github.com/Vectorized/solady/blob/6d706e05ef43cbed234c648f83c55f3a4bb0a520/src/utils/FixedPointMathLib.sol#L84
function wdiv(uint256 x, uint256 y) pure returns (uint256 z) {
    assembly ("memory-safe") {
        // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
        if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
            // Store the function selector of `Math__div_overflow()`.
            mstore(0x00, 0xbcbede65)

            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := div(mul(x, WAD), y)
    }
}

/// @dev Equivalent to `(x * WAD) / y` rounded up.
/// @dev Taken from https://github.com/Vectorized/solady/blob/969a78905274b32cdb7907398c443f7ea212e4f4/src/utils/FixedPointMathLib.sol#L99
function wdivUp(uint256 x, uint256 y) pure returns (uint256 z) {
    /// @solidity memory-safe-assembly
    assembly {
        // Equivalent to `require(y != 0 && (WAD == 0 || x <= type(uint256).max / WAD))`.
        if iszero(mul(y, iszero(mul(WAD, gt(x, div(not(0), WAD)))))) {
            // Store the function selector of `Math__div_overflow()`.
            mstore(0x00, 0xbcbede65)
            // Revert with (offset, size).
            revert(0x1c, 0x04)
        }
        z := add(iszero(iszero(mod(mul(x, WAD), y))), div(mul(x, WAD), y))
    }
}

/// @dev Taken from https://github.com/makerdao/dss/blob/fa4f6630afb0624d04a003e920b0d71a00331d98/src/jug.sol#L62
function wpow(uint256 x, uint256 n, uint256 b) pure returns (uint256 z) {
    unchecked {
        assembly ("memory-safe") {
            switch n
            case 0 {
                z := b
            }
            default {
                switch x
                case 0 {
                    z := 0
                }
                default {
                    switch mod(n, 2)
                    case 0 {
                        z := b
                    }
                    default {
                        z := x
                    }
                    let half := div(b, 2) // for rounding.
                    for {
                        n := div(n, 2)
                    } n {
                        n := div(n, 2)
                    } {
                        let xx := mul(x, x)
                        if shr(128, x) {
                            revert(0, 0)
                        }
                        let xxRound := add(xx, half)
                        if lt(xxRound, xx) {
                            revert(0, 0)
                        }
                        x := div(xxRound, b)
                        if mod(n, 2) {
                            let zx := mul(z, x)
                            if and(
                                iszero(iszero(x)),
                                iszero(eq(div(zx, x), z))
                            ) {
                                revert(0, 0)
                            }
                            let zxRound := add(zx, half)
                            if lt(zxRound, zx) {
                                revert(0, 0)
                            }
                            z := div(zxRound, b)
                        }
                    }
                }
            }
        }
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L110
/// @dev Equivalent to `x` to the power of `y`.
/// because `x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y)`.
function wpow(int256 x, int256 y) pure returns (int256) {
    // Using `ln(x)` means `x` must be greater than 0.
    return wexp((wln(x) * y) / int256(WAD));
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L116
/// @dev Returns `exp(x)`, denominated in `WAD`.
function wexp(int256 x) pure returns (int256 r) {
    unchecked {
        // When the result is < 0.5 we return zero. This happens when
        // x <= floor(log(0.5e18) * 1e18) ~ -42e18
        if (x <= -42139678854452767551) return r;

        /// @solidity memory-safe-assembly
        assembly {
            // When the result is > (2**255 - 1) / 1e18 we can not represent it as an
            // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135.
            if iszero(slt(x, 135305999368893231589)) {
                mstore(0x00, 0xa37bfec9) // `ExpOverflow()`.
                revert(0x1c, 0x04)
            }
        }

        // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96
        // for more intermediate precision and a binary basis. This base conversion
        // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78.
        x = (x << 78) / 5 ** 18;

        // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers
        // of two such that exp(x) = exp(x') * 2**k, where k is an integer.
        // Solving this gives k = round(x / log(2)) and x' = x - k * log(2).
        int256 k = ((x << 96) / 54916777467707473351141471128 + 2 ** 95) >> 96;
        x = x - k * 54916777467707473351141471128;

        // k is in the range [-61, 195].

        // Evaluate using a (6, 7)-term rational approximation.
        // p is made monic, we'll multiply by a scale factor later.
        int256 y = x + 1346386616545796478920950773328;
        y = ((y * x) >> 96) + 57155421227552351082224309758442;
        int256 p = y + x - 94201549194550492254356042504812;
        p = ((p * y) >> 96) + 28719021644029726153956944680412240;
        p = p * x + (4385272521454847904659076985693276 << 96);

        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
        int256 q = x - 2855989394907223263936484059900;
        q = ((q * x) >> 96) + 50020603652535783019961831881945;
        q = ((q * x) >> 96) - 533845033583426703283633433725380;
        q = ((q * x) >> 96) + 3604857256930695427073651918091429;
        q = ((q * x) >> 96) - 14423608567350463180887372962807573;
        q = ((q * x) >> 96) + 26449188498355588339934803723976023;

        /// @solidity memory-safe-assembly
        assembly {
            // Div in assembly because solidity adds a zero check despite the unchecked.
            // The q polynomial won't have zeros in the domain as all its roots are complex.
            // No scaling is necessary because p is already 2**96 too large.
            r := sdiv(p, q)
        }

        // r should be in the range (0.09, 0.25) * 2**96.

        // We now need to multiply r by:
        // * the scale factor s = ~6.031367120.
        // * the 2**k factor from the range reduction.
        // * the 1e18 / 2**96 factor for base conversion.
        // We do this all at once, with an intermediate result in 2**213
        // basis, so the final right shift is always by a positive amount.
        r = int256(
            (uint256(r) * 3822833074963236453042738258902158003155416615667) >>
                uint256(195 - k)
        );
    }
}

/// @dev Taken from https://github.com/Vectorized/solady/blob/cde0a5fb594da8655ba6bfcdc2e40a7c870c0cc0/src/utils/FixedPointMathLib.sol#L184
/// @dev Returns `ln(x)`, denominated in `WAD`.
function wln(int256 x) pure returns (int256 r) {
    unchecked {
        /// @solidity memory-safe-assembly
        assembly {
            if iszero(sgt(x, 0)) {
                mstore(0x00, 0x1615e638) // `LnWadUndefined()`.
                revert(0x1c, 0x04)
            }
        }

        // We want to convert x from 10**18 fixed point to 2**96 fixed point.
        // We do this by multiplying by 2**96 / 10**18. But since
        // ln(x * C) = ln(x) + ln(C), we can simply do nothing here
        // and add ln(2**96 / 10**18) at the end.

        // Compute k = log2(x) - 96, t = 159 - k = 255 - log2(x) = 255 ^ log2(x).
        int256 t;
        /// @solidity memory-safe-assembly
        assembly {
            t := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))
            t := or(t, shl(6, lt(0xffffffffffffffff, shr(t, x))))
            t := or(t, shl(5, lt(0xffffffff, shr(t, x))))
            t := or(t, shl(4, lt(0xffff, shr(t, x))))
            t := or(t, shl(3, lt(0xff, shr(t, x))))
            // forgefmt: disable-next-item
            t := xor(
                t,
                byte(
                    and(
                        0x1f,
                        shr(shr(t, x), 0x8421084210842108cc6318c6db6d54be)
                    ),
                    0xf8f9f9faf9fdfafbf9fdfcfdfafbfcfef9fafdfafcfcfbfefafafcfbffffffff
                )
            )
        }

        // Reduce range of x to (1, 2) * 2**96
        // ln(2^k * x) = k * ln(2) + ln(x)
        x = int256(uint256(x << uint256(t)) >> 159);

        // Evaluate using a (8, 8)-term rational approximation.
        // p is made monic, we will multiply by a scale factor later.
        int256 p = x + 3273285459638523848632254066296;
        p = ((p * x) >> 96) + 24828157081833163892658089445524;
        p = ((p * x) >> 96) + 43456485725739037958740375743393;
        p = ((p * x) >> 96) - 11111509109440967052023855526967;
        p = ((p * x) >> 96) - 45023709667254063763336534515857;
        p = ((p * x) >> 96) - 14706773417378608786704636184526;
        p = p * x - (795164235651350426258249787498 << 96);

        // We leave p in 2**192 basis so we don't need to scale it back up for the division.
        // q is monic by convention.
        int256 q = x + 5573035233440673466300451813936;
        q = ((q * x) >> 96) + 71694874799317883764090561454958;
        q = ((q * x) >> 96) + 283447036172924575727196451306956;
        q = ((q * x) >> 96) + 401686690394027663651624208769553;
        q = ((q * x) >> 96) + 204048457590392012362485061816622;
        q = ((q * x) >> 96) + 31853899698501571402653359427138;
        q = ((q * x) >> 96) + 909429971244387300277376558375;
        /// @solidity memory-safe-assembly
        assembly {
            // Div in assembly because solidity adds a zero check despite the unchecked.
            // The q polynomial is known not to have zeros in the domain.
            // No scaling required because p is already 2**96 too large.
            r := sdiv(p, q)
        }

        // r is in the range (0, 0.125) * 2**96

        // Finalization, we need to:
        // * multiply by the scale factor s = 5.549…
        // * add ln(2**96 / 10**18)
        // * add k * ln(2)
        // * multiply by 10**18 / 2**96 = 5**18 >> 78

        // mul s * 5e18 * 2**96, base is now 5**18 * 2**192
        r *= 1677202110996718588342820967067443963516166;
        // add ln(2) * k * 5e18 * 2**192
        r +=
            16597577552685614221487285958193947469193820559219878177908093499208371 *
            (159 - t);
        // add ln(2**96 / 10**18) * 5e18 * 2**192
        r += 600920179829731861736702779321621459595472258049074101567377883020018308;
        // base conversion: mul 2**18 / 2**192
        r >>= 174;
    }
}

/// @dev Returns the square root of `x`, rounded down.
function sqrt(uint256 x) pure returns (uint256 z) {
    /// @solidity memory-safe-assembly
    assembly {
        // `floor(sqrt(2**15)) = 181`. `sqrt(2**15) - 181 = 2.84`.
        z := 181 // The "correct" value is 1, but this saves a multiplication later.

        // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad
        // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically.

        // Let `y = x / 2**r`. We check `y >= 2**(k + 8)`
        // but shift right by `k` bits to ensure that if `x >= 256`, then `y >= 256`.
        let r := shl(7, lt(0xffffffffffffffffffffffffffffffffff, x))
        r := or(r, shl(6, lt(0xffffffffffffffffff, shr(r, x))))
        r := or(r, shl(5, lt(0xffffffffff, shr(r, x))))
        r := or(r, shl(4, lt(0xffffff, shr(r, x))))
        z := shl(shr(1, r), z)

        // Goal was to get `z*z*y` within a small factor of `x`. More iterations could
        // get y in a tighter range. Currently, we will have y in `[256, 256*(2**16))`.
        // We ensured `y >= 256` so that the relative difference between `y` and `y+1` is small.
        // That's not possible if `x < 256` but we can just verify those cases exhaustively.

        // Now, `z*z*y <= x < z*z*(y+1)`, and `y <= 2**(16+8)`, and either `y >= 256`, or `x < 256`.
        // Correctness can be checked exhaustively for `x < 256`, so we assume `y >= 256`.
        // Then `z*sqrt(y)` is within `sqrt(257)/sqrt(256)` of `sqrt(x)`, or about 20bps.

