ETH Price: $3,350.99 (-1.12%)

Token

DefaultCollateral_ENA (DC_ENA)
 

Overview

Max Total Supply

62,827,029.149380208415179676 DC_ENA

Holders

10,065 ( -1.162%)

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Filtered by Token Holder
theshruti.eth
Balance
473.738889083415419428 DC_ENA

Value
$0.00
0x62f25d0944a1b512a1d77e4dede57f72ffc8ef25
Loading...
Loading
Loading...
Loading
Loading...
Loading

OVERVIEW

Symbiotic is a shared security protocol that serves as a thin coordination layer, empowering network builders to control and adapt their own (re)staking implementation in a permissionless manner.

# Exchange Pair Price  24H Volume % Volume

Minimal Proxy Contract for 0xa301ea1e3cab036abe8fa70e5526a51cb41799b6

Contract Name:
DefaultCollateral

Compiler Version
v0.8.25+commit.b61c2a91

Optimization Enabled:
Yes with 200 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 18 : DefaultCollateral.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import {IDefaultCollateral} from "src/interfaces/defaultCollateral/IDefaultCollateral.sol";
import {ICollateral} from "src/interfaces/ICollateral.sol";
import {Permit2Lib} from "src/contracts/libraries/Permit2Lib.sol";

import {ReentrancyGuardUpgradeable} from "@openzeppelin/contracts-upgradeable/utils/ReentrancyGuardUpgradeable.sol";
import {ERC20Upgradeable} from "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20Upgradeable.sol";
import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";

contract DefaultCollateral is ERC20Upgradeable, ReentrancyGuardUpgradeable, IDefaultCollateral {
    using SafeERC20 for IERC20;
    using Permit2Lib for IERC20;

    uint8 private DECIMALS;

    /**
     * @inheritdoc ICollateral
     */
    address public asset;

    /**
     * @inheritdoc ICollateral
     */
    uint256 public totalRepaidDebt;

    /**
     * @inheritdoc ICollateral
     */
    mapping(address issuer => uint256 amount) public issuerRepaidDebt;

    /**
     * @inheritdoc ICollateral
     */
    mapping(address recipient => uint256 amount) public recipientRepaidDebt;

    /**
     * @inheritdoc ICollateral
     */
    mapping(address issuer => mapping(address recipient => uint256 amount)) public repaidDebt;

    /**
     * @inheritdoc ICollateral
     */
    uint256 public totalDebt;

    /**
     * @inheritdoc ICollateral
     */
    mapping(address issuer => uint256 amount) public issuerDebt;

    /**
     * @inheritdoc ICollateral
     */
    mapping(address recipient => uint256 amount) public recipientDebt;

    /**
     * @inheritdoc ICollateral
     */
    mapping(address issuer => mapping(address recipient => uint256 amount)) public debt;

    /**
     * @inheritdoc IDefaultCollateral
     */
    uint256 public limit;

    /**
     * @inheritdoc IDefaultCollateral
     */
    address public limitIncreaser;

    modifier onlyLimitIncreaser() {
        if (msg.sender != limitIncreaser) {
            revert NotLimitIncreaser();
        }
        _;
    }

    constructor() {
        _disableInitializers();
    }

    function initialize(address asset_, uint256 initialLimit, address limitIncreaser_) external initializer {
        __ERC20_init(
            string.concat("DefaultCollateral_", IERC20Metadata(asset_).name()),
            string.concat("DC_", IERC20Metadata(asset_).symbol())
        );
        __ReentrancyGuard_init();

        asset = asset_;

        limit = initialLimit;
        limitIncreaser = limitIncreaser_;

        DECIMALS = IERC20Metadata(asset).decimals();
    }

    /**
     * @inheritdoc ERC20Upgradeable
     */
    function decimals() public view override returns (uint8) {
        return DECIMALS;
    }

    /**
     * @inheritdoc IDefaultCollateral
     */
    function deposit(address recipient, uint256 amount) public nonReentrant returns (uint256) {
        uint256 balanceBefore = IERC20(asset).balanceOf(address(this));
        IERC20(asset).transferFrom2(msg.sender, address(this), amount);
        amount = IERC20(asset).balanceOf(address(this)) - balanceBefore;

        if (amount == 0) {
            revert InsufficientDeposit();
        }

        if (totalSupply() + amount > limit) {
            revert ExceedsLimit();
        }

        _mint(recipient, amount);

        emit Deposit(msg.sender, recipient, amount);

        return amount;
    }

    /**
     * @inheritdoc IDefaultCollateral
     */
    function deposit(
        address recipient,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external returns (uint256) {
        IERC20(asset).tryPermit2(msg.sender, address(this), amount, deadline, v, r, s);

        return deposit(recipient, amount);
    }

    /**
     * @inheritdoc IDefaultCollateral
     */
    function withdraw(address recipient, uint256 amount) external {
        if (amount == 0) {
            revert InsufficientWithdraw();
        }

