ETH Price: $1,877.26 (+0.92%)

Transaction Decoder

Block:
22032679 at Mar-12-2025 06:48:35 PM +UTC
Transaction Fee:
0.000344141335616988 ETH $0.65
Gas Used:
219,297 Gas / 1.569293404 Gwei

Emitted Events:

11 Ondo.Transfer( from=[Receiver] ERC1967Proxy, to=0x84b38Bc60f3bD82640EceFa320dAB2bE62e2Da15, amount=58079250000000000000000 )
12 GamerCoin.Transfer( from=[Receiver] ERC1967Proxy, to=0x51c2F5A9D29fCdcB8a518839eb9A56f09a78e300, value=69182080000000000000000 )
13 LithiumToken.Transfer( from=[Receiver] ERC1967Proxy, to=0xd0Be1fdED5d964619B92B3672C08c43305529bE0, value=2255422580000000000000000 )
14 TetherToken.Transfer( from=[Receiver] ERC1967Proxy, to=0x1dFE682eA8fF552E1b093CC2a8980B9f855723Da, value=2189373566 )
15 TetherToken.Transfer( from=[Receiver] ERC1967Proxy, to=0x9222Db89a82e73e119a6A22CDdf15c12cF1765bd, value=288568076 )
16 TetherToken.Transfer( from=[Receiver] ERC1967Proxy, to=0x0F075C93c419ce8E0143BadA7E5EdA4F3C577eA2, value=52206623 )

Account State Difference:

  Address   Before After State Difference Code
0x188E817B...8A97C4a42
0x728f30fa...8E0B1387d
1.871816329575103289 Eth1.872035626575103289 Eth0.000219297
0xcE0d2213...F870fA428
(KuCoin: Deposit Funder 3)
17.332820123041767103 Eth
Nonce: 232884
17.332475981706150115 Eth
Nonce: 232885
0.000344141335616988
0xdAC17F95...13D831ec7
0xfAbA6f8e...577269BE3

