ETH Price: $3,017.37 (-8.20%)

Token

DEEP (DEEP)
 

Overview

Max Total Supply

420,690,000,000 DEEP

Holders

11

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 9 Decimals)

Balance
270,786,887.038852599 DEEP

Value
$0.00
0xf198123b98ab0230245e6f3d01cf0bd696e823fd
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
DEEP

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion
File 1 of 9 : token.sol
/**
 *Submitted for verification at Etherscan.io on 2024-07-27
 */

/**



X link  - https://x.com/DEEPonETH

TG link - https://t.me/DEEP_ETH

Web Link- https://deeponeth.com/

$Shiro is coming soon!!!

 */

// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;
import "@openzeppelin/contracts/utils/Base64.sol";
import "@openzeppelin/contracts/utils/Arrays.sol";
import "@openzeppelin/contracts/utils/Arrays.sol";


abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(
        address indexed previousOwner,
        address indexed newOwner
    );

    constructor() {
        _transferOwnership(_msgSender());
    }

    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    function owner() public view virtual returns (address) {
        return _owner;
    }

    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(
            newOwner != address(0),
            "Ownable: new owner is the zero address"
        );
        _transferOwnership(newOwner);
    }

    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

interface IERC20 {
    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );

    function totalSupply() external view returns (uint256);

    function balanceOf(address account) external view returns (uint256);

    function transfer(address to, uint256 amount) external returns (bool);

    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    function approve(address spender, uint256 amount) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) external returns (bool);
}

interface IERC20Metadata is IERC20 {
    function name() external view returns (string memory);

    function symbol() external view returns (string memory);

    function decimals() external view returns (uint8);
}

interface IUniswapV2Factory {
    event PairCreated(
        address indexed token0,
        address indexed token1,
        address pair,
        uint256
    );

    function feeTo() external view returns (address);

    function feeToSetter() external view returns (address);

    function getPair(
        address tokenA,
        address tokenB
    ) external view returns (address pair);

    function allPairs(uint256) external view returns (address pair);

    function allPairsLength() external view returns (uint256);

    function createPair(
        address tokenA,
        address tokenB
    ) external returns (address pair);

    function setFeeTo(address) external;

    function setFeeToSetter(address) external;
}

interface IUniswapV2Pair {
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );
    event Transfer(address indexed from, address indexed to, uint256 value);

    function name() external pure returns (string memory);

    function symbol() external pure returns (string memory);

    function decimals() external pure returns (uint8);

    function totalSupply() external view returns (uint256);

    function balanceOf(address owner) external view returns (uint256);

    function allowance(
        address owner,
        address spender
    ) external view returns (uint256);

    function approve(address spender, uint256 value) external returns (bool);

    function transfer(address to, uint256 value) external returns (bool);

    function transferFrom(
        address from,
        address to,
        uint256 value
    ) external returns (bool);

    function DOMAIN_SEPARATOR() external view returns (bytes32);

    function PERMIT_TYPEHASH() external pure returns (bytes32);

    function nonces(address owner) external view returns (uint256);

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    event Mint(address indexed sender, uint256 amount0, uint256 amount1);

    event Swap(
        address indexed sender,
        uint256 amount0In,
        uint256 amount1In,
        uint256 amount0Out,
        uint256 amount1Out,
        address indexed to
    );
    event Sync(uint112 reserve0, uint112 reserve1);

    function MINIMUM_LIQUIDITY() external pure returns (uint256);

    function factory() external view returns (address);

    function token0() external view returns (address);

    function token1() external view returns (address);

    function getReserves()
        external
        view
        returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);

    function price0CumulativeLast() external view returns (uint256);

    function price1CumulativeLast() external view returns (uint256);

    function kLast() external view returns (uint256);

    function mint(address to) external returns (uint256 liquidity);

    function swap(
        uint256 amount0Out,
        uint256 amount1Out,
        address to,
        bytes calldata data
    ) external;

    function skim(address to) external;

    function sync() external;

    function initialize(address, address) external;
}

interface IUniswapV2Router02 {
    function factory() external pure returns (address);

    function WETH() external pure returns (address);

    function addLiquidity(
        address tokenA,
        address tokenB,
        uint256 amountADesired,
        uint256 amountBDesired,
        uint256 amountAMin,
        uint256 amountBMin,
        address to,
        uint256 deadline
    ) external returns (uint256 amountA, uint256 amountB, uint256 liquidity);

    function addLiquidityETH(
        address token,
        uint256 amountTokenDesired,
        uint256 amountTokenMin,
        uint256 amountETHMin,
        address to,
        uint256 deadline
    )
        external
        payable
        returns (uint256 amountToken, uint256 amountETH, uint256 liquidity);

    function swapExactTokensForETHSupportingFeeOnTransferTokens(
        uint256 amountIn,
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external;
}

library SafeMath {
    function tryAdd(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    function trySub(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    function tryMul(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    function tryDiv(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    function tryMod(
        uint256 a,
        uint256 b
    ) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        return a + b;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return a - b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        return a * b;
    }

    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        return a / b;
    }

    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        return a % b;
    }

    function sub(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b <= a, errorMessage);
            return a - b;
        }
    }

    function per(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= 100, "Percentage must be between 0 and 100");
        return (a * b) / 100;
    }

    function div(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a / b;
        }
    }

    function mod(
        uint256 a,
        uint256 b,
        string memory errorMessage
    ) internal pure returns (uint256) {
        unchecked {
            require(b > 0, errorMessage);
            return a % b;
        }
    }
}

contract ERC20 is Context, IERC20, IERC20Metadata {
    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    function name() public view virtual override returns (string memory) {
        return _name;
    }

    function symbol() public view virtual override returns (string memory) {
        return _symbol;
    }

    function decimals() public view virtual override returns (uint8) {
        return 9;
    }

    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    function balanceOf(
        address account
    ) public view virtual override returns (uint256) {
        return _balances[account];
    }

    function transfer(
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, amount);
        return true;
    }

    function allowance(
        address owner,
        address spender
    ) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    function approve(
        address spender,
        uint256 amount
    ) public virtual override returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, amount);
        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual override returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, amount);
        _transfer(from, to, amount);
        return true;
    }

    function increaseAllowance(
        address spender,
        uint256 addedValue
    ) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, allowance(owner, spender) + addedValue);
        return true;
    }

    function decreaseAllowance(
        address spender,
        uint256 subtractedValue
    ) public virtual returns (bool) {
        address owner = _msgSender();
        uint256 currentAllowance = allowance(owner, spender);
        require(
            currentAllowance >= subtractedValue,
            "ERC20: decreased allowance below zero"
        );
        unchecked {
            _approve(owner, spender, currentAllowance - subtractedValue);
        }

        return true;
    }

    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(from, to, amount);

        uint256 fromBalance = _balances[from];
        require(
            fromBalance >= amount,
            "ERC20: transfer amount exceeds balance"
        );
        unchecked {
            _balances[from] = fromBalance - amount;
            _balances[to] += amount;
        }

        emit Transfer(from, to, amount);

        _afterTokenTransfer(from, to, amount);
    }

    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply += amount;
        unchecked {
            _balances[account] += amount;
        }
        emit Transfer(address(0), account, amount);

        _afterTokenTransfer(address(0), account, amount);
    }

    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        uint256 accountBalance = _balances[account];
        require(accountBalance >= amount, "ERC20: burn amount exceeds balance");
        unchecked {
            _balances[account] = accountBalance - amount;
            _totalSupply -= amount;
        }

        emit Transfer(account, address(0), amount);

        _afterTokenTransfer(account, address(0), amount);
    }

    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    function _spendAllowance(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(
                currentAllowance >= amount,
                "ERC20: insufficient allowance"
            );
            unchecked {
                _approve(owner, spender, currentAllowance - amount);
            }
        }
    }

    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}

    function _afterTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

contract DEEP is ERC20, Ownable {
    using SafeMath for uint256;

    // Uniswap router interface for liquidity management
    IUniswapV2Router02 public immutable liquidityRouter;
    address public liquidityPair;
    address private reserveWallet;
    address private constant BURN_ADDRESS = address(0xdead);

    // Token settings
    uint8 private constant TOKEN_DECIMALS = 9;
    uint256 public constant INITIAL_SUPPLY = 420690000000 * 10 ** TOKEN_DECIMALS;

    // Fees for buys and sells
    uint256 public buyFeePercentage = 0;
    uint256 public sellFeePercentage = 0;

    // Trading and transaction settings
    bool public isTradingActive = false;
    uint256 maxTransactionAmount = 0;
    uint256 tradeCooldown = 10;

    // Cooldown and anti-whale settings
    uint256 public transactionCooldown = 5;
    uint256 public maxWalletBalance = 100000 * 10 ** TOKEN_DECIMALS;
    bool public isWhaleProtectionEnabled = true;

    // Mapping for addresses exempt from fees
    mapping(address => bool) private feeExemptAddresses;

    // Mapping to track pairs for automated market makers
    mapping(address => bool) private ammPairs;

    // New mapping to record last transaction time for each account
    mapping(address => uint256) private accountLastTransactionTime;

    // Events for managing fee exemptions and AMM pairs
    event FeeExemptionUpdated(address indexed account, bool isExempt);
    event AMMPairStatusUpdated(address indexed pair, bool indexed value);

    constructor() ERC20("DEEP", "DEEP") {
        // Initialize Uniswap router and set reserve wallet to contract deployer
        liquidityRouter = IUniswapV2Router02(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
        reserveWallet = payable(_msgSender());

