Feature Tip: Add private address tag to any address under My Name Tag !
ERC-721
Overview
Max Total Supply
229 COSMOS
Holders
95
Market
Volume (24H)
0.9 ETH
Min Price (24H)
$2,899.86 @ 0.900000 ETH
Max Price (24H)
$2,899.86 @ 0.900000 ETH
Other Info
Token Contract
Balance
3 COSMOSLoading...
Loading
Loading...
Loading
Loading...
Loading
# | Exchange | Pair | Price | 24H Volume | % Volume |
---|
Minimal Proxy Contract for 0x2d99aca173f4b173a669e1f6ff3e321f08e08df9
Contract Name:
Cosmos
Compiler Version
v0.8.27+commit.40a35a09
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: UNLICENSED pragma solidity 0.8.27; import {OwnableRoles} from "solady-0.0.250/src/auth/OwnableRoles.sol"; import {ERC721} from "solady-0.0.250/src/tokens/ERC721.sol"; import {UUPSUpgradeable} from "solady-0.0.250/src/utils/UUPSUpgradeable.sol"; import {MerkleProofLib} from "solady-0.0.250/src/utils/MerkleProofLib.sol"; import {LibMap} from "solady-0.0.250/src/utils/LibMap.sol"; import {IERC721Burnable} from "../interfaces/IERC721Burnable.sol"; import {SafeCastLib} from "solady-0.0.250/src/utils/SafeCastLib.sol"; import {Auction, AuctionBid, AuctionViewModel, MintStage, StageType} from "./Structs.sol"; import {MinHeapLib} from "solady-0.0.250/src/utils/MinHeapLib.sol"; import {IERC721TokenURI} from "../interfaces/IERC721TokenURI.sol"; contract Cosmos is OwnableRoles, ERC721, UUPSUpgradeable { using LibMap for LibMap.Uint16Map; using SafeCastLib for uint256; using MinHeapLib for MinHeapLib.Heap; error StageNotActive(); error InvalidProof(); error NoBids(); error AlreadyMinted(); error InvalidTokenIds(); error MaxSupplyReached(); error AuctionNotStarted(); error AuctionEnded(); error AuctionNotEnded(); error AlreadyWinning(); error InvalidBid(); error TransferFailed(); error OutOfBounds(); error InvalidAuctionConfiguration(); event AuctionAdded(uint256 indexed auctionId, uint40 startTime); event BidEntered(uint256 indexed auctionId, address indexed user, uint256 amount); event AuctionSettled(uint256 indexed auctionId, address indexed user, uint256 amount); event MintStageAdded(uint8 indexed stageId, StageType stageType); event MintStageActivated(uint8 indexed stageId); IERC721Burnable public immutable BURN_TOKEN; uint256 public constant MANAGER_ROLE = _ROLE_0; uint256 public constant BID_INCREMENT = 0.01 ether; uint256 public constant BURN_AMOUNT = 5; uint256 public constant MAX_SUPPLY = 313; uint256 public constant AUCTION_RESERVE = 100; uint40 public constant AUCTION_EXTEND_TIME = 3 minutes; address public renderer; uint16 private _tokenIndex; uint8 private _currentMintStage; bool private _initialized; mapping(uint8 stage => mapping(address user => uint256 minted)) public mintedForStage; mapping(uint256 tokenId => uint256 packedTokenIds) private _burnedTokenIds; MintStage[] public mintStages; Auction[] private _auctions; constructor(address burnToken) { BURN_TOKEN = IERC721Burnable(burnToken); _initialized = true; } function initialize(address _renderer) public { require(!_initialized, AlreadyInitialized()); _initialized = true; _initializeOwner(tx.origin); renderer = _renderer; mintStages.push( MintStage({stageId: 0, stageType: StageType.NONE, maxForStage: 0, mintedInStage: 0, merkleRoot: bytes32(0)}) ); } function mintOwner(address to, uint256 quantity) external onlyOwnerOrRoles(MANAGER_ROLE) { require(_tokenIndex < MAX_SUPPLY, MaxSupplyReached()); for (uint256 i; i < quantity; ++i) { _mint(to, ++_tokenIndex); } } function mintFreeClaim(bytes32[] calldata proof) external { MintStage memory mintStage = currentMintStage(); require(mintStage.stageType == StageType.FREE, StageNotActive()); require(mintedForStage[_currentMintStage][msg.sender] < mintStage.maxForStage, AlreadyMinted()); require(_tokenIndex + AUCTION_RESERVE < MAX_SUPPLY, MaxSupplyReached()); bytes32 leaf = keccak256(abi.encode(msg.sender)); require(MerkleProofLib.verifyCalldata(proof, mintStage.merkleRoot, leaf), InvalidProof()); unchecked { ++mintedForStage[_currentMintStage][msg.sender]; ++mintStages[_currentMintStage].mintedInStage; } _mint(msg.sender, ++_tokenIndex); } function mintBurnClaim(uint256[] calldata tokenIds, bytes32[] calldata proof) external { MintStage memory mintStage = currentMintStage(); require(mintStage.stageType == StageType.BURN, StageNotActive()); require(mintedForStage[_currentMintStage][msg.sender] < mintStage.maxForStage, AlreadyMinted()); require(tokenIds.length == BURN_AMOUNT, InvalidTokenIds()); require(_tokenIndex + AUCTION_RESERVE < MAX_SUPPLY, MaxSupplyReached()); bytes32 leaf = keccak256(abi.encode(msg.sender)); require(MerkleProofLib.verifyCalldata(proof, mintStage.merkleRoot, leaf), InvalidProof()); BURN_TOKEN.batchBurn(msg.sender, tokenIds); uint256 packedTokenIds; for (uint256 i = 0; i < tokenIds.length; i++) { packedTokenIds |= tokenIds[i] << (i * 16); } unchecked { ++mintedForStage[_currentMintStage][msg.sender]; ++mintStages[_currentMintStage].mintedInStage; _burnedTokenIds[++_tokenIndex] = packedTokenIds; } _mint(msg.sender, _tokenIndex); } function enterBid(uint256 auctionId) external payable { MintStage memory mintStage = currentMintStage(); require(mintStage.stageType == StageType.AUCTION, StageNotActive()); require(auctionId < _auctions.length, OutOfBounds()); Auction storage currentAuction = _auctions[auctionId]; require(currentAuction.startTime <= block.timestamp, AuctionNotStarted()); uint40 endTime = currentAuction.endTime; require(endTime > block.timestamp, AuctionEnded()); require(msg.value % BID_INCREMENT == 0, InvalidBid()); uint256 currentBid = currentAuction.userBids[msg.sender].amount; uint256[] memory topBids = currentAuction.bids.smallest(currentAuction.winnerCount); uint256 minBid = _getRequiredBidAmount(currentBid, topBids, currentAuction.startingBid, currentAuction.winnerCount); if (currentBid >= minBid) { revert AlreadyWinning(); } uint256 newBid = currentBid + msg.value; // Calculate required bid amount if (newBid < minBid) { revert InvalidBid(); } currentAuction.bids.push(_packBid(msg.sender, newBid)); currentAuction.userBids[msg.sender] = AuctionBid(uint192(newBid), false); currentAuction.totalAmountBid += (msg.value).toUint128(); // if the auction is in the last 3 minutes, extend it if (block.timestamp + AUCTION_EXTEND_TIME >= endTime) { currentAuction.endTime = endTime + AUCTION_EXTEND_TIME; } emit BidEntered(auctionId, msg.sender, newBid); } function bulkSettleWinners(uint256 auctionId) external onlyOwnerOrRoles(MANAGER_ROLE) { require(auctionId < _auctions.length, OutOfBounds()); Auction storage auction = _auctions[auctionId]; require(auction.endTime < block.timestamp, AuctionNotEnded()); uint256[] memory winningBids = auction.bids.smallest(auction.winnerCount); for (uint256 i; i < winningBids.length; ++i) { (address user,) = _unpackBid(winningBids[i]); _settleAuction(auctionId, auction, winningBids, user); } } function bulkSettleAuction(uint256 auctionId, address[] calldata users) external onlyOwnerOrRoles(MANAGER_ROLE) { require(auctionId < _auctions.length, OutOfBounds()); Auction storage auction = _auctions[auctionId]; require(auction.endTime < block.timestamp, AuctionNotEnded()); uint256[] memory winningBids = auction.bids.smallest(auction.winnerCount); for (uint256 i; i < users.length; ++i) { _settleAuction(auctionId, auction, winningBids, users[i]); } } function settleAuction(uint256 auctionId, address user) external { if (msg.sender != user) { if (!hasAllRoles(msg.sender, MANAGER_ROLE)) { // only the owner or manager can settle on behalf of another user revert Unauthorized(); } } require(auctionId < _auctions.length, OutOfBounds()); Auction storage auction = _auctions[auctionId]; require(auction.endTime < block.timestamp, AuctionNotEnded()); uint256[] memory winningBids = auction.bids.smallest(auction.winnerCount); _settleAuction(auctionId, auction, winningBids, user); } function setRenderer(address _renderer) external onlyOwner { renderer = _renderer; } function addMintStage(StageType stageType, uint8 maxForStage, bytes32 merkleRoot, bool makeActive) external onlyOwnerOrRoles(MANAGER_ROLE) { uint8 stageId = uint8(mintStages.length); mintStages.push( MintStage({ stageId: stageId, stageType: stageType, maxForStage: maxForStage, mintedInStage: 0, merkleRoot: merkleRoot }) ); emit MintStageAdded(stageId, stageType); if (makeActive) { setCurrentMintStage(stageId); } } function addAuction(uint128 startingBid, uint40 startTime, uint40 endTime, uint8 winnerCount) external onlyOwnerOrRoles(MANAGER_ROLE) { require(startTime < endTime, InvalidAuctionConfiguration()); require(winnerCount > 0, InvalidAuctionConfiguration()); Auction storage auction = _auctions.push(); auction.startingBid = startingBid; auction.startTime = startTime; auction.endTime = endTime; auction.winnerCount = winnerCount; emit AuctionAdded(_auctions.length - 1, startTime); } function getCurrentMintStageIndex() external view returns (uint8) { return _currentMintStage; } /// @notice Get the minimum valid winning bid /// @param auctionId The auction to check /// @return The minimum bid amount required to be winning function getRequiredBidAmount(address user, uint256 auctionId) external view returns (uint256) { require(auctionId < _auctions.length, OutOfBounds()); Auction storage currentAuction = _auctions[auctionId]; uint256 currentBid = currentAuction.userBids[user].amount; uint256[] memory topBids = currentAuction.bids.smallest(currentAuction.winnerCount); return _getRequiredBidAmount(currentBid, topBids, currentAuction.startingBid, currentAuction.winnerCount); } /// @notice Get all current winning bids and their positions /// @param auctionId The auction to check /// @return amounts Array of current winning bid amounts function getBids(uint256 auctionId, uint256 count) external view returns (uint256[] memory amounts, address[] memory users) { require(auctionId < _auctions.length, OutOfBounds()); Auction storage auction = _auctions[auctionId]; uint256[] memory bids = auction.bids.smallest(count); amounts = new uint256[](bids.length); users = new address[](bids.length); for (uint256 i; i < bids.length; ++i) { amounts[i] = ~bids[i] >> 160; users[i] = address(uint160(~bids[i])); } } function getAuctions() external view returns (AuctionViewModel[] memory) { AuctionViewModel[] memory allAuctions = new AuctionViewModel[](_auctions.length); for (uint256 i; i < allAuctions.length; ++i) { allAuctions[i] = getAuction(i); } return allAuctions; } function getBidForUser(uint256 auctionId, address user) external view returns (AuctionBid memory) { if (auctionId >= _auctions.length) { revert OutOfBounds(); } Auction storage auction = _auctions[auctionId]; return auction.userBids[user]; } function getBurnedTokenIds(uint256 tokenId) external view returns (uint256[] memory) { uint256[] memory ids = new uint256[](BURN_AMOUNT); uint256 packedTokenIds = _burnedTokenIds[tokenId]; if (packedTokenIds == 0) { return ids; } for (uint256 i; i < BURN_AMOUNT; ++i) { uint256 burnedTokenId = (packedTokenIds >> (i * 16)) & 0xFFFF; ids[i] = burnedTokenId; } return ids; } function setCurrentMintStage(uint8 index) public onlyOwnerOrRoles(MANAGER_ROLE) { if (index > mintStages.length) { revert OutOfBounds(); } _currentMintStage = index; emit MintStageActivated(index); } function tokenURI(uint256 tokenId) public view override returns (string memory) { return IERC721TokenURI(renderer).tokenURI(tokenId); } function currentMintStage() public view returns (MintStage memory) { return mintStages[_currentMintStage]; } function totalSupply() public view returns (uint256) { return _tokenIndex; } function getAuction(uint256 auctionId) public view returns (AuctionViewModel memory) { if (auctionId >= _auctions.length) { revert OutOfBounds(); } Auction storage auction = _auctions[auctionId]; return AuctionViewModel({ auctionId: auctionId, startTime: auction.startTime, endTime: auction.endTime, startingBid: auction.startingBid, winnerCount: auction.winnerCount, totalAmountBid: auction.totalAmountBid }); } function name() public pure override returns (string memory) { return "COSMOS: A RENGA Collection"; } function symbol() public pure override returns (string memory) { return "COSMOS"; } function _settleAuction( uint256 auctionId, Auction storage auction, uint256[] memory packedWinningBids, address user ) internal { AuctionBid memory bid = auction.userBids[user]; if (bid.settled) { return; } // mark this as settled before transferring auction.userBids[user].settled = true; uint256 lowestWinningBid; if (packedWinningBids.length == 0) { revert NoBids(); } else { lowestWinningBid = packedWinningBids[packedWinningBids.length - 1]; } uint256 packedUserBidAmount = _packBid(user, bid.amount); if (bid.amount > 0) { if (packedUserBidAmount <= lowestWinningBid) { // mint the token and transfer the bid amount to the owner _mint(msg.sender, ++_tokenIndex); (bool success,) = owner().call{value: bid.amount}(""); require(success, TransferFailed()); } else { // refund bid (bool success,) = user.call{value: bid.amount}(""); require(success, TransferFailed()); } emit AuctionSettled(auctionId, user, bid.amount); } } function _authorizeUpgrade(address newImplementation) internal view override onlyOwner {} function _getRequiredBidAmount( uint256 currentBid, uint256[] memory topBids, uint256 startingBid, uint256 winnerCount ) internal view returns (uint256) { uint256 minBid; uint256 minPackedBid; if (topBids.length > 0) { minPackedBid = topBids[topBids.length - 1]; } if (topBids.length < winnerCount) { minBid = startingBid; } else { (, minBid) = _unpackBid(minPackedBid); minBid += BID_INCREMENT; } if (_packBid(msg.sender, currentBid) <= minPackedBid) { return currentBid; } return minBid; } function _packBid(address user, uint256 amount) internal pure returns (uint256) { return ~(amount << 160 ^ uint256(uint160(user))); } function _unpackBid(uint256 packedBid) internal pure returns (address user, uint256 amount) { packedBid = ~packedBid; user = address(uint160(packedBid & ((1 << 160) - 1))); amount = packedBid >> 160; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; import {Ownable} from "./Ownable.sol"; /// @notice Simple single owner and multiroles authorization mixin. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/OwnableRoles.sol) /// /// @dev Note: /// This implementation does NOT auto-initialize the owner to `msg.sender`. /// You MUST call the `_initializeOwner` in the constructor / initializer. /// /// While the ownable portion follows /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility, /// the nomenclature for the 2-step ownership handover may be unique to this codebase. abstract contract OwnableRoles is Ownable { /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The `user`'s roles is updated to `roles`. /// Each bit of `roles` represents whether the role is set. event RolesUpdated(address indexed user, uint256 indexed roles); /// @dev `keccak256(bytes("RolesUpdated(address,uint256)"))`. uint256 private constant _ROLES_UPDATED_EVENT_SIGNATURE = 0x715ad5ce61fc9595c7b415289d59cf203f23a94fa06f04af7e489a0a76e1fe26; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The role slot of `user` is given by: /// ``` /// mstore(0x00, or(shl(96, user), _ROLE_SLOT_SEED)) /// let roleSlot := keccak256(0x00, 0x20) /// ``` /// This automatically ignores the upper bits of the `user` in case /// they are not clean, as well as keep the `keccak256` under 32-bytes. /// /// Note: This is equivalent to `uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))`. uint256 private constant _ROLE_SLOT_SEED = 0x8b78c6d8; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* INTERNAL FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Overwrite the roles directly without authorization guard. function _setRoles(address user, uint256 roles) internal virtual { /// @solidity memory-safe-assembly assembly { mstore(0x0c, _ROLE_SLOT_SEED) mstore(0x00, user) // Store the new value. sstore(keccak256(0x0c, 0x20), roles) // Emit the {RolesUpdated} event. log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), roles) } } /// @dev Updates the roles directly without authorization guard. /// If `on` is true, each set bit of `roles` will be turned on, /// otherwise, each set bit of `roles` will be turned off. function _updateRoles(address user, uint256 roles, bool on) internal virtual { /// @solidity memory-safe-assembly assembly { mstore(0x0c, _ROLE_SLOT_SEED) mstore(0x00, user) let roleSlot := keccak256(0x0c, 0x20) // Load the current value. let current := sload(roleSlot) // Compute the updated roles if `on` is true. let updated := or(current, roles) // Compute the updated roles if `on` is false. // Use `and` to compute the intersection of `current` and `roles`, // `xor` it with `current` to flip the bits in the intersection. if iszero(on) { updated := xor(current, and(current, roles)) } // Then, store the new value. sstore(roleSlot, updated) // Emit the {RolesUpdated} event. log3(0, 0, _ROLES_UPDATED_EVENT_SIGNATURE, shr(96, mload(0x0c)), updated) } } /// @dev Grants the roles directly without authorization guard. /// Each bit of `roles` represents the role to turn on. function _grantRoles(address user, uint256 roles) internal virtual { _updateRoles(user, roles, true); } /// @dev Removes the roles directly without authorization guard. /// Each bit of `roles` represents the role to turn off. function _removeRoles(address user, uint256 roles) internal virtual { _updateRoles(user, roles, false); } /// @dev Throws if the sender does not have any of the `roles`. function _checkRoles(uint256 roles) internal view virtual { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x0c, _ROLE_SLOT_SEED) mstore(0x00, caller()) // Load the stored value, and if the `and` intersection // of the value and `roles` is zero, revert. if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) { mstore(0x00, 0x82b42900) // `Unauthorized()`. revert(0x1c, 0x04) } } } /// @dev Throws if the sender is not the owner, /// and does not have any of the `roles`. /// Checks for ownership first, then lazily checks for roles. function _checkOwnerOrRoles(uint256 roles) internal view virtual { /// @solidity memory-safe-assembly assembly { // If the caller is not the stored owner. // Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`. if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) { // Compute the role slot. mstore(0x0c, _ROLE_SLOT_SEED) mstore(0x00, caller()) // Load the stored value, and if the `and` intersection // of the value and `roles` is zero, revert. if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) { mstore(0x00, 0x82b42900) // `Unauthorized()`. revert(0x1c, 0x04) } } } } /// @dev Throws if the sender does not have any of the `roles`, /// and is not the owner. /// Checks for roles first, then lazily checks for ownership. function _checkRolesOrOwner(uint256 roles) internal view virtual { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x0c, _ROLE_SLOT_SEED) mstore(0x00, caller()) // Load the stored value, and if the `and` intersection // of the value and `roles` is zero, revert. if iszero(and(sload(keccak256(0x0c, 0x20)), roles)) { // If the caller is not the stored owner. // Note: `_ROLE_SLOT_SEED` is equal to `_OWNER_SLOT_NOT`. if iszero(eq(caller(), sload(not(_ROLE_SLOT_SEED)))) { mstore(0x00, 0x82b42900) // `Unauthorized()`. revert(0x1c, 0x04) } } } } /// @dev Convenience function to return a `roles` bitmap from an array of `ordinals`. /// This is meant for frontends like Etherscan, and is therefore not fully optimized. /// Not recommended to be called on-chain. /// Made internal to conserve bytecode. Wrap it in a public function if needed. function _rolesFromOrdinals(uint8[] memory ordinals) internal pure returns (uint256 roles) { /// @solidity memory-safe-assembly assembly { for { let i := shl(5, mload(ordinals)) } i { i := sub(i, 0x20) } { // We don't need to mask the values of `ordinals`, as Solidity // cleans dirty upper bits when storing variables into memory. roles := or(shl(mload(add(ordinals, i)), 1), roles) } } } /// @dev Convenience function to return an array of `ordinals` from the `roles` bitmap. /// This is meant for frontends like Etherscan, and is therefore not fully optimized. /// Not recommended to be called on-chain. /// Made internal to conserve bytecode. Wrap it in a public function if needed. function _ordinalsFromRoles(uint256 roles) internal pure returns (uint8[] memory ordinals) { /// @solidity memory-safe-assembly assembly { // Grab the pointer to the free memory. ordinals := mload(0x40) let ptr := add(ordinals, 0x20) let o := 0 // The absence of lookup tables, De Bruijn, etc., here is intentional for // smaller bytecode, as this function is not meant to be called on-chain. for { let t := roles } 1 {} { mstore(ptr, o) // `shr` 5 is equivalent to multiplying by 0x20. // Push back into the ordinals array if the bit is set. ptr := add(ptr, shl(5, and(t, 1))) o := add(o, 1) t := shr(o, roles) if