        _burn(msg.sender, amount);

        IERC20(asset).safeTransfer(recipient, amount);

        emit Withdraw(msg.sender, recipient, amount);
    }

    /**
     * @inheritdoc ICollateral
     */
    function issueDebt(address recipient, uint256 amount) external {
        if (amount == 0) {
            revert InsufficientIssueDebt();
        }

        _burn(msg.sender, amount);

        emit IssueDebt(msg.sender, recipient, amount);

        totalRepaidDebt += amount;
        issuerRepaidDebt[msg.sender] += amount;
        recipientRepaidDebt[recipient] += amount;
        repaidDebt[msg.sender][recipient] += amount;

        IERC20(asset).safeTransfer(recipient, amount);

        emit RepayDebt(msg.sender, recipient, amount);
    }

    /**
     * @inheritdoc IDefaultCollateral
     */
    function increaseLimit(uint256 amount) external onlyLimitIncreaser {
        limit += amount;

        emit IncreaseLimit(amount);
    }

    /**
     * @inheritdoc IDefaultCollateral
     */
    function setLimitIncreaser(address limitIncreaser_) external onlyLimitIncreaser {
        limitIncreaser = limitIncreaser_;

        emit SetLimitIncreaser(limitIncreaser_);
    }
}

File 2 of 18 : IDefaultCollateral.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import {ICollateral} from "src/interfaces/ICollateral.sol";

interface IDefaultCollateral is ICollateral {
    error NotLimitIncreaser();
    error InsufficientDeposit();
    error ExceedsLimit();
    error InsufficientWithdraw();
    error InsufficientIssueDebt();

    /**
     * @notice Emmited when deposit happens.
     * @param depositor address of the depositor
     * @param recipient address of the collateral's recipient
     * @param amount amount of the collateral minted
     */
    event Deposit(address indexed depositor, address indexed recipient, uint256 amount);

    /**
     * @notice Emmited when withdrawal happens.
     * @param withdrawer address of the withdrawer
     * @param recipient address of the underlying asset's recipient
     * @param amount amount of the collateral burned
     */
    event Withdraw(address indexed withdrawer, address indexed recipient, uint256 amount);

    /**
     * @notice Emmited when limit is increased.
     * @param amount amount to increase the limit by
     */
    event IncreaseLimit(uint256 amount);

    /**
     * @notice Emmited when new limit increaser is set.
     * @param limitIncreaser address of the new limit increaser
     */
    event SetLimitIncreaser(address indexed limitIncreaser);

    /**
     * @notice Get a maximum possible collateral total supply.
     * @return maximum collateral total supply
     */
    function limit() external view returns (uint256);

    /**
     * @notice Get an address of the limit increaser.
     * @return address of the limit increaser
     */
    function limitIncreaser() external view returns (address);

    /**
     * @notice Deposit a given amount of the underlying asset, and mint the collateral to a particular recipient.
     * @param recipient address of the collateral's recipient
     * @param amount amount of the underlying asset
     * @return amount of the collateral minted
     */
    function deposit(address recipient, uint256 amount) external returns (uint256);

    /**
     * @notice Deposit a given amount of the underlying asset using a permit functionality, and mint the collateral to a particular recipient.
     * @param recipient address of the collateral's recipient
     * @param amount amount of the underlying asset
     * @param deadline timestamp of the signature's deadline
     * @param v v component of the signature
     * @param r r component of the signature
     * @param s s component of the signature
     * @return amount of the collateral minted
     */
    function deposit(
        address recipient,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external returns (uint256);

    /**
     * @notice Withdraw a given amount of the underlying asset, and transfer it to a particular recipient.
     * @param recipient address of the underlying asset's recipient
     * @param amount amount of the underlying asset
     */
    function withdraw(address recipient, uint256 amount) external;

    /**
     * @notice Increase a limit of maximum collateral total supply.
     * @param amount amount to increase the limit by
     * @dev Called only by limitIncreaser.
     */
    function increaseLimit(uint256 amount) external;

    /**
     * @notice Set a new limit increaser.
     * @param limitIncreaser address of the new limit increaser
     * @dev Called only by limitIncreaser.
     */
    function setLimitIncreaser(address limitIncreaser) external;
}

File 3 of 18 : ICollateral.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.8.25;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";

interface ICollateral is IERC20 {
    /**
     * @notice Emitted when debt is issued.
     * @param issuer address of the debt's issuer
     * @param recipient address that should receive the underlying asset
     * @param debtIssued amount of the debt issued
     */
    event IssueDebt(address indexed issuer, address indexed recipient, uint256 debtIssued);

