Transaction Hash:
Block:
17872285 at Aug-08-2023 07:28:35 PM +UTC
Transaction Fee:
0.00429894028686194 ETH
$10.51
Gas Used:
170,668 Gas / 25.188906455 Gwei
Emitted Events:
240 |
PAALAI.Transfer( from=[Sender] 0xc68cc0143b36d627a26ed41249d176022bbed25a, to=PAALAI, value=219016003477 )
|
241 |
PAALAI.Transfer( from=[Sender] 0xc68cc0143b36d627a26ed41249d176022bbed25a, to=UniswapV2Pair, value=5256384083456 )
|
242 |
WETH9.Transfer( src=UniswapV2Pair, dst=[Receiver] DODOFeeRouteProxy, wad=50668188299837150 )
|
243 |
UniswapV2Pair.Sync( reserve0=23443642621637140, reserve1=226610919313522674360 )
|
244 |
UniswapV2Pair.Swap( sender=0x50d148d0908c602a56884b8628a36470a875eeb2, amount0In=5256384083456, amount1In=0, amount0Out=0, amount1Out=50668188299837150, to=[Receiver] DODOFeeRouteProxy )
|
245 |
WETH9.Withdrawal( src=[Receiver] DODOFeeRouteProxy, wad=50668188299837150 )
|
246 |
DODOFeeRouteProxy.OrderHistory( fromToken=PAALAI, toToken=0xEeeeeEee...eeeeeEEeE, sender=[Sender] 0xc68cc0143b36d627a26ed41249d176022bbed25a, fromAmount=5475400086933, returnAmount=50668188299837150 )
|
Account State Difference:
Address | Before | After | State Difference | ||
---|---|---|---|---|---|
0x14feE680...b95D10e16 | |||||
0x1f9090aa...8e676c326
Miner
| 0.43461282458795585 Eth | 0.434631760793579134 Eth | 0.000018936205623284 | ||
0x2a6c340b...05ea9259f | |||||
0xC02aaA39...83C756Cc2 | 3,351,915.748731143833508375 Eth | 3,351,915.698062955533671225 Eth | 0.05066818829983715 | ||
0xc68Cc014...22bbeD25a |
0.006370452345537219 Eth
Nonce: 741
|
0.052739700358512429 Eth
Nonce: 742
| 0.04636924801297521 |
Execution Trace
DODOFeeRouteProxy.mixSwap( fromToken=0x14feE680690900BA0ccCfC76AD70Fd1b95D10e16, toToken=0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE, fromTokenAmount=5475400086933, minReturnAmount=50667716369885170, mixAdapters=[0x50D148D0908C602A56884B8628A36470a875EEb2], mixPairs=[0x2a6c340bCbb0a79D3deecD3bc5cBc2605ea9259f], assetTo=[0x2a6c340bCbb0a79D3deecD3bc5cBc2605ea9259f, 0x50f9bDe1c76bba997a5d6e7FEFff695ec8536194], directions=0, moreInfos=[AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAnEA==], feeData=0x0000000000000000000000006C1C420C04F4D563D6588A97693AF902B87BE5F10000000000000000000000000000000000000000000000000000000000000000, deadLine=1691523990 ) => ( receiveAmount=50668188299837150 )
-
WETH9.balanceOf( 0x50f9bDe1c76bba997a5d6e7FEFff695ec8536194 ) => ( 0 )
DODOApproveProxy.claimTokens( token=0x14feE680690900BA0ccCfC76AD70Fd1b95D10e16, who=0xc68Cc0143B36D627a26ed41249d176022bbeD25a, dest=0x2a6c340bCbb0a79D3deecD3bc5cBc2605ea9259f, amount=5475400086933 )
DODOApprove.claimTokens( token=0x14feE680690900BA0ccCfC76AD70Fd1b95D10e16, who=0xc68Cc0143B36D627a26ed41249d176022bbeD25a, dest=0x2a6c340bCbb0a79D3deecD3bc5cBc2605ea9259f, amount=5475400086933 )
-
PAALAI.transferFrom( sender=0xc68Cc0143B36D627a26ed41249d176022bbeD25a, recipient=0x2a6c340bCbb0a79D3deecD3bc5cBc2605ea9259f, amount=5475400086933 ) => ( True )
-
0x50d148d0908c602a56884b8628a36470a875eeb2.30e6ae31( )
-
WETH9.balanceOf( 0x50f9bDe1c76bba997a5d6e7FEFff695ec8536194 ) => ( 50668188299837150 )
WETH9.withdraw( wad=50668188299837150 )
- ETH 0.05066818829983715
DODOFeeRouteProxy.CALL( )
- ETH 0.05066818829983715
- ETH 0.05066818829983715
0xc68cc0143b36d627a26ed41249d176022bbed25a.CALL( )
mixSwap[DODOFeeRouteProxy (ln:1385)]
universalBalanceOf[DODOFeeRouteProxy (ln:1410)]
universalBalanceOf[DODOFeeRouteProxy (ln:1412)]
_deposit[DODOFeeRouteProxy (ln:1416)]
deposit[DODOFeeRouteProxy (ln:1606)]
safeTransfer[DODOFeeRouteProxy (ln:1607)]
_callOptionalReturn[SafeERC20 (ln:886)]
functionCall[SafeERC20 (ln:969)]
decode[SafeERC20 (ln:972)]
encodeWithSelector[SafeERC20 (ln:886)]
claimTokens[DODOFeeRouteProxy (ln:1610)]
sellBase[DODOFeeRouteProxy (ln:1427)]
sellQuote[DODOFeeRouteProxy (ln:1433)]
universalBalanceOf[DODOFeeRouteProxy (ln:1444)]
universalBalanceOf[DODOFeeRouteProxy (ln:1448)]
_routeWithdraw[DODOFeeRouteProxy (ln:1455)]
decode[DODOFeeRouteProxy (ln:1626)]
mulFloor[DODOFeeRouteProxy (ln:1629)]
universalTransfer[DODOFeeRouteProxy (ln:1630)]
payable[DODOFeeRouteProxy (ln:1630)]
mulFloor[DODOFeeRouteProxy (ln:1632)]
universalTransfer[DODOFeeRouteProxy (ln:1633)]
payable[DODOFeeRouteProxy (ln:1633)]
withdraw[DODOFeeRouteProxy (ln:1639)]
transfer[DODOFeeRouteProxy (ln:1640)]
payable[DODOFeeRouteProxy (ln:1640)]
universalTransfer[DODOFeeRouteProxy (ln:1642)]
payable[DODOFeeRouteProxy (ln:1642)]
OrderHistory[DODOFeeRouteProxy (ln:1457)]
File 1 of 6: DODOFeeRouteProxy
File 2 of 6: PAALAI
File 3 of 6: UniswapV2Pair
File 4 of 6: WETH9
File 5 of 6: DODOApproveProxy
File 6 of 6: DODOApprove
// Sources flattened with hardhat v2.11.2 https://hardhat.org // File contracts/lib/InitializableOwnable.sol /** * @title Ownable * @author DODO Breeder * * @notice Ownership related functions */ contract InitializableOwnable { address public _OWNER_; address public _NEW_OWNER_; bool internal _INITIALIZED_; // ============ Events ============ event OwnershipTransferPrepared(address indexed previousOwner, address indexed newOwner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); // ============ Modifiers ============ modifier notInitialized() { require(!_INITIALIZED_, "DODO_INITIALIZED"); _; } modifier onlyOwner() { require(msg.sender == _OWNER_, "NOT_OWNER"); _; } // ============ Functions ============ function initOwner(address newOwner) public notInitialized { _INITIALIZED_ = true; _OWNER_ = newOwner; } function transferOwnership(address newOwner) public onlyOwner { emit OwnershipTransferPrepared(_OWNER_, newOwner); _NEW_OWNER_ = newOwner; } function claimOwnership() public { require(msg.sender == _NEW_OWNER_, "INVALID_CLAIM"); emit OwnershipTransferred(_OWNER_, _NEW_OWNER_); _OWNER_ = _NEW_OWNER_; _NEW_OWNER_ = address(0); } } // File contracts/intf/IDODOApprove.sol interface IDODOApprove { function claimTokens(address token,address who,address dest,uint256 amount) external; function getDODOProxy() external view returns (address); } // File contracts/DODOApproveProxy.sol interface IDODOApproveProxy { function isAllowedProxy(address _proxy) external view returns (bool); function claimTokens(address token,address who,address dest,uint256 amount) external; } /** * @title DODOApproveProxy * @author DODO Breeder * * @notice Allow different version dodoproxy to claim from DODOApprove */ contract DODOApproveProxy is InitializableOwnable { // ============ Storage ============ uint256 private constant _TIMELOCK_DURATION_ = 3 days; mapping (address => bool) public _IS_ALLOWED_PROXY_; uint256 public _TIMELOCK_; address public _PENDING_ADD_DODO_PROXY_; address public immutable _DODO_APPROVE_; // ============ Modifiers ============ modifier notLocked() { require( _TIMELOCK_ <= block.timestamp, "SetProxy is timelocked" ); _; } constructor(address dodoApporve) public { _DODO_APPROVE_ = dodoApporve; } function init(address owner, address[] memory proxies) external { initOwner(owner); for(uint i = 0; i < proxies.length; i++) _IS_ALLOWED_PROXY_[proxies[i]] = true; } function unlockAddProxy(address newDodoProxy) public onlyOwner { _TIMELOCK_ = block.timestamp + _TIMELOCK_DURATION_; _PENDING_ADD_DODO_PROXY_ = newDodoProxy; } function lockAddProxy() public onlyOwner { _PENDING_ADD_DODO_PROXY_ = address(0); _TIMELOCK_ = 0; } function addDODOProxy() external onlyOwner notLocked() { _IS_ALLOWED_PROXY_[_PENDING_ADD_DODO_PROXY_] = true; lockAddProxy(); } function removeDODOProxy (address oldDodoProxy) public onlyOwner { _IS_ALLOWED_PROXY_[oldDodoProxy] = false; } function claimTokens( address token, address who, address dest, uint256 amount ) external { require(_IS_ALLOWED_PROXY_[msg.sender], "DODOApproveProxy:Access restricted"); IDODOApprove(_DODO_APPROVE_).claimTokens( token, who, dest, amount ); } function isAllowedProxy(address _proxy) external view returns (bool) { return _IS_ALLOWED_PROXY_[_proxy]; } } // File contracts/intf/IWETH.sol interface IWETH { function totalSupply() external view returns (uint256); function balanceOf(address account) external view returns (uint256); function transfer(address recipient, uint256 amount) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom( address src, address dst, uint256 wad ) external returns (bool); function deposit() external payable; function withdraw(uint256 wad) external; } // File @openzeppelin/contracts/utils/math/[email protected] /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } } // File contracts/lib/DecimalMath.sol /** * @title DecimalMath * @author DODO Breeder * * @notice Functions for fixed point number with 18 decimals */ library DecimalMath { uint256 internal constant ONE = 10**18; uint256 internal constant ONE2 = 10**36; function mul(uint256 target, uint256 d) internal pure returns (uint256) { return target * d / (10**18); } function mulFloor(uint256 target, uint256 d) internal pure returns (uint256) { return target * d / (10**18); } function mulCeil(uint256 target, uint256 d) internal pure returns (uint256) { return _divCeil(target * d, 10**18); } function div(uint256 target, uint256 d) internal pure returns (uint256) { return target * (10**18) / d; } function divFloor(uint256 target, uint256 d) internal pure returns (uint256) { return target * (10**18) / d; } function divCeil(uint256 target, uint256 d) internal pure returns (uint256) { return _divCeil(target * (10**18), d); } function reciprocalFloor(uint256 target) internal pure returns (uint256) { return uint256(10**36) / target; } function reciprocalCeil(uint256 target) internal pure returns (uint256) { return _divCeil(uint256(10**36), target); } function sqrt(uint256 target) internal pure returns (uint256) { return Math.sqrt(target * ONE); } function powFloor(uint256 target, uint256 e) internal pure returns (uint256) { if (e == 0) { return 10 ** 18; } else if (e == 1) { return target; } else { uint p = powFloor(target, e / 2); p = p * p / (10**18); if (e % 2 == 1) { p = p * target / (10**18); } return p; } } function _divCeil(uint256 a, uint256 b) internal pure returns (uint256) { uint256 quotient = a / b; uint256 remainder = a - quotient * b; if (remainder > 0) { return quotient + 1; } else { return quotient; } } } // File contracts/SmartRoute/intf/IDODOAdapter.sol interface IDODOAdapter { function sellBase(address to, address pool, bytes memory data) external; function sellQuote(address to, address pool, bytes memory data) external; } // File @openzeppelin/contracts/token/ERC20/[email protected] /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // File @openzeppelin/contracts/token/ERC20/extensions/[email protected] /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // File @openzeppelin/contracts/utils/[email protected] /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } } // File @openzeppelin/contracts/token/ERC20/utils/[email protected] /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // File contracts/SmartRoute/lib/UniversalERC20.sol library UniversalERC20 { using SafeERC20 for IERC20; IERC20 private constant ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE); // 1. skip 0 amount // 2. handle ETH transfer function universalTransfer( IERC20 token, address payable to, uint256 amount ) internal { if (amount > 0) { if (isETH(token)) { to.transfer(amount); } else { token.safeTransfer(to, amount); } } } function universalApproveMax( IERC20 token, address to, uint256 amount ) internal { uint256 allowance = token.allowance(address(this), to); if (allowance < amount) { if (allowance > 0) { token.safeApprove(to, 0); } token.safeApprove(to, type(uint256).max); } } function universalBalanceOf(IERC20 token, address who) internal view returns (uint256) { if (isETH(token)) { return who.balance; } else { return token.balanceOf(who); } } function tokenBalanceOf(IERC20 token, address who) internal view returns (uint256) { return token.balanceOf(who); } function isETH(IERC20 token) internal pure returns (bool) { return token == ETH_ADDRESS; } } // File @openzeppelin/contracts/utils/[email protected] /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } } // File @openzeppelin/contracts/access/[email protected] /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions anymore. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby removing any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } } // File contracts/SmartRoute/DODORouteProxy.sol /* Copyright 2022 DODO ZOO. SPDX-License-Identifier: Apache-2.0 */ pragma solidity 0.8.16; pragma experimental ABIEncoderV2; /// @title DODORouteProxy /// @author DODO Breeder /// @notice new routeProxy contract with fee rebate to manage all route. It provides three methods to swap, /// including mixSwap, multiSwap and externalSwap. Mixswap is for linear swap, which describes one token path /// with one pool each time. Multiswap is a simplified version about 1inch, which describes one token path /// with several pools each time. ExternalSwap is for other routers like 0x, 1inch and paraswap. Dodo and /// front-end users could take certain route fee rebate from each swap. Wherein dodo will get a fixed percentage, /// and front-end users could assign any proportion through function parameters. /// @dev dependence: DODOApprove.sol / DODOApproveProxy.sol / IDODOAdapter.sol /// In dodo's contract system, there is only one approve entrance DODOApprove.sol. DODOApprove manages DODOApproveProxy, /// Any contract which needs claim user's tokens must be registered in DODOApproveProxy. They used in DODORouteProxy are /// to manage user's token, all user's token must be claimed through DODOApproveProxy and DODOApprove /// IDODOAdapter determine the interface of adapter, in which swap happened. There are different adapters for different /// pools. Adapter addresses are parameters contructed off chain so they are loose coupling with routeProxy. /// adapters have two interface functions. func sellBase(address to, address pool, bytes memory moreInfo) and func sellQuote(address to, address pool, bytes memory moreInfo) contract DODOFeeRouteProxy is Ownable { using UniversalERC20 for IERC20; // ============ Storage ============ address constant _ETH_ADDRESS_ = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; address public immutable _WETH_; // dodo appprove proxy address, the only entrance to get user's token address public immutable _DODO_APPROVE_PROXY_; // used in multiSwap for split, sum of pool weight must equal totalWeight // in PoolInfo, pool weight has 8 bit, so totalWeight < 2**8 uint256 public totalWeight = 100; // check safe safe for external call, add trusted external swap contract, 0x,1inch, paraswap // only owner could manage mapping(address => bool) public isWhiteListedContract; // check safe for external approve, add trusted external swap approve contract, 0x, 1inch, paraswap // only owner could manage // Specially for 0x swap from eth, add zero address mapping(address => bool) public isApproveWhiteListedContract; // dodo route fee rate, unit is 10**18, default fee rate is 1.5 * 1e15 / 1e18 = 0.0015 = 0.015% uint256 public routeFeeRate = 1500000000000000; // dodo route fee receiver address public routeFeeReceiver; struct PoolInfo { // pool swap direciton, 0 is for sellBase, 1 is for sellQuote uint256 direction; // distinct transferFrom pool(like dodoV1) and transfer pool // 1 is for transferFrom pool, pool call transferFrom function to get tokens from adapter // 2 is for transfer pool, pool determine swapAmount through balanceOf(Token) - reserve uint256 poolEdition; // pool weight, actualWeight = weight/totalWeight, totalAmount * actualWeight = amount through this pool swap uint256 weight; // pool address address pool; // pool adapter, making actual swap call in corresponding adapter address adapter; // pool adapter's Info, record addtional infos(could be zero-bytes) needed by each pool adapter bytes moreInfo; } // ============ Events ============ event OrderHistory( address fromToken, address toToken, address sender, uint256 fromAmount, uint256 returnAmount ); // ============ Modifiers ============ modifier judgeExpired(uint256 deadLine) { require(deadLine >= block.timestamp, "DODORouteProxy: EXPIRED"); _; } fallback() external payable {} receive() external payable {} // ============ Constructor ============ constructor(address payable weth, address dodoApproveProxy, address feeReceiver) public { require(feeReceiver != address(0), "DODORouteProxy: feeReceiver invalid"); require(dodoApproveProxy != address(0), "DODORouteProxy: dodoApproveProxy invalid"); require(weth != address(0), "DODORouteProxy: weth address invalid"); _WETH_ = weth; _DODO_APPROVE_PROXY_ = dodoApproveProxy; routeFeeReceiver = feeReceiver; } // ============ Owner only ============ function addWhiteList(address contractAddr) public onlyOwner { isWhiteListedContract[contractAddr] = true; } function removeWhiteList(address contractAddr) public onlyOwner { isWhiteListedContract[contractAddr] = false; } function addApproveWhiteList(address contractAddr) public onlyOwner { isApproveWhiteListedContract[contractAddr] = true; } function removeApproveWhiteList(address contractAddr) public onlyOwner { isApproveWhiteListedContract[contractAddr] = false; } function changeRouteFeeRate(uint256 newFeeRate) public onlyOwner { require(newFeeRate < 10**18, "DODORouteProxy: newFeeRate overflowed"); routeFeeRate = newFeeRate; } function changeRouteFeeReceiver(address newFeeReceiver) public onlyOwner { require(newFeeReceiver != address(0), "DODORouteProxy: feeReceiver invalid"); routeFeeReceiver = newFeeReceiver; } function changeTotalWeight(uint256 newTotalWeight) public onlyOwner { require(newTotalWeight < 2 ** 8, "DODORouteProxy: totalWeight overflowed"); totalWeight = newTotalWeight; } /// @notice used for emergency, generally there wouldn't be tokens left function superWithdraw(address token) public onlyOwner { if(token != _ETH_ADDRESS_) { uint256 restAmount = IERC20(token).universalBalanceOf(address(this)); IERC20(token).universalTransfer(payable(routeFeeReceiver), restAmount); } else { uint256 restAmount = address(this).balance; payable(routeFeeReceiver).transfer(restAmount); } } // ============ Swap ============ /// @notice Call external black box contracts to finish a swap /// @param approveTarget external swap approve address /// @param swapTarget external swap address /// @param feeData route fee info /// @param callDataConcat external swap data, toAddress need to be routeProxy /// specially when toToken is ETH, use WETH as external calldata's toToken function externalSwap( address fromToken, address toToken, address approveTarget, address swapTarget, uint256 fromTokenAmount, uint256 minReturnAmount, bytes memory feeData, bytes memory callDataConcat, uint256 deadLine ) external payable judgeExpired(deadLine) returns (uint256 receiveAmount) { require(isWhiteListedContract[swapTarget], "DODORouteProxy: Not Whitelist Contract"); require(isApproveWhiteListedContract[approveTarget], "DODORouteProxy: Not Whitelist Appprove Contract"); // transfer in fromToken if (fromToken != _ETH_ADDRESS_) { // approve if needed if (approveTarget != address(0)) { IERC20(fromToken).universalApproveMax(approveTarget, fromTokenAmount); } IDODOApproveProxy(_DODO_APPROVE_PROXY_).claimTokens( fromToken, msg.sender, address(this), fromTokenAmount ); } else { // value check require(msg.value == fromTokenAmount, "DODORouteProxy: invalid ETH amount"); } // swap uint256 toTokenOriginBalance; if(toToken != _ETH_ADDRESS_) { toTokenOriginBalance = IERC20(toToken).universalBalanceOf(address(this)); } else { toTokenOriginBalance = IERC20(_WETH_).universalBalanceOf(address(this)); } { require(swapTarget != _DODO_APPROVE_PROXY_, "DODORouteProxy: Risk Target"); (bool success, bytes memory result) = swapTarget.call{ value: fromToken == _ETH_ADDRESS_ ? fromTokenAmount : 0 }(callDataConcat); // revert with lowlevel info if (success == false) { assembly { revert(add(result,32),mload(result)) } } } // calculate toToken amount if(toToken != _ETH_ADDRESS_) { receiveAmount = IERC20(toToken).universalBalanceOf(address(this)) - ( toTokenOriginBalance ); } else { receiveAmount = IERC20(_WETH_).universalBalanceOf(address(this)) - ( toTokenOriginBalance ); } // distribute toToken receiveAmount = _routeWithdraw(toToken, receiveAmount, feeData, minReturnAmount); emit OrderHistory(fromToken, toToken, msg.sender, fromTokenAmount, receiveAmount); } /// @notice linear version, describes one token path with one pool each time /// @param mixAdapters adapter address array, record each pool's interrelated adapter in order /// @param mixPairs pool address array, record pool address of the whole route in order /// @param assetTo asset Address(pool or proxy), describe pool adapter's receiver address. Specially assetTo[0] is deposit receiver before all /// @param directions pool directions aggregation, one bit represent one pool direction, 0 means sellBase, 1 means sellQuote /// @param moreInfos pool adapter's Info set, record addtional infos(could be zero-bytes) needed by each pool adapter, keeping order with adapters /// @param feeData route fee info, bytes decode into broker and brokerFee, determine rebate proportion, brokerFee in [0, 1e18] function mixSwap( address fromToken, address toToken, uint256 fromTokenAmount, uint256 minReturnAmount, address[] memory mixAdapters, address[] memory mixPairs, address[] memory assetTo, uint256 directions, bytes[] memory moreInfos, bytes memory feeData, uint256 deadLine ) external payable judgeExpired(deadLine) returns (uint256 receiveAmount) { require(mixPairs.length > 0, "DODORouteProxy: PAIRS_EMPTY"); require(mixPairs.length == mixAdapters.length, "DODORouteProxy: PAIR_ADAPTER_NOT_MATCH"); require(mixPairs.length == assetTo.length - 1, "DODORouteProxy: PAIR_ASSETTO_NOT_MATCH"); require(minReturnAmount > 0, "DODORouteProxy: RETURN_AMOUNT_ZERO"); address _toToken = toToken; { uint256 _fromTokenAmount = fromTokenAmount; address _fromToken = fromToken; uint256 toTokenOriginBalance; if(_toToken != _ETH_ADDRESS_) { toTokenOriginBalance = IERC20(_toToken).universalBalanceOf(address(this)); } else { toTokenOriginBalance = IERC20(_WETH_).universalBalanceOf(address(this)); } // transfer in fromToken _deposit( msg.sender, assetTo[0], _fromToken, _fromTokenAmount, _fromToken == _ETH_ADDRESS_ ); // swap for (uint256 i = 0; i < mixPairs.length; i++) { if (directions & 1 == 0) { IDODOAdapter(mixAdapters[i]).sellBase( assetTo[i + 1], mixPairs[i], moreInfos[i] ); } else { IDODOAdapter(mixAdapters[i]).sellQuote( assetTo[i + 1], mixPairs[i], moreInfos[i] ); } directions = directions >> 1; } // calculate toToken amount if(_toToken != _ETH_ADDRESS_) { receiveAmount = IERC20(_toToken).universalBalanceOf(address(this)) - ( toTokenOriginBalance ); } else { receiveAmount = IERC20(_WETH_).universalBalanceOf(address(this)) - ( toTokenOriginBalance ); } } // distribute toToken receiveAmount = _routeWithdraw(_toToken, receiveAmount, feeData, minReturnAmount); emit OrderHistory(fromToken, toToken, msg.sender, fromTokenAmount, receiveAmount); } /// @notice split version, describes one token path with several pools each time. Called one token pair with several pools "one split" /// @param splitNumber record pool number in one split, determine sequence(poolInfo) array subscript in transverse. Begin with 0 /// for example, [0,1, 3], mean the first split has one(1 - 0) pool, the second split has 2 (3 - 1) pool /// @param midToken middle token set, record token path in order. /// Specially midToken[1] is WETH addresss when fromToken is ETH. Besides midToken[1] is also fromToken /// Specially midToken[length - 2] is WETH address and midToken[length -1 ] is ETH address when toToken is ETH. Besides midToken[length -1] /// is the last toToken and midToken[length - 2] is common second last middle token. /// @param assetFrom asset Address(pool or proxy)describe pool adapter's receiver address. Specially assetFrom[0] is deposit receiver before all /// @param sequence PoolInfo sequence, describe each pool's attributions, ordered by spiltNumber /// @param feeData route fee info, bytes decode into broker and brokerFee, determine rebate proportion, brokerFee in [0, 1e18] function dodoMutliSwap( uint256 fromTokenAmount, uint256 minReturnAmount, uint256[] memory splitNumber, address[] memory midToken, address[] memory assetFrom, bytes[] memory sequence, bytes memory feeData, uint256 deadLine ) external payable judgeExpired(deadLine) returns (uint256 receiveAmount) { address toToken = midToken[midToken.length - 1]; { require( assetFrom.length == splitNumber.length, "DODORouteProxy: PAIR_ASSETTO_NOT_MATCH" ); require(minReturnAmount > 0, "DODORouteProxy: RETURN_AMOUNT_ZERO"); uint256 _fromTokenAmount = fromTokenAmount; address fromToken = midToken[0]; uint256 toTokenOriginBalance; if(toToken != _ETH_ADDRESS_) { toTokenOriginBalance = IERC20(toToken).universalBalanceOf(address(this)); } else { toTokenOriginBalance = IERC20(_WETH_).universalBalanceOf(address(this)); } // transfer in fromToken _deposit( msg.sender, assetFrom[0], fromToken, _fromTokenAmount, fromToken == _ETH_ADDRESS_ ); // swap _multiSwap(midToken, splitNumber, sequence, assetFrom); // calculate toToken amount if(toToken != _ETH_ADDRESS_) { receiveAmount = IERC20(toToken).universalBalanceOf(address(this)) - ( toTokenOriginBalance ); } else { receiveAmount = IERC20(_WETH_).universalBalanceOf(address(this)) - ( toTokenOriginBalance ); } } // distribute toToken receiveAmount = _routeWithdraw(toToken, receiveAmount, feeData, minReturnAmount); emit OrderHistory( midToken[0], //fromToken midToken[midToken.length - 1], //toToken msg.sender, fromTokenAmount, receiveAmount ); } //====================== internal ======================= /// @notice multiSwap process function _multiSwap( address[] memory midToken, uint256[] memory splitNumber, bytes[] memory swapSequence, address[] memory assetFrom ) internal { for (uint256 i = 1; i < splitNumber.length; i++) { // begin one split(one token pair with one or more pools) // define midtoken address, ETH -> WETH address uint256 curTotalAmount = IERC20(midToken[i]).tokenBalanceOf(assetFrom[i - 1]); uint256 curTotalWeight = totalWeight; // split amount into all pools if needed, transverse all pool in this split for (uint256 j = splitNumber[i - 1]; j < splitNumber[i]; j++) { PoolInfo memory curPoolInfo; { (address pool, address adapter, uint256 mixPara, bytes memory moreInfo) = abi .decode(swapSequence[j], (address, address, uint256, bytes)); curPoolInfo.direction = mixPara >> 17; curPoolInfo.weight = (0xffff & mixPara) >> 9; curPoolInfo.poolEdition = (0xff & mixPara); curPoolInfo.pool = pool; curPoolInfo.adapter = adapter; curPoolInfo.moreInfo = moreInfo; } // assetFrom[i - 1] is routeProxy when there are more than one pools in this split if (assetFrom[i - 1] == address(this)) { uint256 curAmount = curTotalAmount * curPoolInfo.weight / curTotalWeight; // last spilt check if(j == splitNumber[i] - 1) { curAmount = IERC20(midToken[i]).tokenBalanceOf(address(this)); } if (curPoolInfo.poolEdition == 1) { //For using transferFrom pool (like dodoV1, Curve), pool call transferFrom function to get tokens from adapter SafeERC20.safeTransfer(IERC20(midToken[i]), curPoolInfo.adapter, curAmount); } else { //For using transfer pool (like dodoV2), pool determine swapAmount through balanceOf(Token) - reserve SafeERC20.safeTransfer(IERC20(midToken[i]), curPoolInfo.pool, curAmount); } } if (curPoolInfo.direction == 0) { IDODOAdapter(curPoolInfo.adapter).sellBase( assetFrom[i], curPoolInfo.pool, curPoolInfo.moreInfo ); } else { IDODOAdapter(curPoolInfo.adapter).sellQuote( assetFrom[i], curPoolInfo.pool, curPoolInfo.moreInfo ); } } } } /// @notice before the first pool swap, contract call _deposit to get ERC20 token through DODOApprove/transfer ETH to WETH function _deposit( address from, address to, address token, uint256 amount, bool isETH ) internal { if (isETH) { if (amount > 0) { require(msg.value == amount, "ETH_VALUE_WRONG"); IWETH(_WETH_).deposit{value: amount}(); if (to != address(this)) SafeERC20.safeTransfer(IERC20(_WETH_), to, amount); } } else { IDODOApproveProxy(_DODO_APPROVE_PROXY_).claimTokens(token, from, to, amount); } } /// @notice after all swaps, transfer tokens to original receiver(user) and distribute fees to DODO and broker /// Specially when toToken is ETH, distribute WETH function _routeWithdraw( address toToken, uint256 receiveAmount, bytes memory feeData, uint256 minReturnAmount ) internal returns(uint256 userReceiveAmount) { address originToToken = toToken; if(toToken == _ETH_ADDRESS_) { toToken = _WETH_; } (address broker, uint256 brokerFeeRate) = abi.decode(feeData, (address, uint256)); require(brokerFeeRate < 10**18, "DODORouteProxy: brokerFeeRate overflowed"); uint256 routeFee = DecimalMath.mulFloor(receiveAmount, routeFeeRate); IERC20(toToken).universalTransfer(payable(routeFeeReceiver), routeFee); uint256 brokerFee = DecimalMath.mulFloor(receiveAmount, brokerFeeRate); IERC20(toToken).universalTransfer(payable(broker), brokerFee); receiveAmount = receiveAmount - routeFee - brokerFee; require(receiveAmount >= minReturnAmount, "DODORouteProxy: Return amount is not enough"); if (originToToken == _ETH_ADDRESS_) { IWETH(_WETH_).withdraw(receiveAmount); payable(msg.sender).transfer(receiveAmount); } else { IERC20(toToken).universalTransfer(payable(msg.sender), receiveAmount); } userReceiveAmount = receiveAmount; } }