        // For `s` in the range `[1/256, 256]`, the estimate `f(s) = (181/1024) * (s+1)`
        // is in the range `(1/2.84 * sqrt(s), 2.84 * sqrt(s))`,
        // with largest error when `s = 1` and when `s = 256` or `1/256`.

        // Since `y` is in `[256, 256*(2**16))`, let `a = y/65536`, so that `a` is in `[1/256, 256)`.
        // Then we can estimate `sqrt(y)` using
        // `sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2**18`.

        // There is no overflow risk here since `y < 2**136` after the first branch above.
        z := shr(18, mul(z, add(shr(r, x), 65536))) // A `mul()` is saved from starting `z` at 181.

        // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough.
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))
        z := shr(1, add(z, div(x, z)))

        // If `x+1` is a perfect square, the Babylonian method cycles between
        // `floor(sqrt(x))` and `ceil(sqrt(x))`. This statement ensures we return floor.
        // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division
        z := sub(z, lt(div(x, z), z))
    }
}

File 18 of 57 : Constants.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

// Distribution addresses
address constant GENESIS_WALLET = 0xBeb2363cA0A7A9FEB75D88aC27A46Fc8bB75Eb6C;
address constant VOLT_TREASURY = 0xb638BFB7BC3B8398bee48569CFDAA6B3Bb004224;
address constant OWNER = 0xeC0Db0059F749d2a97B216ffd65270E80Db46383;
address constant LIQUIDITY_BONDING_ADDR = 0x45C03d66229d01dF2645E813222b16C8B8b86894;
address constant DEV_WALLET = 0xB22830174575Cd1c43591A8Ed9806aD4C4FEb9BB;

uint128 constant AUCTION_EMIT = 100_000_000e18;

// Percentages in WAD
uint64 constant INCENTIVE_FEE = 0.015e18; //1.5%

uint64 constant DX_BURN = 0.05e18; //5%
uint64 constant TO_LP = 0.12e18; //12%
uint64 constant TO_DEV_WALLET = 0.01e18; //1%
uint64 constant TO_GENESIS = 0.04e18; //4%
uint64 constant TO_NEXUS_INPUT = 0.78e18; //78%

// PRECISION
uint64 constant WAD = 1e18;

// INTERVALS
uint16 constant INTERVAL_TIME = 5 minutes;
uint16 constant INTERVALS_PER_DAY = uint16(24 hours / INTERVAL_TIME);

//UNIV3
uint24 constant POOL_FEE = 10_000; //1%
int16 constant TICK_SPACING = 200; // Uniswap's tick spacing for 1% pools is 200

//LIQUIDITY CONFIG

///@dev The initial dragonX amount needed to create liquidity pool
uint256 constant INITIAL_DRAGONX_FOR_LP = 165_000_000e18; // The initial dragon x amount needed to create liquidity pool

uint256 constant INITIAL_VYPER_FOR_LP = 2_500_000e18; // 2.5 million VYPER tokens

File 19 of 57 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 20 of 57 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC-20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 21 of 57 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 22 of 57 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC-20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC-721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in ERC-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC-1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC-1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 23 of 57 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

File 24 of 57 : Ownable2Step.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable2Step.sol)

pragma solidity ^0.8.20;

import {Ownable} from "./Ownable.sol";

/**
 * @dev Contract module which provides access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * This extension of the {Ownable} contract includes a two-step mechanism to transfer
 * ownership, where the new owner must call {acceptOwnership} in order to replace the
 * old one. This can help prevent common mistakes, such as transfers of ownership to
 * incorrect accounts, or to contracts that are unable to interact with the
 * permission system.
 *
 * The initial owner is specified at deployment time in the constructor for `Ownable`. This
 * can later be changed with {transferOwnership} and {acceptOwnership}.
 *
 * This module is used through inheritance. It will make available all functions
 * from parent (Ownable).
 */
abstract contract Ownable2Step is Ownable {
    address private _pendingOwner;

    event OwnershipTransferStarted(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Returns the address of the pending owner.
     */
    function pendingOwner() public view virtual returns (address) {
        return _pendingOwner;
    }

    /**
     * @dev Starts the ownership transfer of the contract to a new account. Replaces the pending transfer if there is one.
     * Can only be called by the current owner.
     *
     * Setting `newOwner` to the zero address is allowed; this can be used to cancel an initiated ownership transfer.
     */
    function transferOwnership(address newOwner) public virtual override onlyOwner {
        _pendingOwner = newOwner;
        emit OwnershipTransferStarted(owner(), newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`) and deletes any pending owner.
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual override {
        delete _pendingOwner;
        super._transferOwnership(newOwner);
    }

    /**
     * @dev The new owner accepts the ownership transfer.
     */
    function acceptOwnership() public virtual {
        address sender = _msgSender();
        if (pendingOwner() != sender) {
            revert OwnableUnauthorizedAccount(sender);
        }
        _transferOwnership(sender);
    }
}

File 25 of 57 : Time.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import "forge-std/console.sol";

library Time {
    ///@notice The cut-off time in seconds from the start of the day for a day turnover, equivalent to 14 hours (50,400 seconds).
    uint32 constant TURN_OVER_TIME = 50400;

    ///@notice The total number of seconds in a day.
    uint32 constant SECONDS_PER_DAY = 86400;

    /**
     * @notice Returns the current block timestamp.
     * @dev This function retrieves the timestamp using assembly for gas efficiency.
     * @return ts The current block timestamp.
     */
    function blockTs() internal view returns (uint32 ts) {
        assembly {
            ts := timestamp()
        }
    }

    /**
     * @notice Calculates the number of full days between two timestamps.
     * @dev Subtracts the start time from the end time and divides by the seconds per day.
     * @param start The starting timestamp.
     * @param end The ending timestamp.
     * @return daysPassed The number of full days between the two timestamps.
     */
    function dayGap(uint32 start, uint32 end) public pure returns (uint32 daysPassed) {
        assembly {
            daysPassed := div(sub(end, start), SECONDS_PER_DAY)
        }
    }

    function weekDayByT(uint32 t) public pure returns (uint8 weekDay) {
        if (t < TURN_OVER_TIME) return 4;

        assembly {
            // Subtract 14 hours from the timestamp
            let adjustedTimestamp := sub(t, TURN_OVER_TIME)

            // Divide by the number of seconds in a day (86400)
            let days := div(adjustedTimestamp, SECONDS_PER_DAY)

            // Add 4 to align with weekday and calculate mod 7
            let result := mod(add(days, 4), 7)

            // Store result as uint8
            weekDay := result
        }
    }

    /**
     * @notice Calculates the end of the day at 2 PM UTC based on a given timestamp.
     * @dev Adjusts the provided timestamp by subtracting the turnover time, calculates the next day's timestamp at 2 PM UTC.
     * @param t The starting timestamp.
     * @return nextDayStartAt2PM The timestamp for the next day ending at 2 PM UTC.
     */
    function getDayEnd(uint32 t) public pure returns (uint32 nextDayStartAt2PM) {
        // Adjust the timestamp to the cutoff time (2 PM UTC)
        uint32 adjustedTime = t - 14 hours;

        // Calculate the number of days since Unix epoch
        uint32 daysSinceEpoch = adjustedTime / 86400;

        // Calculate the start of the next day at 2 PM UTC
        nextDayStartAt2PM = (daysSinceEpoch + 1) * 86400 + 14 hours;
    }
}

File 26 of 57 : Errors.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

contract Errors {
    error Address0();
    error Amount0();
    error Expired();

    modifier notAmount0(uint256 a) {
        _notAmount0(a);
        _;
    }

    modifier notExpired(uint32 _deadline) {
        if (block.timestamp > _deadline) revert Expired();
        _;
    }

    modifier notAddress0(address a) {
        _notAddress0(a);
        _;
    }

    function _notAddress0(address a) internal pure {
        if (a == address(0)) revert Address0();
    }

    function _notAmount0(uint256 a) internal pure {
        if (a == 0) revert Amount0();
    }
}

File 27 of 57 : TickMath.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity ^0.8.0;

/// @title Math library for computing sqrt prices from ticks and vice versa
/// @notice Computes sqrt price for ticks of size 1.0001, i.e. sqrt(1.0001^tick) as fixed point Q64.96 numbers. Supports
/// prices between 2**-128 and 2**128
library TickMath {
    error T();
    error R();

    /// @dev The minimum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**-128
    int24 internal constant MIN_TICK = -887272;
    /// @dev The maximum tick that may be passed to #getSqrtRatioAtTick computed from log base 1.0001 of 2**128
    int24 internal constant MAX_TICK = -MIN_TICK;

    /// @dev The minimum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MIN_TICK)
    uint160 internal constant MIN_SQRT_RATIO = 4295128739;
    /// @dev The maximum value that can be returned from #getSqrtRatioAtTick. Equivalent to getSqrtRatioAtTick(MAX_TICK)
    uint160 internal constant MAX_SQRT_RATIO = 1461446703485210103287273052203988822378723970342;

    /// @notice Calculates sqrt(1.0001^tick) * 2^96
    /// @dev Throws if |tick| > max tick
    /// @param tick The input tick for the above formula
    /// @return sqrtPriceX96 A Fixed point Q64.96 number representing the sqrt of the ratio of the two assets (token1/token0)
    /// at the given tick
    function getSqrtRatioAtTick(int24 tick) internal pure returns (uint160 sqrtPriceX96) {
        unchecked {
            uint256 absTick = tick < 0 ? uint256(-int256(tick)) : uint256(int256(tick));
            if (absTick > uint256(int256(MAX_TICK))) revert T();

            uint256 ratio = absTick & 0x1 != 0
                ? 0xfffcb933bd6fad37aa2d162d1a594001
                : 0x100000000000000000000000000000000;
            if (absTick & 0x2 != 0) ratio = (ratio * 0xfff97272373d413259a46990580e213a) >> 128;
            if (absTick & 0x4 != 0) ratio = (ratio * 0xfff2e50f5f656932ef12357cf3c7fdcc) >> 128;
            if (absTick & 0x8 != 0) ratio = (ratio * 0xffe5caca7e10e4e61c3624eaa0941cd0) >> 128;
            if (absTick & 0x10 != 0) ratio = (ratio * 0xffcb9843d60f6159c9db58835c926644) >> 128;
            if (absTick & 0x20 != 0) ratio = (ratio * 0xff973b41fa98c081472e6896dfb254c0) >> 128;
            if (absTick & 0x40 != 0) ratio = (ratio * 0xff2ea16466c96a3843ec78b326b52861) >> 128;
            if (absTick & 0x80 != 0) ratio = (ratio * 0xfe5dee046a99a2a811c461f1969c3053) >> 128;
            if (absTick & 0x100 != 0) ratio = (ratio * 0xfcbe86c7900a88aedcffc83b479aa3a4) >> 128;
            if (absTick & 0x200 != 0) ratio = (ratio * 0xf987a7253ac413176f2b074cf7815e54) >> 128;
            if (absTick & 0x400 != 0) ratio = (ratio * 0xf3392b0822b70005940c7a398e4b70f3) >> 128;
            if (absTick & 0x800 != 0) ratio = (ratio * 0xe7159475a2c29b7443b29c7fa6e889d9) >> 128;
            if (absTick & 0x1000 != 0) ratio = (ratio * 0xd097f3bdfd2022b8845ad8f792aa5825) >> 128;
            if (absTick & 0x2000 != 0) ratio = (ratio * 0xa9f746462d870fdf8a65dc1f90e061e5) >> 128;
            if (absTick & 0x4000 != 0) ratio = (ratio * 0x70d869a156d2a1b890bb3df62baf32f7) >> 128;
            if (absTick & 0x8000 != 0) ratio = (ratio * 0x31be135f97d08fd981231505542fcfa6) >> 128;
            if (absTick & 0x10000 != 0) ratio = (ratio * 0x9aa508b5b7a84e1c677de54f3e99bc9) >> 128;
            if (absTick & 0x20000 != 0) ratio = (ratio * 0x5d6af8dedb81196699c329225ee604) >> 128;
            if (absTick & 0x40000 != 0) ratio = (ratio * 0x2216e584f5fa1ea926041bedfe98) >> 128;
            if (absTick & 0x80000 != 0) ratio = (ratio * 0x48a170391f7dc42444e8fa2) >> 128;

            if (tick > 0) ratio = type(uint256).max / ratio;

