ETH Price: $1,906.02 (-0.88%)

Transaction Decoder

Block:
22029060 at Mar-12-2025 06:41:11 AM +UTC
Transaction Fee:
0.000015974751696702 ETH $0.03
Gas Used:
31,118 Gas / 0.513360489 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x7f91F0a5...9e1338434 15.240616835472793098 Eth15.259586841660558105 Eth0.018970006187765007
(beaverbuild)
19.104560784673479744 Eth
Nonce: 2135670
19.085574803734018035 Eth
Nonce: 2135671
0.018985980939461709

Execution Trace

ETH 0.018970006187765007 0x7f91f0a50a874add09027f5c21684209e1338434.CALL( )
  • UpgradeableBeacon.STATICCALL( )
  • ETH 0.018970006187765007 EtherFiNode.DELEGATECALL( )
    File 1 of 2: UpgradeableBeacon
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (proxy/beacon/UpgradeableBeacon.sol)
    pragma solidity ^0.8.0;
    import "./IBeacon.sol";
    import "../../access/Ownable.sol";
    import "../../utils/Address.sol";
    /**
     * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
     * implementation contract, which is where they will delegate all function calls.
     *
     * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
     */
    contract UpgradeableBeacon is IBeacon, Ownable {
        address private _implementation;
        /**
         * @dev Emitted when the implementation returned by the beacon is changed.
         */
        event Upgraded(address indexed implementation);
        /**
         * @dev Sets the address of the initial implementation, and the deployer account as the owner who can upgrade the
         * beacon.
         */
        constructor(address implementation_) {
            _setImplementation(implementation_);
        }
        /**
         * @dev Returns the current implementation address.
         */
        function implementation() public view virtual override returns (address) {
            return _implementation;
        }
        /**
         * @dev Upgrades the beacon to a new implementation.
         *
         * Emits an {Upgraded} event.
         *
         * Requirements:
         *
         * - msg.sender must be the owner of the contract.
         * - `newImplementation` must be a contract.
         */
        function upgradeTo(address newImplementation) public virtual onlyOwner {
            _setImplementation(newImplementation);
            emit Upgraded(newImplementation);
        }
        /**
         * @dev Sets the implementation contract address for this beacon
         *
         * Requirements:
         *
         * - `newImplementation` must be a contract.
         */
        function _setImplementation(address newImplementation) private {
            require(Address.isContract(newImplementation), "UpgradeableBeacon: implementation is not a contract");
            _implementation = newImplementation;
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev This is the interface that {BeaconProxy} expects of its beacon.
     */
    interface IBeacon {
        /**
         * @dev Must return an address that can be used as a delegate call target.
         *
         * {BeaconProxy} will check that this address is a contract.
         */
        function implementation() external view returns (address);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)
    pragma solidity ^0.8.0;
    import "../utils/Context.sol";
    /**
     * @dev Contract module which provides a basic access control mechanism, where
     * there is an account (an owner) that can be granted exclusive access to
     * specific functions.
     *
     * By default, the owner account will be the one that deploys the contract. This
     * can later be changed with {transferOwnership}.
     *
     * This module is used through inheritance. It will make available the modifier
     * `onlyOwner`, which can be applied to your functions to restrict their use to
     * the owner.
     */
    abstract contract Ownable is Context {
        address private _owner;
        event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
        /**
         * @dev Initializes the contract setting the deployer as the initial owner.
         */
        constructor() {
            _transferOwnership(_msgSender());
        }
        /**
         * @dev Throws if called by any account other than the owner.
         */
        modifier onlyOwner() {
            _checkOwner();
            _;
        }
        /**
         * @dev Returns the address of the current owner.
         */
        function owner() public view virtual returns (address) {
            return _owner;
        }
        /**
         * @dev Throws if the sender is not the owner.
         */
        function _checkOwner() internal view virtual {
            require(owner() == _msgSender(), "Ownable: caller is not the owner");
        }
        /**
         * @dev Leaves the contract without owner. It will not be possible to call
         * `onlyOwner` functions anymore. Can only be called by the current owner.
         *
         * NOTE: Renouncing ownership will leave the contract without an owner,
         * thereby removing any functionality that is only available to the owner.
         */
        function renounceOwnership() public virtual onlyOwner {
            _transferOwnership(address(0));
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Can only be called by the current owner.
         */
        function transferOwnership(address newOwner) public virtual onlyOwner {
            require(newOwner != address(0), "Ownable: new owner is the zero address");
            _transferOwnership(newOwner);
        }
        /**
         * @dev Transfers ownership of the contract to a new account (`newOwner`).
         * Internal function without access restriction.
         */
        function _transferOwnership(address newOwner) internal virtual {
            address oldOwner = _owner;
            _owner = newOwner;
            emit OwnershipTransferred(oldOwner, newOwner);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Provides information about the current execution context, including the
     * sender of the transaction and its data. While these are generally available
     * via msg.sender and msg.data, they should not be accessed in such a direct
     * manner, since when dealing with meta-transactions the account sending and
     * paying for execution may not be the actual sender (as far as an application
     * is concerned).
     *
     * This contract is only required for intermediate, library-like contracts.
     */
    abstract contract Context {
        function _msgSender() internal view virtual returns (address) {
            return msg.sender;
        }
        function _msgData() internal view virtual returns (bytes calldata) {
            return msg.data;
        }
    }
    

    File 2 of 2: EtherFiNode
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.24;
    import "./interfaces/IEtherFiNode.sol";
    import "./interfaces/IEtherFiNodesManager.sol";
    import "@openzeppelin/contracts/utils/math/Math.sol";
    import "@openzeppelin/contracts/proxy/beacon/IBeacon.sol";
    import "@openzeppelin/contracts/utils/Address.sol";
    import "@openzeppelin/contracts/interfaces/IERC1271.sol";
    import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol";
    import "./eigenlayer-interfaces/IEigenPodManager.sol";
    import "./eigenlayer-interfaces/IDelayedWithdrawalRouter.sol";
    import "./eigenlayer-interfaces/IDelegationManager.sol";
    import "forge-std/console.sol";
    contract EtherFiNode is IEtherFiNode, IERC1271 {
        address public etherFiNodesManager;
        uint256 public DEPRECATED_localRevenueIndex;
        uint256 public DEPRECATED_vestedAuctionRewards;
        string public DEPRECATED_ipfsHashForEncryptedValidatorKey;
        uint32 public DEPRECATED_exitRequestTimestamp;
        uint32 public DEPRECATED_exitTimestamp;
        uint32 public DEPRECATED_stakingStartTimestamp;
        VALIDATOR_PHASE public DEPRECATED_phase;
        uint32 public DEPRECATED_restakingObservedExitBlock;
        address public eigenPod;
        /// @dev Is this withdrawal safe is configured for restaking within the etherfi protocol.
        bool public isRestakingEnabled;
        uint16 public version;
        uint16 private _numAssociatedValidators; // num validators in {LIVE, BEING_SLASHED, EXITED} phase
        uint16 public numExitRequestsByTnft;
        uint16 public numExitedValidators; // EXITED & but not FULLY_WITHDRAWN
        mapping(uint256 => uint256) public associatedValidatorIndices;
        uint256[] public associatedValidatorIds; // validators in {STAKE_DEPOSITED, WAITING_FOR_APPROVAL, LIVE, BEING_SLASHED, EXITED} phase
        // Track the amount of pending/completed withdrawals;
        uint64 public pendingWithdrawalFromRestakingInGwei; // incremented when the delayed withdrawal (from EigenPod to EtherFiNode) is queued, decremented when it is completed
        uint64 public completedWithdrawalFromRestakingInGwei; // incremented when the delayed withdarwal is completed, decremented when the fund is withdrawan (from EtherFiNode to the externals via fullWithdraw call)
        // eigenLayer phase 1 bookeeping
        // we need to mark a block from which we know all beaconchain eth has been moved to the eigenPod
        // so that we can properly calculate exit payouts and ensure queued withdrawals have been resolved
        // (eigenLayer withdrawals are tied to blocknumber instead of timestamp)
        mapping(uint256 => uint32) DEPRECATED_restakingObservedExitBlocks;
        error CallFailed(bytes data);
        event EigenPodCreated(address indexed nodeAddress, address indexed podAddress);
        //--------------------------------------------------------------------------------------
        //----------------------------------  CONSTRUCTOR   ------------------------------------
        //--------------------------------------------------------------------------------------
        /// @custom:oz-upgrades-unsafe-allow constructor
        constructor() {
            etherFiNodesManager = address(0x000000000000000000000000000000000000dEaD); // prevent initialization of the proxy implementation
        }
        /// @notice Based on the sources where they come from, the staking rewards are split into
        ///  - those from the execution layer: transaction fees and MEV
        ///  - those from the consensus layer: staking rewards for attesting the state of the chain, 
        ///    proposing a new block, or being selected in a validator sync committee
        ///  To receive the rewards from the execution layer, it should have 'receive()' function.
        receive() external payable {}
        /// @dev called once immediately after creating a new instance of a EtheriNode beacon proxy
        function initialize(address _etherFiNodesManager) external {
            require(DEPRECATED_phase == VALIDATOR_PHASE.NOT_INITIALIZED, "ALREADY_INITIALIZED");
            require(etherFiNodesManager == address(0), "ALREADY_INITIALIZED");
            require(_etherFiNodesManager != address(0), "NO_ZERO_ADDRESS");
            etherFiNodesManager = _etherFiNodesManager;
            version = 1;
        }
        // Update the safe contract from verison 0 to version 1
        // if `_validatorId` != 0, the v0 safe contract currently is tied to the validator with its id = `_validatorId`
        // this function updates it to v1 so that it can be used by multiple validators 
        // else `_validatorId` == 0, this safe is not tied to any validator yet
        function migrateVersion(uint256 _validatorId, IEtherFiNodesManager.ValidatorInfo memory _info) external onlyEtherFiNodeManagerContract {
            if (version != 0) return;
            
            DEPRECATED_exitRequestTimestamp = 0;
            DEPRECATED_exitTimestamp = 0;
            DEPRECATED_stakingStartTimestamp = 0;
            DEPRECATED_phase = VALIDATOR_PHASE.NOT_INITIALIZED;
            delete DEPRECATED_ipfsHashForEncryptedValidatorKey;
            version = 1;
            if (_validatorId != 0) {
                require(_numAssociatedValidators == 0, "ALREADY_INITIALIZED");
                registerValidator(_validatorId, false);
                updateNumberOfAssociatedValidators(1, 0);
                // Meaning that the validator got `sendExitRequest` before the safe version 1 release
                // EFM._updateExitRequestTimestamp (which updates 'numExitRequestsByTnft') was not called. So, process that here
                if (_info.exitRequestTimestamp > 0) {
                    updateNumExitRequests(1, 0);
                }
                // Meaning that the validator got `processNodeExit` before the safe version 1 release
                // EFM._setValidatorPhase (which updates 'numExitedValidators') was not called. So, process that here
                if (_info.exitTimestamp > 0) {
                    updateNumExitedValidators(1, 0);
                }
            }
        }
        // At version 0, an EtherFiNode contract is associated with only one validator
        // After version 1, it can be associated with multiple validators having the same (B-nft, T-nft, node operator) 
        // returns the number of the validators in {LIVE, BEING_SLASHED, EXITED} phase associated with this safe
        function numAssociatedValidators() public view returns (uint256) {
            if (version == 0) {
                // For the safe at version 0, `phase` variable is still valid and can be used to check if the validator is still active 
                if (DEPRECATED_phase == VALIDATOR_PHASE.LIVE || DEPRECATED_phase == VALIDATOR_PHASE.BEING_SLASHED || DEPRECATED_phase == VALIDATOR_PHASE.EXITED) {
                    return 1;
                } else {
                    return 0;
                }
            } else {
                return _numAssociatedValidators;
            }
        }
        function registerValidator(uint256 _validatorId, bool _enableRestaking) public onlyEtherFiNodeManagerContract ensureLatestVersion {
            require(numAssociatedValidators() == 0 || isRestakingEnabled == _enableRestaking, "restaking status mismatch");
            {
                uint256 index = associatedValidatorIds.length;
                associatedValidatorIds.push(_validatorId);
                associatedValidatorIndices[_validatorId] = index;
            }
            if (_enableRestaking) {
                isRestakingEnabled = true;
                createEigenPod(); // NOOP if already exists
            }
        }
        /// @dev deRegister the validator from the safe
        ///      if there is no more validator associated with this safe, it is recycled to be used again in the withdrawal safe pool
        function unRegisterValidator(
            uint256 _validatorId,
            IEtherFiNodesManager.ValidatorInfo memory _info
        ) external onlyEtherFiNodeManagerContract ensureLatestVersion returns (bool) {        
            require(_info.phase == VALIDATOR_PHASE.FULLY_WITHDRAWN || _info.phase == VALIDATOR_PHASE.NOT_INITIALIZED, "invalid phase");
            // If the phase changed from EXITED to FULLY_WITHDRAWN, decrement the counter
            if (_info.phase == VALIDATOR_PHASE.FULLY_WITHDRAWN) {
                numExitedValidators -= 1;
            }
            // If there was an exit request, decrement the number of exit requests
            if (_info.exitRequestTimestamp != 0) {
                numExitRequestsByTnft -= 1;
            }
            {
                uint256 index = associatedValidatorIndices[_validatorId];
                uint256 endIndex = associatedValidatorIds.length - 1;
                uint256 end = associatedValidatorIds[endIndex];
                associatedValidatorIds[index] = associatedValidatorIds[endIndex];
                associatedValidatorIndices[end] = index;
                
                associatedValidatorIds.pop();
                delete associatedValidatorIndices[_validatorId];
            }
            
            if (associatedValidatorIds.length == 0) {
                require(numAssociatedValidators() == 0, "INVALID_STATE");
                DEPRECATED_restakingObservedExitBlocks[_validatorId] = 0;
                isRestakingEnabled = false;
                return true;
            }
            return false;
        }
        //--------------------------------------------------------------------------------------
        //----------------------------  STATE-CHANGING FUNCTIONS  ------------------------------
        //--------------------------------------------------------------------------------------
        function updateNumberOfAssociatedValidators(uint16 _up, uint16 _down) public onlyEtherFiNodeManagerContract ensureLatestVersion {
            if (_up > 0) _numAssociatedValidators += _up;
            if (_down > 0) _numAssociatedValidators -= _down;
        }
        function updateNumExitRequests(uint16 _up, uint16 _down) public onlyEtherFiNodeManagerContract ensureLatestVersion {
            if (_up > 0) numExitRequestsByTnft += _up;
            if (_down > 0) numExitRequestsByTnft -= _down;
        }
        function updateNumExitedValidators(uint16 _up, uint16 _down) public onlyEtherFiNodeManagerContract ensureLatestVersion {
            if (_up > 0) numExitedValidators += _up;
            if (_down > 0) numExitedValidators -= _down;
        }
        /// @notice process the exit
        // TODO: make it permission-less call
        function processNodeExit(uint256 _validatorId) external onlyEtherFiNodeManagerContract ensureLatestVersion returns (bytes32[] memory fullWithdrawalRoots) {
            if (isRestakingEnabled) {
                fullWithdrawalRoots = _queueEigenpodFullWithdrawal();
                require(fullWithdrawalRoots.length == 1, "NO_FULLWITHDRAWAL_QUEUED");
            }
        }
        function processFullWithdraw(uint256 _validatorId) external onlyEtherFiNodeManagerContract ensureLatestVersion {
            updateNumberOfAssociatedValidators(0, 1);
            if (isRestakingEnabled) {
                // TODO: revisit for the case of slashing
                require(completedWithdrawalFromRestakingInGwei >= 32 ether / 1 gwei, "INSUFFICIENT_BALANCE");
                completedWithdrawalFromRestakingInGwei -= uint64(32 ether / 1 gwei);
            }
        }
        function completeQueuedWithdrawal(IDelegationManager.Withdrawal memory withdrawals, uint256 middlewareTimesIndexes, bool _receiveAsTokens) external onlyEtherFiNodeManagerContract {
            IDelegationManager.Withdrawal[] memory _withdrawals = new IDelegationManager.Withdrawal[](1);
            _withdrawals[0] = withdrawals;
            uint256[] memory _middlewareTimesIndexes = new uint256[](1);
            _middlewareTimesIndexes[0] = middlewareTimesIndexes;
            return _completeQueuedWithdrawals(_withdrawals, _middlewareTimesIndexes, _receiveAsTokens);
        }
        function completeQueuedWithdrawals(IDelegationManager.Withdrawal[] memory withdrawals, uint256[] memory middlewareTimesIndexes, bool _receiveAsTokens) external onlyEtherFiNodeManagerContract {
            return _completeQueuedWithdrawals(withdrawals, middlewareTimesIndexes, _receiveAsTokens);
        }
        // `DelegationManager.completeQueuedWithdrawals` is used to complete the withdrawals:
        // (1) by `EtherFiNode._queueRestakedFullWithdrawal`. It is used to process the full withdraw
        // (2) by `DelegationManager.undelegate`
        // While `_receiveAsTokens == True` for (1), `_receiveAsTokens == False` for (2)
        // (Note that this is a simplication based on the use cases)
        function _completeQueuedWithdrawals(IDelegationManager.Withdrawal[] memory withdrawals, uint256[] memory middlewareTimesIndexes, bool _receiveAsTokens) internal {
            uint256 totalAmount = 0;
            bool[] memory receiveAsTokens = new bool[](withdrawals.length);
            IERC20[][] memory tokens = new IERC20[][](withdrawals.length);
            for (uint256 i = 0; i < withdrawals.length; i++) {
                require(withdrawals[i].withdrawer == address(this) && withdrawals[i].staker == address(this), "INVALID");
                receiveAsTokens[i] = _receiveAsTokens;
                tokens[i] = new IERC20[](withdrawals[i].strategies.length);
                for (uint256 j = 0; j < withdrawals[i].shares.length; j++) {
                    totalAmount += withdrawals[i].shares[j];
                }
            }
            if (_receiveAsTokens) {
                // the queued withdrawal is for (1) full withdraw, so the pendingWithdrawalFromRestakingInGwei should be at least 32 ether
                require(pendingWithdrawalFromRestakingInGwei >= uint64(totalAmount / 1 gwei), "NO_PENDING_WITHDRAWAL");
                pendingWithdrawalFromRestakingInGwei -= uint64(totalAmount / 1 gwei);
                completedWithdrawalFromRestakingInGwei += uint64(totalAmount / 1 gwei);
            } else {
                // the queued withdrawal is for (2) undelegate, we put a guard `pendingWithdrawalFromRestakingInGwei` == 0
                // If it is non-zero, that means there is at least one validator of which delayed withdrawal is in the queue.
