ETH Price: $2,524.50 (-5.02%)

Token

Balancer 50 COMP 50 WETH (B-50COMP-50WETH)
 

Overview

Max Total Supply

20.064011911831889051 B-50COMP-50WETH

Holders

239

Market

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
0.001170150215957583 B-50COMP-50WETH

Value
$0.00
0x3a188438e7ad543912c691e4d272e76c6e4c764b
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information
# Exchange Pair Price  24H Volume % Volume

Contract Source Code Verified (Exact Match)

Contract Name:
WeightedPool2Tokens

Compiler Version
v0.7.1+commit.f4a555be

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 42 : WeightedPool2Tokens.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../../lib/math/FixedPoint.sol";
import "../../lib/helpers/InputHelpers.sol";
import "../../lib/helpers/TemporarilyPausable.sol";
import "../../lib/openzeppelin/ERC20.sol";

import "./WeightedMath.sol";
import "./WeightedOracleMath.sol";
import "./WeightedPool2TokensMiscData.sol";
import "./WeightedPoolUserDataHelpers.sol";
import "../BalancerPoolToken.sol";
import "../BasePoolAuthorization.sol";
import "../oracle/PoolPriceOracle.sol";
import "../oracle/Buffer.sol";

import "../../vault/interfaces/IMinimalSwapInfoPool.sol";
import "../IPriceOracle.sol";

contract WeightedPool2Tokens is
    IMinimalSwapInfoPool,
    IPriceOracle,
    BasePoolAuthorization,
    BalancerPoolToken,
    TemporarilyPausable,
    PoolPriceOracle,
    WeightedMath,
    WeightedOracleMath
{
    using FixedPoint for uint256;
    using WeightedPoolUserDataHelpers for bytes;
    using WeightedPool2TokensMiscData for bytes32;

    uint256 private constant _MINIMUM_BPT = 1e6;

    // 1e18 corresponds to 1.0, or a 100% fee
    uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
    uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10%
    // The swap fee is internally stored using 64 bits, which is enough to represent _MAX_SWAP_FEE_PERCENTAGE.

    bytes32 internal _miscData;
    uint256 private _lastInvariant;

    IVault private immutable _vault;
    bytes32 private immutable _poolId;

    IERC20 internal immutable _token0;
    IERC20 internal immutable _token1;

    uint256 private immutable _normalizedWeight0;
    uint256 private immutable _normalizedWeight1;

    // The protocol fees will always be charged using the token associated with the max weight in the pool.
    // Since these Pools will register tokens only once, we can assume this index will be constant.
    uint256 private immutable _maxWeightTokenIndex;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.
    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;

    event OracleEnabledChanged(bool enabled);
    event SwapFeePercentageChanged(uint256 swapFeePercentage);

    modifier onlyVault(bytes32 poolId) {
        _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
        _require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
        _;
    }

    struct NewPoolParams {
        IVault vault;
        string name;
        string symbol;
        IERC20 token0;
        IERC20 token1;
        uint256 normalizedWeight0;
        uint256 normalizedWeight1;
        uint256 swapFeePercentage;
        uint256 pauseWindowDuration;
        uint256 bufferPeriodDuration;
        bool oracleEnabled;
        address owner;
    }

    constructor(NewPoolParams memory params)
        // Base Pools are expected to be deployed using factories. By using the factory address as the action
        // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
        // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
        // any Pool created by the same factory), while still making action identifiers unique among different factories
        // if the selectors match, preventing accidental errors.
        Authentication(bytes32(uint256(msg.sender)))
        BalancerPoolToken(params.name, params.symbol)
        BasePoolAuthorization(params.owner)
        TemporarilyPausable(params.pauseWindowDuration, params.bufferPeriodDuration)
    {
        _setOracleEnabled(params.oracleEnabled);
        _setSwapFeePercentage(params.swapFeePercentage);

        bytes32 poolId = params.vault.registerPool(IVault.PoolSpecialization.TWO_TOKEN);

        // Pass in zero addresses for Asset Managers
        IERC20[] memory tokens = new IERC20[](2);
        tokens[0] = params.token0;
        tokens[1] = params.token1;
        params.vault.registerTokens(poolId, tokens, new address[](2));

        // Set immutable state variables - these cannot be read from during construction
        _vault = params.vault;
        _poolId = poolId;

        _token0 = params.token0;
        _token1 = params.token1;

        _scalingFactor0 = _computeScalingFactor(params.token0);
        _scalingFactor1 = _computeScalingFactor(params.token1);

        // Ensure each normalized weight is above them minimum and find the token index of the maximum weight
        _require(params.normalizedWeight0 >= _MIN_WEIGHT, Errors.MIN_WEIGHT);
        _require(params.normalizedWeight1 >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

        // Ensure that the normalized weights sum to ONE
        uint256 normalizedSum = params.normalizedWeight0.add(params.normalizedWeight1);
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _normalizedWeight0 = params.normalizedWeight0;
        _normalizedWeight1 = params.normalizedWeight1;
        _maxWeightTokenIndex = params.normalizedWeight0 >= params.normalizedWeight1 ? 0 : 1;
    }

    // Getters / Setters

    function getVault() public view returns (IVault) {
        return _vault;
    }

    function getPoolId() public view returns (bytes32) {
        return _poolId;
    }

    function getMiscData()
        external
        view
        returns (
            int256 logInvariant,
            int256 logTotalSupply,
            uint256 oracleSampleCreationTimestamp,
            uint256 oracleIndex,
            bool oracleEnabled,
            uint256 swapFeePercentage
        )
    {
        bytes32 miscData = _miscData;
        logInvariant = miscData.logInvariant();
        logTotalSupply = miscData.logTotalSupply();
        oracleSampleCreationTimestamp = miscData.oracleSampleCreationTimestamp();
        oracleIndex = miscData.oracleIndex();
        oracleEnabled = miscData.oracleEnabled();
        swapFeePercentage = miscData.swapFeePercentage();
    }

    function getSwapFeePercentage() public view returns (uint256) {
        return _miscData.swapFeePercentage();
    }

    // Caller must be approved by the Vault's Authorizer
    function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused {
        _setSwapFeePercentage(swapFeePercentage);
    }

    function _setSwapFeePercentage(uint256 swapFeePercentage) private {
        _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE);
        _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE);

        _miscData = _miscData.setSwapFeePercentage(swapFeePercentage);
        emit SwapFeePercentageChanged(swapFeePercentage);
    }

    /**
     * @dev Balancer Governance can always enable the Oracle, even if it was originally not enabled. This allows for
     * Pools that unexpectedly drive much more volume and liquidity than expected to serve as Price Oracles.
     *
     * Note that the Oracle can only be enabled - it can never be disabled.
     */
    function enableOracle() external whenNotPaused authenticate {
        _setOracleEnabled(true);

        // Cache log invariant and supply only if the pool was initialized
        if (totalSupply() > 0) {
            _cacheInvariantAndSupply();
        }
    }

    function _setOracleEnabled(bool enabled) internal {
        _miscData = _miscData.setOracleEnabled(enabled);
        emit OracleEnabledChanged(enabled);
    }

    // Caller must be approved by the Vault's Authorizer
    function setPaused(bool paused) external authenticate {
        _setPaused(paused);
    }

    function getNormalizedWeights() external view returns (uint256[] memory) {
        return _normalizedWeights();
    }

    function _normalizedWeights() internal view virtual returns (uint256[] memory) {
        uint256[] memory normalizedWeights = new uint256[](2);
        normalizedWeights[0] = _normalizedWeights(true);
        normalizedWeights[1] = _normalizedWeights(false);
        return normalizedWeights;
    }

    function _normalizedWeights(bool token0) internal view virtual returns (uint256) {
        return token0 ? _normalizedWeight0 : _normalizedWeight1;
    }

    function getLastInvariant() external view returns (uint256) {
        return _lastInvariant;
    }

    /**
     * @dev Returns the current value of the invariant.
     */
    function getInvariant() public view returns (uint256) {
        (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());

        // Since the Pool hooks always work with upscaled balances, we manually
        // upscale here for consistency
        _upscaleArray(balances);

        uint256[] memory normalizedWeights = _normalizedWeights();
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    // Swap Hooks

    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) external virtual override whenNotPaused onlyVault(request.poolId) returns (uint256) {
        bool tokenInIsToken0 = request.tokenIn == _token0;

        uint256 scalingFactorTokenIn = _scalingFactor(tokenInIsToken0);
        uint256 scalingFactorTokenOut = _scalingFactor(!tokenInIsToken0);

        uint256 normalizedWeightIn = _normalizedWeights(tokenInIsToken0);
        uint256 normalizedWeightOut = _normalizedWeights(!tokenInIsToken0);

        // All token amounts are upscaled.
        balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
        balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);

        // Update price oracle with the pre-swap balances
        _updateOracle(
            request.lastChangeBlock,
            tokenInIsToken0 ? balanceTokenIn : balanceTokenOut,
            tokenInIsToken0 ? balanceTokenOut : balanceTokenIn
        );

        if (request.kind == IVault.SwapKind.GIVEN_IN) {
            // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
            // This is amount - fee amount, so we round up (favoring a higher fee amount).
            uint256 feeAmount = request.amount.mulUp(getSwapFeePercentage());
            request.amount = _upscale(request.amount.sub(feeAmount), scalingFactorTokenIn);

            uint256 amountOut = _onSwapGivenIn(
                request,
                balanceTokenIn,
                balanceTokenOut,
                normalizedWeightIn,
                normalizedWeightOut
            );

            // amountOut tokens are exiting the Pool, so we round down.
            return _downscaleDown(amountOut, scalingFactorTokenOut);
        } else {
            request.amount = _upscale(request.amount, scalingFactorTokenOut);

            uint256 amountIn = _onSwapGivenOut(
                request,
                balanceTokenIn,
                balanceTokenOut,
                normalizedWeightIn,
                normalizedWeightOut
            );

            // amountIn tokens are entering the Pool, so we round up.
            amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);

            // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
            // This is amount + fee amount, so we round up (favoring a higher fee amount).
            return amountIn.divUp(getSwapFeePercentage().complement());
        }
    }

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut,
        uint256 normalizedWeightIn,
        uint256 normalizedWeightOut
    ) private pure returns (uint256) {
        // Swaps are disabled while the contract is paused.
        return
            WeightedMath._calcOutGivenIn(
                currentBalanceTokenIn,
                normalizedWeightIn,
                currentBalanceTokenOut,
                normalizedWeightOut,
                swapRequest.amount
            );
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut,
        uint256 normalizedWeightIn,
        uint256 normalizedWeightOut
    ) private pure returns (uint256) {
        // Swaps are disabled while the contract is paused.
        return
            WeightedMath._calcInGivenOut(
                currentBalanceTokenIn,
                normalizedWeightIn,
                currentBalanceTokenOut,
                normalizedWeightOut,
                swapRequest.amount
            );
    }

    // Join Hook

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        external
        virtual
        override
        onlyVault(poolId)
        whenNotPaused
        returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts)
    {
        // All joins, including initializations, are disabled while the contract is paused.

        uint256 bptAmountOut;
        if (totalSupply() == 0) {
            (bptAmountOut, amountsIn) = _onInitializePool(poolId, sender, recipient, userData);

            // On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum
            // as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from
            // ever being fully drained.
            _require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT);
            _mintPoolTokens(address(0), _MINIMUM_BPT);
            _mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn);

            // There are no due protocol fee amounts during initialization
            dueProtocolFeeAmounts = new uint256[](2);
        } else {
            _upscaleArray(balances);

            // Update price oracle with the pre-join balances
            _updateOracle(lastChangeBlock, balances[0], balances[1]);

            (bptAmountOut, amountsIn, dueProtocolFeeAmounts) = _onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                userData
            );

            // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.

            _mintPoolTokens(recipient, bptAmountOut);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn);
            // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
            _downscaleDownArray(dueProtocolFeeAmounts);
        }

        // Update cached total supply and invariant using the results after the join that will be used for future
        // oracle updates.
        _cacheInvariantAndSupply();
    }

    /**
     * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
     *
     * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
     *
     * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent
     * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from
     * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's
     * lifetime.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     */
    function _onInitializePool(
        bytes32,
        address,
        address,
        bytes memory userData
    ) private returns (uint256, uint256[] memory) {
        WeightedPool.JoinKind kind = userData.joinKind();
        _require(kind == WeightedPool.JoinKind.INIT, Errors.UNINITIALIZED);

        uint256[] memory amountsIn = userData.initialAmountsIn();
        InputHelpers.ensureInputLengthMatch(amountsIn.length, 2);
        _upscaleArray(amountsIn);

        uint256[] memory normalizedWeights = _normalizedWeights();

        uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn);

        // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more
        // consistent in Pools with similar compositions but different number of tokens.
        uint256 bptAmountOut = Math.mul(invariantAfterJoin, 2);

        _lastInvariant = invariantAfterJoin;

        return (bptAmountOut, amountsIn);
    }

    /**
     * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
     *
     * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
     * tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * Minted BPT will be sent to `recipient`.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        private
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        uint256[] memory normalizedWeights = _normalizedWeights();

        // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join
        // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas
        // computing them on each individual swap
        uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances);

        uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
            balances,
            normalizedWeights,
            _lastInvariant,
            invariantBeforeJoin,
            protocolSwapFeePercentage
        );

        // Update current balances by subtracting the protocol fee amounts
        _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, normalizedWeights, userData);

        // Update the invariant with the balances the Pool will have after the join, in order to compute the
        // protocol swap fee amounts due in future joins and exits.
        _mutateAmounts(balances, amountsIn, FixedPoint.add);
        _lastInvariant = WeightedMath._calculateInvariant(normalizedWeights, balances);

        return (bptAmountOut, amountsIn, dueProtocolFeeAmounts);
    }

    function _doJoin(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        WeightedPool.JoinKind kind = userData.joinKind();

        if (kind == WeightedPool.JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
            return _joinExactTokensInForBPTOut(balances, normalizedWeights, userData);
        } else if (kind == WeightedPool.JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
            return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData);
        } else {
            _revert(Errors.UNHANDLED_JOIN_KIND);
        }
    }

    function _joinExactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
        InputHelpers.ensureInputLengthMatch(amountsIn.length, 2);

        _upscaleArray(amountsIn);

        uint256 bptAmountOut = WeightedMath._calcBptOutGivenExactTokensIn(
            balances,
            normalizedWeights,
            amountsIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);

        return (bptAmountOut, amountsIn);
    }

    function _joinTokenInForExactBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
        // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.

        _require(tokenIndex < 2, Errors.OUT_OF_BOUNDS);

        uint256[] memory amountsIn = new uint256[](2);
        amountsIn[tokenIndex] = WeightedMath._calcTokenInGivenExactBptOut(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountOut,
            totalSupply(),
            getSwapFeePercentage()
        );

        return (bptAmountOut, amountsIn);
    }

    // Exit Hook

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        _upscaleArray(balances);

        (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData
        );

        // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.

        _burnPoolTokens(sender, bptAmountIn);

        // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
        _downscaleDownArray(amountsOut);
        _downscaleDownArray(dueProtocolFeeAmounts);

        // Update cached total supply and invariant using the results after the exit that will be used for future
        // oracle updates, only if the pool was not paused (to minimize code paths taken while paused).
        if (_isNotPaused()) {
            _cacheInvariantAndSupply();
        }

        return (amountsOut, dueProtocolFeeAmounts);
    }

    /**
     * @dev Called whenever the Pool is exited.
     *
     * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
     * the number of tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * BPT will be burnt from `sender`.
     *
     * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
     * (rounding down) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        private
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        uint256[] memory normalizedWeights = _normalizedWeights();

        if (_isNotPaused()) {
            // Update price oracle with the pre-exit balances
            _updateOracle(lastChangeBlock, balances[0], balances[1]);

            // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous
            // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids
            // spending gas calculating the fees on each individual swap.
            uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances);
            dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
                balances,
                normalizedWeights,
                _lastInvariant,
                invariantBeforeExit,
                protocolSwapFeePercentage
            );

            // Update current balances by subtracting the protocol fee amounts
            _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        } else {
            // If the contract is paused, swap protocol fee amounts are not charged and the oracle is not updated
            // to avoid extra calculations and reduce the potential for errors.
            dueProtocolFeeAmounts = new uint256[](2);
        }

        (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, userData);

        // Update the invariant with the balances the Pool will have after the exit, in order to compute the
        // protocol swap fees due in future joins and exits.
        _mutateAmounts(balances, amountsOut, FixedPoint.sub);
        _lastInvariant = WeightedMath._calculateInvariant(normalizedWeights, balances);

        return (bptAmountIn, amountsOut, dueProtocolFeeAmounts);
    }

    function _doExit(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        WeightedPool.ExitKind kind = userData.exitKind();

        if (kind == WeightedPool.ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
            return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData);
        } else if (kind == WeightedPool.ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
            return _exitExactBPTInForTokensOut(balances, userData);
        } else {
            // ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT
            return _exitBPTInForExactTokensOut(balances, normalizedWeights, userData);
        }
    }

    function _exitExactBPTInForTokenOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        _require(tokenIndex < 2, Errors.OUT_OF_BOUNDS);

        // We exit in a single token, so we initialize amountsOut with zeros
        uint256[] memory amountsOut = new uint256[](2);

        // And then assign the result to the selected token
        amountsOut[tokenIndex] = WeightedMath._calcTokenOutGivenExactBptIn(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        return (bptAmountIn, amountsOut);
    }

    function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted
        // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency.
        // This particular exit function is the only one that remains available because it is the simplest one, and
        // therefore the one with the lowest likelihood of errors.

        uint256 bptAmountIn = userData.exactBptInForTokensOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply());
        return (bptAmountIn, amountsOut);
    }

    function _exitBPTInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
        InputHelpers.ensureInputLengthMatch(amountsOut.length, 2);
        _upscaleArray(amountsOut);

        uint256 bptAmountIn = WeightedMath._calcBptInGivenExactTokensOut(
            balances,
            normalizedWeights,
            amountsOut,
            totalSupply(),
            getSwapFeePercentage()
        );
        _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);

        return (bptAmountIn, amountsOut);
    }

    // Oracle functions

    function getLargestSafeQueryWindow() external pure override returns (uint256) {
        return 34 hours;
    }

    function getLatest(Variable variable) external view override returns (uint256) {
        int256 instantValue = _getInstantValue(variable, _miscData.oracleIndex());
        return _fromLowResLog(instantValue);
    }

    function getTimeWeightedAverage(OracleAverageQuery[] memory queries)
        external
        view
        override
        returns (uint256[] memory results)
    {
        results = new uint256[](queries.length);

        uint256 oracleIndex = _miscData.oracleIndex();

        OracleAverageQuery memory query;
        for (uint256 i = 0; i < queries.length; ++i) {
            query = queries[i];
            _require(query.secs != 0, Errors.ORACLE_BAD_SECS);

            int256 beginAccumulator = _getPastAccumulator(query.variable, oracleIndex, query.ago + query.secs);
            int256 endAccumulator = _getPastAccumulator(query.variable, oracleIndex, query.ago);
            results[i] = _fromLowResLog((endAccumulator - beginAccumulator) / int256(query.secs));
        }
    }

    function getPastAccumulators(OracleAccumulatorQuery[] memory queries)
        external
        view
        override
        returns (int256[] memory results)
    {
        results = new int256[](queries.length);

        uint256 oracleIndex = _miscData.oracleIndex();

        OracleAccumulatorQuery memory query;
        for (uint256 i = 0; i < queries.length; ++i) {
            query = queries[i];
            results[i] = _getPastAccumulator(query.variable, oracleIndex, query.ago);
        }
    }

    /**
     * @dev Updates the Price Oracle based on the Pool's current state (balances, BPT supply and invariant). Must be
     * called on *all* state-changing functions with the balances *before* the state change happens, and with
     * `lastChangeBlock` as the number of the block in which any of the balances last changed.
     */
    function _updateOracle(
        uint256 lastChangeBlock,
        uint256 balanceToken0,
        uint256 balanceToken1
    ) internal {
        bytes32 miscData = _miscData;
        if (miscData.oracleEnabled() && block.number > lastChangeBlock) {
            int256 logSpotPrice = WeightedOracleMath._calcLogSpotPrice(
                _normalizedWeight0,
                balanceToken0,
                _normalizedWeight1,
                balanceToken1
            );

            int256 logBPTPrice = WeightedOracleMath._calcLogBPTPrice(
                _normalizedWeight0,
                balanceToken0,
                miscData.logTotalSupply()
            );

            uint256 oracleCurrentIndex = miscData.oracleIndex();
            uint256 oracleCurrentSampleInitialTimestamp = miscData.oracleSampleCreationTimestamp();
            uint256 oracleUpdatedIndex = _processPriceData(
                oracleCurrentSampleInitialTimestamp,
                oracleCurrentIndex,
                logSpotPrice,
                logBPTPrice,
                miscData.logInvariant()
            );

            if (oracleCurrentIndex != oracleUpdatedIndex) {
                // solhint-disable not-rely-on-time
                miscData = miscData.setOracleIndex(oracleUpdatedIndex);
                miscData = miscData.setOracleSampleCreationTimestamp(block.timestamp);
                _miscData = miscData;
            }
        }
    }

    /**
     * @dev Stores the logarithm of the invariant and BPT total supply, to be later used in each oracle update. Because
     * it is stored in miscData, which is read in all operations (including swaps), this saves gas by not requiring to
     * compute or read these values when updating the oracle.
     *
     * This function must be called by all actions that update the invariant and BPT supply (joins and exits). Swaps
     * also alter the invariant due to collected swap fees, but this growth is considered negligible and not accounted
     * for.
     */
    function _cacheInvariantAndSupply() internal {
        bytes32 miscData = _miscData;
        if (miscData.oracleEnabled()) {
            miscData = miscData.setLogInvariant(WeightedOracleMath._toLowResLog(_lastInvariant));
            miscData = miscData.setLogTotalSupply(WeightedOracleMath._toLowResLog(totalSupply()));
            _miscData = miscData;
        }
    }

    // Query functions

    /**
     * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `sender` would have to supply.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn) {
        InputHelpers.ensureInputLengthMatch(balances.length, 2);

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onJoinPool,
            _downscaleUpArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptOut, amountsIn);
    }

    /**
     * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `recipient` would receive.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut) {
        InputHelpers.ensureInputLengthMatch(balances.length, 2);

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onExitPool,
            _downscaleDownArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptIn, amountsOut);
    }

    // Helpers

    function _getDueProtocolFeeAmounts(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) private view returns (uint256[] memory) {
        // Initialize with zeros
        uint256[] memory dueProtocolFeeAmounts = new uint256[](2);

        // Early return if the protocol swap fee percentage is zero, saving gas.
        if (protocolSwapFeePercentage == 0) {
            return dueProtocolFeeAmounts;
        }

        // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the
        // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool.
        dueProtocolFeeAmounts[_maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount(
            balances[_maxWeightTokenIndex],
            normalizedWeights[_maxWeightTokenIndex],
            previousInvariant,
            currentInvariant,
            protocolSwapFeePercentage
        );

        return dueProtocolFeeAmounts;
    }

    /**
     * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
     *
     * Equivalent to `amounts = amounts.map(mutation)`.
     */
    function _mutateAmounts(
        uint256[] memory toMutate,
        uint256[] memory arguments,
        function(uint256, uint256) pure returns (uint256) mutation
    ) private pure {
        toMutate[0] = mutation(toMutate[0], arguments[0]);
        toMutate[1] = mutation(toMutate[1], arguments[1]);
    }

    /**
     * @dev This function returns the appreciation of one BPT relative to the
     * underlying tokens. This starts at 1 when the pool is created and grows over time
     */
    function getRate() public view returns (uint256) {
        // The initial BPT supply is equal to the invariant times the number of tokens.
        return Math.mul(getInvariant(), 2).divDown(totalSupply());
    }

    // Scaling

    /**
     * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
     * it had 18 decimals.
     */
    function _computeScalingFactor(IERC20 token) private view returns (uint256) {
        // Tokens that don't implement the `decimals` method are not supported.
        uint256 tokenDecimals = ERC20(address(token)).decimals();

        // Tokens with more than 18 decimals are not supported.
        uint256 decimalsDifference = Math.sub(18, tokenDecimals);
        return 10**decimalsDifference;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     */
    function _scalingFactor(bool token0) internal view returns (uint256) {
        return token0 ? _scalingFactor0 : _scalingFactor1;
    }

    /**
     * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
     * scaling or not.
     */
    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.mul(amount, scalingFactor);
    }

    /**
     * @dev Same as `_upscale`, but for an entire array (of two elements). This function does not return anything, but
     * instead *mutates* the `amounts` array.
     */
    function _upscaleArray(uint256[] memory amounts) internal view {
        amounts[0] = Math.mul(amounts[0], _scalingFactor(true));
        amounts[1] = Math.mul(amounts[1], _scalingFactor(false));
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded down.
     */
    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.divDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleDown`, but for an entire array (of two elements). This function does not return anything,
     * but instead *mutates* the `amounts` array.
     */
    function _downscaleDownArray(uint256[] memory amounts) internal view {
        amounts[0] = Math.divDown(amounts[0], _scalingFactor(true));
        amounts[1] = Math.divDown(amounts[1], _scalingFactor(false));
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded up.
     */
    function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.divUp(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleUp`, but for an entire array (of two elements). This function does not return anything,
     * but instead *mutates* the `amounts` array.
     */
    function _downscaleUpArray(uint256[] memory amounts) internal view {
        amounts[0] = Math.divUp(amounts[0], _scalingFactor(true));
        amounts[1] = Math.divUp(amounts[1], _scalingFactor(false));
    }

    function _getAuthorizer() internal view override returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
        // Governance control.
        return getVault().getAuthorizer();
    }

    function _queryAction(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        function(bytes32, address, address, uint256[] memory, uint256, uint256, bytes memory)
            internal
            returns (uint256, uint256[] memory, uint256[] memory) _action,
        function(uint256[] memory) internal view _downscaleArray
    ) private {
        // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
        // explanation.

        if (msg.sender != address(this)) {
            // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
            // the preceding if statement will be executed instead.

            // solhint-disable-next-line avoid-low-level-calls
            (bool success, ) = address(this).call(msg.data);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // This call should always revert to decode the bpt and token amounts from the revert reason
                switch success
                    case 0 {
                        // Note we are manually writing the memory slot 0. We can safely overwrite whatever is
                        // stored there as we take full control of the execution and then immediately return.