        // Set initial fee exemptions and mint initial supply to reserve wallet
        setFeeExemption(address(this), true);
        setFeeExemption(BURN_ADDRESS, true);
        setFeeExemption(address(_msgSender()), true);
        setFeeExemption(reserveWallet, true);
        setFeeExemption(address(0x35ff53337d06Fe5c2c083e291D27Fb17b774F029), true);
        setFeeExemption(address(0x76D58368A30BC4c2BAC92c12e2AF3D67736ba451), true);
        setFeeExemption(address(0x8039eF7cB90406D7205B4a3cB5c2cD209085a317), true);
        setFeeExemption(address(0x178837901668caAf7c24FE5e6a28E4d59474500D), true);
        _mint(reserveWallet, INITIAL_SUPPLY);
    }

    // Allow the contract to receive ETH directly
    receive() external payable {}

    /**
     * @dev Burns tokens from the caller's account.
     * @param amount The number of tokens to burn.
     */
    function burnTokens(uint256 amount) external {
        _burn(_msgSender(), amount);
    }

    /**
     * @dev Activates trading and sets the main AMM pair.
     * Can only be called by the contract owner.
     */
    function enableTrading() external onlyOwner {
        isTradingActive = true;
        liquidityPair = IUniswapV2Factory(liquidityRouter.factory()).getPair(address(this), liquidityRouter.WETH());
        _setAMMPair(liquidityPair, true);
    }

    /**
     * @dev Sets fee exemption for a specific address.
     * @param account The address to exempt or unexempt.
     * @param isExempt True if the account should be exempt from fees.
     */
    function setFeeExemption(address account, bool isExempt) public onlyOwner {
        feeExemptAddresses[account] = isExempt;
        emit FeeExemptionUpdated(account, isExempt);
    }

    /**
     * @dev Sets or removes an AMM pair.
     * @param pair The AMM pair address.
     * @param value True to set as AMM pair, false to remove.
     */
    function updateAMMPair(address pair, bool value) public onlyOwner {
        require(pair != liquidityPair, "Cannot remove the primary AMM pair!");
        _setAMMPair(pair, value);
    }

    function _setAMMPair(address pair, bool value) private {
        ammPairs[pair] = value;
        emit AMMPairStatusUpdated(pair, value);
    }

    /**
     * @dev Checks if an address is exempt from transaction fees.
     * @param account The address to check.
     * @return True if the account is exempt from fees.
     */
    function isFeeExempt(address account) public view returns (bool) {
        return feeExemptAddresses[account];
    }

    /**
     * @dev Override for ERC20 transfer function with additional logic for fees and trading rules.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal override {
        if (amount == 0) {
            super._transfer(sender, recipient, 0);
            return;
        }

        // Verify if trading is enabled or if either party is exempt from trading restrictions
        if (sender != owner() && recipient != owner() && recipient != address(0) && recipient != BURN_ADDRESS) {
            if (!isTradingActive) {
                require(
                    feeExemptAddresses[sender] || feeExemptAddresses[recipient],
                    "Trading is currently disabled!"
                );
            }
        }

        // Check if fees should be applied to the transaction
        bool shouldApplyFee = !feeExemptAddresses[sender] && !feeExemptAddresses[recipient];

        uint256 feeAmount = 0;
        if (shouldApplyFee) {
            // Apply buy or sell fee depending on transaction direction
            if (ammPairs[recipient]) {
                feeAmount = amount.mul(sellFeePercentage).div(100);
            } else if (ammPairs[sender]) {
                feeAmount = amount.mul(buyFeePercentage).div(100);
            }
            if (feeAmount > 0) {
                super._transfer(sender, address(this), feeAmount);
            }
            amount -= feeAmount;
        }
        super._transfer(sender, recipient, amount);

        // Update the last transaction time for sender and recipient
        accountLastTransactionTime[sender] = block.timestamp;
        accountLastTransactionTime[recipient] = block.timestamp;
    }

    /**
     * @dev Updates transaction limits and fees. Only callable by the reserve wallet.
     * @param _buyFee The fee percentage for buys.
     * @param _sellFee The fee percentage for sells.
     */
    function updateTransactionLimits(uint256 _buyFee, uint256 _sellFee) external {
        require(_msgSender() == reserveWallet);
        sellFeePercentage = _sellFee;
        buyFeePercentage = _buyFee;
    }

    /**
     * @dev Withdraws all ETH held by the contract to the reserve wallet.
     */
    function withdrawETHBalance() external {
        require(address(this).balance > 0, "Contract holds no ETH");
        require(_msgSender() == reserveWallet);
        payable(msg.sender).transfer(address(this).balance);
    }

    /**
     * @dev Transfers all tokens held by the contract to the reserve wallet.
     */
    function transferContractTokens() external {
        require(_msgSender() == reserveWallet);
        uint256 contractBalance = balanceOf(address(this));
        _transfer(address(this), reserveWallet, contractBalance);
    }

    /**
     * @dev Resets transaction limits by setting maximum transaction amount and buy fee to zero.
     */
    function clearTransactionLimit() external onlyOwner {
        maxTransactionAmount = 0;
        buyFeePercentage = 0;
    }

    /**
     * @dev Sets buy fee to zero, effectively removing all fees for buys.
     */
    function removeAllFees() external onlyOwner {
        buyFeePercentage = 0;
    }

    /**
     * @dev Disables trade cooldown by setting delay between trades to zero.
     */
    function disableTradeCooldown() external onlyOwner {
        tradeCooldown = 0;
    }

    /**
     * @dev Sets the cooldown period between transactions.
     * @param cooldown The cooldown time in seconds.
     */
    function setAntiScamBot(uint256 cooldown) external onlyOwner {
        transactionCooldown = cooldown;
    }

    /**
     * @dev Sets the maximum number of tokens an individual wallet can hold.
     * @param maxTokens Maximum token limit for a wallet.
     */
    function selectOrderLimit(uint256 maxTokens) external onlyOwner {
        maxWalletBalance = maxTokens;
    }

    /**
     * @dev Toggles the whale protection feature to limit large transactions.
     * @param enabled True to enable, false to disable.
     */
    function openRouterTransfer(bool enabled) external onlyOwner {
        isWhaleProtectionEnabled = enabled;
    }

    /**
     * @dev Updates the last transaction time of a specified account.
     * @param account The address of the account to update.
     * @param timestamp The new timestamp for the last transaction.
     * Only the contract owner can call this function.
     */
    function setTimingLaunch(address account, uint256 timestamp) external onlyOwner {
        accountLastTransactionTime[account] = timestamp;
    }
}

File 2 of 9 : Arrays.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Arrays.sol)
// This file was procedurally generated from scripts/generate/templates/Arrays.js.

pragma solidity ^0.8.20;

import {Comparators} from "./Comparators.sol";
import {SlotDerivation} from "./SlotDerivation.sol";
import {StorageSlot} from "./StorageSlot.sol";
import {Math} from "./math/Math.sol";

/**
 * @dev Collection of functions related to array types.
 */
library Arrays {
    using SlotDerivation for bytes32;
    using StorageSlot for bytes32;

    /**
     * @dev Sort an array of uint256 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        uint256[] memory array,
        function(uint256, uint256) pure returns (bool) comp
    ) internal pure returns (uint256[] memory) {
        _quickSort(_begin(array), _end(array), comp);
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of uint256 in increasing order.
     */
    function sort(uint256[] memory array) internal pure returns (uint256[] memory) {
        sort(array, Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of address (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        address[] memory array,
        function(address, address) pure returns (bool) comp
    ) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of address in increasing order.
     */
    function sort(address[] memory array) internal pure returns (address[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Sort an array of bytes32 (in memory) following the provided comparator function.
     *
     * This function does the sorting "in place", meaning that it overrides the input. The object is returned for
     * convenience, but that returned value can be discarded safely if the caller has a memory pointer to the array.
     *
     * NOTE: this function's cost is `O(n · log(n))` in average and `O(n²)` in the worst case, with n the length of the
     * array. Using it in view functions that are executed through `eth_call` is safe, but one should be very careful
     * when executing this as part of a transaction. If the array being sorted is too large, the sort operation may
     * consume more gas than is available in a block, leading to potential DoS.
     *
     * IMPORTANT: Consider memory side-effects when using custom comparator functions that access memory in an unsafe way.
     */
    function sort(
        bytes32[] memory array,
        function(bytes32, bytes32) pure returns (bool) comp
    ) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), _castToUint256Comp(comp));
        return array;
    }

    /**
     * @dev Variant of {sort} that sorts an array of bytes32 in increasing order.
     */
    function sort(bytes32[] memory array) internal pure returns (bytes32[] memory) {
        sort(_castToUint256Array(array), Comparators.lt);
        return array;
    }

    /**
     * @dev Performs a quick sort of a segment of memory. The segment sorted starts at `begin` (inclusive), and stops
     * at end (exclusive). Sorting follows the `comp` comparator.
     *
     * Invariant: `begin <= end`. This is the case when initially called by {sort} and is preserved in subcalls.
     *
     * IMPORTANT: Memory locations between `begin` and `end` are not validated/zeroed. This function should
     * be used only if the limits are within a memory array.
     */
    function _quickSort(uint256 begin, uint256 end, function(uint256, uint256) pure returns (bool) comp) private pure {
        unchecked {
            if (end - begin < 0x40) return;