                // Complete that first.
                /// @dev this is not the most optimal way to handle these two use cases, but we ack that it's a temporary solution
                require(pendingWithdrawalFromRestakingInGwei == 0, "PENDING_WITHDRAWAL_NOT_ZERO");
            }
            IDelegationManager mgr = IEtherFiNodesManager(etherFiNodesManager).delegationManager();
            mgr.completeQueuedWithdrawals(withdrawals, tokens, middlewareTimesIndexes, receiveAsTokens);
        }
        /// @dev transfer funds from the withdrawal safe to the 4 associated parties (bNFT, tNFT, treasury, nodeOperator)
        function withdrawFunds(
            address _treasury, uint256 _treasuryAmount,
            address _operator, uint256 _operatorAmount,
            address _tnftHolder, uint256 _tnftAmount,
            address _bnftHolder, uint256 _bnftAmount
        ) external onlyEtherFiNodeManagerContract ensureLatestVersion {
            // the recipients of the funds must be able to receive the fund
            // if it is a smart contract, they should implement either receive() or fallback() properly
            // It's designed to prevent malicious actors from pausing the withdrawals
            bool sent;
            if (_operatorAmount > 0) {
                (sent, ) = payable(_operator).call{value: _operatorAmount, gas: 10000}("");
                _treasuryAmount += (!sent) ? _operatorAmount : 0;
            }
            if (_bnftAmount > 0) {
                (sent, ) = payable(_bnftHolder).call{value: _bnftAmount, gas: 12000}("");
                _treasuryAmount += (!sent) ? _bnftAmount : 0;
            }
            if (_tnftAmount > 0) {
                (sent, ) = payable(_tnftHolder).call{value: _tnftAmount, gas: 12000}("");
                _treasuryAmount += (!sent) ? _tnftAmount : 0;
            }
            if (_treasuryAmount > 0) {
                (sent, ) = _treasury.call{value: _treasuryAmount, gas: 2300}("");
                require(sent, "ETH_SEND_FAILED");
            }
        }
        //--------------------------------------------------------------------------------------
        //--------------------------------------  GETTER  --------------------------------------
        //--------------------------------------------------------------------------------------
        /// @notice Fetch the staking rewards accrued in the safe that can be paid out to (toNodeOperator, toTnft, toBnft, toTreasury)
        /// @param _splits the splits for the staking rewards
        ///
        /// @return toNodeOperator  the payout to the Node Operator
        /// @return toTnft          the payout to the T-NFT holder
        /// @return toBnft          the payout to the B-NFT holder
        /// @return toTreasury      the payout to the Treasury
        function getRewardsPayouts(
            uint32 _exitRequestTimestamp,
            IEtherFiNodesManager.RewardsSplit memory _splits
        ) public view returns (uint256, uint256, uint256, uint256) {
            uint256 _balance = withdrawableBalanceInExecutionLayer();
            return _calculateSplits(_balance, _splits);
        }
        /// @notice Compute the non exit penalty for the b-nft holder
        /// @param _tNftExitRequestTimestamp the timestamp when the T-NFT holder asked the B-NFT holder to exit the node
        /// @param _bNftExitRequestTimestamp the timestamp when the B-NFT holder submitted the exit request to the beacon network
        function getNonExitPenalty(
            uint32 _tNftExitRequestTimestamp, 
            uint32 _bNftExitRequestTimestamp
        ) public view returns (uint256) {
            if (_tNftExitRequestTimestamp == 0) return 0;
            uint128 _penaltyPrinciple = IEtherFiNodesManager(etherFiNodesManager).nonExitPenaltyPrincipal();
            uint64 _dailyPenalty = IEtherFiNodesManager(etherFiNodesManager).nonExitPenaltyDailyRate();
            uint256 daysElapsed = _getDaysPassedSince(_tNftExitRequestTimestamp, _bNftExitRequestTimestamp);
            if (daysElapsed > 365) {
                return _penaltyPrinciple;
            }
            uint256 remaining = _penaltyPrinciple;
            while (daysElapsed > 0) {
                uint256 exponent = Math.min(7, daysElapsed);
                remaining = (remaining * (10000 - uint256(_dailyPenalty)) ** exponent) / (10000 ** exponent);
                daysElapsed -= Math.min(7, daysElapsed);
            }
            return _penaltyPrinciple - remaining;
        }
        /// @notice total balance (in the execution layer) of this withdrawal safe split into its component parts.
        ///   1. the withdrawal safe balance
        ///   2. the EigenPod balance
        ///   3. the withdrawals pending in DelayedWithdrawalRouter
        function splitBalanceInExecutionLayer() public view returns (uint256 _withdrawalSafe, uint256 _eigenPod, uint256 _delayedWithdrawalRouter) {
            _withdrawalSafe = address(this).balance;
            if (isRestakingEnabled) {
                _eigenPod = eigenPod.balance;
                IDelayedWithdrawalRouter delayedWithdrawalRouter = IDelayedWithdrawalRouter(IEtherFiNodesManager(etherFiNodesManager).delayedWithdrawalRouter());
                IDelayedWithdrawalRouter.DelayedWithdrawal[] memory delayedWithdrawals = delayedWithdrawalRouter.getUserDelayedWithdrawals(address(this));
                for (uint256 x = 0; x < delayedWithdrawals.length; x++) {
                    _delayedWithdrawalRouter += delayedWithdrawals[x].amount;
                }
            }
            return (_withdrawalSafe, _eigenPod, _delayedWithdrawalRouter);
        }
        /// @notice total balance (wei) of this safe currently in the execution layer.
        function totalBalanceInExecutionLayer() public view returns (uint256) {
            (uint256 _safe, uint256 _pod, uint256 _router) = splitBalanceInExecutionLayer();
            return _safe + _pod + _router;
        }
        /// @notice balance (wei) of this safe that could be immediately withdrawn.
        ///         This only differs from the balance in the safe in the case of restaked validators
        ///         because some funds might not be withdrawable yet due to eigenlayer's queued withdrawal system
        function withdrawableBalanceInExecutionLayer() public view returns (uint256) {
            uint256 safeBalance = address(this).balance;
            uint256 claimableBalance = 0;
            if (isRestakingEnabled) {
                IDelayedWithdrawalRouter delayedWithdrawalRouter = IDelayedWithdrawalRouter(IEtherFiNodesManager(etherFiNodesManager).delayedWithdrawalRouter());
                IDelayedWithdrawalRouter.DelayedWithdrawal[] memory claimableWithdrawals = delayedWithdrawalRouter.getClaimableUserDelayedWithdrawals(address(this));
                for (uint256 x = 0; x < claimableWithdrawals.length; x++) {
                    claimableBalance += claimableWithdrawals[x].amount;
                }
            }
            return safeBalance + claimableBalance;
        }
        function moveFundsToManager(uint256 _amount) external onlyEtherFiNodeManagerContract {
            (bool sent, ) = etherFiNodesManager.call{value: _amount, gas: 6000}("");
            require(sent, "ETH_SEND_FAILED");
        }
        function getFullWithdrawalPayouts(
            IEtherFiNodesManager.ValidatorInfo memory _info,
            IEtherFiNodesManager.RewardsSplit memory _SRsplits
        ) public view onlyEtherFiNodeManagerContract returns (uint256 toNodeOperator, uint256 toTnft, uint256 toBnft, uint256 toTreasury) {
            if (version == 0 || numAssociatedValidators() == 1) {
                return calculateTVL(0, _info, _SRsplits, true);
            } else if (version == 1) {
                // If (version ==1 && numAssociatedValidators() > 1)
                //  the full withdrwal for a validator only considers its principal amount (= 16 ether ~ 32 ether)
                //  the staking rewards remain in the safe contract
                // Therefore, if a validator is slashed, the accrued staking rewards are used to cover the slashing amount
                // In the upcoming version, the proof system will be ported so that the penalty amount properly considered for withdrawals
                uint256[] memory payouts = new uint256[](4); // (toNodeOperator, toTnft, toBnft, toTreasury)
                uint256 principal = (withdrawableBalanceInExecutionLayer() >= 32 ether) ? 32 ether : withdrawableBalanceInExecutionLayer();
                (payouts[2], payouts[1]) = _calculatePrincipals(principal);
                (payouts[0], payouts[1], payouts[2], payouts[3]) = _applyNonExitPenalty(_info, payouts[0], payouts[1], payouts[2], payouts[3]);
                return (payouts[0], payouts[1], payouts[2], payouts[3]);
            } else {
                require(false, "WRONG_VERSION");
            }
        }
        /// @notice Given the current (phase, beacon balance) of a validator, compute the TVLs for {node operator, t-nft holder, b-nft holder, treasury}
        function getTvlSplits(
            VALIDATOR_PHASE _phase, 
            uint256 _beaconBalance,
            bool _onlyWithdrawable
        ) internal view returns (uint256 stakingRewards, uint256 principal) {
            uint256 numValidators = numAssociatedValidators();
            if (numValidators == 0) return (0, 0);
            // Consider the total balance of the safe in the execution layer
            uint256 balance = _onlyWithdrawable? withdrawableBalanceInExecutionLayer() : totalBalanceInExecutionLayer();
            // Calculate the total principal for the exited validators. 
            // It must be in the range of [16 ether * numExitedValidators, 32 ether * numExitedValidators]
            // since the maximum slashing amount is 16 ether per validator (without considering the slashing from restaking)
            // 
            // Here, the accrued rewards in the safe are used to cover the loss from the slashing
            // For example, say the safe had 1 ether accrued staking rewards, but the validator got slashed till 16 ether
            // After exiting the validator, the safe balance becomes 17 ether (16 ether from the slashed validator, 1 ether was the accrued rewards),
            // the accrued rewards are used to cover the slashing amount, thus, being considered as principal.