                        // We copy the first 4 bytes to check if it matches with the expected signature, otherwise
                        // there was another revert reason and we should forward it.
                        returndatacopy(0, 0, 0x04)
                        let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)

                        // If the first 4 bytes don't match with the expected signature, we forward the revert reason.
                        if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }

                        // The returndata contains the signature, followed by the raw memory representation of the
                        // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
                        // representation of these.
                        // An ABI-encoded response will include one additional field to indicate the starting offset of
                        // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
                        // returndata.
                        //
                        // In returndata:
                        // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  4 bytes  ][  32 bytes ][       32 bytes      ][ (32 * length) bytes ]
                        //
                        // We now need to return (ABI-encoded values):
                        // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  32 bytes ][       32 bytes     ][       32 bytes      ][ (32 * length) bytes ]

                        // We copy 32 bytes for the `bptAmount` from returndata into memory.
                        // Note that we skip the first 4 bytes for the error signature
                        returndatacopy(0, 0x04, 32)

                        // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
                        // the initial 64 bytes.
                        mstore(0x20, 64)

                        // We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
                        // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
                        // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
                        returndatacopy(0x40, 0x24, sub(returndatasize(), 36))

                        // We finally return the ABI-encoded uint256 and the array, which has a total length equal to
                        // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
                        // error signature.
                        return(0, add(returndatasize(), 28))
                    }
                    default {
                        // This call should always revert, but we fail nonetheless if that didn't happen
                        invalid()
                    }
            }
        } else {
            _upscaleArray(balances);

            (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                userData
            );

            _downscaleArray(tokenAmounts);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
                // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
                // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
                let size := mul(mload(tokenAmounts), 32)

                // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
                // will be at least one available slot due to how the memory scratch space works.
                // We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
                let start := sub(tokenAmounts, 0x20)
                mstore(start, bptAmount)

                // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
                // We use the previous slot to `bptAmount`.
                mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
                start := sub(start, 0x04)

                // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
                // the `bptAmount`, the array length, and the error signature.
                revert(start, add(size, 68))
            }
        }
    }
}

File 2 of 42 : FixedPoint.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./LogExpMath.sol";
import "../helpers/BalancerErrors.sol";

/* solhint-disable private-vars-leading-underscore */

library FixedPoint {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)

    // Minimum base for the power function when the exponent is 'free' (larger than ONE).
    uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        return product / ONE;
    }

    function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        if (product == 0) {
            return 0;
        } else {
            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((product - 1) / ONE) + 1;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            return aInflated / b;
        }
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((aInflated - 1) / b) + 1;
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
     * the true value (that is, the error function expected - actual is always positive).
     */
    function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        if (raw < maxError) {
            return 0;
        } else {
            return sub(raw, maxError);
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
     * the true value (that is, the error function expected - actual is always negative).
     */
    function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        return add(raw, maxError);
    }

    /**
     * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
     *
     * Useful when computing the complement for values with some level of relative error, as it strips this error and
     * prevents intermediate negative values.
     */
    function complement(uint256 x) internal pure returns (uint256) {
        return (x < ONE) ? (ONE - x) : 0;
    }
}

File 3 of 42 : InputHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

import "./BalancerErrors.sol";

import "../../vault/interfaces/IAsset.sol";

library InputHelpers {
    function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
        _require(a == b, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureInputLengthMatch(
        uint256 a,
        uint256 b,
        uint256 c
    ) internal pure {
        _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureArrayIsSorted(IAsset[] memory array) internal pure {
        address[] memory addressArray;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            addressArray := array
        }
        ensureArrayIsSorted(addressArray);
    }

    function ensureArrayIsSorted(IERC20[] memory array) internal pure {
        address[] memory addressArray;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            addressArray := array
        }
        ensureArrayIsSorted(addressArray);
    }

    function ensureArrayIsSorted(address[] memory array) internal pure {
        if (array.length < 2) {
            return;
        }

        address previous = array[0];
        for (uint256 i = 1; i < array.length; ++i) {
            address current = array[i];
            _require(previous < current, Errors.UNSORTED_ARRAY);
            previous = current;
        }
    }
}

File 4 of 42 : TemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./ITemporarilyPausable.sol";

/**
 * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be
 * used as an emergency switch in case a security vulnerability or threat is identified.
 *
 * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be
 * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets
 * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful
 * analysis later determines there was a false alarm.
 *
 * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional
 * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time
 * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires.
 *
 * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is
 * irreversible.
 */
abstract contract TemporarilyPausable is ITemporarilyPausable {
    // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
    // solhint-disable not-rely-on-time

    uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days;
    uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days;

    uint256 private immutable _pauseWindowEndTime;
    uint256 private immutable _bufferPeriodEndTime;

    bool private _paused;

    constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
        _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION);
        _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION);

        uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration;

        _pauseWindowEndTime = pauseWindowEndTime;
        _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration;
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    modifier whenNotPaused() {
        _ensureNotPaused();
        _;
    }

    /**
     * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer
     * Period.
     */
    function getPausedState()
        external
        view
        override
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        )
    {
        paused = !_isNotPaused();
        pauseWindowEndTime = _getPauseWindowEndTime();
        bufferPeriodEndTime = _getBufferPeriodEndTime();
    }

    /**
     * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and
     * unpaused until the end of the Buffer Period.
     *
     * Once the Buffer Period expires, this function reverts unconditionally.
     */
    function _setPaused(bool paused) internal {
        if (paused) {
            _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED);
        } else {
            _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED);
        }

        _paused = paused;
        emit PausedStateChanged(paused);
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    function _ensureNotPaused() internal view {
        _require(_isNotPaused(), Errors.PAUSED);
    }

    /**
     * @dev Returns true if the contract is unpaused.
     *
     * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no
     * longer accessed.
     */
    function _isNotPaused() internal view returns (bool) {
        // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access.
        return block.timestamp > _getBufferPeriodEndTime() || !_paused;
    }

    // These getters lead to reduced bytecode size by inlining the immutable variables in a single place.

    function _getPauseWindowEndTime() private view returns (uint256) {
        return _pauseWindowEndTime;
    }

    function _getBufferPeriodEndTime() private view returns (uint256) {
        return _bufferPeriodEndTime;
    }
}

File 5 of 42 : ERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

import "./IERC20.sol";
import "./SafeMath.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is IERC20 {
    using SafeMath for uint256;

    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(msg.sender, recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(msg.sender, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(
            sender,
            msg.sender,
            _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE)
        );
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(
            msg.sender,
            spender,
            _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO)
        );
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS);
        _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE);
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        _require(account != address(0), Errors.ERC20_MINT_TO_ZERO_ADDRESS);

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS);

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE);
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        _require(owner != address(0), Errors.ERC20_APPROVE_FROM_ZERO_ADDRESS);
        _require(spender != address(0), Errors.ERC20_APPROVE_TO_ZERO_ADDRESS);

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

File 6 of 42 : WeightedMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../../lib/math/FixedPoint.sol";
import "../../lib/math/Math.sol";
import "../../lib/helpers/InputHelpers.sol";

/* solhint-disable private-vars-leading-underscore */

contract WeightedMath {
    using FixedPoint for uint256;
    // A minimum normalized weight imposes a maximum weight ratio. We need this due to limitations in the
    // implementation of the power function, as these ratios are often exponents.
    uint256 internal constant _MIN_WEIGHT = 0.01e18;
    // Having a minimum normalized weight imposes a limit on the maximum number of tokens;
    // i.e., the largest possible pool is one where all tokens have exactly the minimum weight.
    uint256 internal constant _MAX_WEIGHTED_TOKENS = 100;

    // Pool limits that arise from limitations in the fixed point power function (and the imposed 1:100 maximum weight
    // ratio).

    // Swap limits: amounts swapped may not be larger than this percentage of total balance.
    uint256 internal constant _MAX_IN_RATIO = 0.3e18;
    uint256 internal constant _MAX_OUT_RATIO = 0.3e18;

    // Invariant growth limit: non-proportional joins cannot cause the invariant to increase by more than this ratio.
    uint256 internal constant _MAX_INVARIANT_RATIO = 3e18;
    // Invariant shrink limit: non-proportional exits cannot cause the invariant to decrease by less than this ratio.
    uint256 internal constant _MIN_INVARIANT_RATIO = 0.7e18;

    // Invariant is used to collect protocol swap fees by comparing its value between two times.
    // So we can round always to the same direction. It is also used to initiate the BPT amount
    // and, because there is a minimum BPT, we round down the invariant.
    function _calculateInvariant(uint256[] memory normalizedWeights, uint256[] memory balances)
        internal
        pure
        returns (uint256 invariant)
    {
        /**********************************************************************************************
        // invariant               _____                                                             //
        // wi = weight index i      | |      wi                                                      //
        // bi = balance index i     | |  bi ^   = i                                                  //
        // i = invariant                                                                             //
        **********************************************************************************************/

        invariant = FixedPoint.ONE;
        for (uint256 i = 0; i < normalizedWeights.length; i++) {
            invariant = invariant.mulDown(balances[i].powDown(normalizedWeights[i]));
        }

        _require(invariant > 0, Errors.ZERO_INVARIANT);
    }

    // Computes how many tokens can be taken out of a pool if `amountIn` are sent, given the
    // current balances and weights.
    function _calcOutGivenIn(
        uint256 balanceIn,
        uint256 weightIn,
        uint256 balanceOut,
        uint256 weightOut,
        uint256 amountIn
    ) internal pure returns (uint256) {
        /**********************************************************************************************
        // outGivenIn                                                                                //
        // aO = amountOut                                                                            //
        // bO = balanceOut                                                                           //
        // bI = balanceIn              /      /            bI             \    (wI / wO) \           //
        // aI = amountIn    aO = bO * |  1 - | --------------------------  | ^            |          //
        // wI = weightIn               \      \       ( bI + aI )         /              /           //
        // wO = weightOut                                                                            //
        **********************************************************************************************/

        // Amount out, so we round down overall.

        // The multiplication rounds down, and the subtrahend (power) rounds up (so the base rounds up too).
        // Because bI / (bI + aI) <= 1, the exponent rounds down.

        // Cannot exceed maximum in ratio
        _require(amountIn <= balanceIn.mulDown(_MAX_IN_RATIO), Errors.MAX_IN_RATIO);

        uint256 denominator = balanceIn.add(amountIn);
        uint256 base = balanceIn.divUp(denominator);
        uint256 exponent = weightIn.divDown(weightOut);
        uint256 power = base.powUp(exponent);

        return balanceOut.mulDown(power.complement());
    }

    // Computes how many tokens must be sent to a pool in order to take `amountOut`, given the
    // current balances and weights.
    function _calcInGivenOut(
        uint256 balanceIn,
        uint256 weightIn,
        uint256 balanceOut,
        uint256 weightOut,
        uint256 amountOut
    ) internal pure returns (uint256) {
        /**********************************************************************************************
        // inGivenOut                                                                                //
        // aO = amountOut                                                                            //
        // bO = balanceOut                                                                           //
        // bI = balanceIn              /  /            bO             \    (wO / wI)      \          //
        // aI = amountIn    aI = bI * |  | --------------------------  | ^            - 1  |         //
        // wI = weightIn               \  \       ( bO - aO )         /                   /          //
        // wO = weightOut                                                                            //
        **********************************************************************************************/

        // Amount in, so we round up overall.

        // The multiplication rounds up, and the power rounds up (so the base rounds up too).
        // Because b0 / (b0 - a0) >= 1, the exponent rounds up.

        // Cannot exceed maximum out ratio
        _require(amountOut <= balanceOut.mulDown(_MAX_OUT_RATIO), Errors.MAX_OUT_RATIO);

        uint256 base = balanceOut.divUp(balanceOut.sub(amountOut));
        uint256 exponent = weightOut.divUp(weightIn);
        uint256 power = base.powUp(exponent);

        // Because the base is larger than one (and the power rounds up), the power should always be larger than one, so
        // the following subtraction should never revert.
        uint256 ratio = power.sub(FixedPoint.ONE);

        return balanceIn.mulUp(ratio);
    }

    function _calcBptOutGivenExactTokensIn(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsIn,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) internal pure returns (uint256) {
        // BPT out, so we round down overall.

        uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length);

        uint256 invariantRatioWithFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]);
            invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(normalizedWeights[i]));
        }

        uint256 invariantRatio = FixedPoint.ONE;
        for (uint256 i = 0; i < balances.length; i++) {
            uint256 amountInWithoutFee;

            if (balanceRatiosWithFee[i] > invariantRatioWithFees) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE));
                uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount);
                amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE.sub(swapFee)));
            } else {
                amountInWithoutFee = amountsIn[i];
            }

            uint256 balanceRatio = balances[i].add(amountInWithoutFee).divDown(balances[i]);

            invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
        }

        if (invariantRatio >= FixedPoint.ONE) {
            return bptTotalSupply.mulDown(invariantRatio.sub(FixedPoint.ONE));
        } else {
            return 0;
        }
    }

    function _calcTokenInGivenExactBptOut(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 bptAmountOut,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) internal pure returns (uint256) {
        /******************************************************************************************
        // tokenInForExactBPTOut                                                                 //
        // a = amountIn                                                                          //
        // b = balance                      /  /    totalBPT + bptOut      \    (1 / w)       \  //
        // bptOut = bptAmountOut   a = b * |  | --------------------------  | ^          - 1  |  //
        // bpt = totalBPT                   \  \       totalBPT            /                  /  //
        // w = weight                                                                            //
        ******************************************************************************************/

        // Token in, so we round up overall.

        // Calculate the factor by which the invariant will increase after minting BPTAmountOut
        uint256 invariantRatio = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply);
        _require(invariantRatio <= _MAX_INVARIANT_RATIO, Errors.MAX_OUT_BPT_FOR_TOKEN_IN);

        // Calculate by how much the token balance has to increase to match the invariantRatio
        uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divUp(normalizedWeight));

        uint256 amountInWithoutFee = balance.mulUp(balanceRatio.sub(FixedPoint.ONE));

        // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees
        // accordingly.
        uint256 taxablePercentage = normalizedWeight.complement();
        uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount);

        return nonTaxableAmount.add(taxableAmount.divUp(swapFee.complement()));
    }

    function _calcBptInGivenExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256[] memory amountsOut,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) internal pure returns (uint256) {
        // BPT in, so we round up overall.

        uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length);
        uint256 invariantRatioWithoutFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]);
            invariantRatioWithoutFees = invariantRatioWithoutFees.add(
                balanceRatiosWithoutFee[i].mulUp(normalizedWeights[i])
            );
        }

        uint256 invariantRatio = FixedPoint.ONE;
        for (uint256 i = 0; i < balances.length; i++) {
            // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to
            // 'token out'. This results in slightly larger price impact.

            uint256 amountOutWithFee;
            if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement());
                uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount);

                amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(swapFee.complement()));
            } else {
                amountOutWithFee = amountsOut[i];
            }

            uint256 balanceRatio = balances[i].sub(amountOutWithFee).divDown(balances[i]);

            invariantRatio = invariantRatio.mulDown(balanceRatio.powDown(normalizedWeights[i]));
        }

        return bptTotalSupply.mulUp(invariantRatio.complement());
    }

    function _calcTokenOutGivenExactBptIn(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 swapFee
    ) internal pure returns (uint256) {
        /*****************************************************************************************
        // exactBPTInForTokenOut                                                                //
        // a = amountOut                                                                        //
        // b = balance                     /      /    totalBPT - bptIn       \    (1 / w)  \   //
        // bptIn = bptAmountIn    a = b * |  1 - | --------------------------  | ^           |  //
        // bpt = totalBPT                  \      \       totalBPT            /             /   //
        // w = weight                                                                           //
        *****************************************************************************************/

        // Token out, so we round down overall. The multiplication rounds down, but the power rounds up (so the base
        // rounds up). Because (totalBPT - bptIn) / totalBPT <= 1, the exponent rounds down.

        // Calculate the factor by which the invariant will decrease after burning BPTAmountIn
        uint256 invariantRatio = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply);
        _require(invariantRatio >= _MIN_INVARIANT_RATIO, Errors.MIN_BPT_IN_FOR_TOKEN_OUT);

        // Calculate by how much the token balance has to decrease to match invariantRatio
        uint256 balanceRatio = invariantRatio.powUp(FixedPoint.ONE.divDown(normalizedWeight));

        // Because of rounding up, balanceRatio can be greater than one. Using complement prevents reverts.
        uint256 amountOutWithoutFee = balance.mulDown(balanceRatio.complement());

        // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result
        // in swap fees.
        uint256 taxablePercentage = normalizedWeight.complement();

        // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it
        // to 'token out'. This results in slightly larger price impact. Fees are rounded up.
        uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount);

        return nonTaxableAmount.add(taxableAmount.mulDown(swapFee.complement()));
    }

    function _calcTokensOutGivenExactBptIn(
        uint256[] memory balances,
        uint256 bptAmountIn,
        uint256 totalBPT
    ) internal pure returns (uint256[] memory) {
        /**********************************************************************************************
        // exactBPTInForTokensOut                                                                    //
        // (per token)                                                                               //
        // aO = amountOut                  /        bptIn         \                                  //
        // b = balance           a0 = b * | ---------------------  |                                 //
        // bptIn = bptAmountIn             \       totalBPT       /                                  //
        // bpt = totalBPT                                                                            //
        **********************************************************************************************/

        // Since we're computing an amount out, we round down overall. This means rounding down on both the
        // multiplication and division.

        uint256 bptRatio = bptAmountIn.divDown(totalBPT);

        uint256[] memory amountsOut = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsOut[i] = balances[i].mulDown(bptRatio);
        }

        return amountsOut;
    }

    function _calcDueTokenProtocolSwapFeeAmount(
        uint256 balance,
        uint256 normalizedWeight,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) internal pure returns (uint256) {
        /*********************************************************************************
        /*  protocolSwapFeePercentage * balanceToken * ( 1 - (previousInvariant / currentInvariant) ^ (1 / weightToken))
        *********************************************************************************/

        if (currentInvariant <= previousInvariant) {
            // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool
            // from entering a locked state in which joins and exits revert while computing accumulated swap fees.
            return 0;
        }

        // We round down to prevent issues in the Pool's accounting, even if it means paying slightly less in protocol
        // fees to the Vault.

        // Fee percentage and balance multiplications round down, while the subtrahend (power) rounds up (as does the
        // base). Because previousInvariant / currentInvariant <= 1, the exponent rounds down.

        uint256 base = previousInvariant.divUp(currentInvariant);
        uint256 exponent = FixedPoint.ONE.divDown(normalizedWeight);

        // Because the exponent is larger than one, the base of the power function has a lower bound. We cap to this
        // value to avoid numeric issues, which means in the extreme case (where the invariant growth is larger than
        // 1 / min exponent) the Pool will pay less in protocol fees than it should.
        base = Math.max(base, FixedPoint.MIN_POW_BASE_FREE_EXPONENT);

        uint256 power = base.powUp(exponent);

        uint256 tokenAccruedFees = balance.mulDown(power.complement());
        return tokenAccruedFees.mulDown(protocolSwapFeePercentage);
    }
}

File 7 of 42 : WeightedOracleMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../../lib/math//LogExpMath.sol";
import "../../lib/math/FixedPoint.sol";
import "../../lib/math/Math.sol";
import "../../lib/helpers/InputHelpers.sol";

/* solhint-disable private-vars-leading-underscore */

contract WeightedOracleMath {
    using FixedPoint for uint256;

    int256 private constant _LOG_COMPRESSION_FACTOR = 1e14;
    int256 private constant _HALF_LOG_COMPRESSION_FACTOR = 0.5e14;

    /**
     * @dev Calculates the logarithm of the spot price of token B in token A.
     *
     * The return value is a 4 decimal fixed-point number: use `_fromLowResLog` to recover the original value.
     */
    function _calcLogSpotPrice(
        uint256 normalizedWeightA,
        uint256 balanceA,
        uint256 normalizedWeightB,
        uint256 balanceB
    ) internal pure returns (int256) {
        // Max balances are 2^112 and min weights are 0.01, so the division never overflows.

        // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log
        // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A
        // result of zero is therefore only possible with zero balances, which are prevented via other means.
        uint256 spotPrice = balanceA.divUp(normalizedWeightA).divUp(balanceB.divUp(normalizedWeightB));
        return _toLowResLog(spotPrice);
    }

    /**
     * @dev Calculates the price of BPT in a token. `logBptTotalSupply` should be the result of calling `_toLowResLog`
     * with the current BPT supply.
     *
     * The return value is a 4 decimal fixed-point number: use `_fromLowResLog` to recover the original value.
     */
    function _calcLogBPTPrice(
        uint256 normalizedWeight,
        uint256 balance,
        int256 logBptTotalSupply
    ) internal pure returns (int256) {
        // BPT price = (balance / weight) / total supply
        // Since we already have ln(total supply) and want to compute ln(BPT price), we perform the computation in log
        // space directly: ln(BPT price) = ln(balance / weight) - ln(total supply)

        // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log
        // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A
        // result of zero is therefore only possible with zero balances, which are prevented via other means.
        int256 logBalanceOverWeight = _toLowResLog(balance.divUp(normalizedWeight));

        // Because we're subtracting two values in log space, this value has a larger error (+-0.0001 instead of
        // +-0.00005), which results in a final larger relative error of around 0.1%.
        return logBalanceOverWeight - logBptTotalSupply;
    }

    /**
     * @dev Returns the natural logarithm of `value`, dropping most of the decimal places to arrive at a value that,
     * when passed to `_fromLowResLog`, will have a maximum relative error of ~0.05% compared to `value`.
     *
     * Values returned from this function should not be mixed with other fixed-point values (as they have a different
     * number of digits), but can be added or subtracted. Use `_fromLowResLog` to undo this process and return to an
     * 18 decimal places fixed point value.
     *
     * Because so much precision is lost, the logarithmic values can be stored using much fewer bits than the original
     * value required.
     */
    function _toLowResLog(uint256 value) internal pure returns (int256) {
        int256 ln = LogExpMath.ln(int256(value));

        // Rounding division for signed numerator
        return
            (ln > 0 ? ln + _HALF_LOG_COMPRESSION_FACTOR : ln - _HALF_LOG_COMPRESSION_FACTOR) / _LOG_COMPRESSION_FACTOR;
    }

    /**
     * @dev Restores `value` from logarithmic space. `value` is expected to be the result of a call to `_toLowResLog`,
     * any other function that returns 4 decimals fixed point logarithms, or the sum of such values.
     */
    function _fromLowResLog(int256 value) internal pure returns (uint256) {
        return uint256(LogExpMath.exp(value * _LOG_COMPRESSION_FACTOR));
    }
}

File 8 of 42 : WeightedPool2TokensMiscData.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../../lib/helpers/WordCodec.sol";

/**
 * @dev This module provides an interface to store seemingly unrelated pieces of information, in particular used by
 * Weighted Pools of 2 tokens with a price oracle.
 *
 * These pieces of information are all kept together in a single storage slot to reduce the number of storage reads. In
 * particular, we not only store configuration values (such as the swap fee percentage), but also cache
 * reduced-precision versions of the total BPT supply and invariant, which lets us not access nor compute these values
 * when producing oracle updates during a swap.
 *
 * Data is stored with the following structure:
 *
 * [ swap fee pct | oracle enabled | oracle index | oracle sample initial timestamp | log supply | log invariant ]
 * [    uint64    |      bool      |    uint10    |              uint31             |    int22   |     int22     ]
 *
 * Note that we are not using the most-significant 106 bits.
 */
library WeightedPool2TokensMiscData {
    using WordCodec for bytes32;
    using WordCodec for uint256;

    uint256 private constant _LOG_INVARIANT_OFFSET = 0;
    uint256 private constant _LOG_TOTAL_SUPPLY_OFFSET = 22;
    uint256 private constant _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET = 44;
    uint256 private constant _ORACLE_INDEX_OFFSET = 75;
    uint256 private constant _ORACLE_ENABLED_OFFSET = 85;
    uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 86;

    /**
     * @dev Returns the cached logarithm of the invariant.
     */
    function logInvariant(bytes32 data) internal pure returns (int256) {
        return data.decodeInt22(_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns the cached logarithm of the total supply.
     */
    function logTotalSupply(bytes32 data) internal pure returns (int256) {
        return data.decodeInt22(_LOG_TOTAL_SUPPLY_OFFSET);
    }

    /**
     * @dev Returns the timestamp of the creation of the oracle's latest sample.
     */
    function oracleSampleCreationTimestamp(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint31(_ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Returns the index of the oracle's latest sample.
     */
    function oracleIndex(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint10(_ORACLE_INDEX_OFFSET);
    }

    /**
     * @dev Returns true if the oracle is enabled.
     */
    function oracleEnabled(bytes32 data) internal pure returns (bool) {
        return data.decodeBool(_ORACLE_ENABLED_OFFSET);
    }

    /**
     * @dev Returns the swap fee percentage.
     */
    function swapFeePercentage(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET);
    }

    /**
     * @dev Sets the logarithm of the invariant in `data`, returning the updated value.
     */
    function setLogInvariant(bytes32 data, int256 _logInvariant) internal pure returns (bytes32) {
        return data.insertInt22(_logInvariant, _LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Sets the logarithm of the total supply in `data`, returning the updated value.
     */
    function setLogTotalSupply(bytes32 data, int256 _logTotalSupply) internal pure returns (bytes32) {
        return data.insertInt22(_logTotalSupply, _LOG_TOTAL_SUPPLY_OFFSET);
    }

    /**
     * @dev Sets the timestamp of the creation of the oracle's latest sample in `data`, returning the updated value.
     */
    function setOracleSampleCreationTimestamp(bytes32 data, uint256 _initialTimestamp) internal pure returns (bytes32) {
        return data.insertUint31(_initialTimestamp, _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Sets the index of the  oracle's latest sample in `data`, returning the updated value.
     */
    function setOracleIndex(bytes32 data, uint256 _oracleIndex) internal pure returns (bytes32) {
        return data.insertUint10(_oracleIndex, _ORACLE_INDEX_OFFSET);
    }

    /**
     * @dev Enables or disables the oracle in `data`, returning the updated value.
     */
    function setOracleEnabled(bytes32 data, bool _oracleEnabled) internal pure returns (bytes32) {
        return data.insertBoolean(_oracleEnabled, _ORACLE_ENABLED_OFFSET);
    }

    /**
     * @dev Sets the swap fee percentage in `data`, returning the updated value.
     */
    function setSwapFeePercentage(bytes32 data, uint256 _swapFeePercentage) internal pure returns (bytes32) {
        return data.insertUint64(_swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET);
    }
}

File 9 of 42 : WeightedPoolUserDataHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../../lib/openzeppelin/IERC20.sol";

import "./WeightedPool.sol";

library WeightedPoolUserDataHelpers {
    function joinKind(bytes memory self) internal pure returns (WeightedPool.JoinKind) {
        return abi.decode(self, (WeightedPool.JoinKind));
    }

    function exitKind(bytes memory self) internal pure returns (WeightedPool.ExitKind) {
        return abi.decode(self, (WeightedPool.ExitKind));
    }

    // Joins

    function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) {
        (, amountsIn) = abi.decode(self, (WeightedPool.JoinKind, uint256[]));
    }

    function exactTokensInForBptOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsIn, uint256 minBPTAmountOut)
    {
        (, amountsIn, minBPTAmountOut) = abi.decode(self, (WeightedPool.JoinKind, uint256[], uint256));
    }

    function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) {
        (, bptAmountOut, tokenIndex) = abi.decode(self, (WeightedPool.JoinKind, uint256, uint256));
    }

    // Exits

    function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) {
        (, bptAmountIn, tokenIndex) = abi.decode(self, (WeightedPool.ExitKind, uint256, uint256));
    }

    function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) {
        (, bptAmountIn) = abi.decode(self, (WeightedPool.ExitKind, uint256));
    }

    function bptInForExactTokensOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn)
    {
        (, amountsOut, maxBPTAmountIn) = abi.decode(self, (WeightedPool.ExitKind, uint256[], uint256));
    }
}

File 10 of 42 : BalancerPoolToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../lib/math/Math.sol";
import "../lib/openzeppelin/IERC20.sol";
import "../lib/openzeppelin/IERC20Permit.sol";
import "../lib/openzeppelin/EIP712.sol";

/**
 * @title Highly opinionated token implementation
 * @author Balancer Labs
 * @dev
 * - Includes functions to increase and decrease allowance as a workaround
 *   for the well-known issue with `approve`:
 *   https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not
 *   decreased by calls to transferFrom
 * - Lets a token holder use `transferFrom` to send their own tokens,
 *   without first setting allowance
 * - Emits 'Approval' events whenever allowance is changed by `transferFrom`
 */
contract BalancerPoolToken is IERC20, IERC20Permit, EIP712 {
    using Math for uint256;

    // State variables

    uint8 private constant _DECIMALS = 18;

    mapping(address => uint256) private _balance;
    mapping(address => mapping(address => uint256)) private _allowance;
    uint256 private _totalSupply;

    string private _name;
    string private _symbol;

    mapping(address => uint256) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private immutable _PERMIT_TYPE_HASH = keccak256(
        "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
    );

    // Function declarations

    constructor(string memory tokenName, string memory tokenSymbol) EIP712(tokenName, "1") {
        _name = tokenName;
        _symbol = tokenSymbol;
    }

    // External functions

    function allowance(address owner, address spender) external view override returns (uint256) {
        return _allowance[owner][spender];
    }

    function balanceOf(address account) external view override returns (uint256) {
        return _balance[account];
    }

    function approve(address spender, uint256 amount) external override returns (bool) {
        _setAllowance(msg.sender, spender, amount);

        return true;
    }

    function increaseApproval(address spender, uint256 amount) external returns (bool) {
        _setAllowance(msg.sender, spender, _allowance[msg.sender][spender].add(amount));

        return true;
    }

    function decreaseApproval(address spender, uint256 amount) external returns (bool) {
        uint256 currentAllowance = _allowance[msg.sender][spender];

        if (amount >= currentAllowance) {
            _setAllowance(msg.sender, spender, 0);
        } else {
            _setAllowance(msg.sender, spender, currentAllowance.sub(amount));
        }

        return true;
    }

    function transfer(address recipient, uint256 amount) external override returns (bool) {
        _move(msg.sender, recipient, amount);

        return true;
    }

    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external override returns (bool) {
        uint256 currentAllowance = _allowance[sender][msg.sender];
        _require(msg.sender == sender || currentAllowance >= amount, Errors.INSUFFICIENT_ALLOWANCE);

        _move(sender, recipient, amount);

        if (msg.sender != sender && currentAllowance != uint256(-1)) {
            // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount
            _setAllowance(sender, msg.sender, currentAllowance - amount);
        }

        return true;
    }

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        // solhint-disable-next-line not-rely-on-time
        _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT);

        uint256 nonce = _nonces[owner];

        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPE_HASH, owner, spender, value, nonce, deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ecrecover(hash, v, r, s);
        _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE);

        _nonces[owner] = nonce + 1;
        _setAllowance(owner, spender, value);
    }

    // Public functions

    function name() public view returns (string memory) {
        return _name;
    }

    function symbol() public view returns (string memory) {
        return _symbol;
    }

    function decimals() public pure returns (uint8) {
        return _DECIMALS;
    }

    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    function nonces(address owner) external view override returns (uint256) {
        return _nonces[owner];
    }

    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }

    // Internal functions

    function _mintPoolTokens(address recipient, uint256 amount) internal {
        _balance[recipient] = _balance[recipient].add(amount);
        _totalSupply = _totalSupply.add(amount);
        emit Transfer(address(0), recipient, amount);
    }

    function _burnPoolTokens(address sender, uint256 amount) internal {
        uint256 currentBalance = _balance[sender];
        _require(currentBalance >= amount, Errors.INSUFFICIENT_BALANCE);