Execution Trace

ERC1967Proxy.e6930a22( )
  • 0x74ae836d6f949118b4e4d0af79924edd0d6fd163.e6930a22( )
    • Ondo.transfer( dst=0x84b38Bc60f3bD82640EceFa320dAB2bE62e2Da15, rawAmount=58079250000000000000000 ) => ( True )
    • GamerCoin.transfer( recipient=0x51c2F5A9D29fCdcB8a518839eb9A56f09a78e300, amount=69182080000000000000000 ) => ( True )
    • LithiumToken.transfer( recipient=0xd0Be1fdED5d964619B92B3672C08c43305529bE0, amount=2255422580000000000000000 ) => ( True )
    • TetherToken.transfer( _to=0x1dFE682eA8fF552E1b093CC2a8980B9f855723Da, _value=2189373566 )
    • TetherToken.transfer( _to=0x9222Db89a82e73e119a6A22CDdf15c12cF1765bd, _value=288568076 )
    • TetherToken.transfer( _to=0x0F075C93c419ce8E0143BadA7E5EdA4F3C577eA2, _value=52206623 )
      File 1 of 5: ERC1967Proxy
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
      pragma solidity ^0.8.0;
      import "../utils/Context.sol";
      /**
       * @dev Contract module which provides a basic access control mechanism, where
       * there is an account (an owner) that can be granted exclusive access to
       * specific functions.
       *
       * By default, the owner account will be the one that deploys the contract. This
       * can later be changed with {transferOwnership}.
       *
       * This module is used through inheritance. It will make available the modifier
       * `onlyOwner`, which can be applied to your functions to restrict their use to
       * the owner.
       */
      abstract contract Ownable is Context {
          address private _owner;
          event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
          /**
           * @dev Initializes the contract setting the deployer as the initial owner.
           */
          constructor() {
              _transferOwnership(_msgSender());
          }
          /**
           * @dev Throws if called by any account other than the owner.
           */
          modifier onlyOwner() {
              _checkOwner();
              _;
          }
          /**
           * @dev Returns the address of the current owner.
           */
          function owner() public view virtual returns (address) {
              return _owner;
          }
          /**
           * @dev Throws if the sender is not the owner.
           */
          function _checkOwner() internal view virtual {
              require(owner() == _msgSender(), "Ownable: caller is not the owner");
          }
          /**
           * @dev Leaves the contract without owner. It will not be possible to call
           * `onlyOwner` functions anymore. Can only be called by the current owner.
           *
           * NOTE: Renouncing ownership will leave the contract without an owner,
           * thereby removing any functionality that is only available to the owner.
           */
          function renounceOwnership() public virtual onlyOwner {
              _transferOwnership(address(0));
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Can only be called by the current owner.
           */
          function transferOwnership(address newOwner) public virtual onlyOwner {
              require(newOwner != address(0), "Ownable: new owner is the zero address");
              _transferOwnership(newOwner);
          }
          /**
           * @dev Transfers ownership of the contract to a new account (`newOwner`).
           * Internal function without access restriction.
           */
          function _transferOwnership(address newOwner) internal virtual {
              address oldOwner = _owner;
              _owner = newOwner;
              emit OwnershipTransferred(oldOwner, newOwner);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.5.0) (interfaces/draft-IERC1822.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified
       * proxy whose upgrades are fully controlled by the current implementation.
       */
      interface IERC1822Proxiable {
          /**
           * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation
           * address.
           *
           * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks
           * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this
           * function revert if invoked through a proxy.
           */
          function proxiableUUID() external view returns (bytes32);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.3) (interfaces/IERC1967.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
       *
       * _Available since v4.9._
       */
      interface IERC1967 {
          /**
           * @dev Emitted when the implementation is upgraded.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Emitted when the admin account has changed.
           */
          event AdminChanged(address previousAdmin, address newAdmin);
          /**
           * @dev Emitted when the beacon is changed.
           */
          event BeaconUpgraded(address indexed beacon);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/beacon/BeaconProxy.sol)
      pragma solidity ^0.8.0;
      import "./IBeacon.sol";
      import "../Proxy.sol";
      import "../ERC1967/ERC1967Upgrade.sol";
      /**
       * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
       *
       * The beacon address is stored in storage slot `uint256(keccak256('eip1967.proxy.beacon')) - 1`, so that it doesn't
       * conflict with the storage layout of the implementation behind the proxy.
       *
       * _Available since v3.4._
       */
      contract BeaconProxy is Proxy, ERC1967Upgrade {
          /**
           * @dev Initializes the proxy with `beacon`.
           *
           * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
           * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
           * constructor.
           *
           * Requirements:
           *
           * - `beacon` must be a contract with the interface {IBeacon}.
           */
          constructor(address beacon, bytes memory data) payable {
              _upgradeBeaconToAndCall(beacon, data, false);
          }
          /**
           * @dev Returns the current beacon address.
           */
          function _beacon() internal view virtual returns (address) {
              return _getBeacon();
          }
          /**
           * @dev Returns the current implementation address of the associated beacon.
           */
          function _implementation() internal view virtual override returns (address) {
              return IBeacon(_getBeacon()).implementation();
          }
          /**
           * @dev Changes the proxy to use a new beacon. Deprecated: see {_upgradeBeaconToAndCall}.
           *
           * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon.
           *
           * Requirements:
           *
           * - `beacon` must be a contract.
           * - The implementation returned by `beacon` must be a contract.
           */
          function _setBeacon(address beacon, bytes memory data) internal virtual {
              _upgradeBeaconToAndCall(beacon, data, false);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This is the interface that {BeaconProxy} expects of its beacon.
       */
      interface IBeacon {
          /**
           * @dev Must return an address that can be used as a delegate call target.
           *
           * {BeaconProxy} will check that this address is a contract.
           */
          function implementation() external view returns (address);
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (proxy/beacon/UpgradeableBeacon.sol)
      pragma solidity ^0.8.0;
      import "./IBeacon.sol";
      import "../../access/Ownable.sol";
      import "../../utils/Address.sol";
      /**
       * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
       * implementation contract, which is where they will delegate all function calls.
       *
       * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
       */
      contract UpgradeableBeacon is IBeacon, Ownable {
          address private _implementation;
          /**
           * @dev Emitted when the implementation returned by the beacon is changed.
           */
          event Upgraded(address indexed implementation);
          /**
           * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
           * beacon.
           */
          constructor(address implementation_) {
              _setImplementation(implementation_);
          }
          /**
           * @dev Returns the current implementation address.
           */
          function implementation() public view virtual override returns (address) {
              return _implementation;
          }
          /**
           * @dev Upgrades the beacon to a new implementation.
           *
           * Emits an {Upgraded} event.
           *
           * Requirements:
           *
           * - msg.sender must be the owner of the contract.
           * - `newImplementation` must be a contract.
           */
          function upgradeTo(address newImplementation) public virtual onlyOwner {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Sets the implementation contract address for this beacon
           *
           * Requirements:
           *
           * - `newImplementation` must be a contract.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
              _implementation = newImplementation;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (proxy/ERC1967/ERC1967Proxy.sol)
      pragma solidity ^0.8.0;
      import "../Proxy.sol";
      import "./ERC1967Upgrade.sol";
      /**
       * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
       * implementation address that can be changed. This address is stored in storage in the location specified by
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
       * implementation behind the proxy.
       */
      contract ERC1967Proxy is Proxy, ERC1967Upgrade {
          /**
           * @dev Initializes the upgradeable proxy with an initial implementation specified by `_logic`.
           *
           * If `_data` is nonempty, it's used as data in a delegate call to `_logic`. This will typically be an encoded
           * function call, and allows initializing the storage of the proxy like a Solidity constructor.
           */
          constructor(address _logic, bytes memory _data) payable {
              _upgradeToAndCall(_logic, _data, false);
          }
          /**
           * @dev Returns the current implementation address.
           */
          function _implementation() internal view virtual override returns (address impl) {
              return ERC1967Upgrade._getImplementation();
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.3) (proxy/ERC1967/ERC1967Upgrade.sol)
      pragma solidity ^0.8.2;
      import "../beacon/IBeacon.sol";
      import "../../interfaces/IERC1967.sol";
      import "../../interfaces/draft-IERC1822.sol";
      import "../../utils/Address.sol";
      import "../../utils/StorageSlot.sol";
      /**
       * @dev This abstract contract provides getters and event emitting update functions for
       * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
       *
       * _Available since v4.1._
       *
       * @custom:oz-upgrades-unsafe-allow delegatecall
       */
      abstract contract ERC1967Upgrade is IERC1967 {
          // This is the keccak-256 hash of "eip1967.proxy.rollback" subtracted by 1
          bytes32 private constant _ROLLBACK_SLOT = 0x4910fdfa16fed3260ed0e7147f7cc6da11a60208b5b9406d12a635614ffd9143;
          /**
           * @dev Storage slot with the address of the current implementation.
           * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
          /**
           * @dev Returns the current implementation address.
           */
          function _getImplementation() internal view returns (address) {
              return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 implementation slot.
           */
          function _setImplementation(address newImplementation) private {
              require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
              StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
          }
          /**
           * @dev Perform implementation upgrade
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeTo(address newImplementation) internal {
              _setImplementation(newImplementation);
              emit Upgraded(newImplementation);
          }
          /**
           * @dev Perform implementation upgrade with additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCall(
              address newImplementation,
              bytes memory data,
              bool forceCall
          ) internal {
              _upgradeTo(newImplementation);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(newImplementation, data);
              }
          }
          /**
           * @dev Perform implementation upgrade with security checks for UUPS proxies, and additional setup call.
           *
           * Emits an {Upgraded} event.
           */
          function _upgradeToAndCallUUPS(
              address newImplementation,
              bytes memory data,
              bool forceCall
          ) internal {
              // Upgrades from old implementations will perform a rollback test. This test requires the new
              // implementation to upgrade back to the old, non-ERC1822 compliant, implementation. Removing
              // this special case will break upgrade paths from old UUPS implementation to new ones.
              if (StorageSlot.getBooleanSlot(_ROLLBACK_SLOT).value) {
                  _setImplementation(newImplementation);
              } else {
                  try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) {
                      require(slot == _IMPLEMENTATION_SLOT, "ERC1967Upgrade: unsupported proxiableUUID");
                  } catch {
                      revert("ERC1967Upgrade: new implementation is not UUPS");
                  }
                  _upgradeToAndCall(newImplementation, data, forceCall);
              }
          }
          /**
           * @dev Storage slot with the admin of the contract.
           * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1, and is
           * validated in the constructor.
           */
          bytes32 internal constant _ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
          /**
           * @dev Returns the current admin.
           */
          function _getAdmin() internal view returns (address) {
              return StorageSlot.getAddressSlot(_ADMIN_SLOT).value;
          }
          /**
           * @dev Stores a new address in the EIP1967 admin slot.
           */
          function _setAdmin(address newAdmin) private {
              require(newAdmin != address(0), "ERC1967: new admin is the zero address");
              StorageSlot.getAddressSlot(_ADMIN_SLOT).value = newAdmin;
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _changeAdmin(address newAdmin) internal {
              emit AdminChanged(_getAdmin(), newAdmin);
              _setAdmin(newAdmin);
          }
          /**
           * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
           * This is bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1)) and is validated in the constructor.
           */
          bytes32 internal constant _BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
          /**
           * @dev Returns the current beacon.
           */
          function _getBeacon() internal view returns (address) {
              return StorageSlot.getAddressSlot(_BEACON_SLOT).value;
          }
          /**
           * @dev Stores a new beacon in the EIP1967 beacon slot.
           */
          function _setBeacon(address newBeacon) private {
              require(Address.isContract(newBeacon), "ERC1967: new beacon is not a contract");
              require(
                  Address.isContract(IBeacon(newBeacon).implementation()),
                  "ERC1967: beacon implementation is not a contract"
              );
              StorageSlot.getAddressSlot(_BEACON_SLOT).value = newBeacon;
          }
          /**
           * @dev Perform beacon upgrade with additional setup call. Note: This upgrades the address of the beacon, it does
           * not upgrade the implementation contained in the beacon (see {UpgradeableBeacon-_setImplementation} for that).
           *
           * Emits a {BeaconUpgraded} event.
           */
          function _upgradeBeaconToAndCall(
              address newBeacon,
              bytes memory data,
              bool forceCall
          ) internal {
              _setBeacon(newBeacon);
              emit BeaconUpgraded(newBeacon);
              if (data.length > 0 || forceCall) {
                  Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
       * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
       * be specified by overriding the virtual {_implementation} function.
       *
       * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
       * different contract through the {_delegate} function.
       *
       * The success and return data of the delegated call will be returned back to the caller of the proxy.
       */
      abstract contract Proxy {
          /**
           * @dev Delegates the current call to `implementation`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _delegate(address implementation) internal virtual {
              assembly {
                  // Copy msg.data. We take full control of memory in this inline assembly
                  // block because it will not return to Solidity code. We overwrite the
                  // Solidity scratch pad at memory position 0.
                  calldatacopy(0, 0, calldatasize())
                  // Call the implementation.
                  // out and outsize are 0 because we don't know the size yet.
                  let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                  // Copy the returned data.
                  returndatacopy(0, 0, returndatasize())
                  switch result
                  // delegatecall returns 0 on error.
                  case 0 {
                      revert(0, returndatasize())
                  }
                  default {
                      return(0, returndatasize())
                  }
              }
          }
          /**
           * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function
           * and {_fallback} should delegate.
           */
          function _implementation() internal view virtual returns (address);
          /**
           * @dev Delegates the current call to the address returned by `_implementation()`.
           *
           * This function does not return to its internal call site, it will return directly to the external caller.
           */
          function _fallback() internal virtual {
              _beforeFallback();
              _delegate(_implementation());
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
           * function in the contract matches the call data.
           */
          fallback() external payable virtual {
              _fallback();
          }
          /**
           * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data
           * is empty.
           */
          receive() external payable virtual {
              _fallback();
          }
          /**
           * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback`
           * call, or as part of the Solidity `fallback` or `receive` functions.
           *
           * If overridden should call `super._beforeFallback()`.
           */
          function _beforeFallback() internal virtual {}
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/ProxyAdmin.sol)
      pragma solidity ^0.8.0;
      import "./TransparentUpgradeableProxy.sol";
      import "../../access/Ownable.sol";
      /**
       * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
       * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
       */
      contract ProxyAdmin is Ownable {
          /**
           * @dev Returns the current implementation of `proxy`.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function getProxyImplementation(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
              // We need to manually run the static call since the getter cannot be flagged as view
              // bytes4(keccak256("implementation()")) == 0x5c60da1b
              (bool success, bytes memory returndata) = address(proxy).staticcall(hex"5c60da1b");
              require(success);
              return abi.decode(returndata, (address));
          }
          /**
           * @dev Returns the current admin of `proxy`.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function getProxyAdmin(ITransparentUpgradeableProxy proxy) public view virtual returns (address) {
              // We need to manually run the static call since the getter cannot be flagged as view
              // bytes4(keccak256("admin()")) == 0xf851a440
              (bool success, bytes memory returndata) = address(proxy).staticcall(hex"f851a440");
              require(success);
              return abi.decode(returndata, (address));
          }
          /**
           * @dev Changes the admin of `proxy` to `newAdmin`.
           *
           * Requirements:
           *
           * - This contract must be the current admin of `proxy`.
           */
          function changeProxyAdmin(ITransparentUpgradeableProxy proxy, address newAdmin) public virtual onlyOwner {
              proxy.changeAdmin(newAdmin);
          }
          /**
           * @dev Upgrades `proxy` to `implementation`. See {TransparentUpgradeableProxy-upgradeTo}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function upgrade(ITransparentUpgradeableProxy proxy, address implementation) public virtual onlyOwner {
              proxy.upgradeTo(implementation);
          }
          /**
           * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation. See
           * {TransparentUpgradeableProxy-upgradeToAndCall}.
           *
           * Requirements:
           *
           * - This contract must be the admin of `proxy`.
           */
          function upgradeAndCall(
              ITransparentUpgradeableProxy proxy,
              address implementation,
              bytes memory data
          ) public payable virtual onlyOwner {
              proxy.upgradeToAndCall{value: msg.value}(implementation, data);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.3) (proxy/transparent/TransparentUpgradeableProxy.sol)
      pragma solidity ^0.8.0;
      import "../ERC1967/ERC1967Proxy.sol";
      /**
       * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
       * does not implement this interface directly, and some of its functions are implemented by an internal dispatch
       * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
       * include them in the ABI so this interface must be used to interact with it.
       */
      interface ITransparentUpgradeableProxy is IERC1967 {
          function admin() external view returns (address);
          function implementation() external view returns (address);
          function changeAdmin(address) external;
          function upgradeTo(address) external;
          function upgradeToAndCall(address, bytes memory) external payable;
      }
      /**
       * @dev This contract implements a proxy that is upgradeable by an admin.
       *
       * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
       * clashing], which can potentially be used in an attack, this contract uses the
       * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
       * things that go hand in hand:
       *
       * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
       * that call matches one of the admin functions exposed by the proxy itself.
       * 2. If the admin calls the proxy, it can access the admin functions, but its calls will never be forwarded to the
       * implementation. If the admin tries to call a function on the implementation it will fail with an error that says
       * "admin cannot fallback to proxy target".
       *
       * These properties mean that the admin account can only be used for admin actions like upgrading the proxy or changing
       * the admin, so it's best if it's a dedicated account that is not used for anything else. This will avoid headaches due
       * to sudden errors when trying to call a function from the proxy implementation.
       *
       * Our recommendation is for the dedicated account to be an instance of the {ProxyAdmin} contract. If set up this way,
       * you should think of the `ProxyAdmin` instance as the real administrative interface of your proxy.
       *
       * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
       * inherit from that interface, and instead the admin functions are implicitly implemented using a custom dispatch
       * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
       * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
       * implementation.
       *
       * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the compiler
       * will not check that there are no selector conflicts, due to the note above. A selector clash between any new function
       * and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This could
       * render the admin operations inaccessible, which could prevent upgradeability. Transparency may also be compromised.
       */
      contract TransparentUpgradeableProxy is ERC1967Proxy {
          /**
           * @dev Initializes an upgradeable proxy managed by `_admin`, backed by the implementation at `_logic`, and
           * optionally initialized with `_data` as explained in {ERC1967Proxy-constructor}.
           */
          constructor(
              address _logic,
              address admin_,
              bytes memory _data
          ) payable ERC1967Proxy(_logic, _data) {
              _changeAdmin(admin_);
          }
          /**
           * @dev Modifier used internally that will delegate the call to the implementation unless the sender is the admin.
           *
           * CAUTION: This modifier is deprecated, as it could cause issues if the modified function has arguments, and the
           * implementation provides a function with the same selector.
           */
          modifier ifAdmin() {
              if (msg.sender == _getAdmin()) {
                  _;
              } else {
                  _fallback();
              }
          }
          /**
           * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior
           */
          function _fallback() internal virtual override {
              if (msg.sender == _getAdmin()) {
                  bytes memory ret;
                  bytes4 selector = msg.sig;
                  if (selector == ITransparentUpgradeableProxy.upgradeTo.selector) {
                      ret = _dispatchUpgradeTo();
                  } else if (selector == ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                      ret = _dispatchUpgradeToAndCall();
                  } else if (selector == ITransparentUpgradeableProxy.changeAdmin.selector) {
                      ret = _dispatchChangeAdmin();
                  } else if (selector == ITransparentUpgradeableProxy.admin.selector) {
                      ret = _dispatchAdmin();
                  } else if (selector == ITransparentUpgradeableProxy.implementation.selector) {
                      ret = _dispatchImplementation();
                  } else {
                      revert("TransparentUpgradeableProxy: admin cannot fallback to proxy target");
                  }
                  assembly {
                      return(add(ret, 0x20), mload(ret))
                  }
              } else {
                  super._fallback();
              }
          }
          /**
           * @dev Returns the current admin.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
           */
          function _dispatchAdmin() private returns (bytes memory) {
              _requireZeroValue();
              address admin = _getAdmin();
              return abi.encode(admin);
          }
          /**
           * @dev Returns the current implementation.
           *
           * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using the
           * https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
           * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
           */
          function _dispatchImplementation() private returns (bytes memory) {
              _requireZeroValue();
              address implementation = _implementation();
              return abi.encode(implementation);
          }
          /**
           * @dev Changes the admin of the proxy.
           *
           * Emits an {AdminChanged} event.
           */
          function _dispatchChangeAdmin() private returns (bytes memory) {
              _requireZeroValue();
              address newAdmin = abi.decode(msg.data[4:], (address));
              _changeAdmin(newAdmin);
              return "";
          }
          /**
           * @dev Upgrade the implementation of the proxy.
           */
          function _dispatchUpgradeTo() private returns (bytes memory) {
              _requireZeroValue();
              address newImplementation = abi.decode(msg.data[4:], (address));
              _upgradeToAndCall(newImplementation, bytes(""), false);
              return "";
          }
          /**
           * @dev Upgrade the implementation of the proxy, and then call a function from the new implementation as specified
           * by `data`, which should be an encoded function call. This is useful to initialize new storage variables in the
           * proxied contract.
           */
          function _dispatchUpgradeToAndCall() private returns (bytes memory) {
              (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
              _upgradeToAndCall(newImplementation, data, true);
              return "";
          }
          /**
           * @dev Returns the current admin.
           */
          function _admin() internal view virtual returns (address) {
              return _getAdmin();
          }
          /**
           * @dev To keep this contract fully transparent, all `ifAdmin` functions must be payable. This helper is here to
           * emulate some proxy functions being non-payable while still allowing value to pass through.
           */
          function _requireZeroValue() private {
              require(msg.value == 0);
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
      pragma solidity ^0.8.1;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           *
           * [IMPORTANT]
           * ====
           * You shouldn't rely on `isContract` to protect against flash loan attacks!
           *
           * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
           * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
           * constructor.
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // This method relies on extcodesize/address.code.length, which returns 0
              // for contracts in construction, since the code is only stored at the end
              // of the constructor execution.
              return account.code.length > 0;
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              (bool success, ) = recipient.call{value: amount}("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain `call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value
          ) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(
              address target,
              bytes memory data,
              uint256 value,
              string memory errorMessage
          ) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              (bool success, bytes memory returndata) = target.call{value: value}(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
              return functionStaticCall(target, data, "Address: low-level static call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a static call.
           *
           * _Available since v3.3._
           */
          function functionStaticCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              (bool success, bytes memory returndata) = target.staticcall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
              return functionDelegateCall(target, data, "Address: low-level delegate call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
           * but performing a delegate call.
           *
           * _Available since v3.4._
           */
          function functionDelegateCall(
              address target,
              bytes memory data,
              string memory errorMessage
          ) internal returns (bytes memory) {
              (bool success, bytes memory returndata) = target.delegatecall(data);
              return verifyCallResultFromTarget(target, success, returndata, errorMessage);
          }
          /**
           * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
           * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
           *
           * _Available since v4.8._
           */
          function verifyCallResultFromTarget(
              address target,
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal view returns (bytes memory) {
              if (success) {
                  if (returndata.length == 0) {
                      // only check isContract if the call was successful and the return data is empty
                      // otherwise we already know that it was a contract
                      require(isContract(target), "Address: call to non-contract");
                  }
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          /**
           * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
           * revert reason or using the provided one.
           *
           * _Available since v4.3._
           */
          function verifyCallResult(
              bool success,
              bytes memory returndata,
              string memory errorMessage
          ) internal pure returns (bytes memory) {
              if (success) {
                  return returndata;
              } else {
                  _revert(returndata, errorMessage);
              }
          }
          function _revert(bytes memory returndata, string memory errorMessage) private pure {
              // Look for revert reason and bubble it up if present
              if (returndata.length > 0) {
                  // The easiest way to bubble the revert reason is using memory via assembly
                  /// @solidity memory-safe-assembly
                  assembly {
                      let returndata_size := mload(returndata)
                      revert(add(32, returndata), returndata_size)
                  }
              } else {
                  revert(errorMessage);
              }
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes calldata) {
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      // OpenZeppelin Contracts (last updated v4.7.0) (utils/StorageSlot.sol)
      pragma solidity ^0.8.0;
      /**
       * @dev Library for reading and writing primitive types to specific storage slots.
       *
       * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
       * This library helps with reading and writing to such slots without the need for inline assembly.
       *
       * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
       *
       * Example usage to set ERC1967 implementation slot:
       * ```
       * contract ERC1967 {
       *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
       *
       *     function _getImplementation() internal view returns (address) {
       *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
       *     }
       *
       *     function _setImplementation(address newImplementation) internal {
       *         require(Address.isContract(newImplementation), "ERC1967: new implementation is not a contract");
       *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
       *     }
       * }
       * ```
       *
       * _Available since v4.1 for `address`, `bool`, `bytes32`, and `uint256`._
       */
      library StorageSlot {
          struct AddressSlot {
              address value;
          }
          struct BooleanSlot {
              bool value;
          }
          struct Bytes32Slot {
              bytes32 value;
          }
          struct Uint256Slot {
              uint256 value;
          }
          /**
           * @dev Returns an `AddressSlot` with member `value` located at `slot`.
           */
          function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
           */
          function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
           */
          function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
          /**
           * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
           */
          function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
              /// @solidity memory-safe-assembly
              assembly {
                  r.slot := slot
              }
          }
      }
      