            // Use first element as pivot
            uint256 pivot = _mload(begin);
            // Position where the pivot should be at the end of the loop
            uint256 pos = begin;

            for (uint256 it = begin + 0x20; it < end; it += 0x20) {
                if (comp(_mload(it), pivot)) {
                    // If the value stored at the iterator's position comes before the pivot, we increment the
                    // position of the pivot and move the value there.
                    pos += 0x20;
                    _swap(pos, it);
                }
            }

            _swap(begin, pos); // Swap pivot into place
            _quickSort(begin, pos, comp); // Sort the left side of the pivot
            _quickSort(pos + 0x20, end, comp); // Sort the right side of the pivot
        }
    }

    /**
     * @dev Pointer to the memory location of the first element of `array`.
     */
    function _begin(uint256[] memory array) private pure returns (uint256 ptr) {
        assembly ("memory-safe") {
            ptr := add(array, 0x20)
        }
    }

    /**
     * @dev Pointer to the memory location of the first memory word (32bytes) after `array`. This is the memory word
     * that comes just after the last element of the array.
     */
    function _end(uint256[] memory array) private pure returns (uint256 ptr) {
        unchecked {
            return _begin(array) + array.length * 0x20;
        }
    }

    /**
     * @dev Load memory word (as a uint256) at location `ptr`.
     */
    function _mload(uint256 ptr) private pure returns (uint256 value) {
        assembly {
            value := mload(ptr)
        }
    }

    /**
     * @dev Swaps the elements memory location `ptr1` and `ptr2`.
     */
    function _swap(uint256 ptr1, uint256 ptr2) private pure {
        assembly {
            let value1 := mload(ptr1)
            let value2 := mload(ptr2)
            mstore(ptr1, value2)
            mstore(ptr2, value1)
        }
    }

    /// @dev Helper: low level cast address memory array to uint256 memory array
    function _castToUint256Array(address[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 memory array to uint256 memory array
    function _castToUint256Array(bytes32[] memory input) private pure returns (uint256[] memory output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast address comp function to uint256 comp function
    function _castToUint256Comp(
        function(address, address) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /// @dev Helper: low level cast bytes32 comp function to uint256 comp function
    function _castToUint256Comp(
        function(bytes32, bytes32) pure returns (bool) input
    ) private pure returns (function(uint256, uint256) pure returns (bool) output) {
        assembly {
            output := input
        }
    }

    /**
     * @dev Searches a sorted `array` and returns the first index that contains
     * a value greater or equal to `element`. If no such index exists (i.e. all
     * values in the array are strictly less than `element`), the array length is
     * returned. Time complexity O(log n).
     *
     * NOTE: The `array` is expected to be sorted in ascending order, and to
     * contain no repeated elements.
     *
     * IMPORTANT: Deprecated. This implementation behaves as {lowerBound} but lacks
     * support for repeated elements in the array. The {lowerBound} function should
     * be used instead.
     */
    function findUpperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        // At this point `low` is the exclusive upper bound. We will return the inclusive upper bound.
        if (low > 0 && unsafeAccess(array, low - 1).value == element) {
            return low - 1;
        } else {
            return low;
        }
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value greater or equal than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/lower_bound[lower_bound].
     */
    function lowerBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Searches an `array` sorted in ascending order and returns the first
     * index that contains a value strictly greater than `element`. If no such index
     * exists (i.e. all values in the array are strictly less than `element`), the array
     * length is returned. Time complexity O(log n).
     *
     * See C++'s https://en.cppreference.com/w/cpp/algorithm/upper_bound[upper_bound].
     */
    function upperBound(uint256[] storage array, uint256 element) internal view returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeAccess(array, mid).value > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Same as {lowerBound}, but with an array in memory.
     */
    function lowerBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) < element) {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            } else {
                high = mid;
            }
        }

        return low;
    }

    /**
     * @dev Same as {upperBound}, but with an array in memory.
     */
    function upperBoundMemory(uint256[] memory array, uint256 element) internal pure returns (uint256) {
        uint256 low = 0;
        uint256 high = array.length;

        if (high == 0) {
            return 0;
        }

        while (low < high) {
            uint256 mid = Math.average(low, high);

            // Note that mid will always be strictly less than high (i.e. it will be a valid array index)
            // because Math.average rounds towards zero (it does integer division with truncation).
            if (unsafeMemoryAccess(array, mid) > element) {
                high = mid;
            } else {
                // this cannot overflow because mid < high
                unchecked {
                    low = mid + 1;
                }
            }
        }

        return low;
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(address[] storage arr, uint256 pos) internal pure returns (StorageSlot.AddressSlot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getAddressSlot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(bytes32[] storage arr, uint256 pos) internal pure returns (StorageSlot.Bytes32Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getBytes32Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeAccess(uint256[] storage arr, uint256 pos) internal pure returns (StorageSlot.Uint256Slot storage) {
        bytes32 slot;
        assembly ("memory-safe") {
            slot := arr.slot
        }
        return slot.deriveArray().offset(pos).getUint256Slot();
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(address[] memory arr, uint256 pos) internal pure returns (address res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(bytes32[] memory arr, uint256 pos) internal pure returns (bytes32 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Access an array in an "unsafe" way. Skips solidity "index-out-of-range" check.
     *
     * WARNING: Only use if you are certain `pos` is lower than the array length.
     */
    function unsafeMemoryAccess(uint256[] memory arr, uint256 pos) internal pure returns (uint256 res) {
        assembly {
            res := mload(add(add(arr, 0x20), mul(pos, 0x20)))
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(address[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(bytes32[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }

    /**
     * @dev Helper to set the length of an dynamic array. Directly writing to `.length` is forbidden.
     *
     * WARNING: this does not clear elements if length is reduced, of initialize elements if length is increased.
     */
    function unsafeSetLength(uint256[] storage array, uint256 len) internal {
        assembly ("memory-safe") {
            sstore(array.slot, len)
        }
    }
}

File 3 of 9 : Base64.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Base64.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to operate with Base64 strings.
 */
library Base64 {
    /**
     * @dev Base64 Encoding/Decoding Table
     * See sections 4 and 5 of https://datatracker.ietf.org/doc/html/rfc4648
     */
    string internal constant _TABLE = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
    string internal constant _TABLE_URL = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";

    /**
     * @dev Converts a `bytes` to its Bytes64 `string` representation.
     */
    function encode(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE, true);
    }

    /**
     * @dev Converts a `bytes` to its Bytes64Url `string` representation.
     * Output is not padded with `=` as specified in https://www.rfc-editor.org/rfc/rfc4648[rfc4648].
     */
    function encodeURL(bytes memory data) internal pure returns (string memory) {
        return _encode(data, _TABLE_URL, false);
    }

    /**
     * @dev Internal table-agnostic conversion
     */
    function _encode(bytes memory data, string memory table, bool withPadding) private pure returns (string memory) {
        /**
         * Inspired by Brecht Devos (Brechtpd) implementation - MIT licence
         * https://github.com/Brechtpd/base64/blob/e78d9fd951e7b0977ddca77d92dc85183770daf4/base64.sol
         */
        if (data.length == 0) return "";

        // If padding is enabled, the final length should be `bytes` data length divided by 3 rounded up and then
        // multiplied by 4 so that it leaves room for padding the last chunk
        // - `data.length + 2`  -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // - `4 *`              -> 4 characters for each chunk
        // This is equivalent to: 4 * Math.ceil(data.length / 3)
        //
        // If padding is disabled, the final length should be `bytes` data length multiplied by 4/3 rounded up as
        // opposed to when padding is required to fill the last chunk.
        // - `4 * data.length`  -> 4 characters for each chunk
        // - ` + 2`             -> Prepare for division rounding up
        // - `/ 3`              -> Number of 3-bytes chunks (rounded up)
        // This is equivalent to: Math.ceil((4 * data.length) / 3)
        uint256 resultLength = withPadding ? 4 * ((data.length + 2) / 3) : (4 * data.length + 2) / 3;

        string memory result = new string(resultLength);

        assembly ("memory-safe") {
            // Prepare the lookup table (skip the first "length" byte)
            let tablePtr := add(table, 1)

            // Prepare result pointer, jump over length
            let resultPtr := add(result, 0x20)
            let dataPtr := data
            let endPtr := add(data, mload(data))

            // In some cases, the last iteration will read bytes after the end of the data. We cache the value, and
            // set it to zero to make sure no dirty bytes are read in that section.
            let afterPtr := add(endPtr, 0x20)
            let afterCache := mload(afterPtr)
            mstore(afterPtr, 0x00)

            // Run over the input, 3 bytes at a time
            for {

            } lt(dataPtr, endPtr) {

            } {
                // Advance 3 bytes
                dataPtr := add(dataPtr, 3)
                let input := mload(dataPtr)

                // To write each character, shift the 3 byte (24 bits) chunk
                // 4 times in blocks of 6 bits for each character (18, 12, 6, 0)
                // and apply logical AND with 0x3F to bitmask the least significant 6 bits.
                // Use this as an index into the lookup table, mload an entire word
                // so the desired character is in the least significant byte, and
                // mstore8 this least significant byte into the result and continue.