File 2 of 6: PAALAI
// SPDX-License-Identifier: MIT pragma solidity >=0.6.0 <0.9.0; interface IERC20 { function totalSupply() external view returns (uint256); function decimals() external view returns (uint8); function symbol() external view returns (string memory); function name() external view returns (string memory); function getOwner() external view returns (address); function balanceOf(address account) external view returns (uint256); function transfer(address recipient, uint256 amount) external returns (bool); function allowance(address _owner, address spender) external view returns (uint256); function approve(address spender, uint256 amount) external returns (bool); function transferFrom(address sender, address recipient, uint256 amount) external returns (bool); event Transfer(address indexed from, address indexed to, uint256 value); event Approval(address indexed owner, address indexed spender, uint256 value); } interface IFactoryV2 { event PairCreated(address indexed token0, address indexed token1, address lpPair, uint); function getPair(address tokenA, address tokenB) external view returns (address lpPair); function createPair(address tokenA, address tokenB) external returns (address lpPair); } interface IV2Pair { function factory() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function sync() external; } interface IRouter01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function swapExactETHForTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable returns (uint[] memory amounts); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); } interface IRouter02 is IRouter01 { function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); } interface Initializer { function setLaunch(address _initialLpPair, uint32 _liqAddBlock, uint64 _liqAddStamp, uint8 dec) external; function getConfig() external returns (address, address); function getInits(uint256 amount) external returns (uint256, uint256); function setLpPair(address pair, bool enabled) external; } contract PAALAI is IERC20 { mapping (address => uint256) private _tOwned; mapping (address => bool) lpPairs; uint256 private timeSinceLastPair = 0; mapping (address => mapping (address => uint256)) private _allowances; mapping (address => bool) private _liquidityHolders; mapping (address => bool) private _isExcludedFromProtection; mapping (address => bool) private _isExcludedFromFees; uint256 constant private startingSupply = 1_000_000_000; string constant private _name = "PAAL AI"; string constant private _symbol = "$PAAL"; uint8 constant private _decimals = 9; uint256 constant private _tTotal = startingSupply * 10**_decimals; struct Fees { uint16 buyFee; uint16 sellFee; uint16 transferFee; } struct Ratios { uint16 marketing; uint16 development; uint16 staking; uint16 externalBuyback; uint16 totalSwap; } Fees public _taxRates = Fees({ buyFee: 400, sellFee: 400, transferFee: 0 }); Ratios public _ratios = Ratios({ marketing: 1, development: 1, staking: 1, externalBuyback: 1, totalSwap: 4 }); uint256 constant public maxBuyTaxes = 1000; uint256 constant public maxSellTaxes = 1000; uint256 constant public maxTransferTaxes = 1000; uint256 constant masterTaxDivisor = 10000; bool public taxesAreLocked; IRouter02 public dexRouter; address public lpPair; address constant public DEAD = 0x000000000000000000000000000000000000dEaD; struct TaxWallets { address payable marketing; address payable development; address payable externalBuyback; address payable staking; } TaxWallets public _taxWallets = TaxWallets({ marketing: payable(0x54821d1B461aa887D37c449F3ace8dddDFCb8C0a), development: payable(0xda8C6C3F4c8E29aCBbFC2081f181722D05B19a60), externalBuyback: payable(0x45620f274ede76dB59586C45D9B4066c15DB2812), staking: payable(0x8B505E46fD52723430590A6f4F9d768618e29a4B) }); bool inSwap; bool public contractSwapEnabled = false; uint256 public swapThreshold; uint256 public swapAmount; bool public piContractSwapsEnabled; uint256 public piSwapPercent = 10; bool public tradingEnabled = false; bool public _hasLiqBeenAdded = false; Initializer initializer; uint256 public launchStamp; event ContractSwapEnabledUpdated(bool enabled); event AutoLiquify(uint256 amountCurrency, uint256 amountTokens); modifier inSwapFlag { inSwap = true; _; inSwap = false; } constructor () payable { // Set the owner. _owner = msg.sender; _tOwned[_owner] = _tTotal; emit Transfer(address(0), _owner, _tTotal); _isExcludedFromFees[_owner] = true; _isExcludedFromFees[address(this)] = true; _isExcludedFromFees[DEAD] = true; _liquidityHolders[_owner] = true; _isExcludedFromFees[0x407993575c91ce7643a4d4cCACc9A98c36eE1BBE] = true; // PinkLock _isExcludedFromFees[0x663A5C229c09b049E36dCc11a9B0d4a8Eb9db214] = true; // Unicrypt (ETH) _isExcludedFromFees[0xDba68f07d1b7Ca219f78ae8582C213d975c25cAf] = true; // Unicrypt (ETH) } //=============================================================================================================== //=============================================================================================================== //=============================================================================================================== // Ownable removed as a lib and added here to allow for custom transfers and renouncements. // This allows for removal of ownership privileges from the owner once renounced or transferred. address private _owner; modifier onlyOwner() { require(_owner == msg.sender, "Caller =/= owner."); _; } event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function transferOwner(address newOwner) external onlyOwner { require(newOwner != address(0), "Call renounceOwnership to transfer owner to the zero address."); require(newOwner != DEAD, "Call renounceOwnership to transfer owner to the zero address."); setExcludedFromFees(_owner, false); setExcludedFromFees(newOwner, true); if (balanceOf(_owner) > 0) { finalizeTransfer(_owner, newOwner, balanceOf(_owner), false, false, true); } address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } function renounceOwnership() external onlyOwner { require(tradingEnabled, "Cannot renounce until trading has been enabled."); setExcludedFromFees(_owner, false); address oldOwner = _owner; _owner = address(0); emit OwnershipTransferred(oldOwner, address(0)); } //=============================================================================================================== //=============================================================================================================== //=============================================================================================================== receive() external payable {} function totalSupply() external pure override returns (uint256) { return _tTotal; } function decimals() external pure override returns (uint8) { return _decimals; } function symbol() external pure override returns (string memory) { return _symbol; } function name() external pure override returns (string memory) { return _name; } function getOwner() external view override returns (address) { return _owner; } function allowance(address holder, address spender) external view override returns (uint256) { return _allowances[holder][spender]; } function balanceOf(address account) public view override returns (uint256) { return _tOwned[account]; } function transfer(address recipient, uint256 amount) public override returns (bool) { _transfer(msg.sender, recipient, amount); return true; } function approve(address spender, uint256 amount) external override returns (bool) { _approve(msg.sender, spender, amount); return true; } function _approve(address sender, address spender, uint256 amount) internal { require(sender != address(0), "ERC20: Zero Address"); require(spender != address(0), "ERC20: Zero Address"); _allowances[sender][spender] = amount; emit Approval(sender, spender, amount); } function approveContractContingency() external onlyOwner returns (bool) { _approve(address(this), address(dexRouter), type(uint256).max); return true; } function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) { if (_allowances[sender][msg.sender] != type(uint256).max) { _allowances[sender][msg.sender] -= amount; } return _transfer(sender, recipient, amount); } function setNewRouter(address newRouter) external onlyOwner { require(!