      File 2 of 5: Ondo
      // SPDX-License-Identifier: AGPL-3.0
      pragma solidity 0.8.3;
      /*
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
          return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
          this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
          return msg.data;
        }
      }
      /**
       * @dev Interface of the ERC165 standard, as defined in the
       * https://eips.ethereum.org/EIPS/eip-165[EIP].
       *
       * Implementers can declare support of contract interfaces, which can then be
       * queried by others ({ERC165Checker}).
       *
       * For an implementation, see {ERC165}.
       */
      interface IERC165 {
        /**
         * @dev Returns true if this contract implements the interface defined by
         * `interfaceId`. See the corresponding
         * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
         * to learn more about how these ids are created.
         *
         * This function call must use less than 30 000 gas.
         */
        function supportsInterface(bytes4 interfaceId) external view returns (bool);
      }
      /**
       * @dev Implementation of the {IERC165} interface.
       *
       * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
       * for the additional interface id that will be supported. For example:
       *
       * ```solidity
       * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
       *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
       * }
       * ```
       *
       * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
       */
      abstract contract ERC165 is IERC165 {
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId)
          public
          view
          virtual
          override
          returns (bool)
        {
          return interfaceId == type(IERC165).interfaceId;
        }
      }
      /**
       * @dev External interface of AccessControl declared to support ERC165 detection.
       */
      interface IAccessControl {
        function hasRole(bytes32 role, address account) external view returns (bool);
        function getRoleAdmin(bytes32 role) external view returns (bytes32);
        function grantRole(bytes32 role, address account) external;
        function revokeRole(bytes32 role, address account) external;
        function renounceRole(bytes32 role, address account) external;
      }
      /**
       * @dev Contract module that allows children to implement role-based access
       * control mechanisms. This is a lightweight version that doesn't allow enumerating role
       * members except through off-chain means by accessing the contract event logs. Some
       * applications may benefit from on-chain enumerability, for those cases see
       * {AccessControlEnumerable}.
       *
       * Roles are referred to by their `bytes32` identifier. These should be exposed
       * in the external API and be unique. The best way to achieve this is by
       * using `public constant` hash digests:
       *
       * ```
       * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
       * ```
       *
       * Roles can be used to represent a set of permissions. To restrict access to a
       * function call, use {hasRole}:
       *
       * ```
       * function foo() public {
       *     require(hasRole(MY_ROLE, msg.sender));
       *     ...
       * }
       * ```
       *
       * Roles can be granted and revoked dynamically via the {grantRole} and
       * {revokeRole} functions. Each role has an associated admin role, and only
       * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
       *
       * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
       * that only accounts with this role will be able to grant or revoke other
       * roles. More complex role relationships can be created by using
       * {_setRoleAdmin}.
       *
       * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
       * grant and revoke this role. Extra precautions should be taken to secure
       * accounts that have been granted it.
       */
      abstract contract AccessControl is Context, IAccessControl, ERC165 {
        struct RoleData {
          mapping(address => bool) members;
          bytes32 adminRole;
        }
        mapping(bytes32 => RoleData) private _roles;
        bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
        /**
         * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
         *
         * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
         * {RoleAdminChanged} not being emitted signaling this.
         *
         * _Available since v3.1._
         */
        event RoleAdminChanged(
          bytes32 indexed role,
          bytes32 indexed previousAdminRole,
          bytes32 indexed newAdminRole
        );
        /**
         * @dev Emitted when `account` is granted `role`.
         *
         * `sender` is the account that originated the contract call, an admin role
         * bearer except when using {_setupRole}.
         */
        event RoleGranted(
          bytes32 indexed role,
          address indexed account,
          address indexed sender
        );
        /**
         * @dev Emitted when `account` is revoked `role`.
         *
         * `sender` is the account that originated the contract call:
         *   - if using `revokeRole`, it is the admin role bearer
         *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
         */
        event RoleRevoked(
          bytes32 indexed role,
          address indexed account,
          address indexed sender
        );
        /**
         * @dev See {IERC165-supportsInterface}.
         */
        function supportsInterface(bytes4 interfaceId)
          public
          view
          virtual
          override
          returns (bool)
        {
          return
            interfaceId == type(IAccessControl).interfaceId ||
            super.supportsInterface(interfaceId);
        }
        /**
         * @dev Returns `true` if `account` has been granted `role`.
         */
        function hasRole(bytes32 role, address account)
          public
          view
          override
          returns (bool)
        {
          return _roles[role].members[account];
        }
        /**
         * @dev Returns the admin role that controls `role`. See {grantRole} and
         * {revokeRole}.
         *
         * To change a role's admin, use {_setRoleAdmin}.
         */
        function getRoleAdmin(bytes32 role) public view override returns (bytes32) {
          return _roles[role].adminRole;
        }
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function grantRole(bytes32 role, address account) public virtual override {
          require(
            hasRole(getRoleAdmin(role), _msgSender()),
            "AccessControl: sender must be an admin to grant"
          );
          _grantRole(role, account);
        }
        /**
         * @dev Revokes `role` from `account`.
         *
         * If `account` had been granted `role`, emits a {RoleRevoked} event.
         *
         * Requirements:
         *
         * - the caller must have ``role``'s admin role.
         */
        function revokeRole(bytes32 role, address account) public virtual override {
          require(
            hasRole(getRoleAdmin(role), _msgSender()),
            "AccessControl: sender must be an admin to revoke"
          );
          _revokeRole(role, account);
        }
        /**
         * @dev Revokes `role` from the calling account.
         *
         * Roles are often managed via {grantRole} and {revokeRole}: this function's
         * purpose is to provide a mechanism for accounts to lose their privileges
         * if they are compromised (such as when a trusted device is misplaced).
         *
         * If the calling account had been granted `role`, emits a {RoleRevoked}
         * event.
         *
         * Requirements:
         *
         * - the caller must be `account`.
         */
        function renounceRole(bytes32 role, address account) public virtual override {
          require(
            account == _msgSender(),
            "AccessControl: can only renounce roles for self"
          );
          _revokeRole(role, account);
        }
        /**
         * @dev Grants `role` to `account`.
         *
         * If `account` had not been already granted `role`, emits a {RoleGranted}
         * event. Note that unlike {grantRole}, this function doesn't perform any
         * checks on the calling account.
         *
         * [WARNING]
         * ====
         * This function should only be called from the constructor when setting
         * up the initial roles for the system.
         *
         * Using this function in any other way is effectively circumventing the admin
         * system imposed by {AccessControl}.
         * ====
         */
        function _setupRole(bytes32 role, address account) internal virtual {
          _grantRole(role, account);
        }
        /**
         * @dev Sets `adminRole` as ``role``'s admin role.
         *
         * Emits a {RoleAdminChanged} event.
         */
        function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
          emit RoleAdminChanged(role, getRoleAdmin(role), adminRole);
          _roles[role].adminRole = adminRole;
        }
        function _grantRole(bytes32 role, address account) private {
          if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
          }
        }
        function _revokeRole(bytes32 role, address account) private {
          if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
          }
        }
      }
      interface IOndo {
        enum InvestorType {CoinlistTranche1, CoinlistTranche2, SeedTranche}
        // ----------- State changing api -----------
        /// @notice Called by timelock contract to initialize locked balance of coinlist/seed investor
        function updateTrancheBalance(
          address beneficiary,
          uint256 rawAmount,
          InvestorType tranche
        ) external;
        // ----------- Getters -----------
        /// @notice Gets the TOTAL amount of Ondo available for an address
        function getFreedBalance(address account) external view returns (uint96);
        /// @notice Gets the initial locked balance and unlocked Ondo for an address
        function getVestedBalance(address account)
          external
          view
          returns (uint96, uint96);
      }
      abstract contract LinearTimelock {
        struct InvestorParam {
          IOndo.InvestorType investorType;
          uint96 initialBalance;
        }
        /// @notice the timestamp at which releasing is allowed
        uint256 public cliffTimestamp;
        /// @notice the linear vesting period for the first tranche
        uint256 public immutable tranche1VestingPeriod;
        /// @notice the linear vesting period for the second tranche
        uint256 public immutable tranche2VestingPeriod;
        /// @notice the linear vesting period for the Seed/Series A Tranche
        uint256 public immutable seedVestingPeriod;
        /// @dev mapping of balances for each investor
        mapping(address => InvestorParam) internal investorBalances;
        /// @notice role that allows updating of tranche balances - granted to Merkle airdrop contract
        bytes32 public constant TIMELOCK_UPDATE_ROLE =
          keccak256("TIMELOCK_UPDATE_ROLE");
        constructor(
          uint256 _cliffTimestamp,
          uint256 _tranche1VestingPeriod,
          uint256 _tranche2VestingPeriod,
          uint256 _seedVestingPeriod
        ) {
          cliffTimestamp = _cliffTimestamp;
          tranche1VestingPeriod = _tranche1VestingPeriod;
          tranche2VestingPeriod = _tranche2VestingPeriod;
          seedVestingPeriod = _seedVestingPeriod;
        }
        function passedCliff() public view returns (bool) {
          return block.timestamp > cliffTimestamp;
        }
        /// @dev the seedVestingPeriod is the longest vesting period
        function passedAllVestingPeriods() public view returns (bool) {
          return block.timestamp > cliffTimestamp + seedVestingPeriod;
        }
        /**
          @notice View function to get the user's initial balance and current amount of freed balance
         */
        function getVestedBalance(address account)
          external
          view
          returns (uint256, uint256)
        {
          if (investorBalances[account].initialBalance == 0) {
            return (0, 0);
          }
          InvestorParam memory investorParam = investorBalances[account];
          uint96 amountAvailable;
          if (passedAllVestingPeriods()) {
            amountAvailable = investorParam.initialBalance;
          } else if (passedCliff()) {
            (uint256 vestingPeriod, uint256 elapsed) =
              _getTrancheInfo(investorParam.investorType);
            amountAvailable = _proportionAvailable(
              elapsed,
              vestingPeriod,
              investorParam
            );
          } else {
            amountAvailable = 0;
          }
          return (investorParam.initialBalance, amountAvailable);
        }
        function _getTrancheInfo(IOndo.InvestorType investorType)
          internal
          view
          returns (uint256 vestingPeriod, uint256 elapsed)
        {
          elapsed = block.timestamp - cliffTimestamp;
          if (investorType == IOndo.InvestorType.CoinlistTranche1) {
            elapsed = elapsed > tranche1VestingPeriod
              ? tranche1VestingPeriod
              : elapsed;
            vestingPeriod = tranche1VestingPeriod;
          } else if (investorType == IOndo.InvestorType.CoinlistTranche2) {
            elapsed = elapsed > tranche2VestingPeriod
              ? tranche2VestingPeriod
              : elapsed;
            vestingPeriod = tranche2VestingPeriod;
          } else if (investorType == IOndo.InvestorType.SeedTranche) {
            elapsed = elapsed > seedVestingPeriod ? seedVestingPeriod : elapsed;
            vestingPeriod = seedVestingPeriod;
          }
        }
        function _proportionAvailable(
          uint256 elapsed,
          uint256 vestingPeriod,
          InvestorParam memory investorParam
        ) internal pure returns (uint96) {
          if (investorParam.investorType == IOndo.InvestorType.SeedTranche) {
            // Seed/Series A Tranche Balance = proportionAvail*2/3 + x/3, where x = Balance. This allows 1/3 of the series A balance to be unlocked at cliff
            uint96 vestedAmount =
              safe96(
                (((investorParam.initialBalance * elapsed) / vestingPeriod) * 2) / 3,
                "Ondo::_proportionAvailable: amount exceeds 96 bits"
              );
            return
              add96(
                vestedAmount,
                investorParam.initialBalance / 3,
                "Ondo::_proportionAvailable: overflow"
              );
          } else {
            return
              safe96(
                (investorParam.initialBalance * elapsed) / vestingPeriod,
                "Ondo::_proportionAvailable: amount exceeds 96 bits"
              );
          }
        }
        function safe32(uint256 n, string memory errorMessage)
          internal
          pure
          returns (uint32)
        {
          require(n < 2**32, errorMessage);
          return uint32(n);
        }
        function safe96(uint256 n, string memory errorMessage)
          internal
          pure
          returns (uint96)
        {
          require(n < 2**96, errorMessage);
          return uint96(n);
        }
        function add96(
          uint96 a,
          uint96 b,
          string memory errorMessage
        ) internal pure returns (uint96) {
          uint96 c = a + b;
          require(c >= a, errorMessage);
          return c;
        }
        function sub96(
          uint96 a,
          uint96 b,
          string memory errorMessage
        ) internal pure returns (uint96) {
          require(b <= a, errorMessage);
          return a - b;
        }
      }
      contract Ondo is AccessControl, LinearTimelock {
        /// @notice EIP-20 token name for this token
        string public constant name = "Ondo";
        /// @notice EIP-20 token symbol for this token
        string public constant symbol = "ONDO";
        /// @notice EIP-20 token decimals for this token
        uint8 public constant decimals = 18;
        // whether token transfers are allowed
        bool public transferAllowed; // false by default
        /// @notice Total number of tokens in circulation
        uint256 public totalSupply = 10_000_000_000e18; // 10 billion Ondo
        // Allowance amounts on behalf of others
        mapping(address => mapping(address => uint96)) internal allowances;
        // Official record of token balances for each account
        mapping(address => uint96) internal balances;
        /// @notice A record of each accounts delegate
        mapping(address => address) public delegates;
        /// @notice A checkpoint for marking number of votes from a given block
        struct Checkpoint {
          uint32 fromBlock;
          uint96 votes;
        }
        /// @notice A record of votes checkpoints for each account, by index
        mapping(address => mapping(uint32 => Checkpoint)) public checkpoints;
        /// @notice The number of checkpoints for each account
        mapping(address => uint32) public numCheckpoints;
        /// @notice The EIP-712 typehash for the contract's domain
        bytes32 public constant DOMAIN_TYPEHASH =
          keccak256(
            "EIP712Domain(string name,uint256 chainId,address verifyingContract)"
          );
        /// @notice The EIP-712 typehash for the delegation struct used by the contract
        bytes32 public constant DELEGATION_TYPEHASH =