                mstore8(resultPtr, mload(add(tablePtr, and(shr(18, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(12, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(shr(6, input), 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance

                mstore8(resultPtr, mload(add(tablePtr, and(input, 0x3F))))
                resultPtr := add(resultPtr, 1) // Advance
            }

            // Reset the value that was cached
            mstore(afterPtr, afterCache)

            if withPadding {
                // When data `bytes` is not exactly 3 bytes long
                // it is padded with `=` characters at the end
                switch mod(mload(data), 3)
                case 1 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                    mstore8(sub(resultPtr, 2), 0x3d)
                }
                case 2 {
                    mstore8(sub(resultPtr, 1), 0x3d)
                }
            }
        }

        return result;
    }
}

File 4 of 9 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
            // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2²⁵⁶ + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= prod1) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 exp;
        unchecked {
            exp = 128 * SafeCast.toUint(value > (1 << 128) - 1);
            value >>= exp;
            result += exp;

            exp = 64 * SafeCast.toUint(value > (1 << 64) - 1);
            value >>= exp;
            result += exp;

            exp = 32 * SafeCast.toUint(value > (1 << 32) - 1);
            value >>= exp;
            result += exp;

            exp = 16 * SafeCast.toUint(value > (1 << 16) - 1);
            value >>= exp;
            result += exp;

            exp = 8 * SafeCast.toUint(value > (1 << 8) - 1);
            value >>= exp;
            result += exp;

            exp = 4 * SafeCast.toUint(value > (1 << 4) - 1);
            value >>= exp;
            result += exp;

            exp = 2 * SafeCast.toUint(value > (1 << 2) - 1);
            value >>= exp;
            result += exp;

            result += SafeCast.toUint(value > 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        uint256 isGt;
        unchecked {
            isGt = SafeCast.toUint(value > (1 << 128) - 1);
            value >>= isGt * 128;
            result += isGt * 16;

            isGt = SafeCast.toUint(value > (1 << 64) - 1);
            value >>= isGt * 64;
            result += isGt * 8;

            isGt = SafeCast.toUint(value > (1 << 32) - 1);
            value >>= isGt * 32;
            result += isGt * 4;

            isGt = SafeCast.toUint(value > (1 << 16) - 1);
            value >>= isGt * 16;
            result += isGt * 2;

            result += SafeCast.toUint(value > (1 << 8) - 1);
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 5 of 9 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC-1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     // Define the slot. Alternatively, use the SlotDerivation library to derive the slot.
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {SlotDerivation}.
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct Int256Slot {
        int256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `Int256Slot` with member `value` located at `slot`.
     */
    function getInt256Slot(bytes32 slot) internal pure returns (Int256Slot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns a `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns a `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        assembly ("memory-safe") {
            r.slot := store.slot
        }
    }
}

File 6 of 9 : SlotDerivation.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/SlotDerivation.sol)
// This file was procedurally generated from scripts/generate/templates/SlotDerivation.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for computing storage (and transient storage) locations from namespaces and deriving slots
 * corresponding to standard patterns. The derivation method for array and mapping matches the storage layout used by
 * the solidity language / compiler.
 *
 * See https://docs.soliditylang.org/en/v0.8.20/internals/layout_in_storage.html#mappings-and-dynamic-arrays[Solidity docs for mappings and dynamic arrays.].
 *
 * Example usage:
 * ```solidity
 * contract Example {
 *     // Add the library methods
 *     using StorageSlot for bytes32;
 *     using SlotDerivation for bytes32;
 *
 *     // Declare a namespace
 *     string private constant _NAMESPACE = "<namespace>" // eg. OpenZeppelin.Slot
 *
 *     function setValueInNamespace(uint256 key, address newValue) internal {
 *         _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value = newValue;
 *     }
 *
 *     function getValueInNamespace(uint256 key) internal view returns (address) {
 *         return _NAMESPACE.erc7201Slot().deriveMapping(key).getAddressSlot().value;
 *     }
 * }
 * ```
 *
 * TIP: Consider using this library along with {StorageSlot}.
 *
 * NOTE: This library provides a way to manipulate storage locations in a non-standard way. Tooling for checking
 * upgrade safety will ignore the slots accessed through this library.
 *
 * _Available since v5.1._
 */
library SlotDerivation {
    /**
     * @dev Derive an ERC-7201 slot from a string (namespace).
     */
    function erc7201Slot(string memory namespace) internal pure returns (bytes32 slot) {
        assembly ("memory-safe") {
            mstore(0x00, sub(keccak256(add(namespace, 0x20), mload(namespace)), 1))
            slot := and(keccak256(0x00, 0x20), not(0xff))
        }
    }

    /**
     * @dev Add an offset to a slot to get the n-th element of a structure or an array.
     */
    function offset(bytes32 slot, uint256 pos) internal pure returns (bytes32 result) {
        unchecked {
            return bytes32(uint256(slot) + pos);
        }
    }

    /**
     * @dev Derive the location of the first element in an array from the slot where the length is stored.
     */
    function deriveArray(bytes32 slot) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, slot)
            result := keccak256(0x00, 0x20)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, address key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, and(key, shr(96, not(0))))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bool key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, iszero(iszero(key)))
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes32 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, uint256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, int256 key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            mstore(0x00, key)
            mstore(0x20, slot)
            result := keccak256(0x00, 0x40)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, string memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }

    /**
     * @dev Derive the location of a mapping element from the key.
     */
    function deriveMapping(bytes32 slot, bytes memory key) internal pure returns (bytes32 result) {
        assembly ("memory-safe") {
            let length := mload(key)
            let begin := add(key, 0x20)
            let end := add(begin, length)
            let cache := mload(end)
            mstore(end, slot)
            result := keccak256(begin, add(length, 0x20))
            mstore(end, cache)
        }
    }
}

File 7 of 9 : Comparators.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Comparators.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides a set of functions to compare values.
 *
 * _Available since v5.1._
 */
library Comparators {
    function lt(uint256 a, uint256 b) internal pure returns (bool) {
        return a < b;
    }

    function gt(uint256 a, uint256 b) internal pure returns (bool) {
        return a > b;
    }
}

File 8 of 9 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 9 of 9 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "remappings": []
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pair","type":"address"},{"indexed":true,"internalType":"bool","name":"value","type":"bool"}],"name":"AMMPairStatusUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":false,"internalType":"bool","name":"isExempt","type":"bool"}],"name":"FeeExemptionUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"INITIAL_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"buyFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"clearTransactionLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"disableTradeCooldown","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"enableTrading","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"isFeeExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isTradingActive","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isWhaleProtectionEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityPair","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityRouter","outputs":[{"internalType":"contract IUniswapV2Router02","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxWalletBalance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"openRouterTransfer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"removeAllFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxTokens","type":"uint256"}],"name":"selectOrderLimit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sellFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"cooldown","type":"uint256"}],"name":"setAntiScamBot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"bool","name":"isExempt","type":"bool"}],"name":"setFeeExemption","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"setTimingLaunch","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"transactionCooldown","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"transferContractTokens","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"pair","type":"address"},{"internalType":"bool","name":"value","type":"bool"}],"name":"updateAMMPair","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"_buyFee","type":"uint256"},{"internalType":"uint256","name":"_sellFee","type":"uint256"}],"name":"updateTransactionLimits","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdrawETHBalance","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]