            // this divides by 1<<32 rounding up to go from a Q128.128 to a Q128.96.
            // we then downcast because we know the result always fits within 160 bits due to our tick input constraint
            // we round up in the division so getTickAtSqrtRatio of the output price is always consistent
            sqrtPriceX96 = uint160((ratio >> 32) + (ratio % (1 << 32) == 0 ? 0 : 1));
        }
    }

    /// @notice Calculates the greatest tick value such that getRatioAtTick(tick) <= ratio
    /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_RATIO, as MIN_SQRT_RATIO is the lowest value getRatioAtTick may
    /// ever return.
    /// @param sqrtPriceX96 The sqrt ratio for which to compute the tick as a Q64.96
    /// @return tick The greatest tick for which the ratio is less than or equal to the input ratio
    function getTickAtSqrtRatio(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
        unchecked {
            // second inequality must be < because the price can never reach the price at the max tick
            if (!(sqrtPriceX96 >= MIN_SQRT_RATIO && sqrtPriceX96 < MAX_SQRT_RATIO)) revert R();
            uint256 ratio = uint256(sqrtPriceX96) << 32;

            uint256 r = ratio;
            uint256 msb = 0;

            assembly {
                let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(5, gt(r, 0xFFFFFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(4, gt(r, 0xFFFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(3, gt(r, 0xFF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(2, gt(r, 0xF))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := shl(1, gt(r, 0x3))
                msb := or(msb, f)
                r := shr(f, r)
            }
            assembly {
                let f := gt(r, 0x1)
                msb := or(msb, f)
            }

            if (msb >= 128) r = ratio >> (msb - 127);
            else r = ratio << (127 - msb);

            int256 log_2 = (int256(msb) - 128) << 64;

            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(63, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(62, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(61, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(60, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(59, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(58, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(57, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(56, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(55, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(54, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(53, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(52, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(51, f))
                r := shr(f, r)
            }
            assembly {
                r := shr(127, mul(r, r))
                let f := shr(128, r)
                log_2 := or(log_2, shl(50, f))
            }

            int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

            int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
            int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

            tick = tickLow == tickHi ? tickLow : getSqrtRatioAtTick(tickHi) <= sqrtPriceX96 ? tickHi : tickLow;
        }
    }
}

File 28 of 57 : IVyper.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import {VyperAuction} from "@core/Auction.sol";
import {DragonXVoltNexus} from "@core/nexus/DragonXVoltNexus.sol";
import {VoltVyperNexus} from "@core/nexus/VoltVyperNexus.sol";
import {DragonXVoltInput} from "@core/nexus/DragonXVoltInput.sol";
import {VyperDragonXNexus} from "@core/nexus/VyperDragonXNexus.sol";
import {VyperTreasury} from "@core/VyperTreasury.sol";

import {IERC20} from "@openzeppelin/contracts/interfaces/IERC20.sol";

interface IVyper is IERC20 {
    function auction() external view returns (VyperAuction);
    function treasury() external view returns (VyperTreasury);
    function dragonXVoltNexus() external view returns (DragonXVoltNexus);
    function voltVyperNexus() external view returns (VoltVyperNexus);
    function vyperDragonXNexus() external view returns (VyperDragonXNexus);
    function dragonXVyperPool() external view returns (address);
    function dragonXVoltInput() external view returns (DragonXVoltInput);
    function voltVyperPool() external view returns (address);

    function setAuction(VyperAuction _auction) external;
    function setTreasury(VyperTreasury _treasury) external;
    function setDragonXVoltNexus(DragonXVoltNexus _dragonXVoltNexus) external;
    function setVoltVyperNexus(VoltVyperNexus _voltVyperNexus) external;
    function setVyperDragonXNexus(VyperDragonXNexus _vyperDragonXNexus) external;
    function setDragonXVyperPool(address _dragonXVyperPool) external;
    function setVoltVyperPool(address _voltVyperPool) external;

    function mint(address _receiver, uint256 _amount) external returns (uint256);
}

File 29 of 57 : IDragonXBurnProxy.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

interface IDragonXBurnProxy {
    function burn() external;
}

File 30 of 57 : IDragonX.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.27;

import {IERC20} from "@openzeppelin/contracts/interfaces/IERC20.sol";

interface IDragonX is IERC20 {
    function updateVault() external;
}

File 31 of 57 : PoolAddress.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity 0.8.27;

/// @title Provides functions for deriving a pool address from the factory, tokens, and the fee
library PoolAddress {
    bytes32 internal constant POOL_INIT_CODE_HASH = 0xe34f199b19b2b4f47f68442619d555527d244f78a3297ea89325f843f87b8b54;

    /// @notice The identifying key of the pool
    struct PoolKey {
        address token0;
        address token1;
        uint24 fee;
    }

    /// @notice Returns PoolKey: the ordered tokens with the matched fee levels
    /// @param tokenA The first token of a pool, unsorted
    /// @param tokenB The second token of a pool, unsorted
    /// @param fee The fee level of the pool
    /// @return Poolkey The pool details with ordered token0 and token1 assignments
    function getPoolKey(address tokenA, address tokenB, uint24 fee) internal pure returns (PoolKey memory) {
        if (tokenA > tokenB) (tokenA, tokenB) = (tokenB, tokenA);
        return PoolKey({token0: tokenA, token1: tokenB, fee: fee});
    }

    /// @notice Deterministically computes the pool address given the factory and PoolKey
    /// @param factory The Uniswap V3 factory contract address
    /// @param key The PoolKey
    /// @return pool The contract address of the V3 pool
    function computeAddress(address factory, PoolKey memory key) internal pure returns (address pool) {
        require(key.token0 < key.token1);
        pool = address(
            uint160(
                uint256(
                    keccak256(
                        abi.encodePacked(
                            hex"ff",
                            factory,
                            keccak256(abi.encode(key.token0, key.token1, key.fee)),
                            POOL_INIT_CODE_HASH
                        )
                    )
                )
            )
        );
    }
}

File 32 of 57 : ISwapRouter.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

import '@uniswap/v3-core/contracts/interfaces/callback/IUniswapV3SwapCallback.sol';

/// @title Router token swapping functionality
/// @notice Functions for swapping tokens via Uniswap V3
interface ISwapRouter is IUniswapV3SwapCallback {
    struct ExactInputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactInputSingleParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInputSingle(ExactInputSingleParams calldata params) external payable returns (uint256 amountOut);

    struct ExactInputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountIn;
        uint256 amountOutMinimum;
    }

    /// @notice Swaps `amountIn` of one token for as much as possible of another along the specified path
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactInputParams` in calldata
    /// @return amountOut The amount of the received token
    function exactInput(ExactInputParams calldata params) external payable returns (uint256 amountOut);

    struct ExactOutputSingleParams {
        address tokenIn;
        address tokenOut;
        uint24 fee;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
        uint160 sqrtPriceLimitX96;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another token
    /// @param params The parameters necessary for the swap, encoded as `ExactOutputSingleParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutputSingle(ExactOutputSingleParams calldata params) external payable returns (uint256 amountIn);

    struct ExactOutputParams {
        bytes path;
        address recipient;
        uint256 deadline;
        uint256 amountOut;
        uint256 amountInMaximum;
    }

    /// @notice Swaps as little as possible of one token for `amountOut` of another along the specified path (reversed)
    /// @param params The parameters necessary for the multi-hop swap, encoded as `ExactOutputParams` in calldata
    /// @return amountIn The amount of the input token
    function exactOutput(ExactOutputParams calldata params) external payable returns (uint256 amountIn);
}

File 33 of 57 : IUniswapV3PoolImmutables.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that never changes
/// @notice These parameters are fixed for a pool forever, i.e., the methods will always return the same values
interface IUniswapV3PoolImmutables {
    /// @notice The contract that deployed the pool, which must adhere to the IUniswapV3Factory interface
    /// @return The contract address
    function factory() external view returns (address);

    /// @notice The first of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token0() external view returns (address);

    /// @notice The second of the two tokens of the pool, sorted by address
    /// @return The token contract address
    function token1() external view returns (address);

    /// @notice The pool's fee in hundredths of a bip, i.e. 1e-6
    /// @return The fee
    function fee() external view returns (uint24);

    /// @notice The pool tick spacing
    /// @dev Ticks can only be used at multiples of this value, minimum of 1 and always positive
    /// e.g.: a tickSpacing of 3 means ticks can be initialized every 3rd tick, i.e., ..., -6, -3, 0, 3, 6, ...
    /// This value is an int24 to avoid casting even though it is always positive.
    /// @return The tick spacing
    function tickSpacing() external view returns (int24);

    /// @notice The maximum amount of position liquidity that can use any tick in the range
    /// @dev This parameter is enforced per tick to prevent liquidity from overflowing a uint128 at any point, and
    /// also prevents out-of-range liquidity from being used to prevent adding in-range liquidity to a pool
    /// @return The max amount of liquidity per tick
    function maxLiquidityPerTick() external view returns (uint128);
}

File 34 of 57 : IUniswapV3PoolState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that can change
/// @notice These methods compose the pool's state, and can change with any frequency including multiple times
/// per transaction
interface IUniswapV3PoolState {
    /// @notice The 0th storage slot in the pool stores many values, and is exposed as a single method to save gas
    /// when accessed externally.
    /// @return sqrtPriceX96 The current price of the pool as a sqrt(token1/token0) Q64.96 value
    /// @return tick The current tick of the pool, i.e. according to the last tick transition that was run.
    /// This value may not always be equal to SqrtTickMath.getTickAtSqrtRatio(sqrtPriceX96) if the price is on a tick
    /// boundary.
    /// @return observationIndex The index of the last oracle observation that was written,
    /// @return observationCardinality The current maximum number of observations stored in the pool,
    /// @return observationCardinalityNext The next maximum number of observations, to be updated when the observation.
    /// @return feeProtocol The protocol fee for both tokens of the pool.
    /// Encoded as two 4 bit values, where the protocol fee of token1 is shifted 4 bits and the protocol fee of token0
    /// is the lower 4 bits. Used as the denominator of a fraction of the swap fee, e.g. 4 means 1/4th of the swap fee.
    /// unlocked Whether the pool is currently locked to reentrancy
    function slot0()
        external
        view
        returns (
            uint160 sqrtPriceX96,
            int24 tick,
            uint16 observationIndex,
            uint16 observationCardinality,
            uint16 observationCardinalityNext,
            uint8 feeProtocol,
            bool unlocked
        );