          keccak256("Delegation(address delegatee,uint256 nonce,uint256 expiry)");
        /// @notice The identifier of the role which allows special transfer privileges.
        bytes32 public constant TRANSFER_ROLE = keccak256("TRANSFER_ROLE");
        bytes32 public constant MINTER_ROLE = keccak256("MINTER_ROLE");
        /// @notice A record of states for signing / validating signatures
        mapping(address => uint256) public nonces;
        /// @notice An event thats emitted when an account changes its delegate
        event DelegateChanged(
          address indexed delegator,
          address indexed fromDelegate,
          address indexed toDelegate
        );
        /// @notice An event thats emitted when a delegate account's vote balance changes
        event DelegateVotesChanged(
          address indexed delegate,
          uint256 previousBalance,
          uint256 newBalance
        );
        /// @notice The standard EIP-20 transfer event
        event Transfer(address indexed from, address indexed to, uint256 amount);
        /// @notice The standard EIP-20 approval event
        event Approval(
          address indexed owner,
          address indexed spender,
          uint256 amount
        );
        event CliffTimestampUpdate(uint256 newTimestamp);
        /**
         * @dev Emitted when the transfer is enabled triggered by `account`.
         */
        event TransferEnabled(address account);
        /// @notice a modifier which checks if transfers are allowed
        modifier whenTransferAllowed() {
          require(
            transferAllowed || hasRole(TRANSFER_ROLE, msg.sender),
            "OndoToken: Transfers not allowed or not right privillege"
          );
          _;
        }
        /**
         * @notice Construct a new Ondo token
         * @param _governance The initial account to grant owner permission and all the tokens
         */
        constructor(
          address _governance,
          uint256 _cliffTimestamp,
          uint256 _tranche1VestingPeriod,
          uint256 _tranche2VestingPeriod,
          uint256 _seedVestingPeriod
        )
          LinearTimelock(
            _cliffTimestamp,
            _tranche1VestingPeriod,
            _tranche2VestingPeriod,
            _seedVestingPeriod
          )
        {
          balances[_governance] = uint96(totalSupply);
          _setupRole(DEFAULT_ADMIN_ROLE, _governance);
          _setupRole(TRANSFER_ROLE, _governance);
          _setupRole(MINTER_ROLE, _governance);
          emit Transfer(address(0), _governance, totalSupply);
        }
        /**
         * @notice Get the number of tokens `spender` is approved to spend on behalf of `account`
         * @param account The address of the account holding the funds
         * @param spender The address of the account spending the funds
         * @return The number of tokens approved
         */
        function allowance(address account, address spender)
          external
          view
          returns (uint256)
        {
          return allowances[account][spender];
        }
        /**
         * @notice Approve `spender` to transfer up to `amount` from `src`
         * @dev This will overwrite the approval amount for `spender`
         *  and is subject to issues noted [here](https://eips.ethereum.org/EIPS/eip-20#approve)
         * @param spender The address of the account which may transfer tokens
         * @param rawAmount The number of tokens that are approved (2^256-1 means infinite)
         * @return Whether or not the approval succeeded
         */
        function approve(address spender, uint256 rawAmount) external returns (bool) {
          uint96 amount;
          if (rawAmount == type(uint256).max) {
            amount = type(uint96).max;
          } else {
            amount = safe96(rawAmount, "Ondo::approve: amount exceeds 96 bits");
          }
          allowances[msg.sender][spender] = amount;
          emit Approval(msg.sender, spender, amount);
          return true;
        }
        /**
         * @notice Get the number of tokens held by the `account`
         * @param account The address of the account to get the balance of
         * @return The number of tokens held
         */
        function balanceOf(address account) external view returns (uint256) {
          return balances[account];
        }
        /**
         * @notice Get the total number of UNLOCKED tokens held by the `account`
         * @param account The address of the account to get the unlocked balance of
         * @return The number of unlocked tokens held.
         */
        function getFreedBalance(address account) external view returns (uint256) {
          if (investorBalances[account].initialBalance > 0) {
            return _getFreedBalance(account);
          } else {
            return balances[account];
          }
        }
        /**
         * @notice Transfer `amount` tokens from `msg.sender` to `dst`
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transfer(address dst, uint256 rawAmount) external returns (bool) {
          uint96 amount = safe96(rawAmount, "Ondo::transfer: amount exceeds 96 bits");
          _transferTokens(msg.sender, dst, amount);
          return true;
        }
        /**
         * @notice Transfer `amount` tokens from `src` to `dst`
         * @param src The address of the source account
         * @param dst The address of the destination account
         * @param rawAmount The number of tokens to transfer
         * @return Whether or not the transfer succeeded
         */
        function transferFrom(
          address src,
          address dst,
          uint256 rawAmount
        ) external returns (bool) {
          address spender = msg.sender;
          uint96 spenderAllowance = allowances[src][spender];
          uint96 amount = safe96(rawAmount, "Ondo::approve: amount exceeds 96 bits");
          if (spender != src && spenderAllowance != type(uint96).max) {
            uint96 newAllowance =
              sub96(
                spenderAllowance,
                amount,
                "Ondo::transferFrom: transfer amount exceeds spender allowance"
              );
            allowances[src][spender] = newAllowance;
            emit Approval(src, spender, newAllowance);
          }
          _transferTokens(src, dst, amount);
          return true;
        }
        /**
         * @notice Delegate votes from `msg.sender` to `delegatee`
         * @param delegatee The address to delegate votes to
         */
        function delegate(address delegatee) public {
          return _delegate(msg.sender, delegatee);
        }
        /**
         * @notice Delegates votes from signatory to `delegatee`
         * @param delegatee The address to delegate votes to
         * @param nonce The contract state required to match the signature
         * @param expiry The time at which to expire the signature
         * @param v The recovery byte of the signature
         * @param r Half of the ECDSA signature pair
         * @param s Half of the ECDSA signature pair
         */
        function delegateBySig(
          address delegatee,
          uint256 nonce,
          uint256 expiry,
          uint8 v,
          bytes32 r,
          bytes32 s
        ) public {
          bytes32 domainSeparator =
            keccak256(
              abi.encode(
                DOMAIN_TYPEHASH,
                keccak256(bytes(name)),
                getChainId(),
                address(this)
              )
            );
          bytes32 structHash =
            keccak256(abi.encode(DELEGATION_TYPEHASH, delegatee, nonce, expiry));
          bytes32 digest =
            keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
          address signatory = ecrecover(digest, v, r, s);
          require(signatory != address(0), "Ondo::delegateBySig: invalid signature");
          require(nonce == nonces[signatory]++, "Ondo::delegateBySig: invalid nonce");
          require(
            block.timestamp <= expiry,
            "Ondo::delegateBySig: signature expired"
          );
          return _delegate(signatory, delegatee);
        }
        /**
         * @notice Gets the current votes balance for `account`
         * @param account The address to get votes balance
         * @return The number of current votes for `account`
         */
        function getCurrentVotes(address account) external view returns (uint96) {
          uint32 nCheckpoints = numCheckpoints[account];
          return nCheckpoints > 0 ? checkpoints[account][nCheckpoints - 1].votes : 0;
        }
        /**
         * @notice Determine the prior number of votes for an account as of a block number
         * @dev Block number must be a finalized block or else this function will revert to prevent misinformation.
         * @param account The address of the account to check
         * @param blockNumber The block number to get the vote balance at
         * @return The number of votes the account had as of the given block
         */
        function getPriorVotes(address account, uint256 blockNumber)
          public
          view
          returns (uint96)
        {
          require(
            blockNumber < block.number,
            "Ondo::getPriorVotes: not yet determined"
          );
          uint32 nCheckpoints = numCheckpoints[account];
          if (nCheckpoints == 0) {
            return 0;
          }
          // First check most recent balance
          if (checkpoints[account][nCheckpoints - 1].fromBlock <= blockNumber) {
            return checkpoints[account][nCheckpoints - 1].votes;
          }
          // Next check implicit zero balance
          if (checkpoints[account][0].fromBlock > blockNumber) {
            return 0;
          }
          uint32 lower = 0;
          uint32 upper = nCheckpoints - 1;
          while (upper > lower) {
            uint32 center = upper - (upper - lower) / 2; // ceil, avoiding overflow
            Checkpoint memory cp = checkpoints[account][center];
            if (cp.fromBlock == blockNumber) {
              return cp.votes;
            } else if (cp.fromBlock < blockNumber) {
              lower = center;
            } else {
              upper = center - 1;
            }
          }
          return checkpoints[account][lower].votes;
        }
        /**
         * @notice Create `rawAmount` new tokens and assign them to `account`.
         * @param account The address to give newly minted tokens to
         * @param rawAmount Number of new tokens to mint.
         * @dev Even though total token supply is uint96, we use uint256 for the amount for consistency with other external interfaces.
         */
        function mint(address account, uint256 rawAmount) external {
          require(hasRole(MINTER_ROLE, msg.sender), "Ondo::mint: not authorized");
          require(account != address(0), "cannot mint to the zero address");
          uint96 amount = safe96(rawAmount, "Ondo::mint: amount exceeds 96 bits");
          uint96 supply =
            safe96(totalSupply, "Ondo::mint: totalSupply exceeds 96 bits");
          totalSupply = add96(supply, amount, "Ondo::mint: token supply overflow");
          balances[account] = add96(
            balances[account],
            amount,
            "Ondo::mint: balance overflow"
          );
          emit Transfer(address(0), account, amount);
        }
        function _delegate(address delegator, address delegatee) internal {
          address currentDelegate = delegates[delegator];
          uint96 delegatorBalance = balances[delegator];
          delegates[delegator] = delegatee;
          emit DelegateChanged(delegator, currentDelegate, delegatee);
          _moveDelegates(currentDelegate, delegatee, delegatorBalance);
        }
        function _transferTokens(
          address src,
          address dst,
          uint96 amount
        ) internal whenTransferAllowed {
          require(
            src != address(0),
            "Ondo::_transferTokens: cannot transfer from the zero address"
          );
          require(
            dst != address(0),
            "Ondo::_transferTokens: cannot transfer to the zero address"
          );
          if (investorBalances[src].initialBalance > 0) {
            require(
              amount <= _getFreedBalance(src),
              "Ondo::_transferTokens: not enough unlocked balance"
            );
          }
          balances[src] = sub96(
            balances[src],
            amount,
            "Ondo::_transferTokens: transfer amount exceeds balance"
          );
          balances[dst] = add96(
            balances[dst],
            amount,
            "Ondo::_transferTokens: transfer amount overflows"
          );
          emit Transfer(src, dst, amount);
          _moveDelegates(delegates[src], delegates[dst], amount);
        }
        function _moveDelegates(
          address srcRep,
          address dstRep,
          uint96 amount
        ) internal {
          if (srcRep != dstRep && amount > 0) {
            if (srcRep != address(0)) {
              uint32 srcRepNum = numCheckpoints[srcRep];
              uint96 srcRepOld =
                srcRepNum > 0 ? checkpoints[srcRep][srcRepNum - 1].votes : 0;
              uint96 srcRepNew =
                sub96(srcRepOld, amount, "Ondo::_moveVotes: vote amount underflows");
              _writeCheckpoint(srcRep, srcRepNum, srcRepOld, srcRepNew);
            }
            if (dstRep != address(0)) {
              uint32 dstRepNum = numCheckpoints[dstRep];
              uint96 dstRepOld =
                dstRepNum > 0 ? checkpoints[dstRep][dstRepNum - 1].votes : 0;
              uint96 dstRepNew =
                add96(dstRepOld, amount, "Ondo::_moveVotes: vote amount overflows");
              _writeCheckpoint(dstRep, dstRepNum, dstRepOld, dstRepNew);
            }
          }
        }
        function _writeCheckpoint(
          address delegatee,
          uint32 nCheckpoints,
          uint96 oldVotes,
          uint96 newVotes
        ) internal {
          uint32 blockNumber =
            safe32(
              block.number,
              "Ondo::_writeCheckpoint: block number exceeds 32 bits"
            );
          if (
            nCheckpoints > 0 &&
            checkpoints[delegatee][nCheckpoints - 1].fromBlock == blockNumber
          ) {
            checkpoints[delegatee][nCheckpoints - 1].votes = newVotes;
          } else {
            checkpoints[delegatee][nCheckpoints] = Checkpoint(blockNumber, newVotes);
            numCheckpoints[delegatee] = nCheckpoints + 1;
          }
          emit DelegateVotesChanged(delegatee, oldVotes, newVotes);
        }
        function getChainId() internal view returns (uint256) {
          uint256 chainId;
          assembly {
            chainId := chainid()
          }
          return chainId;
        }
        /**
         * @notice Turn on _transferAllowed variable. Transfers are enabled
         */
        function enableTransfer() external {
          require(
            hasRole(DEFAULT_ADMIN_ROLE, msg.sender),
            "Ondo::enableTransfer: not authorized"
          );
          transferAllowed = true;
          emit TransferEnabled(msg.sender);
        }
        /**
         * @notice Called by merkle airdrop contract to initialize locked balances
         */
        function updateTrancheBalance(
          address beneficiary,
          uint256 rawAmount,
          IOndo.InvestorType investorType
        ) external {
          require(hasRole(TIMELOCK_UPDATE_ROLE, msg.sender));
          require(rawAmount > 0, "Ondo::updateTrancheBalance: amount must be > 0");
          require(
            investorBalances[beneficiary].initialBalance == 0,
            "Ondo::updateTrancheBalance: already has timelocked Ondo"
          ); //Prevents users from being in more than 1 tranche
          uint96 amount =
            safe96(rawAmount, "Ondo::updateTrancheBalance: amount exceeds 96 bits");
          investorBalances[beneficiary] = InvestorParam(investorType, amount);
        }
        /**
         * @notice Internal function the amount of unlocked Ondo for an account that participated in Coinlist/Seed Investments
         */
        function _getFreedBalance(address account) internal view returns (uint96) {
          if (passedAllVestingPeriods()) {
            //all vesting periods are over, just return the total balance
            return balances[account];
          } else {
            InvestorParam memory investorParam = investorBalances[account];
            if (passedCliff()) {
              //we are in between the cliff timestamp and last vesting period
              (uint256 vestingPeriod, uint256 elapsed) =
                _getTrancheInfo(investorParam.investorType);
              uint96 lockedBalance =
                sub96(
                  investorParam.initialBalance,
                  _proportionAvailable(elapsed, vestingPeriod, investorParam),
                  "Ondo::getFreedBalance: locked balance underflow"
                );
              return
                sub96(
                  balances[account],
                  lockedBalance,
                  "Ondo::getFreedBalance: total freed balance underflow"
                );
            } else {
              //we have not hit the cliff yet, all investor balance is locked
              return
                sub96(
                  balances[account],
                  investorParam.initialBalance,
                  "Ondo::getFreedBalance: balance underflow"
                );
            }
          }
        }
        function updateCliffTimestamp(uint256 newTimestamp) external {
          require(
            hasRole(DEFAULT_ADMIN_ROLE, msg.sender),
            "Ondo::updateCliffTimestamp: not authorized"
          );
          cliffTimestamp = newTimestamp;
          emit CliffTimestampUpdate(newTimestamp);
        }
      }
      