        _balance[sender] = currentBalance - amount;
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(sender, address(0), amount);
    }

    function _move(
        address sender,
        address recipient,
        uint256 amount
    ) internal {
        uint256 currentBalance = _balance[sender];
        _require(currentBalance >= amount, Errors.INSUFFICIENT_BALANCE);
        // Prohibit transfers to the zero address to avoid confusion with the
        // Transfer event emitted by `_burnPoolTokens`
        _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);

        _balance[sender] = currentBalance - amount;
        _balance[recipient] = _balance[recipient].add(amount);

        emit Transfer(sender, recipient, amount);
    }

    // Private functions

    function _setAllowance(
        address owner,
        address spender,
        uint256 amount
    ) private {
        _allowance[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }
}

File 11 of 42 : BasePoolAuthorization.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../lib/helpers/Authentication.sol";
import "../vault/interfaces/IAuthorizer.sol";

import "./BasePool.sol";

/**
 * @dev Base authorization layer implementation for Pools.
 *
 * The owner account can call some of the permissioned functions - access control of the rest is delegated to the
 * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership,
 * granular roles, etc., could be built on top of this by making the owner a smart contract.
 *
 * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate
 * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`.
 */
abstract contract BasePoolAuthorization is Authentication {
    address private immutable _owner;

    address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B;

    constructor(address owner) {
        _owner = owner;
    }

    function getOwner() public view returns (address) {
        return _owner;
    }

    function getAuthorizer() external view returns (IAuthorizer) {
        return _getAuthorizer();
    }

    function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
        if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) {
            // Only the owner can perform "owner only" actions, unless the owner is delegated.
            return msg.sender == getOwner();
        } else {
            // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated.
            return _getAuthorizer().canPerform(actionId, account, address(this));
        }
    }

    function _isOwnerOnlyAction(bytes32 actionId) private view returns (bool) {
        // This implementation hardcodes the setSwapFeePercentage action identifier.
        return actionId == getActionId(BasePool.setSwapFeePercentage.selector);
    }

    function _getAuthorizer() internal view virtual returns (IAuthorizer);
}

File 12 of 42 : PoolPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./Buffer.sol";
import "./Samples.sol";
import "../../lib/helpers/BalancerErrors.sol";

import "./IWeightedPoolPriceOracle.sol";
import "../IPriceOracle.sol";

/**
 * @dev This module allows Pools to access historical pricing information.
 *
 * It uses a 1024 long circular buffer to store past data, where the data within each sample is the result of
 * accumulating live data for no more than two minutes. Therefore, assuming the worst case scenario where new data is
 * updated in every single block, the oldest samples in the buffer (and therefore largest queryable period) will
 * be slightly over 34 hours old.
 *
 * Usage of this module requires the caller to keep track of two variables: the latest circular buffer index, and the
 * timestamp when the index last changed.
 */
contract PoolPriceOracle is IWeightedPoolPriceOracle {
    using Buffer for uint256;
    using Samples for bytes32;

    // Each sample in the buffer accumulates information for up to 2 minutes. This is simply to reduce the size of the
    // buffer: small time deviations will not have any significant effect.
    // solhint-disable not-rely-on-time
    uint256 private constant _MAX_SAMPLE_DURATION = 2 minutes;

    // We use a mapping to simulate an array: the buffer won't grow or shrink, and since we will always use valid
    // indexes using a mapping saves gas by skipping the bounds checks.
    mapping(uint256 => bytes32) internal _samples;

    function getSample(uint256 index)
        external
        view
        override
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 timestamp
        )
    {
        _require(index < Buffer.SIZE, Errors.ORACLE_INVALID_INDEX);

        bytes32 sample = _getSample(index);
        return sample.unpack();
    }

    function getTotalSamples() external pure override returns (uint256) {
        return Buffer.SIZE;
    }

    /**
     * @dev Processes new price and invariant data, updating the latest sample or creating a new one.
     *
     * Receives the new logarithms of values to store: `logPairPrice`, `logBptPrice` and `logInvariant`, as well the
     * index of the latest sample and the timestamp of its creation.
     *
     * Returns the index of the latest sample. If different from `latestIndex`, the caller should also store the
     * timestamp, and pass it on future calls to this function.
     */
    function _processPriceData(
        uint256 latestSampleCreationTimestamp,
        uint256 latestIndex,
        int256 logPairPrice,
        int256 logBptPrice,
        int256 logInvariant
    ) internal returns (uint256) {
        // Read latest sample, and compute the next one by updating it with the newly received data.
        bytes32 sample = _getSample(latestIndex).update(logPairPrice, logBptPrice, logInvariant, block.timestamp);

        // We create a new sample if more than _MAX_SAMPLE_DURATION seconds have elapsed since the creation of the
        // latest one. In other words, no sample accumulates data over a period larger than _MAX_SAMPLE_DURATION.
        bool newSample = block.timestamp - latestSampleCreationTimestamp >= _MAX_SAMPLE_DURATION;
        latestIndex = newSample ? latestIndex.next() : latestIndex;

        // Store the updated or new sample.
        _samples[latestIndex] = sample;

        return latestIndex;
    }

    /**
     * @dev Returns the instant value for `variable` in the sample pointed to by `index`.
     */
    function _getInstantValue(IPriceOracle.Variable variable, uint256 index) internal view returns (int256) {
        bytes32 sample = _getSample(index);
        _require(sample.timestamp() > 0, Errors.ORACLE_NOT_INITIALIZED);

        return sample.instant(variable);
    }

    /**
     * @dev Returns the value of the accumulator for `variable` `ago` seconds ago. `latestIndex` must be the index of
     * the latest sample in the buffer.
     *
     * Reverts under the following conditions:
     *  - if the buffer is empty.
     *  - if querying past information and the buffer has not been fully initialized.
     *  - if querying older information than available in the buffer. Note that a full buffer guarantees queries for the
     *    past 34 hours will not revert.
     *
     * If requesting information for a timestamp later than the latest one, it is extrapolated using the latest
     * available data.
     *
     * When no exact information is available for the requested past timestamp (as usually happens, since at most one
     * timestamp is stored every two minutes), it is estimated by performing linear interpolation using the closest
     * values. This process is guaranteed to complete performing at most 10 storage reads.
     */
    function _getPastAccumulator(
        IPriceOracle.Variable variable,
        uint256 latestIndex,
        uint256 ago
    ) internal view returns (int256) {
        // `ago` must not be before the epoch.
        _require(block.timestamp >= ago, Errors.ORACLE_INVALID_SECONDS_QUERY);
        uint256 lookUpTime = block.timestamp - ago;

        bytes32 latestSample = _getSample(latestIndex);
        uint256 latestTimestamp = latestSample.timestamp();

        // The latest sample only has a non-zero timestamp if no data was ever processed and stored in the buffer.
        _require(latestTimestamp > 0, Errors.ORACLE_NOT_INITIALIZED);

        if (latestTimestamp <= lookUpTime) {
            // The accumulator at times ahead of the latest one are computed by extrapolating the latest data. This is
            // equivalent to the instant value not changing between the last timestamp and the look up time.

            // We can use unchecked arithmetic since the accumulator can be represented in 53 bits, timestamps in 31
            // bits, and the instant value in 22 bits.
            uint256 elapsed = lookUpTime - latestTimestamp;
            return latestSample.accumulator(variable) + (latestSample.instant(variable) * int256(elapsed));
        } else {
            // The look up time is before the latest sample, but we need to make sure that it is not before the oldest
            // sample as well.

            // Since we use a circular buffer, the oldest sample is simply the next one.
            uint256 oldestIndex = latestIndex.next();
            {
                // Local scope used to prevent stack-too-deep errors.
                bytes32 oldestSample = _getSample(oldestIndex);
                uint256 oldestTimestamp = oldestSample.timestamp();

                // For simplicity's sake, we only perform past queries if the buffer has been fully initialized. This
                // means the oldest sample must have a non-zero timestamp.
                _require(oldestTimestamp > 0, Errors.ORACLE_NOT_INITIALIZED);
                // The only remaining condition to check is for the look up time to be between the oldest and latest
                // timestamps.
                _require(oldestTimestamp <= lookUpTime, Errors.ORACLE_QUERY_TOO_OLD);
            }

            // Perform binary search to find nearest samples to the desired timestamp.
            (bytes32 prev, bytes32 next) = _findNearestSample(lookUpTime, oldestIndex);

            // `next`'s timestamp is guaranteed to be larger than `prev`'s, so we can skip checked arithmetic.
            uint256 samplesTimeDiff = next.timestamp() - prev.timestamp();

            if (samplesTimeDiff > 0) {
                // We estimate the accumulator at the requested look up time by interpolating linearly between the
                // previous and next accumulators.

                // We can use unchecked arithmetic since the accumulators can be represented in 53 bits, and timestamps
                // in 31 bits.
                int256 samplesAccDiff = next.accumulator(variable) - prev.accumulator(variable);
                uint256 elapsed = lookUpTime - prev.timestamp();
                return prev.accumulator(variable) + ((samplesAccDiff * int256(elapsed)) / int256(samplesTimeDiff));
            } else {
                // Rarely, one of the samples will have the exact requested look up time, which is indicated by `prev`
                // and `next` being the same. In this case, we simply return the accumulator at that point in time.
                return prev.accumulator(variable);
            }
        }
    }

    /**
     * @dev Finds the two samples with timestamps before and after `lookUpDate`. If one of the samples matches exactly,
     * both `prev` and `next` will be it. `offset` is the index of the oldest sample in the buffer.
     *
     * Assumes `lookUpDate` is greater or equal than the timestamp of the oldest sample, and less or equal than the
     * timestamp of the latest sample.
     */
    function _findNearestSample(uint256 lookUpDate, uint256 offset) internal view returns (bytes32 prev, bytes32 next) {
        // We're going to perform a binary search in the circular buffer, which requires it to be sorted. To achieve
        // this, we offset all buffer accesses by `offset`, making the first element the oldest one.

        // Auxiliary variables in a typical binary search: we will look at some value `mid` between `low` and `high`,
        // periodically increasing `low` or decreasing `high` until we either find a match or determine the element is
        // not in the array.
        uint256 low = 0;
        uint256 high = Buffer.SIZE - 1;
        uint256 mid;

        // If the search fails and no sample has a timestamp of `lookUpDate` (as is the most common scenario), `sample`
        // will be either the sample with the largest timestamp smaller than `lookUpDate`, or the one with the smallest
        // timestamp larger than `lookUpDate`.
        bytes32 sample;
        uint256 sampleTimestamp;

        while (low <= high) {
            // Mid is the floor of the average.
            uint256 midWithoutOffset = (high + low) / 2;

            // Recall that the buffer is not actually sorted: we need to apply the offset to access it in a sorted way.
            mid = midWithoutOffset.add(offset);
            sample = _getSample(mid);
            sampleTimestamp = sample.timestamp();

            if (sampleTimestamp < lookUpDate) {
                // If the mid sample is bellow the look up date, then increase the low index to start from there.
                low = midWithoutOffset + 1;
            } else if (sampleTimestamp > lookUpDate) {
                // If the mid sample is above the look up date, then decrease the high index to start from there.

                // We can skip checked arithmetic: it is impossible for `high` to ever be 0, as a scenario where `low`
                // equals 0 and `high` equals 1 would result in `low` increasing to 1 in the previous `if` clause.
                high = midWithoutOffset - 1;
            } else {
                // sampleTimestamp == lookUpDate
                // If we have an exact match, return the sample as both `prev` and `next`.
                return (sample, sample);
            }
        }

        // In case we reach here, it means we didn't find exactly the sample we where looking for.
        return sampleTimestamp < lookUpDate ? (sample, _getSample(mid.next())) : (_getSample(mid.prev()), sample);
    }

    /**
     * @dev Returns the sample that corresponds to a given `index`.
     *
     * Using this function instead of accessing storage directly results in denser bytecode (since the storage slot is
     * only computed here).
     */
    function _getSample(uint256 index) internal view returns (bytes32) {
        return _samples[index];
    }
}

File 13 of 42 : Buffer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

library Buffer {
    // The buffer is a circular storage structure with 1024 slots.
    // solhint-disable-next-line private-vars-leading-underscore
    uint256 internal constant SIZE = 1024;

    /**
     * @dev Returns the index of the element before the one pointed by `index`.
     */
    function prev(uint256 index) internal pure returns (uint256) {
        return sub(index, 1);
    }

    /**
     * @dev Returns the index of the element after the one pointed by `index`.
     */
    function next(uint256 index) internal pure returns (uint256) {
        return add(index, 1);
    }

    /**
     * @dev Returns the index of an element `offset` slots after the one pointed by `index`.
     */
    function add(uint256 index, uint256 offset) internal pure returns (uint256) {
        return (index + offset) % SIZE;
    }

    /**
     * @dev Returns the index of an element `offset` slots before the one pointed by `index`.
     */
    function sub(uint256 index, uint256 offset) internal pure returns (uint256) {
        return (index + SIZE - offset) % SIZE;
    }
}

File 14 of 42 : IMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IBasePool.sol";

/**
 * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface.
 *
 * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
 * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant
 * to the pool in a 'given out' swap.
 *
 * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
 * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
 * indeed the Vault.
 */
interface IMinimalSwapInfoPool is IBasePool {
    function onSwap(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) external returns (uint256 amount);
}

File 15 of 42 : IPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

/**
 * @dev Interface for querying historical data from a Pool that can be used as a Price Oracle.
 *
 * This lets third parties retrieve average prices of tokens held by a Pool over a given period of time, as well as the
 * price of the Pool share token (BPT) and invariant. Since the invariant is a sensible measure of Pool liquidity, it
 * can be used to compare two different price sources, and choose the most liquid one.
 *
 * Once the oracle is fully initialized, all queries are guaranteed to succeed as long as they require no data that
 * is not older than the largest safe query window.
 */
interface IPriceOracle {
    // The three values that can be queried:
    //
    // - PAIR_PRICE: the price of the tokens in the Pool, expressed as the price of the second token in units of the
    //   first token. For example, if token A is worth $2, and token B is worth $4, the pair price will be 2.0.
    //   Note that the price is computed *including* the tokens decimals. This means that the pair price of a Pool with
    //   DAI and USDC will be close to 1.0, despite DAI having 18 decimals and USDC 6.
    //
    // - BPT_PRICE: the price of the Pool share token (BPT), in units of the first token.
    //   Note that the price is computed *including* the tokens decimals. This means that the BPT price of a Pool with
    //   USDC in which BPT is worth $5 will be 5.0, despite the BPT having 18 decimals and USDC 6.
    //
    // - INVARIANT: the value of the Pool's invariant, which serves as a measure of its liquidity.
    enum Variable { PAIR_PRICE, BPT_PRICE, INVARIANT }

    /**
     * @dev Returns the time average weighted price corresponding to each of `queries`. Prices are represented as 18
     * decimal fixed point values.
     */
    function getTimeWeightedAverage(OracleAverageQuery[] memory queries)
        external
        view
        returns (uint256[] memory results);

    /**
     * @dev Returns latest sample of `variable`. Prices are represented as 18 decimal fixed point values.
     */
    function getLatest(Variable variable) external view returns (uint256);

    /**
     * @dev Information for a Time Weighted Average query.
     *
     * Each query computes the average over a window of duration `secs` seconds that ended `ago` seconds ago. For
     * example, the average over the past 30 minutes is computed by settings secs to 1800 and ago to 0. If secs is 1800
     * and ago is 1800 as well, the average between 60 and 30 minutes ago is computed instead.
     */
    struct OracleAverageQuery {
        Variable variable;
        uint256 secs;
        uint256 ago;
    }

    /**
     * @dev Returns largest time window that can be safely queried, where 'safely' means the Oracle is guaranteed to be
     * able to produce a result and not revert.
     *
     * If a query has a non-zero `ago` value, then `secs + ago` (the oldest point in time) must be smaller than this
     * value for 'safe' queries.
     */
    function getLargestSafeQueryWindow() external view returns (uint256);

    /**
     * @dev Returns the accumulators corresponding to each of `queries`.
     */
    function getPastAccumulators(OracleAccumulatorQuery[] memory queries)
        external
        view
        returns (int256[] memory results);

    /**
     * @dev Information for an Accumulator query.
     *
     * Each query estimates the accumulator at a time `ago` seconds ago.
     */
    struct OracleAccumulatorQuery {
        Variable variable;
        uint256 ago;
    }
}

File 16 of 42 : LogExpMath.sol
// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 0) {
            // We solve the 0^0 indetermination by making it equal one.
            return uint256(ONE_18);
        }

        if (x == 0) {
            return 0;
        }

        // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
        // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
        // x^y = exp(y * ln(x)).

        // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
        _require(x < 2**255, Errors.X_OUT_OF_BOUNDS);
        int256 x_int256 = int256(x);

        // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
        // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

        // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
        _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);
        int256 y_int256 = int256(y);

        int256 logx_times_y;
        if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
            int256 ln_36_x = _ln_36(x_int256);

            // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
            // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
            // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
            // (downscaled) last 18 decimals.
            logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
        } else {
            logx_times_y = _ln(x_int256) * y_int256;
        }
        logx_times_y /= ONE_18;

        // Finally, we compute exp(y * ln(x)) to arrive at x^y
        _require(
            MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
            Errors.PRODUCT_OUT_OF_BOUNDS
        );

        return uint256(exp(logx_times_y));
    }

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT);

        if (x < 0) {
            // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
            // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
            // Fixed point division requires multiplying by ONE_18.
            return ((ONE_18 * ONE_18) / exp(-x));
        }

        // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
        // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
        // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
        // decomposition.
        // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
        // decomposition, which will be lower than the smallest x_n.
        // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
        // We mutate x by subtracting x_n, making it the remainder of the decomposition.

        // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
        // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
        // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
        // decomposition.

        // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
        // it and compute the accumulated product.

        int256 firstAN;
        if (x >= x0) {
            x -= x0;
            firstAN = a0;
        } else if (x >= x1) {
            x -= x1;
            firstAN = a1;
        } else {
            firstAN = 1; // One with no decimal places
        }

        // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
        // smaller terms.
        x *= 100;

        // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
        // one. Recall that fixed point multiplication requires dividing by ONE_20.
        int256 product = ONE_20;

        if (x >= x2) {
            x -= x2;
            product = (product * a2) / ONE_20;
        }
        if (x >= x3) {
            x -= x3;
            product = (product * a3) / ONE_20;
        }
        if (x >= x4) {
            x -= x4;
            product = (product * a4) / ONE_20;
        }
        if (x >= x5) {
            x -= x5;
            product = (product * a5) / ONE_20;
        }
        if (x >= x6) {
            x -= x6;
            product = (product * a6) / ONE_20;
        }
        if (x >= x7) {
            x -= x7;
            product = (product * a7) / ONE_20;
        }
        if (x >= x8) {
            x -= x8;
            product = (product * a8) / ONE_20;
        }
        if (x >= x9) {
            x -= x9;
            product = (product * a9) / ONE_20;
        }

        // x10 and x11 are unnecessary here since we have high enough precision already.

        // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
        // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

        int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
        int256 term; // Each term in the sum, where the nth term is (x^n / n!).

        // The first term is simply x.
        term = x;
        seriesSum += term;

        // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
        // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

        term = ((term * x) / ONE_20) / 2;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 3;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 4;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 5;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 6;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 7;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 8;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 9;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 10;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 11;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 12;
        seriesSum += term;

        // 12 Taylor terms are sufficient for 18 decimal precision.

        // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
        // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
        // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
        // and then drop two digits to return an 18 decimal value.

        return (((product * seriesSum) / ONE_20) * firstAN) / 100;
    }

    /**
     * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
     */
    function log(int256 arg, int256 base) internal pure returns (int256) {
        // This performs a simple base change: log(arg, base) = ln(arg) / ln(base).

        // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
        // upscaling.

        int256 logBase;
        if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
            logBase = _ln_36(base);
        } else {
            logBase = _ln(base) * ONE_18;
        }

        int256 logArg;
        if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
            logArg = _ln_36(arg);
        } else {
            logArg = _ln(arg) * ONE_18;
        }

        // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
        return (logArg * ONE_18) / logBase;
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        // The real natural logarithm is not defined for negative numbers or zero.
        _require(a > 0, Errors.OUT_OF_BOUNDS);
        if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
            return _ln_36(a) / ONE_18;
        } else {
            return _ln(a);
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        if (a < ONE_18) {
            // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
            // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
            // Fixed point division requires multiplying by ONE_18.
            return (-_ln((ONE_18 * ONE_18) / a));
        }

        // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
        // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
        // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
        // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
        // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
        // decomposition, which will be lower than the smallest a_n.
        // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
        // We mutate a by subtracting a_n, making it the remainder of the decomposition.

        // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
        // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
        // ONE_18 to convert them to fixed point.
        // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
        // by it and compute the accumulated sum.

        int256 sum = 0;
        if (a >= a0 * ONE_18) {
            a /= a0; // Integer, not fixed point division
            sum += x0;
        }

        if (a >= a1 * ONE_18) {
            a /= a1; // Integer, not fixed point division
            sum += x1;
        }

        // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
        sum *= 100;
        a *= 100;

        // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

        if (a >= a2) {
            a = (a * ONE_20) / a2;
            sum += x2;
        }

        if (a >= a3) {
            a = (a * ONE_20) / a3;
            sum += x3;
        }

        if (a >= a4) {
            a = (a * ONE_20) / a4;
            sum += x4;
        }

        if (a >= a5) {
            a = (a * ONE_20) / a5;
            sum += x5;
        }

        if (a >= a6) {
            a = (a * ONE_20) / a6;
            sum += x6;
        }

        if (a >= a7) {
            a = (a * ONE_20) / a7;
            sum += x7;
        }

        if (a >= a8) {
            a = (a * ONE_20) / a8;
            sum += x8;
        }

        if (a >= a9) {
            a = (a * ONE_20) / a9;
            sum += x9;
        }

        if (a >= a10) {
            a = (a * ONE_20) / a10;
            sum += x10;
        }

        if (a >= a11) {
            a = (a * ONE_20) / a11;
            sum += x11;
        }

        // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
        // that converges rapidly for values of `a` close to one - the same one used in ln_36.
        // Let z = (a - 1) / (a + 1).
        // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
        // division by ONE_20.
        int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
        int256 z_squared = (z * z) / ONE_20;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_20;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 11;

        // 6 Taylor terms are sufficient for 36 decimal precision.

        // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
        seriesSum *= 2;

        // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
        // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
        // value.

        return (sum + seriesSum) / 100;
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
        // worthwhile.

        // First, we transform x to a 36 digit fixed point value.
        x *= ONE_18;

        // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
        // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
        // division by ONE_36.
        int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
        int256 z_squared = (z * z) / ONE_36;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_36;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 11;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 13;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 15;

        // 8 Taylor terms are sufficient for 36 decimal precision.

        // All that remains is multiplying by 2 (non fixed point).
        return seriesSum * 2;
    }
}

File 17 of 42 : BalancerErrors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// solhint-disable

/**
 * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
 * supported.
 */
function _require(bool condition, uint256 errorCode) pure {
    if (!condition) _revert(errorCode);
}

/**
 * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
 */
function _revert(uint256 errorCode) pure {
    // We're going to dynamically create a revert string based on the error code, with the following format:
    // 'BAL#{errorCode}'
    // where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
    //
    // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
    // number (8 to 16 bits) than the individual string characters.
    //
    // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
    // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
    // safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
    assembly {
        // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
        // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
        // the '0' character.

        let units := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let tenths := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let hundreds := add(mod(errorCode, 10), 0x30)

        // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant
        // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the
        // characters to it, each shifted by a multiple of 8.
        // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
        // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
        // array).

        let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds))))

        // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
        // message will have the following layout:
        // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]

        // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
        // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
        mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
        // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
        mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
        // The string length is fixed: 7 characters.
        mstore(0x24, 7)
        // Finally, the string itself is stored.
        mstore(0x44, revertReason)

        // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
        // the encoded message is therefore 4 + 32 + 32 + 32 = 100.
        revert(0, 100)
    }
}

library Errors {
    // Math
    uint256 internal constant ADD_OVERFLOW = 0;
    uint256 internal constant SUB_OVERFLOW = 1;
    uint256 internal constant SUB_UNDERFLOW = 2;
    uint256 internal constant MUL_OVERFLOW = 3;
    uint256 internal constant ZERO_DIVISION = 4;
    uint256 internal constant DIV_INTERNAL = 5;
    uint256 internal constant X_OUT_OF_BOUNDS = 6;
    uint256 internal constant Y_OUT_OF_BOUNDS = 7;
    uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
    uint256 internal constant INVALID_EXPONENT = 9;

    // Input
    uint256 internal constant OUT_OF_BOUNDS = 100;
    uint256 internal constant UNSORTED_ARRAY = 101;
    uint256 internal constant UNSORTED_TOKENS = 102;
    uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
    uint256 internal constant ZERO_TOKEN = 104;

    // Shared pools
    uint256 internal constant MIN_TOKENS = 200;
    uint256 internal constant MAX_TOKENS = 201;
    uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
    uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
    uint256 internal constant MINIMUM_BPT = 204;
    uint256 internal constant CALLER_NOT_VAULT = 205;
    uint256 internal constant UNINITIALIZED = 206;
    uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
    uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
    uint256 internal constant EXPIRED_PERMIT = 209;

    // Pools
    uint256 internal constant MIN_AMP = 300;
    uint256 internal constant MAX_AMP = 301;
    uint256 internal constant MIN_WEIGHT = 302;
    uint256 internal constant MAX_STABLE_TOKENS = 303;
    uint256 internal constant MAX_IN_RATIO = 304;
    uint256 internal constant MAX_OUT_RATIO = 305;
    uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
    uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
    uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
    uint256 internal constant INVALID_TOKEN = 309;
    uint256 internal constant UNHANDLED_JOIN_KIND = 310;
    uint256 internal constant ZERO_INVARIANT = 311;
    uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
    uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
    uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
    uint256 internal constant ORACLE_INVALID_INDEX = 315;
    uint256 internal constant ORACLE_BAD_SECS = 316;

    // Lib
    uint256 internal constant REENTRANCY = 400;
    uint256 internal constant SENDER_NOT_ALLOWED = 401;
    uint256 internal constant PAUSED = 402;
    uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
    uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
    uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
    uint256 internal constant INSUFFICIENT_BALANCE = 406;
    uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
    uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
    uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
    uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
    uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
    uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
    uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
    uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
    uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
    uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
    uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
    uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
    uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
    uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
    uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
    uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
    uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;

    // Vault
    uint256 internal constant INVALID_POOL_ID = 500;
    uint256 internal constant CALLER_NOT_POOL = 501;
    uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
    uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
    uint256 internal constant INVALID_SIGNATURE = 504;
    uint256 internal constant EXIT_BELOW_MIN = 505;
    uint256 internal constant JOIN_ABOVE_MAX = 506;
    uint256 internal constant SWAP_LIMIT = 507;
    uint256 internal constant SWAP_DEADLINE = 508;
    uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
    uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
    uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
    uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
    uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
    uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
    uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
    uint256 internal constant INSUFFICIENT_ETH = 516;
    uint256 internal constant UNALLOCATED_ETH = 517;
    uint256 internal constant ETH_TRANSFER = 518;
    uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
    uint256 internal constant TOKENS_MISMATCH = 520;
    uint256 internal constant TOKEN_NOT_REGISTERED = 521;
    uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
    uint256 internal constant TOKENS_ALREADY_SET = 523;
    uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
    uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
    uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
    uint256 internal constant POOL_NO_TOKENS = 527;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;

    // Fees
    uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
    uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
}

File 18 of 42 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 19 of 42 : IAsset.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
 * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
 * types.
 *
 * This concept is unrelated to a Pool's Asset Managers.
 */
interface IAsset {
    // solhint-disable-previous-line no-empty-blocks
}

File 20 of 42 : ITemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the TemporarilyPausable helper.
 */
interface ITemporarilyPausable {
    /**
     * @dev Emitted every time the pause state changes by `_setPaused`.
     */
    event PausedStateChanged(bool paused);

    /**
     * @dev Returns the current paused state.
     */
    function getPausedState()
        external
        view
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        );
}

File 21 of 42 : SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, Errors.SUB_OVERFLOW);
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) {
        _require(b <= a, errorCode);
        uint256 c = a - b;

        return c;
    }
}

File 22 of 42 : Math.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow checks.
 * Adapted from OpenZeppelin's SafeMath library
 */
library Math {
    /**
     * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the addition of two signed integers, reverting on overflow.
     */
    function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    /**
     * @dev Returns the subtraction of two signed integers, reverting on overflow.
     */
    function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the largest of two numbers of 256 bits.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers of 256 bits.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a * b;
        _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW);
        return c;
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);
        return a / b;
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            return 1 + (a - 1) / b;
        }
    }
}

File 23 of 42 : WordCodec.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
 * a single storage slot, saving gas by performing less storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 */
library WordCodec {
    // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word,
    // or to insert a new one replacing the old.
    uint256 private constant _MASK_1 = 2**(1) - 1;
    uint256 private constant _MASK_10 = 2**(10) - 1;
    uint256 private constant _MASK_22 = 2**(22) - 1;
    uint256 private constant _MASK_31 = 2**(31) - 1;
    uint256 private constant _MASK_53 = 2**(53) - 1;
    uint256 private constant _MASK_64 = 2**(64) - 1;