    /**
     * @notice Emitted when debt is repaid.
     * @param issuer address of the debt's issuer
     * @param recipient address that received the underlying asset
     * @param debtRepaid amount of the debt repaid
     */
    event RepayDebt(address indexed issuer, address indexed recipient, uint256 debtRepaid);

    /**
     * @notice Get the collateral's underlying asset.
     * @return asset address of the underlying asset
     */
    function asset() external view returns (address);

    /**
     * @notice Get a total amount of repaid debt.
     * @return total repaid debt
     */
    function totalRepaidDebt() external view returns (uint256);

    /**
     * @notice Get an amount of repaid debt created by a particular issuer.
     * @param issuer address of the debt's issuer
     * @return particular issuer's repaid debt
     */
    function issuerRepaidDebt(address issuer) external view returns (uint256);

    /**
     * @notice Get an amount of repaid debt to a particular recipient.
     * @param recipient address that received the underlying asset
     * @return particular recipient's repaid debt
     */
    function recipientRepaidDebt(address recipient) external view returns (uint256);

    /**
     * @notice Get an amount of repaid debt for a particular issuer-recipient pair.
     * @param issuer address of the debt's issuer
     * @param recipient address that received the underlying asset
     * @return particular pair's repaid debt
     */
    function repaidDebt(address issuer, address recipient) external view returns (uint256);

    /**
     * @notice Get a total amount of debt.
     * @return total debt
     */
    function totalDebt() external view returns (uint256);

    /**
     * @notice Get a current debt created by a particular issuer.
     * @param issuer address of the debt's issuer
     * @return particular issuer's debt
     */
    function issuerDebt(address issuer) external view returns (uint256);

    /**
     * @notice Get a current debt to a particular recipient.
     * @param recipient address that should receive the underlying asset
     * @return particular recipient's debt
     */
    function recipientDebt(address recipient) external view returns (uint256);

    /**
     * @notice Get a current debt for a particular issuer-recipient pair.
     * @param issuer address of the debt's issuer
     * @param recipient address that should receive the underlying asset
     * @return particular pair's debt
     */
    function debt(address issuer, address recipient) external view returns (uint256);

    /**
     * @notice Burn a given amount of the collateral, and increase a debt of the underlying asset for the caller.
     * @param recipient address that should receive the underlying asset
     * @param amount amount of the collateral
     */
    function issueDebt(address recipient, uint256 amount) external;
}

File 4 of 18 : Permit2Lib.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Permit} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Permit.sol";

import {IDAIPermit} from "permit2/src/interfaces/IDAIPermit.sol";
import {IAllowanceTransfer} from "permit2/src/interfaces/IAllowanceTransfer.sol";
import {SafeCast160} from "permit2/src/libraries/SafeCast160.sol";

/// @title Permit2Lib
/// @notice Enables efficient transfers and EIP-2612/DAI
/// permits for any token by falling back to Permit2.
/// @author Modified from Uniswap (https://github.com/Uniswap/permit2/blob/main/src/libraries/Permit2Lib.sol)
library Permit2Lib {
    using SafeCast160 for uint256;
    /*//////////////////////////////////////////////////////////////
                                CONSTANTS
    //////////////////////////////////////////////////////////////*/

    /// @dev The unique EIP-712 domain domain separator for the DAI token contract.
    bytes32 internal constant DAI_DOMAIN_SEPARATOR = 0xdbb8cf42e1ecb028be3f3dbc922e1d878b963f411dc388ced501601c60f7c6f7;

    /// @dev The address for the WETH9 contract on Ethereum mainnet, encoded as a bytes32.
    bytes32 internal constant WETH9_ADDRESS = 0x000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2;

    /// @dev The address of the Permit2 contract the library will use.
    IAllowanceTransfer internal constant PERMIT2 =
        IAllowanceTransfer(address(0x000000000022D473030F116dDEE9F6B43aC78BA3));

    /// @notice Transfer a given amount of tokens from one user to another.
    /// @param token The token to transfer.
    /// @param from The user to transfer from.
    /// @param to The user to transfer to.
    /// @param amount The amount to transfer.
    function transferFrom2(IERC20 token, address from, address to, uint256 amount) internal {
        // Generate calldata for a standard transferFrom call.
        bytes memory inputData = abi.encodeCall(IERC20.transferFrom, (from, to, amount));

        bool success; // Call the token contract as normal, capturing whether it succeeded.
        assembly {
            success :=
                and(
                    // Set success to whether the call reverted, if not we check it either
                    // returned exactly 1 (can't just be non-zero data), or had no return data.
                    or(eq(mload(0), 1), iszero(returndatasize())),
                    // Counterintuitively, this call() must be positioned after the or() in the
                    // surrounding and() because and() evaluates its arguments from right to left.
                    // We use 0 and 32 to copy up to 32 bytes of return data into the first slot of scratch space.
                    call(gas(), token, 0, add(inputData, 32), mload(inputData), 0, 32)
                )
        }