      File 3 of 5: GamerCoin
      // SPDX-License-Identifier: UNLICENSED
      pragma solidity 0.7.1;
      import "@openzeppelin/contracts/token/ERC20/ERC20Burnable.sol";
      contract GamerCoin is ERC20Burnable {
          constructor(uint256 initialBalance) ERC20("GamerCoin", "GHX") {
              _mint(msg.sender, initialBalance);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.7.0;
      import "../../GSN/Context.sol";
      import "./ERC20.sol";
      /**
       * @dev Extension of {ERC20} that allows token holders to destroy both their own
       * tokens and those that they have an allowance for, in a way that can be
       * recognized off-chain (via event analysis).
       */
      abstract contract ERC20Burnable is Context, ERC20 {
          using SafeMath for uint256;
          /**
           * @dev Destroys `amount` tokens from the caller.
           *
           * See {ERC20-_burn}.
           */
          function burn(uint256 amount) public virtual {
              _burn(_msgSender(), amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, deducting from the caller's
           * allowance.
           *
           * See {ERC20-_burn} and {ERC20-allowance}.
           *
           * Requirements:
           *
           * - the caller must have allowance for ``accounts``'s tokens of at least
           * `amount`.
           */
          function burnFrom(address account, uint256 amount) public virtual {
              uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");
              _approve(account, _msgSender(), decreasedAllowance);
              _burn(account, amount);
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.7.0;
      /*
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with GSN meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address payable) {
              return msg.sender;
          }
          function _msgData() internal view virtual returns (bytes memory) {
              this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
              return msg.data;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.7.0;
      import "../../GSN/Context.sol";
      import "./IERC20.sol";
      import "../../math/SafeMath.sol";
      import "../../utils/Address.sol";
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin guidelines: functions revert instead
       * of returning `false` on failure. This behavior is nonetheless conventional
       * and does not conflict with the expectations of ERC20 applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20 {
          using SafeMath for uint256;
          using Address for address;
          mapping (address => uint256) private _balances;
          mapping (address => mapping (address => uint256)) private _allowances;
          uint256 private _totalSupply;
          string private _name;
          string private _symbol;
          uint8 private _decimals;
          /**
           * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
           * a default value of 18.
           *
           * To select a different value for {decimals}, use {_setupDecimals}.
           *
           * All three of these values are immutable: they can only be set once during
           * construction.
           */
          constructor (string memory name, string memory symbol) {
              _name = name;
              _symbol = symbol;
              _decimals = 18;
          }
          /**
           * @dev Returns the name of the token.
           */
          function name() public view returns (string memory) {
              return _name;
          }
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view returns (string memory) {
              return _symbol;
          }
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5,05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
           * called.
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view returns (uint8) {
              return _decimals;
          }
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view override returns (uint256) {
              return _totalSupply;
          }
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view override returns (uint256) {
              return _balances[account];
          }
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `recipient` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
              _transfer(_msgSender(), recipient, amount);
              return true;
          }
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
          /**
           * @dev See {IERC20-approve}.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              _approve(_msgSender(), spender, amount);
              return true;
          }
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20};
           *
           * Requirements:
           * - `sender` and `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           * - the caller must have allowance for ``sender``'s tokens of at least
           * `amount`.
           */
          function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
              _transfer(sender, recipient, amount);
              _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
              return true;
          }
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
              return true;
          }
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
              return true;
          }
          /**
           * @dev Moves tokens `amount` from `sender` to `recipient`.
           *
           * This is internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `sender` cannot be the zero address.
           * - `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           */
          function _transfer(address sender, address recipient, uint256 amount) internal virtual {
              require(sender != address(0), "ERC20: transfer from the zero address");
              require(recipient != address(0), "ERC20: transfer to the zero address");
              _beforeTokenTransfer(sender, recipient, amount);
              _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
              _balances[recipient] = _balances[recipient].add(amount);
              emit Transfer(sender, recipient, amount);
          }
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements
           *
           * - `to` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
              _beforeTokenTransfer(address(0), account, amount);
              _totalSupply = _totalSupply.add(amount);
              _balances[account] = _balances[account].add(amount);
              emit Transfer(address(0), account, amount);
          }
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
              _beforeTokenTransfer(account, address(0), amount);
              _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
              _totalSupply = _totalSupply.sub(amount);
              emit Transfer(account, address(0), amount);
          }
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(address owner, address spender, uint256 amount) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
          /**
           * @dev Sets {decimals} to a value other than the default one of 18.
           *
           * WARNING: This function should only be called from the constructor. Most
           * applications that interact with token contracts will not expect
           * {decimals} to ever change, and may work incorrectly if it does.
           */
          function _setupDecimals(uint8 decimals_) internal {
              _decimals = decimals_;
          }
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be to transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.7.0;
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
          /**
           * @dev Moves `amount` tokens from the caller's account to `recipient`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address recipient, uint256 amount) external returns (bool);
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
          /**
           * @dev Moves `amount` tokens from `sender` to `recipient` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.7.0;
      /**
       * @dev Wrappers over Solidity's arithmetic operations with added overflow
       * checks.
       *
       * Arithmetic operations in Solidity wrap on overflow. This can easily result
       * in bugs, because programmers usually assume that an overflow raises an
       * error, which is the standard behavior in high level programming languages.
       * `SafeMath` restores this intuition by reverting the transaction when an
       * operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeMath {
          /**
           * @dev Returns the addition of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `+` operator.
           *
           * Requirements:
           *
           * - Addition cannot overflow.
           */
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 c = a + b;
              require(c >= a, "SafeMath: addition overflow");
              return c;
          }
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           *
           * - Subtraction cannot overflow.
           */
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              return sub(a, b, "SafeMath: subtraction overflow");
          }
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           *
           * - Subtraction cannot overflow.
           */
          function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b <= a, errorMessage);
              uint256 c = a - b;
              return c;
          }
          /**
           * @dev Returns the multiplication of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `*` operator.
           *
           * Requirements:
           *
           * - Multiplication cannot overflow.
           */
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
              // benefit is lost if 'b' is also tested.
              // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
              if (a == 0) {
                  return 0;
              }
              uint256 c = a * b;
              require(c / a == b, "SafeMath: multiplication overflow");
              return c;
          }
          /**
           * @dev Returns the integer division of two unsigned integers. Reverts on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function div(uint256 a, uint256 b) internal pure returns (uint256) {
              return div(a, b, "SafeMath: division by zero");
          }
          /**
           * @dev Returns the integer division of two unsigned integers. Reverts with custom message on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b > 0, errorMessage);
              uint256 c = a / b;
              // assert(a == b * c + a % b); // There is no case in which this doesn't hold
              return c;
          }
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * Reverts when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function mod(uint256 a, uint256 b) internal pure returns (uint256) {
              return mod(a, b, "SafeMath: modulo by zero");
          }
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * Reverts with custom message when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
              require(b != 0, errorMessage);
              return a % b;
          }
      }
      // SPDX-License-Identifier: MIT
      pragma solidity ^0.7.0;
      /**
       * @dev Collection of functions related to the address type
       */
      library Address {
          /**
           * @dev Returns true if `account` is a contract.
           *
           * [IMPORTANT]
           * ====
           * It is unsafe to assume that an address for which this function returns
           * false is an externally-owned account (EOA) and not a contract.
           *
           * Among others, `isContract` will return false for the following
           * types of addresses:
           *
           *  - an externally-owned account
           *  - a contract in construction
           *  - an address where a contract will be created
           *  - an address where a contract lived, but was destroyed
           * ====
           */
          function isContract(address account) internal view returns (bool) {
              // According to EIP-1052, 0x0 is the value returned for not-yet created accounts
              // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned
              // for accounts without code, i.e. `keccak256('')`
              bytes32 codehash;
              bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
              // solhint-disable-next-line no-inline-assembly
              assembly { codehash := extcodehash(account) }
              return (codehash != accountHash && codehash != 0x0);
          }
          /**
           * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
           * `recipient`, forwarding all available gas and reverting on errors.
           *
           * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
           * of certain opcodes, possibly making contracts go over the 2300 gas limit
           * imposed by `transfer`, making them unable to receive funds via
           * `transfer`. {sendValue} removes this limitation.
           *
           * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
           *
           * IMPORTANT: because control is transferred to `recipient`, care must be
           * taken to not create reentrancy vulnerabilities. Consider using
           * {ReentrancyGuard} or the
           * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
           */
          function sendValue(address payable recipient, uint256 amount) internal {
              require(address(this).balance >= amount, "Address: insufficient balance");
              // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
              (bool success, ) = recipient.call{ value: amount }("");
              require(success, "Address: unable to send value, recipient may have reverted");
          }
          /**
           * @dev Performs a Solidity function call using a low level `call`. A
           * plain`call` is an unsafe replacement for a function call: use this
           * function instead.
           *
           * If `target` reverts with a revert reason, it is bubbled up by this
           * function (like regular Solidity function calls).
           *
           * Returns the raw returned data. To convert to the expected return value,
           * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
           *
           * Requirements:
           *
           * - `target` must be a contract.
           * - calling `target` with `data` must not revert.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCall(target, data, "Address: low-level call failed");
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
           * `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
              return _functionCallWithValue(target, data, 0, errorMessage);
          }
          /**
           * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
           * but also transferring `value` wei to `target`.
           *
           * Requirements:
           *
           * - the calling contract must have an ETH balance of at least `value`.
           * - the called Solidity function must be `payable`.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
              return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
          }
          /**
           * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
           * with `errorMessage` as a fallback revert reason when `target` reverts.
           *
           * _Available since v3.1._
           */
          function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
              require(address(this).balance >= value, "Address: insufficient balance for call");
              return _functionCallWithValue(target, data, value, errorMessage);
          }
          function _functionCallWithValue(address target, bytes memory data, uint256 weiValue, string memory errorMessage) private returns (bytes memory) {
              require(isContract(target), "Address: call to non-contract");
              // solhint-disable-next-line avoid-low-level-calls
              (bool success, bytes memory returndata) = target.call{ value: weiValue }(data);
              if (success) {
                  return returndata;
              } else {
                  // Look for revert reason and bubble it up if present
                  if (returndata.length > 0) {
                      // The easiest way to bubble the revert reason is using memory via assembly
                      // solhint-disable-next-line no-inline-assembly
                      assembly {
                          let returndata_size := mload(returndata)
                          revert(add(32, returndata), returndata_size)
                      }
                  } else {
                      revert(errorMessage);
                  }
              }
          }
      }
      