    /// @notice The fee growth as a Q128.128 fees of token0 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal0X128() external view returns (uint256);

    /// @notice The fee growth as a Q128.128 fees of token1 collected per unit of liquidity for the entire life of the pool
    /// @dev This value can overflow the uint256
    function feeGrowthGlobal1X128() external view returns (uint256);

    /// @notice The amounts of token0 and token1 that are owed to the protocol
    /// @dev Protocol fees will never exceed uint128 max in either token
    function protocolFees() external view returns (uint128 token0, uint128 token1);

    /// @notice The currently in range liquidity available to the pool
    /// @dev This value has no relationship to the total liquidity across all ticks
    /// @return The liquidity at the current price of the pool
    function liquidity() external view returns (uint128);

    /// @notice Look up information about a specific tick in the pool
    /// @param tick The tick to look up
    /// @return liquidityGross the total amount of position liquidity that uses the pool either as tick lower or
    /// tick upper
    /// @return liquidityNet how much liquidity changes when the pool price crosses the tick,
    /// @return feeGrowthOutside0X128 the fee growth on the other side of the tick from the current tick in token0,
    /// @return feeGrowthOutside1X128 the fee growth on the other side of the tick from the current tick in token1,
    /// @return tickCumulativeOutside the cumulative tick value on the other side of the tick from the current tick
    /// @return secondsPerLiquidityOutsideX128 the seconds spent per liquidity on the other side of the tick from the current tick,
    /// @return secondsOutside the seconds spent on the other side of the tick from the current tick,
    /// @return initialized Set to true if the tick is initialized, i.e. liquidityGross is greater than 0, otherwise equal to false.
    /// Outside values can only be used if the tick is initialized, i.e. if liquidityGross is greater than 0.
    /// In addition, these values are only relative and must be used only in comparison to previous snapshots for
    /// a specific position.
    function ticks(int24 tick)
        external
        view
        returns (
            uint128 liquidityGross,
            int128 liquidityNet,
            uint256 feeGrowthOutside0X128,
            uint256 feeGrowthOutside1X128,
            int56 tickCumulativeOutside,
            uint160 secondsPerLiquidityOutsideX128,
            uint32 secondsOutside,
            bool initialized
        );

    /// @notice Returns 256 packed tick initialized boolean values. See TickBitmap for more information
    function tickBitmap(int16 wordPosition) external view returns (uint256);

    /// @notice Returns the information about a position by the position's key
    /// @param key The position's key is a hash of a preimage composed by the owner, tickLower and tickUpper
    /// @return liquidity The amount of liquidity in the position,
    /// @return feeGrowthInside0LastX128 fee growth of token0 inside the tick range as of the last mint/burn/poke,
    /// @return feeGrowthInside1LastX128 fee growth of token1 inside the tick range as of the last mint/burn/poke,
    /// @return tokensOwed0 the computed amount of token0 owed to the position as of the last mint/burn/poke,
    /// @return tokensOwed1 the computed amount of token1 owed to the position as of the last mint/burn/poke
    function positions(bytes32 key)
        external
        view
        returns (
            uint128 liquidity,
            uint256 feeGrowthInside0LastX128,
            uint256 feeGrowthInside1LastX128,
            uint128 tokensOwed0,
            uint128 tokensOwed1
        );

    /// @notice Returns data about a specific observation index
    /// @param index The element of the observations array to fetch
    /// @dev You most likely want to use #observe() instead of this method to get an observation as of some amount of time
    /// ago, rather than at a specific index in the array.
    /// @return blockTimestamp The timestamp of the observation,
    /// @return tickCumulative the tick multiplied by seconds elapsed for the life of the pool as of the observation timestamp,
    /// @return secondsPerLiquidityCumulativeX128 the seconds per in range liquidity for the life of the pool as of the observation timestamp,
    /// @return initialized whether the observation has been initialized and the values are safe to use
    function observations(uint256 index)
        external
        view
        returns (
            uint32 blockTimestamp,
            int56 tickCumulative,
            uint160 secondsPerLiquidityCumulativeX128,
            bool initialized
        );
}

File 35 of 57 : IUniswapV3PoolDerivedState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Pool state that is not stored
/// @notice Contains view functions to provide information about the pool that is computed rather than stored on the
/// blockchain. The functions here may have variable gas costs.
interface IUniswapV3PoolDerivedState {
    /// @notice Returns the cumulative tick and liquidity as of each timestamp `secondsAgo` from the current block timestamp
    /// @dev To get a time weighted average tick or liquidity-in-range, you must call this with two values, one representing
    /// the beginning of the period and another for the end of the period. E.g., to get the last hour time-weighted average tick,
    /// you must call it with secondsAgos = [3600, 0].
    /// @dev The time weighted average tick represents the geometric time weighted average price of the pool, in
    /// log base sqrt(1.0001) of token1 / token0. The TickMath library can be used to go from a tick value to a ratio.
    /// @param secondsAgos From how long ago each cumulative tick and liquidity value should be returned
    /// @return tickCumulatives Cumulative tick values as of each `secondsAgos` from the current block timestamp
    /// @return secondsPerLiquidityCumulativeX128s Cumulative seconds per liquidity-in-range value as of each `secondsAgos` from the current block
    /// timestamp
    function observe(uint32[] calldata secondsAgos)
        external
        view
        returns (int56[] memory tickCumulatives, uint160[] memory secondsPerLiquidityCumulativeX128s);

    /// @notice Returns a snapshot of the tick cumulative, seconds per liquidity and seconds inside a tick range
    /// @dev Snapshots must only be compared to other snapshots, taken over a period for which a position existed.
    /// I.e., snapshots cannot be compared if a position is not held for the entire period between when the first
    /// snapshot is taken and the second snapshot is taken.
    /// @param tickLower The lower tick of the range
    /// @param tickUpper The upper tick of the range
    /// @return tickCumulativeInside The snapshot of the tick accumulator for the range
    /// @return secondsPerLiquidityInsideX128 The snapshot of seconds per liquidity for the range
    /// @return secondsInside The snapshot of seconds per liquidity for the range
    function snapshotCumulativesInside(int24 tickLower, int24 tickUpper)
        external
        view
        returns (
            int56 tickCumulativeInside,
            uint160 secondsPerLiquidityInsideX128,
            uint32 secondsInside
        );
}

File 36 of 57 : IUniswapV3PoolActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissionless pool actions
/// @notice Contains pool methods that can be called by anyone
interface IUniswapV3PoolActions {
    /// @notice Sets the initial price for the pool
    /// @dev Price is represented as a sqrt(amountToken1/amountToken0) Q64.96 value
    /// @param sqrtPriceX96 the initial sqrt price of the pool as a Q64.96
    function initialize(uint160 sqrtPriceX96) external;

    /// @notice Adds liquidity for the given recipient/tickLower/tickUpper position
    /// @dev The caller of this method receives a callback in the form of IUniswapV3MintCallback#uniswapV3MintCallback
    /// in which they must pay any token0 or token1 owed for the liquidity. The amount of token0/token1 due depends
    /// on tickLower, tickUpper, the amount of liquidity, and the current price.
    /// @param recipient The address for which the liquidity will be created
    /// @param tickLower The lower tick of the position in which to add liquidity
    /// @param tickUpper The upper tick of the position in which to add liquidity
    /// @param amount The amount of liquidity to mint
    /// @param data Any data that should be passed through to the callback
    /// @return amount0 The amount of token0 that was paid to mint the given amount of liquidity. Matches the value in the callback
    /// @return amount1 The amount of token1 that was paid to mint the given amount of liquidity. Matches the value in the callback
    function mint(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount,
        bytes calldata data
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Collects tokens owed to a position
    /// @dev Does not recompute fees earned, which must be done either via mint or burn of any amount of liquidity.
    /// Collect must be called by the position owner. To withdraw only token0 or only token1, amount0Requested or
    /// amount1Requested may be set to zero. To withdraw all tokens owed, caller may pass any value greater than the
    /// actual tokens owed, e.g. type(uint128).max. Tokens owed may be from accumulated swap fees or burned liquidity.
    /// @param recipient The address which should receive the fees collected
    /// @param tickLower The lower tick of the position for which to collect fees
    /// @param tickUpper The upper tick of the position for which to collect fees
    /// @param amount0Requested How much token0 should be withdrawn from the fees owed
    /// @param amount1Requested How much token1 should be withdrawn from the fees owed
    /// @return amount0 The amount of fees collected in token0
    /// @return amount1 The amount of fees collected in token1
    function collect(
        address recipient,
        int24 tickLower,
        int24 tickUpper,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);

    /// @notice Burn liquidity from the sender and account tokens owed for the liquidity to the position
    /// @dev Can be used to trigger a recalculation of fees owed to a position by calling with an amount of 0
    /// @dev Fees must be collected separately via a call to #collect
    /// @param tickLower The lower tick of the position for which to burn liquidity
    /// @param tickUpper The upper tick of the position for which to burn liquidity
    /// @param amount How much liquidity to burn
    /// @return amount0 The amount of token0 sent to the recipient
    /// @return amount1 The amount of token1 sent to the recipient
    function burn(
        int24 tickLower,
        int24 tickUpper,
        uint128 amount
    ) external returns (uint256 amount0, uint256 amount1);

    /// @notice Swap token0 for token1, or token1 for token0
    /// @dev The caller of this method receives a callback in the form of IUniswapV3SwapCallback#uniswapV3SwapCallback
    /// @param recipient The address to receive the output of the swap
    /// @param zeroForOne The direction of the swap, true for token0 to token1, false for token1 to token0
    /// @param amountSpecified The amount of the swap, which implicitly configures the swap as exact input (positive), or exact output (negative)
    /// @param sqrtPriceLimitX96 The Q64.96 sqrt price limit. If zero for one, the price cannot be less than this
    /// value after the swap. If one for zero, the price cannot be greater than this value after the swap
    /// @param data Any data to be passed through to the callback
    /// @return amount0 The delta of the balance of token0 of the pool, exact when negative, minimum when positive
    /// @return amount1 The delta of the balance of token1 of the pool, exact when negative, minimum when positive
    function swap(
        address recipient,
        bool zeroForOne,
        int256 amountSpecified,
        uint160 sqrtPriceLimitX96,
        bytes calldata data
    ) external returns (int256 amount0, int256 amount1);

    /// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
    /// @dev The caller of this method receives a callback in the form of IUniswapV3FlashCallback#uniswapV3FlashCallback
    /// @dev Can be used to donate underlying tokens pro-rata to currently in-range liquidity providers by calling
    /// with 0 amount{0,1} and sending the donation amount(s) from the callback
    /// @param recipient The address which will receive the token0 and token1 amounts
    /// @param amount0 The amount of token0 to send
    /// @param amount1 The amount of token1 to send
    /// @param data Any data to be passed through to the callback
    function flash(
        address recipient,
        uint256 amount0,
        uint256 amount1,
        bytes calldata data
    ) external;

    /// @notice Increase the maximum number of price and liquidity observations that this pool will store
    /// @dev This method is no-op if the pool already has an observationCardinalityNext greater than or equal to
    /// the input observationCardinalityNext.
    /// @param observationCardinalityNext The desired minimum number of observations for the pool to store
    function increaseObservationCardinalityNext(uint16 observationCardinalityNext) external;
}