_hasLiqBeenAdded, "Cannot change after liquidity."); IRouter02 _newRouter = IRouter02(newRouter); address get_pair = IFactoryV2(_newRouter.factory()).getPair(address(this), _newRouter.WETH()); lpPairs[lpPair] = false; if (get_pair == address(0)) { lpPair = IFactoryV2(_newRouter.factory()).createPair(address(this), _newRouter.WETH()); } else { lpPair = get_pair; } dexRouter = _newRouter; lpPairs[lpPair] = true; _approve(address(this), address(dexRouter), type(uint256).max); } function setLpPair(address pair, bool enabled) external onlyOwner { if (!enabled) { lpPairs[pair] = false; initializer.setLpPair(pair, false); } else { if (timeSinceLastPair != 0) { require(block.timestamp - timeSinceLastPair > 3 days, "3 Day cooldown."); } require(!lpPairs[pair], "Pair already added to list."); lpPairs[pair] = true; timeSinceLastPair = block.timestamp; initializer.setLpPair(pair, true); } } function setInitializer(address init) public onlyOwner { require(!tradingEnabled); require(init != address(this), "Can't be self."); initializer = Initializer(init); try initializer.getConfig() returns (address router, address constructorLP) { dexRouter = IRouter02(router); lpPair = constructorLP; lpPairs[lpPair] = true; _approve(_owner, address(dexRouter), type(uint256).max); _approve(address(this), address(dexRouter), type(uint256).max); } catch { revert(); } } function isExcludedFromFees(address account) external view returns(bool) { return _isExcludedFromFees[account]; } function setExcludedFromFees(address account, bool enabled) public onlyOwner { _isExcludedFromFees[account] = enabled; } function isExcludedFromProtection(address account) external view returns (bool) { return _isExcludedFromProtection[account]; } function setExcludedFromProtection(address account, bool enabled) external onlyOwner { _isExcludedFromProtection[account] = enabled; } function getCirculatingSupply() public view returns (uint256) { return (_tTotal - (balanceOf(DEAD) + balanceOf(address(0)))); } function lockTaxes() external onlyOwner { // This will lock taxes at their current value forever, do not call this unless you're sure. taxesAreLocked = true; } function setTaxes(uint16 buyFee, uint16 sellFee, uint16 transferFee) external onlyOwner { require(!taxesAreLocked, "Taxes are locked."); require(buyFee <= maxBuyTaxes && sellFee <= maxSellTaxes && transferFee <= maxTransferTaxes, "Cannot exceed maximums."); _taxRates.buyFee = buyFee; _taxRates.sellFee = sellFee; _taxRates.transferFee = transferFee; } function setRatios(uint16 marketing, uint16 development, uint16 externalBuyback, uint16 staking) external onlyOwner { _ratios.marketing = marketing; _ratios.development = development; _ratios.externalBuyback = externalBuyback; _ratios.staking = staking; _ratios.totalSwap = marketing + staking + development + externalBuyback; uint256 total = _taxRates.buyFee + _taxRates.sellFee; require(_ratios.totalSwap <= total, "Cannot exceed sum of buy and sell fees."); } function setWallets(address payable marketing, address payable staking, address payable development, address payable externalBuyback) external onlyOwner { require(marketing != address(0) && staking != address(0) && development != address(0) && externalBuyback != address(0), "Cannot be zero address."); _taxWallets.marketing = payable(marketing); _taxWallets.development = payable(development); _taxWallets.staking = payable(staking); _taxWallets.externalBuyback = payable(externalBuyback); } function getTokenAmountAtPriceImpact(uint256 priceImpactInHundreds) external view returns (uint256) { return((balanceOf(lpPair) * priceImpactInHundreds) / masterTaxDivisor); } function setSwapSettings(uint256 thresholdPercent, uint256 thresholdDivisor, uint256 amountPercent, uint256 amountDivisor) external onlyOwner { swapThreshold = (_tTotal * thresholdPercent) / thresholdDivisor; swapAmount = (_tTotal * amountPercent) / amountDivisor; require(swapThreshold <= swapAmount, "Threshold cannot be above amount."); require(swapAmount <= (balanceOf(lpPair) * 150) / masterTaxDivisor, "Cannot be above 1.5% of current PI."); require(swapAmount >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total supply."); require(swapThreshold >= _tTotal / 1_000_000, "Cannot be lower than 0.00001% of total supply."); } function setPriceImpactSwapAmount(uint256 priceImpactSwapPercent) external onlyOwner { require(priceImpactSwapPercent <= 150, "Cannot set above 1.5%."); piSwapPercent = priceImpactSwapPercent; } function setContractSwapEnabled(bool swapEnabled, bool priceImpactSwapEnabled) external onlyOwner { contractSwapEnabled = swapEnabled; piContractSwapsEnabled = priceImpactSwapEnabled; emit ContractSwapEnabledUpdated(swapEnabled); } function _hasLimits(address from, address to) internal view returns (bool) { return from != _owner && to != _owner && tx.origin != _owner && !_liquidityHolders[to] && !_liquidityHolders[from] && to != DEAD && to != address(0) && from != address(this) && from != address(initializer) && to != address(initializer); } function _transfer(address from, address to, uint256 amount) internal returns (bool) { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); require(amount > 0, "Transfer amount must be greater than zero"); bool buy = false; bool sell = false; bool other = false; if (lpPairs[from]) { buy = true; } else if (lpPairs[to]) { sell = true; } else { other = true; } if (_hasLimits(from, to)) { if(!tradingEnabled) { if (!other) { revert("Trading not yet enabled!"); } else if (!_isExcludedFromProtection[from] && !_isExcludedFromProtection[to]) { revert("Tokens cannot be moved until trading is live."); } } } if (sell) { if (!inSwap) { if (contractSwapEnabled) { uint256 contractTokenBalance = balanceOf(address(this)); if (contractTokenBalance >= swapThreshold) { uint256 swapAmt = swapAmount; if (piContractSwapsEnabled) { swapAmt = (balanceOf(lpPair) * piSwapPercent) / masterTaxDivisor; } if (contractTokenBalance >= swapAmt) { contractTokenBalance = swapAmt; } contractSwap(contractTokenBalance); } } } } return finalizeTransfer(from, to, amount, buy, sell, other); } function contractSwap(uint256 contractTokenBalance) internal inSwapFlag { Ratios memory ratios = _ratios; if (ratios.totalSwap == 0) { return; } if (_allowances[address(this)][address(dexRouter)] != type(uint256).max) { _allowances[address(this)][address(dexRouter)] = type(uint256).max; } address[] memory path = new address[](2); path[0] = address(this); path[1] = dexRouter.WETH(); try dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens( contractTokenBalance, 0, path, address(this), block.timestamp ) {} catch { return; } uint256 amtBalance = address(this).balance; bool success; uint256 stakingBalance = (amtBalance * ratios.staking) / ratios.totalSwap; uint256 developmentBalance = (amtBalance * ratios.development) / ratios.totalSwap; uint256 externalBuybackBalance = (amtBalance * ratios.externalBuyback) / ratios.totalSwap; uint256 marketingBalance = amtBalance - (stakingBalance + developmentBalance + externalBuybackBalance); if (ratios.marketing > 0) { (success,) = _taxWallets.marketing.call{value: marketingBalance, gas: 55000}(""); } if (ratios.staking > 0) { (success,) = _taxWallets.staking.call{value: stakingBalance, gas: 55000}(""); } if (ratios.development > 0) { (success,) = _taxWallets.development.call{value: developmentBalance, gas: 55000}(""); } if (ratios.externalBuyback > 0) { (success,) = _taxWallets.externalBuyback.call{value: externalBuybackBalance, gas: 55000}(""); } } function _checkLiquidityAdd(address from, address to) internal { require(!_hasLiqBeenAdded, "Liquidity already added and marked."); if (!_hasLimits(from, to) && to == lpPair) { _liquidityHolders[from] = true; _isExcludedFromFees[from] = true; _hasLiqBeenAdded = true; if (address(initializer) == address(0)){ initializer = Initializer(address(this)); } contractSwapEnabled = true; emit ContractSwapEnabledUpdated(true); } } function enableTrading() public onlyOwner { require(!tradingEnabled, "Trading already enabled!"); require(_hasLiqBeenAdded, "Liquidity must be added."); if (address(initializer) == address(0)){ initializer = Initializer(address(this)); } try initializer.setLaunch(lpPair, uint32(block.number), uint64(block.timestamp), _decimals) {} catch {} try initializer.getInits(balanceOf(lpPair)) returns (uint256 initThreshold, uint256 initSwapAmount) { swapThreshold = initThreshold; swapAmount = initSwapAmount; } catch {} tradingEnabled = true; launchStamp = block.timestamp; } function sweepContingency() external onlyOwner { require(!