      File 4 of 5: LithiumToken
      // SPDX-License-Identifier: MIT
      
      // File @openzeppelin/contracts/utils/[email protected]
      
      pragma solidity >=0.6.0 <0.8.0;
      
      /*
       * @dev Provides information about the current execution context, including the
       * sender of the transaction and its data. While these are generally available
       * via msg.sender and msg.data, they should not be accessed in such a direct
       * manner, since when dealing with GSN meta-transactions the account sending and
       * paying for execution may not be the actual sender (as far as an application
       * is concerned).
       *
       * This contract is only required for intermediate, library-like contracts.
       */
      abstract contract Context {
          function _msgSender() internal view virtual returns (address payable) {
              return msg.sender;
          }
      
          function _msgData() internal view virtual returns (bytes memory) {
              this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
              return msg.data;
          }
      }
      
      // File @openzeppelin/contracts/token/ERC20/[email protected]
      
      pragma solidity >=0.6.0 <0.8.0;
      
      /**
       * @dev Interface of the ERC20 standard as defined in the EIP.
       */
      interface IERC20 {
          /**
           * @dev Returns the amount of tokens in existence.
           */
          function totalSupply() external view returns (uint256);
      
          /**
           * @dev Returns the amount of tokens owned by `account`.
           */
          function balanceOf(address account) external view returns (uint256);
      
          /**
           * @dev Moves `amount` tokens from the caller's account to `recipient`.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transfer(address recipient, uint256 amount) external returns (bool);
      
          /**
           * @dev Returns the remaining number of tokens that `spender` will be
           * allowed to spend on behalf of `owner` through {transferFrom}. This is
           * zero by default.
           *
           * This value changes when {approve} or {transferFrom} are called.
           */
          function allowance(address owner, address spender) external view returns (uint256);
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * IMPORTANT: Beware that changing an allowance with this method brings the risk
           * that someone may use both the old and the new allowance by unfortunate
           * transaction ordering. One possible solution to mitigate this race
           * condition is to first reduce the spender's allowance to 0 and set the
           * desired value afterwards:
           * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
           *
           * Emits an {Approval} event.
           */
          function approve(address spender, uint256 amount) external returns (bool);
      
          /**
           * @dev Moves `amount` tokens from `sender` to `recipient` using the
           * allowance mechanism. `amount` is then deducted from the caller's
           * allowance.
           *
           * Returns a boolean value indicating whether the operation succeeded.
           *
           * Emits a {Transfer} event.
           */
          function transferFrom(
              address sender,
              address recipient,
              uint256 amount
          ) external returns (bool);
      
          /**
           * @dev Emitted when `value` tokens are moved from one account (`from`) to
           * another (`to`).
           *
           * Note that `value` may be zero.
           */
          event Transfer(address indexed from, address indexed to, uint256 value);
      
          /**
           * @dev Emitted when the allowance of a `spender` for an `owner` is set by
           * a call to {approve}. `value` is the new allowance.
           */
          event Approval(address indexed owner, address indexed spender, uint256 value);
      }
      
      // File @openzeppelin/contracts/math/[email protected]
      
      pragma solidity >=0.6.0 <0.8.0;
      
      /**
       * @dev Wrappers over Solidity's arithmetic operations with added overflow
       * checks.
       *
       * Arithmetic operations in Solidity wrap on overflow. This can easily result
       * in bugs, because programmers usually assume that an overflow raises an
       * error, which is the standard behavior in high level programming languages.
       * `SafeMath` restores this intuition by reverting the transaction when an
       * operation overflows.
       *
       * Using this library instead of the unchecked operations eliminates an entire
       * class of bugs, so it's recommended to use it always.
       */
      library SafeMath {
          /**
           * @dev Returns the addition of two unsigned integers, with an overflow flag.
           *
           * _Available since v3.4._
           */
          function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              uint256 c = a + b;
              if (c < a) return (false, 0);
              return (true, c);
          }
      
          /**
           * @dev Returns the substraction of two unsigned integers, with an overflow flag.
           *
           * _Available since v3.4._
           */
          function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              if (b > a) return (false, 0);
              return (true, a - b);
          }
      
          /**
           * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
           *
           * _Available since v3.4._
           */
          function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
              // benefit is lost if 'b' is also tested.
              // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
              if (a == 0) return (true, 0);
              uint256 c = a * b;
              if (c / a != b) return (false, 0);
              return (true, c);
          }
      
          /**
           * @dev Returns the division of two unsigned integers, with a division by zero flag.
           *
           * _Available since v3.4._
           */
          function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              if (b == 0) return (false, 0);
              return (true, a / b);
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
           *
           * _Available since v3.4._
           */
          function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
              if (b == 0) return (false, 0);
              return (true, a % b);
          }
      