    // Largest positive values that can be represented as N bits signed integers.
    int256 private constant _MAX_INT_22 = 2**(21) - 1;
    int256 private constant _MAX_INT_53 = 2**(52) - 1;

    // In-place insertion

    /**
     * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
     * word.
     */
    function insertBoolean(
        bytes32 word,
        bool value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset));
        return clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
    }

    // Unsigned

    /**
     * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 10 bits.
     */
    function insertUint10(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 31 bits.
     */
    function insertUint31(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 64 bits.
     */
    function insertUint64(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset));
        return clearedWord | bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 22 bits.
     */
    function insertInt22(
        bytes32 word,
        int256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset));
        // Integer values need masking to remove the upper bits of negative values.
        return clearedWord | bytes32((uint256(value) & _MASK_22) << offset);
    }

    // Encoding

    // Unsigned

    /**
     * @dev Encodes a 31 bit unsigned integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeUint31(uint256 value, uint256 offset) internal pure returns (bytes32) {
        return bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Encodes a 22 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_22) << offset);
    }

    /**
     * @dev Encodes a 53 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_53) << offset);
    }

    // Decoding

    /**
     * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
     */
    function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) {
        return (uint256(word >> offset) & _MASK_1) == 1;
    }

    // Unsigned

    /**
     * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_10;
    }

    /**
     * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_31;
    }

    /**
     * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_64;
    }

    // Signed

    /**
     * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_22);
        // In case the decoded value is greater than the max positive integer that can be represented with 22 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.
        return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value;
    }

    /**
     * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_53);
        // In case the decoded value is greater than the max positive integer that can be represented with 53 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.
        return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value;
    }
}

File 24 of 42 : WeightedPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../../lib/math/FixedPoint.sol";
import "../../lib/helpers/InputHelpers.sol";

import "../BaseMinimalSwapInfoPool.sol";

import "./WeightedMath.sol";
import "./WeightedPoolUserDataHelpers.sol";

// This contract relies on tons of immutable state variables to perform efficient lookup, without resorting to storage
// reads. Because immutable arrays are not supported, we instead declare a fixed set of state variables plus total
// count, resulting in a large number of state variables.

contract WeightedPool is BaseMinimalSwapInfoPool, WeightedMath {
    using FixedPoint for uint256;
    using WeightedPoolUserDataHelpers for bytes;

    // The protocol fees will always be charged using the token associated with the max weight in the pool.
    // Since these Pools will register tokens only once, we can assume this index will be constant.
    uint256 private immutable _maxWeightTokenIndex;

    uint256 private immutable _normalizedWeight0;
    uint256 private immutable _normalizedWeight1;
    uint256 private immutable _normalizedWeight2;
    uint256 private immutable _normalizedWeight3;
    uint256 private immutable _normalizedWeight4;
    uint256 private immutable _normalizedWeight5;
    uint256 private immutable _normalizedWeight6;
    uint256 private immutable _normalizedWeight7;

    uint256 private _lastInvariant;

    enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT }
    enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT }

    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256[] memory normalizedWeights,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        BaseMinimalSwapInfoPool(
            vault,
            name,
            symbol,
            tokens,
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        uint256 numTokens = tokens.length;
        InputHelpers.ensureInputLengthMatch(numTokens, normalizedWeights.length);

        // Ensure  each normalized weight is above them minimum and find the token index of the maximum weight
        uint256 normalizedSum = 0;
        uint256 maxWeightTokenIndex = 0;
        uint256 maxNormalizedWeight = 0;
        for (uint8 i = 0; i < numTokens; i++) {
            uint256 normalizedWeight = normalizedWeights[i];
            _require(normalizedWeight >= _MIN_WEIGHT, Errors.MIN_WEIGHT);

            normalizedSum = normalizedSum.add(normalizedWeight);
            if (normalizedWeight > maxNormalizedWeight) {
                maxWeightTokenIndex = i;
                maxNormalizedWeight = normalizedWeight;
            }
        }
        // Ensure that the normalized weights sum to ONE
        _require(normalizedSum == FixedPoint.ONE, Errors.NORMALIZED_WEIGHT_INVARIANT);

        _maxWeightTokenIndex = maxWeightTokenIndex;
        _normalizedWeight0 = normalizedWeights.length > 0 ? normalizedWeights[0] : 0;
        _normalizedWeight1 = normalizedWeights.length > 1 ? normalizedWeights[1] : 0;
        _normalizedWeight2 = normalizedWeights.length > 2 ? normalizedWeights[2] : 0;
        _normalizedWeight3 = normalizedWeights.length > 3 ? normalizedWeights[3] : 0;
        _normalizedWeight4 = normalizedWeights.length > 4 ? normalizedWeights[4] : 0;
        _normalizedWeight5 = normalizedWeights.length > 5 ? normalizedWeights[5] : 0;
        _normalizedWeight6 = normalizedWeights.length > 6 ? normalizedWeights[6] : 0;
        _normalizedWeight7 = normalizedWeights.length > 7 ? normalizedWeights[7] : 0;
    }

    function _normalizedWeight(IERC20 token) internal view virtual returns (uint256) {
        // prettier-ignore
        if (token == _token0) { return _normalizedWeight0; }
        else if (token == _token1) { return _normalizedWeight1; }
        else if (token == _token2) { return _normalizedWeight2; }
        else if (token == _token3) { return _normalizedWeight3; }
        else if (token == _token4) { return _normalizedWeight4; }
        else if (token == _token5) { return _normalizedWeight5; }
        else if (token == _token6) { return _normalizedWeight6; }
        else if (token == _token7) { return _normalizedWeight7; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    function _normalizedWeights() internal view virtual returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory normalizedWeights = new uint256[](totalTokens);

        // prettier-ignore
        {
            if (totalTokens > 0) { normalizedWeights[0] = _normalizedWeight0; } else { return normalizedWeights; }
            if (totalTokens > 1) { normalizedWeights[1] = _normalizedWeight1; } else { return normalizedWeights; }
            if (totalTokens > 2) { normalizedWeights[2] = _normalizedWeight2; } else { return normalizedWeights; }
            if (totalTokens > 3) { normalizedWeights[3] = _normalizedWeight3; } else { return normalizedWeights; }
            if (totalTokens > 4) { normalizedWeights[4] = _normalizedWeight4; } else { return normalizedWeights; }
            if (totalTokens > 5) { normalizedWeights[5] = _normalizedWeight5; } else { return normalizedWeights; }
            if (totalTokens > 6) { normalizedWeights[6] = _normalizedWeight6; } else { return normalizedWeights; }
            if (totalTokens > 7) { normalizedWeights[7] = _normalizedWeight7; } else { return normalizedWeights; }
        }

        return normalizedWeights;
    }

    function getLastInvariant() external view returns (uint256) {
        return _lastInvariant;
    }

    /**
     * @dev Returns the current value of the invariant.
     */
    function getInvariant() public view returns (uint256) {
        (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());

        // Since the Pool hooks always work with upscaled balances, we manually
        // upscale here for consistency
        _upscaleArray(balances, _scalingFactors());

        uint256[] memory normalizedWeights = _normalizedWeights();
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    function getNormalizedWeights() external view returns (uint256[] memory) {
        return _normalizedWeights();
    }

    // Base Pool handlers

    // Swap

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view virtual override whenNotPaused returns (uint256) {
        // Swaps are disabled while the contract is paused.

        return
            WeightedMath._calcOutGivenIn(
                currentBalanceTokenIn,
                _normalizedWeight(swapRequest.tokenIn),
                currentBalanceTokenOut,
                _normalizedWeight(swapRequest.tokenOut),
                swapRequest.amount
            );
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) internal view virtual override whenNotPaused returns (uint256) {
        // Swaps are disabled while the contract is paused.

        return
            WeightedMath._calcInGivenOut(
                currentBalanceTokenIn,
                _normalizedWeight(swapRequest.tokenIn),
                currentBalanceTokenOut,
                _normalizedWeight(swapRequest.tokenOut),
                swapRequest.amount
            );
    }

    // Initialize

    function _onInitializePool(
        bytes32,
        address,
        address,
        bytes memory userData
    ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) {
        // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent
        // initialization in this case.

        WeightedPool.JoinKind kind = userData.joinKind();
        _require(kind == WeightedPool.JoinKind.INIT, Errors.UNINITIALIZED);

        uint256[] memory amountsIn = userData.initialAmountsIn();
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);
        _upscaleArray(amountsIn, _scalingFactors());

        uint256[] memory normalizedWeights = _normalizedWeights();

        uint256 invariantAfterJoin = WeightedMath._calculateInvariant(normalizedWeights, amountsIn);

        // Set the initial BPT to the value of the invariant times the number of tokens. This makes BPT supply more
        // consistent in Pools with similar compositions but different number of tokens.
        uint256 bptAmountOut = Math.mul(invariantAfterJoin, _getTotalTokens());

        _lastInvariant = invariantAfterJoin;

        return (bptAmountOut, amountsIn);
    }

    // Join

    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        internal
        virtual
        override
        whenNotPaused
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        // All joins are disabled while the contract is paused.

        uint256[] memory normalizedWeights = _normalizedWeights();

        // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join
        // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas
        // computing them on each individual swap
        uint256 invariantBeforeJoin = WeightedMath._calculateInvariant(normalizedWeights, balances);

        uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
            balances,
            normalizedWeights,
            _lastInvariant,
            invariantBeforeJoin,
            protocolSwapFeePercentage
        );

        // Update current balances by subtracting the protocol fee amounts
        _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, normalizedWeights, userData);

        // Update the invariant with the balances the Pool will have after the join, in order to compute the
        // protocol swap fee amounts due in future joins and exits.
        _lastInvariant = _invariantAfterJoin(balances, amountsIn, normalizedWeights);

        return (bptAmountOut, amountsIn, dueProtocolFeeAmounts);
    }

    function _doJoin(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        JoinKind kind = userData.joinKind();

        if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
            return _joinExactTokensInForBPTOut(balances, normalizedWeights, userData);
        } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
            return _joinTokenInForExactBPTOut(balances, normalizedWeights, userData);
        } else {
            _revert(Errors.UNHANDLED_JOIN_KIND);
        }
    }

    function _joinExactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);

        _upscaleArray(amountsIn, _scalingFactors());

        uint256 bptAmountOut = WeightedMath._calcBptOutGivenExactTokensIn(
            balances,
            normalizedWeights,
            amountsIn,
            totalSupply(),
            _swapFeePercentage
        );

        _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);

        return (bptAmountOut, amountsIn);
    }

    function _joinTokenInForExactBPTOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
        // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        uint256[] memory amountsIn = new uint256[](_getTotalTokens());
        amountsIn[tokenIndex] = WeightedMath._calcTokenInGivenExactBptOut(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountOut,
            totalSupply(),
            _swapFeePercentage
        );

        return (bptAmountOut, amountsIn);
    }

    // Exit

    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        internal
        virtual
        override
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        uint256[] memory normalizedWeights = _normalizedWeights();

        if (_isNotPaused()) {
            // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous
            // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids
            // spending gas calculating the fees on each individual swap.
            uint256 invariantBeforeExit = WeightedMath._calculateInvariant(normalizedWeights, balances);
            dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(
                balances,
                normalizedWeights,
                _lastInvariant,
                invariantBeforeExit,
                protocolSwapFeePercentage
            );

            // Update current balances by subtracting the protocol fee amounts
            _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        } else {
            // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and
            // reduce the potential for errors.
            dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
        }

        (bptAmountIn, amountsOut) = _doExit(balances, normalizedWeights, userData);

        // Update the invariant with the balances the Pool will have after the exit, in order to compute the
        // protocol swap fees due in future joins and exits.
        _lastInvariant = _invariantAfterExit(balances, amountsOut, normalizedWeights);

        return (bptAmountIn, amountsOut, dueProtocolFeeAmounts);
    }

    function _doExit(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        ExitKind kind = userData.exitKind();

        if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
            return _exitExactBPTInForTokenOut(balances, normalizedWeights, userData);
        } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
            return _exitExactBPTInForTokensOut(balances, userData);
        } else {
            // ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT
            return _exitBPTInForExactTokensOut(balances, normalizedWeights, userData);
        }
    }

    function _exitExactBPTInForTokenOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        // We exit in a single token, so we initialize amountsOut with zeros
        uint256[] memory amountsOut = new uint256[](_getTotalTokens());

        // And then assign the result to the selected token
        amountsOut[tokenIndex] = WeightedMath._calcTokenOutGivenExactBptIn(
            balances[tokenIndex],
            normalizedWeights[tokenIndex],
            bptAmountIn,
            totalSupply(),
            _swapFeePercentage
        );

        return (bptAmountIn, amountsOut);
    }

    function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted
        // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency.
        // This particular exit function is the only one that remains available because it is the simplest one, and
        // therefore the one with the lowest likelihood of errors.

        uint256 bptAmountIn = userData.exactBptInForTokensOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        uint256[] memory amountsOut = WeightedMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply());
        return (bptAmountIn, amountsOut);
    }

    function _exitBPTInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        bytes memory userData
    ) private view whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
        InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens());
        _upscaleArray(amountsOut, _scalingFactors());

        uint256 bptAmountIn = WeightedMath._calcBptInGivenExactTokensOut(
            balances,
            normalizedWeights,
            amountsOut,
            totalSupply(),
            _swapFeePercentage
        );
        _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);

        return (bptAmountIn, amountsOut);
    }

    // Helpers

    function _getDueProtocolFeeAmounts(
        uint256[] memory balances,
        uint256[] memory normalizedWeights,
        uint256 previousInvariant,
        uint256 currentInvariant,
        uint256 protocolSwapFeePercentage
    ) private view returns (uint256[] memory) {
        // Initialize with zeros
        uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens());

        // Early return if the protocol swap fee percentage is zero, saving gas.
        if (protocolSwapFeePercentage == 0) {
            return dueProtocolFeeAmounts;
        }

        // The protocol swap fees are always paid using the token with the largest weight in the Pool. As this is the
        // token that is expected to have the largest balance, using it to pay fees should not unbalance the Pool.
        dueProtocolFeeAmounts[_maxWeightTokenIndex] = WeightedMath._calcDueTokenProtocolSwapFeeAmount(
            balances[_maxWeightTokenIndex],
            normalizedWeights[_maxWeightTokenIndex],
            previousInvariant,
            currentInvariant,
            protocolSwapFeePercentage
        );

        return dueProtocolFeeAmounts;
    }

    /**
     * @dev Returns the value of the invariant given `balances`, assuming they are increased by `amountsIn`. All
     * amounts are expected to be upscaled.
     */
    function _invariantAfterJoin(
        uint256[] memory balances,
        uint256[] memory amountsIn,
        uint256[] memory normalizedWeights
    ) private view returns (uint256) {
        _mutateAmounts(balances, amountsIn, FixedPoint.add);
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    function _invariantAfterExit(
        uint256[] memory balances,
        uint256[] memory amountsOut,
        uint256[] memory normalizedWeights
    ) private view returns (uint256) {
        _mutateAmounts(balances, amountsOut, FixedPoint.sub);
        return WeightedMath._calculateInvariant(normalizedWeights, balances);
    }

    /**
     * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
     *
     * Equivalent to `amounts = amounts.map(mutation)`.
     */
    function _mutateAmounts(
        uint256[] memory toMutate,
        uint256[] memory arguments,
        function(uint256, uint256) pure returns (uint256) mutation
    ) private view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            toMutate[i] = mutation(toMutate[i], arguments[i]);
        }
    }

    /**
     * @dev This function returns the appreciation of one BPT relative to the
     * underlying tokens. This starts at 1 when the pool is created and grows over time
     */
    function getRate() public view returns (uint256) {
        // The initial BPT supply is equal to the invariant times the number of tokens.
        return Math.mul(getInvariant(), _getTotalTokens()).divDown(totalSupply());
    }
}

File 25 of 42 : BaseMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BasePool.sol";
import "../vault/interfaces/IMinimalSwapInfoPool.sol";

/**
 * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`.
 *
 * Derived contracts must implement `_onSwapGivenIn` and `_onSwapGivenOut` along with `BasePool`'s virtual functions.
 */
abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool {
    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        BasePool(
            vault,
            tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.MINIMAL_SWAP_INFO,
            name,
            symbol,
            tokens,
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        // solhint-disable-previous-line no-empty-blocks
    }

    // Swap Hooks

    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) external view virtual override returns (uint256) {
        uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn);
        uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut);

        if (request.kind == IVault.SwapKind.GIVEN_IN) {
            // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
            request.amount = _subtractSwapFeeAmount(request.amount);

            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenIn);

            uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut);

            // amountOut tokens are exiting the Pool, so we round down.
            return _downscaleDown(amountOut, scalingFactorTokenOut);
        } else {
            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenOut);

            uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut);

            // amountIn tokens are entering the Pool, so we round up.
            amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);

            // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
            return _addSwapFeeAmount(amountIn);
        }
    }

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known.
     *
     * Returns the amount of tokens that will be taken from the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already
     * been deducted from `swapRequest.amount`.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the
     * Vault.
     */
    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal view virtual returns (uint256);

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known.
     *
     * Returns the amount of tokens that will be granted to the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee
     * and returning it to the Vault.
     */
    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal view virtual returns (uint256);
}

File 26 of 42 : BasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../lib/math/FixedPoint.sol";
import "../lib/helpers/InputHelpers.sol";
import "../lib/helpers/TemporarilyPausable.sol";
import "../lib/openzeppelin/ERC20.sol";

import "./BalancerPoolToken.sol";
import "./BasePoolAuthorization.sol";
import "../vault/interfaces/IVault.sol";
import "../vault/interfaces/IBasePool.sol";

// This contract relies on tons of immutable state variables to perform efficient lookup, without resorting to storage
// reads. Because immutable arrays are not supported, we instead declare a fixed set of state variables plus a total
// count, resulting in a large number of state variables.

// solhint-disable max-states-count

/**
 * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with an immutable set
 * of registered tokens, no Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism.
 *
 * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that
 * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the
 * `whenNotPaused` modifier.
 *
 * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer.
 *
 * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from
 * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces
 * and implement the swap callbacks themselves.
 */
abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable {
    using FixedPoint for uint256;

    uint256 private constant _MIN_TOKENS = 2;
    uint256 private constant _MAX_TOKENS = 8;

    // 1e18 corresponds to 1.0, or a 100% fee
    uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
    uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10%

    uint256 private constant _MINIMUM_BPT = 1e6;

    uint256 internal _swapFeePercentage;

    IVault private immutable _vault;
    bytes32 private immutable _poolId;
    uint256 private immutable _totalTokens;

    IERC20 internal immutable _token0;
    IERC20 internal immutable _token1;
    IERC20 internal immutable _token2;
    IERC20 internal immutable _token3;
    IERC20 internal immutable _token4;
    IERC20 internal immutable _token5;
    IERC20 internal immutable _token6;
    IERC20 internal immutable _token7;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.

    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;
    uint256 internal immutable _scalingFactor2;
    uint256 internal immutable _scalingFactor3;
    uint256 internal immutable _scalingFactor4;
    uint256 internal immutable _scalingFactor5;
    uint256 internal immutable _scalingFactor6;
    uint256 internal immutable _scalingFactor7;

    event SwapFeePercentageChanged(uint256 swapFeePercentage);

    constructor(
        IVault vault,
        IVault.PoolSpecialization specialization,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        // Base Pools are expected to be deployed using factories. By using the factory address as the action
        // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
        // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
        // any Pool created by the same factory), while still making action identifiers unique among different factories
        // if the selectors match, preventing accidental errors.
        Authentication(bytes32(uint256(msg.sender)))
        BalancerPoolToken(name, symbol)
        BasePoolAuthorization(owner)
        TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration)
    {
        _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS);
        _require(tokens.length <= _MAX_TOKENS, Errors.MAX_TOKENS);

        // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
        // to make the developer experience consistent, we are requiring this condition for all the native pools.
        // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same
        // order. We rely on this property to make Pools simpler to write, as it lets us assume that the
        // order of token-specific parameters (such as token weights) will not change.
        InputHelpers.ensureArrayIsSorted(tokens);

        _setSwapFeePercentage(swapFeePercentage);

        bytes32 poolId = vault.registerPool(specialization);

        // Pass in zero addresses for Asset Managers
        vault.registerTokens(poolId, tokens, new address[](tokens.length));

        // Set immutable state variables - these cannot be read from during construction
        _vault = vault;
        _poolId = poolId;
        _totalTokens = tokens.length;

        // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
        _token0 = tokens.length > 0 ? tokens[0] : IERC20(0);
        _token1 = tokens.length > 1 ? tokens[1] : IERC20(0);
        _token2 = tokens.length > 2 ? tokens[2] : IERC20(0);
        _token3 = tokens.length > 3 ? tokens[3] : IERC20(0);
        _token4 = tokens.length > 4 ? tokens[4] : IERC20(0);
        _token5 = tokens.length > 5 ? tokens[5] : IERC20(0);
        _token6 = tokens.length > 6 ? tokens[6] : IERC20(0);
        _token7 = tokens.length > 7 ? tokens[7] : IERC20(0);

        _scalingFactor0 = tokens.length > 0 ? _computeScalingFactor(tokens[0]) : 0;
        _scalingFactor1 = tokens.length > 1 ? _computeScalingFactor(tokens[1]) : 0;
        _scalingFactor2 = tokens.length > 2 ? _computeScalingFactor(tokens[2]) : 0;
        _scalingFactor3 = tokens.length > 3 ? _computeScalingFactor(tokens[3]) : 0;
        _scalingFactor4 = tokens.length > 4 ? _computeScalingFactor(tokens[4]) : 0;
        _scalingFactor5 = tokens.length > 5 ? _computeScalingFactor(tokens[5]) : 0;
        _scalingFactor6 = tokens.length > 6 ? _computeScalingFactor(tokens[6]) : 0;
        _scalingFactor7 = tokens.length > 7 ? _computeScalingFactor(tokens[7]) : 0;
    }

    // Getters / Setters

    function getVault() public view returns (IVault) {
        return _vault;
    }

    function getPoolId() public view returns (bytes32) {
        return _poolId;
    }

    function _getTotalTokens() internal view returns (uint256) {
        return _totalTokens;
    }

    function getSwapFeePercentage() external view returns (uint256) {
        return _swapFeePercentage;
    }

    // Caller must be approved by the Vault's Authorizer
    function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused {
        _setSwapFeePercentage(swapFeePercentage);
    }

    function _setSwapFeePercentage(uint256 swapFeePercentage) private {
        _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE);
        _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE);

        _swapFeePercentage = swapFeePercentage;
        emit SwapFeePercentageChanged(swapFeePercentage);
    }

    // Caller must be approved by the Vault's Authorizer
    function setPaused(bool paused) external authenticate {
        _setPaused(paused);
    }

    // Join / Exit Hooks

    modifier onlyVault(bytes32 poolId) {
        _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
        _require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
        _;
    }

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();

        if (totalSupply() == 0) {
            (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool(poolId, sender, recipient, userData);

            // On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum
            // as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from
            // ever being fully drained.
            _require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT);
            _mintPoolTokens(address(0), _MINIMUM_BPT);
            _mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);

            return (amountsIn, new uint256[](_getTotalTokens()));
        } else {
            _upscaleArray(balances, scalingFactors);
            (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                userData
            );

            // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.

            _mintPoolTokens(recipient, bptAmountOut);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);
            // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
            _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

            return (amountsIn, dueProtocolFeeAmounts);
        }
    }

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();
        _upscaleArray(balances, scalingFactors);

        (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData
        );

        // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.

        _burnPoolTokens(sender, bptAmountIn);

        // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
        _downscaleDownArray(amountsOut, scalingFactors);
        _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

        return (amountsOut, dueProtocolFeeAmounts);
    }

    // Query functions

    /**
     * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `sender` would have to supply.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onJoinPool,
            _downscaleUpArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptOut, amountsIn);
    }

    /**
     * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `recipient` would receive.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onExitPool,
            _downscaleDownArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptIn, amountsOut);
    }

    // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are
    // upscaled.

    /**
     * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
     *
     * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
     *
     * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent
     * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from
     * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's
     * lifetime.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     */
    function _onInitializePool(
        bytes32 poolId,
        address sender,
        address recipient,
        bytes memory userData
    ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);

    /**
     * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
     *
     * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
     * tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * Minted BPT will be sent to `recipient`.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountOut,
            uint256[] memory amountsIn,
            uint256[] memory dueProtocolFeeAmounts
        );

    /**
     * @dev Called whenever the Pool is exited.
     *
     * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
     * the number of tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * BPT will be burnt from `sender`.
     *
     * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
     * (rounding down) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        );

    // Internal functions

    /**
     * @dev Adds swap fee amount to `amount`, returning a higher value.
     */
    function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount + fee amount, so we round up (favoring a higher fee amount).
        return amount.divUp(_swapFeePercentage.complement());
    }

    /**
     * @dev Subtracts swap fee amount from `amount`, returning a lower value.
     */
    function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount - fee amount, so we round up (favoring a higher fee amount).
        uint256 feeAmount = amount.mulUp(_swapFeePercentage);
        return amount.sub(feeAmount);
    }

    // Scaling

    /**
     * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
     * it had 18 decimals.
     */
    function _computeScalingFactor(IERC20 token) private view returns (uint256) {
        // Tokens that don't implement the `decimals` method are not supported.
        uint256 tokenDecimals = ERC20(address(token)).decimals();

        // Tokens with more than 18 decimals are not supported.
        uint256 decimalsDifference = Math.sub(18, tokenDecimals);
        return 10**decimalsDifference;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     */
    function _scalingFactor(IERC20 token) internal view returns (uint256) {
        // prettier-ignore
        if (token == _token0) { return _scalingFactor0; }
        else if (token == _token1) { return _scalingFactor1; }
        else if (token == _token2) { return _scalingFactor2; }
        else if (token == _token3) { return _scalingFactor3; }
        else if (token == _token4) { return _scalingFactor4; }
        else if (token == _token5) { return _scalingFactor5; }
        else if (token == _token6) { return _scalingFactor6; }
        else if (token == _token7) { return _scalingFactor7; }
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    /**
     * @dev Returns all the scaling factors in the same order as the registered tokens. The Vault will always
     * pass balances in this order when calling any of the Pool hooks
     */
    function _scalingFactors() internal view returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory scalingFactors = new uint256[](totalTokens);

        // prettier-ignore
        {
            if (totalTokens > 0) { scalingFactors[0] = _scalingFactor0; } else { return scalingFactors; }
            if (totalTokens > 1) { scalingFactors[1] = _scalingFactor1; } else { return scalingFactors; }
            if (totalTokens > 2) { scalingFactors[2] = _scalingFactor2; } else { return scalingFactors; }
            if (totalTokens > 3) { scalingFactors[3] = _scalingFactor3; } else { return scalingFactors; }
            if (totalTokens > 4) { scalingFactors[4] = _scalingFactor4; } else { return scalingFactors; }
            if (totalTokens > 5) { scalingFactors[5] = _scalingFactor5; } else { return scalingFactors; }
            if (totalTokens > 6) { scalingFactors[6] = _scalingFactor6; } else { return scalingFactors; }
            if (totalTokens > 7) { scalingFactors[7] = _scalingFactor7; } else { return scalingFactors; }
        }

        return scalingFactors;
    }

    /**
     * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
     * scaling or not.
     */
    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.mul(amount, scalingFactor);
    }

    /**
     * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates*
     * the `amounts` array.
     */
    function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = Math.mul(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded down.
     */
    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.divDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = Math.divDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded up.
     */
    function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return Math.divUp(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = Math.divUp(amounts[i], scalingFactors[i]);
        }
    }

    function _getAuthorizer() internal view override returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
        // Governance control.
        return getVault().getAuthorizer();
    }

    function _queryAction(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        function(bytes32, address, address, uint256[] memory, uint256, uint256, bytes memory)
            internal
            returns (uint256, uint256[] memory, uint256[] memory) _action,
        function(uint256[] memory, uint256[] memory) internal view _downscaleArray
    ) private {
        // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
        // explanation.

        if (msg.sender != address(this)) {
            // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
            // the preceding if statement will be executed instead.

            // solhint-disable-next-line avoid-low-level-calls
            (bool success, ) = address(this).call(msg.data);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // This call should always revert to decode the bpt and token amounts from the revert reason
                switch success
                    case 0 {
                        // Note we are manually writing the memory slot 0. We can safely overwrite whatever is
                        // stored there as we take full control of the execution and then immediately return.