            // While this is not the best way to handle it, we acknowledge it as a temporary solution until the more advanced & efficient method is implemented
            require (balance >= 16 ether * numExitedValidators, "INSUFFICIENT_BALANCE");
            uint256 totalPrincipalForExitedValidators = 16 ether * numExitedValidators + Math.min(balance - 16 ether * numExitedValidators, 16 ether * numExitedValidators);
            // The rewards in the safe are split equally among the associated validators
            // The rewards in the beacon are considered as the staking rewards of the current validator being considered
            uint256 stakingRewardsInEL = (balance - totalPrincipalForExitedValidators) / numValidators;
            uint256 stakingRewardsInBeacon = (_beaconBalance > 32 ether ? _beaconBalance - 32 ether : 0);
            stakingRewards = stakingRewardsInEL + stakingRewardsInBeacon;
            // The principal amount is computed
            if (_phase == VALIDATOR_PHASE.EXITED) {
                principal = totalPrincipalForExitedValidators / numExitedValidators;
                require(_beaconBalance == 0, "Exited validator must have zero balanace in the beacon");
            } else if (_phase == VALIDATOR_PHASE.LIVE || _phase == VALIDATOR_PHASE.BEING_SLASHED) {
                principal = _beaconBalance - stakingRewardsInBeacon;
            } else {
                require(false, "INVALID_PHASE");
            }
            require(principal <= 32 ether && principal >= 16 ether, "INCORRECT_AMOUNT");
        }
        /// @notice Given
        ///         - the current balance of the validator in Consensus Layer (or Beacon)
        ///         - the current balance of the ether fi node contract,
        ///         Compute the TVLs for {node operator, t-nft holder, b-nft holder, treasury}
        /// @param _beaconBalance the balance of the validator in Consensus Layer
        /// @param _SRsplits the splits for the Staking Rewards
        ///
        /// @return toNodeOperator  the payout to the Node Operator
        /// @return toTnft          the payout to the T-NFT holder
        /// @return toBnft          the payout to the B-NFT holder
        /// @return toTreasury      the payout to the Treasury
        function calculateTVL(
            uint256 _beaconBalance,
            IEtherFiNodesManager.ValidatorInfo memory _info,
            IEtherFiNodesManager.RewardsSplit memory _SRsplits,
            bool _onlyWithdrawable
        ) public view onlyEtherFiNodeManagerContract returns (uint256, uint256, uint256, uint256) {
            (uint256 stakingRewards, uint256 principal) = getTvlSplits(_info.phase, _beaconBalance, _onlyWithdrawable);
            if (stakingRewards + principal == 0) return (0, 0, 0, 0);
            // Compute the payouts for the staking rewards
            uint256[] memory payouts = new uint256[](4); // (toNodeOperator, toTnft, toBnft, toTreasury)
            (payouts[0], payouts[1], payouts[2], payouts[3]) = _calculateSplits(stakingRewards, _SRsplits);
            // Compute the payouts for the principals to {B, T}-NFTs
            (uint256 toBnftPrincipal, uint256 toTnftPrincipal) = _calculatePrincipals(principal);
            payouts[1] += toTnftPrincipal;
            payouts[2] += toBnftPrincipal;
            // Apply the non-exit penalty to the B-NFT
            (payouts[0], payouts[1], payouts[2], payouts[3]) = _applyNonExitPenalty(_info, payouts[0], payouts[1], payouts[2], payouts[3]);
            require(payouts[0] + payouts[1] + payouts[2] + payouts[3] == stakingRewards + principal, "INCORRECT_AMOUNT");
            return (payouts[0], payouts[1], payouts[2], payouts[3]);
        }
        //--------------------------------------------------------------------------------------
        //-------------------------------- CALL FORWARDING  ------------------------------------
        //--------------------------------------------------------------------------------------
        function callEigenPod(bytes calldata _data) external onlyEtherFiNodeManagerContract returns (bytes memory) {
            return Address.functionCall(eigenPod, _data);
        }
        function forwardCall(address _to, bytes calldata _data) external onlyEtherFiNodeManagerContract returns (bytes memory) {
            return Address.functionCall(_to, _data);
        }
        
        //--------------------------------------------------------------------------------------
        //-------------------------------  INTERNAL FUNCTIONS  ---------------------------------
        //--------------------------------------------------------------------------------------
        function _applyNonExitPenalty(
            IEtherFiNodesManager.ValidatorInfo memory _info, 
            uint256 _toNodeOperator, 
            uint256 _toTnft, 
            uint256 _toBnft, 
            uint256 _toTreasury
        ) internal view returns (uint256, uint256, uint256, uint256) {
            // NonExitPenalty grows till 1 ether
            uint256 bnftNonExitPenalty = getNonExitPenalty(_info.exitRequestTimestamp, _info.exitTimestamp);
            uint256 appliedPenalty = Math.min(_toBnft, bnftNonExitPenalty);
            uint256 incentiveToNoToExitValidator = Math.min(appliedPenalty, 0.2 ether);
            // Cap the incentive to the operator under 0.2 ether.
            // the rest (= penalty - incentive to NO) goes to the treasury
            _toNodeOperator += incentiveToNoToExitValidator;
            _toTreasury += appliedPenalty - incentiveToNoToExitValidator;
            _toBnft -= appliedPenalty;
            return (_toNodeOperator, _toTnft, _toBnft, _toTreasury);
        }
        /// @notice Calculates values for payouts based on certain parameters
        /// @param _totalAmount The total amount to split
        /// @param _splits The splits for the staking rewards
        ///
        /// @return toNodeOperator  the payout to the Node Operator
        /// @return toTnft          the payout to the T-NFT holder
        /// @return toBnft          the payout to the B-NFT holder
        /// @return toTreasury      the payout to the Treasury
        function _calculateSplits(
            uint256 _totalAmount,
            IEtherFiNodesManager.RewardsSplit memory _splits
        ) internal pure returns (uint256 toNodeOperator, uint256 toTnft, uint256 toBnft, uint256 toTreasury) {
            uint256 scale = _splits.treasury + _splits.nodeOperator + _splits.tnft + _splits.bnft;
            toNodeOperator = (_totalAmount * _splits.nodeOperator) / scale;
            toTnft = (_totalAmount * _splits.tnft) / scale;
            toBnft = (_totalAmount * _splits.bnft) / scale;
            toTreasury = _totalAmount - (toBnft + toTnft + toNodeOperator);
            return (toNodeOperator, toTnft, toBnft, toTreasury);
        }
        /// @notice Calculate the principal for the T-NFT and B-NFT holders based on the balance
        /// @param _balance The balance of the node
        /// @return toBnftPrincipal the principal for the B-NFT holder
        /// @return toTnftPrincipal the principal for the T-NFT holder
        function _calculatePrincipals(
            uint256 _balance
        ) internal pure returns (uint256 , uint256) {
            // Check if the ETH principal withdrawn (16 ETH ~ 32 ETH) from beacon is within this contract
            // If not:
            //  - case 1: ETH is still in the EigenPod contract. Need to get that out
            //  - case 2: ETH is withdrawn from the EigenPod contract, but ETH got slashed and the amount is under 16 ETH
            // Note that the case 2 won't happen until EigenLayer's AVS goes live on mainnet and the slashing mechanism is added
            // We will need upgrades again once EigenLayer's AVS goes live
            require(_balance >= 16 ether && _balance <= 32 ether, "INCORRECT_PRINCIPAL_AMOUNT");
            
            uint256 toBnftPrincipal = (_balance >= 31 ether) ? _balance - 30 ether : 1 ether;
            uint256 toTnftPrincipal = _balance - toBnftPrincipal;
            return (toBnftPrincipal, toTnftPrincipal);
        }
        function _getDaysPassedSince(
            uint32 _startTimestamp,
            uint32 _endTimestamp
        ) public pure returns (uint256) {
            uint256 timeElapsed = _endTimestamp - Math.min(_startTimestamp, _endTimestamp);
            return uint256(timeElapsed / (24 * 3_600));
        }
        /// @dev implementation address for beacon proxy.
        ///      https://docs.openzeppelin.com/contracts/3.x/api/proxy#beacon
        function implementation() external view returns (address) {
            bytes32 slot = bytes32(uint256(keccak256('eip1967.proxy.beacon')) - 1);
            address implementationVariable;
            assembly {
                implementationVariable := sload(slot)
            }
            IBeacon beacon = IBeacon(implementationVariable);
            return beacon.implementation();
        }
        //--------------------------------------------------------------------------------------
        //-----------------------------------  RESTAKING  --------------------------------------
        //--------------------------------------------------------------------------------------
        /// @notice Start a PEPE pod checkpoint balance proof. A new proof cannot be started until
        ///         the previous proof is completed
        function startCheckpoint(bool _revertIfNoBalance) external onlyEtherFiNodeManagerContract {
            IEigenPod(eigenPod).startCheckpoint(_revertIfNoBalance);
        }
        // @notice you can delegate 1 additional wallet that is allowed to call startCheckpoint() and
        //         verifyWithdrawalCredentials() on behalf of this pod
        function setProofSubmitter(address _newProofSubmitter) external onlyEtherFiNodeManagerContract {
            IEigenPod(eigenPod).setProofSubmitter(_newProofSubmitter);
        }
        /// @notice create a new eigenPod associated with this withdrawal safe
        /// @dev to take advantage of restaking via eigenlayer the validator associated with this
        ///      withdrawal safe must set their withdrawalCredentials to point to this eigenPod
        ///      and not to the withdrawal safe itself
        function createEigenPod() public {
            if (eigenPod != address(0x0)) return; // already have pod
            IEigenPodManager eigenPodManager = IEigenPodManager(IEtherFiNodesManager(etherFiNodesManager).eigenPodManager());
            eigenPodManager.createPod();
            eigenPod = address(eigenPodManager.getPod(address(this)));
            emit EigenPodCreated(address(this), eigenPod);
        }
        // returns the withdrawal roots for the queued full-withdrawals
        // the {NonBeaconChainEthWithdrawal, partial withdraw}'s queued withdrawals can be retrieved (indexed) on DelayedWithdrawalRouter
        function queueEigenpodFullWithdrawal() public onlyEtherFiNodeManagerContract returns (bytes32[] memory fullWithdrawalRoots) {
            return _queueEigenpodFullWithdrawal();
        }
        function _queueEigenpodFullWithdrawal() private returns (bytes32[] memory fullWithdrawalRoots) {
            if (!isRestakingEnabled) return fullWithdrawalRoots;
            // Withdrawals from Eigenlayer are queued through either the DelayedWithdrawalRouter (DEPRECATED) or the DelegationManager.
            // pre-PEPE update, nonBeaconChainEth and partial withdrawals are queued through the DelayedWithdrawalRouter.
            // post-PEPE update, all withdrawals are queued through the DelegationManager
            // calculate the pending amount. The withdrawal proof verification will update the EigenPod's `withdrawableRestakedExecutionLayerGwei` value
            uint256 unclaimedFullWithdrawalAmountInGwei = IEigenPod(eigenPod).withdrawableRestakedExecutionLayerGwei() - pendingWithdrawalFromRestakingInGwei;
            if (unclaimedFullWithdrawalAmountInGwei == 0) return fullWithdrawalRoots;
            // TODO: revisit for the case of slashing
            // we will need to re-visit this logic once the EigenLayer's slashing mechanism is implemented
            // + we need to consider the slashing amount in the full withdrawal from the beacon layer as well
            require(unclaimedFullWithdrawalAmountInGwei >= 32 ether / 1 gwei, "SLASHED");
            // Update the pending withdrawal amount
            // Note that the call to `DelegationManager.queueWithdrawals(...)` won't update the EigenPod's `withdrawableRestakedExecutionLayerGwei`
            // It is updated only when the withdrawal is completed by the `DelegationManager.completeQueuedWithdrawals(...)`
            // That is why we use two variables for accounting
            pendingWithdrawalFromRestakingInGwei += uint64(32 ether / 1 gwei);
            IDelegationManager delegationManager = IEtherFiNodesManager(etherFiNodesManager).delegationManager();
            // Queue the withdrawal for whatever amount is available
            IDelegationManager.QueuedWithdrawalParams[] memory params = new IDelegationManager.QueuedWithdrawalParams[](1);
            IStrategy[] memory strategies = new IStrategy[](1);
            uint256[] memory shares = new uint256[](1);
            strategies[0] = delegationManager.beaconChainETHStrategy();
            shares[0] = 32 ether;
            params[0] = IDelegationManager.QueuedWithdrawalParams({
                strategies: strategies,
                shares: shares,
                withdrawer: address(this)
            });
            // each withdrawal root is hash of the withdrawal object, "keccak256(abi.encode(withdrawal))"
            return delegationManager.queueWithdrawals(params);
        }
        /// @dev as of eigenlayer's PEPE upgrade the delayedWithdrawalRouter is deprecated.
        ///         once all outstanding funds have been claimed we can delete this functionality
        function DEPRECATED_claimDelayedWithdrawalRouterWithdrawals() public {
            if (!isRestakingEnabled) return;
            uint256 maxWithdrawals = 10; // maximum number of withdrawals to process in 1 tx
            // only claim if we have active unclaimed withdrawals
            IDelayedWithdrawalRouter delayedWithdrawalRouter = IDelayedWithdrawalRouter(IEtherFiNodesManager(etherFiNodesManager).delayedWithdrawalRouter());
            if (delayedWithdrawalRouter.getUserDelayedWithdrawals(address(this)).length > 0) {
                delayedWithdrawalRouter.claimDelayedWithdrawals(address(this), maxWithdrawals);
            }
        }
        function validatePhaseTransition(VALIDATOR_PHASE _currentPhase, VALIDATOR_PHASE _newPhase) public pure returns (bool) {
            bool pass;
            // Transition rules
            if (_currentPhase == VALIDATOR_PHASE.NOT_INITIALIZED) {
                pass = (_newPhase == VALIDATOR_PHASE.STAKE_DEPOSITED);
            } else if (_currentPhase == VALIDATOR_PHASE.STAKE_DEPOSITED) {
                pass = (_newPhase == VALIDATOR_PHASE.LIVE || _newPhase == VALIDATOR_PHASE.NOT_INITIALIZED || _newPhase == VALIDATOR_PHASE.WAITING_FOR_APPROVAL);
            } else if (_currentPhase == VALIDATOR_PHASE.WAITING_FOR_APPROVAL) {
                pass = (_newPhase == VALIDATOR_PHASE.LIVE || _newPhase == VALIDATOR_PHASE.NOT_INITIALIZED);
            } else if (_currentPhase == VALIDATOR_PHASE.LIVE) {
                pass = (_newPhase == VALIDATOR_PHASE.EXITED || _newPhase == VALIDATOR_PHASE.BEING_SLASHED);
            } else if (_currentPhase == VALIDATOR_PHASE.BEING_SLASHED) {
                pass = (_newPhase == VALIDATOR_PHASE.EXITED);
            } else if (_currentPhase == VALIDATOR_PHASE.EXITED) {
                pass = (_newPhase == VALIDATOR_PHASE.FULLY_WITHDRAWN);
            } else {
                pass = false;
            }
            require(pass, "INVALID_PHASE_TRANSITION");
            return pass;
        }
        function _onlyEtherFiNodeManagerContract() internal view {
            require(msg.sender == etherFiNodesManager, "INCORRECT_CALLER");
        } 
        //--------------------------------------------------------------------------------------
        //---------------------------------  Signatures-  --------------------------------------
        //--------------------------------------------------------------------------------------
        /**
         * @dev Should return whether the signature provided is valid for the provided data
         * @param _digestHash   Hash of the data to be signed
         * @param _signature Signature byte array associated with _data
        */
        function isValidSignature(bytes32 _digestHash, bytes memory _signature) public view override returns (bytes4 magicValue) {
            (address signer, ) = ECDSA.tryRecover(_digestHash, _signature);
            bool isAdmin = IEtherFiNodesManager(etherFiNodesManager).operatingAdmin(signer);
            return isAdmin ? this.isValidSignature.selector : bytes4(0xffffffff);
        }
        //--------------------------------------------------------------------------------------
        //-----------------------------------  MODIFIERS  --------------------------------------
        //--------------------------------------------------------------------------------------
        modifier onlyEtherFiNodeManagerContract() {
            _onlyEtherFiNodeManagerContract();
            _;
        }
        modifier ensureLatestVersion() {
            require(version == 1, "NEED_TO_MIGRATE");
            _;
        }
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.13;
    import "./IEtherFiNodesManager.sol";
    import "../eigenlayer-interfaces/IDelegationManager.sol";
    interface IEtherFiNode {
        // State Transition Diagram for StateMachine contract:
        //
        //      NOT_INITIALIZED <-
        //              |        |
        //              ↓        |
        //      STAKE_DEPOSITED --
        //           /    \\      |
        //          ↓      ↓     |
        //         LIVE <- WAITING_FOR_APPROVAL
        //         |  \\ 
        //         |   ↓  
        //         |  BEING_SLASHED
        //         |   /
        //         ↓  ↓
        //         EXITED
        //         |
        //         ↓
        //     FULLY_WITHDRAWN
        // 
        // Transitions are only allowed as directed above.