          /**
           * @dev Returns the addition of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `+` operator.
           *
           * Requirements:
           *
           * - Addition cannot overflow.
           */
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 c = a + b;
              require(c >= a, "SafeMath: addition overflow");
              return c;
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting on
           * overflow (when the result is negative).
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           *
           * - Subtraction cannot overflow.
           */
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              require(b <= a, "SafeMath: subtraction overflow");
              return a - b;
          }
      
          /**
           * @dev Returns the multiplication of two unsigned integers, reverting on
           * overflow.
           *
           * Counterpart to Solidity's `*` operator.
           *
           * Requirements:
           *
           * - Multiplication cannot overflow.
           */
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              if (a == 0) return 0;
              uint256 c = a * b;
              require(c / a == b, "SafeMath: multiplication overflow");
              return c;
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers, reverting on
           * division by zero. The result is rounded towards zero.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function div(uint256 a, uint256 b) internal pure returns (uint256) {
              require(b > 0, "SafeMath: division by zero");
              return a / b;
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * reverting when dividing by zero.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function mod(uint256 a, uint256 b) internal pure returns (uint256) {
              require(b > 0, "SafeMath: modulo by zero");
              return a % b;
          }
      
          /**
           * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
           * overflow (when the result is negative).
           *
           * CAUTION: This function is deprecated because it requires allocating memory for the error
           * message unnecessarily. For custom revert reasons use {trySub}.
           *
           * Counterpart to Solidity's `-` operator.
           *
           * Requirements:
           *
           * - Subtraction cannot overflow.
           */
          function sub(
              uint256 a,
              uint256 b,
              string memory errorMessage
          ) internal pure returns (uint256) {
              require(b <= a, errorMessage);
              return a - b;
          }
      
          /**
           * @dev Returns the integer division of two unsigned integers, reverting with custom message on
           * division by zero. The result is rounded towards zero.
           *
           * CAUTION: This function is deprecated because it requires allocating memory for the error
           * message unnecessarily. For custom revert reasons use {tryDiv}.
           *
           * Counterpart to Solidity's `/` operator. Note: this function uses a
           * `revert` opcode (which leaves remaining gas untouched) while Solidity
           * uses an invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function div(
              uint256 a,
              uint256 b,
              string memory errorMessage
          ) internal pure returns (uint256) {
              require(b > 0, errorMessage);
              return a / b;
          }
      
          /**
           * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
           * reverting with custom message when dividing by zero.
           *
           * CAUTION: This function is deprecated because it requires allocating memory for the error
           * message unnecessarily. For custom revert reasons use {tryMod}.
           *
           * Counterpart to Solidity's `%` operator. This function uses a `revert`
           * opcode (which leaves remaining gas untouched) while Solidity uses an
           * invalid opcode to revert (consuming all remaining gas).
           *
           * Requirements:
           *
           * - The divisor cannot be zero.
           */
          function mod(
              uint256 a,
              uint256 b,
              string memory errorMessage
          ) internal pure returns (uint256) {
              require(b > 0, errorMessage);
              return a % b;
          }
      }
      
      // File @openzeppelin/contracts/token/ERC20/[email protected]
      
      pragma solidity >=0.6.0 <0.8.0;
      
      /**
       * @dev Implementation of the {IERC20} interface.
       *
       * This implementation is agnostic to the way tokens are created. This means
       * that a supply mechanism has to be added in a derived contract using {_mint}.
       * For a generic mechanism see {ERC20PresetMinterPauser}.
       *
       * TIP: For a detailed writeup see our guide
       * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
       * to implement supply mechanisms].
       *
       * We have followed general OpenZeppelin guidelines: functions revert instead
       * of returning `false` on failure. This behavior is nonetheless conventional
       * and does not conflict with the expectations of ERC20 applications.
       *
       * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
       * This allows applications to reconstruct the allowance for all accounts just
       * by listening to said events. Other implementations of the EIP may not emit
       * these events, as it isn't required by the specification.
       *
       * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
       * functions have been added to mitigate the well-known issues around setting
       * allowances. See {IERC20-approve}.
       */
      contract ERC20 is Context, IERC20 {
          using SafeMath for uint256;
      
          mapping(address => uint256) private _balances;
      
          mapping(address => mapping(address => uint256)) private _allowances;
      
          uint256 private _totalSupply;
      
          string private _name;
          string private _symbol;
          uint8 private _decimals;
      
          /**
           * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
           * a default value of 18.
           *
           * To select a different value for {decimals}, use {_setupDecimals}.
           *
           * All three of these values are immutable: they can only be set once during
           * construction.
           */
          constructor(string memory name_, string memory symbol_) public {
              _name = name_;
              _symbol = symbol_;
              _decimals = 18;
          }
      
          /**
           * @dev Returns the name of the token.
           */
          function name() public view virtual returns (string memory) {
              return _name;
          }
      
          /**
           * @dev Returns the symbol of the token, usually a shorter version of the
           * name.
           */
          function symbol() public view virtual returns (string memory) {
              return _symbol;
          }
      
          /**
           * @dev Returns the number of decimals used to get its user representation.
           * For example, if `decimals` equals `2`, a balance of `505` tokens should
           * be displayed to a user as `5,05` (`505 / 10 ** 2`).
           *
           * Tokens usually opt for a value of 18, imitating the relationship between
           * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
           * called.
           *
           * NOTE: This information is only used for _display_ purposes: it in
           * no way affects any of the arithmetic of the contract, including
           * {IERC20-balanceOf} and {IERC20-transfer}.
           */
          function decimals() public view virtual returns (uint8) {
              return _decimals;
          }
      
          /**
           * @dev See {IERC20-totalSupply}.
           */
          function totalSupply() public view virtual override returns (uint256) {
              return _totalSupply;
          }
      
          /**
           * @dev See {IERC20-balanceOf}.
           */
          function balanceOf(address account) public view virtual override returns (uint256) {
              return _balances[account];
          }
      
          /**
           * @dev See {IERC20-transfer}.
           *
           * Requirements:
           *
           * - `recipient` cannot be the zero address.
           * - the caller must have a balance of at least `amount`.
           */
          function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
              _transfer(_msgSender(), recipient, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-allowance}.
           */
          function allowance(address owner, address spender) public view virtual override returns (uint256) {
              return _allowances[owner][spender];
          }
      
          /**
           * @dev See {IERC20-approve}.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function approve(address spender, uint256 amount) public virtual override returns (bool) {
              _approve(_msgSender(), spender, amount);
              return true;
          }
      
          /**
           * @dev See {IERC20-transferFrom}.
           *
           * Emits an {Approval} event indicating the updated allowance. This is not
           * required by the EIP. See the note at the beginning of {ERC20}.
           *
           * Requirements:
           *
           * - `sender` and `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           * - the caller must have allowance for ``sender``'s tokens of at least
           * `amount`.
           */
          function transferFrom(
              address sender,
              address recipient,
              uint256 amount
          ) public virtual override returns (bool) {
              _transfer(sender, recipient, amount);
              _approve(
                  sender,
                  _msgSender(),
                  _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")
              );
              return true;
          }
      
          /**
           * @dev Atomically increases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           */
          function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
              _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
              return true;
          }
      
          /**
           * @dev Atomically decreases the allowance granted to `spender` by the caller.
           *
           * This is an alternative to {approve} that can be used as a mitigation for
           * problems described in {IERC20-approve}.
           *
           * Emits an {Approval} event indicating the updated allowance.
           *
           * Requirements:
           *
           * - `spender` cannot be the zero address.
           * - `spender` must have allowance for the caller of at least
           * `subtractedValue`.
           */
          function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
              _approve(
                  _msgSender(),
                  spender,
                  _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")
              );
              return true;
          }
      
          /**
           * @dev Moves tokens `amount` from `sender` to `recipient`.
           *
           * This is internal function is equivalent to {transfer}, and can be used to
           * e.g. implement automatic token fees, slashing mechanisms, etc.
           *
           * Emits a {Transfer} event.
           *
           * Requirements:
           *
           * - `sender` cannot be the zero address.
           * - `recipient` cannot be the zero address.
           * - `sender` must have a balance of at least `amount`.
           */
          function _transfer(
              address sender,
              address recipient,
              uint256 amount
          ) internal virtual {
              require(sender != address(0), "ERC20: transfer from the zero address");
              require(recipient != address(0), "ERC20: transfer to the zero address");
      
              _beforeTokenTransfer(sender, recipient, amount);
      
              _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
              _balances[recipient] = _balances[recipient].add(amount);
              emit Transfer(sender, recipient, amount);
          }
      
          /** @dev Creates `amount` tokens and assigns them to `account`, increasing
           * the total supply.
           *
           * Emits a {Transfer} event with `from` set to the zero address.
           *
           * Requirements:
           *
           * - `to` cannot be the zero address.
           */
          function _mint(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: mint to the zero address");
      
              _beforeTokenTransfer(address(0), account, amount);
      
              _totalSupply = _totalSupply.add(amount);
              _balances[account] = _balances[account].add(amount);
              emit Transfer(address(0), account, amount);
          }
      
          /**
           * @dev Destroys `amount` tokens from `account`, reducing the
           * total supply.
           *
           * Emits a {Transfer} event with `to` set to the zero address.
           *
           * Requirements:
           *
           * - `account` cannot be the zero address.
           * - `account` must have at least `amount` tokens.
           */
          function _burn(address account, uint256 amount) internal virtual {
              require(account != address(0), "ERC20: burn from the zero address");
      
              _beforeTokenTransfer(account, address(0), amount);
      
              _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
              _totalSupply = _totalSupply.sub(amount);
              emit Transfer(account, address(0), amount);
          }
      
          /**
           * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
           *
           * This internal function is equivalent to `approve`, and can be used to
           * e.g. set automatic allowances for certain subsystems, etc.
           *
           * Emits an {Approval} event.
           *
           * Requirements:
           *
           * - `owner` cannot be the zero address.
           * - `spender` cannot be the zero address.
           */
          function _approve(
              address owner,
              address spender,
              uint256 amount
          ) internal virtual {
              require(owner != address(0), "ERC20: approve from the zero address");
              require(spender != address(0), "ERC20: approve to the zero address");
      
              _allowances[owner][spender] = amount;
              emit Approval(owner, spender, amount);
          }
      
          /**
           * @dev Sets {decimals} to a value other than the default one of 18.
           *
           * WARNING: This function should only be called from the constructor. Most
           * applications that interact with token contracts will not expect
           * {decimals} to ever change, and may work incorrectly if it does.
           */
          function _setupDecimals(uint8 decimals_) internal virtual {
              _decimals = decimals_;
          }
      
          /**
           * @dev Hook that is called before any transfer of tokens. This includes
           * minting and burning.
           *
           * Calling conditions:
           *
           * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
           * will be to transferred to `to`.
           * - when `from` is zero, `amount` tokens will be minted for `to`.
           * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
           * - `from` and `to` are never both zero.
           *
           * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
           */
          function _beforeTokenTransfer(
              address from,
              address to,
              uint256 amount
          ) internal virtual {}
      }
      
      // File contracts/LithiumToken.sol
      
      pragma solidity ^0.7.6;
      
      /**
       * @title LithiumToken
       *
       * @dev A minimal ERC20 token contract for the Lithium token.
       */
      contract LithiumToken is ERC20("Lithium", "LITH") {
          uint256 private constant TOTAL_SUPPLY = 10000000000e18;
      
          constructor(address genesis_holder) {
              require(genesis_holder != address(0), "LithiumToken: zero address");
              _mint(genesis_holder, TOTAL_SUPPLY);
          }
      }

      File 5 of 5: TetherToken
      pragma solidity ^0.4.17;
      