File 37 of 57 : IUniswapV3PoolOwnerActions.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Permissioned pool actions
/// @notice Contains pool methods that may only be called by the factory owner
interface IUniswapV3PoolOwnerActions {
    /// @notice Set the denominator of the protocol's % share of the fees
    /// @param feeProtocol0 new protocol fee for token0 of the pool
    /// @param feeProtocol1 new protocol fee for token1 of the pool
    function setFeeProtocol(uint8 feeProtocol0, uint8 feeProtocol1) external;

    /// @notice Collect the protocol fee accrued to the pool
    /// @param recipient The address to which collected protocol fees should be sent
    /// @param amount0Requested The maximum amount of token0 to send, can be 0 to collect fees in only token1
    /// @param amount1Requested The maximum amount of token1 to send, can be 0 to collect fees in only token0
    /// @return amount0 The protocol fee collected in token0
    /// @return amount1 The protocol fee collected in token1
    function collectProtocol(
        address recipient,
        uint128 amount0Requested,
        uint128 amount1Requested
    ) external returns (uint128 amount0, uint128 amount1);
}

File 38 of 57 : IUniswapV3PoolErrors.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Errors emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolErrors {
    error LOK();
    error TLU();
    error TLM();
    error TUM();
    error AI();
    error M0();
    error M1();
    error AS();
    error IIA();
    error L();
    error F0();
    error F1();
}

File 39 of 57 : IUniswapV3PoolEvents.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Events emitted by a pool
/// @notice Contains all events emitted by the pool
interface IUniswapV3PoolEvents {
    /// @notice Emitted exactly once by a pool when #initialize is first called on the pool
    /// @dev Mint/Burn/Swap cannot be emitted by the pool before Initialize
    /// @param sqrtPriceX96 The initial sqrt price of the pool, as a Q64.96
    /// @param tick The initial tick of the pool, i.e. log base 1.0001 of the starting price of the pool
    event Initialize(uint160 sqrtPriceX96, int24 tick);

    /// @notice Emitted when liquidity is minted for a given position
    /// @param sender The address that minted the liquidity
    /// @param owner The owner of the position and recipient of any minted liquidity
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity minted to the position range
    /// @param amount0 How much token0 was required for the minted liquidity
    /// @param amount1 How much token1 was required for the minted liquidity
    event Mint(
        address sender,
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted when fees are collected by the owner of a position
    /// @dev Collect events may be emitted with zero amount0 and amount1 when the caller chooses not to collect fees
    /// @param owner The owner of the position for which fees are collected
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount0 The amount of token0 fees collected
    /// @param amount1 The amount of token1 fees collected
    event Collect(
        address indexed owner,
        address recipient,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount0,
        uint128 amount1
    );

    /// @notice Emitted when a position's liquidity is removed
    /// @dev Does not withdraw any fees earned by the liquidity position, which must be withdrawn via #collect
    /// @param owner The owner of the position for which liquidity is removed
    /// @param tickLower The lower tick of the position
    /// @param tickUpper The upper tick of the position
    /// @param amount The amount of liquidity to remove
    /// @param amount0 The amount of token0 withdrawn
    /// @param amount1 The amount of token1 withdrawn
    event Burn(
        address indexed owner,
        int24 indexed tickLower,
        int24 indexed tickUpper,
        uint128 amount,
        uint256 amount0,
        uint256 amount1
    );

    /// @notice Emitted by the pool for any swaps between token0 and token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the output of the swap
    /// @param amount0 The delta of the token0 balance of the pool
    /// @param amount1 The delta of the token1 balance of the pool
    /// @param sqrtPriceX96 The sqrt(price) of the pool after the swap, as a Q64.96
    /// @param liquidity The liquidity of the pool after the swap
    /// @param tick The log base 1.0001 of price of the pool after the swap
    event Swap(
        address indexed sender,
        address indexed recipient,
        int256 amount0,
        int256 amount1,
        uint160 sqrtPriceX96,
        uint128 liquidity,
        int24 tick
    );

    /// @notice Emitted by the pool for any flashes of token0/token1
    /// @param sender The address that initiated the swap call, and that received the callback
    /// @param recipient The address that received the tokens from flash
    /// @param amount0 The amount of token0 that was flashed
    /// @param amount1 The amount of token1 that was flashed
    /// @param paid0 The amount of token0 paid for the flash, which can exceed the amount0 plus the fee
    /// @param paid1 The amount of token1 paid for the flash, which can exceed the amount1 plus the fee
    event Flash(
        address indexed sender,
        address indexed recipient,
        uint256 amount0,
        uint256 amount1,
        uint256 paid0,
        uint256 paid1
    );

    /// @notice Emitted by the pool for increases to the number of observations that can be stored
    /// @dev observationCardinalityNext is not the observation cardinality until an observation is written at the index
    /// just before a mint/swap/burn.
    /// @param observationCardinalityNextOld The previous value of the next observation cardinality
    /// @param observationCardinalityNextNew The updated value of the next observation cardinality
    event IncreaseObservationCardinalityNext(
        uint16 observationCardinalityNextOld,
        uint16 observationCardinalityNextNew
    );

    /// @notice Emitted when the protocol fee is changed by the pool
    /// @param feeProtocol0Old The previous value of the token0 protocol fee
    /// @param feeProtocol1Old The previous value of the token1 protocol fee
    /// @param feeProtocol0New The updated value of the token0 protocol fee
    /// @param feeProtocol1New The updated value of the token1 protocol fee
    event SetFeeProtocol(uint8 feeProtocol0Old, uint8 feeProtocol1Old, uint8 feeProtocol0New, uint8 feeProtocol1New);

    /// @notice Emitted when the collected protocol fees are withdrawn by the factory owner
    /// @param sender The address that collects the protocol fees
    /// @param recipient The address that receives the collected protocol fees
    /// @param amount0 The amount of token0 protocol fees that is withdrawn
    /// @param amount0 The amount of token1 protocol fees that is withdrawn
    event CollectProtocol(address indexed sender, address indexed recipient, uint128 amount0, uint128 amount1);
}

File 40 of 57 : IERC721Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Metadata.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional metadata extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Metadata is IERC721 {
    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);
}

File 41 of 57 : IERC721Enumerable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/extensions/IERC721Enumerable.sol)

pragma solidity ^0.8.20;

import {IERC721} from "../IERC721.sol";

/**
 * @title ERC-721 Non-Fungible Token Standard, optional enumeration extension
 * @dev See https://eips.ethereum.org/EIPS/eip-721
 */
interface IERC721Enumerable is IERC721 {
    /**
     * @dev Returns the total amount of tokens stored by the contract.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns a token ID owned by `owner` at a given `index` of its token list.
     * Use along with {balanceOf} to enumerate all of ``owner``'s tokens.
     */
    function tokenOfOwnerByIndex(address owner, uint256 index) external view returns (uint256);

    /**
     * @dev Returns a token ID at a given `index` of all the tokens stored by the contract.
     * Use along with {totalSupply} to enumerate all tokens.
     */
    function tokenByIndex(uint256 index) external view returns (uint256);
}

File 42 of 57 : IPoolInitializer.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;
pragma abicoder v2;

/// @title Creates and initializes V3 Pools
/// @notice Provides a method for creating and initializing a pool, if necessary, for bundling with other methods that
/// require the pool to exist.
interface IPoolInitializer {
    /// @notice Creates a new pool if it does not exist, then initializes if not initialized
    /// @dev This method can be bundled with others via IMulticall for the first action (e.g. mint) performed against a pool
    /// @param token0 The contract address of token0 of the pool
    /// @param token1 The contract address of token1 of the pool
    /// @param fee The fee amount of the v3 pool for the specified token pair
    /// @param sqrtPriceX96 The initial square root price of the pool as a Q64.96 value
    /// @return pool Returns the pool address based on the pair of tokens and fee, will return the newly created pool address if necessary
    function createAndInitializePoolIfNecessary(
        address token0,
        address token1,
        uint24 fee,
        uint160 sqrtPriceX96
    ) external payable returns (address pool);
}

File 43 of 57 : IERC721Permit.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;

import '@openzeppelin/contracts/token/ERC721/IERC721.sol';

/// @title ERC721 with permit
/// @notice Extension to ERC721 that includes a permit function for signature based approvals
interface IERC721Permit is IERC721 {
    /// @notice The permit typehash used in the permit signature
    /// @return The typehash for the permit
    function PERMIT_TYPEHASH() external pure returns (bytes32);

    /// @notice The domain separator used in the permit signature
    /// @return The domain seperator used in encoding of permit signature
    function DOMAIN_SEPARATOR() external view returns (bytes32);

    /// @notice Approve of a specific token ID for spending by spender via signature
    /// @param spender The account that is being approved
    /// @param tokenId The ID of the token that is being approved for spending
    /// @param deadline The deadline timestamp by which the call must be mined for the approve to work
    /// @param v Must produce valid secp256k1 signature from the holder along with `r` and `s`
    /// @param r Must produce valid secp256k1 signature from the holder along with `v` and `s`
    /// @param s Must produce valid secp256k1 signature from the holder along with `r` and `v`
    function permit(
        address spender,
        uint256 tokenId,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external payable;
}

File 44 of 57 : IPeripheryPayments.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.7.5;

/// @title Periphery Payments
/// @notice Functions to ease deposits and withdrawals of ETH
interface IPeripheryPayments {
    /// @notice Unwraps the contract's WETH9 balance and sends it to recipient as ETH.
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing WETH9 from users.
    /// @param amountMinimum The minimum amount of WETH9 to unwrap
    /// @param recipient The address receiving ETH
    function unwrapWETH9(uint256 amountMinimum, address recipient) external payable;

    /// @notice Refunds any ETH balance held by this contract to the `msg.sender`
    /// @dev Useful for bundling with mint or increase liquidity that uses ether, or exact output swaps
    /// that use ether for the input amount
    function refundETH() external payable;

    /// @notice Transfers the full amount of a token held by this contract to recipient
    /// @dev The amountMinimum parameter prevents malicious contracts from stealing the token from users
    /// @param token The contract address of the token which will be transferred to `recipient`
    /// @param amountMinimum The minimum amount of token required for a transfer
    /// @param recipient The destination address of the token
    function sweepToken(
        address token,
        uint256 amountMinimum,
        address recipient
    ) external payable;
}

File 45 of 57 : IPeripheryImmutableState.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Immutable state
/// @notice Functions that return immutable state of the router
interface IPeripheryImmutableState {
    /// @return Returns the address of the Uniswap V3 factory
    function factory() external view returns (address);

    /// @return Returns the address of WETH9
    function WETH9() external view returns (address);
}

File 46 of 57 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 47 of 57 : IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 48 of 57 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

import {Errors} from "./Errors.sol";

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert Errors.InsufficientBalance(address(this).balance, amount);
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert Errors.FailedCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {Errors.FailedCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert Errors.InsufficientBalance(address(this).balance, value);
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {Errors.FailedCall}) in case
     * of an unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {Errors.FailedCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {Errors.FailedCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            assembly ("memory-safe") {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert Errors.FailedCall();
        }
    }
}