iszero(t) { break } } // Store the length of `ordinals`. mstore(ordinals, shr(5, sub(ptr, add(ordinals, 0x20)))) // Allocate the memory. mstore(0x40, ptr) } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* PUBLIC UPDATE FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Allows the owner to grant `user` `roles`. /// If the `user` already has a role, then it will be an no-op for the role. function grantRoles(address user, uint256 roles) public payable virtual onlyOwner { _grantRoles(user, roles); } /// @dev Allows the owner to remove `user` `roles`. /// If the `user` does not have a role, then it will be an no-op for the role. function revokeRoles(address user, uint256 roles) public payable virtual onlyOwner { _removeRoles(user, roles); } /// @dev Allow the caller to remove their own roles. /// If the caller does not have a role, then it will be an no-op for the role. function renounceRoles(uint256 roles) public payable virtual { _removeRoles(msg.sender, roles); } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* PUBLIC READ FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns the roles of `user`. function rolesOf(address user) public view virtual returns (uint256 roles) { /// @solidity memory-safe-assembly assembly { // Compute the role slot. mstore(0x0c, _ROLE_SLOT_SEED) mstore(0x00, user) // Load the stored value. roles := sload(keccak256(0x0c, 0x20)) } } /// @dev Returns whether `user` has any of `roles`. function hasAnyRole(address user, uint256 roles) public view virtual returns (bool) { return rolesOf(user) & roles != 0; } /// @dev Returns whether `user` has all of `roles`. function hasAllRoles(address user, uint256 roles) public view virtual returns (bool) { return rolesOf(user) & roles == roles; } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* MODIFIERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Marks a function as only callable by an account with `roles`. modifier onlyRoles(uint256 roles) virtual { _checkRoles(roles); _; } /// @dev Marks a function as only callable by the owner or by an account /// with `roles`. Checks for ownership first, then lazily checks for roles. modifier onlyOwnerOrRoles(uint256 roles) virtual { _checkOwnerOrRoles(roles); _; } /// @dev Marks a function as only callable by an account with `roles` /// or the owner. Checks for roles first, then lazily checks for ownership. modifier onlyRolesOrOwner(uint256 roles) virtual { _checkRolesOrOwner(roles); _; } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* ROLE CONSTANTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ // IYKYK uint256 internal constant _ROLE_0 = 1 << 0; uint256 internal constant _ROLE_1 = 1 << 1; uint256 internal constant _ROLE_2 = 1 << 2; uint256 internal constant _ROLE_3 = 1 << 3; uint256 internal constant _ROLE_4 = 1 << 4; uint256 internal constant _ROLE_5 = 1 << 5; uint256 internal constant _ROLE_6 = 1 << 6; uint256 internal constant _ROLE_7 = 1 << 7; uint256 internal constant _ROLE_8 = 1 << 8; uint256 internal constant _ROLE_9 = 1 << 9; uint256 internal constant _ROLE_10 = 1 << 10; uint256 internal constant _ROLE_11 = 1 << 11; uint256 internal constant _ROLE_12 = 1 << 12; uint256 internal constant _ROLE_13 = 1 << 13; uint256 internal constant _ROLE_14 = 1 << 14; uint256 internal constant _ROLE_15 = 1 << 15; uint256 internal constant _ROLE_16 = 1 << 16; uint256 internal constant _ROLE_17 = 1 << 17; uint256 internal constant _ROLE_18 = 1 << 18; uint256 internal constant _ROLE_19 = 1 << 19; uint256 internal constant _ROLE_20 = 1 << 20; uint256 internal constant _ROLE_21 = 1 << 21; uint256 internal constant _ROLE_22 = 1 << 22; uint256 internal constant _ROLE_23 = 1 << 23; uint256 internal constant _ROLE_24 = 1 << 24; uint256 internal constant _ROLE_25 = 1 << 25; uint256 internal constant _ROLE_26 = 1 << 26; uint256 internal constant _ROLE_27 = 1 << 27; uint256 internal constant _ROLE_28 = 1 << 28; uint256 internal constant _ROLE_29 = 1 << 29; uint256 internal constant _ROLE_30 = 1 << 30; uint256 internal constant _ROLE_31 = 1 << 31; uint256 internal constant _ROLE_32 = 1 << 32; uint256 internal constant _ROLE_33 = 1 << 33; uint256 internal constant _ROLE_34 = 1 << 34; uint256 internal constant _ROLE_35 = 1 << 35; uint256 internal constant _ROLE_36 = 1 << 36; uint256 internal constant _ROLE_37 = 1 << 37; uint256 internal constant _ROLE_38 = 1 << 38; uint256 internal constant _ROLE_39 = 1 << 39; uint256 internal constant _ROLE_40 = 1 << 40; uint256 internal constant _ROLE_41 = 1 << 41; uint256 internal constant _ROLE_42 = 1 << 42; uint256 internal constant _ROLE_43 = 1 << 43; uint256 internal constant _ROLE_44 = 1 << 44; uint256 internal constant _ROLE_45 = 1 << 45; uint256 internal constant _ROLE_46 = 1 << 46; uint256 internal constant _ROLE_47 = 1 << 47; uint256 internal constant _ROLE_48 = 1 << 48; uint256 internal constant _ROLE_49 = 1 << 49; uint256 internal constant _ROLE_50 = 1 << 50; uint256 internal constant _ROLE_51 = 1 << 51; uint256 internal constant _ROLE_52 = 1 << 52; uint256 internal constant _ROLE_53 = 1 << 53; uint256 internal constant _ROLE_54 = 1 << 54; uint256 internal constant _ROLE_55 = 1 << 55; uint256 internal constant _ROLE_56 = 1 << 56; uint256 internal constant _ROLE_57 = 1 << 57; uint256 internal constant _ROLE_58 = 1 << 58; uint256 internal constant _ROLE_59 = 1 << 59; uint256 internal constant _ROLE_60 = 1 << 60; uint256 internal constant _ROLE_61 = 1 << 61; uint256 internal constant _ROLE_62 = 1 << 62; uint256 internal constant _ROLE_63 = 1 << 63; uint256 internal constant _ROLE_64 = 1 << 64; uint256 internal constant _ROLE_65 = 1 << 65; uint256 internal constant _ROLE_66 = 1 << 66; uint256 internal constant _ROLE_67 = 1 << 67; uint256 internal constant _ROLE_68 = 1 << 68; uint256 internal constant _ROLE_69 = 1 << 69; uint256 internal constant _ROLE_70 = 1 << 70; uint256 internal constant _ROLE_71 = 1 << 71; uint256 internal constant _ROLE_72 = 1 << 72; uint256 internal constant _ROLE_73 = 1 << 73; uint256 internal constant _ROLE_74 = 1 << 74; uint256 internal constant _ROLE_75 = 1 << 75; uint256 internal constant _ROLE_76 = 1 << 76; uint256 internal constant _ROLE_77 = 1 << 77; uint256 internal constant _ROLE_78 = 1 << 78; uint256 internal constant _ROLE_79 = 1 << 79; uint256 internal constant _ROLE_80 = 1 << 80; uint256 internal constant _ROLE_81 = 1 << 81; uint256 internal constant _ROLE_82 = 1 << 82; uint256 internal constant _ROLE_83 = 1 << 83; uint256 internal constant _ROLE_84 = 1 << 84; uint256 internal constant _ROLE_85 = 1 << 85; uint256 internal constant _ROLE_86 = 1 << 86; uint256 internal constant _ROLE_87 = 1 << 87; uint256 internal constant _ROLE_88 = 1 << 88; uint256 internal constant _ROLE_89 = 1 << 89; uint256 internal constant _ROLE_90 = 1 << 90; uint256 internal constant _ROLE_91 = 1 << 91; uint256 internal constant _ROLE_92 = 1 << 92; uint256 internal constant _ROLE_93 = 1 << 93; uint256 internal constant _ROLE_94 = 1 << 94; uint256 internal constant _ROLE_95 = 1 << 95; uint256 internal constant _ROLE_96 = 1 << 96; uint256 internal constant _ROLE_97 = 1 << 97; uint256 internal constant _ROLE_98 = 1 << 98; uint256 internal constant _ROLE_99 = 1 << 99; uint256 internal constant _ROLE_100 = 1 << 100; uint256 internal constant _ROLE_101 = 1 << 101; uint256 internal constant _ROLE_102 = 1 << 102; uint256 internal constant _ROLE_103 = 1 << 103; uint256 internal constant _ROLE_104 = 1 << 104; uint256 internal constant _ROLE_105 = 1 << 105; uint256 internal constant _ROLE_106 = 1 << 106; uint256 internal constant _ROLE_107 = 1 << 107; uint256 internal constant _ROLE_108 = 1 << 108; uint256 internal constant _ROLE_109 = 1 << 109; uint256 internal constant _ROLE_110 = 1 << 110; uint256 internal constant _ROLE_111 = 1 << 111; uint256 internal constant _ROLE_112 = 1 << 112; uint256 internal constant _ROLE_113 = 1 << 113; uint256 internal constant _ROLE_114 = 1 << 114; uint256 internal constant _ROLE_115 = 1 << 115; uint256 internal constant _ROLE_116 = 1 << 116; uint256 internal constant _ROLE_117 = 1 << 117; uint256 internal constant _ROLE_118 = 1 << 118; uint256 internal constant _ROLE_119 = 1 << 119; uint256 internal constant _ROLE_120 = 1 << 120; uint256 internal constant _ROLE_121 = 1 << 121; uint256 internal constant _ROLE_122 = 1 << 122; uint256 internal constant _ROLE_123 = 1 << 123; uint256 internal constant _ROLE_124 = 1 << 124; uint256 internal constant _ROLE_125 = 1 << 125; uint256 internal constant _ROLE_126 = 1 << 126; uint256 internal constant _ROLE_127 = 1 << 127; uint256 internal constant _ROLE_128 = 1 << 128; uint256 internal constant _ROLE_129 = 1 << 129; uint256 internal constant _ROLE_130 = 1 << 130; uint256 internal constant _ROLE_131 = 1 << 131; uint256 internal constant _ROLE_132 = 1 << 132; uint256 internal constant _ROLE_133 = 1 << 133; uint256 internal constant _ROLE_134 = 1 << 134; uint256 internal constant _ROLE_135 = 1 << 135; uint256 internal constant _ROLE_136 = 1 << 136; uint256 internal constant _ROLE_137 = 1 << 137; uint256 internal constant _ROLE_138 = 1 << 138; uint256 internal constant _ROLE_139 = 1 << 139; uint256 internal constant _ROLE_140 = 1 << 140; uint256 internal constant _ROLE_141 = 1 << 141; uint256 internal constant _ROLE_142 = 1 << 142; uint256 internal constant _ROLE_143 = 1 << 143; uint256 internal constant _ROLE_144 = 1 << 144; uint256 internal constant _ROLE_145 = 1 << 145; uint256 internal constant _ROLE_146 = 1 << 146; uint256 internal constant _ROLE_147 = 1 << 147; uint256 internal constant _ROLE_148 = 1 << 148; uint256 internal constant _ROLE_149 = 1 << 149; uint256 internal constant _ROLE_150 = 1 << 150; uint256 internal constant _ROLE_151 = 1 << 151; uint256 internal constant _ROLE_152 = 1 << 152; uint256 internal constant _ROLE_153 = 1 << 153; uint256 internal constant _ROLE_154 = 1 << 154; uint256 internal constant _ROLE_155 = 1 << 155; uint256 internal constant _ROLE_156 = 1 << 156; uint256 internal constant _ROLE_157 = 1 << 157; uint256 internal constant _ROLE_158 = 1 << 158; uint256 internal constant _ROLE_159 = 1 << 159; uint256 internal constant _ROLE_160 = 1 << 160; uint256 internal constant _ROLE_161 = 1 << 161; uint256 internal constant _ROLE_162 = 1 << 162; uint256 internal constant _ROLE_163 = 1 << 163; uint256 internal constant _ROLE_164 = 1 << 164; uint256 internal constant _ROLE_165 = 1 << 165; uint256 internal constant _ROLE_166 = 1 << 166; uint256 internal constant _ROLE_167 = 1 << 167; uint256 internal constant _ROLE_168 = 1 << 168; uint256 internal constant _ROLE_169 = 1 << 169; uint256 internal constant _ROLE_170 = 1 << 170; uint256 internal constant _ROLE_171 = 1 << 171; uint256 internal constant _ROLE_172 = 1 << 172; uint256 internal constant _ROLE_173 = 1 << 173; uint256 internal constant _ROLE_174 = 1 << 174; uint256 internal constant _ROLE_175 = 1 << 175; uint256 internal constant _ROLE_176 = 1 << 176; uint256 internal constant _ROLE_177 = 1 << 177; uint256 internal constant _ROLE_178 = 1 << 178; uint256 internal constant _ROLE_179 = 1 << 179; uint256 internal constant _ROLE_180 = 1 << 180; uint256 internal constant _ROLE_181 = 1 << 181; uint256 internal constant _ROLE_182 = 1 << 182; uint256 internal constant _ROLE_183 = 1 << 183; uint256 internal constant _ROLE_184 = 1 << 184; uint256 internal constant _ROLE_185 = 1 << 185; uint256 internal constant _ROLE_186 = 1 << 186; uint256 internal constant _ROLE_187 = 1 << 187; uint256 internal constant _ROLE_188 = 1 << 188; uint256 internal constant _ROLE_189 = 1 << 189; uint256 internal constant _ROLE_190 = 1 << 190; uint256 internal constant _ROLE_191 = 1 << 191; uint256 internal constant _ROLE_192 = 1 << 192; uint256 internal constant _ROLE_193 = 1 << 193; uint256 internal constant _ROLE_194 = 1 << 194; uint256 internal constant _ROLE_195 = 1 << 195; uint256 internal constant _ROLE_196 = 1 << 196; uint256 internal constant _ROLE_197 = 1 << 197; uint256 internal constant _ROLE_198 = 1 << 198; uint256 internal constant _ROLE_199 = 1 << 199; uint256 internal constant _ROLE_200 = 1 << 200; uint256 internal constant _ROLE_201 = 1 << 201; uint256 internal constant _ROLE_202 = 1 << 202; uint256 internal constant _ROLE_203 = 1 << 203; uint256 internal constant _ROLE_204 = 1 << 204; uint256 internal constant _ROLE_205 = 1 << 205; uint256 internal constant _ROLE_206 = 1 << 206; uint256 internal constant _ROLE_207 = 1 << 207; uint256 internal constant _ROLE_208 = 1 << 208; uint256 internal constant _ROLE_209 = 1 << 209; uint256 internal constant _ROLE_210 = 1 << 210; uint256 internal constant _ROLE_211 = 1 << 211; uint256 internal constant _ROLE_212 = 1 << 212; uint256 internal constant _ROLE_213 = 1 << 213; uint256 internal constant _ROLE_214 = 1 << 214; uint256 internal constant _ROLE_215 = 1 << 215; uint256 internal constant _ROLE_216 = 1 << 216; uint256 internal constant _ROLE_217 = 1 << 217; uint256 internal constant _ROLE_218 = 1 << 218; uint256 internal constant _ROLE_219 = 1 << 219; uint256 internal constant _ROLE_220 = 1 << 220; uint256 internal constant _ROLE_221 = 1 << 221; uint256 internal constant _ROLE_222 = 1 << 222; uint256 internal constant _ROLE_223 = 1 << 223; uint256 internal constant _ROLE_224 = 1 << 224; uint256 internal constant _ROLE_225 = 1 << 225; uint256 internal constant _ROLE_226 = 1 << 226; uint256 internal constant _ROLE_227 = 1 << 227; uint256 internal constant _ROLE_228 = 1 << 228; uint256 internal constant _ROLE_229 = 1 << 229; uint256 internal constant _ROLE_230 = 1 << 230; uint256 internal constant _ROLE_231 = 1 << 231; uint256 internal constant _ROLE_232 = 1 << 232; uint256 internal constant _ROLE_233 = 1 << 233; uint256 internal constant _ROLE_234 = 1 << 234; uint256 internal constant _ROLE_235 = 1 << 235; uint256 internal constant _ROLE_236 = 1 << 236; uint256 internal constant _ROLE_237 = 1 << 237; uint256 internal constant _ROLE_238 = 1 << 238; uint256 internal constant _ROLE_239 = 1 << 239; uint256 internal constant _ROLE_240 = 1 << 240; uint256 internal constant _ROLE_241 = 1 << 241; uint256 internal constant _ROLE_242 = 1 << 242; uint256 internal constant _ROLE_243 = 1 << 243; uint256 internal constant _ROLE_244 = 1 << 244; uint256 internal constant _ROLE_245 = 1 << 245; uint256 internal constant _ROLE_246 = 1 << 246; uint256 internal constant _ROLE_247 = 1 << 247; uint256 internal constant _ROLE_248 = 1 << 248; uint256 internal constant _ROLE_249 = 1 << 249; uint256 internal constant _ROLE_250 = 1 << 250; uint256 internal constant _ROLE_251 = 1 << 251; uint256 internal constant _ROLE_252 = 1 << 252; uint256 internal constant _ROLE_253 = 1 << 253; uint256 internal constant _ROLE_254 = 1 << 254; uint256 internal constant _ROLE_255 = 1 << 255; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple ERC721 implementation with storage hitchhiking. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/tokens/ERC721.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC721.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/tree/master/contracts/token/ERC721/ERC721.sol) /// /// @dev Note: /// - The ERC721 standard allows for self-approvals. /// For performance, this implementation WILL NOT revert for such actions. /// Please add any checks with overrides if desired. /// - For performance, methods are made payable where permitted by the ERC721 standard. /// - The `safeTransfer` functions use the identity precompile (0x4) /// to copy memory internally. /// /// If you are overriding: /// - NEVER violate the ERC721 invariant: /// the balance of an owner MUST always be equal to their number of ownership slots. /// The transfer functions do not have an underflow guard for user token balances. /// - Make sure all variables written to storage are properly cleaned // (e.g. the bool value for `isApprovedForAll` MUST be either 1 or 0 under the hood). /// - Check that the overridden function is actually used in the function you want to /// change the behavior of. Much of the code has been manually inlined for performance. abstract contract ERC721 { /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev An account can hold up to 4294967295 tokens. uint256 internal constant _MAX_ACCOUNT_BALANCE = 0xffffffff; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Only the token owner or an approved account can manage the token. error NotOwnerNorApproved(); /// @dev The token does not exist. error TokenDoesNotExist(); /// @dev The token already exists. error TokenAlreadyExists(); /// @dev Cannot query the balance for the zero address. error BalanceQueryForZeroAddress(); /// @dev Cannot mint or transfer to the zero address. error TransferToZeroAddress(); /// @dev The token must be owned by `from`. error TransferFromIncorrectOwner(); /// @dev The recipient's balance has overflowed. error AccountBalanceOverflow(); /// @dev Cannot safely transfer to a contract that does not implement /// the ERC721Receiver interface. error TransferToNonERC721ReceiverImplementer(); /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Emitted when token `id` is transferred from `from` to `to`. event Transfer(address indexed from, address indexed to, uint256 indexed id); /// @dev Emitted when `owner` enables `account` to manage the `id` token. event Approval(address indexed owner, address indexed account, uint256 indexed id); /// @dev Emitted when `owner` enables or disables `operator` to manage all of their tokens. event ApprovalForAll(address indexed owner, address indexed operator, bool isApproved); /// @dev `keccak256(bytes("Transfer(address,address,uint256)"))`. uint256 private constant _TRANSFER_EVENT_SIGNATURE = 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef; /// @dev `keccak256(bytes("Approval(address,address,uint256)"))`. uint256 private constant _APPROVAL_EVENT_SIGNATURE = 0x8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925; /// @dev `keccak256(bytes("ApprovalForAll(address,address,bool)"))`. uint256 private constant _APPROVAL_FOR_ALL_EVENT_SIGNATURE = 0x17307eab39ab6107e8899845ad3d59bd9653f200f220920489ca2b5937696c31; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The ownership data slot of `id` is given by: /// ``` /// mstore(0x00, id) /// mstore(0x1c, _ERC721_MASTER_SLOT_SEED) /// let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) /// ``` /// Bits Layout: /// - [0..159] `addr` /// - [160..255] `extraData` /// /// The approved address slot is given by: `add(1, ownershipSlot)`. /// /// See: https://notes.ethereum.org/%40vbuterin/verkle_tree_eip /// /// The balance slot of `owner` is given by: /// ``` /// mstore(0x1c, _ERC721_MASTER_SLOT_SEED) /// mstore(0x00, owner) /// let balanceSlot := keccak256(0x0c, 0x1c) /// ``` /// Bits Layout: /// - [0..31] `balance` /// - [32..255] `aux` /// /// The `operator` approval slot of `owner` is given by: /// ``` /// mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator)) /// mstore(0x00, owner) /// let operatorApprovalSlot := keccak256(0x0c, 0x30) /// ``` uint256 private constant _ERC721_MASTER_SLOT_SEED = 0x7d8825530a5a2e7a << 192; /// @dev Pre-shifted and pre-masked constant. uint256 private constant _ERC721_MASTER_SLOT_SEED_MASKED = 0x0a5a2e7a00000000; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* ERC721 METADATA */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns the token collection name. function name() public view virtual returns (string memory); /// @dev Returns the token collection symbol. function symbol() public view virtual returns (string memory); /// @dev Returns the Uniform Resource Identifier (URI) for token `id`. function tokenURI(uint256 id) public view virtual returns (string memory); /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* ERC721 */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns the owner of token `id`. /// /// Requirements: /// - Token `id` must exist. function ownerOf(uint256 id) public view virtual returns (address result) { result = _ownerOf(id); /// @solidity memory-safe-assembly assembly { if iszero(result) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } } } /// @dev Returns the number of tokens owned by `owner`. /// /// Requirements: /// - `owner` must not be the zero address. function balanceOf(address owner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Revert if the `owner` is the zero address. if iszero(owner) { mstore(0x00, 0x8f4eb604) // `BalanceQueryForZeroAddress()`. revert(0x1c, 0x04) } mstore(0x1c, _ERC721_MASTER_SLOT_SEED) mstore(0x00, owner) result := and(sload(keccak256(0x0c, 0x1c)), _MAX_ACCOUNT_BALANCE) } } /// @dev Returns the account approved to manage token `id`. /// /// Requirements: /// - Token `id` must exist. function getApproved(uint256 id) public view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) if iszero(shl(96, sload(ownershipSlot))) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } result := sload(add(1, ownershipSlot)) } } /// @dev Sets `account` as the approved account to manage token `id`. /// /// Requirements: /// - Token `id` must exist. /// - The caller must be the owner of the token, /// or an approved operator for the token owner. /// /// Emits an {Approval} event. function approve(address account, uint256 id) public payable virtual { _approve(msg.sender, account, id); } /// @dev Returns whether `operator` is approved to manage the tokens of `owner`. function isApprovedForAll(address owner, address operator) public view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { mstore(0x1c, operator) mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED) mstore(0x00, owner) result := sload(keccak256(0x0c, 0x30)) } } /// @dev Sets whether `operator` is approved to manage the tokens of the caller. /// /// Emits an {ApprovalForAll} event. function setApprovalForAll(address operator, bool isApproved) public virtual { /// @solidity memory-safe-assembly assembly { // Convert to 0 or 1. isApproved := iszero(iszero(isApproved)) // Update the `isApproved` for (`msg.sender`, `operator`). mstore(0x1c, operator) mstore(0x08, _ERC721_MASTER_SLOT_SEED_MASKED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x30), isApproved) // Emit the {ApprovalForAll} event. mstore(0x00, isApproved) // forgefmt: disable-next-item log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, caller(), shr(96, shl(96, operator))) } } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - The caller must be the owner of the token, or be approved to manage the token. /// /// Emits a {Transfer} event. function transferFrom(address from, address to, uint256 id) public payable virtual { _beforeTokenTransfer(from, to, id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. let bitmaskAddress := shr(96, not(0)) from := and(bitmaskAddress, from) to := and(bitmaskAddress, to) // Load the ownership data. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, caller())) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let ownershipPacked := sload(ownershipSlot) let owner := and(bitmaskAddress, ownershipPacked) // Revert if the token does not exist, or if `from` is not the owner. if iszero(mul(owner, eq(owner, from))) { // `TokenDoesNotExist()`, `TransferFromIncorrectOwner()`. mstore(shl(2, iszero(owner)), 0xceea21b6a1148100) revert(0x1c, 0x04) } // Load, check, and update the token approval. { mstore(0x00, from) let approvedAddress := sload(add(1, ownershipSlot)) // Revert if the caller is not the owner, nor approved. if iszero(or(eq(caller(), from), eq(caller(), approvedAddress))) { if iszero(sload(keccak256(0x0c, 0x30))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Delete the approved address if any. if approvedAddress { sstore(add(1, ownershipSlot), 0) } } // Update with the new owner. sstore(ownershipSlot, xor(ownershipPacked, xor(from, to))) // Decrement the balance of `from`. { let fromBalanceSlot := keccak256(0x0c, 0x1c) sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1)) } // Increment the balance of `to`. { mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x1c) let toBalanceSlotPacked := add(sload(toBalanceSlot), 1) // Revert if `to` is the zero address, or if the account balance overflows. if iszero(mul(to, and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE))) { // `TransferToZeroAddress()`, `AccountBalanceOverflow()`. mstore(shl(2, iszero(to)), 0xea553b3401336cea) revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceSlotPacked) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id) } _afterTokenTransfer(from, to, id); } /// @dev Equivalent to `safeTransferFrom(from, to, id, "")`. function safeTransferFrom(address from, address to, uint256 id) public payable virtual { transferFrom(from, to, id); if (_hasCode(to)) _checkOnERC721Received(from, to, id, ""); } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - The caller must be the owner of the token, or be approved to manage the token. /// - If `to` refers to a smart contract, it must implement /// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. /// /// Emits a {Transfer} event. function safeTransferFrom(address from, address to, uint256 id, bytes calldata data) public payable virtual { transferFrom(from, to, id); if (_hasCode(to)) _checkOnERC721Received(from, to, id, data); } /// @dev Returns true if this contract implements the interface defined by `interfaceId`. /// See: https://eips.ethereum.org/EIPS/eip-165 /// This function call must use less than 30000 gas. function supportsInterface(bytes4 interfaceId) public view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { let s := shr(224, interfaceId) // ERC165: 0x01ffc9a7, ERC721: 0x80ac58cd, ERC721Metadata: 0x5b5e139f. result := or(or(eq(s, 0x01ffc9a7), eq(s, 0x80ac58cd)), eq(s, 0x5b5e139f)) } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* INTERNAL QUERY FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns if token `id` exists. function _exists(uint256 id) internal view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) result := iszero(iszero(shl(96, sload(add(id, add(id, keccak256(0x00, 0x20))))))) } } /// @dev Returns the owner of token `id`. /// Returns the zero address instead of reverting if the token does not exist. function _ownerOf(uint256 id) internal view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) result := shr(96, shl(96, sload(add(id, add(id, keccak256(0x00, 0x20)))))) } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* INTERNAL DATA HITCHHIKING FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ // For performance, no events are emitted for the hitchhiking setters. // Please emit your own events if required. /// @dev Returns the auxiliary data for `owner`. /// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data. /// Auxiliary data can be set for any address, even if it does not have any tokens. function _getAux(address owner) internal view virtual returns (uint224 result) { /// @solidity memory-safe-assembly assembly { mstore(0x1c, _ERC721_MASTER_SLOT_SEED) mstore(0x00, owner) result := shr(32, sload(keccak256(0x0c, 0x1c))) } } /// @dev Set the auxiliary data for `owner` to `value`. /// Minting, transferring, burning the tokens of `owner` will not change the auxiliary data. /// Auxiliary data can be set for any address, even if it does not have any tokens. function _setAux(address owner, uint224 value) internal virtual { /// @solidity memory-safe-assembly assembly { mstore(0x1c, _ERC721_MASTER_SLOT_SEED) mstore(0x00, owner) let balanceSlot := keccak256(0x0c, 0x1c) let packed := sload(balanceSlot) sstore(balanceSlot, xor(packed, shl(32, xor(value, shr(32, packed))))) } } /// @dev Returns the extra data for token `id`. /// Minting, transferring, burning a token will not change the extra data. /// The extra data can be set on a non-existent token. function _getExtraData(uint256 id) internal view virtual returns (uint96 result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) result := shr(160, sload(add(id, add(id, keccak256(0x00, 0x20))))) } } /// @dev Sets the extra data for token `id` to `value`. /// Minting, transferring, burning a token will not change the extra data. /// The extra data can be set on a non-existent token. function _setExtraData(uint256 id, uint96 value) internal virtual { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let packed := sload(ownershipSlot) sstore(ownershipSlot, xor(packed, shl(160, xor(value, shr(160, packed))))) } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* INTERNAL MINT FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Mints token `id` to `to`. /// /// Requirements: /// /// - Token `id` must not exist. /// - `to` cannot be the zero address. /// /// Emits a {Transfer} event. function _mint(address to, uint256 id) internal virtual { _beforeTokenTransfer(address(0), to, id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. to := shr(96, shl(96, to)) // Load the ownership data. mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let ownershipPacked := sload(ownershipSlot) // Revert if the token already exists. if shl(96, ownershipPacked) { mstore(0x00, 0xc991cbb1) // `TokenAlreadyExists()`. revert(0x1c, 0x04) } // Update with the owner. sstore(ownershipSlot, or(ownershipPacked, to)) // Increment the balance of the owner. { mstore(0x00, to) let balanceSlot := keccak256(0x0c, 0x1c) let balanceSlotPacked := add(sload(balanceSlot), 1) // Revert if `to` is the zero address, or if the account balance overflows. if iszero(mul(to, and(balanceSlotPacked, _MAX_ACCOUNT_BALANCE))) { // `TransferToZeroAddress()`, `AccountBalanceOverflow()`. mstore(shl(2, iszero(to)), 0xea553b3401336cea) revert(0x1c, 0x04) } sstore(balanceSlot, balanceSlotPacked) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, 0, to, id) } _afterTokenTransfer(address(0), to, id); } /// @dev Mints token `id` to `to`, and updates the extra data for token `id` to `value`. /// Does NOT check if token `id` already exists (assumes `id` is auto-incrementing). /// /// Requirements: /// /// - `to` cannot be the zero address. /// /// Emits a {Transfer} event. function _mintAndSetExtraDataUnchecked(address to, uint256 id, uint96 value) internal virtual { _beforeTokenTransfer(address(0), to, id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. to := shr(96, shl(96, to)) // Update with the owner and extra data. mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) sstore(add(id, add(id, keccak256(0x00, 0x20))), or(shl(160, value), to)) // Increment the balance of the owner. { mstore(0x00, to) let balanceSlot := keccak256(0x0c, 0x1c) let balanceSlotPacked := add(sload(balanceSlot), 1) // Revert if `to` is the zero address, or if the account balance overflows. if iszero(mul(to, and(balanceSlotPacked, _MAX_ACCOUNT_BALANCE))) { // `TransferToZeroAddress()`, `AccountBalanceOverflow()`. mstore(shl(2, iszero(to)), 0xea553b3401336cea) revert(0x1c, 0x04) } sstore(balanceSlot, balanceSlotPacked) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, 0, to, id) } _afterTokenTransfer(address(0), to, id); } /// @dev Equivalent to `_safeMint(to, id, "")`. function _safeMint(address to, uint256 id) internal virtual { _safeMint(to, id, ""); } /// @dev Mints token `id` to `to`. /// /// Requirements: /// /// - Token `id` must not exist. /// - `to` cannot be the zero address. /// - If `to` refers to a smart contract, it must implement /// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. /// /// Emits a {Transfer} event. function _safeMint(address to, uint256 id, bytes memory data) internal virtual { _mint(to, id); if (_hasCode(to)) _checkOnERC721Received(address(0), to, id, data); } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* INTERNAL BURN FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Equivalent to `_burn(address(0), id)`. function _burn(uint256 id) internal virtual { _burn(address(0), id); } /// @dev Destroys token `id`, using `by`. /// /// Requirements: /// /// - Token `id` must exist. /// - If `by` is not the zero address, /// it must be the owner of the token, or be approved to manage the token. /// /// Emits a {Transfer} event. function _burn(address by, uint256 id) internal virtual { address owner = ownerOf(id); _beforeTokenTransfer(owner, address(0), id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. by := shr(96, shl(96, by)) // Load the ownership data. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by)) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let ownershipPacked := sload(ownershipSlot) // Reload the owner in case it is changed in `_beforeTokenTransfer`. owner := shr(96, shl(96, ownershipPacked)) // Revert if the token does not exist. if iszero(owner) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } // Load and check the token approval. { mstore(0x00, owner) let approvedAddress := sload(add(1, ownershipSlot)) // If `by` is not the zero address, do the authorization check. // Revert if the `by` is not the owner, nor approved. if iszero(or(iszero(by), or(eq(by, owner), eq(by, approvedAddress)))) { if iszero(sload(keccak256(0x0c, 0x30))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Delete the approved address if any. if approvedAddress { sstore(add(1, ownershipSlot), 0) } } // Clear the owner. sstore(ownershipSlot, xor(ownershipPacked, owner)) // Decrement the balance of `owner`. { let balanceSlot := keccak256(0x0c, 0x1c) sstore(balanceSlot, sub(sload(balanceSlot), 1)) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, owner, 0, id) } _afterTokenTransfer(owner, address(0), id); } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* INTERNAL APPROVAL FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns whether `account` is the owner of token `id`, or is approved to manage it. /// /// Requirements: /// - Token `id` must exist. function _isApprovedOrOwner(address account, uint256 id) internal view virtual returns (bool result) { /// @solidity memory-safe-assembly assembly { result := 1 // Clear the upper 96 bits. account := shr(96, shl(96, account)) // Load the ownership data. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, account)) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let owner := shr(96, shl(96, sload(ownershipSlot))) // Revert if the token does not exist. if iszero(owner) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } // Check if `account` is the `owner`. if iszero(eq(account, owner)) { mstore(0x00, owner) // Check if `account` is approved to manage the token. if iszero(sload(keccak256(0x0c, 0x30))) { result := eq(account, sload(add(1, ownershipSlot))) } } } } /// @dev Returns the account approved to manage token `id`. /// Returns the zero address instead of reverting if the token does not exist. function _getApproved(uint256 id) internal view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { mstore(0x00, id) mstore(0x1c, _ERC721_MASTER_SLOT_SEED) result := sload(add(1, add(id, add(id, keccak256(0x00, 0x20))))) } } /// @dev Equivalent to `_approve(address(0), account, id)`. function _approve(address account, uint256 id) internal virtual { _approve(address(0), account, id); } /// @dev Sets `account` as the approved account to manage token `id`, using `by`. /// /// Requirements: /// - Token `id` must exist. /// - If `by` is not the zero address, `by` must be the owner /// or an approved operator for the token owner. /// /// Emits a {Approval} event. function _approve(address by, address account, uint256 id) internal virtual { assembly { // Clear the upper 96 bits. let bitmaskAddress := shr(96, not(0)) account := and(bitmaskAddress, account) by := and(bitmaskAddress, by) // Load the owner of the token. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by)) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let owner := and(bitmaskAddress, sload(ownershipSlot)) // Revert if the token does not exist. if iszero(owner) { mstore(0x00, 0xceea21b6) // `TokenDoesNotExist()`. revert(0x1c, 0x04) } // If `by` is not the zero address, do the authorization check. // Revert if `by` is not the owner, nor approved. if iszero(or(iszero(by), eq(by, owner))) { mstore(0x00, owner) if iszero(sload(keccak256(0x0c, 0x30))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Sets `account` as the approved account to manage `id`. sstore(add(1, ownershipSlot), account) // Emit the {Approval} event. log4(codesize(), 0x00, _APPROVAL_EVENT_SIGNATURE, owner, account, id) } } /// @dev Approve or remove the `operator` as an operator for `by`, /// without authorization checks. /// /// Emits an {ApprovalForAll} event. function _setApprovalForAll(address by, address operator, bool isApproved) internal virtual { /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. by := shr(96, shl(96, by)) operator := shr(96, shl(96, operator)) // Convert to 0 or 1. isApproved := iszero(iszero(isApproved)) // Update the `isApproved` for (`by`, `operator`). mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, operator)) mstore(0x00, by) sstore(keccak256(0x0c, 0x30), isApproved) // Emit the {ApprovalForAll} event. mstore(0x00, isApproved) log3(0x00, 0x20, _APPROVAL_FOR_ALL_EVENT_SIGNATURE, by, operator) } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* INTERNAL TRANSFER FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Equivalent to `_transfer(address(0), from, to, id)`. function _transfer(address from, address to, uint256 id) internal virtual { _transfer(address(0), from, to, id); } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - If `by` is not the zero address, /// it must be the owner of the token, or be approved to manage the token. /// /// Emits a {Transfer} event. function _transfer(address by, address from, address to, uint256 id) internal virtual { _beforeTokenTransfer(from, to, id); /// @solidity memory-safe-assembly assembly { // Clear the upper 96 bits. let bitmaskAddress := shr(96, not(0)) from := and(bitmaskAddress, from) to := and(bitmaskAddress, to) by := and(bitmaskAddress, by) // Load the ownership data. mstore(0x00, id) mstore(0x1c, or(_ERC721_MASTER_SLOT_SEED, by)) let ownershipSlot := add(id, add(id, keccak256(0x00, 0x20))) let ownershipPacked := sload(ownershipSlot) let owner := and(bitmaskAddress, ownershipPacked) // Revert if the token does not exist, or if `from` is not the owner. if iszero(mul(owner, eq(owner, from))) { // `TokenDoesNotExist()`, `TransferFromIncorrectOwner()`. mstore(shl(2, iszero(owner)), 0xceea21b6a1148100) revert(0x1c, 0x04) } // Load, check, and update the token approval. { mstore(0x00, from) let approvedAddress := sload(add(1, ownershipSlot)) // If `by` is not the zero address, do the authorization check. // Revert if the `by` is not the owner, nor approved. if iszero(or(iszero(by), or(eq(by, from), eq(by, approvedAddress)))) { if iszero(sload(keccak256(0x0c, 0x30))) { mstore(0x00, 0x4b6e7f18) // `NotOwnerNorApproved()`. revert(0x1c, 0x04) } } // Delete the approved address if any. if approvedAddress { sstore(add(1, ownershipSlot), 0) } } // Update with the new owner. sstore(ownershipSlot, xor(ownershipPacked, xor(from, to))) // Decrement the balance of `from`. { let fromBalanceSlot := keccak256(0x0c, 0x1c) sstore(fromBalanceSlot, sub(sload(fromBalanceSlot), 1)) } // Increment the balance of `to`. { mstore(0x00, to) let toBalanceSlot := keccak256(0x0c, 0x1c) let toBalanceSlotPacked := add(sload(toBalanceSlot), 1) // Revert if `to` is the zero address, or if the account balance overflows. if iszero(mul(to, and(toBalanceSlotPacked, _MAX_ACCOUNT_BALANCE))) { // `TransferToZeroAddress()`, `AccountBalanceOverflow()`. mstore(shl(2, iszero(to)), 0xea553b3401336cea) revert(0x1c, 0x04) } sstore(toBalanceSlot, toBalanceSlotPacked) } // Emit the {Transfer} event. log4(codesize(), 0x00, _TRANSFER_EVENT_SIGNATURE, from, to, id) } _afterTokenTransfer(from, to, id); } /// @dev Equivalent to `_safeTransfer(from, to, id, "")`. function _safeTransfer(address from, address to, uint256 id) internal virtual { _safeTransfer(from, to, id, ""); } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - The caller must be the owner of the token, or be approved to manage the token. /// - If `to` refers to a smart contract, it must implement /// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. /// /// Emits a {Transfer} event. function _safeTransfer(address from, address to, uint256 id, bytes memory data) internal virtual { _transfer(address(0), from, to, id); if (_hasCode(to)) _checkOnERC721Received(from, to, id, data); } /// @dev Equivalent to `_safeTransfer(by, from, to, id, "")`. function _safeTransfer(address by, address from, address to, uint256 id) internal virtual { _safeTransfer(by, from, to, id, ""); } /// @dev Transfers token `id` from `from` to `to`. /// /// Requirements: /// /// - Token `id` must exist. /// - `from` must be the owner of the token. /// - `to` cannot be the zero address. /// - If `by` is not the zero address, /// it must be the owner of the token, or be approved to manage the token. /// - If `to` refers to a smart contract, it must implement /// {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. /// /// Emits a {Transfer} event. function _safeTransfer(address by, address from, address to, uint256 id, bytes memory data) internal virtual { _transfer(by, from, to, id); if (_hasCode(to)) _checkOnERC721Received(from, to, id, data); } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* HOOKS FOR OVERRIDING */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Hook that is called before any token transfers, including minting and burning. function _beforeTokenTransfer(address from, address to, uint256 id) internal virtual {} /// @dev Hook that is called after any token transfers, including minting and burning. function _afterTokenTransfer(address from, address to, uint256 id) internal virtual {} /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns if `a` has bytecode of non-zero length. function _hasCode(address a) private view returns (bool result) { /// @solidity memory-safe-assembly assembly { result := extcodesize(a) // Can handle dirty upper bits. } } /// @dev Perform a call to invoke {IERC721Receiver-onERC721Received} on `to`. /// Reverts if the target does not support the function correctly. function _checkOnERC721Received(address from, address to, uint256 id, bytes memory data) private { /// @solidity memory-safe-assembly assembly { // Prepare the calldata. let m := mload(0x40) let onERC721ReceivedSelector := 0x150b7a02 mstore(m, onERC721ReceivedSelector) mstore(add(m, 0x20), caller()) // The `operator`, which is always `msg.sender`. mstore(add(m, 0x40), shr(96, shl(96, from))) mstore(add(m, 0x60), id) mstore(add(m, 0x80), 0x80) let n := mload(data) mstore(add(m, 0xa0), n) if n { pop(staticcall(gas(), 4, add(data, 0x20), n, add(m, 0xc0), n)) } // Revert if the call reverts. if iszero(call(gas(), to, 0, add(m, 0x1c), add(n, 0xa4), m, 0x20)) { if returndatasize() { // Bubble up the revert if the call reverts. returndatacopy(m, 0x00, returndatasize()) revert(m, returndatasize()) } } // Load the returndata and compare it. if iszero(eq(mload(m), shl(224, onERC721ReceivedSelector))) { mstore(0x00, 0xd1a57ed6) // `TransferToNonERC721ReceiverImplementer()`. revert(0x1c, 0x04) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice UUPS proxy mixin. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/UUPSUpgradeable.sol) /// @author Modified from OpenZeppelin /// (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/proxy/utils/UUPSUpgradeable.sol) /// /// @dev Note: /// - This implementation is intended to be used with ERC1967 proxies. /// See: `LibClone.deployERC1967` and related functions. /// - This implementation is NOT compatible with legacy OpenZeppelin proxies /// which do not store the implementation at `_ERC1967_IMPLEMENTATION_SLOT`. abstract contract UUPSUpgradeable { /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The upgrade failed. error UpgradeFailed(); /// @dev The call is from an unauthorized call context. error UnauthorizedCallContext(); /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* IMMUTABLES */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev For checking if the context is a delegate call. uint256 private immutable __self = uint256(uint160(address(this))); /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Emitted when the proxy's implementation is upgraded. event Upgraded(address indexed implementation); /// @dev `keccak256(bytes("Upgraded(address)"))`. uint256 private constant _UPGRADED_EVENT_SIGNATURE = 0xbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The ERC-1967 storage slot for the implementation in the proxy. /// `uint256(keccak256("eip1967.proxy.implementation")) - 1`. bytes32 internal constant _ERC1967_IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* UUPS OPERATIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Please override this function to check if `msg.sender` is authorized /// to upgrade the proxy to `newImplementation`, reverting if not. /// ``` /// function _authorizeUpgrade(address) internal override onlyOwner {} /// ``` function _authorizeUpgrade(address newImplementation) internal virtual; /// @dev Returns the storage slot used by the implementation, /// as specified in [ERC1822](https://eips.ethereum.org/EIPS/eip-1822). /// /// Note: The `notDelegated` modifier prevents accidental upgrades to /// an implementation that is a proxy contract. function proxiableUUID() public view virtual notDelegated returns (bytes32) { // This function must always return `_ERC1967_IMPLEMENTATION_SLOT` to comply with ERC1967. return _ERC1967_IMPLEMENTATION_SLOT; } /// @dev Upgrades the proxy's implementation to `newImplementation`. /// Emits a {Upgraded} event. /// /// Note: Passing in empty `data` skips the delegatecall to `newImplementation`. function upgradeToAndCall(address newImplementation, bytes calldata data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); /// @solidity memory-safe-assembly assembly { newImplementation := shr(96, shl(96, newImplementation)) // Clears upper 96 bits. mstore(0x01, 0x52d1902d) // `proxiableUUID()`. let s := _ERC1967_IMPLEMENTATION_SLOT // Check if `newImplementation` implements `proxiableUUID` correctly. if iszero(eq(mload(staticcall(gas(), newImplementation, 0x1d, 0x04, 0x01, 0x20)), s)) { mstore(0x01, 0x55299b49) // `UpgradeFailed()`. revert(0x1d, 0x04) } // Emit the {Upgraded} event. log2(codesize(), 0x00, _UPGRADED_EVENT_SIGNATURE, newImplementation) sstore(s, newImplementation) // Updates the implementation. // Perform a delegatecall to `newImplementation` if `data` is non-empty. if data.length { // Forwards the `data` to `newImplementation` via delegatecall. let m := mload(0x40) calldatacopy(m, data.offset, data.length) if iszero(delegatecall(gas(), newImplementation, m, data.length, codesize(), 0x00)) { // Bubble up the revert if the call reverts. returndatacopy(m, 0x00, returndatasize()) revert(m, returndatasize()) } } } } /// @dev Requires that the execution is performed through a proxy. modifier onlyProxy() { uint256 s = __self; /// @solidity memory-safe-assembly assembly { // To enable use cases with an immutable default implementation in the bytecode, // (see: ERC6551Proxy), we don't require that the proxy address must match the // value stored in the implementation slot, which may not be initialized. if eq(s, address()) { mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`. revert(0x1c, 0x04) } } _; } /// @dev Requires that the execution is NOT performed via delegatecall. /// This is the opposite of `onlyProxy`. modifier notDelegated() { uint256 s = __self; /// @solidity memory-safe-assembly assembly { if iszero(eq(s, address())) { mstore(0x00, 0x9f03a026) // `UnauthorizedCallContext()`. revert(0x1c, 0x04) } } _; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Gas optimized verification of proof of inclusion for a leaf in a Merkle tree. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/MerkleProofLib.sol) /// @author Modified from Solmate (https://github.com/transmissions11/solmate/blob/main/src/utils/MerkleProofLib.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/MerkleProof.sol) library MerkleProofLib { /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* MERKLE PROOF VERIFICATION OPERATIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`. function verify(bytes32[] memory proof, bytes32 root, bytes32 leaf) internal pure returns (bool isValid) { /// @solidity memory-safe-assembly assembly { if mload(proof) { // Initialize `offset` to the offset of `proof` elements in memory. let offset := add(proof, 0x20) // Left shift by 5 is equivalent to multiplying by 0x20. let end := add(offset, shl(5, mload(proof))) // Iterate over proof elements to compute root hash. for {} 1 {} { // Slot of `leaf` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(leaf, mload(offset))) // Store elements to hash contiguously in scratch space. // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes. mstore(scratch, leaf) mstore(xor(scratch, 0x20), mload(offset)) // Reuse `leaf` to store the hash to reduce stack operations. leaf := keccak256(0x00, 0x40) offset := add(offset, 0x20) if iszero(lt(offset, end)) { break } } } isValid := eq(leaf, root) } } /// @dev Returns whether `leaf` exists in the Merkle tree with `root`, given `proof`. function verifyCalldata(bytes32[] calldata proof, bytes32 root, bytes32 leaf) internal pure returns (bool isValid) { /// @solidity memory-safe-assembly assembly { if proof.length { // Left shift by 5 is equivalent to multiplying by 0x20. let end := add(proof.offset, shl(5, proof.length)) // Initialize `offset` to the offset of `proof` in the calldata. let offset := proof.offset // Iterate over proof elements to compute root hash. for {} 1 {} { // Slot of `leaf` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(leaf, calldataload(offset))) // Store elements to hash contiguously in scratch space. // Scratch space is 64 bytes (0x00 - 0x3f) and both elements are 32 bytes. mstore(scratch, leaf) mstore(xor(scratch, 0x20), calldataload(offset)) // Reuse `leaf` to store the hash to reduce stack operations. leaf := keccak256(0x00, 0x40) offset := add(offset, 0x20) if iszero(lt(offset, end)) { break } } } isValid := eq(leaf, root) } } /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`, /// given `proof` and `flags`. /// /// Note: /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length` /// will always return false. /// - The sum of the lengths of `proof` and `leaves` must never overflow. /// - Any non-zero word in the `flags` array is treated as true. /// - The memory offset of `proof` must be non-zero /// (i.e. `proof` is not pointing to the scratch space). function verifyMultiProof( bytes32[] memory proof, bytes32 root, bytes32[] memory leaves, bool[] memory flags ) internal pure returns (bool isValid) { // Rebuilds the root by consuming and producing values on a queue. // The queue starts with the `leaves` array, and goes into a `hashes` array. // After the process, the last element on the queue is verified // to be equal to the `root`. // // The `flags` array denotes whether the sibling // should be popped from the queue (`flag == true`), or // should be popped from the `proof` (`flag == false`). /// @solidity memory-safe-assembly assembly { // Cache the lengths of the arrays. let leavesLength := mload(leaves) let proofLength := mload(proof) let flagsLength := mload(flags) // Advance the pointers of the arrays to point to the data. leaves := add(0x20, leaves) proof := add(0x20, proof) flags := add(0x20, flags) // If the number of flags is correct. for {} eq(add(leavesLength, proofLength), add(flagsLength, 1)) {} { // For the case where `proof.length + leaves.length == 1`. if iszero(flagsLength) { // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`. isValid := eq(mload(xor(leaves, mul(xor(proof, leaves), proofLength))), root) break } // The required final proof offset if `flagsLength` is not zero, otherwise zero. let proofEnd := add(proof, shl(5, proofLength)) // We can use the free memory space for the queue. // We don't need to allocate, since the queue is temporary. let hashesFront := mload(0x40) // Copy the leaves into the hashes. // Sometimes, a little memory expansion costs less than branching. // Should cost less, even with a high free memory offset of 0x7d00. leavesLength := shl(5, leavesLength) for { let i := 0 } iszero(eq(i, leavesLength)) { i := add(i, 0x20) } { mstore(add(hashesFront, i), mload(add(leaves, i))) } // Compute the back of the hashes. let hashesBack := add(hashesFront, leavesLength) // This is the end of the memory for the queue. // We recycle `flagsLength` to save on stack variables (sometimes save gas). flagsLength := add(hashesBack, shl(5, flagsLength)) for {} 1 {} { // Pop from `hashes`. let a := mload(hashesFront) // Pop from `hashes`. let b := mload(add(hashesFront, 0x20)) hashesFront := add(hashesFront, 0x40) // If the flag is false, load the next proof, // else, pops from the queue. if iszero(mload(flags)) { // Loads the next proof. b := mload(proof) proof := add(proof, 0x20) // Unpop from `hashes`. hashesFront := sub(hashesFront, 0x20) } // Advance to the next flag. flags := add(flags, 0x20) // Slot of `a` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(a, b)) // Hash the scratch space and push the result onto the queue. mstore(scratch, a) mstore(xor(scratch, 0x20), b) mstore(hashesBack, keccak256(0x00, 0x40)) hashesBack := add(hashesBack, 0x20) if iszero(lt(hashesBack, flagsLength)) { break } } isValid := and( // Checks if the last value in the queue is same as the root. eq(mload(sub(hashesBack, 0x20)), root), // And whether all the proofs are used, if required. eq(proofEnd, proof) ) break } } } /// @dev Returns whether all `leaves` exist in the Merkle tree with `root`, /// given `proof` and `flags`. /// /// Note: /// - Breaking the invariant `flags.length == (leaves.length - 1) + proof.length` /// will always return false. /// - Any non-zero word in the `flags` array is treated as true. /// - The calldata offset of `proof` must be non-zero /// (i.e. `proof` is from a regular Solidity function with a 4-byte selector). function verifyMultiProofCalldata( bytes32[] calldata proof, bytes32 root, bytes32[] calldata leaves, bool[] calldata flags ) internal pure returns (bool isValid) { // Rebuilds the root by consuming and producing values on a queue. // The queue starts with the `leaves` array, and goes into a `hashes` array. // After the process, the last element on the queue is verified // to be equal to the `root`. // // The `flags` array denotes whether the sibling // should be popped from the queue (`flag == true`), or // should be popped from the `proof` (`flag == false`). /// @solidity memory-safe-assembly assembly { // If the number of flags is correct. for {} eq(add(leaves.length, proof.length), add(flags.length, 1)) {} { // For the case where `proof.length + leaves.length == 1`. if iszero(flags.length) { // `isValid = (proof.length == 1 ? proof[0] : leaves[0]) == root`. // forgefmt: disable-next-item isValid := eq( calldataload( xor(leaves.offset, mul(xor(proof.offset, leaves.offset), proof.length)) ), root ) break } // The required final proof offset if `flagsLength` is not zero, otherwise zero. let proofEnd := add(proof.offset, shl(5, proof.length)) // We can use the free memory space for the queue. // We don't need to allocate, since the queue is temporary. let hashesFront := mload(0x40) // Copy the leaves into the hashes. // Sometimes, a little memory expansion costs less than branching. // Should cost less, even with a high free memory offset of 0x7d00. calldatacopy(hashesFront, leaves.offset, shl(5, leaves.length)) // Compute the back of the hashes. let hashesBack := add(hashesFront, shl(5, leaves.length)) // This is the end of the memory for the queue. // We recycle `flagsLength` to save on stack variables (sometimes save gas). flags.length := add(hashesBack, shl(5, flags.length)) // We don't need to make a copy of `proof.offset` or `flags.offset`, // as they are pass-by-value (this trick may not always save gas). for {} 1 {} { // Pop from `hashes`. let a := mload(hashesFront) // Pop from `hashes`. let b := mload(add(hashesFront, 0x20)) hashesFront := add(hashesFront, 0x40) // If the flag is false, load the next proof, // else, pops from the queue. if iszero(calldataload(flags.offset)) { // Loads the next proof. b := calldataload(proof.offset) proof.offset := add(proof.offset, 0x20) // Unpop from `hashes`. hashesFront := sub(hashesFront, 0x20) } // Advance to the next flag offset. flags.offset := add(flags.offset, 0x20) // Slot of `a` in scratch space. // If the condition is true: 0x20, otherwise: 0x00. let scratch := shl(5, gt(a, b)) // Hash the scratch space and push the result onto the queue. mstore(scratch, a) mstore(xor(scratch, 0x20), b) mstore(hashesBack, keccak256(0x00, 0x40)) hashesBack := add(hashesBack, 0x20) if iszero(lt(hashesBack, flags.length)) { break } } isValid := and( // Checks if the last value in the queue is same as the root. eq(mload(sub(hashesBack, 0x20)), root), // And whether all the proofs are used, if required. eq(proofEnd, proof.offset) ) break } } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* EMPTY CALLDATA HELPERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns an empty calldata bytes32 array. function emptyProof() internal pure returns (bytes32[] calldata proof) { /// @solidity memory-safe-assembly assembly { proof.length := 0 } } /// @dev Returns an empty calldata bytes32 array. function emptyLeaves() internal pure returns (bytes32[] calldata leaves) { /// @solidity memory-safe-assembly assembly { leaves.length := 0 } } /// @dev Returns an empty calldata bool array. function emptyFlags() internal pure returns (bool[] calldata flags) { /// @solidity memory-safe-assembly assembly { flags.length := 0 } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for storage of packed unsigned integers. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/LibMap.sol) library LibMap { /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* STRUCTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev A uint8 map in storage. struct Uint8Map { mapping(uint256 => uint256) map; } /// @dev A uint16 map in storage. struct Uint16Map { mapping(uint256 => uint256) map; } /// @dev A uint32 map in storage. struct Uint32Map { mapping(uint256 => uint256) map; } /// @dev A uint40 map in storage. Useful for storing timestamps up to 34841 A.D. struct Uint40Map { mapping(uint256 => uint256) map; } /// @dev A uint64 map in storage. struct Uint64Map { mapping(uint256 => uint256) map; } /// @dev A uint128 map in storage. struct Uint128Map { mapping(uint256 => uint256) map; } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* GETTERS / SETTERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns the uint8 value at `index` in `map`. function get(Uint8Map storage map, uint256 index) internal view returns (uint8 result) { /// @solidity memory-safe-assembly assembly { mstore(0x20, map.slot) mstore(0x00, shr(5, index)) result := byte(and(31, not(index)), sload(keccak256(0x00, 0x40))) } } /// @dev Updates the uint8 value at `index` in `map`. function set(Uint8Map storage map, uint256 index, uint8 value) internal { /// @solidity memory-safe-assembly assembly { mstore(0x20, map.slot) mstore(0x00, shr(5, index)) let s := keccak256(0x00, 0x40) // Storage slot. mstore(0x00, sload(s)) mstore8(and(31, not(index)), value) sstore(s, mload(0x00)) } } /// @dev Returns the uint16 value at `index` in `map`. function get(Uint16Map storage map, uint256 index) internal view returns (uint16 result) { result = uint16(map.map[index >> 4] >> ((index & 15) << 4)); } /// @dev Updates the uint16 value at `index` in `map`. function set(Uint16Map storage map, uint256 index, uint16 value) internal { /// @solidity memory-safe-assembly assembly { mstore(0x20, map.slot) mstore(0x00, shr(4, index)) let s := keccak256(0x00, 0x40) // Storage slot. let o := shl(4, and(index, 15)) // Storage slot offset (bits). let v := sload(s) // Storage slot value. let m := 0xffff // Value mask. sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value))))) } } /// @dev Returns the uint32 value at `index` in `map`. function get(Uint32Map storage map, uint256 index) internal view returns (uint32 result) { result = uint32(map.map[index >> 3] >> ((index & 7) << 5)); } /// @dev Updates the uint32 value at `index` in `map`. function set(Uint32Map storage map, uint256 index, uint32 value) internal { /// @solidity memory-safe-assembly assembly { mstore(0x20, map.slot) mstore(0x00, shr(3, index)) let s := keccak256(0x00, 0x40) // Storage slot. let o := shl(5, and(index, 7)) // Storage slot offset (bits). let v := sload(s) // Storage slot value. let m := 0xffffffff // Value mask. sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value))))) } } /// @dev Returns the uint40 value at `index` in `map`. function get(Uint40Map storage map, uint256 index) internal view returns (uint40 result) { unchecked { result = uint40(map.map[index / 6] >> ((index % 6) * 40)); } } /// @dev Updates the uint40 value at `index` in `map`. function set(Uint40Map storage map, uint256 index, uint40 value) internal { /// @solidity memory-safe-assembly assembly { mstore(0x20, map.slot) mstore(0x00, div(index, 6)) let s := keccak256(0x00, 0x40) // Storage slot. let o := mul(40, mod(index, 6)) // Storage slot offset (bits). let v := sload(s) // Storage slot value. let m := 0xffffffffff // Value mask. sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value))))) } } /// @dev Returns the uint64 value at `index` in `map`. function get(Uint64Map storage map, uint256 index) internal view returns (uint64 result) { result = uint64(map.map[index >> 2] >> ((index & 3) << 6)); } /// @dev Updates the uint64 value at `index` in `map`. function set(Uint64Map storage map, uint256 index, uint64 value) internal { /// @solidity memory-safe-assembly assembly { mstore(0x20, map.slot) mstore(0x00, shr(2, index)) let s := keccak256(0x00, 0x40) // Storage slot. let o := shl(6, and(index, 3)) // Storage slot offset (bits). let v := sload(s) // Storage slot value. let m := 0xffffffffffffffff // Value mask. sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value))))) } } /// @dev Returns the uint128 value at `index` in `map`. function get(Uint128Map storage map, uint256 index) internal view returns (uint128 result) { result = uint128(map.map[index >> 1] >> ((index & 1) << 7)); } /// @dev Updates the uint128 value at `index` in `map`. function set(Uint128Map storage map, uint256 index, uint128 value) internal { /// @solidity memory-safe-assembly assembly { mstore(0x20, map.slot) mstore(0x00, shr(1, index)) let s := keccak256(0x00, 0x40) // Storage slot. let o := shl(7, and(index, 1)) // Storage slot offset (bits). let v := sload(s) // Storage slot value. let m := 0xffffffffffffffffffffffffffffffff // Value mask. sstore(s, xor(v, shl(o, and(m, xor(shr(o, v), value))))) } } /// @dev Returns the value at `index` in `map`. function get(mapping(uint256 => uint256) storage map, uint256 index, uint256 bitWidth) internal view returns (uint256 result) { unchecked { uint256 d = _rawDiv(256, bitWidth); // Bucket size. uint256 m = (1 << bitWidth) - 1; // Value mask. result = (map[_rawDiv(index, d)] >> (_rawMod(index, d) * bitWidth)) & m; } } /// @dev Updates the value at `index` in `map`. function set( mapping(uint256 => uint256) storage map, uint256 index, uint256 value, uint256 bitWidth ) internal { unchecked { uint256 d = _rawDiv(256, bitWidth); // Bucket size. uint256 m = (1 << bitWidth) - 1; // Value mask. uint256 o = _rawMod(index, d) * bitWidth; // Storage slot offset (bits). map[_rawDiv(index, d)] ^= (((map[_rawDiv(index, d)] >> o) ^ value) & m) << o; } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* BINARY SEARCH */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ // The following functions search in the range of [`start`, `end`) // (i.e. `start <= index < end`). // The range must be sorted in ascending order. // `index` precedence: equal to > nearest before > nearest after. // An invalid search range will simply return `(found = false, index = start)`. /// @dev Returns whether `map` contains `needle`, and the index of `needle`. function searchSorted(Uint8Map storage map, uint8 needle, uint256 start, uint256 end) internal view returns (bool found, uint256 index) { return searchSorted(map.map, needle, start, end, 8); } /// @dev Returns whether `map` contains `needle`, and the index of `needle`. function searchSorted(Uint16Map storage map, uint16 needle, uint256 start, uint256 end) internal view returns (bool found, uint256 index) { return searchSorted(map.map, needle, start, end, 16); } /// @dev Returns whether `map` contains `needle`, and the index of `needle`. function searchSorted(Uint32Map storage map, uint32 needle, uint256 start, uint256 end) internal view returns (bool found, uint256 index) { return searchSorted(map.map, needle, start, end, 32); } /// @dev Returns whether `map` contains `needle`, and the index of `needle`. function searchSorted(Uint40Map storage map, uint40 needle, uint256 start, uint256 end) internal view returns (bool found, uint256 index) { return searchSorted(map.map, needle, start, end, 40); } /// @dev Returns whether `map` contains `needle`, and the index of `needle`. function searchSorted(Uint64Map storage map, uint64 needle, uint256 start, uint256 end) internal view returns (bool found, uint256 index) { return searchSorted(map.map, needle, start, end, 64); } /// @dev Returns whether `map` contains `needle`, and the index of `needle`. function searchSorted(Uint128Map storage map, uint128 needle, uint256 start, uint256 end) internal view returns (bool found, uint256 index) { return searchSorted(map.map, needle, start, end, 128); } /// @dev Returns whether `map` contains `needle`, and the index of `needle`. function searchSorted( mapping(uint256 => uint256) storage map, uint256 needle, uint256 start, uint256 end, uint256 bitWidth ) internal view returns (bool found, uint256 index) { unchecked { if (start >= end) end = start; uint256 t; uint256 o = start - 1; // Offset to derive the actual index. uint256 l = 1; // Low. uint256 d = _rawDiv(256, bitWidth); // Bucket size. uint256 m = (1 << bitWidth) - 1; // Value mask. uint256 h = end - start; // High. while (true) { index = (l & h) + ((l ^ h) >> 1); if (l > h) break; t = (map[_rawDiv(index + o, d)] >> (_rawMod(index + o, d) * bitWidth)) & m; if (t == needle) break; if (needle <= t) h = index - 1; else l = index + 1; } /// @solidity memory-safe-assembly assembly { m := or(iszero(index), iszero(bitWidth)) found := iszero(or(xor(t, needle), m)) index := add(o, xor(index, mul(xor(index, 1), m))) } } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns `x / y`, returning 0 if `y` is zero. function _rawDiv(uint256 x, uint256 y) private pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := div(x, y) } } /// @dev Returns `x % y`, returning 0 if `y` is zero. function _rawMod(uint256 x, uint256 y) private pure returns (uint256 z) { /// @solidity memory-safe-assembly assembly { z := mod(x, y) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import {IERC721} from "forge-std-1.9.3/src/interfaces/IERC721.sol"; interface IERC721Burnable is IERC721 { function batchBurn(address from, uint256[] calldata tokenIds) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Safe integer casting library that reverts on overflow. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/SafeCastLib.sol) /// @author Modified from OpenZeppelin (https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/math/SafeCast.sol) /// @dev Optimized for runtime gas for very high number of optimizer runs (i.e. >= 1000000). library SafeCastLib { /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ error Overflow(); /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* UNSIGNED INTEGER SAFE CASTING OPERATIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ function toUint8(uint256 x) internal pure returns (uint8) { if (x >= 1 << 8) _revertOverflow(); return uint8(x); } function toUint16(uint256 x) internal pure returns (uint16) { if (x >= 1 << 16) _revertOverflow(); return uint16(x); } function toUint24(uint256 x) internal pure returns (uint24) { if (x >= 1 << 24) _revertOverflow(); return uint24(x); } function toUint32(uint256 x) internal pure returns (uint32) { if (x >= 1 << 32) _revertOverflow(); return uint32(x); } function toUint40(uint256 x) internal pure returns (uint40) { if (x >= 1 << 40) _revertOverflow(); return uint40(x); } function toUint48(uint256 x) internal pure returns (uint48) { if (x >= 1 << 48) _revertOverflow(); return uint48(x); } function toUint56(uint256 x) internal pure returns (uint56) { if (x >= 1 << 56) _revertOverflow(); return uint56(x); } function toUint64(uint256 x) internal pure returns (uint64) { if (x >= 1 << 64) _revertOverflow(); return uint64(x); } function toUint72(uint256 x) internal pure returns (uint72) { if (x >= 1 << 72) _revertOverflow(); return uint72(x); } function toUint80(uint256 x) internal pure returns (uint80) { if (x >= 1 << 80) _revertOverflow(); return uint80(x); } function toUint88(uint256 x) internal pure returns (uint88) { if (x >= 1 << 88) _revertOverflow(); return uint88(x); } function toUint96(uint256 x) internal pure returns (uint96) { if (x >= 1 << 96) _revertOverflow(); return uint96(x); } function toUint104(uint256 x) internal pure returns (uint104) { if (x >= 1 << 104) _revertOverflow(); return uint104(x); } function toUint112(uint256 x) internal pure returns (uint112) { if (x >= 1 << 112) _revertOverflow(); return uint112(x); } function toUint120(uint256 x) internal pure returns (uint120) { if (x >= 1 << 120) _revertOverflow(); return uint120(x); } function toUint128(uint256 x) internal pure returns (uint128) { if (x >= 1 << 128) _revertOverflow(); return uint128(x); } function toUint136(uint256 x) internal pure returns (uint136) { if (x >= 1 << 136) _revertOverflow(); return uint136(x); } function toUint144(uint256 x) internal pure returns (uint144) { if (x >= 1 << 144) _revertOverflow(); return uint144(x); } function toUint152(uint256 x) internal pure returns (uint152) { if (x >= 1 << 152) _revertOverflow(); return uint152(x); } function toUint160(uint256 x) internal pure returns (uint160) { if (x >= 1 << 160) _revertOverflow(); return uint160(x); } function toUint168(uint256 x) internal pure returns (uint168) { if (x >= 1 << 168) _revertOverflow(); return uint168(x); } function toUint176(uint256 x) internal pure returns (uint176) { if (x >= 1 << 176) _revertOverflow(); return uint176(x); } function toUint184(uint256 x) internal pure returns (uint184) { if (x >= 1 << 184) _revertOverflow(); return uint184(x); } function toUint192(uint256 x) internal pure returns (uint192) { if (x >= 1 << 192) _revertOverflow(); return uint192(x); } function toUint200(uint256 x) internal pure returns (uint200) { if (x >= 1 << 200) _revertOverflow(); return uint200(x); } function toUint208(uint256 x) internal pure returns (uint208) { if (x >= 1 << 208) _revertOverflow(); return uint208(x); } function toUint216(uint256 x) internal pure returns (uint216) { if (x >= 1 << 216) _revertOverflow(); return uint216(x); } function toUint224(uint256 x) internal pure returns (uint224) { if (x >= 1 << 224) _revertOverflow(); return uint224(x); } function toUint232(uint256 x) internal pure returns (uint232) { if (x >= 1 << 232) _revertOverflow(); return uint232(x); } function toUint240(uint256 x) internal pure returns (uint240) { if (x >= 1 << 240) _revertOverflow(); return uint240(x); } function toUint248(uint256 x) internal pure returns (uint248) { if (x >= 1 << 248) _revertOverflow(); return uint248(x); } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* SIGNED INTEGER SAFE CASTING OPERATIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ function toInt8(int256 x) internal pure returns (int8) { unchecked { if (((1 << 7) + uint256(x)) >> 8 == uint256(0)) return int8(x); _revertOverflow(); } } function toInt16(int256 x) internal pure returns (int16) { unchecked { if (((1 << 15) + uint256(x)) >> 16 == uint256(0)) return int16(x); _revertOverflow(); } } function toInt24(int256 x) internal pure returns (int24) { unchecked { if (((1 << 23) + uint256(x)) >> 24 == uint256(0)) return int24(x); _revertOverflow(); } } function toInt32(int256 x) internal pure returns (int32) { unchecked { if (((1 << 31) + uint256(x)) >> 32 == uint256(0)) return int32(x); _revertOverflow(); } } function toInt40(int256 x) internal pure returns (int40) { unchecked { if (((1 << 39) + uint256(x)) >> 40 == uint256(0)) return int40(x); _revertOverflow(); } } function toInt48(int256 x) internal pure returns (int48) { unchecked { if (((1 << 47) + uint256(x)) >> 48 == uint256(0)) return int48(x); _revertOverflow(); } } function toInt56(int256 x) internal pure returns (int56) { unchecked { if (((1 << 55) + uint256(x)) >> 56 == uint256(0)) return int56(x); _revertOverflow(); } } function toInt64(int256 x) internal pure returns (int64) { unchecked { if (((1 << 63) + uint256(x)) >> 64 == uint256(0)) return int64(x); _revertOverflow(); } } function toInt72(int256 x) internal pure returns (int72) { unchecked { if (((1 << 71) + uint256(x)) >> 72 == uint256(0)) return int72(x); _revertOverflow(); } } function toInt80(int256 x) internal pure returns (int80) { unchecked { if (((1 << 79) + uint256(x)) >> 80 == uint256(0)) return int80(x); _revertOverflow(); } } function toInt88(int256 x) internal pure returns (int88) { unchecked { if (((1 << 87) + uint256(x)) >> 88 == uint256(0)) return int88(x); _revertOverflow(); } } function toInt96(int256 x) internal pure returns (int96) { unchecked { if (((1 << 95) + uint256(x)) >> 96 == uint256(0)) return int96(x); _revertOverflow(); } } function toInt104(int256 x) internal pure returns (int104) { unchecked { if (((1 << 103) + uint256(x)) >> 104 == uint256(0)) return int104(x); _revertOverflow(); } } function toInt112(int256 x) internal pure returns (int112) { unchecked { if (((1 << 111) + uint256(x)) >> 112 == uint256(0)) return int112(x); _revertOverflow(); } } function toInt120(int256 x) internal pure returns (int120) { unchecked { if (((1 << 119) + uint256(x)) >> 120 == uint256(0)) return int120(x); _revertOverflow(); } } function toInt128(int256 x) internal pure returns (int128) { unchecked { if (((1 << 127) + uint256(x)) >> 128 == uint256(0)) return int128(x); _revertOverflow(); } } function toInt136(int256 x) internal pure returns (int136) { unchecked { if (((1 << 135) + uint256(x)) >> 136 == uint256(0)) return int136(x); _revertOverflow(); } } function toInt144(int256 x) internal pure returns (int144) { unchecked { if (((1 << 143) + uint256(x)) >> 144 == uint256(0)) return int144(x); _revertOverflow(); } } function toInt152(int256 x) internal pure returns (int152) { unchecked { if (((1 << 151) + uint256(x)) >> 152 == uint256(0)) return int152(x); _revertOverflow(); } } function toInt160(int256 x) internal pure returns (int160) { unchecked { if (((1 << 159) + uint256(x)) >> 160 == uint256(0)) return int160(x); _revertOverflow(); } } function toInt168(int256 x) internal pure returns (int168) { unchecked { if (((1 << 167) + uint256(x)) >> 168 == uint256(0)) return int168(x); _revertOverflow(); } } function toInt176(int256 x) internal pure returns (int176) { unchecked { if (((1 << 175) + uint256(x)) >> 176 == uint256(0)) return int176(x); _revertOverflow(); } } function toInt184(int256 x) internal pure returns (int184) { unchecked { if (((1 << 183) + uint256(x)) >> 184 == uint256(0)) return int184(x); _revertOverflow(); } } function toInt192(int256 x) internal pure returns (int192) { unchecked { if (((1 << 191) + uint256(x)) >> 192 == uint256(0)) return int192(x); _revertOverflow(); } } function toInt200(int256 x) internal pure returns (int200) { unchecked { if (((1 << 199) + uint256(x)) >> 200 == uint256(0)) return int200(x); _revertOverflow(); } } function toInt208(int256 x) internal pure returns (int208) { unchecked { if (((1 << 207) + uint256(x)) >> 208 == uint256(0)) return int208(x); _revertOverflow(); } } function toInt216(int256 x) internal pure returns (int216) { unchecked { if (((1 << 215) + uint256(x)) >> 216 == uint256(0)) return int216(x); _revertOverflow(); } } function toInt224(int256 x) internal pure returns (int224) { unchecked { if (((1 << 223) + uint256(x)) >> 224 == uint256(0)) return int224(x); _revertOverflow(); } } function toInt232(int256 x) internal pure returns (int232) { unchecked { if (((1 << 231) + uint256(x)) >> 232 == uint256(0)) return int232(x); _revertOverflow(); } } function toInt240(int256 x) internal pure returns (int240) { unchecked { if (((1 << 239) + uint256(x)) >> 240 == uint256(0)) return int240(x); _revertOverflow(); } } function toInt248(int256 x) internal pure returns (int248) { unchecked { if (((1 << 247) + uint256(x)) >> 248 == uint256(0)) return int248(x); _revertOverflow(); } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* OTHER SAFE CASTING OPERATIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ function toInt8(uint256 x) internal pure returns (int8) { if (x >= 1 << 7) _revertOverflow(); return int8(int256(x)); } function toInt16(uint256 x) internal pure returns (int16) { if (x >= 1 << 15) _revertOverflow(); return int16(int256(x)); } function toInt24(uint256 x) internal pure returns (int24) { if (x >= 1 << 23) _revertOverflow(); return int24(int256(x)); } function toInt32(uint256 x) internal pure returns (int32) { if (x >= 1 << 31) _revertOverflow(); return int32(int256(x)); } function toInt40(uint256 x) internal pure returns (int40) { if (x >= 1 << 39) _revertOverflow(); return int40(int256(x)); } function toInt48(uint256 x) internal pure returns (int48) { if (x >= 1 << 47) _revertOverflow(); return int48(int256(x)); } function toInt56(uint256 x) internal pure returns (int56) { if (x >= 1 << 55) _revertOverflow(); return int56(int256(x)); } function toInt64(uint256 x) internal pure returns (int64) { if (x >= 1 << 63) _revertOverflow(); return int64(int256(x)); } function toInt72(uint256 x) internal pure returns (int72) { if (x >= 1 << 71) _revertOverflow(); return int72(int256(x)); } function toInt80(uint256 x) internal pure returns (int80) { if (x >= 1 << 79) _revertOverflow(); return int80(int256(x)); } function toInt88(uint256 x) internal pure returns (int88) { if (x >= 1 << 87) _revertOverflow(); return int88(int256(x)); } function toInt96(uint256 x) internal pure returns (int96) { if (x >= 1 << 95) _revertOverflow(); return int96(int256(x)); } function toInt104(uint256 x) internal pure returns (int104) { if (x >= 1 << 103) _revertOverflow(); return int104(int256(x)); } function toInt112(uint256 x) internal pure returns (int112) { if (x >= 1 << 111) _revertOverflow(); return int112(int256(x)); } function toInt120(uint256 x) internal pure returns (int120) { if (x >= 1 << 119) _revertOverflow(); return int120(int256(x)); } function toInt128(uint256 x) internal pure returns (int128) { if (x >= 1 << 127) _revertOverflow(); return int128(int256(x)); } function toInt136(uint256 x) internal pure returns (int136) { if (x >= 1 << 135) _revertOverflow(); return int136(int256(x)); } function toInt144(uint256 x) internal pure returns (int144) { if (x >= 1 << 143) _revertOverflow(); return int144(int256(x)); } function toInt152(uint256 x) internal pure returns (int152) { if (x >= 1 << 151) _revertOverflow(); return int152(int256(x)); } function toInt160(uint256 x) internal pure returns (int160) { if (x >= 1 << 159) _revertOverflow(); return int160(int256(x)); } function toInt168(uint256 x) internal pure returns (int168) { if (x >= 1 << 167) _revertOverflow(); return int168(int256(x)); } function toInt176(uint256 x) internal pure returns (int176) { if (x >= 1 << 175) _revertOverflow(); return int176(int256(x)); } function toInt184(uint256 x) internal pure returns (int184) { if (x >= 1 << 183) _revertOverflow(); return int184(int256(x)); } function toInt192(uint256 x) internal pure returns (int192) { if (x >= 1 << 191) _revertOverflow(); return int192(int256(x)); } function toInt200(uint256 x) internal pure returns (int200) { if (x >= 1 << 199) _revertOverflow(); return int200(int256(x)); } function toInt208(uint256 x) internal pure returns (int208) { if (x >= 1 << 207) _revertOverflow(); return int208(int256(x)); } function toInt216(uint256 x) internal pure returns (int216) { if (x >= 1 << 215) _revertOverflow(); return int216(int256(x)); } function toInt224(uint256 x) internal pure returns (int224) { if (x >= 1 << 223) _revertOverflow(); return int224(int256(x)); } function toInt232(uint256 x) internal pure returns (int232) { if (x >= 1 << 231) _revertOverflow(); return int232(int256(x)); } function toInt240(uint256 x) internal pure returns (int240) { if (x >= 1 << 239) _revertOverflow(); return int240(int256(x)); } function toInt248(uint256 x) internal pure returns (int248) { if (x >= 1 << 247) _revertOverflow(); return int248(int256(x)); } function toInt256(uint256 x) internal pure returns (int256) { if (int256(x) >= 0) return int256(x); _revertOverflow(); } function toUint256(int256 x) internal pure returns (uint256) { if (x >= 0) return uint256(x); _revertOverflow(); } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ function _revertOverflow() private pure { /// @solidity memory-safe-assembly assembly { // Store the function selector of `Overflow()`. mstore(0x00, 0x35278d12) // Revert with (offset, size). revert(0x1c, 0x04) } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.19; import {EnumerableSetLib} from "solady-0.0.250/src/utils/EnumerableSetLib.sol"; import {MinHeapLib} from "solady-0.0.250/src/utils/MinHeapLib.sol"; enum StageType { NONE, FREE, BURN, AUCTION } struct Auction { uint40 startTime; uint40 endTime; uint8 winnerCount; uint128 startingBid; uint128 totalAmountBid; mapping(address => AuctionBid) userBids; MinHeapLib.Heap bids; } struct AuctionViewModel { uint256 auctionId; uint40 startTime; uint40 endTime; uint8 winnerCount; uint128 startingBid; uint128 totalAmountBid; } struct AuctionBid { uint192 amount; bool settled; } struct MintStage { uint8 stageId; StageType stageType; uint8 maxForStage; uint192 mintedInStage; bytes32 merkleRoot; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for managing a min-heap in storage or memory. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/MinHeapLib.sol) library MinHeapLib { /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The heap is empty. error HeapIsEmpty(); /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* STRUCTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev A heap in storage. struct Heap { uint256[] data; } /// @dev A heap in memory. struct MemHeap { uint256[] data; } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* OPERATIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ // Tips: // - To use as a max-heap, bitwise negate the input and output values (e.g. `heap.push(~x)`). // - To use on tuples, pack the tuple values into a single integer. // - To use on signed integers, convert the signed integers into // their ordered unsigned counterparts via `uint256(x) + (1 << 255)`. /// @dev Returns the minimum value of the heap. /// Reverts if the heap is empty. function root(Heap storage heap) internal view returns (uint256 result) { /// @solidity memory-safe-assembly assembly { if iszero(sload(heap.slot)) { mstore(0x00, 0xa6ca772e) // `HeapIsEmpty()`. revert(0x1c, 0x04) } mstore(0x00, heap.slot) result := sload(keccak256(0x00, 0x20)) } } /// @dev Returns the minimum value of the heap. /// Reverts if the heap is empty. function root(MemHeap memory heap) internal pure returns (uint256 result) { /// @solidity memory-safe-assembly assembly { result := mload(heap) if iszero(mload(result)) { mstore(0x00, 0xa6ca772e) // `HeapIsEmpty()`. revert(0x1c, 0x04) } result := mload(add(0x20, result)) } } /// @dev Reserves at least `minimum` slots of memory for the heap. /// Helps avoid reallocation if you already know the max size of the heap. function reserve(MemHeap memory heap, uint256 minimum) internal pure { /// @solidity memory-safe-assembly assembly { let w := not(0x1f) let prime := 204053801631428327883786711931463459222251954273621 let cap := not(mload(add(mload(heap), w))) if gt(minimum, mul(iszero(mod(cap, prime)), div(cap, prime))) { let data := mload(heap) let n := mload(data) let newCap := and(add(minimum, 0x1f), w) // Round up to multiple of 32. mstore(mload(0x40), not(mul(newCap, prime))) let m := add(mload(0x40), 0x20) mstore(m, n) // Store the length. mstore(0x40, add(add(m, 0x20), shl(5, newCap))) // Allocate `heap.data` memory. mstore(heap, m) // Update `heap.data`. if n { for { let i := shl(5, n) } 1 {} { mstore(add(m, i), mload(add(data, i))) i := add(i, w) if iszero(i) { break } } } } } } /// @dev Returns an array of the `k` smallest items in the heap, /// sorted in ascending order, without modifying the heap. /// If the heap has less than `k` items, all items in the heap will be returned. function smallest(Heap storage heap, uint256 k) internal view returns (uint256[] memory a) { /// @solidity memory-safe-assembly assembly { function pIndex(h_, p_) -> _i { _i := mload(add(0x20, add(h_, shl(6, p_)))) } function pValue(h_, p_) -> _v { _v := mload(add(h_, shl(6, p_))) } function pSet(h_, p_, i_, v_) { mstore(add(h_, shl(6, p_)), v_) mstore(add(0x20, add(h_, shl(6, p_))), i_) } function pSiftdown(h_, p_, i_, v_) { for {} 1 {} { let u_ := shr(1, sub(p_, 1)) if iszero(mul(p_, lt(v_, pValue(h_, u_)))) { break } pSet(h_, p_, pIndex(h_, u_), pValue(h_, u_)) p_ := u_ } pSet(h_, p_, i_, v_) } function pSiftup(h_, e_, i_, v_) { let p_ := 0 for { let c_ := 1 } lt(c_, e_) { c_ := add(1, shl(1, p_)) } { c_ := add(c_, gt(pValue(h_, c_), pValue(h_, add(c_, lt(add(c_, 1), e_))))) pSet(h_, p_, pIndex(h_, c_), pValue(h_, c_)) p_ := c_ } pSiftdown(h_, p_, i_, v_) } a := mload(0x40) mstore(0x00, heap.slot) let sOffset := keccak256(0x00, 0x20) let o := add(a, 0x20) // Offset into `a`. let n := sload(heap.slot) // The number of items in the heap. let m := xor(n, mul(xor(n, k), lt(k, n))) // `min(k, n)`. let h := add(o, shl(5, m)) // Priority queue. pSet(h, 0, 0, sload(sOffset)) // Store the root into the priority queue. for { let e := iszero(eq(o, h)) } e {} { mstore(o, pValue(h, 0)) o := add(0x20, o) if eq(o, h) { break } let childPos := add(shl(1, pIndex(h, 0)), 1) if iszero(lt(childPos, n)) { e := sub(e, 1) pSiftup(h, e, pIndex(h, e), pValue(h, e)) continue } pSiftup(h, e, childPos, sload(add(sOffset, childPos))) childPos := add(1, childPos) if iszero(eq(childPos, n)) { pSiftdown(h, e, childPos, sload(add(sOffset, childPos))) e := add(e, 1) } } mstore(a, shr(5, sub(o, add(a, 0x20)))) // Store the length. mstore(0x40, o) // Allocate memory. } } /// @dev Returns an array of the `k` smallest items in the heap, /// sorted in ascending order, without modifying the heap. /// If the heap has less than `k` items, all items in the heap will be returned. function smallest(MemHeap memory heap, uint256 k) internal pure returns (uint256[] memory a) { /// @solidity memory-safe-assembly assembly { function pIndex(h_, p_) -> _i { _i := mload(add(0x20, add(h_, shl(6, p_)))) } function pValue(h_, p_) -> _v { _v := mload(add(h_, shl(6, p_))) } function pSet(h_, p_, i_, v_) { mstore(add(h_, shl(6, p_)), v_) mstore(add(0x20, add(h_, shl(6, p_))), i_) } function pSiftdown(h_, p_, i_, v_) { for {} 1 {} { let u_ := shr(1, sub(p_, 1)) if iszero(mul(p_, lt(v_, pValue(h_, u_)))) { break } pSet(h_, p_, pIndex(h_, u_), pValue(h_, u_)) p_ := u_ } pSet(h_, p_, i_, v_) } function pSiftup(h_, e_, i_, v_) { let p_ := 0 for { let c_ := 1 } lt(c_, e_) { c_ := add(1, shl(1, p_)) } { c_ := add(c_, gt(pValue(h_, c_), pValue(h_, add(c_, lt(add(c_, 1), e_))))) pSet(h_, p_, pIndex(h_, c_), pValue(h_, c_)) p_ := c_ } pSiftdown(h_, p_, i_, v_) } a := mload(0x40) let sOffset := add(mload(heap), 0x20) let o := add(a, 0x20) // Offset into `a`. let n := mload(mload(heap)) // The number of items in the heap. let m := xor(n, mul(xor(n, k), lt(k, n))) // `min(k, n)`. let h := add(o, shl(5, m)) // Priority queue. pSet(h, 0, 0, mload(sOffset)) // Store the root into the priority queue. for { let e := iszero(eq(o, h)) } e {} { mstore(o, pValue(h, 0)) o := add(0x20, o) if eq(o, h) { break } let childPos := add(shl(1, pIndex(h, 0)), 1) if iszero(lt(childPos, n)) { e := sub(e, 1) pSiftup(h, e, pIndex(h, e), pValue(h, e)) continue } pSiftup(h, e, childPos, mload(add(sOffset, shl(5, childPos)))) childPos := add(1, childPos) if iszero(eq(childPos, n)) { pSiftdown(h, e, childPos, mload(add(sOffset, shl(5, childPos)))) e := add(e, 1) } } mstore(a, shr(5, sub(o, add(a, 0x20)))) // Store the length. mstore(0x40, o) // Allocate memory. } } /// @dev Returns the number of items in the heap. function length(Heap storage heap) internal view returns (uint256) { return heap.data.length; } /// @dev Returns the number of items in the heap. function length(MemHeap memory heap) internal pure returns (uint256) { return heap.data.length; } /// @dev Pushes the `value` onto the min-heap. function push(Heap storage heap, uint256 value) internal { _set(heap, value, 0, 3); } /// @dev Pushes the `value` onto the min-heap. function push(MemHeap memory heap, uint256 value) internal pure { _set(heap, value, 0, 3); } /// @dev Pops the minimum value from the min-heap. /// Reverts if the heap is empty. function pop(Heap storage heap) internal returns (uint256 popped) { (, popped) = _set(heap, 0, 0, 2); } /// @dev Pops the minimum value from the min-heap. /// Reverts if the heap is empty. function pop(MemHeap memory heap) internal pure returns (uint256 popped) { (, popped) = _set(heap, 0, 0, 2); } /// @dev Pushes the `value` onto the min-heap, and pops the minimum value. function pushPop(Heap storage heap, uint256 value) internal returns (uint256 popped) { (, popped) = _set(heap, value, 0, 4); } /// @dev Pushes the `value` onto the min-heap, and pops the minimum value. function pushPop(MemHeap memory heap, uint256 value) internal pure returns (uint256 popped) { (, popped) = _set(heap, value, 0, 4); } /// @dev Pops the minimum value, and pushes the new `value` onto the min-heap. /// Reverts if the heap is empty. function replace(Heap storage heap, uint256 value) internal returns (uint256 popped) { (, popped) = _set(heap, value, 0, 1); } /// @dev Pops the minimum value, and pushes the new `value` onto the min-heap. /// Reverts if the heap is empty. function replace(MemHeap memory heap, uint256 value) internal pure returns (uint256 popped) { (, popped) = _set(heap, value, 0, 1); } /// @dev Pushes the `value` onto the min-heap, and pops the minimum value /// if the length of the heap exceeds `maxLength`. /// /// Reverts if `maxLength` is zero. /// /// - If the queue is not full: /// (`success` = true, `hasPopped` = false, `popped` = 0) /// - If the queue is full, and `value` is not greater than the minimum value: /// (`success` = false, `hasPopped` = false, `popped` = 0) /// - If the queue is full, and `value` is greater than the minimum value: /// (`success` = true, `hasPopped` = true, `popped` = <minimum value>) /// /// Useful for implementing a bounded priority queue. function enqueue(Heap storage heap, uint256 value, uint256 maxLength) internal returns (bool success, bool hasPopped, uint256 popped) { (value, popped) = _set(heap, value, maxLength, 0); /// @solidity memory-safe-assembly assembly { hasPopped := eq(3, value) success := value } } /// @dev Pushes the `value` onto the min-heap, and pops the minimum value /// if the length of the heap exceeds `maxLength`. /// /// Reverts if `maxLength` is zero. /// /// - If the queue is not full: /// (`success` = true, `hasPopped` = false, `popped` = 0) /// - If the queue is full, and `value` is not greater than the minimum value: /// (`success` = false, `hasPopped` = false, `popped` = 0) /// - If the queue is full, and `value` is greater than the minimum value: /// (`success` = true, `hasPopped` = true, `popped` = <minimum value>) /// /// Useful for implementing a bounded priority queue. function enqueue(MemHeap memory heap, uint256 value, uint256 maxLength) internal pure returns (bool success, bool hasPopped, uint256 popped) { (value, popped) = _set(heap, value, maxLength, 0); /// @solidity memory-safe-assembly assembly { hasPopped := eq(3, value) success := value } } /// @dev Increments the free memory pointer by a word and fills the word with 0. /// This is if you want to take extra precaution that the memory word slot before /// the `data` array in `MemHeap` doesn't contain a non-zero multiple of prime /// to masquerade as a prime-checksummed capacity. /// If you are not directly assigning some array to `data`, /// you don't have to worry about it. function bumpFreeMemoryPointer() internal pure { uint256 zero; /// @solidity memory-safe-assembly assembly { let m := mload(0x40) mstore(m, zero) mstore(0x40, add(m, 0x20)) } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Helper function for heap operations. /// Designed for code conciseness, bytecode compactness, and decent performance. function _set(Heap storage heap, uint256 value, uint256 maxLength, uint256 mode) private returns (uint256 status, uint256 popped) { /// @solidity memory-safe-assembly assembly { let n := sload(heap.slot) mstore(0x00, heap.slot) let sOffset := keccak256(0x00, 0x20) // Array storage slot offset. let pos := 0 let childPos := not(0) // Operations are ordered from most likely usage to least likely usage. for {} 1 { mstore(0x00, 0xa6ca772e) // `HeapIsEmpty()`. revert(0x1c, 0x04) } { // Mode: `enqueue`. if iszero(mode) { if iszero(maxLength) { continue } // If queue is not full. if iszero(eq(n, maxLength)) { status := 1 pos := n // Increment and update the length. sstore(heap.slot, add(pos, 1)) childPos := sOffset break } let r := sload(sOffset) if iszero(lt(r, value)) { break } status := 3 childPos := 1 popped := r break } if iszero(gt(mode, 2)) { if iszero(n) { continue } // Mode: `pop`. if eq(mode, 2) { // Decrement and update the length. n := sub(n, 1) sstore(heap.slot, n) // Set the `value` to the last item. value := sload(add(sOffset, n)) popped := value if iszero(n) { break } } // Mode: `replace`. popped := sload(sOffset) childPos := 1 break } // Mode: `push`. if eq(mode, 3) { // Increment and update the length. pos := n sstore(heap.slot, add(pos, 1)) childPos := sOffset break } // Mode: `pushPop`. popped := value if iszero(n) { break } let r := sload(sOffset) if iszero(lt(r, value)) { break } popped := r childPos := 1 break } // Siftup. for {} lt(childPos, n) {} { let child := sload(add(sOffset, childPos)) let rightPos := add(childPos, 1) let right := sload(add(sOffset, rightPos)) if iszero(gt(lt(rightPos, n), lt(child, right))) { right := child rightPos := childPos } sstore(add(sOffset, pos), right) pos := rightPos childPos := add(shl(1, pos), 1) } // Siftdown. for {} pos {} { let parentPos := shr(1, sub(pos, 1)) let parent := sload(add(sOffset, parentPos)) if iszero(lt(value, parent)) { break } sstore(add(sOffset, pos), parent) pos := parentPos } // If `childPos` has been changed from `not(0)`. if add(childPos, 1) { sstore(add(sOffset, pos), value) } } } /// @dev Helper function for heap operations. /// Designed for code conciseness, bytecode compactness, and decent performance. function _set(MemHeap memory heap, uint256 value, uint256 maxLength, uint256 mode) private pure returns (uint256 status, uint256 popped) { /// @solidity memory-safe-assembly assembly { let data := mload(heap) let n := mload(data) // Allocation / reallocation. for { let cap := not(mload(sub(data, 0x20))) let prime := 204053801631428327883786711931463459222251954273621 cap := mul(iszero(mod(cap, prime)), div(cap, prime)) } iszero(lt(n, cap)) {} { let newCap := add(add(cap, cap), shl(5, iszero(cap))) if iszero(or(cap, iszero(n))) { for { cap := n } iszero(gt(newCap, n)) {} { newCap := add(newCap, newCap) } } mstore(mload(0x40), not(mul(newCap, prime))) // Update `heap.capacity`. let m := add(mload(0x40), 0x20) mstore(m, n) // Store the length. mstore(0x40, add(add(m, 0x20), shl(5, newCap))) // Allocate `heap.data` memory. if cap { let w := not(0x1f) for { let i := shl(5, cap) } 1 {} { mstore(add(m, i), mload(add(data, i))) i := add(i, w) if iszero(i) { break } } } mstore(heap, m) // Update `heap.data`. data := m break } let sOffset := add(data, 0x20) // Array memory offset. let pos := 0 let childPos := not(0) // Operations are ordered from most likely usage to least likely usage. for {} 1 { mstore(0x00, 0xa6ca772e) // `HeapIsEmpty()`. revert(0x1c, 0x04) } { // Mode: `enqueue`. if iszero(mode) { if iszero(maxLength) { continue } // If queue is not full. if iszero(eq(n, maxLength)) { status := 1 pos := n // Increment and update the length. mstore(data, add(pos, 1)) childPos := 0xff0000000000000000 break } if iszero(lt(mload(sOffset), value)) { break } status := 3 childPos := 1 popped := mload(sOffset) break } if iszero(gt(mode, 2)) { if iszero(n) { continue } // Mode: `pop`. if eq(mode, 2) { // Decrement and update the length. n := sub(n, 1) mstore(data, n) // Set the `value` to the last item. value := mload(add(sOffset, shl(5, n))) popped := value if iszero(n) { break } } // Mode: `replace`. popped := mload(sOffset) childPos := 1 break } // Mode: `push`. if eq(mode, 3) { // Increment and update the length. pos := n mstore(data, add(pos, 1)) childPos := 0xff0000000000000000 break } // Mode: `pushPop`. if iszero(mul(n, lt(mload(sOffset), value))) { popped := value break } popped := mload(sOffset) childPos := 1 break } // Siftup. for {} lt(childPos, n) {} { let child := mload(add(sOffset, shl(5, childPos))) let rightPos := add(childPos, 1) let right := mload(add(sOffset, shl(5, rightPos))) if iszero(gt(lt(rightPos, n), lt(child, right))) { mstore(add(sOffset, shl(5, pos)), child) pos := childPos childPos := add(shl(1, pos), 1) continue } mstore(add(sOffset, shl(5, pos)), right) pos := rightPos childPos := add(shl(1, pos), 1) } // Siftdown. for {} pos {} { let parentPos := shr(1, sub(pos, 1)) let parent := mload(add(sOffset, shl(5, parentPos))) if iszero(lt(value, parent)) { break } mstore(add(sOffset, shl(5, pos)), parent) pos := parentPos } // If `childPos` has been changed from `not(0)`. if iszero(shr(128, childPos)) { mstore(add(sOffset, shl(5, pos)), value) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; interface IERC721TokenURI { function tokenURI(uint256 tokenId) external view returns (string memory); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Simple single owner authorization mixin. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/auth/Ownable.sol) /// /// @dev Note: /// This implementation does NOT auto-initialize the owner to `msg.sender`. /// You MUST call the `_initializeOwner` in the constructor / initializer. /// /// While the ownable portion follows /// [EIP-173](https://eips.ethereum.org/EIPS/eip-173) for compatibility, /// the nomenclature for the 2-step ownership handover may be unique to this codebase. abstract contract Ownable { /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The caller is not authorized to call the function. error Unauthorized(); /// @dev The `newOwner` cannot be the zero address. error NewOwnerIsZeroAddress(); /// @dev The `pendingOwner` does not have a valid handover request. error NoHandoverRequest(); /// @dev Cannot double-initialize. error AlreadyInitialized(); /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* EVENTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The ownership is transferred from `oldOwner` to `newOwner`. /// This event is intentionally kept the same as OpenZeppelin's Ownable to be /// compatible with indexers and [EIP-173](https://eips.ethereum.org/EIPS/eip-173), /// despite it not being as lightweight as a single argument event. event OwnershipTransferred(address indexed oldOwner, address indexed newOwner); /// @dev An ownership handover to `pendingOwner` has been requested. event OwnershipHandoverRequested(address indexed pendingOwner); /// @dev The ownership handover to `pendingOwner` has been canceled. event OwnershipHandoverCanceled(address indexed pendingOwner); /// @dev `keccak256(bytes("OwnershipTransferred(address,address)"))`. uint256 private constant _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE = 0x8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e0; /// @dev `keccak256(bytes("OwnershipHandoverRequested(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE = 0xdbf36a107da19e49527a7176a1babf963b4b0ff8cde35ee35d6cd8f1f9ac7e1d; /// @dev `keccak256(bytes("OwnershipHandoverCanceled(address)"))`. uint256 private constant _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE = 0xfa7b8eab7da67f412cc9575ed43464468f9bfbae89d1675917346ca6d8fe3c92; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* STORAGE */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The owner slot is given by: /// `bytes32(~uint256(uint32(bytes4(keccak256("_OWNER_SLOT_NOT")))))`. /// It is intentionally chosen to be a high value /// to avoid collision with lower slots. /// The choice of manual storage layout is to enable compatibility /// with both regular and upgradeable contracts. bytes32 internal constant _OWNER_SLOT = 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffff74873927; /// The ownership handover slot of `newOwner` is given by: /// ``` /// mstore(0x00, or(shl(96, user), _HANDOVER_SLOT_SEED)) /// let handoverSlot := keccak256(0x00, 0x20) /// ``` /// It stores the expiry timestamp of the two-step ownership handover. uint256 private constant _HANDOVER_SLOT_SEED = 0x389a75e1; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* INTERNAL FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Override to return true to make `_initializeOwner` prevent double-initialization. function _guardInitializeOwner() internal pure virtual returns (bool guard) {} /// @dev Initializes the owner directly without authorization guard. /// This function must be called upon initialization, /// regardless of whether the contract is upgradeable or not. /// This is to enable generalization to both regular and upgradeable contracts, /// and to save gas in case the initial owner is not the caller. /// For performance reasons, this function will not check if there /// is an existing owner. function _initializeOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT if sload(ownerSlot) { mstore(0x00, 0x0dc149f0) // `AlreadyInitialized()`. revert(0x1c, 0x04) } // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } else { /// @solidity memory-safe-assembly assembly { // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Store the new value. sstore(_OWNER_SLOT, newOwner) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, 0, newOwner) } } } /// @dev Sets the owner directly without authorization guard. function _setOwner(address newOwner) internal virtual { if (_guardInitializeOwner()) { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, or(newOwner, shl(255, iszero(newOwner)))) } } else { /// @solidity memory-safe-assembly assembly { let ownerSlot := _OWNER_SLOT // Clean the upper 96 bits. newOwner := shr(96, shl(96, newOwner)) // Emit the {OwnershipTransferred} event. log3(0, 0, _OWNERSHIP_TRANSFERRED_EVENT_SIGNATURE, sload(ownerSlot), newOwner) // Store the new value. sstore(ownerSlot, newOwner) } } } /// @dev Throws if the sender is not the owner. function _checkOwner() internal view virtual { /// @solidity memory-safe-assembly assembly { // If the caller is not the stored owner, revert. if iszero(eq(caller(), sload(_OWNER_SLOT))) { mstore(0x00, 0x82b42900) // `Unauthorized()`. revert(0x1c, 0x04) } } } /// @dev Returns how long a two-step ownership handover is valid for in seconds. /// Override to return a different value if needed. /// Made internal to conserve bytecode. Wrap it in a public function if needed. function _ownershipHandoverValidFor() internal view virtual returns (uint64) { return 48 * 3600; } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* PUBLIC UPDATE FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Allows the owner to transfer the ownership to `newOwner`. function transferOwnership(address newOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { if iszero(shl(96, newOwner)) { mstore(0x00, 0x7448fbae) // `NewOwnerIsZeroAddress()`. revert(0x1c, 0x04) } } _setOwner(newOwner); } /// @dev Allows the owner to renounce their ownership. function renounceOwnership() public payable virtual onlyOwner { _setOwner(address(0)); } /// @dev Request a two-step ownership handover to the caller. /// The request will automatically expire in 48 hours (172800 seconds) by default. function requestOwnershipHandover() public payable virtual { unchecked { uint256 expires = block.timestamp + _ownershipHandoverValidFor(); /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to `expires`. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), expires) // Emit the {OwnershipHandoverRequested} event. log2(0, 0, _OWNERSHIP_HANDOVER_REQUESTED_EVENT_SIGNATURE, caller()) } } } /// @dev Cancels the two-step ownership handover to the caller, if any. function cancelOwnershipHandover() public payable virtual { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, caller()) sstore(keccak256(0x0c, 0x20), 0) // Emit the {OwnershipHandoverCanceled} event. log2(0, 0, _OWNERSHIP_HANDOVER_CANCELED_EVENT_SIGNATURE, caller()) } } /// @dev Allows the owner to complete the two-step ownership handover to `pendingOwner`. /// Reverts if there is no existing ownership handover requested by `pendingOwner`. function completeOwnershipHandover(address pendingOwner) public payable virtual onlyOwner { /// @solidity memory-safe-assembly assembly { // Compute and set the handover slot to 0. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) let handoverSlot := keccak256(0x0c, 0x20) // If the handover does not exist, or has expired. if gt(timestamp(), sload(handoverSlot)) { mstore(0x00, 0x6f5e8818) // `NoHandoverRequest()`. revert(0x1c, 0x04) } // Set the handover slot to 0. sstore(handoverSlot, 0) } _setOwner(pendingOwner); } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* PUBLIC READ FUNCTIONS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns the owner of the contract. function owner() public view virtual returns (address result) { /// @solidity memory-safe-assembly assembly { result := sload(_OWNER_SLOT) } } /// @dev Returns the expiry timestamp for the two-step ownership handover to `pendingOwner`. function ownershipHandoverExpiresAt(address pendingOwner) public view virtual returns (uint256 result) { /// @solidity memory-safe-assembly assembly { // Compute the handover slot. mstore(0x0c, _HANDOVER_SLOT_SEED) mstore(0x00, pendingOwner) // Load the handover slot. result := sload(keccak256(0x0c, 0x20)) } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* MODIFIERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Marks a function as only callable by the owner. modifier onlyOwner() virtual { _checkOwner(); _; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2; import "./IERC165.sol"; /// @title ERC-721 Non-Fungible Token Standard /// @dev See https://eips.ethereum.org/EIPS/eip-721 /// Note: the ERC-165 identifier for this interface is 0x80ac58cd. interface IERC721 is IERC165 { /// @dev This emits when ownership of any NFT changes by any mechanism. /// This event emits when NFTs are created (`from` == 0) and destroyed /// (`to` == 0). Exception: during contract creation, any number of NFTs /// may be created and assigned without emitting Transfer. At the time of /// any transfer, the approved address for that NFT (if any) is reset to none. event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId); /// @dev This emits when the approved address for an NFT is changed or /// reaffirmed. The zero address indicates there is no approved address. /// When a Transfer event emits, this also indicates that the approved /// address for that NFT (if any) is reset to none. event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId); /// @dev This emits when an operator is enabled or disabled for an owner. /// The operator can manage all NFTs of the owner. event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved); /// @notice Count all NFTs assigned to an owner /// @dev NFTs assigned to the zero address are considered invalid, and this /// function throws for queries about the zero address. /// @param _owner An address for whom to query the balance /// @return The number of NFTs owned by `_owner`, possibly zero function balanceOf(address _owner) external view returns (uint256); /// @notice Find the owner of an NFT /// @dev NFTs assigned to zero address are considered invalid, and queries /// about them do throw. /// @param _tokenId The identifier for an NFT /// @return The address of the owner of the NFT function ownerOf(uint256 _tokenId) external view returns (address); /// @notice Transfers the ownership of an NFT from one address to another address /// @dev Throws unless `msg.sender` is the current owner, an authorized /// operator, or the approved address for this NFT. Throws if `_from` is /// not the current owner. Throws if `_to` is the zero address. Throws if /// `_tokenId` is not a valid NFT. When transfer is complete, this function /// checks if `_to` is a smart contract (code size > 0). If so, it calls /// `onERC721Received` on `_to` and throws if the return value is not /// `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))`. /// @param _from The current owner of the NFT /// @param _to The new owner /// @param _tokenId The NFT to transfer /// @param data Additional data with no specified format, sent in call to `_to` function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes calldata data) external payable; /// @notice Transfers the ownership of an NFT from one address to another address /// @dev This works identically to the other function with an extra data parameter, /// except this function just sets data to "". /// @param _from The current owner of the NFT /// @param _to The new owner /// @param _tokenId The NFT to transfer function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable; /// @notice Transfer ownership of an NFT -- THE CALLER IS RESPONSIBLE /// TO CONFIRM THAT `_to` IS CAPABLE OF RECEIVING NFTS OR ELSE /// THEY MAY BE PERMANENTLY LOST /// @dev Throws unless `msg.sender` is the current owner, an authorized /// operator, or the approved address for this NFT. Throws if `_from` is /// not the current owner. Throws if `_to` is the zero address. Throws if /// `_tokenId` is not a valid NFT. /// @param _from The current owner of the NFT /// @param _to The new owner /// @param _tokenId The NFT to transfer function transferFrom(address _from, address _to, uint256 _tokenId) external payable; /// @notice Change or reaffirm the approved address for an NFT /// @dev The zero address indicates there is no approved address. /// Throws unless `msg.sender` is the current NFT owner, or an authorized /// operator of the current owner. /// @param _approved The new approved NFT controller /// @param _tokenId The NFT to approve function approve(address _approved, uint256 _tokenId) external payable; /// @notice Enable or disable approval for a third party ("operator") to manage /// all of `msg.sender`'s assets /// @dev Emits the ApprovalForAll event. The contract MUST allow /// multiple operators per owner. /// @param _operator Address to add to the set of authorized operators /// @param _approved True if the operator is approved, false to revoke approval function setApprovalForAll(address _operator, bool _approved) external; /// @notice Get the approved address for a single NFT /// @dev Throws if `_tokenId` is not a valid NFT. /// @param _tokenId The NFT to find the approved address for /// @return The approved address for this NFT, or the zero address if there is none function getApproved(uint256 _tokenId) external view returns (address); /// @notice Query if an address is an authorized operator for another address /// @param _owner The address that owns the NFTs /// @param _operator The address that acts on behalf of the owner /// @return True if `_operator` is an approved operator for `_owner`, false otherwise function isApprovedForAll(address _owner, address _operator) external view returns (bool); } /// @dev Note: the ERC-165 identifier for this interface is 0x150b7a02. interface IERC721TokenReceiver { /// @notice Handle the receipt of an NFT /// @dev The ERC721 smart contract calls this function on the recipient /// after a `transfer`. This function MAY throw to revert and reject the /// transfer. Return of other than the magic value MUST result in the /// transaction being reverted. /// Note: the contract address is always the message sender. /// @param _operator The address which called `safeTransferFrom` function /// @param _from The address which previously owned the token /// @param _tokenId The NFT identifier which is being transferred /// @param _data Additional data with no specified format /// @return `bytes4(keccak256("onERC721Received(address,address,uint256,bytes)"))` /// unless throwing function onERC721Received(address _operator, address _from, uint256 _tokenId, bytes calldata _data) external returns (bytes4); } /// @title ERC-721 Non-Fungible Token Standard, optional metadata extension /// @dev See https://eips.ethereum.org/EIPS/eip-721 /// Note: the ERC-165 identifier for this interface is 0x5b5e139f. interface IERC721Metadata is IERC721 { /// @notice A descriptive name for a collection of NFTs in this contract function name() external view returns (string memory _name); /// @notice An abbreviated name for NFTs in this contract function symbol() external view returns (string memory _symbol); /// @notice A distinct Uniform Resource Identifier (URI) for a given asset. /// @dev Throws if `_tokenId` is not a valid NFT. URIs are defined in RFC /// 3986. The URI may point to a JSON file that conforms to the "ERC721 /// Metadata JSON Schema". function tokenURI(uint256 _tokenId) external view returns (string memory); } /// @title ERC-721 Non-Fungible Token Standard, optional enumeration extension /// @dev See https://eips.ethereum.org/EIPS/eip-721 /// Note: the ERC-165 identifier for this interface is 0x780e9d63. interface IERC721Enumerable is IERC721 { /// @notice Count NFTs tracked by this contract /// @return A count of valid NFTs tracked by this contract, where each one of /// them has an assigned and queryable owner not equal to the zero address function totalSupply() external view returns (uint256); /// @notice Enumerate valid NFTs /// @dev Throws if `_index` >= `totalSupply()`. /// @param _index A counter less than `totalSupply()` /// @return The token identifier for the `_index`th NFT, /// (sort order not specified) function tokenByIndex(uint256 _index) external view returns (uint256); /// @notice Enumerate NFTs assigned to an owner /// @dev Throws if `_index` >= `balanceOf(_owner)` or if /// `_owner` is the zero address, representing invalid NFTs. /// @param _owner An address where we are interested in NFTs owned by them /// @param _index A counter less than `balanceOf(_owner)` /// @return The token identifier for the `_index`th NFT assigned to `_owner`, /// (sort order not specified) function tokenOfOwnerByIndex(address _owner, uint256 _index) external view returns (uint256); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.4; /// @notice Library for managing enumerable sets in storage. /// @author Solady (https://github.com/vectorized/solady/blob/main/src/utils/EnumerableSetLib.sol) /// /// @dev Note: /// In many applications, the number of elements in an enumerable set is small. /// This enumerable set implementation avoids storing the length and indices /// for up to 3 elements. Once the length exceeds 3 for the first time, the length /// and indices will be initialized. The amortized cost of adding elements is O(1). /// /// The AddressSet implementation packs the length with the 0th entry. library EnumerableSetLib { /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* CUSTOM ERRORS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev The index must be less than the length. error IndexOutOfBounds(); /// @dev The value cannot be the zero sentinel. error ValueIsZeroSentinel(); /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* CONSTANTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev A sentinel value to denote the zero value in storage. /// No elements can be equal to this value. /// `uint72(bytes9(keccak256(bytes("_ZERO_SENTINEL"))))`. uint256 private constant _ZERO_SENTINEL = 0xfbb67fda52d4bfb8bf; /// @dev The storage layout is given by: /// ``` /// mstore(0x04, _ENUMERABLE_ADDRESS_SET_SLOT_SEED) /// mstore(0x00, set.slot) /// let rootSlot := keccak256(0x00, 0x24) /// mstore(0x20, rootSlot) /// mstore(0x00, shr(96, shl(96, value))) /// let positionSlot := keccak256(0x00, 0x40) /// let valueSlot := add(rootSlot, sload(positionSlot)) /// let valueInStorage := shr(96, sload(valueSlot)) /// let lazyLength := shr(160, shl(160, sload(rootSlot))) /// ``` uint256 private constant _ENUMERABLE_ADDRESS_SET_SLOT_SEED = 0x978aab92; /// @dev The storage layout is given by: /// ``` /// mstore(0x04, _ENUMERABLE_WORD_SET_SLOT_SEED) /// mstore(0x00, set.slot) /// let rootSlot := keccak256(0x00, 0x24) /// mstore(0x20, rootSlot) /// mstore(0x00, value) /// let positionSlot := keccak256(0x00, 0x40) /// let valueSlot := add(rootSlot, sload(positionSlot)) /// let valueInStorage := sload(valueSlot) /// let lazyLength := sload(not(rootSlot)) /// ``` uint256 private constant _ENUMERABLE_WORD_SET_SLOT_SEED = 0x18fb5864; /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* STRUCTS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev An enumerable address set in storage. struct AddressSet { uint256 _spacer; } /// @dev An enumerable bytes32 set in storage. struct Bytes32Set { uint256 _spacer; } /// @dev An enumerable uint256 set in storage. struct Uint256Set { uint256 _spacer; } /// @dev An enumerable int256 set in storage. struct Int256Set { uint256 _spacer; } /// @dev An enumerable uint8 set in storage. Useful for enums. struct Uint8Set { uint256 data; } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* GETTERS / SETTERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns the number of elements in the set. function length(AddressSet storage set) internal view returns (uint256 result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { let rootPacked := sload(rootSlot) let n := shr(160, shl(160, rootPacked)) result := shr(1, n) for {} iszero(or(iszero(shr(96, rootPacked)), n)) {} { result := 1 if iszero(sload(add(rootSlot, result))) { break } result := 2 if iszero(sload(add(rootSlot, result))) { break } result := 3 break } } } /// @dev Returns the number of elements in the set. function length(Bytes32Set storage set) internal view returns (uint256 result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { let n := sload(not(rootSlot)) result := shr(1, n) for {} iszero(n) {} { result := 0 if iszero(sload(add(rootSlot, result))) { break } result := 1 if iszero(sload(add(rootSlot, result))) { break } result := 2 if iszero(sload(add(rootSlot, result))) { break } result := 3 break } } } /// @dev Returns the number of elements in the set. function length(Uint256Set storage set) internal view returns (uint256 result) { result = length(_toBytes32Set(set)); } /// @dev Returns the number of elements in the set. function length(Int256Set storage set) internal view returns (uint256 result) { result = length(_toBytes32Set(set)); } /// @dev Returns the number of elements in the set. function length(Uint8Set storage set) internal view returns (uint256 result) { /// @solidity memory-safe-assembly assembly { for { let packed := sload(set.slot) } packed { result := add(1, result) } { packed := xor(packed, and(packed, add(1, not(packed)))) } } } /// @dev Returns whether `value` is in the set. function contains(AddressSet storage set, address value) internal view returns (bool result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { value := shr(96, shl(96, value)) if eq(value, _ZERO_SENTINEL) { mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`. revert(0x1c, 0x04) } if iszero(value) { value := _ZERO_SENTINEL } let rootPacked := sload(rootSlot) for {} 1 {} { if iszero(shr(160, shl(160, rootPacked))) { result := 1 if eq(shr(96, rootPacked), value) { break } if eq(shr(96, sload(add(rootSlot, 1))), value) { break } if eq(shr(96, sload(add(rootSlot, 2))), value) { break } result := 0 break } mstore(0x20, rootSlot) mstore(0x00, value) result := iszero(iszero(sload(keccak256(0x00, 0x40)))) break } } } /// @dev Returns whether `value` is in the set. function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { if eq(value, _ZERO_SENTINEL) { mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`. revert(0x1c, 0x04) } if iszero(value) { value := _ZERO_SENTINEL } for {} 1 {} { if iszero(sload(not(rootSlot))) { result := 1 if eq(sload(rootSlot), value) { break } if eq(sload(add(rootSlot, 1)), value) { break } if eq(sload(add(rootSlot, 2)), value) { break } result := 0 break } mstore(0x20, rootSlot) mstore(0x00, value) result := iszero(iszero(sload(keccak256(0x00, 0x40)))) break } } } /// @dev Returns whether `value` is in the set. function contains(Uint256Set storage set, uint256 value) internal view returns (bool result) { result = contains(_toBytes32Set(set), bytes32(value)); } /// @dev Returns whether `value` is in the set. function contains(Int256Set storage set, int256 value) internal view returns (bool result) { result = contains(_toBytes32Set(set), bytes32(uint256(value))); } /// @dev Returns whether `value` is in the set. function contains(Uint8Set storage set, uint8 value) internal view returns (bool result) { /// @solidity memory-safe-assembly assembly { result := and(1, shr(and(0xff, value), sload(set.slot))) } } /// @dev Adds `value` to the set. Returns whether `value` was not in the set. function add(AddressSet storage set, address value) internal returns (bool result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { value := shr(96, shl(96, value)) if eq(value, _ZERO_SENTINEL) { mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`. revert(0x1c, 0x04) } if iszero(value) { value := _ZERO_SENTINEL } let rootPacked := sload(rootSlot) for { let n := shr(160, shl(160, rootPacked)) } 1 {} { mstore(0x20, rootSlot) if iszero(n) { let v0 := shr(96, rootPacked) if iszero(v0) { sstore(rootSlot, shl(96, value)) result := 1 break } if eq(v0, value) { break } let v1 := shr(96, sload(add(rootSlot, 1))) if iszero(v1) { sstore(add(rootSlot, 1), shl(96, value)) result := 1 break } if eq(v1, value) { break } let v2 := shr(96, sload(add(rootSlot, 2))) if iszero(v2) { sstore(add(rootSlot, 2), shl(96, value)) result := 1 break } if eq(v2, value) { break } mstore(0x00, v0) sstore(keccak256(0x00, 0x40), 1) mstore(0x00, v1) sstore(keccak256(0x00, 0x40), 2) mstore(0x00, v2) sstore(keccak256(0x00, 0x40), 3) rootPacked := or(rootPacked, 7) n := 7 } mstore(0x00, value) let p := keccak256(0x00, 0x40) if iszero(sload(p)) { n := shr(1, n) sstore(add(rootSlot, n), shl(96, value)) sstore(p, add(1, n)) sstore(rootSlot, add(2, rootPacked)) result := 1 break } break } } } /// @dev Adds `value` to the set. Returns whether `value` was not in the set. function add(Bytes32Set storage set, bytes32 value) internal returns (bool result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { if eq(value, _ZERO_SENTINEL) { mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`. revert(0x1c, 0x04) } if iszero(value) { value := _ZERO_SENTINEL } for { let n := sload(not(rootSlot)) } 1 {} { mstore(0x20, rootSlot) if iszero(n) { let v0 := sload(rootSlot) if iszero(v0) { sstore(rootSlot, value) result := 1 break } if eq(v0, value) { break } let v1 := sload(add(rootSlot, 1)) if iszero(v1) { sstore(add(rootSlot, 1), value) result := 1 break } if eq(v1, value) { break } let v2 := sload(add(rootSlot, 2)) if iszero(v2) { sstore(add(rootSlot, 2), value) result := 1 break } if eq(v2, value) { break } mstore(0x00, v0) sstore(keccak256(0x00, 0x40), 1) mstore(0x00, v1) sstore(keccak256(0x00, 0x40), 2) mstore(0x00, v2) sstore(keccak256(0x00, 0x40), 3) n := 7 } mstore(0x00, value) let p := keccak256(0x00, 0x40) if iszero(sload(p)) { n := shr(1, n) sstore(add(rootSlot, n), value) sstore(p, add(1, n)) sstore(not(rootSlot), or(1, shl(1, add(1, n)))) result := 1 break } break } } } /// @dev Adds `value` to the set. Returns whether `value` was not in the set. function add(Uint256Set storage set, uint256 value) internal returns (bool result) { result = add(_toBytes32Set(set), bytes32(value)); } /// @dev Adds `value` to the set. Returns whether `value` was not in the set. function add(Int256Set storage set, int256 value) internal returns (bool result) { result = add(_toBytes32Set(set), bytes32(uint256(value))); } /// @dev Adds `value` to the set. Returns whether `value` was not in the set. function add(Uint8Set storage set, uint8 value) internal returns (bool result) { /// @solidity memory-safe-assembly assembly { result := sload(set.slot) let mask := shl(and(0xff, value), 1) sstore(set.slot, or(result, mask)) result := iszero(and(result, mask)) } } /// @dev Removes `value` from the set. Returns whether `value` was in the set. function remove(AddressSet storage set, address value) internal returns (bool result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { value := shr(96, shl(96, value)) if eq(value, _ZERO_SENTINEL) { mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`. revert(0x1c, 0x04) } if iszero(value) { value := _ZERO_SENTINEL } let rootPacked := sload(rootSlot) for { let n := shr(160, shl(160, rootPacked)) } 1 {} { if iszero(n) { result := 1 if eq(shr(96, rootPacked), value) { sstore(rootSlot, sload(add(rootSlot, 1))) sstore(add(rootSlot, 1), sload(add(rootSlot, 2))) sstore(add(rootSlot, 2), 0) break } if eq(shr(96, sload(add(rootSlot, 1))), value) { sstore(add(rootSlot, 1), sload(add(rootSlot, 2))) sstore(add(rootSlot, 2), 0) break } if eq(shr(96, sload(add(rootSlot, 2))), value) { sstore(add(rootSlot, 2), 0) break } result := 0 break } mstore(0x20, rootSlot) mstore(0x00, value) let p := keccak256(0x00, 0x40) let position := sload(p) if iszero(position) { break } n := sub(shr(1, n), 1) if iszero(eq(sub(position, 1), n)) { let lastValue := shr(96, sload(add(rootSlot, n))) sstore(add(rootSlot, sub(position, 1)), shl(96, lastValue)) sstore(add(rootSlot, n), 0) mstore(0x00, lastValue) sstore(keccak256(0x00, 0x40), position) } sstore(rootSlot, or(shl(96, shr(96, sload(rootSlot))), or(shl(1, n), 1))) sstore(p, 0) result := 1 break } } } /// @dev Removes `value` from the set. Returns whether `value` was in the set. function remove(Bytes32Set storage set, bytes32 value) internal returns (bool result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { if eq(value, _ZERO_SENTINEL) { mstore(0x00, 0xf5a267f1) // `ValueIsZeroSentinel()`. revert(0x1c, 0x04) } if iszero(value) { value := _ZERO_SENTINEL } for { let n := sload(not(rootSlot)) } 1 {} { if iszero(n) { result := 1 if eq(sload(rootSlot), value) { sstore(rootSlot, sload(add(rootSlot, 1))) sstore(add(rootSlot, 1), sload(add(rootSlot, 2))) sstore(add(rootSlot, 2), 0) break } if eq(sload(add(rootSlot, 1)), value) { sstore(add(rootSlot, 1), sload(add(rootSlot, 2))) sstore(add(rootSlot, 2), 0) break } if eq(sload(add(rootSlot, 2)), value) { sstore(add(rootSlot, 2), 0) break } result := 0 break } mstore(0x20, rootSlot) mstore(0x00, value) let p := keccak256(0x00, 0x40) let position := sload(p) if iszero(position) { break } n := sub(shr(1, n), 1) if iszero(eq(sub(position, 1), n)) { let lastValue := sload(add(rootSlot, n)) sstore(add(rootSlot, sub(position, 1)), lastValue) sstore(add(rootSlot, n), 0) mstore(0x00, lastValue) sstore(keccak256(0x00, 0x40), position) } sstore(not(rootSlot), or(shl(1, n), 1)) sstore(p, 0) result := 1 break } } } /// @dev Removes `value` from the set. Returns whether `value` was in the set. function remove(Uint256Set storage set, uint256 value) internal returns (bool result) { result = remove(_toBytes32Set(set), bytes32(value)); } /// @dev Removes `value` from the set. Returns whether `value` was in the set. function remove(Int256Set storage set, int256 value) internal returns (bool result) { result = remove(_toBytes32Set(set), bytes32(uint256(value))); } /// @dev Removes `value` from the set. Returns whether `value` was in the set. function remove(Uint8Set storage set, uint8 value) internal returns (bool result) { /// @solidity memory-safe-assembly assembly { result := sload(set.slot) let mask := shl(and(0xff, value), 1) sstore(set.slot, and(result, not(mask))) result := iszero(iszero(and(result, mask))) } } /// @dev Returns all of the values in the set. /// Note: This can consume more gas than the block gas limit for large sets. function values(AddressSet storage set) internal view returns (address[] memory result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { let zs := _ZERO_SENTINEL let rootPacked := sload(rootSlot) let n := shr(160, shl(160, rootPacked)) result := mload(0x40) let o := add(0x20, result) let v := shr(96, rootPacked) mstore(o, mul(v, iszero(eq(v, zs)))) for {} 1 {} { if iszero(n) { if v { n := 1 v := shr(96, sload(add(rootSlot, n))) if v { n := 2 mstore(add(o, 0x20), mul(v, iszero(eq(v, zs)))) v := shr(96, sload(add(rootSlot, n))) if v { n := 3 mstore(add(o, 0x40), mul(v, iszero(eq(v, zs)))) } } } break } n := shr(1, n) for { let i := 1 } lt(i, n) { i := add(i, 1) } { v := shr(96, sload(add(rootSlot, i))) mstore(add(o, shl(5, i)), mul(v, iszero(eq(v, zs)))) } break } mstore(result, n) mstore(0x40, add(o, shl(5, n))) } } /// @dev Returns all of the values in the set. /// Note: This can consume more gas than the block gas limit for large sets. function values(Bytes32Set storage set) internal view returns (bytes32[] memory result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { let zs := _ZERO_SENTINEL let n := sload(not(rootSlot)) result := mload(0x40) let o := add(0x20, result) for {} 1 {} { if iszero(n) { let v := sload(rootSlot) if v { n := 1 mstore(o, mul(v, iszero(eq(v, zs)))) v := sload(add(rootSlot, n)) if v { n := 2 mstore(add(o, 0x20), mul(v, iszero(eq(v, zs)))) v := sload(add(rootSlot, n)) if v { n := 3 mstore(add(o, 0x40), mul(v, iszero(eq(v, zs)))) } } } break } n := shr(1, n) for { let i := 0 } lt(i, n) { i := add(i, 1) } { let v := sload(add(rootSlot, i)) mstore(add(o, shl(5, i)), mul(v, iszero(eq(v, zs)))) } break } mstore(result, n) mstore(0x40, add(o, shl(5, n))) } } /// @dev Returns all of the values in the set. /// Note: This can consume more gas than the block gas limit for large sets. function values(Uint256Set storage set) internal view returns (uint256[] memory result) { result = _toUints(values(_toBytes32Set(set))); } /// @dev Returns all of the values in the set. /// Note: This can consume more gas than the block gas limit for large sets. function values(Int256Set storage set) internal view returns (int256[] memory result) { result = _toInts(values(_toBytes32Set(set))); } /// @dev Returns all of the values in the set. function values(Uint8Set storage set) internal view returns (uint8[] memory result) { /// @solidity memory-safe-assembly assembly { result := mload(0x40) let ptr := add(result, 0x20) let o := 0 for { let packed := sload(set.slot) } packed {} { if iszero(and(packed, 0xffff)) { o := add(o, 16) packed := shr(16, packed) continue } mstore(ptr, o) ptr := add(ptr, shl(5, and(packed, 1))) o := add(o, 1) packed := shr(1, packed) } mstore(result, shr(5, sub(ptr, add(result, 0x20)))) mstore(0x40, ptr) } } /// @dev Returns the element at index `i` in the set. function at(AddressSet storage set, uint256 i) internal view returns (address result) { bytes32 rootSlot = _rootSlot(set); /// @solidity memory-safe-assembly assembly { result := shr(96, sload(add(rootSlot, i))) result := mul(result, iszero(eq(result, _ZERO_SENTINEL))) } if (i >= length(set)) revert IndexOutOfBounds(); } /// @dev Returns the element at index `i` in the set. function at(Bytes32Set storage set, uint256 i) internal view returns (bytes32 result) { result = _rootSlot(set); /// @solidity memory-safe-assembly assembly { result := sload(add(result, i)) result := mul(result, iszero(eq(result, _ZERO_SENTINEL))) } if (i >= length(set)) revert IndexOutOfBounds(); } /// @dev Returns the element at index `i` in the set. function at(Uint256Set storage set, uint256 i) internal view returns (uint256 result) { result = uint256(at(_toBytes32Set(set), i)); } /// @dev Returns the element at index `i` in the set. function at(Int256Set storage set, uint256 i) internal view returns (int256 result) { result = int256(uint256(at(_toBytes32Set(set), i))); } /// @dev Returns the element at index `i` in the set. function at(Uint8Set storage set, uint256 i) internal view returns (uint8 result) { /// @solidity memory-safe-assembly assembly { let packed := sload(set.slot) for {} 1 { mstore(0x00, 0x4e23d035) // `IndexOutOfBounds()`. revert(0x1c, 0x04) } { if iszero(lt(i, 256)) { continue } for { let j := 0 } iszero(eq(i, j)) {} { packed := xor(packed, and(packed, add(1, not(packed)))) j := add(j, 1) } if iszero(packed) { continue } break } // Find first set subroutine, optimized for smaller bytecode size. let x := and(packed, add(1, not(packed))) let r := shl(7, iszero(iszero(shr(128, x)))) r := or(r, shl(6, iszero(iszero(shr(64, shr(r, x)))))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) // For the lower 5 bits of the result, use a De Bruijn lookup. // forgefmt: disable-next-item result := or(r, byte(and(div(0xd76453e0, shr(r, x)), 0x1f), 0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405)) } } /*´:°â€¢.°+.*•´.*:Ëš.°*.˚•´.°:°â€¢.°â€¢.*•´.*:Ëš.°*.˚•´.°:°â€¢.°+.*•´.*:*/ /* PRIVATE HELPERS */ /*.•°:°.´+Ëš.*°.Ëš:*.´â€¢*.+°.•°:´*.´â€¢*.•°.•°:°.´:•˚°.*°.Ëš:*.´+°.•*/ /// @dev Returns the root slot. function _rootSlot(AddressSet storage s) private pure returns (bytes32 r) { /// @solidity memory-safe-assembly assembly { mstore(0x04, _ENUMERABLE_ADDRESS_SET_SLOT_SEED) mstore(0x00, s.slot) r := keccak256(0x00, 0x24) } } /// @dev Returns the root slot. function _rootSlot(Bytes32Set storage s) private pure returns (bytes32 r) { /// @solidity memory-safe-assembly assembly { mstore(0x04, _ENUMERABLE_WORD_SET_SLOT_SEED) mstore(0x00, s.slot) r := keccak256(0x00, 0x24) } } /// @dev Casts to a Bytes32Set. function _toBytes32Set(Uint256Set storage s) private pure returns (Bytes32Set storage c) { /// @solidity memory-safe-assembly assembly { c.slot := s.slot } } /// @dev Casts to a Bytes32Set. function _toBytes32Set(Int256Set storage s) private pure returns (Bytes32Set storage c) { /// @solidity memory-safe-assembly assembly { c.slot := s.slot } } /// @dev Casts to a uint256 array. function _toUints(bytes32[] memory a) private pure returns (uint256[] memory c) { /// @solidity memory-safe-assembly assembly { c := a } } /// @dev Casts to a int256 array. function _toInts(bytes32[] memory a) private pure returns (int256[] memory c) { /// @solidity memory-safe-assembly assembly { c := a } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.6.2; interface IERC165 { /// @notice Query if a contract implements an interface /// @param interfaceID The interface identifier, as specified in ERC-165 /// @dev Interface identification is specified in ERC-165. This function /// uses less than 30,000 gas. /// @return `true` if the contract implements `interfaceID` and /// `interfaceID` is not 0xffffffff, `false` otherwise function supportsInterface(bytes4 interfaceID) external view returns (bool); }
{ "remappings": [ "@openzeppelin-contracts-4.9.6/=dependencies/@openzeppelin-contracts-4.9.6/", "@openzeppelin-contracts-upgradeable-4.9.5/=dependencies/@openzeppelin-contracts-upgradeable-4.9.5/", "erc721a-4.1.0/=dependencies/erc721a-4.1.0/", "forge-std-1.9.3/=dependencies/forge-std-1.9.3/", "solady-0.0.250/=dependencies/solady-0.0.250/", "@openzeppelin/contracts/=dependencies/murky/lib/openzeppelin-contracts/contracts/", "ds-test/=dependencies/murky/lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/", "erc4626-tests/=dependencies/murky/lib/openzeppelin-contracts/lib/erc4626-tests/", "forge-std/=lib/forge-std/src/", "murky/=dependencies/murky/", "openzeppelin-contracts/=dependencies/murky/lib/openzeppelin-contracts/" ], "optimizer": { "enabled": true, "runs": 200 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "cancun", "viaIR": false, "libraries": {} }
[{"inputs":[{"internalType":"address","name":"burnToken","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AccountBalanceOverflow","type":"error"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"AlreadyMinted","type":"error"},{"inputs":[],"name":"AlreadyWinning","type":"error"},{"inputs":[],"name":"AuctionEnded","type":"error"},{"inputs":[],"name":"AuctionNotEnded","type":"error"},{"inputs":[],"name":"AuctionNotStarted","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"InvalidAuctionConfiguration","type":"error"},{"inputs":[],"name":"InvalidBid","type":"error"},{"inputs":[],"name":"InvalidProof","type":"error"},{"inputs":[],"name":"InvalidTokenIds","type":"error"},{"inputs":[],"name":"MaxSupplyReached","type":"error"},{"inputs":[],"name":"NewOwnerIsZeroAddress","type":"error"},{"inputs":[],"name":"NoBids","type":"error"},{"inputs":[],"name":"NoHandoverRequest","type":"error"},{"inputs":[],"name":"NotOwnerNorApproved","type":"error"},{"inputs":[],"name":"OutOfBounds","type":"error"},{"inputs":[],"name":"StageNotActive","type":"error"},{"inputs":[],"name":"TokenAlreadyExists","type":"error"},{"inputs":[],"name":"TokenDoesNotExist","type":"error"},{"inputs":[],"name":"TransferFailed","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"UnauthorizedCallContext","type":"error"},{"inputs":[],"name":"UpgradeFailed","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"isApproved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"auctionId","type":"uint256"},{"indexed":false,"internalType":"uint40","name":"startTime","type":"uint40"}],"name":"AuctionAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"auctionId","type":"uint256"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"AuctionSettled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"auctionId","type":"uint256"},{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":false,"internalType":"uint256","name":"amount","type":"uint256"}],"name":"BidEntered","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint8","name":"stageId","type":"uint8"}],"name":"MintStageActivated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint8","name":"stageId","type":"uint8"},{"indexed":false,"internalType":"enum StageType","name":"stageType","type":"uint8"}],"name":"MintStageAdded","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverCanceled","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"pendingOwner","type":"address"}],"name":"OwnershipHandoverRequested","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"oldOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"user","type":"address"},{"indexed":true,"internalType":"uint256","name":"roles","type":"uint256"}],"name":"RolesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"id","type":"uint256"}],"name":"Transfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"implementation","type":"address"}],"name":"Upgraded","type":"event"},{"inputs":[],"name":"AUCTION_EXTEND_TIME","outputs":[{"internalType":"uint40","name":"","type":"uint40"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"AUCTION_RESERVE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BID_INCREMENT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BURN_AMOUNT","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BURN_TOKEN","outputs":[{"internalType":"contract IERC721Burnable","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MANAGER_ROLE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_SUPPLY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint128","name":"startingBid","type":"uint128"},{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"endTime","type":"uint40"},{"internalType":"uint8","name":"winnerCount","type":"uint8"}],"name":"addAuction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"enum StageType","name":"stageType","type":"uint8"},{"internalType":"uint8","name":"maxForStage","type":"uint8"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"},{"internalType":"bool","name":"makeActive","type":"bool"}],"name":"addMintStage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionId","type":"uint256"},{"internalType":"address[]","name":"users","type":"address[]"}],"name":"bulkSettleAuction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionId","type":"uint256"}],"name":"bulkSettleWinners","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"cancelOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"completeOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"currentMintStage","outputs":[{"components":[{"internalType":"uint8","name":"stageId","type":"uint8"},{"internalType":"enum StageType","name":"stageType","type":"uint8"},{"internalType":"uint8","name":"maxForStage","type":"uint8"},{"internalType":"uint192","name":"mintedInStage","type":"uint192"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"internalType":"struct MintStage","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionId","type":"uint256"}],"name":"enterBid","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionId","type":"uint256"}],"name":"getAuction","outputs":[{"components":[{"internalType":"uint256","name":"auctionId","type":"uint256"},{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"endTime","type":"uint40"},{"internalType":"uint8","name":"winnerCount","type":"uint8"},{"internalType":"uint128","name":"startingBid","type":"uint128"},{"internalType":"uint128","name":"totalAmountBid","type":"uint128"}],"internalType":"struct AuctionViewModel","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuctions","outputs":[{"components":[{"internalType":"uint256","name":"auctionId","type":"uint256"},{"internalType":"uint40","name":"startTime","type":"uint40"},{"internalType":"uint40","name":"endTime","type":"uint40"},{"internalType":"uint8","name":"winnerCount","type":"uint8"},{"internalType":"uint128","name":"startingBid","type":"uint128"},{"internalType":"uint128","name":"totalAmountBid","type":"uint128"}],"internalType":"struct AuctionViewModel[]","name":"","type":"tuple[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionId","type":"uint256"},{"internalType":"address","name":"user","type":"address"}],"name":"getBidForUser","outputs":[{"components":[{"internalType":"uint192","name":"amount","type":"uint192"},{"internalType":"bool","name":"settled","type":"bool"}],"internalType":"struct AuctionBid","name":"","type":"tuple"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionId","type":"uint256"},{"internalType":"uint256","name":"count","type":"uint256"}],"name":"getBids","outputs":[{"internalType":"uint256[]","name":"amounts","type":"uint256[]"},{"internalType":"address[]","name":"users","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getBurnedTokenIds","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getCurrentMintStageIndex","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"auctionId","type":"uint256"}],"name":"getRequiredBidAmount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"grantRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAllRoles","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"hasAnyRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_renderer","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"tokenIds","type":"uint256[]"},{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"mintBurnClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32[]","name":"proof","type":"bytes32[]"}],"name":"mintFreeClaim","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"quantity","type":"uint256"}],"name":"mintOwner","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"mintStages","outputs":[{"internalType":"uint8","name":"stageId","type":"uint8"},{"internalType":"enum StageType","name":"stageType","type":"uint8"},{"internalType":"uint8","name":"maxForStage","type":"uint8"},{"internalType":"uint192","name":"mintedInStage","type":"uint192"},{"internalType":"bytes32","name":"merkleRoot","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint8","name":"stage","type":"uint8"},{"internalType":"address","name":"user","type":"address"}],"name":"mintedForStage","outputs":[{"internalType":"uint256","name":"minted","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"id","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"result","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"pendingOwner","type":"address"}],"name":"ownershipHandoverExpiresAt","outputs":[{"internalType":"uint256","name":"result","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"proxiableUUID","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renderer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"renounceRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"requestOwnershipHandover","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"},{"internalType":"uint256","name":"roles","type":"uint256"}],"name":"revokeRoles","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"user","type":"address"}],"name":"rolesOf","outputs":[{"internalType":"uint256","name":"roles","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"isApproved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint8","name":"index","type":"uint8"}],"name":"setCurrentMintStage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_renderer","type":"address"}],"name":"setRenderer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"auctionId","type":"uint256"},{"internalType":"address","name":"user","type":"address"}],"name":"settleAuction","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"result","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"id","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"newImplementation","type":"address"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"upgradeToAndCall","outputs":[],"stateMutability":"payable","type":"function"}]
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.