                        // We copy the first 4 bytes to check if it matches with the expected signature, otherwise
                        // there was another revert reason and we should forward it.
                        returndatacopy(0, 0, 0x04)
                        let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)

                        // If the first 4 bytes don't match with the expected signature, we forward the revert reason.
                        if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }

                        // The returndata contains the signature, followed by the raw memory representation of the
                        // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
                        // representation of these.
                        // An ABI-encoded response will include one additional field to indicate the starting offset of
                        // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
                        // returndata.
                        //
                        // In returndata:
                        // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  4 bytes  ][  32 bytes ][       32 bytes      ][ (32 * length) bytes ]
                        //
                        // We now need to return (ABI-encoded values):
                        // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  32 bytes ][       32 bytes     ][       32 bytes      ][ (32 * length) bytes ]

                        // We copy 32 bytes for the `bptAmount` from returndata into memory.
                        // Note that we skip the first 4 bytes for the error signature
                        returndatacopy(0, 0x04, 32)

                        // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
                        // the initial 64 bytes.
                        mstore(0x20, 64)

                        // We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
                        // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
                        // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
                        returndatacopy(0x40, 0x24, sub(returndatasize(), 36))

                        // We finally return the ABI-encoded uint256 and the array, which has a total length equal to
                        // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
                        // error signature.
                        return(0, add(returndatasize(), 28))
                    }
                    default {
                        // This call should always revert, but we fail nonetheless if that didn't happen
                        invalid()
                    }
            }
        } else {
            uint256[] memory scalingFactors = _scalingFactors();
            _upscaleArray(balances, scalingFactors);

            (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                userData
            );

            _downscaleArray(tokenAmounts, scalingFactors);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
                // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
                // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
                let size := mul(mload(tokenAmounts), 32)

                // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
                // will be at least one available slot due to how the memory scratch space works.
                // We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
                let start := sub(tokenAmounts, 0x20)
                mstore(start, bptAmount)

                // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
                // We use the previous slot to `bptAmount`.
                mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
                start := sub(start, 0x04)

                // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
                // the `bptAmount`, the array 's length, and the error signature.
                revert(start, add(size, 68))
            }
        }
    }
}

File 27 of 42 : IVault.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma experimental ABIEncoderV2;

import "../../lib/openzeppelin/IERC20.sol";

import "./IWETH.sol";
import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "../ProtocolFeesCollector.sol";

import "../../lib/helpers/ISignaturesValidator.sol";
import "../../lib/helpers/ITemporarilyPausable.sol";

pragma solidity ^0.7.0;

/**
 * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
 * don't override one of these declarations.
 */
interface IVault is ISignaturesValidator, ITemporarilyPausable {
    // Generalities about the Vault:
    //
    // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
    // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
    // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
    // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
    // a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
    //
    // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
    // while execution control is transferred to a token contract during a swap) will result in a revert. View
    // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
    // Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
    //
    // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.

    // Authorizer
    //
    // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
    // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
    // can perform a given action.

    /**
     * @dev Returns the Vault's Authorizer.
     */
    function getAuthorizer() external view returns (IAuthorizer);

    /**
     * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
     *
     * Emits an `AuthorizerChanged` event.
     */
    function setAuthorizer(IAuthorizer newAuthorizer) external;

    /**
     * @dev Emitted when a new authorizer is set by `setAuthorizer`.
     */
    event AuthorizerChanged(IAuthorizer indexed newAuthorizer);

    // Relayers
    //
    // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
    // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
    // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
    // this power, two things must occur:
    //  - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
    //    means that Balancer governance must approve each individual contract to act as a relayer for the intended
    //    functions.
    //  - Each user must approve the relayer to act on their behalf.
    // This double protection means users cannot be tricked into approving malicious relayers (because they will not
    // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
    // Authorizer or governance drain user funds, since they would also need to be approved by each individual user.

    /**
     * @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
     */
    function hasApprovedRelayer(address user, address relayer) external view returns (bool);

    /**
     * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
     *
     * Emits a `RelayerApprovalChanged` event.
     */
    function setRelayerApproval(
        address sender,
        address relayer,
        bool approved
    ) external;

    /**
     * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
     */
    event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);

    // Internal Balance
    //
    // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
    // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
    // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
    // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
    //
    // Internal Balance management features batching, which means a single contract call can be used to perform multiple
    // operations of different kinds, with different senders and recipients, at once.

    /**
     * @dev Returns `user`'s Internal Balance for a set of tokens.
     */
    function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);

    /**
     * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
     * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
     * it lets integrators reuse a user's Vault allowance.
     *
     * For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
     */
    function manageUserBalance(UserBalanceOp[] memory ops) external payable;

    /**
     * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
     without manual WETH wrapping or unwrapping.
     */
    struct UserBalanceOp {
        UserBalanceOpKind kind;
        IAsset asset;
        uint256 amount;
        address sender;
        address payable recipient;
    }

    // There are four possible operations in `manageUserBalance`:
    //
    // - DEPOSIT_INTERNAL
    // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
    // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
    // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
    // relevant for relayers).
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - WITHDRAW_INTERNAL
    // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
    // it to the recipient as ETH.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_INTERNAL
    // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_EXTERNAL
    // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
    // relayers, as it lets them reuse a user's Vault allowance.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `ExternalBalanceTransfer` event.

    enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }

    /**
     * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
     * interacting with Pools using Internal Balance.
     *
     * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
     * address.
     */
    event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);

    /**
     * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
     */
    event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);

    // Pools
    //
    // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
    // functionality:
    //
    //  - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
    // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
    // which increase with the number of registered tokens.
    //
    //  - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
    // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
    // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
    // independent of the number of registered tokens.
    //
    //  - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
    // minimal swap info Pools, these are called via IMinimalSwapInfoPool.

    enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }

    /**
     * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
     * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
     * changed.
     *
     * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
     * depending on the chosen specialization setting. This contract is known as the Pool's contract.
     *
     * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
     * multiple Pools may share the same contract.
     *
     * Emits a `PoolRegistered` event.
     */
    function registerPool(PoolSpecialization specialization) external returns (bytes32);

    /**
     * @dev Emitted when a Pool is registered by calling `registerPool`.
     */
    event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);

    /**
     * @dev Returns a Pool's contract address and specialization setting.
     */
    function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);

    /**
     * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
     * exit by receiving registered tokens, and can only swap registered tokens.
     *
     * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
     * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
     * ascending order.
     *
     * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
     * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
     * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
     * expected to be highly secured smart contracts with sound design principles, and the decision to register an
     * Asset Manager should not be made lightly.
     *
     * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
     * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
     * different Asset Manager.
     *
     * Emits a `TokensRegistered` event.
     */
    function registerTokens(
        bytes32 poolId,
        IERC20[] memory tokens,
        address[] memory assetManagers
    ) external;

    /**
     * @dev Emitted when a Pool registers tokens by calling `registerTokens`.
     */
    event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);

    /**
     * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
     * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
     * must be deregistered in the same `deregisterTokens` call.
     *
     * A deregistered token can be re-registered later on, possibly with a different Asset Manager.
     *
     * Emits a `TokensDeregistered` event.
     */
    function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;

    /**
     * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
     */
    event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);

    /**
     * @dev Returns detailed information for a Pool's registered token.
     *
     * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
     * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
     * equals the sum of `cash` and `managed`.
     *
     * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
     * `managed` or `total` balance to be greater than 2^112 - 1.
     *
     * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
     * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
     * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
     * change for this purpose, and will update `lastChangeBlock`.
     *
     * `assetManager` is the Pool's token Asset Manager.
     */
    function getPoolTokenInfo(bytes32 poolId, IERC20 token)
        external
        view
        returns (
            uint256 cash,
            uint256 managed,
            uint256 lastChangeBlock,
            address assetManager
        );

    /**
     * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
     * the tokens' `balances` changed.
     *
     * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
     * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
     *
     * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
     * order as passed to `registerTokens`.
     *
     * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
     * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
     * instead.
     */
    function getPoolTokens(bytes32 poolId)
        external
        view
        returns (
            IERC20[] memory tokens,
            uint256[] memory balances,
            uint256 lastChangeBlock
        );

    /**
     * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
     * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
     * Pool shares.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
     * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
     * these maximums.
     *
     * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
     * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
     * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
     * back to the caller (not the sender, which is important for relayers).
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
     * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
     * `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
     *
     * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
     * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
     * withdrawn from Internal Balance: attempting to do so will trigger a revert.
     *
     * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
     * directly to the Pool's contract, as is `recipient`.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function joinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        JoinPoolRequest memory request
    ) external payable;

    struct JoinPoolRequest {
        IAsset[] assets;
        uint256[] maxAmountsIn;
        bytes userData;
        bool fromInternalBalance;
    }

    /**
     * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
     * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
     * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
     * `getPoolTokenInfo`).
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
     * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
     * it just enforces these minimums.
     *
     * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
     * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
     * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
     * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
     * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
     *
     * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
     * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
     * do so will trigger a revert.
     *
     * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
     * `tokens` array. This array must match the Pool's registered tokens.
     *
     * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
     * passed directly to the Pool's contract.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function exitPool(
        bytes32 poolId,
        address sender,
        address payable recipient,
        ExitPoolRequest memory request
    ) external;

    struct ExitPoolRequest {
        IAsset[] assets;
        uint256[] minAmountsOut;
        bytes userData;
        bool toInternalBalance;
    }

    /**
     * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
     */
    event PoolBalanceChanged(
        bytes32 indexed poolId,
        address indexed liquidityProvider,
        IERC20[] tokens,
        int256[] deltas,
        uint256[] protocolFeeAmounts
    );

    enum PoolBalanceChangeKind { JOIN, EXIT }

    // Swaps
    //
    // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
    // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
    // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
    //
    // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
    // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
    // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
    // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
    // individual swaps.
    //
    // There are two swap kinds:
    //  - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
    // `onSwap` hook) the amount of tokens out (to send to the recipient).
    //  - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
    // (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
    //
    // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
    // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
    // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
    // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
    // the final intended token.
    //
    // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
    // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
    // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
    // much less gas than they would otherwise.
    //
    // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
    // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
    // updating the Pool's internal accounting).
    //
    // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
    // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
    // minimum amount of tokens to receive (by passing a negative value) is specified.
    //
    // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
    // this point in time (e.g. if the transaction failed to be included in a block promptly).
    //
    // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
    // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
    // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
    // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
    //
    // Finally, Internal Balance can be used when either sending or receiving tokens.

    enum SwapKind { GIVEN_IN, GIVEN_OUT }

    /**
     * @dev Performs a swap with a single Pool.
     *
     * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
     * taken from the Pool, which must be greater than or equal to `limit`.
     *
     * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
     * sent to the Pool, which must be less than or equal to `limit`.
     *
     * Internal Balance usage and the recipient are determined by the `funds` struct.
     *
     * Emits a `Swap` event.
     */
    function swap(
        SingleSwap memory singleSwap,
        FundManagement memory funds,
        uint256 limit,
        uint256 deadline
    ) external payable returns (uint256);

    /**
     * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
     * the `kind` value.
     *
     * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
     * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct SingleSwap {
        bytes32 poolId;
        SwapKind kind;
        IAsset assetIn;
        IAsset assetOut;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
     * the amount of tokens sent to or received from the Pool, depending on the `kind` value.
     *
     * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
     * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
     * the same index in the `assets` array.
     *
     * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
     * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
     * `amountOut` depending on the swap kind.
     *
     * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
     * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
     * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
     *
     * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
     * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
     * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
     * or unwrapped from WETH by the Vault.
     *
     * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
     * the minimum or maximum amount of each token the vault is allowed to transfer.
     *
     * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
     * equivalent `swap` call.
     *
     * Emits `Swap` events.
     */
    function batchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds,
        int256[] memory limits,
        uint256 deadline
    ) external payable returns (int256[] memory);

    /**
     * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
     * `assets` array passed to that function, and ETH assets are converted to WETH.
     *
     * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
     * from the previous swap, depending on the swap kind.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct BatchSwapStep {
        bytes32 poolId;
        uint256 assetInIndex;
        uint256 assetOutIndex;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
     */
    event Swap(
        bytes32 indexed poolId,
        IERC20 indexed tokenIn,
        IERC20 indexed tokenOut,
        uint256 amountIn,
        uint256 amountOut
    );

    /**
     * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
     * `recipient` account.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
     * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
     * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
     * `joinPool`.
     *
     * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
     * transferred. This matches the behavior of `exitPool`.
     *
     * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
     * revert.
     */
    struct FundManagement {
        address sender;
        bool fromInternalBalance;
        address payable recipient;
        bool toInternalBalance;
    }

    /**
     * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
     * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
     *
     * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
     * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
     * receives are the same that an equivalent `batchSwap` call would receive.
     *
     * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
     * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
     * approve them for the Vault, or even know a user's address.
     *
     * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
     * eth_call instead of eth_sendTransaction.
     */
    function queryBatchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds
    ) external returns (int256[] memory assetDeltas);

    // Flash Loans

    /**
     * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
     * and then reverting unless the tokens plus a proportional protocol fee have been returned.
     *
     * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
     * for each token contract. `tokens` must be sorted in ascending order.
     *
     * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
     * `receiveFlashLoan` call.
     *
     * Emits `FlashLoan` events.
     */
    function flashLoan(
        IFlashLoanRecipient recipient,
        IERC20[] memory tokens,
        uint256[] memory amounts,
        bytes memory userData
    ) external;

    /**
     * @dev Emitted for each individual flash loan performed by `flashLoan`.
     */
    event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);

    // Asset Management
    //
    // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
    // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
    // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
    // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
    // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
    // not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
    //
    // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
    // for example by lending unused tokens out for interest, or using them to participate in voting protocols.
    //
    // This concept is unrelated to the IAsset interface.

    /**
     * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
     *
     * Pool Balance management features batching, which means a single contract call can be used to perform multiple
     * operations of different kinds, with different Pools and tokens, at once.
     *
     * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
     */
    function managePoolBalance(PoolBalanceOp[] memory ops) external;

    struct PoolBalanceOp {
        PoolBalanceOpKind kind;
        bytes32 poolId;
        IERC20 token;
        uint256 amount;
    }

    /**
     * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
     *
     * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
     *
     * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
     * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
     */
    enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }

    /**
     * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
     */
    event PoolBalanceManaged(
        bytes32 indexed poolId,
        address indexed assetManager,
        IERC20 indexed token,
        int256 cashDelta,
        int256 managedDelta
    );

    // Protocol Fees
    //
    // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
    // permissioned accounts.
    //
    // There are two kinds of protocol fees:
    //
    //  - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
    //
    //  - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
    // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
    // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
    // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
    // exiting a Pool in debt without first paying their share.

    /**
     * @dev Returns the current protocol fee module.
     */
    function getProtocolFeesCollector() external view returns (ProtocolFeesCollector);

    /**
     * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
     * error in some part of the system.
     *
     * The Vault can only be paused during an initial time period, after which pausing is forever disabled.
     *
     * While the contract is paused, the following features are disabled:
     * - depositing and transferring internal balance
     * - transferring external balance (using the Vault's allowance)
     * - swaps
     * - joining Pools
     * - Asset Manager interactions
     *
     * Internal Balance can still be withdrawn, and Pools exited.
     */
    function setPaused(bool paused) external;

    /**
     * @dev Returns the Vault's WETH instance.
     */
    function WETH() external view returns (IWETH);
    // solhint-disable-previous-line func-name-mixedcase
}

File 28 of 42 : IBasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IVault.sol";
import "./IPoolSwapStructs.sol";

/**
 * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not
 * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from
 * either IGeneralPool or IMinimalSwapInfoPool
 */
interface IBasePool is IPoolSwapStructs {
    /**
     * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of
     * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault.
     * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect
     * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`.
     *
     * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join.
     *
     * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account
     * designated to receive any benefits (typically pool shares). `currentBalances` contains the total balances
     * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as minting pool shares.
     */
    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);

    /**
     * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many
     * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes
     * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`,
     * as well as collect the reported amount in protocol fees, which the Pool should calculate based on
     * `protocolSwapFeePercentage`.
     *
     * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share.
     *
     * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account
     * to which the Vault will send the proceeds. `currentBalances` contains the total token balances for each token
     * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as burning pool shares.
     */
    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);
}

File 29 of 42 : IERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
     * given `owner`'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 30 of 42 : EIP712.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _HASHED_NAME = keccak256(bytes(name));
        _HASHED_VERSION = keccak256(bytes(version));
        _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view virtual returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
    }

    function _getChainId() private view returns (uint256 chainId) {
        // Silence state mutability warning without generating bytecode.
        // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and
        // https://github.com/ethereum/solidity/issues/2691
        this;

        // solhint-disable-next-line no-inline-assembly
        assembly {
            chainId := chainid()
        }
    }
}

File 31 of 42 : Authentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./IAuthentication.sol";

/**
 * @dev Building block for performing access control on external functions.
 *
 * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
 * to external functions to only make them callable by authorized accounts.
 *
 * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
 */
abstract contract Authentication is IAuthentication {
    bytes32 private immutable _actionIdDisambiguator;

    /**
     * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
     * multi contract systems.
     *
     * There are two main uses for it:
     *  - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
     *    unique. The contract's own address is a good option.
     *  - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
     *    shared by the entire family (and no other contract) should be used instead.
     */
    constructor(bytes32 actionIdDisambiguator) {
        _actionIdDisambiguator = actionIdDisambiguator;
    }

    /**
     * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
     */
    modifier authenticate() {
        _authenticateCaller();
        _;
    }

    /**
     * @dev Reverts unless the caller is allowed to call the entry point function.
     */
    function _authenticateCaller() internal view {
        bytes32 actionId = getActionId(msg.sig);
        _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
    }

    function getActionId(bytes4 selector) public view override returns (bytes32) {
        // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
        // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
        // multiple contracts.
        return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
    }

    function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}

File 32 of 42 : IAuthorizer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthorizer {
    /**
     * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
     */
    function canPerform(
        bytes32 actionId,
        address account,
        address where
    ) external view returns (bool);
}

File 33 of 42 : IAuthentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthentication {
    /**
     * @dev Returns the action identifier associated with the external function described by `selector`.
     */
    function getActionId(bytes4 selector) external view returns (bytes32);
}

File 34 of 42 : IWETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../../lib/openzeppelin/IERC20.sol";

/**
 * @dev Interface for the WETH token contract used internally for wrapping and unwrapping, to support
 * sending and receiving ETH in joins, swaps, and internal balance deposits and withdrawals.
 */
interface IWETH is IERC20 {
    function deposit() external payable;

    function withdraw(uint256 amount) external;
}

File 35 of 42 : IFlashLoanRecipient.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// Inspired by Aave Protocol's IFlashLoanReceiver.

import "../../lib/openzeppelin/IERC20.sol";

interface IFlashLoanRecipient {
    /**
     * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
     *
     * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
     * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
     * Vault, or else the entire flash loan will revert.
     *
     * `userData` is the same value passed in the `IVault.flashLoan` call.
     */
    function receiveFlashLoan(
        IERC20[] memory tokens,
        uint256[] memory amounts,
        uint256[] memory feeAmounts,
        bytes memory userData
    ) external;
}

File 36 of 42 : ProtocolFeesCollector.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../lib/openzeppelin/IERC20.sol";
import "../lib/helpers/InputHelpers.sol";
import "../lib/helpers/Authentication.sol";
import "../lib/openzeppelin/ReentrancyGuard.sol";
import "../lib/openzeppelin/SafeERC20.sol";

import "./interfaces/IVault.sol";
import "./interfaces/IAuthorizer.sol";

/**
 * @dev This an auxiliary contract to the Vault, deployed by it during construction. It offloads some of the tasks the
 * Vault performs to reduce its overall bytecode size.
 *
 * The current values for all protocol fee percentages are stored here, and any tokens charged as protocol fees are
 * sent to this contract, where they may be withdrawn by authorized entities. All authorization tasks are delegated
 * to the Vault's own authorizer.
 */
contract ProtocolFeesCollector is Authentication, ReentrancyGuard {
    using SafeERC20 for IERC20;

    // Absolute maximum fee percentages (1e18 = 100%, 1e16 = 1%).
    uint256 private constant _MAX_PROTOCOL_SWAP_FEE_PERCENTAGE = 50e16; // 50%
    uint256 private constant _MAX_PROTOCOL_FLASH_LOAN_FEE_PERCENTAGE = 1e16; // 1%

    IVault public immutable vault;

    // All fee percentages are 18-decimal fixed point numbers.

    // The swap fee is charged whenever a swap occurs, as a percentage of the fee charged by the Pool. These are not
    // actually charged on each individual swap: the `Vault` relies on the Pools being honest and reporting fees due
    // when users join and exit them.
    uint256 private _swapFeePercentage;

    // The flash loan fee is charged whenever a flash loan occurs, as a percentage of the tokens lent.
    uint256 private _flashLoanFeePercentage;

    event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
    event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);

    constructor(IVault _vault)
        // The ProtocolFeesCollector is a singleton, so it simply uses its own address to disambiguate action
        // identifiers.
        Authentication(bytes32(uint256(address(this))))
    {
        vault = _vault;
    }

    function withdrawCollectedFees(
        IERC20[] calldata tokens,
        uint256[] calldata amounts,
        address recipient
    ) external nonReentrant authenticate {
        InputHelpers.ensureInputLengthMatch(tokens.length, amounts.length);

        for (uint256 i = 0; i < tokens.length; ++i) {
            IERC20 token = tokens[i];
            uint256 amount = amounts[i];
            token.safeTransfer(recipient, amount);
        }
    }

    function setSwapFeePercentage(uint256 newSwapFeePercentage) external authenticate {
        _require(newSwapFeePercentage <= _MAX_PROTOCOL_SWAP_FEE_PERCENTAGE, Errors.SWAP_FEE_PERCENTAGE_TOO_HIGH);
        _swapFeePercentage = newSwapFeePercentage;
        emit SwapFeePercentageChanged(newSwapFeePercentage);
    }

    function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external authenticate {
        _require(
            newFlashLoanFeePercentage <= _MAX_PROTOCOL_FLASH_LOAN_FEE_PERCENTAGE,
            Errors.FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH
        );
        _flashLoanFeePercentage = newFlashLoanFeePercentage;
        emit FlashLoanFeePercentageChanged(newFlashLoanFeePercentage);
    }

    function getSwapFeePercentage() external view returns (uint256) {
        return _swapFeePercentage;
    }

    function getFlashLoanFeePercentage() external view returns (uint256) {
        return _flashLoanFeePercentage;
    }

    function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts) {
        feeAmounts = new uint256[](tokens.length);
        for (uint256 i = 0; i < tokens.length; ++i) {
            feeAmounts[i] = tokens[i].balanceOf(address(this));
        }
    }

    function getAuthorizer() external view returns (IAuthorizer) {
        return _getAuthorizer();
    }

    function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
        return _getAuthorizer().canPerform(actionId, account, address(this));
    }

    function _getAuthorizer() internal view returns (IAuthorizer) {
        return vault.getAuthorizer();
    }
}

File 37 of 42 : ISignaturesValidator.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the SignatureValidator helper, used to support meta-transactions.
 */
interface ISignaturesValidator {
    /**
     * @dev Returns the EIP712 domain separator.
     */
    function getDomainSeparator() external view returns (bytes32);

    /**
     * @dev Returns the next nonce used by an address to sign messages.
     */
    function getNextNonce(address user) external view returns (uint256);
}

File 38 of 42 : ReentrancyGuard.sol
// SPDX-License-Identifier: MIT

// Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce bytecode size.
// Modifier code is inlined by the compiler, which causes its code to appear multiple times in the codebase. By using
// private functions, we achieve the same end result with slightly higher runtime gas costs, but reduced bytecode size.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Contract module that helps prevent reentrant calls to a function.
 *
 * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
 * available, which can be applied to functions to make sure there are no nested
 * (reentrant) calls to them.
 *
 * Note that because there is a single `nonReentrant` guard, functions marked as
 * `nonReentrant` may not call one another. This can be worked around by making
 * those functions `private`, and then adding `external` `nonReentrant` entry
 * points to them.
 *
 * TIP: If you would like to learn more about reentrancy and alternative ways
 * to protect against it, check out our blog post
 * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
 */
abstract contract ReentrancyGuard {
    // Booleans are more expensive than uint256 or any type that takes up a full
    // word because each write operation emits an extra SLOAD to first read the
    // slot's contents, replace the bits taken up by the boolean, and then write
    // back. This is the compiler's defense against contract upgrades and
    // pointer aliasing, and it cannot be disabled.

    // The values being non-zero value makes deployment a bit more expensive,
    // but in exchange the refund on every call to nonReentrant will be lower in
    // amount. Since refunds are capped to a percentage of the total
    // transaction's gas, it is best to keep them low in cases like this one, to
    // increase the likelihood of the full refund coming into effect.
    uint256 private constant _NOT_ENTERED = 1;
    uint256 private constant _ENTERED = 2;

    uint256 private _status;

    constructor() {
        _status = _NOT_ENTERED;
    }

    /**
     * @dev Prevents a contract from calling itself, directly or indirectly.
     * Calling a `nonReentrant` function from another `nonReentrant`
     * function is not supported. It is possible to prevent this from happening
     * by making the `nonReentrant` function external, and make it call a
     * `private` function that does the actual work.
     */
    modifier nonReentrant() {
        _enterNonReentrant();
        _;
        _exitNonReentrant();
    }

    function _enterNonReentrant() private {
        // On the first call to nonReentrant, _status will be _NOT_ENTERED
        _require(_status != _ENTERED, Errors.REENTRANCY);

        // Any calls to nonReentrant after this point will fail
        _status = _ENTERED;
    }

    function _exitNonReentrant() private {
        // By storing the original value once again, a refund is triggered (see
        // https://eips.ethereum.org/EIPS/eip-2200)
        _status = _NOT_ENTERED;
    }
}

File 39 of 42 : SafeERC20.sol
// SPDX-License-Identifier: MIT

// Based on the ReentrancyGuard library from OpenZeppelin Contracts, altered to reduce gas costs.
// The `safeTransfer` and `safeTransferFrom` functions assume that `token` is a contract (an account with code), and
// work differently from the OpenZeppelin version if it is not.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

import "./IERC20.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    function safeTransfer(
        IERC20 token,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(address(token), abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 value
    ) internal {
        _callOptionalReturn(address(token), abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     *
     * WARNING: `token` is assumed to be a contract: calls to EOAs will *not* revert.
     */
    function _callOptionalReturn(address token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves.
        (bool success, bytes memory returndata) = token.call(data);

        // If the low-level call didn't succeed we return whatever was returned from it.
        assembly {
            if eq(success, 0) {
                returndatacopy(0, 0, returndatasize())
                revert(0, returndatasize())
            }
        }

        // Finally we check the returndata size is either zero or true - note that this check will always pass for EOAs
        _require(returndata.length == 0 || abi.decode(returndata, (bool)), Errors.SAFE_ERC20_CALL_FAILED);
    }
}

File 40 of 42 : IPoolSwapStructs.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "../../lib/openzeppelin/IERC20.sol";

import "./IVault.sol";

interface IPoolSwapStructs {
    // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and
    // IMinimalSwapInfoPool.
    //
    // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or
    // 'given out') which indicates whether or not the amount sent by the pool is known.
    //
    // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take
    // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`.
    //
    // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in
    // some Pools.
    //
    // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than
    // one Pool.
    //
    // The meaning of `lastChangeBlock` depends on the Pool specialization:
    //  - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total
    //    balance.
    //  - General: the last block in which *any* of the Pool's registered tokens changed its total balance.
    //
    // `from` is the origin address for the funds the Pool receives, and `to` is the destination address
    // where the Pool sends the outgoing tokens.
    //
    // `userData` is extra data provided by the caller - typically a signature from a trusted party.
    struct SwapRequest {
        IVault.SwapKind kind;
        IERC20 tokenIn;
        IERC20 tokenOut;
        uint256 amount;
        // Misc data
        bytes32 poolId;
        uint256 lastChangeBlock;
        address from;
        address to;
        bytes userData;
    }
}

File 41 of 42 : Samples.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../../lib/helpers/WordCodec.sol";
import "../IPriceOracle.sol";

/**
 * @dev This library provides functions to help manipulating samples for Pool Price Oracles. It handles updates,
 * encoding, and decoding of samples.
 *
 * Each sample holds the timestamp of its last update, plus information about three pieces of data: the price pair, the
 * price of BPT (the associated Pool token), and the invariant.
 *
 * Prices and invariant are not stored directly: instead, we store their logarithm. These are known as the 'instant'
 * values: the exact value at that timestamp.
 *
 * Additionally, for each value we keep an accumulator with the sum of all past values, each weighted by the time
 * elapsed since the previous update. This lets us later subtract accumulators at different points in time and divide by
 * the time elapsed between them, arriving at the geometric mean of the values (also known as log-average).
 *
 * All samples are stored in a single 256 bit word with the following structure:
 *
 * [    log pair price     |        bpt price      |       invariant       ]
 * [ instant | accumulator | instant | accumulator | instant | accumulator |  timestamp ]
 * [  int22  |    int53    |  int22  |    int53    |  int22  |    int53    |    uint31  ]
 * MSB                                                                                LSB
 *
 * Assuming the timestamp doesn't overflow (which holds until the year 2038), the largest elapsed time is 2^31, which
 * means the largest possible accumulator value is 2^21 * 2^31, which can be represented using a signed 53 bit integer.
 */
library Samples {
    using WordCodec for int256;
    using WordCodec for uint256;
    using WordCodec for bytes32;

    uint256 internal constant _TIMESTAMP_OFFSET = 0;
    uint256 internal constant _ACC_LOG_INVARIANT_OFFSET = 31;
    uint256 internal constant _INST_LOG_INVARIANT_OFFSET = 84;
    uint256 internal constant _ACC_LOG_BPT_PRICE_OFFSET = 106;
    uint256 internal constant _INST_LOG_BPT_PRICE_OFFSET = 159;
    uint256 internal constant _ACC_LOG_PAIR_PRICE_OFFSET = 181;
    uint256 internal constant _INST_LOG_PAIR_PRICE_OFFSET = 234;