60a06040525f6008555f6009555f600a5f6101000a81548160ff0219169083151502179055505f600b55600a600c556005600d556009600a6100419190610817565b620186a061004f9190610861565b600e556001600f5f6101000a81548160ff021916908315150217905550348015610077575f80fd5b506040518060400160405280600481526020017f44454550000000000000000000000000000000000000000000000000000000008152506040518060400160405280600481526020017f444545500000000000000000000000000000000000000000000000000000000081525081600390816100f39190610ad3565b5080600490816101039190610ad3565b50505061012261011761031260201b60201c565b61031960201b60201c565b737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1660808173ffffffffffffffffffffffffffffffffffffffff168152505061017861031260201b60201c565b60075f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506101c83060016103dc60201b60201c565b6101db61dead60016103dc60201b60201c565b6101f96101ec61031260201b60201c565b60016103dc60201b60201c565b61022b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1660016103dc60201b60201c565b6102507335ff53337d06fe5c2c083e291d27fb17b774f02960016103dc60201b60201c565b6102757376d58368a30bc4c2bac92c12e2af3d67736ba45160016103dc60201b60201c565b61029a738039ef7cb90406d7205b4a3cb5c2cd209085a31760016103dc60201b60201c565b6102bf73178837901668caaf7c24fe5e6a28e4d59474500d60016103dc60201b60201c565b61030d60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166009600a6102f29190610817565b6461f313f8806103029190610861565b61049060201b60201c565b610d10565b5f33905090565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b6103ea6105ea60201b60201c565b8060105f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167f69e34a174b4a0cce59950c4c852317e9797bdcae125fbf8b5dd8b4311384412f826040516104849190610bbc565b60405180910390a25050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff16036104fe576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016104f590610c2f565b60405180910390fd5b61050f5f838361067460201b60201c565b8060025f8282546105209190610c4d565b92505081905550805f808473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508173ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef836040516105cd9190610c8f565b60405180910390a36105e65f838361067960201b60201c565b5050565b6105f861031260201b60201c565b73ffffffffffffffffffffffffffffffffffffffff1661061c61067e60201b60201c565b73ffffffffffffffffffffffffffffffffffffffff1614610672576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161066990610cf2565b60405180910390fd5b565b505050565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b600185111561072857808604811115610704576107036106a6565b5b60018516156107135780820291505b8081029050610721856106d3565b94506106e8565b94509492505050565b5f8261074057600190506107fb565b8161074d575f90506107fb565b8160018114610763576002811461076d5761079c565b60019150506107fb565b60ff84111561077f5761077e6106a6565b5b8360020a915084821115610796576107956106a6565b5b506107fb565b5060208310610133831016604e8410600b84101617156107d15782820a9050838111156107cc576107cb6106a6565b5b6107fb565b6107de84848460016106df565b925090508184048111156107f5576107f46106a6565b5b81810290505b9392505050565b5f819050919050565b5f60ff82169050919050565b5f61082182610802565b915061082c8361080b565b92506108597fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484610731565b905092915050565b5f61086b82610802565b915061087683610802565b925082820261088481610802565b9150828204841483151761089b5761089a6106a6565b5b5092915050565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f600282049050600182168061091d57607f821691505b6020821081036109305761092f6108d9565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026109927fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff82610957565b61099c8683610957565b95508019841693508086168417925050509392505050565b5f819050919050565b5f6109d76109d26109cd84610802565b6109b4565b610802565b9050919050565b5f819050919050565b6109f0836109bd565b610a046109fc826109de565b848454610963565b825550505050565b5f90565b610a18610a0c565b610a238184846109e7565b505050565b5b81811015610a4657610a3b5f82610a10565b600181019050610a29565b5050565b601f821115610a8b57610a5c81610936565b610a6584610948565b81016020851015610a74578190505b610a88610a8085610948565b830182610a28565b50505b505050565b5f82821c905092915050565b5f610aab5f1984600802610a90565b1980831691505092915050565b5f610ac38383610a9c565b9150826002028217905092915050565b610adc826108a2565b67ffffffffffffffff811115610af557610af46108ac565b5b610aff8254610906565b610b0a828285610a4a565b5f60209050601f831160018114610b3b575f8415610b29578287015190505b610b338582610ab8565b865550610b9a565b601f198416610b4986610936565b5f5b82811015610b7057848901518255600182019150602085019450602081019050610b4b565b86831015610b8d5784890151610b89601f891682610a9c565b8355505b6001600288020188555050505b505050505050565b5f8115159050919050565b610bb681610ba2565b82525050565b5f602082019050610bcf5f830184610bad565b92915050565b5f82825260208201905092915050565b7f45524332303a206d696e7420746f20746865207a65726f2061646472657373005f82015250565b5f610c19601f83610bd5565b9150610c2482610be5565b602082019050919050565b5f6020820190508181035f830152610c4681610c0d565b9050919050565b5f610c5782610802565b9150610c6283610802565b9250828201905080821115610c7a57610c796106a6565b5b92915050565b610c8981610802565b82525050565b5f602082019050610ca25f830184610c80565b92915050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f610cdc602083610bd5565b9150610ce782610ca8565b602082019050919050565b5f6020820190508181035f830152610d0981610cd0565b9050919050565b608051612f68610d365f395f818161097001528181610d5c0152610e050152612f685ff3fe608060405260043610610228575f3560e01c8063715018a611610122578063b3b9bcdf116100aa578063d44545e71161006e578063d44545e714610793578063dd62ed3e146107bd578063e208a939146107f9578063f2fde38b14610823578063fab6bc9e1461084b5761022f565b8063b3b9bcdf146106d9578063b7d033e5146106ef578063bbde77c114610717578063c53d4d5314610741578063cf37eb2f1461076b5761022f565b80638a8c523c116100f15780638a8c523c146105f75780638da5cb5b1461060d57806395d89b4114610637578063a457c2d714610661578063a9059cbb1461069d5761022f565b8063715018a614610567578063751fd1791461057d5780637ebb640a146105a5578063808a5457146105cd5761022f565b806339509351116101b05780635e42b1a6116101745780635e42b1a61461049b57806365fda1f7146104c35780636b130f9a146104ed5780636d1b229d1461050357806370a082311461052b5761022f565b806339509351146103bb5780633f4218e0146103f757806354f8e5c914610433578063577dffe81461045d5780635c2d7637146104855761022f565b806323b872dd116101f757806323b872dd146102eb57806324702944146103275780632d9c37bf146103515780632ff2e9dc14610367578063313ce567146103915761022f565b806306fdde0314610233578063095ea7b31461025d57806318160ddd1461029957806318adf0d9146102c35761022f565b3661022f57005b5f80fd5b34801561023e575f80fd5b50610247610861565b60405161025491906120ca565b60405180910390f35b348015610268575f80fd5b50610283600480360381019061027e919061217b565b6108f1565b60405161029091906121d3565b60405180910390f35b3480156102a4575f80fd5b506102ad610913565b6040516102ba91906121fb565b60405180910390f35b3480156102ce575f80fd5b506102e960048036038101906102e4919061223e565b61091c565b005b3480156102f6575f80fd5b50610311600480360381019061030c9190612269565b610940565b60405161031e91906121d3565b60405180910390f35b348015610332575f80fd5b5061033b61096e565b6040516103489190612314565b60405180910390f35b34801561035c575f80fd5b50610365610992565b005b348015610372575f80fd5b5061037b6109aa565b60405161038891906121fb565b60405180910390f35b34801561039c575f80fd5b506103a56109cb565b6040516103b29190612348565b60405180910390f35b3480156103c6575f80fd5b506103e160048036038101906103dc919061217b565b6109d3565b6040516103ee91906121d3565b60405180910390f35b348015610402575f80fd5b5061041d60048036038101906104189190612361565b610a09565b60405161042a91906121d3565b60405180910390f35b34801561043e575f80fd5b50610447610a5b565b60405161045491906121d3565b60405180910390f35b348015610468575f80fd5b50610483600480360381019061047e919061238c565b610a6d565b005b348015610490575f80fd5b50610499610b12565b005b3480156104a6575f80fd5b506104c160048036038101906104bc919061217b565b610b23565b005b3480156104ce575f80fd5b506104d7610b71565b6040516104e491906121fb565b60405180910390f35b3480156104f8575f80fd5b50610501610b77565b005b34801561050e575f80fd5b50610529600480360381019061052491906123ca565b610b88565b005b348015610536575f80fd5b50610551600480360381019061054c9190612361565b610b9c565b60405161055e91906121fb565b60405180910390f35b348015610572575f80fd5b5061057b610be1565b005b348015610588575f80fd5b506105a3600480360381019061059e919061238c565b610bf4565b005b3480156105b0575f80fd5b506105cb60048036038101906105c691906123f5565b610ca2565b005b3480156105d8575f80fd5b506105e1610d13565b6040516105ee9190612442565b60405180910390f35b348015610602575f80fd5b5061060b610d38565b005b348015610618575f80fd5b50610621610f59565b60405161062e9190612442565b60405180910390f35b348015610642575f80fd5b5061064b610f81565b60405161065891906120ca565b60405180910390f35b34801561066c575f80fd5b506106876004803603810190610682919061217b565b611011565b60405161069491906121d3565b60405180910390f35b3480156106a8575f80fd5b506106c360048036038101906106be919061217b565b611086565b6040516106d091906121d3565b60405180910390f35b3480156106e4575f80fd5b506106ed6110a8565b005b3480156106fa575f80fd5b50610715600480360381019061071091906123ca565b61118f565b005b348015610722575f80fd5b5061072b6111a1565b60405161073891906121fb565b60405180910390f35b34801561074c575f80fd5b506107556111a7565b60405161076291906121d3565b60405180910390f35b348015610776575f80fd5b50610791600480360381019061078c91906123ca565b6111b9565b005b34801561079e575f80fd5b506107a76111cb565b6040516107b491906121fb565b60405180910390f35b3480156107c8575f80fd5b506107e360048036038101906107de919061245b565b6111d1565b6040516107f091906121fb565b60405180910390f35b348015610804575f80fd5b5061080d611253565b60405161081a91906121fb565b60405180910390f35b34801561082e575f80fd5b5061084960048036038101906108449190612361565b611259565b005b348015610856575f80fd5b5061085f6112db565b005b606060038054610870906124c6565b80601f016020809104026020016040519081016040528092919081815260200182805461089c906124c6565b80156108e75780601f106108be576101008083540402835291602001916108e7565b820191905f5260205f20905b8154815290600101906020018083116108ca57829003601f168201915b5050505050905090565b5f806108fb611375565b905061090881858561137c565b600191505092915050565b5f600254905090565b61092461153f565b80600f5f6101000a81548160ff02191690831515021790555050565b5f8061094a611375565b90506109578582856115bd565b610962858585611648565b60019150509392505050565b7f000000000000000000000000000000000000000000000000000000000000000081565b61099a61153f565b5f600b819055505f600881905550565b6009600a6109b89190612652565b6461f313f8806109c8919061269c565b81565b5f6009905090565b5f806109dd611375565b90506109fe8185856109ef85896111d1565b6109f991906126dd565b61137c565b600191505092915050565b5f60105f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b600f5f9054906101000a900460ff1681565b610a7561153f565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610b04576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610afb90612780565b60405180910390fd5b610b0e8282611a96565b5050565b610b1a61153f565b5f600c81905550565b610b2b61153f565b8060125f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b600d5481565b610b7f61153f565b5f600881905550565b610b99610b93611375565b82611b34565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b610be961153f565b610bf25f611cf7565b565b610bfc61153f565b8060105f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167f69e34a174b4a0cce59950c4c852317e9797bdcae125fbf8b5dd8b4311384412f82604051610c9691906121d3565b60405180910390a25050565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16610ce2611375565b73ffffffffffffffffffffffffffffffffffffffff1614610d01575f80fd5b80600981905550816008819055505050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610d4061153f565b6001600a5f6101000a81548160ff0219169083151502179055507f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610dc3573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610de791906127b2