        // For instance, a transition from STAKE_DEPOSITED to either LIVE or CANCELLED is allowed,
        // but a transition from LIVE to NOT_INITIALIZED is not.
        //
        // All phase transitions should be made through the setPhase function,
        // which validates transitions based on these rules.
        //
        enum VALIDATOR_PHASE {
            NOT_INITIALIZED,
            STAKE_DEPOSITED,
            LIVE,
            EXITED,
            FULLY_WITHDRAWN,
            DEPRECATED_CANCELLED,
            BEING_SLASHED,
            DEPRECATED_EVICTED,
            WAITING_FOR_APPROVAL,
            DEPRECATED_READY_FOR_DEPOSIT
        }
        // VIEW functions
        function numAssociatedValidators() external view returns (uint256);
        function numExitRequestsByTnft() external view returns (uint16);
        function numExitedValidators() external view returns (uint16);
        function version() external view returns (uint16);
        function eigenPod() external view returns (address);
        function calculateTVL(uint256 _beaconBalance, IEtherFiNodesManager.ValidatorInfo memory _info, IEtherFiNodesManager.RewardsSplit memory _SRsplits, bool _onlyWithdrawable) external view returns (uint256, uint256, uint256, uint256);
        function getNonExitPenalty(uint32 _tNftExitRequestTimestamp, uint32 _bNftExitRequestTimestamp) external view returns (uint256);
        function getRewardsPayouts(uint32 _exitRequestTimestamp, IEtherFiNodesManager.RewardsSplit memory _splits) external view returns (uint256, uint256, uint256, uint256);
        function getFullWithdrawalPayouts(IEtherFiNodesManager.ValidatorInfo memory _info, IEtherFiNodesManager.RewardsSplit memory _SRsplits) external view returns (uint256, uint256, uint256, uint256);
        function associatedValidatorIds(uint256 _index) external view returns (uint256);
        function associatedValidatorIndices(uint256 _validatorId) external view returns (uint256);
        function validatePhaseTransition(VALIDATOR_PHASE _currentPhase, VALIDATOR_PHASE _newPhase) external pure returns (bool);
        function DEPRECATED_exitRequestTimestamp() external view returns (uint32);
        function DEPRECATED_exitTimestamp() external view returns (uint32);
        function DEPRECATED_phase() external view returns (VALIDATOR_PHASE);
        // Non-VIEW functions
        function initialize(address _etherFiNodesManager) external;
        function DEPRECATED_claimDelayedWithdrawalRouterWithdrawals() external;
        function createEigenPod() external;
        function isRestakingEnabled() external view returns (bool);
        function processNodeExit(uint256 _validatorId) external returns (bytes32[] memory withdrawalRoots);
        function processFullWithdraw(uint256 _validatorId) external;
        function queueEigenpodFullWithdrawal() external returns (bytes32[] memory withdrawalRoots);
        function completeQueuedWithdrawals(IDelegationManager.Withdrawal[] memory withdrawals, uint256[] calldata middlewareTimesIndexes, bool _receiveAsTokens) external;
        function completeQueuedWithdrawal(IDelegationManager.Withdrawal memory withdrawals, uint256 middlewareTimesIndexes, bool _receiveAsTokens) external;
        function updateNumberOfAssociatedValidators(uint16 _up, uint16 _down) external;
        function updateNumExitedValidators(uint16 _up, uint16 _down) external;
        function registerValidator(uint256 _validatorId, bool _enableRestaking) external;
        function unRegisterValidator(uint256 _validatorId, IEtherFiNodesManager.ValidatorInfo memory _info) external returns (bool);
        function splitBalanceInExecutionLayer() external view returns (uint256 _withdrawalSafe, uint256 _eigenPod, uint256 _delayedWithdrawalRouter);
        function totalBalanceInExecutionLayer() external view returns (uint256);
        function withdrawableBalanceInExecutionLayer() external view returns (uint256);
        function updateNumExitRequests(uint16 _up, uint16 _down) external;
        function migrateVersion(uint256 _validatorId, IEtherFiNodesManager.ValidatorInfo memory _info) external;
        function startCheckpoint(bool _revertIfNoBalance) external;
        function setProofSubmitter(address _newProofSubmitter) external;
        function callEigenPod(bytes memory data) external returns (bytes memory);
        function forwardCall(address to, bytes memory data) external returns (bytes memory);
        function withdrawFunds(
            address _treasury,
            uint256 _treasuryAmount,
            address _operator,
            uint256 _operatorAmount,
            address _tnftHolder,
            uint256 _tnftAmount,
            address _bnftHolder,
            uint256 _bnftAmount
        ) external;
        function moveFundsToManager(uint256 _amount) external;
    }
    // SPDX-License-Identifier: MIT
    pragma solidity ^0.8.13;
    import "./IEtherFiNode.sol";
    import "../eigenlayer-interfaces/IEigenPodManager.sol";
    import "../eigenlayer-interfaces/IDelegationManager.sol";
    import "../eigenlayer-interfaces/IDelayedWithdrawalRouter.sol";
    interface IEtherFiNodesManager {
        struct ValidatorInfo {
            uint32 validatorIndex;
            uint32 exitRequestTimestamp;
            uint32 exitTimestamp;
            IEtherFiNode.VALIDATOR_PHASE phase;
        }
        struct RewardsSplit {
            uint64 treasury;
            uint64 nodeOperator;
            uint64 tnft;
            uint64 bnft;
        }
        // VIEW functions
        function delayedWithdrawalRouter() external view returns (IDelayedWithdrawalRouter);
        function eigenPodManager() external view returns (IEigenPodManager);
        function delegationManager() external view returns (IDelegationManager);
        function treasuryContract() external view returns (address);
        function etherfiNodeAddress(uint256 _validatorId) external view returns (address);
        function calculateTVL(uint256 _validatorId, uint256 _beaconBalance) external view returns (uint256, uint256, uint256, uint256);
        function getFullWithdrawalPayouts(uint256 _validatorId) external view returns (uint256, uint256, uint256, uint256);
        function getNonExitPenalty(uint256 _validatorId) external view returns (uint256);
        function getRewardsPayouts(uint256 _validatorId) external view returns (uint256, uint256, uint256, uint256);
        function getWithdrawalCredentials(uint256 _validatorId) external view returns (bytes memory);
        function getValidatorInfo(uint256 _validatorId) external view returns (ValidatorInfo memory);
        function numAssociatedValidators(uint256 _validatorId) external view returns (uint256);
        function phase(uint256 _validatorId) external view returns (IEtherFiNode.VALIDATOR_PHASE phase);
        function generateWithdrawalCredentials(address _address) external view returns (bytes memory);
        function nonExitPenaltyDailyRate() external view returns (uint64);
        function nonExitPenaltyPrincipal() external view returns (uint64);
        function numberOfValidators() external view returns (uint64);
        function maxEigenlayerWithdrawals() external view returns (uint8);
        function admins(address _address) external view returns (bool);
        function operatingAdmin(address _address) external view returns (bool);
        // Non-VIEW functions    
        function updateEtherFiNode(uint256 _validatorId) external;
        function batchQueueRestakedWithdrawal(uint256[] calldata _validatorIds) external;
        function batchSendExitRequest(uint256[] calldata _validatorIds) external;
        function batchFullWithdraw(uint256[] calldata _validatorIds) external;
        function batchPartialWithdraw(uint256[] calldata _validatorIds) external;
        function fullWithdraw(uint256 _validatorId) external;
        function getUnusedWithdrawalSafesLength() external view returns (uint256);
        function incrementNumberOfValidators(uint64 _count) external;
        function markBeingSlashed(uint256[] calldata _validatorIds) external;
        function partialWithdraw(uint256 _validatorId) external;
        function processNodeExit(uint256[] calldata _validatorIds, uint32[] calldata _exitTimestamp) external;
        function allocateEtherFiNode(bool _enableRestaking) external returns (address);
        function registerValidator(uint256 _validatorId, bool _enableRestaking, address _withdrawalSafeAddress) external;
        function setValidatorPhase(uint256 _validatorId, IEtherFiNode.VALIDATOR_PHASE _phase) external;
        function setNonExitPenalty(uint64 _nonExitPenaltyDailyRate, uint64 _nonExitPenaltyPrincipal) external;
        function setStakingRewardsSplit(uint64 _treasury, uint64 _nodeOperator, uint64 _tnft, uint64 _bnf) external;
        function unregisterValidator(uint256 _validatorId) external;
        
        function updateAdmin(address _address, bool _isAdmin) external;
        function pauseContract() external;
        function unPauseContract() external;
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Standard math utilities missing in the Solidity language.
     */
    library Math {
        enum Rounding {
            Down, // Toward negative infinity
            Up, // Toward infinity
            Zero // Toward zero
        }
        /**
         * @dev Returns the largest of two numbers.
         */
        function max(uint256 a, uint256 b) internal pure returns (uint256) {
            return a > b ? a : b;
        }
        /**
         * @dev Returns the smallest of two numbers.
         */
        function min(uint256 a, uint256 b) internal pure returns (uint256) {
            return a < b ? a : b;
        }
        /**
         * @dev Returns the average of two numbers. The result is rounded towards
         * zero.
         */
        function average(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b) / 2 can overflow.
            return (a & b) + (a ^ b) / 2;
        }
        /**
         * @dev Returns the ceiling of the division of two numbers.
         *
         * This differs from standard division with `/` in that it rounds up instead
         * of rounding down.
         */
        function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
            // (a + b - 1) / b can overflow on addition, so we distribute.
            return a == 0 ? 0 : (a - 1) / b + 1;
        }
        /**
         * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
         * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
         * with further edits by Uniswap Labs also under MIT license.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator
        ) internal pure returns (uint256 result) {
            unchecked {
                // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
                // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
                // variables such that product = prod1 * 2^256 + prod0.
                uint256 prod0; // Least significant 256 bits of the product
                uint256 prod1; // Most significant 256 bits of the product
                assembly {
                    let mm := mulmod(x, y, not(0))
                    prod0 := mul(x, y)
                    prod1 := sub(sub(mm, prod0), lt(mm, prod0))
                }
                // Handle non-overflow cases, 256 by 256 division.
                if (prod1 == 0) {
                    return prod0 / denominator;
                }
                // Make sure the result is less than 2^256. Also prevents denominator == 0.
                require(denominator > prod1);
                ///////////////////////////////////////////////
                // 512 by 256 division.
                ///////////////////////////////////////////////
                // Make division exact by subtracting the remainder from [prod1 prod0].
                uint256 remainder;
                assembly {
                    // Compute remainder using mulmod.
                    remainder := mulmod(x, y, denominator)
                    // Subtract 256 bit number from 512 bit number.
                    prod1 := sub(prod1, gt(remainder, prod0))
                    prod0 := sub(prod0, remainder)
                }
                // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
                // See https://cs.stackexchange.com/q/138556/92363.
                // Does not overflow because the denominator cannot be zero at this stage in the function.
                uint256 twos = denominator & (~denominator + 1);
                assembly {
                    // Divide denominator by twos.
                    denominator := div(denominator, twos)
                    // Divide [prod1 prod0] by twos.
                    prod0 := div(prod0, twos)
                    // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                    twos := add(div(sub(0, twos), twos), 1)
                }
                // Shift in bits from prod1 into prod0.
                prod0 |= prod1 * twos;
                // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
                // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
                // four bits. That is, denominator * inv = 1 mod 2^4.
                uint256 inverse = (3 * denominator) ^ 2;
                // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
                // in modular arithmetic, doubling the correct bits in each step.
                inverse *= 2 - denominator * inverse; // inverse mod 2^8
                inverse *= 2 - denominator * inverse; // inverse mod 2^16
                inverse *= 2 - denominator * inverse; // inverse mod 2^32
                inverse *= 2 - denominator * inverse; // inverse mod 2^64
                inverse *= 2 - denominator * inverse; // inverse mod 2^128
                inverse *= 2 - denominator * inverse; // inverse mod 2^256
                // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
                // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
                // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
                // is no longer required.
                result = prod0 * inverse;
                return result;
            }
        }
        /**
         * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
         */
        function mulDiv(
            uint256 x,
            uint256 y,
            uint256 denominator,
            Rounding rounding
        ) internal pure returns (uint256) {
            uint256 result = mulDiv(x, y, denominator);
            if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
                result += 1;
            }
            return result;
        }
        /**
         * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
         *
         * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
         */
        function sqrt(uint256 a) internal pure returns (uint256) {
            if (a == 0) {
                return 0;
            }
            // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
            //
            // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
            // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
            //
            // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
            // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
            // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
            //
            // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
            uint256 result = 1 << (log2(a) >> 1);
            // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
            // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
            // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
            // into the expected uint128 result.
            unchecked {
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                result = (result + a / result) >> 1;
                return min(result, a / result);
            }
        }
        /**
         * @notice Calculates sqrt(a), following the selected rounding direction.