File 49 of 57 : console.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.22 <0.9.0;

library console {
    address constant CONSOLE_ADDRESS =
        0x000000000000000000636F6e736F6c652e6c6f67;

    function _sendLogPayloadImplementation(bytes memory payload) internal view {
        address consoleAddress = CONSOLE_ADDRESS;
        /// @solidity memory-safe-assembly
        assembly {
            pop(
                staticcall(
                    gas(),
                    consoleAddress,
                    add(payload, 32),
                    mload(payload),
                    0,
                    0
                )
            )
        }
    }

    function _castToPure(
      function(bytes memory) internal view fnIn
    ) internal pure returns (function(bytes memory) pure fnOut) {
        assembly {
            fnOut := fnIn
        }
    }

    function _sendLogPayload(bytes memory payload) internal pure {
        _castToPure(_sendLogPayloadImplementation)(payload);
    }

    function log() internal pure {
        _sendLogPayload(abi.encodeWithSignature("log()"));
    }

    function logInt(int256 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(int256)", p0));
    }

    function logUint(uint256 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0));
    }

    function logString(string memory p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string)", p0));
    }

    function logBool(bool p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
    }

    function logAddress(address p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address)", p0));
    }

    function logBytes(bytes memory p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0));
    }

    function logBytes1(bytes1 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0));
    }

    function logBytes2(bytes2 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0));
    }

    function logBytes3(bytes3 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0));
    }

    function logBytes4(bytes4 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0));
    }

    function logBytes5(bytes5 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0));
    }

    function logBytes6(bytes6 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0));
    }

    function logBytes7(bytes7 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0));
    }

    function logBytes8(bytes8 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0));
    }

    function logBytes9(bytes9 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0));
    }

    function logBytes10(bytes10 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0));
    }

    function logBytes11(bytes11 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0));
    }

    function logBytes12(bytes12 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0));
    }

    function logBytes13(bytes13 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0));
    }

    function logBytes14(bytes14 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0));
    }

    function logBytes15(bytes15 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0));
    }

    function logBytes16(bytes16 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0));
    }

    function logBytes17(bytes17 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0));
    }

    function logBytes18(bytes18 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0));
    }

    function logBytes19(bytes19 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0));
    }

    function logBytes20(bytes20 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0));
    }

    function logBytes21(bytes21 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0));
    }

    function logBytes22(bytes22 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0));
    }

    function logBytes23(bytes23 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0));
    }

    function logBytes24(bytes24 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0));
    }

    function logBytes25(bytes25 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0));
    }

    function logBytes26(bytes26 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0));
    }

    function logBytes27(bytes27 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0));
    }

    function logBytes28(bytes28 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0));
    }

    function logBytes29(bytes29 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0));
    }

    function logBytes30(bytes30 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0));
    }

    function logBytes31(bytes31 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0));
    }

    function logBytes32(bytes32 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0));
    }

    function log(uint256 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256)", p0));
    }

    function log(int256 p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(int256)", p0));
    }

    function log(string memory p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string)", p0));
    }

    function log(bool p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
    }

    function log(address p0) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address)", p0));
    }

    function log(uint256 p0, uint256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256)", p0, p1));
    }

    function log(uint256 p0, string memory p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string)", p0, p1));
    }

    function log(uint256 p0, bool p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool)", p0, p1));
    }

    function log(uint256 p0, address p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address)", p0, p1));
    }

    function log(string memory p0, uint256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256)", p0, p1));
    }

    function log(string memory p0, int256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,int256)", p0, p1));
    }

    function log(string memory p0, string memory p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1));
    }

    function log(string memory p0, bool p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1));
    }

    function log(string memory p0, address p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1));
    }

    function log(bool p0, uint256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256)", p0, p1));
    }

    function log(bool p0, string memory p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1));
    }

    function log(bool p0, bool p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1));
    }

    function log(bool p0, address p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1));
    }

    function log(address p0, uint256 p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256)", p0, p1));
    }

    function log(address p0, string memory p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1));
    }

    function log(address p0, bool p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1));
    }

    function log(address p0, address p1) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1));
    }

    function log(uint256 p0, uint256 p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256)", p0, p1, p2));
    }

    function log(uint256 p0, uint256 p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string)", p0, p1, p2));
    }

    function log(uint256 p0, uint256 p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool)", p0, p1, p2));
    }

    function log(uint256 p0, uint256 p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address)", p0, p1, p2));
    }

    function log(uint256 p0, string memory p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256)", p0, p1, p2));
    }

    function log(uint256 p0, string memory p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string)", p0, p1, p2));
    }

    function log(uint256 p0, string memory p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool)", p0, p1, p2));
    }

    function log(uint256 p0, string memory p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address)", p0, p1, p2));
    }

    function log(uint256 p0, bool p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256)", p0, p1, p2));
    }

    function log(uint256 p0, bool p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string)", p0, p1, p2));
    }

    function log(uint256 p0, bool p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool)", p0, p1, p2));
    }

    function log(uint256 p0, bool p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address)", p0, p1, p2));
    }

    function log(uint256 p0, address p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256)", p0, p1, p2));
    }

    function log(uint256 p0, address p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string)", p0, p1, p2));
    }

    function log(uint256 p0, address p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool)", p0, p1, p2));
    }

    function log(uint256 p0, address p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address)", p0, p1, p2));
    }

    function log(string memory p0, uint256 p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256)", p0, p1, p2));
    }

    function log(string memory p0, uint256 p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string)", p0, p1, p2));
    }

    function log(string memory p0, uint256 p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool)", p0, p1, p2));
    }

    function log(string memory p0, uint256 p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address)", p0, p1, p2));
    }

    function log(string memory p0, string memory p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256)", p0, p1, p2));
    }

    function log(string memory p0, string memory p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2));
    }

    function log(string memory p0, string memory p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2));
    }

    function log(string memory p0, string memory p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2));
    }

    function log(string memory p0, bool p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256)", p0, p1, p2));
    }

    function log(string memory p0, bool p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2));
    }

    function log(string memory p0, bool p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2));
    }

    function log(string memory p0, bool p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2));
    }

    function log(string memory p0, address p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256)", p0, p1, p2));
    }

    function log(string memory p0, address p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2));
    }

    function log(string memory p0, address p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2));
    }

    function log(string memory p0, address p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2));
    }

    function log(bool p0, uint256 p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256)", p0, p1, p2));
    }

    function log(bool p0, uint256 p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string)", p0, p1, p2));
    }

    function log(bool p0, uint256 p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool)", p0, p1, p2));
    }

    function log(bool p0, uint256 p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address)", p0, p1, p2));
    }

    function log(bool p0, string memory p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256)", p0, p1, p2));
    }

    function log(bool p0, string memory p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2));
    }

    function log(bool p0, string memory p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2));
    }

    function log(bool p0, string memory p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2));
    }

    function log(bool p0, bool p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256)", p0, p1, p2));
    }

    function log(bool p0, bool p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2));
    }

    function log(bool p0, bool p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2));
    }

    function log(bool p0, bool p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2));
    }

    function log(bool p0, address p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256)", p0, p1, p2));
    }

    function log(bool p0, address p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2));
    }

    function log(bool p0, address p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2));
    }

    function log(bool p0, address p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2));
    }

    function log(address p0, uint256 p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256)", p0, p1, p2));
    }

    function log(address p0, uint256 p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string)", p0, p1, p2));
    }

    function log(address p0, uint256 p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool)", p0, p1, p2));
    }

    function log(address p0, uint256 p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address)", p0, p1, p2));
    }

    function log(address p0, string memory p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256)", p0, p1, p2));
    }

    function log(address p0, string memory p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2));
    }

    function log(address p0, string memory p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2));
    }

    function log(address p0, string memory p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2));
    }

    function log(address p0, bool p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256)", p0, p1, p2));
    }

    function log(address p0, bool p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2));
    }

    function log(address p0, bool p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2));
    }

    function log(address p0, bool p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2));
    }

    function log(address p0, address p1, uint256 p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256)", p0, p1, p2));
    }

    function log(address p0, address p1, string memory p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2));
    }

    function log(address p0, address p1, bool p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2));
    }

    function log(address p0, address p1, address p2) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2));
    }

    function log(uint256 p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,uint256,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,string,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,bool,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, uint256 p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,uint256,address,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,uint256,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,string,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,bool,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, string memory p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,string,address,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,uint256,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,string,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,bool,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, bool p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,bool,address,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,uint256,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,string,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,bool,address)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,uint256)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,string)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,bool)", p0, p1, p2, p3));
    }

    function log(uint256 p0, address p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(uint256,address,address,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,uint256,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,string,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,bool,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, uint256 p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,uint256,address,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,uint256,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, string memory p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint256,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, bool p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,uint256,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint256)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3));
    }

    function log(string memory p0, address p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,string)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,uint256,address)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,string)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,string,address)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,string)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,bool,address)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,string)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, uint256 p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,uint256,address,address)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,string)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint256,address)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, string memory p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,string)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint256,address)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, bool p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,string)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint256,address)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint256)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3));
    }

    function log(bool p0, address p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,string)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,bool)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,uint256,address)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,string)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,bool)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,string,address)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,string)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,bool)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,bool,address)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,string)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,bool)", p0, p1, p2, p3));
    }

    function log(address p0, uint256 p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,uint256,address,address)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,string)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,bool)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,uint256,address)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3));
    }

    function log(address p0, string memory p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,string)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,bool)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint256,address)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3));
    }

    function log(address p0, bool p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, uint256 p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, uint256 p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,string)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, uint256 p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,bool)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, uint256 p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,uint256,address)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, string memory p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, string memory p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, string memory p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, string memory p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, bool p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, bool p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, bool p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, bool p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, address p2, uint256 p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint256)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, address p2, string memory p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, address p2, bool p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3));
    }

    function log(address p0, address p1, address p2, address p3) internal pure {
        _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3));
    }
}

File 50 of 57 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 51 of 57 : IUniswapV3SwapCallback.sol
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.5.0;

/// @title Callback for IUniswapV3PoolActions#swap
/// @notice Any contract that calls IUniswapV3PoolActions#swap must implement this interface
interface IUniswapV3SwapCallback {
    /// @notice Called to `msg.sender` after executing a swap via IUniswapV3Pool#swap.
    /// @dev In the implementation you must pay the pool tokens owed for the swap.
    /// The caller of this method must be checked to be a UniswapV3Pool deployed by the canonical UniswapV3Factory.
    /// amount0Delta and amount1Delta can both be 0 if no tokens were swapped.
    /// @param amount0Delta The amount of token0 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token0 to the pool.
    /// @param amount1Delta The amount of token1 that was sent (negative) or must be received (positive) by the pool by
    /// the end of the swap. If positive, the callback must send that amount of token1 to the pool.
    /// @param data Any data passed through by the caller via the IUniswapV3PoolActions#swap call
    function uniswapV3SwapCallback(
        int256 amount0Delta,
        int256 amount1Delta,
        bytes calldata data
    ) external;
}

File 52 of 57 : IERC721.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../../utils/introspection/IERC165.sol";

/**
 * @dev Required interface of an ERC-721 compliant contract.
 */
interface IERC721 is IERC165 {
    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in ``owner``'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
     * are aware of the ERC-721 protocol to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or
     *   {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon
     *   a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Transfers `tokenId` token from `from` to `to`.
     *
     * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC-721
     * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
     * understand this adds an external call which potentially creates a reentrancy vulnerability.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 tokenId) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the address zero.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);
}