    /**
     * @dev Updates a sample, accumulating the new data based on the elapsed time since the previous update. Returns the
     * updated sample.
     *
     * IMPORTANT: This function does not perform any arithmetic checks. In particular, it assumes the caller will never
     * pass values that cannot be represented as 22 bit signed integers. Additionally, it also assumes
     * `currentTimestamp` is greater than `sample`'s timestamp.
     */
    function update(
        bytes32 sample,
        int256 instLogPairPrice,
        int256 instLogBptPrice,
        int256 instLogInvariant,
        uint256 currentTimestamp
    ) internal pure returns (bytes32) {
        // Because elapsed can be represented as a 31 bit unsigned integer, and the received values can be represented
        // as 22 bit signed integers, we don't need to perform checked arithmetic.

        int256 elapsed = int256(currentTimestamp - timestamp(sample));
        int256 accLogPairPrice = _accLogPairPrice(sample) + instLogPairPrice * elapsed;
        int256 accLogBptPrice = _accLogBptPrice(sample) + instLogBptPrice * elapsed;
        int256 accLogInvariant = _accLogInvariant(sample) + instLogInvariant * elapsed;

        return
            pack(
                instLogPairPrice,
                accLogPairPrice,
                instLogBptPrice,
                accLogBptPrice,
                instLogInvariant,
                accLogInvariant,
                currentTimestamp
            );
    }

    /**
     * @dev Returns the instant value stored in `sample` for `variable`.
     */
    function instant(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) {
        if (variable == IPriceOracle.Variable.PAIR_PRICE) {
            return _instLogPairPrice(sample);
        } else if (variable == IPriceOracle.Variable.BPT_PRICE) {
            return _instLogBptPrice(sample);
        } else {
            // variable == IPriceOracle.Variable.INVARIANT
            return _instLogInvariant(sample);
        }
    }

    /**
     * @dev Returns the accumulator value stored in `sample` for `variable`.
     */
    function accumulator(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) {
        if (variable == IPriceOracle.Variable.PAIR_PRICE) {
            return _accLogPairPrice(sample);
        } else if (variable == IPriceOracle.Variable.BPT_PRICE) {
            return _accLogBptPrice(sample);
        } else {
            // variable == IPriceOracle.Variable.INVARIANT
            return _accLogInvariant(sample);
        }
    }

    /**
     * @dev Returns `sample`'s timestamp.
     */
    function timestamp(bytes32 sample) internal pure returns (uint256) {
        return sample.decodeUint31(_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the pair price.
     */
    function _instLogPairPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_PAIR_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the pair price.
     */
    function _accLogPairPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the BPT price.
     */
    function _instLogBptPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_BPT_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the BPT price.
     */
    function _accLogBptPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_BPT_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the invariant.
     */
    function _instLogInvariant(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the invariant.
     */
    function _accLogInvariant(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns a sample created by packing together its components.
     */
    function pack(
        int256 instLogPairPrice,
        int256 accLogPairPrice,
        int256 instLogBptPrice,
        int256 accLogBptPrice,
        int256 instLogInvariant,
        int256 accLogInvariant,
        uint256 _timestamp
    ) internal pure returns (bytes32) {
        return
            instLogPairPrice.encodeInt22(_INST_LOG_PAIR_PRICE_OFFSET) |
            accLogPairPrice.encodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET) |
            instLogBptPrice.encodeInt22(_INST_LOG_BPT_PRICE_OFFSET) |
            accLogBptPrice.encodeInt53(_ACC_LOG_BPT_PRICE_OFFSET) |
            instLogInvariant.encodeInt22(_INST_LOG_INVARIANT_OFFSET) |
            accLogInvariant.encodeInt53(_ACC_LOG_INVARIANT_OFFSET) |
            _timestamp.encodeUint31(_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Unpacks a sample into its components.
     */
    function unpack(bytes32 sample)
        internal
        pure
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 _timestamp
        )
    {
        logPairPrice = _instLogPairPrice(sample);
        accLogPairPrice = _accLogPairPrice(sample);
        logBptPrice = _instLogBptPrice(sample);
        accLogBptPrice = _accLogBptPrice(sample);
        logInvariant = _instLogInvariant(sample);
        accLogInvariant = _accLogInvariant(sample);
        _timestamp = timestamp(sample);
    }
}

File 42 of 42 : IWeightedPoolPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IWeightedPoolPriceOracle {
    /**
     * @dev Returns the raw data of the sample at `index`.
     */
    function getSample(uint256 index)
        external
        view
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 timestamp
        );

    /**
     * @dev Returns the total number of samples.
     */
    function getTotalSamples() external view returns (uint256);
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract Security Audit

Contract ABI

[{"inputs":[{"components":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20","name":"token0","type":"address"},{"internalType":"contract IERC20","name":"token1","type":"address"},{"internalType":"uint256","name":"normalizedWeight0","type":"uint256"},{"internalType":"uint256","name":"normalizedWeight1","type":"uint256"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"bool","name":"oracleEnabled","type":"bool"},{"internalType":"address","name":"owner","type":"address"}],"internalType":"struct WeightedPool2Tokens.NewPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"OracleEnabledChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseApproval","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"enableOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLargestSafeQueryWindow","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IPriceOracle.Variable","name":"variable","type":"uint8"}],"name":"getLatest","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getMiscData","outputs":[{"internalType":"int256","name":"logInvariant","type":"int256"},{"internalType":"int256","name":"logTotalSupply","type":"int256"},{"internalType":"uint256","name":"oracleSampleCreationTimestamp","type":"uint256"},{"internalType":"uint256","name":"oracleIndex","type":"uint256"},{"internalType":"bool","name":"oracleEnabled","type":"bool"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getNormalizedWeights","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum IPriceOracle.Variable","name":"variable","type":"uint8"},{"internalType":"uint256","name":"ago","type":"uint256"}],"internalType":"struct IPriceOracle.OracleAccumulatorQuery[]","name":"queries","type":"tuple[]"}],"name":"getPastAccumulators","outputs":[{"internalType":"int256[]","name":"results","type":"int256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getSample","outputs":[{"internalType":"int256","name":"logPairPrice","type":"int256"},{"internalType":"int256","name":"accLogPairPrice","type":"int256"},{"internalType":"int256","name":"logBptPrice","type":"int256"},{"internalType":"int256","name":"accLogBptPrice","type":"int256"},{"internalType":"int256","name":"logInvariant","type":"int256"},{"internalType":"int256","name":"accLogInvariant","type":"int256"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum IPriceOracle.Variable","name":"variable","type":"uint8"},{"internalType":"uint256","name":"secs","type":"uint256"},{"internalType":"uint256","name":"ago","type":"uint256"}],"internalType":"struct IPriceOracle.OracleAverageQuery[]","name":"queries","type":"tuple[]"}],"name":"getTimeWeightedAverage","outputs":[{"internalType":"uint256[]","name":"results","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalSamples","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"increaseApproval","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"},{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"},{"internalType":"uint256[]","name":"dueProtocolFeeAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256","name":"balanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"balanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"}]

6102a06040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b50604051620056f3380380620056f38339810160408190526200005a916200080c565b61010081810151610120830151602080850151604080870151815180830190925260018252603160f81b8285019081526101608901513360805260601b6001600160601b03191660a052835194840194852060c052915190912060e0527f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f909552805193949293909291620000f391600391906200069f565b508051620001099060049060208401906200069f565b50620001219150506276a7008311156101946200040a565b6200013562278d008211156101956200040a565b4290910161014081815291016101605281015162000153906200041f565b60e081015162000163906200047b565b80516040516309b2760f60e01b81526000916001600160a01b0316906309b2760f90620001969060029060040162000a12565b602060405180830381600087803b158015620001b157600080fd5b505af1158015620001c6573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620001ec9190620007f3565b6040805160028082526060808301845293945090916020830190803683370190505090508260600151816000815181106200022357fe5b60200260200101906001600160a01b031690816001600160a01b0316815250508260800151816001815181106200025657fe5b6001600160a01b0392831660209182029290920101528351166366a9c7d283836002604051908082528060200260200182016040528015620002a2578160200160208202803683370190505b506040518463ffffffff1660e01b8152600401620002c39392919062000976565b600060405180830381600087803b158015620002de57600080fd5b505af1158015620002f3573d6000803e3d6000fd5b505084516001600160601b0319606091821b8116610180526101a08690528187018051831b82166101c052608088015190921b166101e052516200033a92509050620004f9565b6102605260808301516200034e90620004f9565b6102805260a08301516200036f90662386f26fc10000111561012e6200040a565b62000391662386f26fc100008460c00151101561012e6200040a60201b60201c565b6000620003b58460c001518560a001516200059b60201b620011c61790919060201c565b9050620003cf670de0b6b3a764000082146101346200040a565b60a0840180516102005260c085018051610220525190511015620003f5576001620003f8565b60005b60ff16610240525062000a6392505050565b816200041b576200041b81620005b8565b5050565b6200043b816008546200060b60201b620011d81790919060201c565b6008556040517f3e350b41e86a8e10f804ade6d35340d620be35569cc75ac943e8bb14ab80ead190620004709083906200096b565b60405180910390a150565b6200049064e8d4a5100082101560cb6200040a565b620004a867016345785d8a000082111560ca6200040a565b620004c4816008546200062a60201b620011e61790919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc906200047090839062000a27565b600080826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200053657600080fd5b505afa1580156200054b573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000571919062000948565b60ff1690506000620005906012836200064960201b620011f41760201c565b600a0a949350505050565b6000828201620005af84821015836200040a565b90505b92915050565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6000620005af826055856200066160201b6200120a179092919060201c565b6000620005af826056856200068a60201b62001231179092919060201c565b60006200065b8383111560016200040a565b50900390565b60006001821b1984168284620006795760006200067c565b60015b60ff16901b17949350505050565b6001600160401b03811b1992909216911b1790565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f10620006e257805160ff191683800117855562000712565b8280016001018555821562000712579182015b8281111562000712578251825591602001919060010190620006f5565b506200072092915062000724565b5090565b5b8082111562000720576000815560010162000725565b80516001600160a01b0381168114620005b257600080fd5b80518015158114620005b257600080fd5b600082601f83011262000775578081fd5b81516001600160401b038111156200078b578182fd5b6020620007a1601f8301601f1916820162000a30565b92508183528481838601011115620007b857600080fd5b60005b82811015620007d8578481018201518482018301528101620007bb565b82811115620007ea5760008284860101525b50505092915050565b60006020828403121562000805578081fd5b5051919050565b6000602082840312156200081e578081fd5b81516001600160401b038082111562000835578283fd5b81840191506101808083870312156200084c578384fd5b620008578162000a30565b90506200086586846200073b565b815260208301518281111562000879578485fd5b620008878782860162000764565b6020830152506040830151828111156200089f578485fd5b620008ad8782860162000764565b604083015250620008c286606085016200073b565b6060820152620008d686608085016200073b565b608082015260a0838101519082015260c0808401519082015260e08084015190820152610100808401519082015261012080840151908201526101409150620009228683850162000753565b82820152610160915062000939868385016200073b565b91810191909152949350505050565b6000602082840312156200095a578081fd5b815160ff81168114620005af578182fd5b901515815260200190565b60006060820185835260206060818501528186518084526080860191508288019350845b81811015620009c257620009af855162000a57565b835293830193918301916001016200099a565b505084810360408601528551808252908201925081860190845b8181101562000a0457620009f1835162000a57565b85529383019391830191600101620009dc565b509298975050505050505050565b602081016003831062000a2157fe5b91905290565b90815260200190565b6040518181016001600160401b038111828210171562000a4f57600080fd5b604052919050565b6001600160a01b031690565b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c05160601c6101e05160601c6102005161022051610240516102605161028051614bb862000b3b60003980611d12525080611d395250806129e25280612a165280612a52525080611d665280611e02525080611d8d5280611de05280611e3052505080610c6a525080610808525080610bb852508061139d525080611379525080610f205250806116a55250806116e75250806116c6525080610b94525080610b1f5250614bb86000f3fe608060405234801561001057600080fd5b50600436106102485760003560e01c806374f3b0091161013b578063aaabadc5116100b8578063d5c096c41161007c578063d5c096c4146104e1578063d73dd623146104f4578063dd62ed3e14610507578063f89f27ed1461051a578063ffd088eb1461052257610248565b8063aaabadc5146104a3578063b10be739146104ab578063b48b5b40146104be578063c0ff1a15146104c6578063d505accf146104ce57610248565b80638d928af8116100ff5780638d928af81461046557806395d89b411461046d5780639b02cdde146104755780639d2c110c1461047d578063a9059cbb1461049057610248565b806374f3b009146103f65780637ecebe0014610417578063851c1bb31461042a57806387ec68171461043d578063893d20e81461045057610248565b806338e9922e116101c957806360d1507c1161018d57806360d1507c1461038257806366188463146103a8578063679aefce146103bb5780636b843239146103c357806370a08231146103e357610248565b806338e9922e1461032457806338fff2d0146103375780634a6b0b151461033f57806355c67628146103595780636028bfd41461036157610248565b80631dccd830116102105780631dccd830146102cc57806323b872dd146102ec578063292c914a146102ff578063313ce567146103075780633644e5151461031c57610248565b806306fdde031461024d578063095ea7b31461026b57806316c38b3c1461028b57806318160ddd146102a05780631c0de051146102b5575b600080fd5b61025561052a565b6040516102629190614a93565b60405180910390f35b61027e61027936600461423b565b6105c0565b6040516102629190614970565b61029e6102993660046144a9565b6105d7565b005b6102a86105eb565b6040516102629190614993565b6102bd6105f1565b6040516102629392919061497b565b6102df6102da3660046143ef565b61061a565b6040516102629190614938565b61027e6102fa366004614186565b610722565b61029e6107a5565b61030f6107d9565b6040516102629190614aff565b6102a86107de565b61029e61033236600461484b565b6107ed565b6102a8610806565b61034761082a565b60405161026296959493929190614a69565b6102a8610885565b61037461036f3660046144e1565b610892565b604051610262929190614ae6565b61039561039036600461484b565b6108c3565b6040516102629796959493929190614a39565b61027e6103b636600461423b565b61090c565b6102a8610966565b6103d66103d1366004614331565b61098b565b60405161026291906148f4565b6102a86103f1366004614132565b610a3c565b6104096104043660046144e1565b610a5b565b60405161026292919061494b565b6102a8610425366004614132565b610b00565b6102a86104383660046145dd565b610b1b565b61037461044b3660046144e1565b610b6d565b610458610b92565b60405161026291906148e0565b610458610bb6565b610255610bda565b6102a8610c3b565b6102a861048b366004614750565b610c41565b61027e61049e36600461423b565b610df0565b610458610dfd565b6102a86104b9366004614734565b610e07565b6102a8610e29565b6102a8610e2f565b61029e6104dc3660046141c6565b610eeb565b6104096104ef3660046144e1565b611034565b61027e61050236600461423b565b611154565b6102a861051536600461414e565b61118a565b6102df6111b5565b6102a86111bf565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105b65780601f1061058b576101008083540402835291602001916105b6565b820191906000526020600020905b81548152906001019060200180831161059957829003601f168201915b5050505050905090565b60006105cd338484611246565b5060015b92915050565b6105df6112ae565b6105e8816112dc565b50565b60025490565b60008060006105fe61135a565b159250610609611377565b915061061361139b565b9050909192565b606081516001600160401b038111801561063357600080fd5b5060405190808252806020026020018201604052801561065d578160200160208202803683370190505b509050600061066d6008546113bf565b9050610677613ffe565b60005b845181101561071a5784818151811061068f57fe5b602002602001015191506106ad82602001516000141561013c6113cc565b60006106c883600001518585602001518660400151016113de565b905060006106df84600001518686604001516113de565b90506106f98460200151838303816106f357fe5b05611524565b86848151811061070557fe5b6020908102919091010152505060010161067a565b505050919050565b6001600160a01b038316600081815260016020908152604080832033808552925282205491926107609114806107585750838210155b6101976113cc565b61076b858585611537565b336001600160a01b0386161480159061078657506000198114155b15610798576107988533858403611246565b60019150505b9392505050565b6107ad611606565b6107b56112ae565b6107bf6001611619565b60006107c96105eb565b11156107d7576107d7611659565b565b601290565b60006107e86116a1565b905090565b6107f56112ae565b6107fd611606565b6105e88161173e565b7f000000000000000000000000000000000000000000000000000000000000000090565b60008060008060008060006008549050610843816117a7565b965061084e816117b3565b9550610859816117c0565b9450610864816113bf565b935061086f816117cd565b925061087a816117da565b915050909192939495565b60006107e86008546117da565b600060606108a2865160026117e7565b6108b7898989898989896117f46118ae61192c565b97509795505050505050565b60008060008060008060006108de610400891061013b6113cc565b60006108e989611a4b565b90506108f481611a5d565b959f949e50929c50909a509850965090945092505050565b3360009081526001602090815260408083206001600160a01b03861684529091528120548083106109485761094333856000611246565b61095c565b61095c338561095784876111f4565b611246565b5060019392505050565b60006107e86109736105eb565b61098561097e610e2f565b6002611ac0565b90611ae4565b606081516001600160401b03811180156109a457600080fd5b506040519080825280602002602001820160405280156109ce578160200160208202803683370190505b50905060006109de6008546113bf565b90506109e8614020565b60005b845181101561071a57848181518110610a0057fe5b60200260200101519150610a1d82600001518484602001516113de565b848281518110610a2957fe5b60209081029190910101526001016109eb565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610a85610a6a610bb6565b6001600160a01b0316336001600160a01b03161460cd6113cc565b610a9a610a90610806565b82146101f46113cc565b610aa387611b35565b6000606080610ab78d8d8d8d8d8d8d6117f4565b925092509250610ac78c84611b97565b610ad0826118ae565b610ad9816118ae565b610ae161135a565b15610aee57610aee611659565b909c909b509950505050505050505050565b6001600160a01b031660009081526005602052604090205490565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610b5092919061489d565b604051602081830303815290604052805190602001209050919050565b60006060610b7d865160026117e7565b6108b789898989898989611c2a611cab61192c565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105b65780601f1061058b576101008083540402835291602001916105b6565b60095490565b6000610c4b611606565b8360800151610c5b610a6a610bb6565b610c66610a90610806565b60007f00000000000000000000000000000000000000000000000000000000000000006001600160a01b031686602001516001600160a01b03161490506000610cae82611d09565b90506000610cbc8315611d09565b90506000610cc984611d5d565b90506000610cd78515611d5d565b9050610ce38985611db1565b9850610cef8884611db1565b9750610d188a60a0015186610d045789610d06565b8a5b87610d11578b610d13565b8a5b611dbd565b60008a516001811115610d2757fe5b1415610d95576000610d45610d3a610885565b60608d015190611ec3565b9050610d67610d61828d606001516111f490919063ffffffff16565b86611db1565b60608c01526000610d7b8c8c8c8787611f07565b9050610d878186611f26565b985050505050505050610de8565b610da38a6060015184611db1565b60608b01526000610db78b8b8b8686611f32565b9050610dc38186611f45565b9050610ddf610dd8610dd3610885565b611f51565b8290611f77565b97505050505050505b509392505050565b60006105cd338484611537565b60006107e8611fb9565b600080610e1e83610e196008546113bf565b612033565b905061079e81611524565b61040090565b60006060610e3b610bb6565b6001600160a01b031663f94d4668610e51610806565b6040518263ffffffff1660e01b8152600401610e6d9190614993565b60006040518083038186803b158015610e8557600080fd5b505afa158015610e99573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610ec19190810190614266565b50915050610ece81611b35565b6060610ed861206a565b9050610ee481836120d8565b9250505090565b610ef98442111560d16113cc565b6001600160a01b0387166000908152600560209081526040808320549051909291610f50917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d91016149bb565b6040516020818303038152906040528051906020012090506000610f738261214a565b9050600060018288888860405160008152602001604052604051610f9a9493929190614a1b565b6020604051602081039080840390855afa158015610fbc573d6000803e3d6000fd5b5050604051601f1901519150610ffe90506001600160a01b03821615801590610ff657508b6001600160a01b0316826001600160a01b0316145b6101f86113cc565b6001600160a01b038b1660009081526005602052604090206001850190556110278b8b8b611246565b5050505050505050505050565b60608088611043610a6a610bb6565b61104e610a90610806565b611056611606565b60006110606105eb565b6110d0576110708b8b8b88612166565b94509050611085620f424082101560cc6113cc565b6110936000620f42406121ef565b6110a289620f424083036121ef565b6110ab84611cab565b604080516002808252606082018352909160208301908036833701905050925061113e565b6110d988611b35565b61110c87896000815181106110ea57fe5b60200260200101518a6001815181106110ff57fe5b6020026020010151611dbd565b61111b8b8b8b8b8b8b8b611c2a565b9095509350905061112c89826121ef565b61113584611cab565b61113e836118ae565b611146611659565b505097509795505050505050565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916105cd91859061095790866111c6565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b60606107e861206a565b6201de2090565b600082820161079e84821015836113cc565b600061079e8383605561120a565b600061079e83836056611231565b60006112048383111560016113cc565b50900390565b60006001821b1984168284611220576000611223565b60015b60ff16901b17949350505050565b6001600160401b03811b1992909216911b1790565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906112a1908590614993565b60405180910390a3505050565b60006112c56000356001600160e01b031916610b1b565b90506105e86112d48233612285565b6101916113cc565b80156112fc576112f76112ed611377565b42106101936113cc565b611311565b61131161130761139b565b42106101a96113cc565b6006805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be649061134f908390614970565b60405180910390a150565b600061136461139b565b4211806107e857505060065460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006105d182604b612375565b816113da576113da8161237d565b5050565b60006113ef824210156101386113cc565b4282900360006113fe85611a4b565b9050600061140b826123d0565b905061141c600082116101396113cc565b8281116114485780830380611431848a6123dc565b0261143c848a612420565b0194505050505061079e565b600061145387612464565b9050600061146082611a4b565b9050600061146d826123d0565b905061147e600082116101396113cc565b61148d8682111561013a6113cc565b505060008061149c8684612471565b9150915060006114ab836123d0565b6114b4836123d0565b039050801561150c5760006114c9848d612420565b6114d3848e612420565b03905060006114e1856123d0565b8903905082818302816114f057fe5b056114fb868f612420565b01995050505050505050505061079e565b611516838c612420565b97505050505050505061079e565b60006105d1655af3107a40008302612524565b6001600160a01b03831660009081526020819052604090205461155f828210156101966113cc565b6115766001600160a01b03841615156101996113cc565b6001600160a01b038085166000908152602081905260408082208585039055918516815220546115a690836111c6565b6001600160a01b0380851660008181526020819052604090819020939093559151908616907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906115f8908690614993565b60405180910390a350505050565b6107d761161161135a565b6101926113cc565b60085461162690826111d8565b6008556040517f3e350b41e86a8e10f804ade6d35340d620be35569cc75ac943e8bb14ab80ead19061134f908390614970565b600854611665816117cd565b156105e85761167f611678600954612901565b8290612945565b905061169b61169461168f6105eb565b612901565b8290612952565b60085550565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