         */
        function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = sqrt(a);
                return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 2, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 128;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 64;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 32;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 16;
                }
                if (value >> 8 > 0) {
                    value >>= 8;
                    result += 8;
                }
                if (value >> 4 > 0) {
                    value >>= 4;
                    result += 4;
                }
                if (value >> 2 > 0) {
                    value >>= 2;
                    result += 2;
                }
                if (value >> 1 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log2(value);
                return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 10, rounded down, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >= 10**64) {
                    value /= 10**64;
                    result += 64;
                }
                if (value >= 10**32) {
                    value /= 10**32;
                    result += 32;
                }
                if (value >= 10**16) {
                    value /= 10**16;
                    result += 16;
                }
                if (value >= 10**8) {
                    value /= 10**8;
                    result += 8;
                }
                if (value >= 10**4) {
                    value /= 10**4;
                    result += 4;
                }
                if (value >= 10**2) {
                    value /= 10**2;
                    result += 2;
                }
                if (value >= 10**1) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log10(value);
                return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
            }
        }
        /**
         * @dev Return the log in base 256, rounded down, of a positive value.
         * Returns 0 if given 0.
         *
         * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
         */
        function log256(uint256 value) internal pure returns (uint256) {
            uint256 result = 0;
            unchecked {
                if (value >> 128 > 0) {
                    value >>= 128;
                    result += 16;
                }
                if (value >> 64 > 0) {
                    value >>= 64;
                    result += 8;
                }
                if (value >> 32 > 0) {
                    value >>= 32;
                    result += 4;
                }
                if (value >> 16 > 0) {
                    value >>= 16;
                    result += 2;
                }
                if (value >> 8 > 0) {
                    result += 1;
                }
            }
            return result;
        }
        /**
         * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
         * Returns 0 if given 0.
         */
        function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
            unchecked {
                uint256 result = log256(value);
                return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (proxy/beacon/IBeacon.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev This is the interface that {BeaconProxy} expects of its beacon.
     */
    interface IBeacon {
        /**
         * @dev Must return an address that can be used as a delegate call target.
         *
         * {BeaconProxy} will check that this address is a contract.
         */
        function implementation() external view returns (address);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
    pragma solidity ^0.8.1;
    /**
     * @dev Collection of functions related to the address type
     */
    library Address {
        /**
         * @dev Returns true if `account` is a contract.
         *
         * [IMPORTANT]
         * ====
         * It is unsafe to assume that an address for which this function returns
         * false is an externally-owned account (EOA) and not a contract.
         *
         * Among others, `isContract` will return false for the following
         * types of addresses:
         *
         *  - an externally-owned account
         *  - a contract in construction
         *  - an address where a contract will be created
         *  - an address where a contract lived, but was destroyed
         * ====
         *
         * [IMPORTANT]
         * ====
         * You shouldn't rely on `isContract` to protect against flash loan attacks!
         *
         * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
         * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
         * constructor.
         * ====
         */
        function isContract(address account) internal view returns (bool) {
            // This method relies on extcodesize/address.code.length, which returns 0
            // for contracts in construction, since the code is only stored at the end
            // of the constructor execution.
            return account.code.length > 0;
        }
        /**
         * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
         * `recipient`, forwarding all available gas and reverting on errors.
         *
         * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
         * of certain opcodes, possibly making contracts go over the 2300 gas limit
         * imposed by `transfer`, making them unable to receive funds via
         * `transfer`. {sendValue} removes this limitation.
         *
         * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
         *
         * IMPORTANT: because control is transferred to `recipient`, care must be
         * taken to not create reentrancy vulnerabilities. Consider using
         * {ReentrancyGuard} or the
         * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
         */
        function sendValue(address payable recipient, uint256 amount) internal {
            require(address(this).balance >= amount, "Address: insufficient balance");
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "Address: unable to send value, recipient may have reverted");
        }
        /**
         * @dev Performs a Solidity function call using a low level `call`. A
         * plain `call` is an unsafe replacement for a function call: use this
         * function instead.
         *
         * If `target` reverts with a revert reason, it is bubbled up by this
         * function (like regular Solidity function calls).
         *
         * Returns the raw returned data. To convert to the expected return value,
         * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
         *
         * Requirements:
         *
         * - `target` must be a contract.
         * - calling `target` with `data` must not revert.
         *
         * _Available since v3.1._
         */
        function functionCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, "Address: low-level call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
         * `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, 0, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but also transferring `value` wei to `target`.
         *
         * Requirements:
         *
         * - the calling contract must have an ETH balance of at least `value`.
         * - the called Solidity function must be `payable`.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value
        ) internal returns (bytes memory) {
            return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
        }
        /**
         * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
         * with `errorMessage` as a fallback revert reason when `target` reverts.
         *
         * _Available since v3.1._
         */
        function functionCallWithValue(
            address target,
            bytes memory data,
            uint256 value,
            string memory errorMessage
        ) internal returns (bytes memory) {
            require(address(this).balance >= value, "Address: insufficient balance for call");
            (bool success, bytes memory returndata) = target.call{value: value}(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
            return functionStaticCall(target, data, "Address: low-level static call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a static call.
         *
         * _Available since v3.3._
         */
        function functionStaticCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            (bool success, bytes memory returndata) = target.staticcall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
            return functionDelegateCall(target, data, "Address: low-level delegate call failed");
        }
        /**
         * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
         * but performing a delegate call.
         *
         * _Available since v3.4._
         */
        function functionDelegateCall(
            address target,
            bytes memory data,
            string memory errorMessage
        ) internal returns (bytes memory) {
            (bool success, bytes memory returndata) = target.delegatecall(data);
            return verifyCallResultFromTarget(target, success, returndata, errorMessage);
        }
        /**
         * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
         * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
         *
         * _Available since v4.8._
         */
        function verifyCallResultFromTarget(
            address target,
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal view returns (bytes memory) {
            if (success) {
                if (returndata.length == 0) {
                    // only check isContract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    require(isContract(target), "Address: call to non-contract");
                }
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        /**
         * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
         * revert reason or using the provided one.
         *
         * _Available since v4.3._
         */
        function verifyCallResult(
            bool success,
            bytes memory returndata,
            string memory errorMessage
        ) internal pure returns (bytes memory) {
            if (success) {
                return returndata;
            } else {
                _revert(returndata, errorMessage);
            }
        }
        function _revert(bytes memory returndata, string memory errorMessage) private pure {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly
                /// @solidity memory-safe-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts v4.4.1 (interfaces/IERC1271.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC1271 standard signature validation method for
     * contracts as defined in https://eips.ethereum.org/EIPS/eip-1271[ERC-1271].
     *
     * _Available since v4.1._
     */
    interface IERC1271 {
        /**
         * @dev Should return whether the signature provided is valid for the provided data
         * @param hash      Hash of the data to be signed
         * @param signature Signature byte array associated with _data
         */
        function isValidSignature(bytes32 hash, bytes memory signature) external view returns (bytes4 magicValue);
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/ECDSA.sol)
    pragma solidity ^0.8.0;
    import "../Strings.sol";
    /**
     * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations.
     *
     * These functions can be used to verify that a message was signed by the holder
     * of the private keys of a given address.
     */
    library ECDSA {
        enum RecoverError {
            NoError,
            InvalidSignature,
            InvalidSignatureLength,
            InvalidSignatureS,
            InvalidSignatureV // Deprecated in v4.8
        }
        function _throwError(RecoverError error) private pure {
            if (error == RecoverError.NoError) {
                return; // no error: do nothing
            } else if (error == RecoverError.InvalidSignature) {
                revert("ECDSA: invalid signature");
            } else if (error == RecoverError.InvalidSignatureLength) {
                revert("ECDSA: invalid signature length");
            } else if (error == RecoverError.InvalidSignatureS) {
                revert("ECDSA: invalid signature 's' value");
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature` or error string. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         *
         * Documentation for signature generation:
         * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js]
         * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers]
         *
         * _Available since v4.3._
         */
        function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError) {
            if (signature.length == 65) {
                bytes32 r;
                bytes32 s;
                uint8 v;
                // ecrecover takes the signature parameters, and the only way to get them
                // currently is to use assembly.
                /// @solidity memory-safe-assembly
                assembly {
                    r := mload(add(signature, 0x20))
                    s := mload(add(signature, 0x40))
                    v := byte(0, mload(add(signature, 0x60)))
                }
                return tryRecover(hash, v, r, s);
            } else {
                return (address(0), RecoverError.InvalidSignatureLength);
            }
        }
        /**
         * @dev Returns the address that signed a hashed message (`hash`) with
         * `signature`. This address can then be used for verification purposes.
         *
         * The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
         * this function rejects them by requiring the `s` value to be in the lower
         * half order, and the `v` value to be either 27 or 28.
         *
         * IMPORTANT: `hash` _must_ be the result of a hash operation for the
         * verification to be secure: it is possible to craft signatures that
         * recover to arbitrary addresses for non-hashed data. A safe way to ensure
         * this is by receiving a hash of the original message (which may otherwise
         * be too long), and then calling {toEthSignedMessageHash} on it.
         */
        function recover(bytes32 hash, bytes memory signature) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, signature);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately.
         *
         * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures]
         *
         * _Available since v4.3._
         */
        function tryRecover(
            bytes32 hash,
            bytes32 r,
            bytes32 vs
        ) internal pure returns (address, RecoverError) {
            bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff);
            uint8 v = uint8((uint256(vs) >> 255) + 27);
            return tryRecover(hash, v, r, s);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately.
         *
         * _Available since v4.2._
         */
        function recover(
            bytes32 hash,
            bytes32 r,
            bytes32 vs
        ) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, r, vs);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Overload of {ECDSA-tryRecover} that receives the `v`,
         * `r` and `s` signature fields separately.
         *
         * _Available since v4.3._
         */
        function tryRecover(
            bytes32 hash,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal pure returns (address, RecoverError) {
            // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
            // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
            // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most
            // signatures from current libraries generate a unique signature with an s-value in the lower half order.
            //
            // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
            // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
            // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
            // these malleable signatures as well.
            if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) {
                return (address(0), RecoverError.InvalidSignatureS);
            }
            // If the signature is valid (and not malleable), return the signer address
            address signer = ecrecover(hash, v, r, s);
            if (signer == address(0)) {
                return (address(0), RecoverError.InvalidSignature);
            }
            return (signer, RecoverError.NoError);
        }
        /**
         * @dev Overload of {ECDSA-recover} that receives the `v`,
         * `r` and `s` signature fields separately.
         */
        function recover(
            bytes32 hash,
            uint8 v,
            bytes32 r,
            bytes32 s
        ) internal pure returns (address) {
            (address recovered, RecoverError error) = tryRecover(hash, v, r, s);
            _throwError(error);
            return recovered;
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from a `hash`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes32 hash) internal pure returns (bytes32) {
            // 32 is the length in bytes of hash,
            // enforced by the type signature above
            return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
    32", hash));
        }
        /**
         * @dev Returns an Ethereum Signed Message, created from `s`. This
         * produces hash corresponding to the one signed with the
         * https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`]
         * JSON-RPC method as part of EIP-191.
         *
         * See {recover}.
         */
        function toEthSignedMessageHash(bytes memory s) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19Ethereum Signed Message:\
    ", Strings.toString(s.length), s));
        }
        /**
         * @dev Returns an Ethereum Signed Typed Data, created from a
         * `domainSeparator` and a `structHash`. This produces hash corresponding
         * to the one signed with the
         * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`]
         * JSON-RPC method as part of EIP-712.
         *
         * See {recover}.
         */
        function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32) {
            return keccak256(abi.encodePacked("\\x19\\x01", domainSeparator, structHash));
        }
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    import "@openzeppelin/contracts/proxy/beacon/IBeacon.sol";
    import "./IETHPOSDeposit.sol";
    import "./IStrategyManager.sol";
    import "./IEigenPod.sol";
    import "./IBeaconChainOracle.sol";
    import "./IPausable.sol";
    import "./ISlasher.sol";
    import "./IStrategy.sol";
    /**
     * @title Interface for factory that creates and manages solo staking pods that have their withdrawal credentials pointed to EigenLayer.
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     */
    interface IEigenPodManager is IPausable {
        /// @notice Emitted to notify the update of the beaconChainOracle address
        event BeaconOracleUpdated(address indexed newOracleAddress);
        /// @notice Emitted to notify the deployment of an EigenPod
        event PodDeployed(address indexed eigenPod, address indexed podOwner);
        /// @notice Emitted to notify a deposit of beacon chain ETH recorded in the strategy manager
        event BeaconChainETHDeposited(address indexed podOwner, uint256 amount);
        /// @notice Emitted when the balance of an EigenPod is updated
        event PodSharesUpdated(address indexed podOwner, int256 sharesDelta);
        /// @notice Emitted when a withdrawal of beacon chain ETH is completed
        event BeaconChainETHWithdrawalCompleted(
            address indexed podOwner,
            uint256 shares,
            uint96 nonce,
            address delegatedAddress,
            address withdrawer,
            bytes32 withdrawalRoot
        );
        event DenebForkTimestampUpdated(uint64 newValue);
        /**
         * @notice Creates an EigenPod for the sender.
         * @dev Function will revert if the `msg.sender` already has an EigenPod.
         * @dev Returns EigenPod address 
         */
        function createPod() external returns (address);
        /**
         * @notice Stakes for a new beacon chain validator on the sender's EigenPod.
         * Also creates an EigenPod for the sender if they don't have one already.
         * @param pubkey The 48 bytes public key of the beacon chain validator.
         * @param signature The validator's signature of the deposit data.
         * @param depositDataRoot The root/hash of the deposit data for the validator's deposit.
         */
        function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable;
        /**
         * @notice Changes the `podOwner`'s shares by `sharesDelta` and performs a call to the DelegationManager
         * to ensure that delegated shares are also tracked correctly
         * @param podOwner is the pod owner whose balance is being updated.
         * @param sharesDelta is the change in podOwner's beaconChainETHStrategy shares
         * @dev Callable only by the podOwner's EigenPod contract.
         * @dev Reverts if `sharesDelta` is not a whole Gwei amount
         */
        function recordBeaconChainETHBalanceUpdate(address podOwner, int256 sharesDelta) external;
        /**
         * @notice Updates the oracle contract that provides the beacon chain state root
         * @param newBeaconChainOracle is the new oracle contract being pointed to
         * @dev Callable only by the owner of this contract (i.e. governance)
         */
        function updateBeaconChainOracle(IBeaconChainOracle newBeaconChainOracle) external;
        /// @notice Returns the address of the `podOwner`'s EigenPod if it has been deployed.
        function ownerToPod(address podOwner) external view returns (IEigenPod);
        /// @notice Returns the address of the `podOwner`'s EigenPod (whether it is deployed yet or not).
        function getPod(address podOwner) external view returns (IEigenPod);
        /// @notice The ETH2 Deposit Contract
        function ethPOS() external view returns (IETHPOSDeposit);
        /// @notice Beacon proxy to which the EigenPods point
        function eigenPodBeacon() external view returns (IBeacon);
        /// @notice Oracle contract that provides updates to the beacon chain's state
        function beaconChainOracle() external view returns (IBeaconChainOracle);
        /// @notice Returns the beacon block root at `timestamp`. Reverts if the Beacon block root at `timestamp` has not yet been finalized.
        function getBlockRootAtTimestamp(uint64 timestamp) external view returns (bytes32);
        /// @notice EigenLayer's StrategyManager contract
        function strategyManager() external view returns (IStrategyManager);
        /// @notice EigenLayer's Slasher contract
        function slasher() external view returns (ISlasher);
        /// @notice Returns 'true' if the `podOwner` has created an EigenPod, and 'false' otherwise.
        function hasPod(address podOwner) external view returns (bool);
        /// @notice Returns the number of EigenPods that have been created
        function numPods() external view returns (uint256);
        /**
         * @notice Mapping from Pod owner owner to the number of shares they have in the virtual beacon chain ETH strategy.