        // We'll fall back to using Permit2 if calling transferFrom on the token directly reverted.
        if (!success) PERMIT2.transferFrom(from, to, amount.toUint160(), address(token));
    }

    /*//////////////////////////////////////////////////////////////
                              PERMIT LOGIC
    //////////////////////////////////////////////////////////////*/

    /// @notice Permit a user to spend a given amount of
    /// another user's tokens via native EIP-2612 permit if possible, falling
    /// back to Permit2 if native permit fails or is not implemented on the token.
    /// @param token The token to permit spending.
    /// @param owner The user to permit spending from.
    /// @param spender The user to permit spending to.
    /// @param amount The amount to permit spending.
    /// @param deadline  The timestamp after which the signature is no longer valid.
    /// @param v Must produce valid secp256k1 signature from the owner along with r and s.
    /// @param r Must produce valid secp256k1 signature from the owner along with v and s.
    /// @param s Must produce valid secp256k1 signature from the owner along with r and v.
    function tryPermit2(
        IERC20 token,
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        // Generate calldata for a call to DOMAIN_SEPARATOR on the token.
        bytes memory inputData = abi.encodeWithSelector(IERC20Permit.DOMAIN_SEPARATOR.selector);

        bool success; // Call the token contract as normal, capturing whether it succeeded.
        bytes32 domainSeparator; // If the call succeeded, we'll capture the return value here.

        assembly {
            // If the token is WETH9, we know it doesn't have a DOMAIN_SEPARATOR, and we'll skip this step.
            // We make sure to mask the token address as its higher order bits aren't guaranteed to be clean.
            if iszero(eq(and(token, 0xffffffffffffffffffffffffffffffffffffffff), WETH9_ADDRESS)) {
                success :=
                    and(
                        // Should resolve false if its not 32 bytes or its first word is 0.
                        and(iszero(iszero(mload(0))), eq(returndatasize(), 32)),
                        // We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
                        // Counterintuitively, this call must be positioned second to the and() call in the
                        // surrounding and() call or else returndatasize() will be zero during the computation.
                        // We send a maximum of 5000 gas to prevent tokens with fallbacks from using a ton of gas.
                        // which should be plenty to allow tokens to fetch their DOMAIN_SEPARATOR from storage, etc.
                        staticcall(5000, token, add(inputData, 32), mload(inputData), 0, 32)
                    )

                domainSeparator := mload(0) // Copy the return value into the domainSeparator variable.
            }
        }

        // If the call to DOMAIN_SEPARATOR succeeded, try using permit on the token.
        if (success) {
            // We'll use DAI's special permit if it's DOMAIN_SEPARATOR matches,
            // otherwise we'll just encode a call to the standard permit function.
            inputData = domainSeparator == DAI_DOMAIN_SEPARATOR
                ? abi.encodeCall(
                    IDAIPermit.permit, (owner, spender, IERC20Permit(address(token)).nonces(owner), deadline, true, v, r, s)
                )
                : abi.encodeCall(IERC20Permit.permit, (owner, spender, amount, deadline, v, r, s));

            assembly {
                success := call(gas(), token, 0, add(inputData, 32), mload(inputData), 0, 0)
            }
        }

        if (!success) {
            // If the initial DOMAIN_SEPARATOR call on the token failed or a
            // subsequent call to permit failed, fall back to using Permit2.
            simplePermit2(token, owner, spender, amount, deadline, v, r, s);
        }
    }

    /// @notice Simple unlimited permit on the Permit2 contract.
    /// @param token The token to permit spending.
    /// @param owner The user to permit spending from.
    /// @param spender The user to permit spending to.
    /// @param amount The amount to permit spending.
    /// @param deadline  The timestamp after which the signature is no longer valid.
    /// @param v Must produce valid secp256k1 signature from the owner along with r and s.
    /// @param r Must produce valid secp256k1 signature from the owner along with v and s.
    /// @param s Must produce valid secp256k1 signature from the owner along with r and v.
    function simplePermit2(
        IERC20 token,
        address owner,
        address spender,
        uint256 amount,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal {
        (,, uint48 nonce) = PERMIT2.allowance(owner, address(token), spender);

        try PERMIT2.permit(
            owner,
            IAllowanceTransfer.PermitSingle({
                details: IAllowanceTransfer.PermitDetails({
                    token: address(token),
                    amount: amount.toUint160(),
                    // Use an unlimited expiration because it most
                    // closely mimics how a standard approval works.
                    expiration: type(uint48).max,
                    nonce: nonce
                }),
                spender: spender,
                sigDeadline: deadline
            }),
            bytes.concat(r, s, bytes1(v))
        ) {} catch {}
    }
}