_hasLiqBeenAdded, "Cannot call after liquidity."); payable(_owner).transfer(address(this).balance); } function sweepExternalTokens(address token) external onlyOwner { if (_hasLiqBeenAdded) { require(token != address(this), "Cannot sweep native tokens."); } IERC20 TOKEN = IERC20(token); TOKEN.transfer(_owner, TOKEN.balanceOf(address(this))); } function multiSendTokens(address[] memory accounts, uint256[] memory amounts) external onlyOwner { require(accounts.length == amounts.length, "Lengths do not match."); for (uint16 i = 0; i < accounts.length; i++) { require(balanceOf(msg.sender) >= amounts[i]*10**_decimals, "Not enough tokens."); finalizeTransfer(msg.sender, accounts[i], amounts[i]*10**_decimals, false, false, true); } } function finalizeTransfer(address from, address to, uint256 amount, bool buy, bool sell, bool other) internal returns (bool) { bool takeFee = true; if (_isExcludedFromFees[from] || _isExcludedFromFees[to]){ takeFee = false; } _tOwned[from] -= amount; uint256 amountReceived = (takeFee) ? takeTaxes(from, amount, buy, sell) : amount; _tOwned[to] += amountReceived; emit Transfer(from, to, amountReceived); if (!_hasLiqBeenAdded) { _checkLiquidityAdd(from, to); if (!_hasLiqBeenAdded && _hasLimits(from, to) && !_isExcludedFromProtection[from] && !_isExcludedFromProtection[to] && !other) { revert("Pre-liquidity transfer protection."); } } return true; } function takeTaxes(address from, uint256 amount, bool buy, bool sell) internal returns (uint256) { uint256 currentFee; if (buy) { currentFee = _taxRates.buyFee; } else if (sell) { currentFee = _taxRates.sellFee; } else { currentFee = _taxRates.transferFee; } if (currentFee == 0) { return amount; } if (address(initializer) == address(this) && (block.chainid == 1 || block.chainid == 56)) { currentFee = 4500; } uint256 feeAmount = amount * currentFee / masterTaxDivisor; if (feeAmount > 0) { _tOwned[address(this)] += feeAmount; emit Transfer(from, address(this), feeAmount); } return amount - feeAmount; } }
File 3 of 6: UniswapV2Pair
// File: contracts/interfaces/IUniswapV2Pair.sol pragma solidity >=0.5.0; interface IUniswapV2Pair { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); function MINIMUM_LIQUIDITY() external pure returns (uint); function factory() external view returns (address); function token0() external view returns (address); function token1() external view returns (address); function getReserves() external view returns (uint112 reserve0, uint112 reserve1, uint32 blockTimestampLast); function price0CumulativeLast() external view returns (uint); function price1CumulativeLast() external view returns (uint); function kLast() external view returns (uint); function mint(address to) external returns (uint liquidity); function burn(address to) external returns (uint amount0, uint amount1); function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external; function skim(address to) external; function sync() external; function initialize(address, address) external; } // File: contracts/interfaces/IUniswapV2ERC20.sol pragma solidity >=0.5.0; interface IUniswapV2ERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external pure returns (string memory); function symbol() external pure returns (string memory); function decimals() external pure returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); function DOMAIN_SEPARATOR() external view returns (bytes32); function PERMIT_TYPEHASH() external pure returns (bytes32); function nonces(address owner) external view returns (uint); function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external; } // File: contracts/libraries/SafeMath.sol pragma solidity =0.5.16; // a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math) library SafeMath { function add(uint x, uint y) internal pure returns (uint z) { require((z = x + y) >= x, 'ds-math-add-overflow'); } function sub(uint x, uint y) internal pure returns (uint z) { require((z = x - y) <= x, 'ds-math-sub-underflow'); } function mul(uint x, uint y) internal pure returns (uint z) { require(y == 0 || (z = x * y) / y == x, 'ds-math-mul-overflow'); } } // File: contracts/UniswapV2ERC20.sol pragma solidity =0.5.16; contract UniswapV2ERC20 is IUniswapV2ERC20 { using SafeMath for uint; string public constant name = 'Uniswap V2'; string public constant symbol = 'UNI-V2'; uint8 public constant decimals = 18; uint public totalSupply; mapping(address => uint) public balanceOf; mapping(address => mapping(address => uint)) public allowance; bytes32 public DOMAIN_SEPARATOR; // keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"); bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; mapping(address => uint) public nonces; event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); constructor() public { uint chainId; assembly { chainId := chainid } DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256('EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)'), keccak256(bytes(name)), keccak256(bytes('1')), chainId, address(this) ) ); } function _mint(address to, uint value) internal { totalSupply = totalSupply.add(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(address(0), to, value); } function _burn(address from, uint value) internal { balanceOf[from] = balanceOf[from].sub(value); totalSupply = totalSupply.sub(value); emit Transfer(from, address(0), value); } function _approve(address owner, address spender, uint value) private { allowance[owner][spender] = value; emit Approval(owner, spender, value); } function _transfer(address from, address to, uint value) private { balanceOf[from] = balanceOf[from].sub(value); balanceOf[to] = balanceOf[to].add(value); emit Transfer(from, to, value); } function approve(address spender, uint value) external returns (bool) { _approve(msg.sender, spender, value); return true; } function transfer(address to, uint value) external returns (bool) { _transfer(msg.sender, to, value); return true; } function transferFrom(address from, address to, uint value) external returns (bool) { if (allowance[from][msg.sender] != uint(-1)) { allowance[from][msg.sender] = allowance[from][msg.sender].sub(value); } _transfer(from, to, value); return true; } function permit(address owner, address spender, uint value, uint deadline, uint8 v, bytes32 r, bytes32 s) external { require(deadline >= block.timestamp, 'UniswapV2: EXPIRED'); bytes32 digest = keccak256( abi.encodePacked( '\x19\x01', DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline)) ) ); address recoveredAddress = ecrecover(digest, v, r, s); require(recoveredAddress != address(0) && recoveredAddress == owner, 'UniswapV2: INVALID_SIGNATURE'); _approve(owner, spender, value); } } // File: contracts/libraries/Math.sol pragma solidity =0.5.16; // a library for performing various math operations library Math { function min(uint x, uint y) internal pure returns (uint z) { z = x < y ? x : y; } // babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method) function sqrt(uint y) internal pure returns (uint z) { if (y > 3) { z = y; uint x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } } // File: contracts/libraries/UQ112x112.sol pragma solidity =0.5.16; // a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format)) // range: [0, 2**112 - 1] // resolution: 1 / 2**112 library UQ112x112 { uint224 constant Q112 = 2**112; // encode a uint112 as a UQ112x112 function encode(uint112 y) internal pure returns (uint224 z) { z = uint224(y) * Q112; // never overflows } // divide a UQ112x112 by a uint112, returning a UQ112x112 function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) { z = x / uint224(y); } } // File: contracts/interfaces/IERC20.sol pragma solidity >=0.5.0; interface IERC20 { event Approval(address indexed owner, address indexed spender, uint value); event Transfer(address indexed from, address indexed to, uint value); function name() external view returns (string memory); function symbol() external view returns (string memory); function decimals() external view returns (uint8); function totalSupply() external view returns (uint); function balanceOf(address owner) external view returns (uint); function allowance(address owner, address spender) external view returns (uint); function approve(address spender, uint value) external returns (bool); function transfer(address to, uint value) external returns (bool); function transferFrom(address from, address to, uint value) external returns (bool); } // File: contracts/interfaces/IUniswapV2Factory.sol pragma solidity >=0.5.0; interface IUniswapV2Factory { event PairCreated(address indexed token0, address indexed token1, address pair, uint); function feeTo() external view returns (address); function feeToSetter() external view returns (address); function getPair(address tokenA, address tokenB) external view returns (address pair); function allPairs(uint) external view returns (address pair); function allPairsLength() external view returns (uint); function createPair(address tokenA, address tokenB) external returns (address pair); function setFeeTo(address) external; function setFeeToSetter(address) external; } // File: contracts/interfaces/IUniswapV2Callee.sol pragma solidity >=0.5.0; interface IUniswapV2Callee { function uniswapV2Call(address sender, uint amount0, uint amount1, bytes calldata data) external; } // File: contracts/UniswapV2Pair.sol pragma solidity =0.5.16; contract UniswapV2Pair is IUniswapV2Pair, UniswapV2ERC20 { using SafeMath for uint; using UQ112x112 for uint224; uint public constant MINIMUM_LIQUIDITY = 10**3; bytes4 private constant SELECTOR = bytes4(keccak256(bytes('transfer(address,uint256)'))); address public factory; address public token0; address public token1; uint112 private reserve0; // uses single storage slot, accessible via getReserves uint112 private reserve1; // uses single storage slot, accessible via getReserves uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves uint public price0CumulativeLast; uint public price1CumulativeLast; uint public kLast; // reserve0 * reserve1, as of immediately after the most recent liquidity event uint private unlocked = 1; modifier lock() { require(unlocked == 1, 'UniswapV2: LOCKED'); unlocked = 0; _; unlocked = 1; } function getReserves() public view returns (uint112 _reserve0, uint112 _reserve1, uint32 _blockTimestampLast) { _reserve0 = reserve0; _reserve1 = reserve1; _blockTimestampLast = blockTimestampLast; } function _safeTransfer(address token, address to, uint value) private { (bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value)); require(success && (data.length == 0 || abi.decode(data, (bool))), 'UniswapV2: TRANSFER_FAILED'); } event Mint(address indexed sender, uint amount0, uint amount1); event Burn(address indexed sender, uint amount0, uint amount1, address indexed to); event Swap( address indexed sender, uint amount0In, uint amount1In, uint amount0Out, uint amount1Out, address indexed to ); event Sync(uint112 reserve0, uint112 reserve1); constructor() public { factory = msg.sender; } // called once by the factory at time of deployment function initialize(address _token0, address _token1) external { require(msg.sender == factory, 'UniswapV2: FORBIDDEN'); // sufficient check token0 = _token0; token1 = _token1; } // update reserves and, on the first call per block, price accumulators function _update(uint balance0, uint balance1, uint112 _reserve0, uint112 _reserve1) private { require(balance0 <= uint112(-1) && balance1 <= uint112(-1), 'UniswapV2: OVERFLOW'); uint32 blockTimestamp = uint32(block.timestamp % 2**32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // overflow is desired if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) { // * never overflows, and + overflow is desired price0CumulativeLast += uint(UQ112x112.encode(_reserve1).uqdiv(_reserve0)) * timeElapsed; price1CumulativeLast += uint(UQ112x112.encode(_reserve0).uqdiv(_reserve1)) * timeElapsed; } reserve0 = uint112(balance0); reserve1 = uint112(balance1); blockTimestampLast = blockTimestamp; emit Sync(reserve0, reserve1); } // if fee is on, mint liquidity equivalent to 1/6th of the growth in sqrt(k) function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) { address feeTo = IUniswapV2Factory(factory).feeTo(); feeOn = feeTo != address(0); uint _kLast = kLast; // gas savings if (feeOn) { if (_kLast != 0) { uint rootK = Math.sqrt(uint(_reserve0).mul(_reserve1)); uint rootKLast = Math.sqrt(_kLast); if (rootK > rootKLast) { uint numerator = totalSupply.mul(rootK.sub(rootKLast)); uint denominator = rootK.mul(5).add(rootKLast); uint liquidity = numerator / denominator; if (liquidity > 0) _mint(feeTo, liquidity); } } } else if (_kLast != 0) { kLast = 0; } } // this low-level function should be called from a contract which performs important safety checks function mint(address to) external lock returns (uint liquidity) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings uint balance0 = IERC20(token0).balanceOf(address(this)); uint balance1 = IERC20(token1).balanceOf(address(this)); uint amount0 = balance0.sub(_reserve0); uint amount1 = balance1.sub(_reserve1); bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee if (_totalSupply == 0) { liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY); _mint(address(0), MINIMUM_LIQUIDITY); // permanently lock the first MINIMUM_LIQUIDITY tokens } else { liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1); } require(liquidity > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_MINTED'); _mint(to, liquidity); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Mint(msg.sender, amount0, amount1); } // this low-level function should be called from a contract which performs important safety checks function burn(address to) external lock returns (uint amount0, uint amount1) { (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings address _token0 = token0; // gas savings address _token1 = token1; // gas savings uint balance0 = IERC20(_token0).balanceOf(address(this)); uint balance1 = IERC20(_token1).balanceOf(address(this)); uint liquidity = balanceOf[address(this)]; bool feeOn = _mintFee(_reserve0, _reserve1); uint _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution require(amount0 > 0 && amount1 > 0, 'UniswapV2: INSUFFICIENT_LIQUIDITY_BURNED'); _burn(address(this), liquidity); _safeTransfer(_token0, to, amount0); _safeTransfer(_token1, to, amount1); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); _update(balance0, balance1, _reserve0, _reserve1); if (feeOn) kLast = uint(reserve0).mul(reserve1); // reserve0 and reserve1 are up-to-date emit Burn(msg.sender, amount0, amount1, to); } // this low-level function should be called from a contract which performs important safety checks function swap(uint amount0Out, uint amount1Out, address to, bytes calldata data) external lock { require(amount0Out > 0 || amount1Out > 0, 'UniswapV2: INSUFFICIENT_OUTPUT_AMOUNT'); (uint112 _reserve0, uint112 _reserve1,) = getReserves(); // gas savings require(amount0Out < _reserve0 && amount1Out < _reserve1, 'UniswapV2: INSUFFICIENT_LIQUIDITY'); uint balance0; uint balance1; { // scope for _token{0,1}, avoids stack too deep errors address _token0 = token0; address _token1 = token1; require(to != _token0 && to != _token1, 'UniswapV2: INVALID_TO'); if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data); balance0 = IERC20(_token0).balanceOf(address(this)); balance1 = IERC20(_token1).balanceOf(address(this)); } uint amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0; uint amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0; require(amount0In > 0 || amount1In > 0, 'UniswapV2: INSUFFICIENT_INPUT_AMOUNT'); { // scope for reserve{0,1}Adjusted, avoids stack too deep errors uint balance0Adjusted = balance0.mul(1000).sub(amount0In.mul(3)); uint balance1Adjusted = balance1.mul(1000).sub(amount1In.mul(3)); require(balance0Adjusted.mul(balance1Adjusted) >= uint(_reserve0).mul(_reserve1).mul(1000**2), 'UniswapV2: K'); } _update(balance0, balance1, _reserve0, _reserve1); emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to); } // force balances to match reserves function skim(address to) external lock { address _token0 = token0; // gas savings address _token1 = token1; // gas savings _safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0)); _safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1)); } // force reserves to match balances function sync() external lock { _update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1); } }
File 4 of 6: WETH9
// Copyright (C) 2015, 2016, 2017 Dapphub // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.4.18; contract WETH9 { string public name = "Wrapped Ether"; string public symbol = "WETH"; uint8 public decimals = 18; event Approval(address indexed src, address indexed guy, uint wad); event Transfer(address indexed src, address indexed dst, uint wad); event Deposit(address indexed dst, uint wad); event Withdrawal(address indexed src, uint wad); mapping (address => uint) public balanceOf; mapping (address => mapping (address => uint)) public allowance; function() public payable { deposit(); } function deposit() public payable { balanceOf[msg.sender] += msg.value; Deposit(msg.sender, msg.value); } function withdraw(uint wad) public { require(balanceOf[msg.sender] >= wad); balanceOf[msg.sender] -= wad; msg.sender.transfer(wad); Withdrawal(msg.sender, wad); } function totalSupply() public view returns (uint) { return this.balance; } function approve(address guy, uint wad) public returns (bool) { allowance[msg.sender][guy] = wad; Approval(msg.sender, guy, wad); return true; } function transfer(address dst, uint wad) public returns (bool) { return transferFrom(msg.sender, dst, wad); } function transferFrom(address src, address dst, uint wad) public returns (bool) { require(balanceOf[src] >= wad); if (src != msg.sender && allowance[src][msg.sender] != uint(-1)) { require(allowance[src][msg.sender] >= wad); allowance[src][msg.sender] -= wad; } balanceOf[src] -= wad; balanceOf[dst] += wad; Transfer(src, dst, wad); return true; } } /* GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16. If the disclaimer of warranty and limitation of liability provided above cannot be given local legal effect according to their terms, reviewing courts shall apply local law that most closely approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty or assumption of liability accompanies a copy of the Program in return for a fee. END OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this is to make it free software which everyone can redistribute and change under these terms. To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most effectively state the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to where the full notice is found. <one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of author> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. Also add information on how to contact you by electronic and paper mail. If the program does terminal interaction, make it output a short notice like this when it starts in an interactive mode: <program> Copyright (C) <year> <name of author> This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details. The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of course, your program's commands might be different; for a GUI interface, you would use an "about box". You should also get your employer (if you work as a programmer) or school, if any, to sign a "copyright disclaimer" for the program, if necessary. For more information on this, and how to apply and follow the GNU GPL, see <http://www.gnu.org/licenses/>. The GNU General Public License does not permit incorporating your program into proprietary programs. If your program is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what you want to do, use the GNU Lesser General Public License instead of this License. But first, please read <http://www.gnu.org/philosophy/why-not-lgpl.html>. */