         * @dev The share amount can become negative. This is necessary to accommodate the fact that a pod owner's virtual beacon chain ETH shares can
         * decrease between the pod owner queuing and completing a withdrawal.
         * When the pod owner's shares would otherwise increase, this "deficit" is decreased first _instead_.
         * Likewise, when a withdrawal is completed, this "deficit" is decreased and the withdrawal amount is decreased; We can think of this
         * as the withdrawal "paying off the deficit".
         */
        function podOwnerShares(address podOwner) external view returns (int256);
        /// @notice returns canonical, virtual beaconChainETH strategy
        function beaconChainETHStrategy() external view returns (IStrategy);
        /**
         * @notice Used by the DelegationManager to remove a pod owner's shares while they're in the withdrawal queue.
         * Simply decreases the `podOwner`'s shares by `shares`, down to a minimum of zero.
         * @dev This function reverts if it would result in `podOwnerShares[podOwner]` being less than zero, i.e. it is forbidden for this function to
         * result in the `podOwner` incurring a "share deficit". This behavior prevents a Staker from queuing a withdrawal which improperly removes excessive
         * shares from the operator to whom the staker is delegated.
         * @dev Reverts if `shares` is not a whole Gwei amount
         */
        function removeShares(address podOwner, uint256 shares) external;
        /**
         * @notice Increases the `podOwner`'s shares by `shares`, paying off deficit if possible.
         * Used by the DelegationManager to award a pod owner shares on exiting the withdrawal queue
         * @dev Returns the number of shares added to `podOwnerShares[podOwner]` above zero, which will be less than the `shares` input
         * in the event that the podOwner has an existing shares deficit (i.e. `podOwnerShares[podOwner]` starts below zero)
         * @dev Reverts if `shares` is not a whole Gwei amount
         */
        function addShares(address podOwner, uint256 shares) external returns (uint256);
        /**
         * @notice Used by the DelegationManager to complete a withdrawal, sending tokens to some destination address
         * @dev Prioritizes decreasing the podOwner's share deficit, if they have one
         * @dev Reverts if `shares` is not a whole Gwei amount
         */
        function withdrawSharesAsTokens(address podOwner, address destination, uint256 shares) external;
        /**
         * @notice the deneb hard fork timestamp used to determine which proof path to use for proving a withdrawal
         */
        function denebForkTimestamp() external view returns (uint64);
         /**
         * setting the deneb hard fork timestamp by the eigenPodManager owner
         * @dev this function is designed to be called twice.  Once, it is set to type(uint64).max 
         * prior to the actual deneb fork timestamp being set, and then the second time it is set 
         * to the actual deneb fork timestamp.
         */
        function setDenebForkTimestamp(uint64 newDenebForkTimestamp) external;
        function owner() external returns (address);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    interface IDelayedWithdrawalRouter {
        // struct used to pack data into a single storage slot
        struct DelayedWithdrawal {
            uint224 amount;
            uint32 blockCreated;
        }
        // struct used to store a single users delayedWithdrawal data
        struct UserDelayedWithdrawals {
            uint256 delayedWithdrawalsCompleted;
            DelayedWithdrawal[] delayedWithdrawals;
        }
         /// @notice event for delayedWithdrawal creation
        event DelayedWithdrawalCreated(address podOwner, address recipient, uint256 amount, uint256 index);
        /// @notice event for the claiming of delayedWithdrawals
        event DelayedWithdrawalsClaimed(address recipient, uint256 amountClaimed, uint256 delayedWithdrawalsCompleted);
        /// @notice Emitted when the `withdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`.
        event WithdrawalDelayBlocksSet(uint256 previousValue, uint256 newValue);
        /**
         * @notice Creates an delayed withdrawal for `msg.value` to the `recipient`.
         * @dev Only callable by the `podOwner`'s EigenPod contract.
         */
        function createDelayedWithdrawal(address podOwner, address recipient) external payable;
        /**
         * @notice Called in order to withdraw delayed withdrawals made to the `recipient` that have passed the `withdrawalDelayBlocks` period.
         * @param recipient The address to claim delayedWithdrawals for.
         * @param maxNumberOfWithdrawalsToClaim Used to limit the maximum number of withdrawals to loop through claiming.
         */
        function claimDelayedWithdrawals(address recipient, uint256 maxNumberOfWithdrawalsToClaim) external;
        /**
         * @notice Called in order to withdraw delayed withdrawals made to the caller that have passed the `withdrawalDelayBlocks` period.
         * @param maxNumberOfWithdrawalsToClaim Used to limit the maximum number of withdrawals to loop through claiming.
         */
        function claimDelayedWithdrawals(uint256 maxNumberOfWithdrawalsToClaim) external;
        /// @notice Owner-only function for modifying the value of the `withdrawalDelayBlocks` variable.
        function setWithdrawalDelayBlocks(uint256 newValue) external;
        /// @notice Getter function for the mapping `_userWithdrawals`
        function userWithdrawals(address user) external view returns (UserDelayedWithdrawals memory);
        /// @notice Getter function to get all delayedWithdrawals of the `user`
        function getUserDelayedWithdrawals(address user) external view returns (DelayedWithdrawal[] memory);
        /// @notice Getter function to get all delayedWithdrawals that are currently claimable by the `user`
        function getClaimableUserDelayedWithdrawals(address user) external view returns (DelayedWithdrawal[] memory);
        /// @notice Getter function for fetching the delayedWithdrawal at the `index`th entry from the `_userWithdrawals[user].delayedWithdrawals` array
        function userDelayedWithdrawalByIndex(address user, uint256 index) external view returns (DelayedWithdrawal memory);
        /// @notice Getter function for fetching the length of the delayedWithdrawals array of a specific user
        function userWithdrawalsLength(address user) external view returns (uint256);
        /// @notice Convenience function for checking whether or not the delayedWithdrawal at the `index`th entry from the `_userWithdrawals[user].delayedWithdrawals` array is currently claimable
        function canClaimDelayedWithdrawal(address user, uint256 index) external view returns (bool);
        /**
         * @notice Delay enforced by this contract for completing any delayedWithdrawal. Measured in blocks, and adjustable by this contract's owner,
         * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced).
         */
        function withdrawalDelayBlocks() external view returns (uint256);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    import "./IStrategy.sol";
    import "./ISignatureUtils.sol";
    import "./IStrategyManager.sol";
    /**
     * @title DelegationManager
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     * @notice  This is the contract for delegation in EigenLayer. The main functionalities of this contract are
     * - enabling anyone to register as an operator in EigenLayer
     * - allowing operators to specify parameters related to stakers who delegate to them
     * - enabling any staker to delegate its stake to the operator of its choice (a given staker can only delegate to a single operator at a time)
     * - enabling a staker to undelegate its assets from the operator it is delegated to (performed as part of the withdrawal process, initiated through the StrategyManager)
     */
    interface IDelegationManager is ISignatureUtils {
        // @notice Struct used for storing information about a single operator who has registered with EigenLayer
        struct OperatorDetails {
            // @notice address to receive the rewards that the operator earns via serving applications built on EigenLayer.
            address earningsReceiver;
            /**
             * @notice Address to verify signatures when a staker wishes to delegate to the operator, as well as controlling "forced undelegations".
             * @dev Signature verification follows these rules:
             * 1) If this address is left as address(0), then any staker will be free to delegate to the operator, i.e. no signature verification will be performed.
             * 2) If this address is an EOA (i.e. it has no code), then we follow standard ECDSA signature verification for delegations to the operator.
             * 3) If this address is a contract (i.e. it has code) then we forward a call to the contract and verify that it returns the correct EIP-1271 "magic value".
             */
            address delegationApprover;
            /**
             * @notice A minimum delay -- measured in blocks -- enforced between:
             * 1) the operator signalling their intent to register for a service, via calling `Slasher.optIntoSlashing`
             * and
             * 2) the operator completing registration for the service, via the service ultimately calling `Slasher.recordFirstStakeUpdate`
             * @dev note that for a specific operator, this value *cannot decrease*, i.e. if the operator wishes to modify their OperatorDetails,
             * then they are only allowed to either increase this value or keep it the same.
             */
            uint32 stakerOptOutWindowBlocks;
        }
        /**
         * @notice Abstract struct used in calculating an EIP712 signature for a staker to approve that they (the staker themselves) delegate to a specific operator.
         * @dev Used in computing the `STAKER_DELEGATION_TYPEHASH` and as a reference in the computation of the stakerDigestHash in the `delegateToBySignature` function.
         */
        struct StakerDelegation {
            // the staker who is delegating
            address staker;
            // the operator being delegated to
            address operator;
            // the staker's nonce
            uint256 nonce;
            // the expiration timestamp (UTC) of the signature
            uint256 expiry;
        }
        /**
         * @notice Abstract struct used in calculating an EIP712 signature for an operator's delegationApprover to approve that a specific staker delegate to the operator.
         * @dev Used in computing the `DELEGATION_APPROVAL_TYPEHASH` and as a reference in the computation of the approverDigestHash in the `_delegate` function.
         */
        struct DelegationApproval {
            // the staker who is delegating
            address staker;
            // the operator being delegated to
            address operator;
            // the operator's provided salt
            bytes32 salt;
            // the expiration timestamp (UTC) of the signature
            uint256 expiry;
        }
        /**
         * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored.
         * In functions that operate on existing queued withdrawals -- e.g. completeQueuedWithdrawal`, the data is resubmitted and the hash of the submitted
         * data is computed by `calculateWithdrawalRoot` and checked against the stored hash in order to confirm the integrity of the submitted data.
         */
        struct Withdrawal {
            // The address that originated the Withdrawal
            address staker;
            // The address that the staker was delegated to at the time that the Withdrawal was created
            address delegatedTo;
            // The address that can complete the Withdrawal + will receive funds when completing the withdrawal
            address withdrawer;
            // Nonce used to guarantee that otherwise identical withdrawals have unique hashes
            uint256 nonce;
            // Block number when the Withdrawal was created
            uint32 startBlock;
            // Array of strategies that the Withdrawal contains
            IStrategy[] strategies;
            // Array containing the amount of shares in each Strategy in the `strategies` array
            uint256[] shares;
        }
        struct QueuedWithdrawalParams {
            // Array of strategies that the QueuedWithdrawal contains
            IStrategy[] strategies;
            // Array containing the amount of shares in each Strategy in the `strategies` array
            uint256[] shares;
            // The address of the withdrawer
            address withdrawer;
        }
        // @notice Emitted when a new operator registers in EigenLayer and provides their OperatorDetails.
        event OperatorRegistered(address indexed operator, OperatorDetails operatorDetails);
        /// @notice Emitted when an operator updates their OperatorDetails to @param newOperatorDetails
        event OperatorDetailsModified(address indexed operator, OperatorDetails newOperatorDetails);
        /**
         * @notice Emitted when @param operator indicates that they are updating their MetadataURI string
         * @dev Note that these strings are *never stored in storage* and are instead purely emitted in events for off-chain indexing
         */
        event OperatorMetadataURIUpdated(address indexed operator, string metadataURI);
        /// @notice Emitted whenever an operator's shares are increased for a given strategy. Note that shares is the delta in the operator's shares.
        event OperatorSharesIncreased(address indexed operator, address staker, IStrategy strategy, uint256 shares);
        /// @notice Emitted whenever an operator's shares are decreased for a given strategy. Note that shares is the delta in the operator's shares.
        event OperatorSharesDecreased(address indexed operator, address staker, IStrategy strategy, uint256 shares);
        /// @notice Emitted when @param staker delegates to @param operator.
        event StakerDelegated(address indexed staker, address indexed operator);
        /// @notice Emitted when @param staker undelegates from @param operator.
        event StakerUndelegated(address indexed staker, address indexed operator);
        /// @notice Emitted when @param staker is undelegated via a call not originating from the staker themself
        event StakerForceUndelegated(address indexed staker, address indexed operator);
        /**
         * @notice Emitted when a new withdrawal is queued.
         * @param withdrawalRoot Is the hash of the `withdrawal`.
         * @param withdrawal Is the withdrawal itself.
         */
        event WithdrawalQueued(bytes32 withdrawalRoot, Withdrawal withdrawal);
        /// @notice Emitted when a queued withdrawal is completed
        event WithdrawalCompleted(bytes32 withdrawalRoot);
        /// @notice Emitted when a queued withdrawal is *migrated* from the StrategyManager to the DelegationManager
        event WithdrawalMigrated(bytes32 oldWithdrawalRoot, bytes32 newWithdrawalRoot);
        
        /// @notice Emitted when the `minWithdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`.
        event MinWithdrawalDelayBlocksSet(uint256 previousValue, uint256 newValue);
        /// @notice Emitted when the `strategyWithdrawalDelayBlocks` variable is modified from `previousValue` to `newValue`.
        event StrategyWithdrawalDelayBlocksSet(IStrategy strategy, uint256 previousValue, uint256 newValue);
        /**
         * @notice Registers the caller as an operator in EigenLayer.
         * @param registeringOperatorDetails is the `OperatorDetails` for the operator.
         * @param metadataURI is a URI for the operator's metadata, i.e. a link providing more details on the operator.
         *
         * @dev Once an operator is registered, they cannot 'deregister' as an operator, and they will forever be considered "delegated to themself".
         * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0).
         * @dev Note that the `metadataURI` is *never stored * and is only emitted in the `OperatorMetadataURIUpdated` event
         */
        function registerAsOperator(
            OperatorDetails calldata registeringOperatorDetails,
            string calldata metadataURI
        ) external;
        /**
         * @notice Updates an operator's stored `OperatorDetails`.
         * @param newOperatorDetails is the updated `OperatorDetails` for the operator, to replace their current OperatorDetails`.
         *
         * @dev The caller must have previously registered as an operator in EigenLayer.
         * @dev This function will revert if the caller attempts to set their `earningsReceiver` to address(0).