File 5 of 18 : ReentrancyGuardUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuardUpgradeable is Initializable {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant NOT_ENTERED = 1;
    uint256 private constant ENTERED = 2;

    /// @custom:storage-location erc7201:openzeppelin.storage.ReentrancyGuard
    struct ReentrancyGuardStorage {
        uint256 _status;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ReentrancyGuard")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ReentrancyGuardStorageLocation = 0x9b779b17422d0df92223018b32b4d1fa46e071723d6817e2486d003becc55f00;

    function _getReentrancyGuardStorage() private pure returns (ReentrancyGuardStorage storage $) {
        assembly {
            $.slot := ReentrancyGuardStorageLocation
        }
    }

    /**
     * @dev Unauthorized reentrant call.
     */
    error ReentrancyGuardReentrantCall();

    function __ReentrancyGuard_init() internal onlyInitializing {
        __ReentrancyGuard_init_unchained();
    }

    function __ReentrancyGuard_init_unchained() internal onlyInitializing {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and making it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _nonReentrantBefore();
        _;
        _nonReentrantAfter();
    }

    function _nonReentrantBefore() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // On the first call to nonReentrant, _status will be NOT_ENTERED
        if ($._status == ENTERED) {
            revert ReentrancyGuardReentrantCall();
        }

        // Any calls to nonReentrant after this point will fail
        $._status = ENTERED;
    }

    function _nonReentrantAfter() private {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        $._status = NOT_ENTERED;
    }

    /**
     * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a
     * `nonReentrant` function in the call stack.
     */
    function _reentrancyGuardEntered() internal view returns (bool) {
        ReentrancyGuardStorage storage $ = _getReentrancyGuardStorage();
        return $._status == ENTERED;
    }
}

File 6 of 18 : ERC20Upgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {ContextUpgradeable} from "../../utils/ContextUpgradeable.sol";
import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol";
import {Initializable} from "../../proxy/utils/Initializable.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20, IERC20Metadata, IERC20Errors {
    /// @custom:storage-location erc7201:openzeppelin.storage.ERC20
    struct ERC20Storage {
        mapping(address account => uint256) _balances;

        mapping(address account => mapping(address spender => uint256)) _allowances;

        uint256 _totalSupply;

        string _name;
        string _symbol;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.ERC20")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant ERC20StorageLocation = 0x52c63247e1f47db19d5ce0460030c497f067ca4cebf71ba98eeadabe20bace00;

    function _getERC20Storage() private pure returns (ERC20Storage storage $) {
        assembly {
            $.slot := ERC20StorageLocation
        }
    }

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    function __ERC20_init(string memory name_, string memory symbol_) internal onlyInitializing {
        __ERC20_init_unchained(name_, symbol_);
    }

    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal onlyInitializing {
        ERC20Storage storage $ = _getERC20Storage();
        $._name = name_;
        $._symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        ERC20Storage storage $ = _getERC20Storage();
        return $._allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        ERC20Storage storage $ = _getERC20Storage();
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            $._totalSupply += value;
        } else {
            uint256 fromBalance = $._balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                $._balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                $._totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                $._balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        ERC20Storage storage $ = _getERC20Storage();
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        $._allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 7 of 18 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 8 of 18 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 9 of 18 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC20Permit} from "../extensions/IERC20Permit.sol";
import {Address} from "../../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using Address for address;

    /**
     * @dev An operation with an ERC20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data);
        if (returndata.length != 0 && !abi.decode(returndata, (bool))) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silents catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We cannot use {Address-functionCall} here since this should return false
        // and not revert is the subcall reverts.