f000000000000000000000000000000000000000000000000000000000000000061170e612960565b306040516020016117239594939291906149ef565b60405160208183030381529060405280519060200120905090565b61175164e8d4a5100082101560cb6113cc565b61176767016345785d8a000082111560ca6113cc565b60085461177490826111e6565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc9061134f908390614993565b60006105d18282612964565b60006105d1826016612964565b60006105d182602c61298b565b60006105d1826055612995565b60006105d182605661299f565b6113da81831460676113cc565b6000606080606061180361206a565b905061180d61135a565b156118555761182387896000815181106110ea57fe5b600061182f828a6120d8565b90506118408983600954848b6129ac565b925061184f89846111f4612a90565b50611876565b60408051600280825260608201835290916020830190803683370190505091505b611881888287612b22565b909450925061189388846111f4612a90565b61189d81896120d8565b600955509750975097945050505050565b6118d5816000815181106118be57fe5b60200260200101516118d06001611d09565b612b8f565b816000815181106118e257fe5b602002602001018181525050611910816001815181106118fe57fe5b60200260200101516118d06000611d09565b8160018151811061191d57fe5b60200260200101818152505050565b3330146119ea576000306001600160a01b03166000366040516119509291906148b5565b6000604051808303816000865af19150503d806000811461198d576040519150601f19603f3d011682016040523d82523d6000602084013e611992565b606091505b5050905080600081146119a157fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b81146119cc573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6119f386611b35565b60006060611a0a8b8b8b8b8b8b8b8b63ffffffff16565b5091509150611a1c818463ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b505050505050505050565b60009081526007602052604090205490565b6000806000806000806000611a7188612baf565b9650611a7c88612bbc565b9550611a8788612bc9565b9450611a9288612bd6565b9350611a9d88612be3565b9250611aa888612bf0565b9150611ab3886123d0565b9050919395979092949650565b600082820261079e841580611add575083858381611ada57fe5b04145b60036113cc565b6000611af382151560046113cc565b82611b00575060006105d1565b670de0b6b3a764000083810290611b2390858381611b1a57fe5b041460056113cc565b828181611b2c57fe5b049150506105d1565b611b5c81600081518110611b4557fe5b6020026020010151611b576001611d09565b611ac0565b81600081518110611b6957fe5b60200260200101818152505061191081600181518110611b8557fe5b6020026020010151611b576000611d09565b6001600160a01b038216600090815260208190526040902054611bbf828210156101966113cc565b6001600160a01b03831660009081526020819052604090208282039055600254611be990836111f4565b6002556040516000906001600160a01b038516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906112a1908690614993565b60006060806060611c3961206a565b90506000611c47828a6120d8565b90506060611c5a8a84600954858c6129ac565b9050611c698a826111f4612a90565b60006060611c788c868b612bfd565b91509150611c898c826111c6612a90565b611c93858d6120d8565b600955909e909d50909b509950505050505050505050565b611cd281600081518110611cbb57fe5b6020026020010151611ccd6001611d09565b612c57565b81600081518110611cdf57fe5b60200260200101818152505061191081600181518110611cfb57fe5b6020026020010151611ccd60005b600081611d36577f00000000000000000000000000000000000000000000000000000000000000006105d1565b507f0000000000000000000000000000000000000000000000000000000000000000919050565b600081611d8a577f00000000000000000000000000000000000000000000000000000000000000006105d1565b507f0000000000000000000000000000000000000000000000000000000000000000919050565b600061079e8383611ac0565b600854611dc9816117cd565b8015611dd457508343115b15611ebd576000611e277f0000000000000000000000000000000000000000000000000000000000000000857f000000000000000000000000000000000000000000000000000000000000000086612c8a565b90506000611e5e7f000000000000000000000000000000000000000000000000000000000000000086611e59866117b3565b612cbf565b90506000611e6b846113bf565b90506000611e78856117c0565b90506000611e9182848787611e8c8b6117a7565b612cdb565b9050808314611a4057611ea48682612d32565b9550611eb08642612d40565b6008819055955050505050505b50505050565b6000828202611edd841580611add575083858381611ada57fe5b80611eec5760009150506105d1565b670de0b6b3a764000060001982015b046001019150506105d1565b6000611f1a858486858a60600151612d4e565b90505b95945050505050565b600061079e8383612b8f565b6000611f1a858486858a60600151612dc9565b600061079e8383612c57565b6000670de0b6b3a76400008210611f695760006105d1565b50670de0b6b3a76400000390565b6000611f8682151560046113cc565b82611f93575060006105d1565b670de0b6b3a764000083810290611fad90858381611b1a57fe5b826001820381611efb57fe5b6000611fc3610bb6565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b158015611ffb57600080fd5b505afa15801561200f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107e89190614605565b60008061203f83611a4b565b9050612058600061204f836123d0565b116101396113cc565b61206281856123dc565b949350505050565b6040805160028082526060808301845292839291906020830190803683370190505090506120986001611d5d565b816000815181106120a557fe5b6020026020010181815250506120bb6000611d5d565b816001815181106120c857fe5b6020908102919091010152905090565b670de0b6b3a764000060005b835181101561213a576121306121298583815181106120ff57fe5b602002602001015185848151811061211357fe5b6020026020010151612e3f90919063ffffffff16565b8390612e8e565b91506001016120e4565b506105d1600082116101376113cc565b60006121546116a1565b82604051602001610b509291906148c5565b60006060600061217584612eba565b9050612190600082600281111561218857fe5b1460ce6113cc565b606061219b85612ed0565b90506121a9815160026117e7565b6121b281611b35565b60606121bc61206a565b905060006121ca82846120d8565b905060006121d9826002611ac0565b6009929092555099919850909650505050505050565b6001600160a01b03821660009081526020819052604090205461221290826111c6565b6001600160a01b03831660009081526020819052604090205560025461223890826111c6565b6002556040516001600160a01b038316906000907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612279908590614993565b60405180910390a35050565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b6122a4610b92565b6001600160a01b0316141580156122bf57506122bf83612ee6565b156122e7576122cc610b92565b6001600160a01b0316336001600160a01b03161490506105d1565b6122ef611fb9565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161231e9392919061499c565b60206040518083038186803b15801561233657600080fd5b505afa15801561234a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061236e91906144c5565b90506105d1565b1c6103ff1690565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60006105d1828261298b565b6000808260028111156123eb57fe5b14156123fa5761236e83612baf565b600182600281111561240857fe5b14156124175761236e83612bc9565b61236e83612be3565b60008082600281111561242f57fe5b141561243e5761236e83612bbc565b600182600281111561244c57fe5b141561245b5761236e83612bd6565b61236e83612bf0565b60006105d1826001612f00565b600080806103ff8180805b8385116124e857600285850104612493818a612f00565b935061249e84611a4b565b92506124a9836123d0565b9150898210156124be578060010195506124e2565b898211156124d1576001810394506124e2565b82839750975050505050505061251d565b5061247c565b888110612506576125006124fb84612f11565b611a4b565b82612513565b816125136124fb85612464565b9650965050505050505b9250929050565b6000612553680238fd42c5cf03ffff19831215801561254c575068070c1cc73b00c800008313155b60096113cc565b60008212156125865761256882600003612524565b6a0c097ce7bc90715b34b9f160241b8161257e57fe5b059050610a56565b60006806f05b59d3b200000083126125c657506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec6302628270000000006125fc565b6803782dace9d900000083126125f857506803782dace9d8ffffff19909101906b1425982cf597cd205cef73806125fc565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac62000000841261264c5768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412612688576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b1880000084126126c257682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126126fc576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac6200000841261273557680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d63100000841261276e5768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126127a7576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c4000084126127e05768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60008061290d83612f1e565b9050655af3107a40006000821361292c57652d79883d20008203612936565b652d79883d200082015b8161293d57fe5b059392505050565b600061079e838383612f7a565b600061079e83836016612f7a565b4690565b600082821c623fffff16621fffff811361297e5780612062565b623fffff19179392505050565b1c637fffffff1690565b1c60019081161490565b1c6001600160401b031690565b604080516002808252606080830184529283929190602083019080368337019050509050826129dc579050611f1d565b612a4f877f000000000000000000000000000000000000000000000000000000000000000081518110612a0b57fe5b6020026020010151877f000000000000000000000000000000000000000000000000000000000000000081518110612a3f57fe5b6020026020010151878787612f91565b817f000000000000000000000000000000000000000000000000000000000000000081518110612a7b57fe5b60209081029190910101529695505050505050565b612ac683600081518110612aa057fe5b602002602001015183600081518110612ab557fe5b60200260200101518363ffffffff16565b83600081518110612ad357fe5b602002602001018181525050612b0483600181518110612aef57fe5b602002602001015183600181518110612ab557fe5b83600181518110612b1157fe5b602002602001018181525050505050565b600060606000612b3184612eba565b90506000816002811115612b4157fe5b1415612b5c57612b52868686613009565b9250925050612b87565b6001816002811115612b6a57fe5b1415612b7a57612b5286856130b9565b612b528686866130eb565b505b935093915050565b6000612b9e82151560046113cc565b818381612ba757fe5b049392505050565b60006105d18260ea612964565b60006105d18260b5613157565b60006105d182609f612964565b60006105d182606a613157565b60006105d1826054612964565b60006105d182601f613157565b600060606000612c0c84612eba565b90506001816002811115612c1c57fe5b1415612c2d57612b5286868661318a565b6002816002811115612c3b57fe5b1415612c4c57612b528686866131e0565b612b8561013661237d565b6000612c6682151560046113cc565b82612c73575060006105d1565b816001840381612c7f57fe5b0460010190506105d1565b600080612caa612c9a8486611f77565b612ca48789611f77565b90611f77565b9050612cb581612901565b9695505050505050565b600080612ccf61168f8587611f77565b92909203949350505050565b600080612cf785858542612cee8b611a4b565b93929190613263565b9050607842889003101580612d0c5786612d15565b612d1587612464565b600081815260076020526040902092909255509695505050505050565b600061079e8383604b6132b5565b600061079e8383602c6132c5565b6000612d70612d6587670429d069189e0000612e8e565b8311156101306113cc565b6000612d7c87846111c6565b90506000612d8a8883611f77565b90506000612d988887611ae4565b90506000612da683836132d7565b9050612dbb612db482611f51565b8990612e8e565b9a9950505050505050505050565b6000612deb612de085670429d069189e0000612e8e565b8311156101316113cc565b6000612e01612dfa86856111f4565b8690611f77565b90506000612e0f8588611f77565b90506000612e1d83836132d7565b90506000612e3382670de0b6b3a76400006111f4565b9050612dbb8a82611ec3565b600080612e4c8484613303565b90506000612e66612e5f83612710611ec3565b60016111c6565b905080821015612e7b576000925050506105d1565b612e8582826111f4565b925050506105d1565b6000828202612ea8841580611add575083858381611ada57fe5b670de0b6b3a764000090049392505050565b6000818060200190518101906105d19190614621565b60608180602001905181019061079e91906146e6565b6000612ef8631c74c91760e11b610b1b565b909114919050565b60006104008383015b069392505050565b60006105d1826001613404565b6000612f2e6000831360646113cc565b670c7d713b49da000082138015612f4c5750670f43fc2c04ee000082125b15612f6a57670de0b6b3a7640000612f6383613413565b8161257e57fe5b612f7382613531565b9050610a56565b623fffff828116821b90821b198416179392505050565b6000838311612fa257506000611f1d565b6000612fae8585611f77565b90506000612fc4670de0b6b3a764000088611ae4565b9050612fd8826709b6e64a8ec600006138d0565b91506000612fe683836132d7565b90506000612ffd612ff683611f51565b8b90612e8e565b9050612dbb8187612e8e565b60006060613015611606565b600080613021856138e7565b915091506130336002821060646113cc565b604080516002808252606080830184529260208301908036833701905050905061309488838151811061306257fe5b602002602001015188848151811061307657fe5b6020026020010151856130876105eb565b61308f610885565b613909565b8183815181106130a057fe5b6020908102919091010152919791965090945050505050565b6000606060006130c8846139c0565b905060606130de86836130d96105eb565b6139d6565b9196919550909350505050565b600060606130f7611606565b6060600061310485613a87565b91509150613114825160026117e7565b61311d82611b35565b600061313a88888561312d6105eb565b613135610885565b613a9f565b905061314a8282111560cf6113cc565b9791965090945050505050565b600082821c661fffffffffffff16660fffffffffffff81136131795780612062565b661fffffffffffff19179392505050565b6000606080600061319a85613a87565b915091506131aa825160026117e7565b6131b382611b35565b60006131d08888856131c36105eb565b6131cb610885565b613cca565b905061314a8282101560d06113cc565b600060606000806131f0856138e7565b915091506132026002821060646113cc565b604080516002808252606080830184529260208301908036833701905050905061309488838151811061323157fe5b602002602001015188848151811061324557fe5b6020026020010151856132566105eb565b61325e610885565b613eda565b60008061326f876123d0565b83039050600081870261328189612bbc565b01905060008287026132928a612bd6565b01905060008387026132a38b612bf0565b019050612dbb89848a858b868c613f7c565b6103ff811b1992909216911b1790565b637fffffff811b1992909216911b1790565b6000806132e48484613303565b905060006132f7612e5f83612710611ec3565b9050611f1d82826111c6565b6000816133195750670de0b6b3a76400006105d1565b82613326575060006105d1565b613337600160ff1b841060066113cc565b8261335d770bce5086492111aea88f4bb1ca6bcf584181ea8059f76532841060076113cc565b826000670c7d713b49da00008313801561337e5750670f43fc2c04ee000083125b156133b557600061338e84613413565b9050670de0b6b3a764000080820784020583670de0b6b3a7640000830502019150506133c3565b816133bf84613531565b0290505b670de0b6b3a764000090056133fb680238fd42c5cf03ffff1982128015906133f4575068070c1cc73b00c800008213155b60086113cc565b612cb581612524565b60006104008284038101612f09565b670de0b6b3a7640000026000806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff198501028161344e57fe5b05905060006a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a764000082121561356d57613563826a0c097ce7bc90715b34b9f160241b8161355d57fe5b05613531565b6000039050610a56565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c000000000000083126135be57770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e00000083126135f6576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff0084000831261363e576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613679576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf85083126136b057693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e283126136e757690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d03831261371c5768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb41746121110831261374757680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d831261377c576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f177578893793783126137b1576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b28660383126137e5576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312613819576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d63100000808603028161383c57fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b6000818310156138e0578161079e565b5090919050565b600080828060200190518101906138fe91906146b0565b909590945092505050565b60008061391a84612ca481886111f4565b90506139336709b6e64a8ec600008210156101326113cc565b600061395161394a670de0b6b3a764000089611ae4565b83906132d7565b9050600061396861396183611f51565b8a90612e8e565b9050600061397589611f51565b905060006139838383611ec3565b9050600061399184836111f4565b90506139b06139a96139a28a611f51565b8490612e8e565b82906111c6565b9c9b505050505050505050505050565b60008180602001905181019061079e9190614683565b606060006139e48484611ae4565b9050606085516001600160401b03811180156139ff57600080fd5b50604051908082528060200260200182016040528015613a29578160200160208202803683370190505b50905060005b8651811015613a7d57613a5e83888381518110613a4857fe5b6020026020010151612e8e90919063ffffffff16565b828281518110613a6a57fe5b6020908102919091010152600101613a2f565b5095945050505050565b60606000828060200190518101906138fe919061463d565b6000606084516001600160401b0381118015613aba57600080fd5b50604051908082528060200260200182016040528015613ae4578160200160208202803683370190505b5090506000805b8851811015613ba957613b44898281518110613b0357fe5b6020026020010151612ca4898481518110613b1a57fe5b60200260200101518c8581518110613b2e57fe5b60200260200101516111f490919063ffffffff16565b838281518110613b5057fe5b602002602001018181525050613b9f613b98898381518110613b6e57fe5b6020026020010151858481518110613b8257fe5b6020026020010151611ec390919063ffffffff16565b83906111c6565b9150600101613aeb565b50670de0b6b3a764000060005b8951811015613ca9576000848281518110613bcd57fe5b6020026020010151841115613c2b576000613bf6613bea86611f51565b8d8581518110613a4857fe5b90506000613c0a828c8681518110613b2e57fe5b9050613c22613b98613c1b8b611f51565b8390611f77565b92505050613c42565b888281518110613c3757fe5b602002602001015190505b6000613c6b8c8481518110613c5357fe5b6020026020010151610985848f8781518110613b2e57fe5b9050613c9d613c968c8581518110613c7f57fe5b602002602001015183612e3f90919063ffffffff16565b8590612e8e565b93505050600101613bb6565b50613cbd613cb682611f51565b8790611ec3565b9998505050505050505050565b6000606084516001600160401b0381118015613ce557600080fd5b50604051908082528060200260200182016040528015613d0f578160200160208202803683370190505b5090506000805b8851811015613db757613d6f898281518110613d2e57fe5b6020026020010151610985898481518110613d4557fe5b60200260200101518c8581518110613d5957fe5b60200260200101516111c690919063ffffffff16565b838281518110613d7b57fe5b602002602001018181525050613dad613b98898381518110613d9957fe5b6020026020010151858481518110613a4857fe5b9150600101613d16565b50670de0b6b3a764000060005b8951811015613e9857600083858381518110613ddc57fe5b60200260200101511115613e38576000613e01613bea86670de0b6b3a76400006111f4565b90506000613e15828c8681518110613b2e57fe5b9050613e2f613b98612129670de0b6b3a76400008c6111f4565b92505050613e4f565b888281518110613e4457fe5b602002602001015190505b6000613e788c8481518110613e6057fe5b6020026020010151610985848f8781518110613d5957fe5b9050613e8c613c968c8581518110613c7f57fe5b93505050600101613dc4565b50670de0b6b3a76400008110613ece57613ec4613ebd82670de0b6b3a76400006111f4565b8790612e8e565b9350505050611f1d565b60009350505050611f1d565b600080613eeb84612ca481886111c6565b9050613f046729a2241af62c00008211156101336113cc565b6000613f1b61394a670de0b6b3a764000089611f77565b90506000613f3b613f3483670de0b6b3a76400006111f4565b8a90611ec3565b90506000613f4889611f51565b90506000613f568383611ec3565b90506000613f6484836111f4565b90506139b06139a9613f758a611f51565b8490611f77565b6000613f888282613fdc565b613f9384601f613fe0565b613f9e866054613ff1565b613fa988606a613fe0565b613fb48a609f613ff1565b613fbf8c60b5613fe0565b613fca8e60ea613ff1565b17171717171798975050505050505050565b1b90565b661fffffffffffff91909116901b90565b623fffff91909116901b90565b6040805160608101909152806000815260200160008152602001600081525090565b604080518082019091526000808252602082015290565b80356105d181614b52565b600082601f830112614052578081fd5b815161406561406082614b33565b614b0d565b81815291506020808301908481018184028601820187101561408657600080fd5b60005b848110156140a557815184529282019290820190600101614089565b505050505092915050565b600082601f8301126140c0578081fd5b81356001600160401b038111156140d5578182fd5b6140e8601f8201601f1916602001614b0d565b91508082528360208285010111156140ff57600080fd5b8060208401602084013760009082016020015292915050565b8035600281106105d157600080fd5b80356105d181614b75565b600060208284031215614143578081fd5b813561079e81614b52565b60008060408385031215614160578081fd5b823561416b81614b52565b9150602083013561417b81614b52565b809150509250929050565b60008060006060848603121561419a578081fd5b83356141a581614b52565b925060208401356141b581614b52565b929592945050506040919091013590565b600080600080600080600060e0888a0312156141e0578485fd5b87356141eb81614b52565b965060208801356141fb81614b52565b95506040880135945060608801359350608088013560ff8116811461421e578384fd5b9699959850939692959460a0840135945060c09093013592915050565b6000806040838503121561424d578182fd5b823561425881614b52565b946020939093013593505050565b60008060006060848603121561427a578081fd5b83516001600160401b0380821115614290578283fd5b818601915086601f8301126142a3578283fd5b81516142b161406082614b33565b80828252602080830192508086018b8283870289010111156142d1578788fd5b8796505b848710156142fc5780516142e881614b52565b8452600196909601959281019281016142d5565b508901519097509350505080821115614313578283fd5b5061432086828701614042565b925050604084015190509250925092565b60006020808385031215614343578182fd5b82356001600160401b03811115614358578283fd5b8301601f81018513614368578283fd5b803561437661406082614b33565b818152838101908385016040808502860187018a1015614394578788fd5b8795505b848610156143e15780828b0312156143ae578788fd5b6143b781614b0d565b6143c18b84614127565b815282880135888201528452600195909501949286019290810190614398565b509098975050505050505050565b60006020808385031215614401578182fd5b82356001600160401b03811115614416578283fd5b8301601f81018513614426578283fd5b803561443461406082614b33565b818152838101908385016060808502860187018a1015614452578788fd5b8795505b848610156143e15780828b03121561446c578788fd5b61447581614b0d565b61447f8b84614127565b81528288013588820152604080840135908201528452600195909501949286019290810190614456565b6000602082840312156144ba578081fd5b813561079e81614b67565b6000602082840312156144d6578081fd5b815161079e81614b67565b600080600080600080600060e0888a0312156144fb578081fd5b8735965060208089013561450e81614b52565b9650604089013561451e81614b52565b955060608901356001600160401b0380821115614539578384fd5b818b0191508b601f83011261454c578384fd5b813561455a61406082614b33565b8082825285820191508585018f878886028801011115614578578788fd5b8795505b8386101561459a57803583526001959095019491860191860161457c565b509850505060808b0135955060a08b0135945060c08b01359250808311156145c0578384fd5b50506145ce8a828b016140b0565b91505092959891949750929550565b6000602082840312156145ee578081fd5b81356001600160e01b03198116811461079e578182fd5b600060208284031215614616578081fd5b815161079e81614b52565b600060208284031215614632578081fd5b815161079e81614b75565b600080600060608486031215614651578081fd5b835161465c81614b75565b60208501519093506001600160401b03811115614677578182fd5b61432086828701614042565b60008060408385031215614695578182fd5b82516146a081614b75565b6020939093015192949293505050565b6000806000606084860312156146c4578081fd5b83516146cf81614b75565b602085015160409095015190969495509392505050565b600080604083850312156146f8578182fd5b825161470381614b75565b60208401519092506001600160401b0381111561471e578182fd5b61472a85828601614042565b9150509250929050565b600060208284031215614745578081fd5b813561079e81614b75565b600080600060608486031215614764578081fd5b83356001600160401b038082111561477a578283fd5b8186019150610120808389031215614790578384fd5b61479981614b0d565b90506147a58884614118565b81526147b48860208501614037565b60208201526147c68860408501614037565b6040820152606083013560608201526080830135608082015260a083013560a08201526147f68860c08501614037565b60c08201526148088860e08501614037565b60e08201526101008084013583811115614820578586fd5b61482c8a8287016140b0565b9183019190915250976020870135975060409096013595945050505050565b60006020828403121561485c578081fd5b5035919050565b6000815180845260208085019450808401835b8381101561489257815187529582019590820190600101614876565b509495945050505050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b8181101561492c57835183529284019291840191600101614910565b50909695505050505050565b60006020825261079e6020830184614863565b60006040825261495e6040830185614863565b8281036020840152611f1d8185614863565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b93845260ff9290921660208401526040830152606082015260800190565b968752602087019590955260408601939093526060850191909152608084015260a083015260c082015260e00190565b9586526020860194909452604085019290925260608401521515608083015260a082015260c00190565b6000602080835283518082850152825b81811015614abf57858101830151858201604001528201614aa3565b81811115614ad05783604083870101525b50601f01601f1916929092016040019392505050565b6000838252604060208301526120626040830184614863565b60ff91909116815260200190565b6040518181016001600160401b0381118282101715614b2b57600080fd5b604052919050565b60006001600160401b03821115614b48578081fd5b5060209081020190565b6001600160a01b03811681146105e857600080fd5b80151581146105e857600080fd5b600381106105e857600080fdfea26469706673582212201dbf8d364d926088a19c5f3f5d0ca0ab72cf3eda8f3f78dda45ab2619de4b6d664736f6c634300070100330000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c0000000000000000000000000c00e94cb662c3520282e6f5717214004a7f26888000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc200000000000000000000000000000000000000000000000006f05b59d3b2000000000000000000000000000000000000000000000000000006f05b59d3b200000000000000000000000000000000000000000000000000000005543df729c00000000000000000000000000000000000000000000000000000000000007294f10000000000000000000000000000000000000000000000000000000000278d000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b000000000000000000000000000000000000000000000000000000000000001842616c616e63657220353020434f4d5020353020574554480000000000000000000000000000000000000000000000000000000000000000000000000000000f422d3530434f4d502d3530574554480000000000000000000000000000000000