         */
        function modifyOperatorDetails(OperatorDetails calldata newOperatorDetails) external;
        /**
         * @notice Called by an operator to emit an `OperatorMetadataURIUpdated` event indicating the information has updated.
         * @param metadataURI The URI for metadata associated with an operator
         * @dev Note that the `metadataURI` is *never stored * and is only emitted in the `OperatorMetadataURIUpdated` event
         */
        function updateOperatorMetadataURI(string calldata metadataURI) external;
        /**
         * @notice Caller delegates their stake to an operator.
         * @param operator The account (`msg.sender`) is delegating its assets to for use in serving applications built on EigenLayer.
         * @param approverSignatureAndExpiry Verifies the operator approves of this delegation
         * @param approverSalt A unique single use value tied to an individual signature.
         * @dev The approverSignatureAndExpiry is used in the event that:
         *          1) the operator's `delegationApprover` address is set to a non-zero value.
         *                  AND
         *          2) neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator
         *             or their delegationApprover is the `msg.sender`, then approval is assumed.
         * @dev In the event that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input
         * in this case to save on complexity + gas costs
         */
        function delegateTo(
            address operator,
            SignatureWithExpiry memory approverSignatureAndExpiry,
            bytes32 approverSalt
        ) external;
        /**
         * @notice Caller delegates a staker's stake to an operator with valid signatures from both parties.
         * @param staker The account delegating stake to an `operator` account
         * @param operator The account (`staker`) is delegating its assets to for use in serving applications built on EigenLayer.
         * @param stakerSignatureAndExpiry Signed data from the staker authorizing delegating stake to an operator
         * @param approverSignatureAndExpiry is a parameter that will be used for verifying that the operator approves of this delegation action in the event that:
         * @param approverSalt Is a salt used to help guarantee signature uniqueness. Each salt can only be used once by a given approver.
         *
         * @dev If `staker` is an EOA, then `stakerSignature` is verified to be a valid ECDSA stakerSignature from `staker`, indicating their intention for this action.
         * @dev If `staker` is a contract, then `stakerSignature` will be checked according to EIP-1271.
         * @dev the operator's `delegationApprover` address is set to a non-zero value.
         * @dev neither the operator nor their `delegationApprover` is the `msg.sender`, since in the event that the operator or their delegationApprover
         * is the `msg.sender`, then approval is assumed.
         * @dev This function will revert if the current `block.timestamp` is equal to or exceeds the expiry
         * @dev In the case that `approverSignatureAndExpiry` is not checked, its content is ignored entirely; it's recommended to use an empty input
         * in this case to save on complexity + gas costs
         */
        function delegateToBySignature(
            address staker,
            address operator,
            SignatureWithExpiry memory stakerSignatureAndExpiry,
            SignatureWithExpiry memory approverSignatureAndExpiry,
            bytes32 approverSalt
        ) external;
        /**
         * @notice Undelegates the staker from the operator who they are delegated to. Puts the staker into the "undelegation limbo" mode of the EigenPodManager
         * and queues a withdrawal of all of the staker's shares in the StrategyManager (to the staker), if necessary.
         * @param staker The account to be undelegated.
         * @return withdrawalRoot The root of the newly queued withdrawal, if a withdrawal was queued. Otherwise just bytes32(0).
         *
         * @dev Reverts if the `staker` is also an operator, since operators are not allowed to undelegate from themselves.
         * @dev Reverts if the caller is not the staker, nor the operator who the staker is delegated to, nor the operator's specified "delegationApprover"
         * @dev Reverts if the `staker` is already undelegated.
         */
        function undelegate(address staker) external returns (bytes32[] memory withdrawalRoot);
        /**
         * Allows a staker to withdraw some shares. Withdrawn shares/strategies are immediately removed
         * from the staker. If the staker is delegated, withdrawn shares/strategies are also removed from
         * their operator.
         *
         * All withdrawn shares/strategies are placed in a queue and can be fully withdrawn after a delay.
         */
        function queueWithdrawals(
            QueuedWithdrawalParams[] calldata queuedWithdrawalParams
        ) external returns (bytes32[] memory);
        /**
         * @notice Used to complete the specified `withdrawal`. The caller must match `withdrawal.withdrawer`
         * @param withdrawal The Withdrawal to complete.
         * @param tokens Array in which the i-th entry specifies the `token` input to the 'withdraw' function of the i-th Strategy in the `withdrawal.strategies` array.
         * This input can be provided with zero length if `receiveAsTokens` is set to 'false' (since in that case, this input will be unused)
         * @param middlewareTimesIndex is the index in the operator that the staker who triggered the withdrawal was delegated to's middleware times array
         * @param receiveAsTokens If true, the shares specified in the withdrawal will be withdrawn from the specified strategies themselves
         * and sent to the caller, through calls to `withdrawal.strategies[i].withdraw`. If false, then the shares in the specified strategies
         * will simply be transferred to the caller directly.
         * @dev middlewareTimesIndex should be calculated off chain before calling this function by finding the first index that satisfies `slasher.canWithdraw`
         * @dev beaconChainETHStrategy shares are non-transferrable, so if `receiveAsTokens = false` and `withdrawal.withdrawer != withdrawal.staker`, note that
         * any beaconChainETHStrategy shares in the `withdrawal` will be _returned to the staker_, rather than transferred to the withdrawer, unlike shares in
         * any other strategies, which will be transferred to the withdrawer.
         */
        function completeQueuedWithdrawal(
            Withdrawal calldata withdrawal,
            IERC20[] calldata tokens,
            uint256 middlewareTimesIndex,
            bool receiveAsTokens
        ) external;
        /**
         * @notice Array-ified version of `completeQueuedWithdrawal`.
         * Used to complete the specified `withdrawals`. The function caller must match `withdrawals[...].withdrawer`
         * @param withdrawals The Withdrawals to complete.
         * @param tokens Array of tokens for each Withdrawal. See `completeQueuedWithdrawal` for the usage of a single array.
         * @param middlewareTimesIndexes One index to reference per Withdrawal. See `completeQueuedWithdrawal` for the usage of a single index.
         * @param receiveAsTokens Whether or not to complete each withdrawal as tokens. See `completeQueuedWithdrawal` for the usage of a single boolean.
         * @dev See `completeQueuedWithdrawal` for relevant dev tags
         */
        function completeQueuedWithdrawals(
            Withdrawal[] calldata withdrawals,
            IERC20[][] calldata tokens,
            uint256[] calldata middlewareTimesIndexes,
            bool[] calldata receiveAsTokens
        ) external;
        /**
         * @notice Increases a staker's delegated share balance in a strategy.
         * @param staker The address to increase the delegated shares for their operator.
         * @param strategy The strategy in which to increase the delegated shares.
         * @param shares The number of shares to increase.
         *
         * @dev *If the staker is actively delegated*, then increases the `staker`'s delegated shares in `strategy` by `shares`. Otherwise does nothing.
         * @dev Callable only by the StrategyManager or EigenPodManager.
         */
        function increaseDelegatedShares(
            address staker,
            IStrategy strategy,
            uint256 shares
        ) external;
        /**
         * @notice Decreases a staker's delegated share balance in a strategy.
         * @param staker The address to increase the delegated shares for their operator.
         * @param strategy The strategy in which to decrease the delegated shares.
         * @param shares The number of shares to decrease.
         *
         * @dev *If the staker is actively delegated*, then decreases the `staker`'s delegated shares in `strategy` by `shares`. Otherwise does nothing.
         * @dev Callable only by the StrategyManager or EigenPodManager.
         */
        function decreaseDelegatedShares(
            address staker,
            IStrategy strategy,
            uint256 shares
        ) external;
        /**
         * @notice returns the address of the operator that `staker` is delegated to.
         * @notice Mapping: staker => operator whom the staker is currently delegated to.
         * @dev Note that returning address(0) indicates that the staker is not actively delegated to any operator.
         */
        function delegatedTo(address staker) external view returns (address);
        /**
         * @notice Returns the OperatorDetails struct associated with an `operator`.
         */
        function operatorDetails(address operator) external view returns (OperatorDetails memory);
        /*
         * @notice Returns the earnings receiver address for an operator
         */
        function earningsReceiver(address operator) external view returns (address);
        /**
         * @notice Returns the delegationApprover account for an operator
         */
        function delegationApprover(address operator) external view returns (address);
        /**
         * @notice Returns the stakerOptOutWindowBlocks for an operator
         */
        function stakerOptOutWindowBlocks(address operator) external view returns (uint256);
        /**
         * @notice Given array of strategies, returns array of shares for the operator
         */
        function getOperatorShares(
            address operator,
            IStrategy[] memory strategies
        ) external view returns (uint256[] memory);
        /**
         * @notice Given a list of strategies, return the minimum number of blocks that must pass to withdraw
         * from all the inputted strategies. Return value is >= minWithdrawalDelayBlocks as this is the global min withdrawal delay.
         * @param strategies The strategies to check withdrawal delays for
         */
        function getWithdrawalDelay(IStrategy[] calldata strategies) external view returns (uint256);
        /**
         * @notice returns the total number of shares in `strategy` that are delegated to `operator`.
         * @notice Mapping: operator => strategy => total number of shares in the strategy delegated to the operator.
         * @dev By design, the following invariant should hold for each Strategy:
         * (operator's shares in delegation manager) = sum (shares above zero of all stakers delegated to operator)
         * = sum (delegateable shares of all stakers delegated to the operator)
         */
        function operatorShares(address operator, IStrategy strategy) external view returns (uint256);
        /**
         * @notice Returns 'true' if `staker` *is* actively delegated, and 'false' otherwise.
         */
        function isDelegated(address staker) external view returns (bool);
        /**
         * @notice Returns true is an operator has previously registered for delegation.
         */
        function isOperator(address operator) external view returns (bool);
        /// @notice Mapping: staker => number of signed delegation nonces (used in `delegateToBySignature`) from the staker that the contract has already checked
        function stakerNonce(address staker) external view returns (uint256);
        /**
         * @notice Mapping: delegationApprover => 32-byte salt => whether or not the salt has already been used by the delegationApprover.
         * @dev Salts are used in the `delegateTo` and `delegateToBySignature` functions. Note that these functions only process the delegationApprover's
         * signature + the provided salt if the operator being delegated to has specified a nonzero address as their `delegationApprover`.
         */
        function delegationApproverSaltIsSpent(address _delegationApprover, bytes32 salt) external view returns (bool);
        /**
         * @notice Minimum delay enforced by this contract for completing queued withdrawals. Measured in blocks, and adjustable by this contract's owner,
         * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced).
         * Note that strategies each have a separate withdrawal delay, which can be greater than this value. So the minimum number of blocks that must pass
         * to withdraw a strategy is MAX(minWithdrawalDelayBlocks, strategyWithdrawalDelayBlocks[strategy])
         */
        function minWithdrawalDelayBlocks() external view returns (uint256);
        /**
         * @notice Minimum delay enforced by this contract per Strategy for completing queued withdrawals. Measured in blocks, and adjustable by this contract's owner,
         * up to a maximum of `MAX_WITHDRAWAL_DELAY_BLOCKS`. Minimum value is 0 (i.e. no delay enforced).
         */
        function strategyWithdrawalDelayBlocks(IStrategy strategy) external view returns (uint256);
        /**
         * @notice Calculates the digestHash for a `staker` to sign to delegate to an `operator`
         * @param staker The signing staker
         * @param operator The operator who is being delegated to
         * @param expiry The desired expiry time of the staker's signature
         */
        function calculateCurrentStakerDelegationDigestHash(
            address staker,
            address operator,
            uint256 expiry
        ) external view returns (bytes32);
        /**
         * @notice Calculates the digest hash to be signed and used in the `delegateToBySignature` function
         * @param staker The signing staker
         * @param _stakerNonce The nonce of the staker. In practice we use the staker's current nonce, stored at `stakerNonce[staker]`
         * @param operator The operator who is being delegated to
         * @param expiry The desired expiry time of the staker's signature
         */
        function calculateStakerDelegationDigestHash(
            address staker,
            uint256 _stakerNonce,
            address operator,
            uint256 expiry
        ) external view returns (bytes32);
        /**
         * @notice Calculates the digest hash to be signed by the operator's delegationApprove and used in the `delegateTo` and `delegateToBySignature` functions.
         * @param staker The account delegating their stake
         * @param operator The account receiving delegated stake
         * @param _delegationApprover the operator's `delegationApprover` who will be signing the delegationHash (in general)
         * @param approverSalt A unique and single use value associated with the approver signature.
         * @param expiry Time after which the approver's signature becomes invalid
         */
        function calculateDelegationApprovalDigestHash(
            address staker,
            address operator,
            address _delegationApprover,
            bytes32 approverSalt,
            uint256 expiry
        ) external view returns (bytes32);
        /// @notice The EIP-712 typehash for the contract's domain
        function DOMAIN_TYPEHASH() external view returns (bytes32);
        /// @notice The EIP-712 typehash for the StakerDelegation struct used by the contract
        function STAKER_DELEGATION_TYPEHASH() external view returns (bytes32);
        /// @notice The EIP-712 typehash for the DelegationApproval struct used by the contract
        function DELEGATION_APPROVAL_TYPEHASH() external view returns (bytes32);
        /**
         * @notice Getter function for the current EIP-712 domain separator for this contract.
         *
         * @dev The domain separator will change in the event of a fork that changes the ChainID.
         * @dev By introducing a domain separator the DApp developers are guaranteed that there can be no signature collision.
         * for more detailed information please read EIP-712.
         */
        function domainSeparator() external view returns (bytes32);
        
        /// @notice Mapping: staker => cumulative number of queued withdrawals they have ever initiated.