        (bool success, bytes memory returndata) = address(token).call(data);
        return success && (returndata.length == 0 || abi.decode(returndata, (bool))) && address(token).code.length > 0;
    }
}

File 10 of 18 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 11 of 18 : IDAIPermit.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IDAIPermit {
    /// @param holder The address of the token owner.
    /// @param spender The address of the token spender.
    /// @param nonce The owner's nonce, increases at each call to permit.
    /// @param expiry The timestamp at which the permit is no longer valid.
    /// @param allowed Boolean that sets approval amount, true for type(uint256).max and false for 0.
    /// @param v Must produce valid secp256k1 signature from the owner along with r and s.
    /// @param r Must produce valid secp256k1 signature from the owner along with v and s.
    /// @param s Must produce valid secp256k1 signature from the owner along with r and v.
    function permit(
        address holder,
        address spender,
        uint256 nonce,
        uint256 expiry,
        bool allowed,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;
}

File 12 of 18 : IAllowanceTransfer.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IEIP712} from "./IEIP712.sol";

/// @title AllowanceTransfer
/// @notice Handles ERC20 token permissions through signature based allowance setting and ERC20 token transfers by checking allowed amounts
/// @dev Requires user's token approval on the Permit2 contract
interface IAllowanceTransfer is IEIP712 {
    /// @notice Thrown when an allowance on a token has expired.
    /// @param deadline The timestamp at which the allowed amount is no longer valid
    error AllowanceExpired(uint256 deadline);

    /// @notice Thrown when an allowance on a token has been depleted.
    /// @param amount The maximum amount allowed
    error InsufficientAllowance(uint256 amount);

    /// @notice Thrown when too many nonces are invalidated.
    error ExcessiveInvalidation();

    /// @notice Emits an event when the owner successfully invalidates an ordered nonce.
    event NonceInvalidation(
        address indexed owner, address indexed token, address indexed spender, uint48 newNonce, uint48 oldNonce
    );

    /// @notice Emits an event when the owner successfully sets permissions on a token for the spender.
    event Approval(
        address indexed owner, address indexed token, address indexed spender, uint160 amount, uint48 expiration
    );

    /// @notice Emits an event when the owner successfully sets permissions using a permit signature on a token for the spender.
    event Permit(
        address indexed owner,
        address indexed token,
        address indexed spender,
        uint160 amount,
        uint48 expiration,
        uint48 nonce
    );

    /// @notice Emits an event when the owner sets the allowance back to 0 with the lockdown function.
    event Lockdown(address indexed owner, address token, address spender);

    /// @notice The permit data for a token
    struct PermitDetails {
        // ERC20 token address
        address token;
        // the maximum amount allowed to spend
        uint160 amount;
        // timestamp at which a spender's token allowances become invalid
        uint48 expiration;
        // an incrementing value indexed per owner,token,and spender for each signature
        uint48 nonce;
    }

    /// @notice The permit message signed for a single token allowance
    struct PermitSingle {
        // the permit data for a single token alownce
        PermitDetails details;
        // address permissioned on the allowed tokens
        address spender;
        // deadline on the permit signature
        uint256 sigDeadline;
    }

    /// @notice The permit message signed for multiple token allowances
    struct PermitBatch {
        // the permit data for multiple token allowances
        PermitDetails[] details;
        // address permissioned on the allowed tokens
        address spender;
        // deadline on the permit signature
        uint256 sigDeadline;
    }

    /// @notice The saved permissions
    /// @dev This info is saved per owner, per token, per spender and all signed over in the permit message
    /// @dev Setting amount to type(uint160).max sets an unlimited approval
    struct PackedAllowance {
        // amount allowed
        uint160 amount;
        // permission expiry
        uint48 expiration;
        // an incrementing value indexed per owner,token,and spender for each signature
        uint48 nonce;
    }

    /// @notice A token spender pair.
    struct TokenSpenderPair {
        // the token the spender is approved
        address token;
        // the spender address
        address spender;
    }

    /// @notice Details for a token transfer.
    struct AllowanceTransferDetails {
        // the owner of the token
        address from;
        // the recipient of the token
        address to;
        // the amount of the token
        uint160 amount;
        // the token to be transferred
        address token;
    }

    /// @notice A mapping from owner address to token address to spender address to PackedAllowance struct, which contains details and conditions of the approval.
    /// @notice The mapping is indexed in the above order see: allowance[ownerAddress][tokenAddress][spenderAddress]
    /// @dev The packed slot holds the allowed amount, expiration at which the allowed amount is no longer valid, and current nonce thats updated on any signature based approvals.
    function allowance(address user, address token, address spender)
        external
        view
        returns (uint160 amount, uint48 expiration, uint48 nonce);

    /// @notice Approves the spender to use up to amount of the specified token up until the expiration
    /// @param token The token to approve
    /// @param spender The spender address to approve
    /// @param amount The approved amount of the token
    /// @param expiration The timestamp at which the approval is no longer valid
    /// @dev The packed allowance also holds a nonce, which will stay unchanged in approve
    /// @dev Setting amount to type(uint160).max sets an unlimited approval
    function approve(address token, address spender, uint160 amount, uint48 expiration) external;