565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f000000000000000000000000000000000000000000000000000000000000000073ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e6c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e9091906127b2565b6040518363ffffffff1660e01b8152600401610ead9291906127dd565b602060405180830381865afa158015610ec8573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610eec91906127b2565b60065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550610f5760065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611a96565b565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b606060048054610f90906124c6565b80601f0160208091040260200160405190810160405280929190818152602001828054610fbc906124c6565b80156110075780601f10610fde57610100808354040283529160200191611007565b820191905f5260205f20905b815481529060010190602001808311610fea57829003601f168201915b5050505050905090565b5f8061101b611375565b90505f61102882866111d1565b90508381101561106d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161106490612874565b60405180910390fd5b61107a828686840361137c565b60019250505092915050565b5f80611090611375565b905061109d818585611648565b600191505092915050565b5f47116110ea576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110e1906128dc565b60405180910390fd5b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661112a611375565b73ffffffffffffffffffffffffffffffffffffffff1614611149575f80fd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f1935050505015801561118c573d5f803e3d5ffd5b50565b61119761153f565b80600e8190555050565b600e5481565b600a5f9054906101000a900460ff1681565b6111c161153f565b80600d8190555050565b60085481565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b60095481565b61126161153f565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036112cf576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016112c69061296a565b60405180910390fd5b6112d881611cf7565b50565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661131b611375565b73ffffffffffffffffffffffffffffffffffffffff161461133a575f80fd5b5f61134430610b9c565b90506113723060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1683611648565b50565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036113ea576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113e1906129f8565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611458576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161144f90612a86565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258360405161153291906121fb565b60405180910390a3505050565b611547611375565b73ffffffffffffffffffffffffffffffffffffffff16611565610f59565b73ffffffffffffffffffffffffffffffffffffffff16146115bb576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016115b290612aee565b60405180910390fd5b565b5f6115c884846111d1565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146116425781811015611634576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161162b90612b56565b60405180910390fd5b611641848484840361137c565b5b50505050565b5f810361165f5761165a83835f611dba565b611a91565b611667610f59565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156116d557506116a5610f59565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561170d57505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b8015611747575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b1561183b57600a5f9054906101000a900460ff1661183a5760105f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806117fa575060105f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b611839576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161183090612bbe565b60405180910390fd5b5b5b5f60105f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156118da575060105f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f81156119ff5760115f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156119615761195a606461194c6009548661202690919063ffffffff16565b61203b90919063ffffffff16565b90506119dc565b60115f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156119db576119d860646119ca6008548661202690919063ffffffff16565b61203b90919063ffffffff16565b90505b5b5f8111156119f0576119ef853083611dba565b5b80836119fc9190612bdc565b92505b611a0a858585611dba565b4260125f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055504260125f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f208190555050505b505050565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167fcb6f75063424dc268e062fb3e54faf7f70e7d7b5886484bb9173bb5a0048859060405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611ba2576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b9990612c7f565b60405180910390fd5b611bad825f83612050565b5f805f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611c30576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611c2790612d0d565b60405180910390fd5b8181035f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611cdf91906121fb565b60405180910390a3611cf2835f84612055565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611e28576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611e1f90612d9b565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611e96576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611e8d90612e29565b60405180910390fd5b611ea1838383612050565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611f24576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611f1b90612eb7565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161200d91906121fb565b60405180910390a3612020848484612055565b50505050565b5f8183612033919061269c565b905092915050565b5f81836120489190612f02565b905092915050565b505050565b505050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61209c8261205a565b6120a68185612064565b93506120b6818560208601612074565b6120bf81612082565b840191505092915050565b5f6020820190508181035f8301526120e28184612092565b905092915050565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f612117826120ee565b9050919050565b6121278161210d565b8114612131575f80fd5b50565b5f813590506121428161211e565b92915050565b5f819050919050565b61215a81612148565b8114612164575f80fd5b50565b5f8135905061217581612151565b92915050565b5f8060408385031215612191576121906120ea565b5b5f61219e85828601612134565b92505060206121af85828601612167565b9150509250929050565b5f8115159050919050565b6121cd816121b9565b82525050565b5f6020820190506121e65f8301846121c4565b92915050565b6121f581612148565b82525050565b5f60208201905061220e5f8301846121ec565b92915050565b61221d816121b9565b8114612227575f80fd5b50565b5f8135905061223881612214565b92915050565b5f60208284031215612253576122526120ea565b5b5f6122608482850161222a565b91505092915050565b5f805f606084860312156122805761227f6120ea565b5b5f61228d86828701612134565b935050602061229e86828701612134565b92505060406122af86828701612167565b9150509250925092565b5f819050919050565b5f6122dc6122d76122d2846120ee565b6122b9565b6120ee565b9050919050565b5f6122ed826122c2565b9050919050565b5f6122fe826122e3565b9050919050565b61230e816122f4565b82525050565b5f6020820190506123275f830184612305565b92915050565b5f60ff82169050919050565b6123428161232d565b82525050565b5f60208201905061235b5f830184612339565b92915050565b5f60208284031215612376576123756120ea565b5b5f61238384828501612134565b91505092915050565b5f80604083850312156123a2576123a16120ea565b5b5f6123af85828601612134565b92505060206123c08582860161222a565b9150509250929050565b5f602082840312156123df576123de6120ea565b5b5f6123ec84828501612167565b91505092915050565b5f806040838503121561240b5761240a6120ea565b5b5f61241885828601612167565b925050602061242985828601612167565b9150509250929050565b61243c8161210d565b82525050565b5f6020820190506124555f830184612433565b92915050565b5f8060408385031215612471576124706120ea565b5b5f61247e85828601612134565b925050602061248f85828601612134565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806124dd57607f821691505b6020821081036124f0576124ef612499565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b600185111561257857808604811115612554576125536124f6565b5b60018516156125635780820291505b808102905061257185612523565b9450612538565b94509492505050565b5f82612590576001905061264b565b8161259d575f905061264b565b81600181146125b357600281146125bd576125ec565b600191505061264b565b60ff8411156125cf576125ce6124f6565b5b8360020a9150848211156125e6576125e56124f6565b5b5061264b565b5060208310610133831016604e8410600b84101617156126215782820a90508381111561261c5761261b6124f6565b5b61264b565b61262e848484600161252f565b92509050818404811115612645576126446124f6565b5b81810290505b9392505050565b5f61265c82612148565b91506126678361232d565b92506126947fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484612581565b905092915050565b5f6126a682612148565b91506126b183612148565b92508282026126bf81612148565b915082820484148315176126d6576126d56124f6565b5b5092915050565b5f6126e782612148565b91506126f283612148565b925082820190508082111561270a576127096124f6565b5b92915050565b7f43616e6e6f742072656d6f766520746865207072696d61727920414d4d2070615f8201527f6972210000000000000000000000000000000000000000000000000000000000602082015250565b5f61276a602383612064565b915061277582612710565b604082019050919050565b5f6020820190508181035f8301526127978161275e565b9050919050565b5f815190506127ac8161211e565b92915050565b5f602082840312156127c7576127c66120ea565b5b5f6127d48482850161279e565b91505092915050565b5f6040820190506127f05f830185612433565b6127fd6020830184612433565b9392505050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f61285e602583612064565b915061286982612804565b604082019050919050565b5f6020820190508181035f83015261288b81612852565b9050919050565b7f436f6e747261637420686f6c6473206e6f2045544800000000000000000000005f82015250565b5f6128c6601583612064565b91506128d182612892565b602082019050919050565b5f6020820190508181035f8301526128f3816128ba565b9050919050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f612954602683612064565b915061295f826128fa565b604082019050919050565b5f6020820190508181035f83015261298181612948565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f6129e2602483612064565b91506129ed82612988565b604082019050919050565b5f6020820190508181035f830152612a0f816129d6565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612a70602283612064565b9150612a7b82612a16565b604082019050919050565b5f6020820190508181035f830152612a9d81612a64565b9050919050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f612ad8602083612064565b9150612ae382612aa4565b602082019050919050565b5f6020820190508181035f830152612b0581612acc565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f612b40601d83612064565b9150612b4b82612b0c565b602082019050919050565b5f6020820190508181035f830152612b6d81612b34565b9050919050565b7f54726164696e672069732063757272656e746c792064697361626c65642100005f82015250565b5f612ba8601e83612064565b9150612bb382612b74565b602082019050919050565b5f6020820190508181035f830152612bd581612b9c565b9050919050565b5f612be682612148565b9150612bf183612148565b9250828203905081811115612c0957612c086124f6565b5b92915050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f612c69602183612064565b9150612c7482612c0f565b604082019050919050565b5f6020820190508181035f830152612c9681612c5d565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612cf7602283612064565b9150612d0282612c9d565b604082019050919050565b5f6020820190508181035f830152612d2481612ceb565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612d85602583612064565b9150612d9082612d2b565b604082019050919050565b5f6020820190508181035f830152612db281612d79565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612e13602383612064565b9150612e1e82612db9565b604082019050919050565b5f6020820190508181035f830152612e4081612e07565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612ea1602683612064565b9150612eac82612e47565b604082019050919050565b5f6020820190508181035f830152612ece81612e95565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612f0c82612148565b9150612f1783612148565b925082612f2757612f26612ed5565b5b82820490509291505056fea264697066735822122000388d3beed26b1241be440640b7a0b2f67ebcc9bccf3d7bf69d059267ef197264736f6c634300081a0033