      /**
       * @title SafeMath
       * @dev Math operations with safety checks that throw on error
       */
      library SafeMath {
          function mul(uint256 a, uint256 b) internal pure returns (uint256) {
              if (a == 0) {
                  return 0;
              }
              uint256 c = a * b;
              assert(c / a == b);
              return c;
          }
      
          function div(uint256 a, uint256 b) internal pure returns (uint256) {
              // assert(b > 0); // Solidity automatically throws when dividing by 0
              uint256 c = a / b;
              // assert(a == b * c + a % b); // There is no case in which this doesn't hold
              return c;
          }
      
          function sub(uint256 a, uint256 b) internal pure returns (uint256) {
              assert(b <= a);
              return a - b;
          }
      
          function add(uint256 a, uint256 b) internal pure returns (uint256) {
              uint256 c = a + b;
              assert(c >= a);
              return c;
          }
      }
      
      /**
       * @title Ownable
       * @dev The Ownable contract has an owner address, and provides basic authorization control
       * functions, this simplifies the implementation of "user permissions".
       */
      contract Ownable {
          address public owner;
      
          /**
            * @dev The Ownable constructor sets the original `owner` of the contract to the sender
            * account.
            */
          function Ownable() public {
              owner = msg.sender;
          }
      
          /**
            * @dev Throws if called by any account other than the owner.
            */
          modifier onlyOwner() {
              require(msg.sender == owner);
              _;
          }
      
          /**
          * @dev Allows the current owner to transfer control of the contract to a newOwner.
          * @param newOwner The address to transfer ownership to.
          */
          function transferOwnership(address newOwner) public onlyOwner {
              if (newOwner != address(0)) {
                  owner = newOwner;
              }
          }
      
      }
      
      /**
       * @title ERC20Basic
       * @dev Simpler version of ERC20 interface
       * @dev see https://github.com/ethereum/EIPs/issues/20
       */
      contract ERC20Basic {
          uint public _totalSupply;
          function totalSupply() public constant returns (uint);
          function balanceOf(address who) public constant returns (uint);
          function transfer(address to, uint value) public;
          event Transfer(address indexed from, address indexed to, uint value);
      }
      
      /**
       * @title ERC20 interface
       * @dev see https://github.com/ethereum/EIPs/issues/20
       */
      contract ERC20 is ERC20Basic {
          function allowance(address owner, address spender) public constant returns (uint);
          function transferFrom(address from, address to, uint value) public;
          function approve(address spender, uint value) public;
          event Approval(address indexed owner, address indexed spender, uint value);
      }
      
      /**
       * @title Basic token
       * @dev Basic version of StandardToken, with no allowances.
       */
      contract BasicToken is Ownable, ERC20Basic {
          using SafeMath for uint;
      
          mapping(address => uint) public balances;
      
          // additional variables for use if transaction fees ever became necessary
          uint public basisPointsRate = 0;
          uint public maximumFee = 0;
      
          /**
          * @dev Fix for the ERC20 short address attack.
          */
          modifier onlyPayloadSize(uint size) {
              require(!(msg.data.length < size + 4));
              _;
          }
      
          /**
          * @dev transfer token for a specified address
          * @param _to The address to transfer to.
          * @param _value The amount to be transferred.
          */
          function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
              uint fee = (_value.mul(basisPointsRate)).div(10000);
              if (fee > maximumFee) {
                  fee = maximumFee;
              }
              uint sendAmount = _value.sub(fee);
              balances[msg.sender] = balances[msg.sender].sub(_value);
              balances[_to] = balances[_to].add(sendAmount);
              if (fee > 0) {
                  balances[owner] = balances[owner].add(fee);
                  Transfer(msg.sender, owner, fee);
              }
              Transfer(msg.sender, _to, sendAmount);
          }
      
          /**
          * @dev Gets the balance of the specified address.
          * @param _owner The address to query the the balance of.
          * @return An uint representing the amount owned by the passed address.
          */
          function balanceOf(address _owner) public constant returns (uint balance) {
              return balances[_owner];
          }
      
      }
      
      /**
       * @title Standard ERC20 token
       *
       * @dev Implementation of the basic standard token.
       * @dev https://github.com/ethereum/EIPs/issues/20
       * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
       */
      contract StandardToken is BasicToken, ERC20 {
      
          mapping (address => mapping (address => uint)) public allowed;
      
          uint public constant MAX_UINT = 2**256 - 1;
      
          /**
          * @dev Transfer tokens from one address to another
          * @param _from address The address which you want to send tokens from
          * @param _to address The address which you want to transfer to
          * @param _value uint the amount of tokens to be transferred
          */
          function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
              var _allowance = allowed[_from][msg.sender];
      
              // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
              // if (_value > _allowance) throw;
      
              uint fee = (_value.mul(basisPointsRate)).div(10000);
              if (fee > maximumFee) {
                  fee = maximumFee;
              }
              if (_allowance < MAX_UINT) {
                  allowed[_from][msg.sender] = _allowance.sub(_value);
              }
              uint sendAmount = _value.sub(fee);
              balances[_from] = balances[_from].sub(_value);
              balances[_to] = balances[_to].add(sendAmount);
              if (fee > 0) {
                  balances[owner] = balances[owner].add(fee);
                  Transfer(_from, owner, fee);
              }
              Transfer(_from, _to, sendAmount);
          }
      
          /**
          * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
          * @param _spender The address which will spend the funds.
          * @param _value The amount of tokens to be spent.
          */
          function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
      
              // To change the approve amount you first have to reduce the addresses`
              //  allowance to zero by calling `approve(_spender, 0)` if it is not
              //  already 0 to mitigate the race condition described here:
              //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
              require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
      
              allowed[msg.sender][_spender] = _value;
              Approval(msg.sender, _spender, _value);
          }
      
          /**
          * @dev Function to check the amount of tokens than an owner allowed to a spender.
          * @param _owner address The address which owns the funds.
          * @param _spender address The address which will spend the funds.
          * @return A uint specifying the amount of tokens still available for the spender.
          */
          function allowance(address _owner, address _spender) public constant returns (uint remaining) {
              return allowed[_owner][_spender];
          }
      
      }
      
      
      /**
       * @title Pausable
       * @dev Base contract which allows children to implement an emergency stop mechanism.
       */
      contract Pausable is Ownable {
        event Pause();
        event Unpause();
      
        bool public paused = false;
      
      
        /**
         * @dev Modifier to make a function callable only when the contract is not paused.
         */
        modifier whenNotPaused() {
          require(!paused);
          _;
        }
      
        /**
         * @dev Modifier to make a function callable only when the contract is paused.
         */
        modifier whenPaused() {
          require(paused);
          _;
        }
      
        /**
         * @dev called by the owner to pause, triggers stopped state
         */
        function pause() onlyOwner whenNotPaused public {
          paused = true;
          Pause();
        }
      
        /**
         * @dev called by the owner to unpause, returns to normal state
         */
        function unpause() onlyOwner whenPaused public {
          paused = false;
          Unpause();
        }
      }
      
      contract BlackList is Ownable, BasicToken {
      
          /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
          function getBlackListStatus(address _maker) external constant returns (bool) {
              return isBlackListed[_maker];
          }
      
          function getOwner() external constant returns (address) {
              return owner;
          }
      
          mapping (address => bool) public isBlackListed;
          
          function addBlackList (address _evilUser) public onlyOwner {
              isBlackListed[_evilUser] = true;
              AddedBlackList(_evilUser);
          }
      
          function removeBlackList (address _clearedUser) public onlyOwner {
              isBlackListed[_clearedUser] = false;
              RemovedBlackList(_clearedUser);
          }
      
          function destroyBlackFunds (address _blackListedUser) public onlyOwner {
              require(isBlackListed[_blackListedUser]);
              uint dirtyFunds = balanceOf(_blackListedUser);
              balances[_blackListedUser] = 0;
              _totalSupply -= dirtyFunds;
              DestroyedBlackFunds(_blackListedUser, dirtyFunds);
          }
      
          event DestroyedBlackFunds(address _blackListedUser, uint _balance);
      
          event AddedBlackList(address _user);
      
          event RemovedBlackList(address _user);
      
      }
      
      contract UpgradedStandardToken is StandardToken{
          // those methods are called by the legacy contract
          // and they must ensure msg.sender to be the contract address
          function transferByLegacy(address from, address to, uint value) public;
          function transferFromByLegacy(address sender, address from, address spender, uint value) public;
          function approveByLegacy(address from, address spender, uint value) public;
      }
      
      contract TetherToken is Pausable, StandardToken, BlackList {
      
          string public name;
          string public symbol;
          uint public decimals;
          address public upgradedAddress;
          bool public deprecated;
      
          //  The contract can be initialized with a number of tokens
          //  All the tokens are deposited to the owner address
          //
          // @param _balance Initial supply of the contract
          // @param _name Token Name
          // @param _symbol Token symbol
          // @param _decimals Token decimals
          function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
              _totalSupply = _initialSupply;
              name = _name;
              symbol = _symbol;
              decimals = _decimals;
              balances[owner] = _initialSupply;
              deprecated = false;
          }
      
          // Forward ERC20 methods to upgraded contract if this one is deprecated
          function transfer(address _to, uint _value) public whenNotPaused {
              require(!isBlackListed[msg.sender]);
              if (deprecated) {
                  return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
              } else {
                  return super.transfer(_to, _value);
              }
          }
      
          // Forward ERC20 methods to upgraded contract if this one is deprecated
          function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
              require(!isBlackListed[_from]);
              if (deprecated) {
                  return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
              } else {
                  return super.transferFrom(_from, _to, _value);
              }
          }
      
          // Forward ERC20 methods to upgraded contract if this one is deprecated
          function balanceOf(address who) public constant returns (uint) {
              if (deprecated) {
                  return UpgradedStandardToken(upgradedAddress).balanceOf(who);
              } else {
                  return super.balanceOf(who);
              }
          }
      
          // Forward ERC20 methods to upgraded contract if this one is deprecated
          function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
              if (deprecated) {
                  return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
              } else {
                  return super.approve(_spender, _value);
              }
          }
      
          // Forward ERC20 methods to upgraded contract if this one is deprecated
          function allowance(address _owner, address _spender) public constant returns (uint remaining) {
              if (deprecated) {
                  return StandardToken(upgradedAddress).allowance(_owner, _spender);
              } else {
                  return super.allowance(_owner, _spender);
              }
          }
      
          // deprecate current contract in favour of a new one
          function deprecate(address _upgradedAddress) public onlyOwner {
              deprecated = true;
              upgradedAddress = _upgradedAddress;
              Deprecate(_upgradedAddress);
          }
      
          // deprecate current contract if favour of a new one
          function totalSupply() public constant returns (uint) {
              if (deprecated) {
                  return StandardToken(upgradedAddress).totalSupply();
              } else {
                  return _totalSupply;
              }
          }
      
          // Issue a new amount of tokens
          // these tokens are deposited into the owner address
          //
          // @param _amount Number of tokens to be issued
          function issue(uint amount) public onlyOwner {
              require(_totalSupply + amount > _totalSupply);
              require(balances[owner] + amount > balances[owner]);
      
              balances[owner] += amount;
              _totalSupply += amount;
              Issue(amount);
          }
      
          // Redeem tokens.
          // These tokens are withdrawn from the owner address
          // if the balance must be enough to cover the redeem
          // or the call will fail.
          // @param _amount Number of tokens to be issued
          function redeem(uint amount) public onlyOwner {
              require(_totalSupply >= amount);
              require(balances[owner] >= amount);
      
              _totalSupply -= amount;
              balances[owner] -= amount;
              Redeem(amount);
          }
      
          function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
              // Ensure transparency by hardcoding limit beyond which fees can never be added
              require(newBasisPoints < 20);
              require(newMaxFee < 50);
      
              basisPointsRate = newBasisPoints;
              maximumFee = newMaxFee.mul(10**decimals);
      
              Params(basisPointsRate, maximumFee);
          }
      
          // Called when new token are issued
          event Issue(uint amount);
      
          // Called when tokens are redeemed
          event Redeem(uint amount);
      
          // Called when contract is deprecated
          event Deprecate(address newAddress);
      
          // Called if contract ever adds fees
          event Params(uint feeBasisPoints, uint maxFee);
      }