File 53 of 57 : Panic.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 54 of 57 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 55 of 57 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 56 of 57 : Errors.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

/**
 * @dev Collection of common custom errors used in multiple contracts
 *
 * IMPORTANT: Backwards compatibility is not guaranteed in future versions of the library.
 * It is recommended to avoid relying on the error API for critical functionality.
 *
 * _Available since v5.1._
 */
library Errors {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error InsufficientBalance(uint256 balance, uint256 needed);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedCall();

    /**
     * @dev The deployment failed.
     */
    error FailedDeployment();

    /**
     * @dev A necessary precompile is missing.
     */
    error MissingPrecompile(address);
}

File 57 of 57 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "@openzeppelin/=lib/openzeppelin-contracts/",
    "@uniswap/v3-core/=lib/v3-core/",
    "@uniswap/v3-periphery/=lib/v3-periphery/",
    "@utils/=src/utils/",
    "@libs/=src/libs/",
    "@const/=src/const/",
    "@core/=src/",
    "@interfaces/=src/interfaces/",
    "@actions/=src/actions/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
    "forge-std/=lib/forge-std/src/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "v3-core/=lib/v3-core/contracts/",
    "v3-periphery/=lib/v3-periphery/contracts/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "cancun",
  "viaIR": false,
  "libraries": {
    "src/utils/Time.sol": {
      "Time": "0x3C98Da6EC73A85c7c4507A33b94967E2ECf45aDF"
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"internalType":"address","name":"_v3PositionManager","type":"address"},{"internalType":"address","name":"_dragonX","type":"address"},{"internalType":"address","name":"_volt","type":"address"},{"internalType":"address","name":"_v3Quoter","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"OnlyAuction","type":"error"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"OwnableInvalidOwner","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"OwnableUnauthorizedAccount","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"auction","outputs":[{"internalType":"contract VyperAuction","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dragonXVoltInput","outputs":[{"internalType":"contract DragonXVoltInput","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dragonXVoltNexus","outputs":[{"internalType":"contract DragonXVoltNexus","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"dragonXVyperPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_receiver","type":"address"},{"internalType":"uint256","name":"_amount","type":"uint256"}],"name":"mint","outputs":[{"internalType":"uint256","name":"minted","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract VyperAuction","name":"_auction","type":"address"}],"name":"setAuction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract DragonXVoltInput","name":"_dragonXVoltInput","type":"address"}],"name":"setDragonXVoltInput","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract DragonXVoltNexus","name":"_dragonXVoltNexus","type":"address"}],"name":"setDragonXVoltNexus","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract VoltVyperNexus","name":"_voltVyperNexus","type":"address"}],"name":"setVoltVyperNexus","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract VyperDragonXNexus","name":"_vyperDragonXNexus","type":"address"}],"name":"setVyperDragonXNexus","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"treasury","outputs":[{"internalType":"contract VyperTreasury","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"voltVyperNexus","outputs":[{"internalType":"contract VoltVyperNexus","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"voltVyperPool","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"vyperDragonXNexus","outputs":[{"internalType":"contract VyperDragonXNexus","name":"","type":"address"}],"stateMutability":"view","type":"function"}]

608060405234801561000f575f5ffd5b506040516116b83803806116b883398101604081905261002e9161078e565b33604051806040016040528060098152602001682b2ca822a9172ba4a760b91b815250604051806040016040528060058152602001642b2ca822a960d91b815250816003908161007e9190610877565b50600461008b8282610877565b5050506001600160a01b0381166100bc57604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b6100c581610149565b506100ef7345c03d66229d01df2645e813222b16c8b8b868946a4e950851be0c2ebf00000061019a565b610104336a52b7d2dcc80cd2e400000061019a565b610110838386846101d2565b600c80546001600160a01b039283166001600160a01b031991821617909155600d805493909216921691909117905550610a0792505050565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b0382166101c35760405163ec442f0560e01b81525f60048201526024016100b3565b6101ce5f838361064d565b5050565b5f80308382806001600160a01b038a1684106101ef5789846101f2565b838a5b915091505f5f856001600160a01b0316846001600160a01b03161461022e576a887c1bec4a1528c50000006a0211654585005212800000610247565b6a02116545850052128000006a887c1bec4a1528c50000005b90925090505f633b9aca006102f28461026885670de0b6b3a7640000610945565b6102729190610962565b6001600160881b03811160071b81811c6001600160481b031060061b1781811c64ffffffffff1060051b1781811c62ffffff1060041b1781811c620100000160b5600192831c1b0260121c80830401811c80830401811c80830401811c80830401811c80830401811c80830401811c80830401901c908190048111900390565b610309906c01000000000000000000000000610945565b6103139190610962565b6040516309f56ab160e11b81526001600160a01b0387811660048301528681166024830152612710604483015280831660648301529192508c918216906313ead562906084016020604051808303815f875af1158015610375573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906103999190610981565b6040516332148f6760e01b815260646004820152909a506001600160a01b038b16906332148f67906024015f604051808303815f87803b1580156103db575f5ffd5b505af11580156103ed573d5f5f3e3d5ffd5b505050505050505050505f5f886001600160a01b0316846001600160a01b03161061041957888461041c565b83895b6040516001600160601b031960608e811b8216602084015261027160ec1b60348401528d901b16603782015291935091505f90604b0160408051601f198184030181529082905263cdca175360e01b825291505f906001600160a01b0386169063cdca17539061049d9085906a887c1bec4a1528c5000000906004016109a1565b6020604051808303815f875af11580156104b9573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906104dd91906109dd565b90505f5f876001600160a01b0316866001600160a01b03161461050c57826a021165458500521280000061051a565b6a0211654585005212800000835b90925090505f633b9aca0061053b8461026885670de0b6b3a7640000610945565b610552906c01000000000000000000000000610945565b61055c9190610962565b6040516309f56ab160e11b81526001600160a01b0389811660048301528881166024830152612710604483015280831660648301529192508e918216906313ead562906084016020604051808303815f875af11580156105be573d5f5f3e3d5ffd5b505050506040513d601f19601f820116820180604052508101906105e29190610981565b6040516332148f6760e01b815260646004820152909b506001600160a01b038c16906332148f67906024015f604051808303815f87803b158015610624575f5ffd5b505af1158015610636573d5f5f3e3d5ffd5b505050505050505050505050505094509492505050565b6001600160a01b038316610677578060025f82825461066c91906109f4565b909155506106e79050565b6001600160a01b0383165f90815260208190526040902054818110156106c95760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016100b3565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b03821661070357600280548290039055610721565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8360405161076691815260200190565b60405180910390a3505050565b80516001600160a01b0381168114610789575f5ffd5b919050565b5f5f5f5f608085870312156107a1575f5ffd5b6107aa85610773565b93506107b860208601610773565b92506107c660408601610773565b91506107d460608601610773565b905092959194509250565b634e487b7160e01b5f52604160045260245ffd5b600181811c9082168061080757607f821691505b60208210810361082557634e487b7160e01b5f52602260045260245ffd5b50919050565b601f82111561087257805f5260205f20601f840160051c810160208510156108505750805b601f840160051c820191505b8181101561086f575f815560010161085c565b50505b505050565b81516001600160401b03811115610890576108906107df565b6108a48161089e84546107f3565b8461082b565b6020601f8211600181146108d6575f83156108bf5750848201515b5f19600385901b1c1916600184901b17845561086f565b5f84815260208120601f198516915b8281101561090557878501518255602094850194600190920191016108e5565b508482101561092257868401515f19600387901b60f8161c191681555b50505050600190811b01905550565b634e487b7160e01b5f52601160045260245ffd5b808202811582820484141761095c5761095c610931565b92915050565b5f8261097c57634e487b7160e01b5f52601260045260245ffd5b500490565b5f60208284031215610991575f5ffd5b61099a82610773565b9392505050565b604081525f83518060408401528060208601606085015e5f606082850101526060601f19601f8301168401019150508260208301529392505050565b5f602082840312156109ed575f5ffd5b5051919050565b8082018082111561095c5761095c610931565b610ca480610a145f395ff3fe608060405234801561000f575f5ffd5b50600436106101bb575f3560e01c806379cc6790116100f3578063b8c6f57911610093578063cc5ebdef1161006e578063cc5ebdef146103b4578063dd62ed3e146103c7578063f2fde38b146103ff578063f5821b0314610412575f5ffd5b8063b8c6f5791461037b578063c81a987c1461038e578063cb0eb21a146103a1575f5ffd5b806395d89b41116100ce57806395d89b411461033a578063a769c3fa14610342578063a9059cbb14610355578063ab427be514610368575f5ffd5b806379cc6790146103035780637d9f6db5146103165780638da5cb5b14610329575f5ffd5b806340c10f191161015e57806361d027b31161013957806361d027b3146102ad5780636e1e8d9a146102c057806370a08231146102d3578063715018a6146102fb575f5ffd5b806340c10f191461027457806342966c681461028757806350b09b561461029a575f5ffd5b806319c0359c1161019957806319c0359c146102125780631ccd1bb41461022757806323b872dd14610252578063313ce56714610265575f5ffd5b806306fdde03146101bf578063095ea7b3146101dd57806318160ddd14610200575b5f5ffd5b6101c7610425565b6040516101d49190610adb565b60405180910390f35b6101f06101eb366004610b24565b6104b5565b60405190151581526020016101d4565b6002545b6040519081526020016101d4565b610225610220366004610b4e565b6104ce565b005b600a5461023a906001600160a01b031681565b6040516001600160a01b0390911681526020016101d4565b6101f0610260366004610b70565b6104f8565b604051601281526020016101d4565b610204610282366004610b24565b61051b565b610225610295366004610bae565b610530565b600d5461023a906001600160a01b031681565b60075461023a906001600160a01b031681565b6102256102ce366004610b4e565b61053d565b6102046102e1366004610b4e565b6001600160a01b03165f9081526020819052604090205490565b610225610567565b610225610311366004610b24565b61057a565b60065461023a906001600160a01b031681565b6005546001600160a01b031661023a565b6101c7610593565b610225610350366004610b4e565b6105a2565b6101f0610363366004610b24565b6105cc565b60095461023a906001600160a01b031681565b610225610389366004610b4e565b6105d9565b600b5461023a906001600160a01b031681565b60085461023a906001600160a01b031681565b600c5461023a906001600160a01b031681565b6102046103d5366004610bc5565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61022561040d366004610b4e565b61067f565b610225610420366004610b4e565b6106be565b60606003805461043490610bfc565b80601f016020809104026020016040519081016040528092919081815260200182805461046090610bfc565b80156104ab5780601f10610482576101008083540402835291602001916104ab565b820191905f5260205f20905b81548152906001019060200180831161048e57829003601f168201915b5050505050905090565b5f336104c28185856106e8565b60019150505b92915050565b6104d66106fa565b600a80546001600160a01b0319166001600160a01b0392909216919091179055565b5f33610505858285610727565b6105108585856107a2565b506001949350505050565b5f6105246107ff565b50806104c8838261082a565b61053a338261085e565b50565b6105456106fa565b600880546001600160a01b0319166001600160a01b0392909216919091179055565b61056f6106fa565b6105785f610892565b565b610585823383610727565b61058f828261085e565b5050565b60606004805461043490610bfc565b6105aa6106fa565b600980546001600160a01b0319166001600160a01b0392909216919091179055565b5f336104c28185856107a2565b6105e16106fa565b600680546001600160a01b0319166001600160a01b038316908117909155604080516361d027b360e01b815290516361d027b3916004808201926020929091908290030181865afa158015610638573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061065c9190610c34565b600780546001600160a01b0319166001600160a01b039290921691909117905550565b6106876106fa565b6001600160a01b0381166106b557604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b61053a81610892565b6106c66106fa565b600b80546001600160a01b0319166001600160a01b0392909216919091179055565b6106f583838360016108e3565b505050565b6005546001600160a01b031633146105785760405163118cdaa760e01b81523360048201526024016106ac565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f19811461079c578181101561078e57604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016106ac565b61079c84848484035f6108e3565b50505050565b6001600160a01b0383166107cb57604051634b637e8f60e11b81525f60048201526024016106ac565b6001600160a01b0382166107f45760405163ec442f0560e01b81525f60048201526024016106ac565b6106f58383836109b5565b6006546001600160a01b031633146105785760405163d75a484960e01b815260040160405180910390fd5b6001600160a01b0382166108535760405163ec442f0560e01b81525f60048201526024016106ac565b61058f5f83836109b5565b6001600160a01b03821661088757604051634b637e8f60e11b81525f60048201526024016106ac565b61058f825f836109b5565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b03841661090c5760405163e602df0560e01b81525f60048201526024016106ac565b6001600160a01b03831661093557604051634a1406b160e11b81525f60048201526024016106ac565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561079c57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516109a791815260200190565b60405180910390a350505050565b6001600160a01b0383166109df578060025f8282546109d49190610c4f565b90915550610a4f9050565b6001600160a01b0383165f9081526020819052604090205481811015610a315760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016106ac565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216610a6b57600280548290039055610a89565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610ace91815260200190565b60405180910390a3505050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b6001600160a01b038116811461053a575f5ffd5b5f5f60408385031215610b35575f5ffd5b8235610b4081610b10565b946020939093013593505050565b5f60208284031215610b5e575f5ffd5b8135610b6981610b10565b9392505050565b5f5f5f60608486031215610b82575f5ffd5b8335610b8d81610b10565b92506020840135610b9d81610b10565b929592945050506040919091013590565b5f60208284031215610bbe575f5ffd5b5035919050565b5f5f60408385031215610bd6575f5ffd5b8235610be181610b10565b91506020830135610bf181610b10565b809150509250929050565b600181811c90821680610c1057607f821691505b602082108103610c2e57634e487b7160e01b5f52602260045260245ffd5b50919050565b5f60208284031215610c44575f5ffd5b8151610b6981610b10565b808201808211156104c857634e487b7160e01b5f52601160045260245ffdfea2646970667358221220881b71267b96b3d0825f642e2a5b36315859acb70d897c8331c1116230a520f964736f6c634300081b0033000000000000000000000000c36442b4a4522e871399cd717abdd847ab11fe8800000000000000000000000096a5399d07896f757bd4c6ef56461f58db95186200000000000000000000000066b5228cfd34d9f4d9f03188d67816286c7c0b74000000000000000000000000b27308f9f90d607463bb33ea1bebb41c27ce5ab6