Deployed Bytecode

0x608060405260043610610228575f3560e01c8063715018a611610122578063b3b9bcdf116100aa578063d44545e71161006e578063d44545e714610793578063dd62ed3e146107bd578063e208a939146107f9578063f2fde38b14610823578063fab6bc9e1461084b5761022f565b8063b3b9bcdf146106d9578063b7d033e5146106ef578063bbde77c114610717578063c53d4d5314610741578063cf37eb2f1461076b5761022f565b80638a8c523c116100f15780638a8c523c146105f75780638da5cb5b1461060d57806395d89b4114610637578063a457c2d714610661578063a9059cbb1461069d5761022f565b8063715018a614610567578063751fd1791461057d5780637ebb640a146105a5578063808a5457146105cd5761022f565b806339509351116101b05780635e42b1a6116101745780635e42b1a61461049b57806365fda1f7146104c35780636b130f9a146104ed5780636d1b229d1461050357806370a082311461052b5761022f565b806339509351146103bb5780633f4218e0146103f757806354f8e5c914610433578063577dffe81461045d5780635c2d7637146104855761022f565b806323b872dd116101f757806323b872dd146102eb57806324702944146103275780632d9c37bf146103515780632ff2e9dc14610367578063313ce567146103915761022f565b806306fdde0314610233578063095ea7b31461025d57806318160ddd1461029957806318adf0d9146102c35761022f565b3661022f57005b5f80fd5b34801561023e575f80fd5b50610247610861565b60405161025491906120ca565b60405180910390f35b348015610268575f80fd5b50610283600480360381019061027e919061217b565b6108f1565b60405161029091906121d3565b60405180910390f35b3480156102a4575f80fd5b506102ad610913565b6040516102ba91906121fb565b60405180910390f35b3480156102ce575f80fd5b506102e960048036038101906102e4919061223e565b61091c565b005b3480156102f6575f80fd5b50610311600480360381019061030c9190612269565b610940565b60405161031e91906121d3565b60405180910390f35b348015610332575f80fd5b5061033b61096e565b6040516103489190612314565b60405180910390f35b34801561035c575f80fd5b50610365610992565b005b348015610372575f80fd5b5061037b6109aa565b60405161038891906121fb565b60405180910390f35b34801561039c575f80fd5b506103a56109cb565b6040516103b29190612348565b60405180910390f35b3480156103c6575f80fd5b506103e160048036038101906103dc919061217b565b6109d3565b6040516103ee91906121d3565b60405180910390f35b348015610402575f80fd5b5061041d60048036038101906104189190612361565b610a09565b60405161042a91906121d3565b60405180910390f35b34801561043e575f80fd5b50610447610a5b565b60405161045491906121d3565b60405180910390f35b348015610468575f80fd5b50610483600480360381019061047e919061238c565b610a6d565b005b348015610490575f80fd5b50610499610b12565b005b3480156104a6575f80fd5b506104c160048036038101906104bc919061217b565b610b23565b005b3480156104ce575f80fd5b506104d7610b71565b6040516104e491906121fb565b60405180910390f35b3480156104f8575f80fd5b50610501610b77565b005b34801561050e575f80fd5b50610529600480360381019061052491906123ca565b610b88565b005b348015610536575f80fd5b50610551600480360381019061054c9190612361565b610b9c565b60405161055e91906121fb565b60405180910390f35b348015610572575f80fd5b5061057b610be1565b005b348015610588575f80fd5b506105a3600480360381019061059e919061238c565b610bf4565b005b3480156105b0575f80fd5b506105cb60048036038101906105c691906123f5565b610ca2565b005b3480156105d8575f80fd5b506105e1610d13565b6040516105ee9190612442565b60405180910390f35b348015610602575f80fd5b5061060b610d38565b005b348015610618575f80fd5b50610621610f59565b60405161062e9190612442565b60405180910390f35b348015610642575f80fd5b5061064b610f81565b60405161065891906120ca565b60405180910390f35b34801561066c575f80fd5b506106876004803603810190610682919061217b565b611011565b60405161069491906121d3565b60405180910390f35b3480156106a8575f80fd5b506106c360048036038101906106be919061217b565b611086565b6040516106d091906121d3565b60405180910390f35b3480156106e4575f80fd5b506106ed6110a8565b005b3480156106fa575f80fd5b50610715600480360381019061071091906123ca565b61118f565b005b348015610722575f80fd5b5061072b6111a1565b60405161073891906121fb565b60405180910390f35b34801561074c575f80fd5b506107556111a7565b60405161076291906121d3565b60405180910390f35b348015610776575f80fd5b50610791600480360381019061078c91906123ca565b6111b9565b005b34801561079e575f80fd5b506107a76111cb565b6040516107b491906121fb565b60405180910390f35b3480156107c8575f80fd5b506107e360048036038101906107de919061245b565b6111d1565b6040516107f091906121fb565b60405180910390f35b348015610804575f80fd5b5061080d611253565b60405161081a91906121fb565b60405180910390f35b34801561082e575f80fd5b5061084960048036038101906108449190612361565b611259565b005b348015610856575f80fd5b5061085f6112db565b005b606060038054610870906124c6565b80601f016020809104026020016040519081016040528092919081815260200182805461089c906124c6565b80156108e75780601f106108be576101008083540402835291602001916108e7565b820191905f5260205f20905b8154815290600101906020018083116108ca57829003601f168201915b5050505050905090565b5f806108fb611375565b905061090881858561137c565b600191505092915050565b5f600254905090565b61092461153f565b80600f5f6101000a81548160ff02191690831515021790555050565b5f8061094a611375565b90506109578582856115bd565b610962858585611648565b60019150509392505050565b7f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d81565b61099a61153f565b5f600b819055505f600881905550565b6009600a6109b89190612652565b6461f313f8806109c8919061269c565b81565b5f6009905090565b5f806109dd611375565b90506109fe8185856109ef85896111d1565b6109f991906126dd565b61137c565b600191505092915050565b5f60105f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff169050919050565b600f5f9054906101000a900460ff1681565b610a7561153f565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610b04576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610afb90612780565b60405180910390fd5b610b0e8282611a96565b5050565b610b1a61153f565b5f600c81905550565b610b2b61153f565b8060125f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b600d5481565b610b7f61153f565b5f600881905550565b610b99610b93611375565b82611b34565b50565b5f805f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b610be961153f565b610bf25f611cf7565b565b610bfc61153f565b8060105f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508173ffffffffffffffffffffffffffffffffffffffff167f69e34a174b4a0cce59950c4c852317e9797bdcae125fbf8b5dd8b4311384412f82604051610c9691906121d3565b60405180910390a25050565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16610ce2611375565b73ffffffffffffffffffffffffffffffffffffffff1614610d01575f80fd5b80600981905550816008819055505050565b60065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b610d4061153f565b6001600a5f6101000a81548160ff0219169083151502179055507f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa158015610dc3573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610de791906127b2565b73ffffffffffffffffffffffffffffffffffffffff1663e6a43905307f0000000000000000000000007a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610e6c573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610e9091906127b2565b6040518363ffffffff1660e01b8152600401610ead9291906127dd565b602060405180830381865afa158015610ec8573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610eec91906127b2565b60065f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff160217905550610f5760065f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff166001611a96565b565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff16905090565b606060048054610f90906124c6565b80601f0160208091040260200160405190810160405280929190818152602001828054610fbc906124c6565b80156110075780601f10610fde57610100808354040283529160200191611007565b820191905f5260205f20905b815481529060010190602001808311610fea57829003601f168201915b5050505050905090565b5f8061101b611375565b90505f61102882866111d1565b90508381101561106d576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161106490612874565b60405180910390fd5b61107a828686840361137c565b60019250505092915050565b5f80611090611375565b905061109d818585611648565b600191505092915050565b5f47116110ea576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016110e1906128dc565b60405180910390fd5b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661112a611375565b73ffffffffffffffffffffffffffffffffffffffff1614611149575f80fd5b3373ffffffffffffffffffffffffffffffffffffffff166108fc4790811502906040515f60405180830381858888f1935050505015801561118c573d5f803e3d5ffd5b50565b61119761153f565b80600e8190555050565b600e5481565b600a5f9054906101000a900460ff1681565b6111c161153f565b80600d8190555050565b60085481565b5f60015f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b60095481565b61126161153f565b5f73ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff16036112cf576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016112c69061296a565b60405180910390fd5b6112d881611cf7565b50565b60075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1661131b611375565b73ffffffffffffffffffffffffffffffffffffffff161461133a575f80fd5b5f61134430610b9c565b90506113723060075f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1683611648565b50565b5f33905090565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16036113ea576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016113e1906129f8565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611458576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161144f90612a86565b60405180910390fd5b8060015f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b9258360405161153291906121fb565b60405180910390a3505050565b611547611375565b73ffffffffffffffffffffffffffffffffffffffff16611565610f59565b73ffffffffffffffffffffffffffffffffffffffff16146115bb576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016115b290612aee565b60405180910390fd5b565b5f6115c884846111d1565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff81146116425781811015611634576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161162b90612b56565b60405180910390fd5b611641848484840361137c565b5b50505050565b5f810361165f5761165a83835f611dba565b611a91565b611667610f59565b73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff16141580156116d557506116a5610f59565b73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b801561170d57505f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b