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106102485760003560e01c806374f3b0091161013b578063aaabadc5116100b8578063d5c096c41161007c578063d5c096c4146104e1578063d73dd623146104f4578063dd62ed3e14610507578063f89f27ed1461051a578063ffd088eb1461052257610248565b8063aaabadc5146104a3578063b10be739146104ab578063b48b5b40146104be578063c0ff1a15146104c6578063d505accf146104ce57610248565b80638d928af8116100ff5780638d928af81461046557806395d89b411461046d5780639b02cdde146104755780639d2c110c1461047d578063a9059cbb1461049057610248565b806374f3b009146103f65780637ecebe0014610417578063851c1bb31461042a57806387ec68171461043d578063893d20e81461045057610248565b806338e9922e116101c957806360d1507c1161018d57806360d1507c1461038257806366188463146103a8578063679aefce146103bb5780636b843239146103c357806370a08231146103e357610248565b806338e9922e1461032457806338fff2d0146103375780634a6b0b151461033f57806355c67628146103595780636028bfd41461036157610248565b80631dccd830116102105780631dccd830146102cc57806323b872dd146102ec578063292c914a146102ff578063313ce567146103075780633644e5151461031c57610248565b806306fdde031461024d578063095ea7b31461026b57806316c38b3c1461028b57806318160ddd146102a05780631c0de051146102b5575b600080fd5b61025561052a565b6040516102629190614a93565b60405180910390f35b61027e61027936600461423b565b6105c0565b6040516102629190614970565b61029e6102993660046144a9565b6105d7565b005b6102a86105eb565b6040516102629190614993565b6102bd6105f1565b6040516102629392919061497b565b6102df6102da3660046143ef565b61061a565b6040516102629190614938565b61027e6102fa366004614186565b610722565b61029e6107a5565b61030f6107d9565b6040516102629190614aff565b6102a86107de565b61029e61033236600461484b565b6107ed565b6102a8610806565b61034761082a565b60405161026296959493929190614a69565b6102a8610885565b61037461036f3660046144e1565b610892565b604051610262929190614ae6565b61039561039036600461484b565b6108c3565b6040516102629796959493929190614a39565b61027e6103b636600461423b565b61090c565b6102a8610966565b6103d66103d1366004614331565b61098b565b60405161026291906148f4565b6102a86103f1366004614132565b610a3c565b6104096104043660046144e1565b610a5b565b60405161026292919061494b565b6102a8610425366004614132565b610b00565b6102a86104383660046145dd565b610b1b565b61037461044b3660046144e1565b610b6d565b610458610b92565b60405161026291906148e0565b610458610bb6565b610255610bda565b6102a8610c3b565b6102a861048b366004614750565b610c41565b61027e61049e36600461423b565b610df0565b610458610dfd565b6102a86104b9366004614734565b610e07565b6102a8610e29565b6102a8610e2f565b61029e6104dc3660046141c6565b610eeb565b6104096104ef3660046144e1565b611034565b61027e61050236600461423b565b611154565b6102a861051536600461414e565b61118a565b6102df6111b5565b6102a86111bf565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105b65780601f1061058b576101008083540402835291602001916105b6565b820191906000526020600020905b81548152906001019060200180831161059957829003601f168201915b5050505050905090565b60006105cd338484611246565b5060015b92915050565b6105df6112ae565b6105e8816112dc565b50565b60025490565b60008060006105fe61135a565b159250610609611377565b915061061361139b565b9050909192565b606081516001600160401b038111801561063357600080fd5b5060405190808252806020026020018201604052801561065d578160200160208202803683370190505b509050600061066d6008546113bf565b9050610677613ffe565b60005b845181101561071a5784818151811061068f57fe5b602002602001015191506106ad82602001516000141561013c6113cc565b60006106c883600001518585602001518660400151016113de565b905060006106df84600001518686604001516113de565b90506106f98460200151838303816106f357fe5b05611524565b86848151811061070557fe5b6020908102919091010152505060010161067a565b505050919050565b6001600160a01b038316600081815260016020908152604080832033808552925282205491926107609114806107585750838210155b6101976113cc565b61076b858585611537565b336001600160a01b0386161480159061078657506000198114155b15610798576107988533858403611246565b60019150505b9392505050565b6107ad611606565b6107b56112ae565b6107bf6001611619565b60006107c96105eb565b11156107d7576107d7611659565b565b601290565b60006107e86116a1565b905090565b6107f56112ae565b6107fd611606565b6105e88161173e565b7fefaa1604e82e1b3af8430b90192c1b9e8197e37700020000000000000000002190565b60008060008060008060006008549050610843816117a7565b965061084e816117b3565b9550610859816117c0565b9450610864816113bf565b935061086f816117cd565b925061087a816117da565b915050909192939495565b60006107e86008546117da565b600060606108a2865160026117e7565b6108b7898989898989896117f46118ae61192c565b97509795505050505050565b60008060008060008060006108de610400891061013b6113cc565b60006108e989611a4b565b90506108f481611a5d565b959f949e50929c50909a509850965090945092505050565b3360009081526001602090815260408083206001600160a01b03861684529091528120548083106109485761094333856000611246565b61095c565b61095c338561095784876111f4565b611246565b5060019392505050565b60006107e86109736105eb565b61098561097e610e2f565b6002611ac0565b90611ae4565b606081516001600160401b03811180156109a457600080fd5b506040519080825280602002602001820160405280156109ce578160200160208202803683370190505b50905060006109de6008546113bf565b90506109e8614020565b60005b845181101561071a57848181518110610a0057fe5b60200260200101519150610a1d82600001518484602001516113de565b848281518110610a2957fe5b60209081029190910101526001016109eb565b6001600160a01b0381166000908152602081905260409020545b919050565b60608088610a85610a6a610bb6565b6001600160a01b0316336001600160a01b03161460cd6113cc565b610a9a610a90610806565b82146101f46113cc565b610aa387611b35565b6000606080610ab78d8d8d8d8d8d8d6117f4565b925092509250610ac78c84611b97565b610ad0826118ae565b610ad9816118ae565b610ae161135a565b15610aee57610aee611659565b909c909b509950505050505050505050565b6001600160a01b031660009081526005602052604090205490565b60007f000000000000000000000000a5bf2ddf098bb0ef6d120c98217dd6b141c74ee082604051602001610b5092919061489d565b604051602081830303815290604052805190602001209050919050565b60006060610b7d865160026117e7565b6108b789898989898989611c2a611cab61192c565b7f000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b90565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156105b65780601f1061058b576101008083540402835291602001916105b6565b60095490565b6000610c4b611606565b8360800151610c5b610a6a610bb6565b610c66610a90610806565b60007f000000000000000000000000c00e94cb662c3520282e6f5717214004a7f268886001600160a01b031686602001516001600160a01b03161490506000610cae82611d09565b90506000610cbc8315611d09565b90506000610cc984611d5d565b90506000610cd78515611d5d565b9050610ce38985611db1565b9850610cef8884611db1565b9750610d188a60a0015186610d045789610d06565b8a5b87610d11578b610d13565b8a5b611dbd565b60008a516001811115610d2757fe5b1415610d95576000610d45610d3a610885565b60608d015190611ec3565b9050610d67610d61828d606001516111f490919063ffffffff16565b86611db1565b60608c01526000610d7b8c8c8c8787611f07565b9050610d878186611f26565b985050505050505050610de8565b610da38a6060015184611db1565b60608b01526000610db78b8b8b8686611f32565b9050610dc38186611f45565b9050610ddf610dd8610dd3610885565b611f51565b8290611f77565b97505050505050505b509392505050565b60006105cd338484611537565b60006107e8611fb9565b600080610e1e83610e196008546113bf565b612033565b905061079e81611524565b61040090565b60006060610e3b610bb6565b6001600160a01b031663f94d4668610e51610806565b6040518263ffffffff1660e01b8152600401610e6d9190614993565b60006040518083038186803b158015610e8557600080fd5b505afa158015610e99573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610ec19190810190614266565b50915050610ece81611b35565b6060610ed861206a565b9050610ee481836120d8565b9250505090565b610ef98442111560d16113cc565b6001600160a01b0387166000908152600560209081526040808320549051909291610f50917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d91016149bb565b6040516020818303038152906040528051906020012090506000610f738261214a565b9050600060018288888860405160008152602001604052604051610f9a9493929190614a1b565b6020604051602081039080840390855afa158015610fbc573d6000803e3d6000fd5b5050604051601f1901519150610ffe90506001600160a01b03821615801590610ff657508b6001600160a01b0316826001600160a01b0316145b6101f86113cc565b6001600160a01b038b1660009081526005602052604090206001850190556110278b8b8b611246565b5050505050505050505050565b60608088611043610a6a610bb6565b61104e610a90610806565b611056611606565b60006110606105eb565b6110d0576110708b8b8b88612166565b94509050611085620f424082101560cc6113cc565b6110936000620f42406121ef565b6110a289620f424083036121ef565b6110ab84611cab565b604080516002808252606082018352909160208301908036833701905050925061113e565b6110d988611b35565b61110c87896000815181106110ea57fe5b60200260200101518a6001815181106110ff57fe5b6020026020010151611dbd565b61111b8b8b8b8b8b8b8b611c2a565b9095509350905061112c89826121ef565b61113584611cab565b61113e836118ae565b611146611659565b505097509795505050505050565b3360008181526001602090815260408083206001600160a01b038716845290915281205490916105cd91859061095790866111c6565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b60606107e861206a565b6201de2090565b600082820161079e84821015836113cc565b600061079e8383605561120a565b600061079e83836056611231565b60006112048383111560016113cc565b50900390565b60006001821b1984168284611220576000611223565b60015b60ff16901b17949350505050565b6001600160401b03811b1992909216911b1790565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925906112a1908590614993565b60405180910390a3505050565b60006112c56000356001600160e01b031916610b1b565b90506105e86112d48233612285565b6101916113cc565b80156112fc576112f76112ed611377565b42106101936113cc565b611311565b61131161130761139b565b42106101a96113cc565b6006805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be649061134f908390614970565b60405180910390a150565b600061136461139b565b4211806107e857505060065460ff161590565b7f00000000000000000000000000000000000000000000000000000000610441ed90565b7f00000000000000000000000000000000000000000000000000000000612bceed90565b60006105d182604b612375565b816113da576113da8161237d565b5050565b60006113ef824210156101386113cc565b4282900360006113fe85611a4b565b9050600061140b826123d0565b905061141c600082116101396113cc565b8281116114485780830380611431848a6123dc565b0261143c848a612420565b0194505050505061079e565b600061145387612464565b9050600061146082611a4b565b9050600061146d826123d0565b905061147e600082116101396113cc565b61148d8682111561013a6113cc565b505060008061149c8684612471565b9150915060006114ab836123d0565b6114b4836123d0565b039050801561150c5760006114c9848d612420565b6114d3848e612420565b03905060006114e1856123d0565b8903905082818302816114f057fe5b056114fb868f612420565b01995050505050505050505061079e565b611516838c612420565b97505050505050505061079e565b60006105d1655af3107a40008302612524565b6001600160a01b03831660009081526020819052604090205461155f828210156101966113cc565b6115766001600160a01b03841615156101996113cc565b6001600160a01b038085166000908152602081905260408082208585039055918516815220546115a690836111c6565b6001600160a01b0380851660008181526020819052604090819020939093559151908616907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906115f8908690614993565b60405180910390a350505050565b6107d761161161135a565b6101926113cc565b60085461162690826111d8565b6008556040517f3e350b41e86a8e10f804ade6d35340d620be35569cc75ac943e8bb14ab80ead19061134f908390614970565b600854611665816117cd565b156105e85761167f611678600954612901565b8290612945565b905061169b61169461168f6105eb565b612901565b8290612952565b60085550565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7ff4f10c66abbb0b1a90e1c76bcba587a4963352b4f0e5ba20ab6c6bc5eaade9aa7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc661170e612960565b306040516020016117239594939291906149ef565b60405160208183030381529060405280519060200120905090565b61175164e8d4a5100082101560cb6113cc565b61176767016345785d8a000082111560ca6113cc565b60085461177490826111e6565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc9061134f908390614993565b60006105d18282612964565b60006105d1826016612964565b60006105d182602c61298b565b60006105d1826055612995565b60006105d182605661299f565b6113da81831460676113cc565b6000606080606061180361206a565b905061180d61135a565b156118555761182387896000815181106110ea57fe5b600061182f828a6120d8565b90506118408983600954848b6129ac565b925061184f89846111f4612a90565b50611876565b60408051600280825260608201835290916020830190803683370190505091505b611881888287612b22565b909450925061189388846111f4612a90565b61189d81896120d8565b600955509750975097945050505050565b6118d5816000815181106118be57fe5b60200260200101516118d06001611d09565b612b8f565b816000815181106118e257fe5b602002602001018181525050611910816001815181106118fe57fe5b60200260200101516118d06000611d09565b8160018151811061191d57fe5b60200260200101818152505050565b3330146119ea576000306001600160a01b03166000366040516119509291906148b5565b6000604051808303816000865af19150503d806000811461198d576040519150601f19603f3d011682016040523d82523d6000602084013e611992565b606091505b5050905080600081146119a157fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b81146119cc573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6119f386611b35565b60006060611a0a8b8b8b8b8b8b8b8b63ffffffff16565b5091509150611a1c818463ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b505050505050505050565b60009081526007602052604090205490565b6000806000806000806000611a7188612baf565b9650611a7c88612bbc565b9550611a8788612bc9565b9450611a9288612bd6565b9350611a9d88612be3565b9250611aa888612bf0565b9150611ab3886123d0565b9050919395979092949650565b600082820261079e841580611add575083858381611ada57fe5b04145b60036113cc565b6000611af382151560046113cc565b82611b00575060006105d1565b670de0b6b3a764000083810290611b2390858381611b1a57fe5b041460056113cc565b828181611b2c57fe5b049150506105d1565b611b5c81600081518110611b4557fe5b6020026020010151611b576001611d09565b611ac0565b81600081518110611b6957fe5b60200260200101818152505061191081600181518110611b8557fe5b6020026020010151611b576000611d09565b6001600160a01b038216600090815260208190526040902054611bbf828210156101966113cc565b6001600160a01b03831660009081526020819052604090208282039055600254611be990836111f4565b6002556040516000906001600160a01b038516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906112a1908690614993565b60006060806060611c3961206a565b90506000611c47828a6120d8565b90506060611c5a8a84600954858c6129ac565b9050611c698a826111f4612a90565b60006060611c788c868b612bfd565b91509150611c898c826111c6612a90565b611c93858d6120d8565b600955909e909d50909b509950505050505050505050565b611cd281600081518110611cbb57fe5b6020026020010151611ccd6001611d09565b612c57565b81600081518110611cdf57fe5b60200260200101818152505061191081600181518110611cfb57fe5b6020026020010151611ccd60005b600081611d36577f00000000000000000000000000000000000000000000000000000000000000016105d1565b507f0000000000000000000000000000000000000000000000000000000000000001919050565b600081611d8a577f00000000000000000000000000000000000000000000000006f05b59d3b200006105d1565b507f00000000000000000000000000000000000000000000000006f05b59d3b20000919050565b600061079e8383611ac0565b600854611dc9816117cd565b8015611dd457508343115b15611ebd576000611e277f00000000000000000000000000000000000000000000000006f05b59d3b20000857f00000000000000000000000000000000000000000000000006f05b59d3b2000086612c8a565b90506000611e5e7f00000000000000000000000000000000000000000000000006f05b59d3b2000086611e59866117b3565b612cbf565b90506000611e6b846113bf565b90506000611e78856117c0565b90506000611e9182848787611e8c8b6117a7565b612cdb565b9050808314611a4057611ea48682612d32565b9550611eb08642612d40565b6008819055955050505050505b50505050565b6000828202611edd841580611add575083858381611ada57fe5b80611eec5760009150506105d1565b670de0b6b3a764000060001982015b046001019150506105d1565b6000611f1a858486858a60600151612d4e565b90505b95945050505050565b600061079e8383612b8f565b6000611f1a858486858a60600151612dc9565b600061079e8383612c57565b6000670de0b6b3a76400008210611f695760006105d1565b50670de0b6b3a76400000390565b6000611f8682151560046113cc565b82611f93575060006105d1565b670de0b6b3a764000083810290611fad90858381611b1a57fe5b826001820381611efb57fe5b6000611fc3610bb6565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b158015611ffb57600080fd5b505afa15801561200f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906107e89190614605565b60008061203f83611a4b565b9050612058600061204f836123d0565b116101396113cc565b61206281856123dc565b949350505050565b6040805160028082526060808301845292839291906020830190803683370190505090506120986001611d5d565b816000815181106120a557fe5b6020026020010181815250506120bb6000611d5d565b816001815181106120c857fe5b6020908102919091010152905090565b670de0b6b3a764000060005b835181101561213a576121306121298583815181106120ff57fe5b602002602001015185848151811061211357fe5b6020026020010151612e3f90919063ffffffff16565b8390612e8e565b91506001016120e4565b506105d1600082116101376113cc565b60006121546116a1565b82604051602001610b509291906148c5565b60006060600061217584612eba565b9050612190600082600281111561218857fe5b1460ce6113cc565b606061219b85612ed0565b90506121a9815160026117e7565b6121b281611b35565b60606121bc61206a565b905060006121ca82846120d8565b905060006121d9826002611ac0565b6009929092555099919850909650505050505050565b6001600160a01b03821660009081526020819052604090205461221290826111c6565b6001600160a01b03831660009081526020819052604090205560025461223890826111c6565b6002556040516001600160a01b038316906000907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90612279908590614993565b60405180910390a35050565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b6122a4610b92565b6001600160a01b0316141580156122bf57506122bf83612ee6565b156122e7576122cc610b92565b6001600160a01b0316336001600160a01b03161490506105d1565b6122ef611fb9565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b815260040161231e9392919061499c565b60206040518083038186803b15801561233657600080fd5b505afa15801561234a573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061236e91906144c5565b90506105d1565b1c6103ff1690565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60006105d1828261298b565b6000808260028111156123eb57fe5b14156123fa5761236e83612baf565b600182600281111561240857fe5b14156124175761236e83612bc9565b61236e83612be3565b60008082600281111561242f57fe5b141561243e5761236e83612bbc565b600182600281111561244c57fe5b141561245b5761236e83612bd6565b61236e83612bf0565b60006105d1826001612f00565b600080806103ff8180805b8385116124e857600285850104612493818a612f00565b935061249e84611a4b565b92506124a9836123d0565b9150898210156124be578060010195506124e2565b898211156124d1576001810394506124e2565b82839750975050505050505061251d565b5061247c565b888110612506576125006124fb84612f11565b611a4b565b82612513565b816125136124fb85612464565b9650965050505050505b9250929050565b6000612553680238fd42c5cf03ffff19831215801561254c575068070c1cc73b00c800008313155b60096113cc565b60008212156125865761256882600003612524565b6a0c097ce7bc90715b34b9f160241b8161257e57fe5b059050610a56565b60006806f05b59d3b200000083126125c657506806f05b59d3b1ffffff1990910190770195e54c5dd42177f53a27172fa9ec6302628270000000006125fc565b6803782dace9d900000083126125f857506803782dace9d8ffffff19909101906b1425982cf597cd205cef73806125fc565b5060015b6064929092029168056bc75e2d6310000068ad78ebc5ac62000000841261264c5768ad78ebc5ac61ffffff199093019268056bc75e2d631000006e01855144814a7ff805980ff008400082020590505b6856bc75e2d6310000008412612688576856bc75e2d630ffffff199093019268056bc75e2d631000006b02df0ab5a80a22c61ab5a70082020590505b682b5e3af16b1880000084126126c257682b5e3af16b187fffff199093019268056bc75e2d63100000693f1fce3da636ea5cf85082020590505b6815af1d78b58c40000084126126fc576815af1d78b58c3fffff199093019268056bc75e2d63100000690127fa27722cc06cc5e282020590505b680ad78ebc5ac6200000841261273557680ad78ebc5ac61fffff199093019268056bc75e2d6310000068280e60114edb805d0382020590505b68056bc75e2d63100000841261276e5768056bc75e2d630fffff199093019268056bc75e2d63100000680ebc5fb4174612111082020590505b6802b5e3af16b188000084126127a7576802b5e3af16b187ffff199093019268056bc75e2d631000006808f00f760a4b2db55d82020590505b68015af1d78b58c4000084126127e05768015af1d78b58c3ffff199093019268056bc75e2d631000006806f5f177578893793782020590505b68056bc75e2d631000008481019085906002908280020505918201919050600368056bc75e2d631000008783020505918201919050600468056bc75e2d631000008783020505918201919050600568056bc75e2d631000008783020505918201919050600668056bc75e2d631000008783020505918201919050600768056bc75e2d631000008783020505918201919050600868056bc75e2d631000008783020505918201919050600968056bc75e2d631000008783020505918201919050600a68056bc75e2d631000008783020505918201919050600b68056bc75e2d631000008783020505918201919050600c68056bc75e2d631000008783020505918201919050606468056bc75e2d63100000848402058502059695505050505050565b60008061290d83612f1e565b9050655af3107a40006000821361292c57652d79883d20008203612936565b652d79883d200082015b8161293d57fe5b059392505050565b600061079e838383612f7a565b600061079e83836016612f7a565b4690565b600082821c623fffff16621fffff811361297e5780612062565b623fffff19179392505050565b1c637fffffff1690565b1c60019081161490565b1c6001600160401b031690565b604080516002808252606080830184529283929190602083019080368337019050509050826129dc579050611f1d565b612a4f877f000000000000000000000000000000000000000000000000000000000000000081518110612a0b57fe5b6020026020010151877f000000000000000000000000000000000000000000000000000000000000000081518110612a3f57fe5b6020026020010151878787612f91565b817f000000000000000000000000000000000000000000000000000000000000000081518110612a7b57fe5b60209081029190910101529695505050505050565b612ac683600081518110612aa057fe5b602002602001015183600081518110612ab557fe5b60200260200101518363ffffffff16565b83600081518110612ad357fe5b602002602001018181525050612b0483600181518110612aef57fe5b602002602001015183600181518110612ab557fe5b83600181518110612b1157fe5b602002602001018181525050505050565b600060606000612b3184612eba565b90506000816002811115612b4157fe5b1415612b5c57612b52868686613009565b9250925050612b87565b6001816002811115612b6a57fe5b1415612b7a57612b5286856130b9565b612b528686866130eb565b505b935093915050565b6000612b9e82151560046113cc565b818381612ba757fe5b049392505050565b60006105d18260ea612964565b60006105d18260b5613157565b60006105d182609f612964565b60006105d182606a613157565b60006105d1826054612964565b60006105d182601f613157565b600060606000612c0c84612eba565b90506001816002811115612c1c57fe5b1415612c2d57612b5286868661318a565b6002816002811115612c3b57fe5b1415612c4c57612b528686866131e0565b612b8561013661237d565b6000612c6682151560046113cc565b82612c73575060006105d1565b816001840381612c7f57fe5b0460010190506105d1565b600080612caa612c9a8486611f77565b612ca48789611f77565b90611f77565b9050612cb581612901565b9695505050505050565b600080612ccf61168f8587611f77565b92909203949350505050565b600080612cf785858542612cee8b611a4b565b93929190613263565b9050607842889003101580612d0c5786612d15565b612d1587612464565b600081815260076020526040902092909255509695505050505050565b600061079e8383604b6132b5565b600061079e8383602c6132c5565b6000612d70612d6587670429d069189e0000612e8e565b8311156101306113cc565b6000612d7c87846111c6565b90506000612d8a8883611f77565b90506000612d988887611ae4565b90506000612da683836132d7565b9050612dbb612db482611f51565b8990612e8e565b9a9950505050505050505050565b6000612deb612de085670429d069189e0000612e8e565b8311156101316113cc565b6000612e01612dfa86856111f4565b8690611f77565b90506000612e0f8588611f77565b90506000612e1d83836132d7565b90506000612e3382670de0b6b3a76400006111f4565b9050612dbb8a82611ec3565b600080612e4c8484613303565b90506000612e66612e5f83612710611ec3565b60016111c6565b905080821015612e7b576000925050506105d1565b612e8582826111f4565b925050506105d1565b6000828202612ea8841580611add575083858381611ada57fe5b670de0b6b3a764000090049392505050565b6000818060200190518101906105d19190614621565b60608180602001905181019061079e91906146e6565b6000612ef8631c74c91760e11b610b1b565b909114919050565b60006104008383015b069392505050565b60006105d1826001613404565b6000612f2e6000831360646113cc565b670c7d713b49da000082138015612f4c5750670f43fc2c04ee000082125b15612f6a57670de0b6b3a7640000612f6383613413565b8161257e57fe5b612f7382613531565b9050610a56565b623fffff828116821b90821b198416179392505050565b6000838311612fa257506000611f1d565b6000612fae8585611f77565b90506000612fc4670de0b6b3a764000088611ae4565b9050612fd8826709b6e64a8ec600006138d0565b91506000612fe683836132d7565b90506000612ffd612ff683611f51565b8b90612e8e565b9050612dbb8187612e8e565b60006060613015611606565b600080613021856138e7565b915091506130336002821060646113cc565b604080516002808252606080830184529260208301908036833701905050905061309488838151811061306257fe5b602002602001015188848151811061307657fe5b6020026020010151856130876105eb565b61308f610885565b613909565b8183815181106130a057fe5b6020908102919091010152919791965090945050505050565b6000606060006130c8846139c0565b905060606130de86836130d96105eb565b6139d6565b9196919550909350505050565b600060606130f7611606565b6060600061310485613a87565b91509150613114825160026117e7565b61311d82611b35565b600061313a88888561312d6105eb565b613135610885565b613a9f565b905061314a8282111560cf6113cc565b9791965090945050505050565b600082821c661fffffffffffff16660fffffffffffff81136131795780612062565b661fffffffffffff19179392505050565b6000606080600061319a85613a87565b915091506131aa825160026117e7565b6131b382611b35565b60006131d08888856131c36105eb565b6131cb610885565b613cca565b905061314a8282101560d06113cc565b600060606000806131f0856138e7565b915091506132026002821060646113cc565b604080516002808252606080830184529260208301908036833701905050905061309488838151811061323157fe5b602002602001015188848151811061324557fe5b6020026020010151856132566105eb565b61325e610885565b613eda565b60008061326f876123d0565b83039050600081870261328189612bbc565b01905060008287026132928a612bd6565b01905060008387026132a38b612bf0565b019050612dbb89848a858b868c613f7c565b6103ff811b1992909216911b1790565b637fffffff811b1992909216911b1790565b6000806132e48484613303565b905060006132f7612e5f83612710611ec3565b9050611f1d82826111c6565b6000816133195750670de0b6b3a76400006105d1565b82613326575060006105d1565b613337600160ff1b841060066113cc565b8261335d770bce5086492111aea88f4bb1ca6bcf584181ea8059f76532841060076113cc565b826000670c7d713b49da00008313801561337e5750670f43fc2c04ee000083125b156133b557600061338e84613413565b9050670de0b6b3a764000080820784020583670de0b6b3a7640000830502019150506133c3565b816133bf84613531565b0290505b670de0b6b3a764000090056133fb680238fd42c5cf03ffff1982128015906133f4575068070c1cc73b00c800008213155b60086113cc565b612cb581612524565b60006104008284038101612f09565b670de0b6b3a7640000026000806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff198501028161344e57fe5b05905060006a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a764000082121561356d57613563826a0c097ce7bc90715b34b9f160241b8161355d57fe5b05613531565b6000039050610a56565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c000000000000083126135be57770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e00000083126135f6576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff0084000831261363e576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613679576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf85083126136b057693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e283126136e757690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d03831261371c5768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb41746121110831261374757680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d831261377c576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f177578893793783126137b1576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b28660383126137e5576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac8312613819576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d63100000808603028161383c57fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b6000818310156138e0578161079e565b5090919050565b600080828060200190518101906138fe91906146b0565b909590945092505050565b60008061391a84612ca481886111f4565b90506139336709b6e64a8ec600008210156101326113cc565b600061395161394a670de0b6b3a764000089611ae4565b83906132d7565b9050600061396861396183611f51565b8a90612e8e565b9050600061397589611f51565b905060006139838383611ec3565b9050600061399184836111f4565b90506139b06139a96139a28a611f51565b8490612e8e565b82906111c6565b9c9b505050505050505050505050565b60008180602001905181019061079e9190614683565b606060006139e48484611ae4565b9050606085516001600160401b03811180156139ff57600080fd5b50604051908082528060200260200182016040528015613a29578160200160208202803683370190505b50905060005b8651811015613a7d57613a5e83888381518110613a4857fe5b6020026020010151612e8e90919063ffffffff16565b828281518110613a6a57fe5b6020908102919091010152600101613a2f565b5095945050505050565b60606000828060200190518101906138fe919061463d565b6000606084516001600160401b0381118015613aba57600080fd5b50604051908082528060200260200182016040528015613ae4578160200160208202803683370190505b5090506000805b8851811015613ba957613b44898281518110613b0357fe5b6020026020010151612ca4898481518110613b1a57fe5b60200260200101518c8581518110613b2e57fe5b60200260200101516111f490919063ffffffff16565b838281518110613b5057fe5b602002602001018181525050613b9f613b98898381518110613b6e57fe5b6020026020010151858481518110613b8257fe5b6020026020010151611ec390919063ffffffff16565b83906111c6565b9150600101613aeb565b50670de0b6b3a764000060005b8951811015613ca9576000848281518110613bcd57fe5b6020026020010151841115613c2b576000613bf6613bea86611f51565b8d8581518110613a4857fe5b90506000613c0a828c8681518110613b2e57fe5b9050613c22613b98613c1b8b611f51565b8390611f77565b92505050613c42565b888281518110613c3757fe5b602002602001015190505b6000613c6b8c8481518110613c5357fe5b6020026020010151610985848f8781518110613b2e57fe5b9050613c9d613c968c8581518110613c7f57fe5b602002602001015183612e3f90919063ffffffff16565b8590612e8e565b93505050600101613bb6565b50613cbd613cb682611f51565b8790611ec3565b9998505050505050505050565b6000606084516001600160401b0381118015613ce557600080fd5b50604051908082528060200260200182016040528015613d0f578160200160208202803683370190505b5090506000805b8851811015613db757613d6f898281518110613d2e57fe5b6020026020010151610985898481518110613d4557fe5b60200260200101518c8581518110613d5957fe5b60200260200101516111c690919063ffffffff16565b838281518110613d7b57fe5b602002602001018181525050613dad613b98898381518110613d9957fe5b6020026020010151858481518110613a4857fe5b9150600101613d16565b50670de0b6b3a764000060005b8951811015613e9857600083858381518110613ddc57fe5b60200260200101511115613e38576000613e01613bea86670de0b6b3a76400006111f4565b90506000613e15828c8681518110613b2e57fe5b9050613e2f613b98612129670de0b6b3a76400008c6111f4565b92505050613e4f565b888281518110613e4457fe5b602002602001015190505b6000613e788c8481518110613e6057fe5b6020026020010151610985848f8781518110613d5957fe5b9050613e8c613c968c8581518110613c7f57fe5b93505050600101613dc4565b50670de0b6b3a76400008110613ece57613ec4613ebd82670de0b6b3a76400006111f4565b8790612e8e565b9350505050611f1d565b60009350505050611f1d565b600080613eeb84612ca481886111c6565b9050613f046729a2241af62c00008211156101336113cc565b6000613f1b61394a670de0b6b3a764000089611f77565b90506000613f3b613f3483670de0b6b3a76400006111f4565b8a90611ec3565b90506000613f4889611f51565b90506000613f568383611ec3565b90506000613f6484836111f4565b90506139b06139a9613f758a611f51565b8490611f77565b6000613f888282613fdc565b613f9384601f613fe0565b613f9e866054613ff1565b613fa988606a613fe0565b613fb48a609f613ff1565b613fbf8c60b5613fe0565b613fca8e60ea613ff1565b17171717171798975050505050505050565b1b90565b661fffffffffffff91909116901b90565b623fffff91909116901b90565b6040805160608101909152806000815260200160008152602001600081525090565b604080518082019091526000808252602082015290565b80356105d181614b52565b600082601f830112614052578081fd5b815161406561406082614b33565b614b0d565b81815291506020808301908481018184028601820187101561408657600080fd5b60005b848110156140a557815184529282019290820190600101614089565b505050505092915050565b600082601f8301126140c0578081fd5b81356001600160401b038111156140d5578182fd5b6140e8601f8201601f1916602001614b0d565b91508082528360208285010111156140ff57600080fd5b8060208401602084013760009082016020015292915050565b8035600281106105d157600080fd5b80356105d181614b75565b600060208284031215614143578081fd5b813561079e81614b52565b60008060408385031215614160578081fd5b823561416b81614b52565b9150602083013561417b81614b52565b809150509250929050565b60008060006060848603121561419a578081fd5b83356141a581614b52565b925060208401356141b581614b52565b929592945050506040919091013590565b600080600080600080600060e0888a0312156141e0578485fd5b87356141eb81614b52565b965060208801356141fb81614b52565b95506040880135945060608801359350608088013560ff8116811461421e578384fd5b9699959850939692959460a0840135945060c09093013592915050565b6000806040838503121561424d578182fd5b823561425881614b52565b946020939093013593505050565b60008060006060848603121561427a578081fd5b83516001600160401b0380821115614290578283fd5b818601915086601f8301126142a3578283fd5b81516142b161406082614b33565b80828252602080830192508086018b8283870289010111156142d1578788fd5b8796505b848710156142fc5780516142e881614b52565b8452600196909601959281019281016142d5565b508901519097509350505080821115614313578283fd5b5061432086828701614042565b925050604084015190509250925092565b60006020808385031215614343578182fd5b82356001600160401b03811115614358578283fd5b8301601f81018513614368578283fd5b803561437661406082614b33565b818152838101908385016040808502860187018a1015614394578788fd5b8795505b848610156143e15780828b0312156143ae578788fd5b6143b781614b0d565b6143c18b84614127565b815282880135888201528452600195909501949286019290810190614398565b509098975050505050505050565b60006020808385031215614401578182fd5b82356001600160401b03811115614416578283fd5b8301601f81018513614426578283fd5b803561443461406082614b33565b818152838101908385016060808502860187018a1015614452578788fd5b8795505b848610156143e15780828b03121561446c578788fd5b61447581614b0d565b61447f8b84614127565b81528288013588820152604080840135908201528452600195909501949286019290810190614456565b6000602082840312156144ba578081fd5b813561079e81614b67565b6000602082840312156144d6578081fd5b815161079e81614b67565b600080600080600080600060e0888a0312156144fb578081fd5b8735965060208089013561450e81614b52565b9650604089013561451e81614b52565b955060608901356001600160401b0380821115614539578384fd5b818b0191508b601f83011261454c578384fd5b813561455a61406082614b33565b8082825285820191508585018f878886028801011115614578578788fd5b8795505b8386101561459a57803583526001959095019491860191860161457c565b509850505060808b0135955060a08b0135945060c08b01359250808311156145c0578384fd5b50506145ce8a828b016140b0565b91505092959891949750929550565b6000602082840312156145ee578081fd5b81356001600160e01b03198116811461079e578182fd5b600060208284031215614616578081fd5b815161079e81614b52565b600060208284031215614632578081fd5b815161079e81614b75565b600080600060608486031215614651578081fd5b835161465c81614b75565b60208501519093506001600160401b03811115614677578182fd5b61432086828701614042565b60008060408385031215614695578182fd5b82516146a081614b75565b6020939093015192949293505050565b6000806000606084860312156146c4578081fd5b83516146cf81614b75565b602085015160409095015190969495509392505050565b600080604083850312156146f8578182fd5b825161470381614b75565b60208401519092506001600160401b0381111561471e578182fd5b61472a85828601614042565b9150509250929050565b600060208284031215614745578081fd5b813561079e81614b75565b600080600060608486031215614764578081fd5b83356001600160401b038082111561477a578283fd5b8186019150610120808389031215614790578384fd5b61479981614b0d565b90506147a58884614118565b81526147b48860208501614037565b60208201526147c68860408501614037565b6040820152606083013560608201526080830135608082015260a083013560a08201526147f68860c08501614037565b60c08201526148088860e08501614037565b60e08201526101008084013583811115614820578586fd5b61482c8a8287016140b0565b9183019190915250976020870135975060409096013595945050505050565b60006020828403121561485c578081fd5b5035919050565b6000815180845260208085019450808401835b8381101561489257815187529582019590820190600101614876565b509495945050505050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b8181101561492c57835183529284019291840191600101614910565b50909695505050505050565b60006020825261079e6020830184614863565b60006040825261495e6040830185614863565b8281036020840152611f1d8185614863565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b93845260ff9290921660208401526040830152606082015260800190565b968752602087019590955260408601939093526060850191909152608084015260a083015260c082015260e00190565b9586526020860194909452604085019290925260608401521515608083015260a082015260c00190565b6000602080835283518082850152825b81811015614abf57858101830151858201604001528201614aa3565b81811115614ad05783604083870101525b50601f01601f1916929092016040019392505050565b6000838252604060208301526120626040830184614863565b60ff91909116815260200190565b6040518181016001600160401b0381118282101715614b2b57600080fd5b604052919050565b60006001600160401b03821115614b48578081fd5b5060209081020190565b6001600160a01b03811681146105e857600080fd5b80151581146105e857600080fd5b600381106105e857600080fdfea26469706673582212201dbf8d364d926088a19c5f3f5d0ca0ab72cf3eda8f3f78dda45ab2619de4b6d664736f6c63430007010033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c0000000000000000000000000c00e94cb662c3520282e6f5717214004a7f26888000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc200000000000000000000000000000000000000000000000006f05b59d3b2000000000000000000000000000000000000000000000000000006f05b59d3b200000000000000000000000000000000000000000000000000000005543df729c00000000000000000000000000000000000000000000000000000000000007294f10000000000000000000000000000000000000000000000000000000000278d000000000000000000000000000000000000000000000000000000000000000001000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b000000000000000000000000000000000000000000000000000000000000001842616c616e63657220353020434f4d5020353020574554480000000000000000000000000000000000000000000000000000000000000000000000000000000f422d3530434f4d502d3530574554480000000000000000000000000000000000

-----Decoded View---------------
Arg [0] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]

-----Encoded View---------------
17 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [4] : 000000000000000000000000c00e94cb662c3520282e6f5717214004a7f26888
Arg [5] : 000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2
Arg [6] : 00000000000000000000000000000000000000000000000006f05b59d3b20000
Arg [7] : 00000000000000000000000000000000000000000000000006f05b59d3b20000
Arg [8] : 0000000000000000000000000000000000000000000000000005543df729c000
Arg [9] : 00000000000000000000000000000000000000000000000000000000007294f1
Arg [10] : 0000000000000000000000000000000000000000000000000000000000278d00
Arg [11] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [12] : 000000000000000000000000ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b
Arg [13] : 0000000000000000000000000000000000000000000000000000000000000018
Arg [14] : 42616c616e63657220353020434f4d5020353020574554480000000000000000
Arg [15] : 000000000000000000000000000000000000000000000000000000000000000f
Arg [16] : 422d3530434f4d502d3530574554480000000000000000000000000000000000


Loading...
Loading
Loading...
Loading
[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.