    /// @notice Permit a spender to a given amount of the owners token via the owner's EIP-712 signature
    /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
    /// @param owner The owner of the tokens being approved
    /// @param permitSingle Data signed over by the owner specifying the terms of approval
    /// @param signature The owner's signature over the permit data
    function permit(address owner, PermitSingle memory permitSingle, bytes calldata signature) external;

    /// @notice Permit a spender to the signed amounts of the owners tokens via the owner's EIP-712 signature
    /// @dev May fail if the owner's nonce was invalidated in-flight by invalidateNonce
    /// @param owner The owner of the tokens being approved
    /// @param permitBatch Data signed over by the owner specifying the terms of approval
    /// @param signature The owner's signature over the permit data
    function permit(address owner, PermitBatch memory permitBatch, bytes calldata signature) external;

    /// @notice Transfer approved tokens from one address to another
    /// @param from The address to transfer from
    /// @param to The address of the recipient
    /// @param amount The amount of the token to transfer
    /// @param token The token address to transfer
    /// @dev Requires the from address to have approved at least the desired amount
    /// of tokens to msg.sender.
    function transferFrom(address from, address to, uint160 amount, address token) external;

    /// @notice Transfer approved tokens in a batch
    /// @param transferDetails Array of owners, recipients, amounts, and tokens for the transfers
    /// @dev Requires the from addresses to have approved at least the desired amount
    /// of tokens to msg.sender.
    function transferFrom(AllowanceTransferDetails[] calldata transferDetails) external;

    /// @notice Enables performing a "lockdown" of the sender's Permit2 identity
    /// by batch revoking approvals
    /// @param approvals Array of approvals to revoke.
    function lockdown(TokenSpenderPair[] calldata approvals) external;

    /// @notice Invalidate nonces for a given (token, spender) pair
    /// @param token The token to invalidate nonces for
    /// @param spender The spender to invalidate nonces for
    /// @param newNonce The new nonce to set. Invalidates all nonces less than it.
    /// @dev Can't invalidate more than 2**16 nonces per transaction.
    function invalidateNonces(address token, address spender, uint48 newNonce) external;
}

File 13 of 18 : SafeCast160.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.17;

library SafeCast160 {
    /// @notice Thrown when a valude greater than type(uint160).max is cast to uint160
    error UnsafeCast();

    /// @notice Safely casts uint256 to uint160
    /// @param value The uint256 to be cast
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) revert UnsafeCast();
        return uint160(value);
    }
}

File 14 of 18 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.20;

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```solidity
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 *
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Storage of the initializable contract.
     *
     * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions
     * when using with upgradeable contracts.
     *
     * @custom:storage-location erc7201:openzeppelin.storage.Initializable
     */
    struct InitializableStorage {
        /**
         * @dev Indicates that the contract has been initialized.
         */
        uint64 _initialized;
        /**
         * @dev Indicates that the contract is in the process of being initialized.
         */
        bool _initializing;
    }

    // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff))
    bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00;

    /**
     * @dev The contract is already initialized.
     */
    error InvalidInitialization();

    /**
     * @dev The contract is not initializing.
     */
    error NotInitializing();

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint64 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any
     * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in
     * production.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        // Cache values to avoid duplicated sloads
        bool isTopLevelCall = !$._initializing;
        uint64 initialized = $._initialized;

        // Allowed calls:
        // - initialSetup: the contract is not in the initializing state and no previous version was
        //                 initialized
        // - construction: the contract is initialized at version 1 (no reininitialization) and the
        //                 current contract is just being deployed
        bool initialSetup = initialized == 0 && isTopLevelCall;
        bool construction = initialized == 1 && address(this).code.length == 0;

        if (!initialSetup && !construction) {
            revert InvalidInitialization();
        }
        $._initialized = 1;
        if (isTopLevelCall) {
            $._initializing = true;
        }
        _;
        if (isTopLevelCall) {
            $._initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint64 version) {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing || $._initialized >= version) {
            revert InvalidInitialization();
        }
        $._initialized = version;
        $._initializing = true;
        _;
        $._initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        _checkInitializing();
        _;
    }

    /**
     * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}.
     */
    function _checkInitializing() internal view virtual {
        if (!_isInitializing()) {
            revert NotInitializing();
        }
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        // solhint-disable-next-line var-name-mixedcase
        InitializableStorage storage $ = _getInitializableStorage();

        if ($._initializing) {
            revert InvalidInitialization();
        }
        if ($._initialized != type(uint64).max) {
            $._initialized = type(uint64).max;
            emit Initialized(type(uint64).max);
        }
    }

    /**
     * @dev Returns the highest version that has been initialized. See {reinitializer}.
     */
    function _getInitializedVersion() internal view returns (uint64) {
        return _getInitializableStorage()._initialized;
    }