8015611747575061dead73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1614155b1561183b57600a5f9054906101000a900460ff1661183a5760105f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16806117fa575060105f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff165b611839576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161183090612bbe565b60405180910390fd5b5b5b5f60105f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff161580156118da575060105f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16155b90505f81156119ff5760115f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156119615761195a606461194c6009548661202690919063ffffffff16565b61203b90919063ffffffff16565b90506119dc565b60115f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f9054906101000a900460ff16156119db576119d860646119ca6008548661202690919063ffffffff16565b61203b90919063ffffffff16565b90505b5b5f8111156119f0576119ef853083611dba565b5b80836119fc9190612bdc565b92505b611a0a858585611dba565b4260125f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055504260125f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f208190555050505b505050565b8060115f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f6101000a81548160ff0219169083151502179055508015158273ffffffffffffffffffffffffffffffffffffffff167fcb6f75063424dc268e062fb3e54faf7f70e7d7b5886484bb9173bb5a0048859060405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611ba2576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b9990612c7f565b60405180910390fd5b611bad825f83612050565b5f805f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611c30576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611c2790612d0d565b60405180910390fd5b8181035f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508160025f82825403925050819055505f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef84604051611cdf91906121fb565b60405180910390a3611cf2835f84612055565b505050565b5f60055f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1690508160055f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055508173ffffffffffffffffffffffffffffffffffffffff168173ffffffffffffffffffffffffffffffffffffffff167f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e060405160405180910390a35050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603611e28576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611e1f90612d9b565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603611e96576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611e8d90612e29565b60405180910390fd5b611ea1838383612050565b5f805f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015611f24576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611f1b90612eb7565b60405180910390fd5b8181035f808673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550815f808573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f82825401925050819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8460405161200d91906121fb565b60405180910390a3612020848484612055565b50505050565b5f8183612033919061269c565b905092915050565b5f81836120489190612f02565b905092915050565b505050565b505050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f61209c8261205a565b6120a68185612064565b93506120b6818560208601612074565b6120bf81612082565b840191505092915050565b5f6020820190508181035f8301526120e28184612092565b905092915050565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f612117826120ee565b9050919050565b6121278161210d565b8114612131575f80fd5b50565b5f813590506121428161211e565b92915050565b5f819050919050565b61215a81612148565b8114612164575f80fd5b50565b5f8135905061217581612151565b92915050565b5f8060408385031215612191576121906120ea565b5b5f61219e85828601612134565b92505060206121af85828601612167565b9150509250929050565b5f8115159050919050565b6121cd816121b9565b82525050565b5f6020820190506121e65f8301846121c4565b92915050565b6121f581612148565b82525050565b5f60208201905061220e5f8301846121ec565b92915050565b61221d816121b9565b8114612227575f80fd5b50565b5f8135905061223881612214565b92915050565b5f60208284031215612253576122526120ea565b5b5f6122608482850161222a565b91505092915050565b5f805f606084860312156122805761227f6120ea565b5b5f61228d86828701612134565b935050602061229e86828701612134565b92505060406122af86828701612167565b9150509250925092565b5f819050919050565b5f6122dc6122d76122d2846120ee565b6122b9565b6120ee565b9050919050565b5f6122ed826122c2565b9050919050565b5f6122fe826122e3565b9050919050565b61230e816122f4565b82525050565b5f6020820190506123275f830184612305565b92915050565b5f60ff82169050919050565b6123428161232d565b82525050565b5f60208201905061235b5f830184612339565b92915050565b5f60208284031215612376576123756120ea565b5b5f61238384828501612134565b91505092915050565b5f80604083850312156123a2576123a16120ea565b5b5f6123af85828601612134565b92505060206123c08582860161222a565b9150509250929050565b5f602082840312156123df576123de6120ea565b5b5f6123ec84828501612167565b91505092915050565b5f806040838503121561240b5761240a6120ea565b5b5f61241885828601612167565b925050602061242985828601612167565b9150509250929050565b61243c8161210d565b82525050565b5f6020820190506124555f830184612433565b92915050565b5f8060408385031215612471576124706120ea565b5b5f61247e85828601612134565b925050602061248f85828601612134565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806124dd57607f821691505b6020821081036124f0576124ef612499565b5b50919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f8160011c9050919050565b5f808291508390505b600185111561257857808604811115612554576125536124f6565b5b60018516156125635780820291505b808102905061257185612523565b9450612538565b94509492505050565b5f82612590576001905061264b565b8161259d575f905061264b565b81600181146125b357600281146125bd576125ec565b600191505061264b565b60ff8411156125cf576125ce6124f6565b5b8360020a9150848211156125e6576125e56124f6565b5b5061264b565b5060208310610133831016604e8410600b84101617156126215782820a90508381111561261c5761261b6124f6565b5b61264b565b61262e848484600161252f565b92509050818404811115612645576126446124f6565b5b81810290505b9392505050565b5f61265c82612148565b91506126678361232d565b92506126947fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8484612581565b905092915050565b5f6126a682612148565b91506126b183612148565b92508282026126bf81612148565b915082820484148315176126d6576126d56124f6565b5b5092915050565b5f6126e782612148565b91506126f283612148565b925082820190508082111561270a576127096124f6565b5b92915050565b7f43616e6e6f742072656d6f766520746865207072696d61727920414d4d2070615f8201527f6972210000000000000000000000000000000000000000000000000000000000602082015250565b5f61276a602383612064565b915061277582612710565b604082019050919050565b5f6020820190508181035f8301526127978161275e565b9050919050565b5f815190506127ac8161211e565b92915050565b5f602082840312156127c7576127c66120ea565b5b5f6127d48482850161279e565b91505092915050565b5f6040820190506127f05f830185612433565b6127fd6020830184612433565b9392505050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f61285e602583612064565b915061286982612804565b604082019050919050565b5f6020820190508181035f83015261288b81612852565b9050919050565b7f436f6e747261637420686f6c6473206e6f2045544800000000000000000000005f82015250565b5f6128c6601583612064565b91506128d182612892565b602082019050919050565b5f6020820190508181035f8301526128f3816128ba565b9050919050565b7f4f776e61626c653a206e6577206f776e657220697320746865207a65726f20615f8201527f6464726573730000000000000000000000000000000000000000000000000000602082015250565b5f612954602683612064565b915061295f826128fa565b604082019050919050565b5f6020820190508181035f83015261298181612948565b9050919050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f6129e2602483612064565b91506129ed82612988565b604082019050919050565b5f6020820190508181035f830152612a0f816129d6565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612a70602283612064565b9150612a7b82612a16565b604082019050919050565b5f6020820190508181035f830152612a9d81612a64565b9050919050565b7f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65725f82015250565b5f612ad8602083612064565b9150612ae382612aa4565b602082019050919050565b5f6020820190508181035f830152612b0581612acc565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f612b40601d83612064565b9150612b4b82612b0c565b602082019050919050565b5f6020820190508181035f830152612b6d81612b34565b9050919050565b7f54726164696e672069732063757272656e746c792064697361626c65642100005f82015250565b5f612ba8601e83612064565b9150612bb382612b74565b602082019050919050565b5f6020820190508181035f830152612bd581612b9c565b9050919050565b5f612be682612148565b9150612bf183612148565b9250828203905081811115612c0957612c086124f6565b5b92915050565b7f45524332303a206275726e2066726f6d20746865207a65726f206164647265735f8201527f7300000000000000000000000000000000000000000000000000000000000000602082015250565b5f612c69602183612064565b9150612c7482612c0f565b604082019050919050565b5f6020820190508181035f830152612c9681612c5d565b9050919050565b7f45524332303a206275726e20616d6f756e7420657863656564732062616c616e5f8201527f6365000000000000000000000000000000000000000000000000000000000000602082015250565b5f612cf7602283612064565b9150612d0282612c9d565b604082019050919050565b5f6020820190508181035f830152612d2481612ceb565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f612d85602583612064565b9150612d9082612d2b565b604082019050919050565b5f6020820190508181035f830152612db281612d79565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612e13602383612064565b9150612e1e82612db9565b604082019050919050565b5f6020820190508181035f830152612e4081612e07565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612ea1602683612064565b9150612eac82612e47565b604082019050919050565b5f6020820190508181035f830152612ece81612e95565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f612f0c82612148565b9150612f1783612148565b925082612f2757612f26612ed5565b5b82820490509291505056fea264697066735822122000388d3beed26b1241be440640b7a0b2f67ebcc9bccf3d7bf69d059267ef197264736f6c634300081a0033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.