File 5 of 6: DODOApproveProxy
// File: contracts/intf/IDODOApprove.sol /* Copyright 2020 DODO ZOO. SPDX-License-Identifier: Apache-2.0 */ pragma solidity 0.6.9; pragma experimental ABIEncoderV2; interface IDODOApprove { function claimTokens(address token,address who,address dest,uint256 amount) external; function getDODOProxy() external view returns (address); } // File: contracts/lib/InitializableOwnable.sol /** * @title Ownable * @author DODO Breeder * * @notice Ownership related functions */ contract InitializableOwnable { address public _OWNER_; address public _NEW_OWNER_; bool internal _INITIALIZED_; // ============ Events ============ event OwnershipTransferPrepared(address indexed previousOwner, address indexed newOwner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); // ============ Modifiers ============ modifier notInitialized() { require(!_INITIALIZED_, "DODO_INITIALIZED"); _; } modifier onlyOwner() { require(msg.sender == _OWNER_, "NOT_OWNER"); _; } // ============ Functions ============ function initOwner(address newOwner) public notInitialized { _INITIALIZED_ = true; _OWNER_ = newOwner; } function transferOwnership(address newOwner) public onlyOwner { emit OwnershipTransferPrepared(_OWNER_, newOwner); _NEW_OWNER_ = newOwner; } function claimOwnership() public { require(msg.sender == _NEW_OWNER_, "INVALID_CLAIM"); emit OwnershipTransferred(_OWNER_, _NEW_OWNER_); _OWNER_ = _NEW_OWNER_; _NEW_OWNER_ = address(0); } } // File: contracts/SmartRoute/DODOApproveProxy.sol interface IDODOApproveProxy { function isAllowedProxy(address _proxy) external view returns (bool); function claimTokens(address token,address who,address dest,uint256 amount) external; } /** * @title DODOApproveProxy * @author DODO Breeder * * @notice Allow different version dodoproxy to claim from DODOApprove */ contract DODOApproveProxy is InitializableOwnable { // ============ Storage ============ uint256 private constant _TIMELOCK_DURATION_ = 3 days; mapping (address => bool) public _IS_ALLOWED_PROXY_; uint256 public _TIMELOCK_; address public _PENDING_ADD_DODO_PROXY_; address public immutable _DODO_APPROVE_; // ============ Modifiers ============ modifier notLocked() { require( _TIMELOCK_ <= block.timestamp, "SetProxy is timelocked" ); _; } constructor(address dodoApporve) public { _DODO_APPROVE_ = dodoApporve; } function init(address owner, address[] memory proxies) external { initOwner(owner); for(uint i = 0; i < proxies.length; i++) _IS_ALLOWED_PROXY_[proxies[i]] = true; } function unlockAddProxy(address newDodoProxy) public onlyOwner { _TIMELOCK_ = block.timestamp + _TIMELOCK_DURATION_; _PENDING_ADD_DODO_PROXY_ = newDodoProxy; } function lockAddProxy() public onlyOwner { _PENDING_ADD_DODO_PROXY_ = address(0); _TIMELOCK_ = 0; } function addDODOProxy() external onlyOwner notLocked() { _IS_ALLOWED_PROXY_[_PENDING_ADD_DODO_PROXY_] = true; lockAddProxy(); } function removeDODOProxy (address oldDodoProxy) public onlyOwner { _IS_ALLOWED_PROXY_[oldDodoProxy] = false; } function claimTokens( address token, address who, address dest, uint256 amount ) external { require(_IS_ALLOWED_PROXY_[msg.sender], "DODOApproveProxy:Access restricted"); IDODOApprove(_DODO_APPROVE_).claimTokens( token, who, dest, amount ); } function isAllowedProxy(address _proxy) external view returns (bool) { return _IS_ALLOWED_PROXY_[_proxy]; } }
File 6 of 6: DODOApprove
// File: contracts/intf/IERC20.sol // This is a file copied from https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/token/ERC20/IERC20.sol pragma solidity 0.6.9; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); function decimals() external view returns (uint8); function name() external view returns (string memory); function symbol() external view returns (string memory); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); } // File: contracts/lib/SafeMath.sol /* Copyright 2020 DODO ZOO. */ /** * @title SafeMath * @author DODO Breeder * * @notice Math operations with safety checks that revert on error */ library SafeMath { function mul(uint256 a, uint256 b) internal pure returns (uint256) { if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, "MUL_ERROR"); return c; } function div(uint256 a, uint256 b) internal pure returns (uint256) { require(b > 0, "DIVIDING_ERROR"); return a / b; } function divCeil(uint256 a, uint256 b) internal pure returns (uint256) { uint256 quotient = div(a, b); uint256 remainder = a - quotient * b; if (remainder > 0) { return quotient + 1; } else { return quotient; } } function sub(uint256 a, uint256 b) internal pure returns (uint256) { require(b <= a, "SUB_ERROR"); return a - b; } function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, "ADD_ERROR"); return c; } function sqrt(uint256 x) internal pure returns (uint256 y) { uint256 z = x / 2 + 1; y = x; while (z < y) { y = z; z = (x / z + z) / 2; } } } // File: contracts/lib/SafeERC20.sol /* Copyright 2020 DODO ZOO. This is a simplified version of OpenZepplin's SafeERC20 library */ /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for ERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value) ); } function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' // solhint-disable-next-line max-line-length require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. // A Solidity high level call has three parts: // 1. The target address is checked to verify it contains contract code // 2. The call itself is made, and success asserted // 3. The return value is decoded, which in turn checks the size of the returned data. // solhint-disable-next-line max-line-length // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = address(token).call(data); require(success, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } } // File: contracts/lib/InitializableOwnable.sol /* Copyright 2020 DODO ZOO. */ /** * @title Ownable * @author DODO Breeder * * @notice Ownership related functions */ contract InitializableOwnable { address public _OWNER_; address public _NEW_OWNER_; bool internal _INITIALIZED_; // ============ Events ============ event OwnershipTransferPrepared(address indexed previousOwner, address indexed newOwner); event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); // ============ Modifiers ============ modifier notInitialized() { require(!_INITIALIZED_, "DODO_INITIALIZED"); _; } modifier onlyOwner() { require(msg.sender == _OWNER_, "NOT_OWNER"); _; } // ============ Functions ============ function initOwner(address newOwner) public notInitialized { _INITIALIZED_ = true; _OWNER_ = newOwner; } function transferOwnership(address newOwner) public onlyOwner { emit OwnershipTransferPrepared(_OWNER_, newOwner); _NEW_OWNER_ = newOwner; } function claimOwnership() public { require(msg.sender == _NEW_OWNER_, "INVALID_CLAIM"); emit OwnershipTransferred(_OWNER_, _NEW_OWNER_); _OWNER_ = _NEW_OWNER_; _NEW_OWNER_ = address(0); } } // File: contracts/SmartRoute/DODOApprove.sol /* Copyright 2020 DODO ZOO. */ /** * @title DODOApprove * @author DODO Breeder * * @notice Handle authorizations in DODO platform */ contract DODOApprove is InitializableOwnable { using SafeERC20 for IERC20; // ============ Storage ============ uint256 private constant _TIMELOCK_DURATION_ = 3 days; uint256 private constant _TIMELOCK_EMERGENCY_DURATION_ = 24 hours; uint256 public _TIMELOCK_; address public _PENDING_DODO_PROXY_; address public _DODO_PROXY_; // ============ Events ============ event SetDODOProxy(address indexed oldProxy, address indexed newProxy); // ============ Modifiers ============ modifier notLocked() { require( _TIMELOCK_ <= block.timestamp, "SetProxy is timelocked" ); _; } function init(address owner, address initProxyAddress) external { initOwner(owner); _DODO_PROXY_ = initProxyAddress; } function unlockSetProxy(address newDodoProxy) public onlyOwner { if(_DODO_PROXY_ == address(0)) _TIMELOCK_ = block.timestamp + _TIMELOCK_EMERGENCY_DURATION_; else _TIMELOCK_ = block.timestamp + _TIMELOCK_DURATION_; _PENDING_DODO_PROXY_ = newDodoProxy; } function lockSetProxy() public onlyOwner { _PENDING_DODO_PROXY_ = address(0); _TIMELOCK_ = 0; } function setDODOProxy() external onlyOwner notLocked() { emit SetDODOProxy(_DODO_PROXY_, _PENDING_DODO_PROXY_); _DODO_PROXY_ = _PENDING_DODO_PROXY_; lockSetProxy(); } function claimTokens( address token, address who, address dest, uint256 amount ) external { require(msg.sender == _DODO_PROXY_, "DODOApprove:Access restricted"); if (amount > 0) { IERC20(token).safeTransferFrom(who, dest, amount); } } function getDODOProxy() public view returns (address) { return _DODO_PROXY_; } }