    /**
     * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
     */
    function _isInitializing() internal view returns (bool) {
        return _getInitializableStorage()._initializing;
    }

    /**
     * @dev Returns a pointer to the storage namespace.
     */
    // solhint-disable-next-line var-name-mixedcase
    function _getInitializableStorage() private pure returns (InitializableStorage storage $) {
        assembly {
            $.slot := INITIALIZABLE_STORAGE
        }
    }
}

File 15 of 18 : ContextUpgradeable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Context.sol)

pragma solidity ^0.8.20;
import {Initializable} from "../proxy/utils/Initializable.sol";

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal onlyInitializing {
    }

    function __Context_init_unchained() internal onlyInitializing {
    }
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 16 of 18 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 17 of 18 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)

pragma solidity ^0.8.20;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev The ETH balance of the account is not enough to perform the operation.
     */
    error AddressInsufficientBalance(address account);

    /**
     * @dev There's no code at `target` (it is not a contract).
     */
    error AddressEmptyCode(address target);

    /**
     * @dev A call to an address target failed. The target may have reverted.
     */
    error FailedInnerCall();

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        if (address(this).balance < amount) {
            revert AddressInsufficientBalance(address(this));
        }

        (bool success, ) = recipient.call{value: amount}("");
        if (!success) {
            revert FailedInnerCall();
        }
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason or custom error, it is bubbled
     * up by this function (like regular Solidity function calls). However, if
     * the call reverted with no returned reason, this function reverts with a
     * {FailedInnerCall} error.
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        if (address(this).balance < value) {
            revert AddressInsufficientBalance(address(this));
        }
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
     * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
     * unsuccessful call.
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata
    ) internal view returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            // only check if target is a contract if the call was successful and the return data is empty
            // otherwise we already know that it was a contract
            if (returndata.length == 0 && target.code.length == 0) {
                revert AddressEmptyCode(target);
            }
            return returndata;
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
     * revert reason or with a default {FailedInnerCall} error.
     */
    function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
        if (!success) {
            _revert(returndata);
        } else {
            return returndata;
        }
    }

    /**
     * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
     */
    function _revert(bytes memory returndata) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert FailedInnerCall();
        }
    }
}

File 18 of 18 : IEIP712.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IEIP712 {
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

Settings
{
  "remappings": [
    "forge-std/=lib/forge-std/src/",
    "permit2/=lib/permit2/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "ds-test/=lib/openzeppelin-contracts-upgradeable/lib/forge-std/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "forge-gas-snapshot/=lib/permit2/lib/forge-gas-snapshot/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts/",
    "solmate/=lib/permit2/lib/solmate/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "paris",
  "viaIR": true,
  "libraries": {}
}

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"address","name":"target","type":"address"}],"name":"AddressEmptyCode","type":"error"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"AddressInsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[],"name":"ExceedsLimit","type":"error"},{"inputs":[],"name":"FailedInnerCall","type":"error"},{"inputs":[],"name":"InsufficientDeposit","type":"error"},{"inputs":[],"name":"InsufficientIssueDebt","type":"error"},{"inputs":[],"name":"InsufficientWithdraw","type":"error"},{"inputs":[],"name":"InvalidInitialization","type":"error"},{"inputs":[],"name":"NotInitializing","type":"error"},{"inputs":[],"name":"NotLimitIncreaser","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[{"internalType":"address","name":"token","type":"address"}],"name":"SafeERC20FailedOperation","type":"error"},{"inputs":[],"name":"UnsafeCast","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"depositor","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Deposit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"IncreaseLimit","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint64","name":"version","type":"uint64"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"issuer","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"debtIssued","type":"uint256"}],"name":"IssueDebt","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"issuer","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"debtRepaid","type":"uint256"}],"name":"RepayDebt","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"limitIncreaser","type":"address"}],"name":"SetLimitIncreaser","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"withdrawer","type":"address"},{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"Withdraw","type":"event"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"asset","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"issuer","type":"address"},{"internalType":"address","name":"recipient","type":"address"}],"name":"debt","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"deposit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"increaseLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"asset_","type":"address"},{"internalType":"uint256","name":"initialLimit","type":"uint256"},{"internalType":"address","name":"limitIncreaser_","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"issueDebt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"issuer","type":"address"}],"name":"issuerDebt","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"issuer","type":"address"}],"name":"issuerRepaidDebt","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"limit","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"limitIncreaser","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"recipientDebt","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"}],"name":"recipientRepaidDebt","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"issuer","type":"address"},{"internalType":"address","name":"recipient","type":"address"}],"name":"repaidDebt","outputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"limitIncreaser_","type":"address"}],"name":"setLimitIncreaser","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalRepaidDebt","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.