Deployed Bytecode

0x608060405234801561000f575f5ffd5b50600436106101bb575f3560e01c806379cc6790116100f3578063b8c6f57911610093578063cc5ebdef1161006e578063cc5ebdef146103b4578063dd62ed3e146103c7578063f2fde38b146103ff578063f5821b0314610412575f5ffd5b8063b8c6f5791461037b578063c81a987c1461038e578063cb0eb21a146103a1575f5ffd5b806395d89b41116100ce57806395d89b411461033a578063a769c3fa14610342578063a9059cbb14610355578063ab427be514610368575f5ffd5b806379cc6790146103035780637d9f6db5146103165780638da5cb5b14610329575f5ffd5b806340c10f191161015e57806361d027b31161013957806361d027b3146102ad5780636e1e8d9a146102c057806370a08231146102d3578063715018a6146102fb575f5ffd5b806340c10f191461027457806342966c681461028757806350b09b561461029a575f5ffd5b806319c0359c1161019957806319c0359c146102125780631ccd1bb41461022757806323b872dd14610252578063313ce56714610265575f5ffd5b806306fdde03146101bf578063095ea7b3146101dd57806318160ddd14610200575b5f5ffd5b6101c7610425565b6040516101d49190610adb565b60405180910390f35b6101f06101eb366004610b24565b6104b5565b60405190151581526020016101d4565b6002545b6040519081526020016101d4565b610225610220366004610b4e565b6104ce565b005b600a5461023a906001600160a01b031681565b6040516001600160a01b0390911681526020016101d4565b6101f0610260366004610b70565b6104f8565b604051601281526020016101d4565b610204610282366004610b24565b61051b565b610225610295366004610bae565b610530565b600d5461023a906001600160a01b031681565b60075461023a906001600160a01b031681565b6102256102ce366004610b4e565b61053d565b6102046102e1366004610b4e565b6001600160a01b03165f9081526020819052604090205490565b610225610567565b610225610311366004610b24565b61057a565b60065461023a906001600160a01b031681565b6005546001600160a01b031661023a565b6101c7610593565b610225610350366004610b4e565b6105a2565b6101f0610363366004610b24565b6105cc565b60095461023a906001600160a01b031681565b610225610389366004610b4e565b6105d9565b600b5461023a906001600160a01b031681565b60085461023a906001600160a01b031681565b600c5461023a906001600160a01b031681565b6102046103d5366004610bc5565b6001600160a01b039182165f90815260016020908152604080832093909416825291909152205490565b61022561040d366004610b4e565b61067f565b610225610420366004610b4e565b6106be565b60606003805461043490610bfc565b80601f016020809104026020016040519081016040528092919081815260200182805461046090610bfc565b80156104ab5780601f10610482576101008083540402835291602001916104ab565b820191905f5260205f20905b81548152906001019060200180831161048e57829003601f168201915b5050505050905090565b5f336104c28185856106e8565b60019150505b92915050565b6104d66106fa565b600a80546001600160a01b0319166001600160a01b0392909216919091179055565b5f33610505858285610727565b6105108585856107a2565b506001949350505050565b5f6105246107ff565b50806104c8838261082a565b61053a338261085e565b50565b6105456106fa565b600880546001600160a01b0319166001600160a01b0392909216919091179055565b61056f6106fa565b6105785f610892565b565b610585823383610727565b61058f828261085e565b5050565b60606004805461043490610bfc565b6105aa6106fa565b600980546001600160a01b0319166001600160a01b0392909216919091179055565b5f336104c28185856107a2565b6105e16106fa565b600680546001600160a01b0319166001600160a01b038316908117909155604080516361d027b360e01b815290516361d027b3916004808201926020929091908290030181865afa158015610638573d5f5f3e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061065c9190610c34565b600780546001600160a01b0319166001600160a01b039290921691909117905550565b6106876106fa565b6001600160a01b0381166106b557604051631e4fbdf760e01b81525f60048201526024015b60405180910390fd5b61053a81610892565b6106c66106fa565b600b80546001600160a01b0319166001600160a01b0392909216919091179055565b6106f583838360016108e3565b505050565b6005546001600160a01b031633146105785760405163118cdaa760e01b81523360048201526024016106ac565b6001600160a01b038381165f908152600160209081526040808320938616835292905220545f19811461079c578181101561078e57604051637dc7a0d960e11b81526001600160a01b038416600482015260248101829052604481018390526064016106ac565b61079c84848484035f6108e3565b50505050565b6001600160a01b0383166107cb57604051634b637e8f60e11b81525f60048201526024016106ac565b6001600160a01b0382166107f45760405163ec442f0560e01b81525f60048201526024016106ac565b6106f58383836109b5565b6006546001600160a01b031633146105785760405163d75a484960e01b815260040160405180910390fd5b6001600160a01b0382166108535760405163ec442f0560e01b81525f60048201526024016106ac565b61058f5f83836109b5565b6001600160a01b03821661088757604051634b637e8f60e11b81525f60048201526024016106ac565b61058f825f836109b5565b600580546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0905f90a35050565b6001600160a01b03841661090c5760405163e602df0560e01b81525f60048201526024016106ac565b6001600160a01b03831661093557604051634a1406b160e11b81525f60048201526024016106ac565b6001600160a01b038085165f908152600160209081526040808320938716835292905220829055801561079c57826001600160a01b0316846001600160a01b03167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925846040516109a791815260200190565b60405180910390a350505050565b6001600160a01b0383166109df578060025f8282546109d49190610c4f565b90915550610a4f9050565b6001600160a01b0383165f9081526020819052604090205481811015610a315760405163391434e360e21b81526001600160a01b038516600482015260248101829052604481018390526064016106ac565b6001600160a01b0384165f9081526020819052604090209082900390555b6001600160a01b038216610a6b57600280548290039055610a89565b6001600160a01b0382165f9081526020819052604090208054820190555b816001600160a01b0316836001600160a01b03167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef83604051610ace91815260200190565b60405180910390a3505050565b602081525f82518060208401528060208501604085015e5f604082850101526040601f19601f83011684010191505092915050565b6001600160a01b038116811461053a575f5ffd5b5f5f60408385031215610b35575f5ffd5b8235610b4081610b10565b946020939093013593505050565b5f60208284031215610b5e575f5ffd5b8135610b6981610b10565b9392505050565b5f5f5f60608486031215610b82575f5ffd5b8335610b8d81610b10565b92506020840135610b9d81610b10565b929592945050506040919091013590565b5f60208284031215610bbe575f5ffd5b5035919050565b5f5f60408385031215610bd6575f5ffd5b8235610be181610b10565b91506020830135610bf181610b10565b809150509250929050565b600181811c90821680610c1057607f821691505b602082108103610c2e57634e487b7160e01b5f52602260045260245ffd5b50919050565b5f60208284031215610c44575f5ffd5b8151610b6981610b10565b808201808211156104c857634e487b7160e01b5f52601160045260245ffdfea2646970667358221220881b71267b96b3d0825f642e2a5b36315859acb70d897c8331c1116230a520f964736f6c634300081b0033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

000000000000000000000000c36442b4a4522e871399cd717abdd847ab11fe8800000000000000000000000096a5399d07896f757bd4c6ef56461f58db95186200000000000000000000000066b5228cfd34d9f4d9f03188d67816286c7c0b74000000000000000000000000b27308f9f90d607463bb33ea1bebb41c27ce5ab6

-----Decoded View---------------
Arg [0] : _v3PositionManager (address): 0xC36442b4a4522E871399CD717aBDD847Ab11FE88
Arg [1] : _dragonX (address): 0x96a5399D07896f757Bd4c6eF56461F58DB951862
Arg [2] : _volt (address): 0x66b5228CfD34d9f4d9f03188d67816286C7c0b74
Arg [3] : _v3Quoter (address): 0xb27308f9F90D607463bb33eA1BeBb41C27CE5AB6

-----Encoded View---------------
4 Constructor Arguments found :
Arg [0] : 000000000000000000000000c36442b4a4522e871399cd717abdd847ab11fe88
Arg [1] : 00000000000000000000000096a5399d07896f757bd4c6ef56461f58db951862
Arg [2] : 00000000000000000000000066b5228cfd34d9f4d9f03188d67816286c7c0b74
Arg [3] : 000000000000000000000000b27308f9f90d607463bb33ea1bebb41c27ce5ab6


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.