        /// @dev This only increments (doesn't decrement), and is used to help ensure that otherwise identical withdrawals have unique hashes.
        function cumulativeWithdrawalsQueued(address staker) external view returns (uint256);
        /// @notice Returns the keccak256 hash of `withdrawal`.
        function calculateWithdrawalRoot(Withdrawal memory withdrawal) external pure returns (bytes32);
        function migrateQueuedWithdrawals(IStrategyManager.DeprecatedStruct_QueuedWithdrawal[] memory withdrawalsToQueue) external;
        function pendingWithdrawals(bytes32 withdrawalRoot) external view returns (bool);
        function beaconChainETHStrategy() external view returns (IStrategy);
    }
    // SPDX-License-Identifier: MIT
    pragma solidity >=0.4.22 <0.9.0;
    library console {
        address constant CONSOLE_ADDRESS = address(0x000000000000000000636F6e736F6c652e6c6f67);
        function _sendLogPayload(bytes memory payload) private view {
            uint256 payloadLength = payload.length;
            address consoleAddress = CONSOLE_ADDRESS;
            /// @solidity memory-safe-assembly
            assembly {
                let payloadStart := add(payload, 32)
                let r := staticcall(gas(), consoleAddress, payloadStart, payloadLength, 0, 0)
            }
        }
        function log() internal view {
            _sendLogPayload(abi.encodeWithSignature("log()"));
        }
        function logInt(int p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(int)", p0));
        }
        function logUint(uint p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint)", p0));
        }
        function logString(string memory p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string)", p0));
        }
        function logBool(bool p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
        }
        function logAddress(address p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address)", p0));
        }
        function logBytes(bytes memory p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes)", p0));
        }
        function logBytes1(bytes1 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes1)", p0));
        }
        function logBytes2(bytes2 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes2)", p0));
        }
        function logBytes3(bytes3 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes3)", p0));
        }
        function logBytes4(bytes4 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes4)", p0));
        }
        function logBytes5(bytes5 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes5)", p0));
        }
        function logBytes6(bytes6 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes6)", p0));
        }
        function logBytes7(bytes7 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes7)", p0));
        }
        function logBytes8(bytes8 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes8)", p0));
        }
        function logBytes9(bytes9 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes9)", p0));
        }
        function logBytes10(bytes10 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes10)", p0));
        }
        function logBytes11(bytes11 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes11)", p0));
        }
        function logBytes12(bytes12 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes12)", p0));
        }
        function logBytes13(bytes13 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes13)", p0));
        }
        function logBytes14(bytes14 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes14)", p0));
        }
        function logBytes15(bytes15 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes15)", p0));
        }
        function logBytes16(bytes16 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes16)", p0));
        }
        function logBytes17(bytes17 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes17)", p0));
        }
        function logBytes18(bytes18 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes18)", p0));
        }
        function logBytes19(bytes19 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes19)", p0));
        }
        function logBytes20(bytes20 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes20)", p0));
        }
        function logBytes21(bytes21 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes21)", p0));
        }
        function logBytes22(bytes22 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes22)", p0));
        }
        function logBytes23(bytes23 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes23)", p0));
        }
        function logBytes24(bytes24 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes24)", p0));
        }
        function logBytes25(bytes25 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes25)", p0));
        }
        function logBytes26(bytes26 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes26)", p0));
        }
        function logBytes27(bytes27 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes27)", p0));
        }
        function logBytes28(bytes28 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes28)", p0));
        }
        function logBytes29(bytes29 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes29)", p0));
        }
        function logBytes30(bytes30 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes30)", p0));
        }
        function logBytes31(bytes31 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes31)", p0));
        }
        function logBytes32(bytes32 p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bytes32)", p0));
        }
        function log(uint p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint)", p0));
        }
        function log(string memory p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string)", p0));
        }
        function log(bool p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool)", p0));
        }
        function log(address p0) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address)", p0));
        }
        function log(uint p0, uint p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint)", p0, p1));
        }
        function log(uint p0, string memory p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string)", p0, p1));
        }
        function log(uint p0, bool p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool)", p0, p1));
        }
        function log(uint p0, address p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address)", p0, p1));
        }
        function log(string memory p0, uint p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint)", p0, p1));
        }
        function log(string memory p0, string memory p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string)", p0, p1));
        }
        function log(string memory p0, bool p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool)", p0, p1));
        }
        function log(string memory p0, address p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address)", p0, p1));
        }
        function log(bool p0, uint p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint)", p0, p1));
        }
        function log(bool p0, string memory p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string)", p0, p1));
        }
        function log(bool p0, bool p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool)", p0, p1));
        }
        function log(bool p0, address p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address)", p0, p1));
        }
        function log(address p0, uint p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint)", p0, p1));
        }
        function log(address p0, string memory p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string)", p0, p1));
        }
        function log(address p0, bool p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool)", p0, p1));
        }
        function log(address p0, address p1) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address)", p0, p1));
        }
        function log(uint p0, uint p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint)", p0, p1, p2));
        }
        function log(uint p0, uint p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string)", p0, p1, p2));
        }
        function log(uint p0, uint p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool)", p0, p1, p2));
        }
        function log(uint p0, uint p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address)", p0, p1, p2));
        }
        function log(uint p0, string memory p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint)", p0, p1, p2));
        }
        function log(uint p0, string memory p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,string)", p0, p1, p2));
        }
        function log(uint p0, string memory p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool)", p0, p1, p2));
        }
        function log(uint p0, string memory p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,address)", p0, p1, p2));
        }
        function log(uint p0, bool p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint)", p0, p1, p2));
        }
        function log(uint p0, bool p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string)", p0, p1, p2));
        }
        function log(uint p0, bool p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool)", p0, p1, p2));
        }
        function log(uint p0, bool p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address)", p0, p1, p2));
        }
        function log(uint p0, address p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint)", p0, p1, p2));
        }
        function log(uint p0, address p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,string)", p0, p1, p2));
        }
        function log(uint p0, address p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool)", p0, p1, p2));
        }
        function log(uint p0, address p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,address)", p0, p1, p2));
        }
        function log(string memory p0, uint p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint)", p0, p1, p2));
        }
        function log(string memory p0, uint p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,string)", p0, p1, p2));
        }
        function log(string memory p0, uint p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool)", p0, p1, p2));
        }
        function log(string memory p0, uint p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,address)", p0, p1, p2));
        }
        function log(string memory p0, string memory p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,uint)", p0, p1, p2));
        }
        function log(string memory p0, string memory p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,string)", p0, p1, p2));
        }
        function log(string memory p0, string memory p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,bool)", p0, p1, p2));
        }
        function log(string memory p0, string memory p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,address)", p0, p1, p2));
        }
        function log(string memory p0, bool p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint)", p0, p1, p2));
        }
        function log(string memory p0, bool p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,string)", p0, p1, p2));
        }
        function log(string memory p0, bool p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool)", p0, p1, p2));
        }
        function log(string memory p0, bool p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,address)", p0, p1, p2));
        }
        function log(string memory p0, address p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,uint)", p0, p1, p2));
        }
        function log(string memory p0, address p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,string)", p0, p1, p2));
        }
        function log(string memory p0, address p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,bool)", p0, p1, p2));
        }
        function log(string memory p0, address p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,address)", p0, p1, p2));
        }
        function log(bool p0, uint p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint)", p0, p1, p2));
        }
        function log(bool p0, uint p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string)", p0, p1, p2));
        }
        function log(bool p0, uint p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool)", p0, p1, p2));
        }
        function log(bool p0, uint p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address)", p0, p1, p2));
        }
        function log(bool p0, string memory p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint)", p0, p1, p2));
        }
        function log(bool p0, string memory p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,string)", p0, p1, p2));
        }
        function log(bool p0, string memory p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool)", p0, p1, p2));
        }
        function log(bool p0, string memory p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,address)", p0, p1, p2));
        }
        function log(bool p0, bool p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint)", p0, p1, p2));
        }
        function log(bool p0, bool p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string)", p0, p1, p2));
        }
        function log(bool p0, bool p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool)", p0, p1, p2));
        }
        function log(bool p0, bool p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address)", p0, p1, p2));
        }
        function log(bool p0, address p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint)", p0, p1, p2));
        }
        function log(bool p0, address p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,string)", p0, p1, p2));
        }
        function log(bool p0, address p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool)", p0, p1, p2));
        }
        function log(bool p0, address p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,address)", p0, p1, p2));
        }
        function log(address p0, uint p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint)", p0, p1, p2));
        }
        function log(address p0, uint p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,string)", p0, p1, p2));
        }
        function log(address p0, uint p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool)", p0, p1, p2));
        }
        function log(address p0, uint p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,address)", p0, p1, p2));
        }
        function log(address p0, string memory p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,uint)", p0, p1, p2));
        }
        function log(address p0, string memory p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,string)", p0, p1, p2));
        }
        function log(address p0, string memory p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,bool)", p0, p1, p2));
        }
        function log(address p0, string memory p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,address)", p0, p1, p2));
        }
        function log(address p0, bool p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint)", p0, p1, p2));
        }
        function log(address p0, bool p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,string)", p0, p1, p2));
        }
        function log(address p0, bool p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool)", p0, p1, p2));
        }
        function log(address p0, bool p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,address)", p0, p1, p2));
        }
        function log(address p0, address p1, uint p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,uint)", p0, p1, p2));
        }
        function log(address p0, address p1, string memory p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,string)", p0, p1, p2));
        }
        function log(address p0, address p1, bool p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,bool)", p0, p1, p2));
        }
        function log(address p0, address p1, address p2) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,address)", p0, p1, p2));
        }
        function log(uint p0, uint p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,string)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,uint,address)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,string)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,string,address)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,string)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,bool,address)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,string)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, uint p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,uint,address,address)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,string)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,uint,address)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,string)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,string,address)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,string)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,bool,address)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,string)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, string memory p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,string,address,address)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,string)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,uint,address)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,string)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,string,address)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,string)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,bool,address)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,string)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, bool p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,bool,address,address)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,string)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,uint,address)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,string)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,string,address)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,string)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,bool,address)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,uint)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,string)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,bool)", p0, p1, p2, p3));
        }
        function log(uint p0, address p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(uint,address,address,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,uint,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,string,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,bool,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, uint p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,uint,address,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,uint,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,string,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,string,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,string,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,string,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,bool,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,address,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,address,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,address,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, string memory p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,string,address,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,uint,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,string,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,bool,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, bool p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,bool,address,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,uint,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,string,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,string,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,string,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,string,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,bool,address)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,address,uint)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,address,string)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,address,bool)", p0, p1, p2, p3));
        }
        function log(string memory p0, address p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(string,address,address,address)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,string)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,uint,address)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,string)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,string,address)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,string)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,bool,address)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,string)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, uint p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,uint,address,address)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,string)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,uint,address)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,string)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,string,address)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,string)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,bool,address)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,string)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, string memory p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,string,address,address)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,string)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,uint,address)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,string)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,string,address)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,string)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,bool,address)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,string)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, bool p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,bool,address,address)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,string)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,uint,address)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,string)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,string,address)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,string)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,bool,address)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,uint)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,string)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,bool)", p0, p1, p2, p3));
        }
        function log(bool p0, address p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(bool,address,address,address)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,uint)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,string)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,bool)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,uint,address)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,uint)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,string)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,bool)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,string,address)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,uint)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,string)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,bool)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,bool,address)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,uint)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,string)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,bool)", p0, p1, p2, p3));
        }
        function log(address p0, uint p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,uint,address,address)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,uint)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,string)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,bool)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,uint,address)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,string,uint)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,string,string)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,string,bool)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,string,address)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,uint)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,string)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,bool)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,bool,address)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,address,uint)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,address,string)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,address,bool)", p0, p1, p2, p3));
        }
        function log(address p0, string memory p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,string,address,address)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,uint)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,string)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,bool)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,uint,address)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,uint)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,string)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,bool)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,string,address)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,uint)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,string)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,bool)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,bool,address)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,uint)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,string)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,bool)", p0, p1, p2, p3));
        }
        function log(address p0, bool p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,bool,address,address)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, uint p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,uint)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, uint p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,string)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, uint p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,bool)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, uint p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,uint,address)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, string memory p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,string,uint)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, string memory p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,string,string)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, string memory p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,string,bool)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, string memory p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,string,address)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, bool p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,uint)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, bool p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,string)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, bool p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,bool)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, bool p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,bool,address)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, address p2, uint p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,address,uint)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, address p2, string memory p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,address,string)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, address p2, bool p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,address,bool)", p0, p1, p2, p3));
        }
        function log(address p0, address p1, address p2, address p3) internal view {
            _sendLogPayload(abi.encodeWithSignature("log(address,address,address,address)", p0, p1, p2, p3));
        }
    }// SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
    pragma solidity ^0.8.0;
    import "./math/Math.sol";
    /**
     * @dev String operations.
     */
    library Strings {
        bytes16 private constant _SYMBOLS = "0123456789abcdef";
        uint8 private constant _ADDRESS_LENGTH = 20;
        /**
         * @dev Converts a `uint256` to its ASCII `string` decimal representation.
         */
        function toString(uint256 value) internal pure returns (string memory) {
            unchecked {
                uint256 length = Math.log10(value) + 1;
                string memory buffer = new string(length);
                uint256 ptr;
                /// @solidity memory-safe-assembly
                assembly {
                    ptr := add(buffer, add(32, length))
                }
                while (true) {
                    ptr--;
                    /// @solidity memory-safe-assembly
                    assembly {
                        mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                    }
                    value /= 10;
                    if (value == 0) break;
                }
                return buffer;
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
         */
        function toHexString(uint256 value) internal pure returns (string memory) {
            unchecked {
                return toHexString(value, Math.log256(value) + 1);
            }
        }
        /**
         * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
         */
        function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
            bytes memory buffer = new bytes(2 * length + 2);
            buffer[0] = "0";
            buffer[1] = "x";
            for (uint256 i = 2 * length + 1; i > 1; --i) {
                buffer[i] = _SYMBOLS[value & 0xf];
                value >>= 4;
            }
            require(value == 0, "Strings: hex length insufficient");
            return string(buffer);
        }
        /**
         * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
         */
        function toHexString(address addr) internal pure returns (string memory) {
            return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
        }
    }
    // ┏━━━┓━┏┓━┏┓━━┏━━━┓━━┏━━━┓━━━━┏━━━┓━━━━━━━━━━━━━━━━━━━┏┓━━━━━┏━━━┓━━━━━━━━━┏┓━━━━━━━━━━━━━━┏┓━
    // ┃┏━━┛┏┛┗┓┃┃━━┃┏━┓┃━━┃┏━┓┃━━━━┗┓┏┓┃━━━━━━━━━━━━━━━━━━┏┛┗┓━━━━┃┏━┓┃━━━━━━━━┏┛┗┓━━━━━━━━━━━━┏┛┗┓
    // ┃┗━━┓┗┓┏┛┃┗━┓┗┛┏┛┃━━┃┃━┃┃━━━━━┃┃┃┃┏━━┓┏━━┓┏━━┓┏━━┓┏┓┗┓┏┛━━━━┃┃━┗┛┏━━┓┏━┓━┗┓┏┛┏━┓┏━━┓━┏━━┓┗┓┏┛
    // ┃┏━━┛━┃┃━┃┏┓┃┏━┛┏┛━━┃┃━┃┃━━━━━┃┃┃┃┃┏┓┃┃┏┓┃┃┏┓┃┃━━┫┣┫━┃┃━━━━━┃┃━┏┓┃┏┓┃┃┏┓┓━┃┃━┃┏┛┗━┓┃━┃┏━┛━┃┃━
    // ┃┗━━┓━┃┗┓┃┃┃┃┃┃┗━┓┏┓┃┗━┛┃━━━━┏┛┗┛┃┃┃━┫┃┗┛┃┃┗┛┃┣━━┃┃┃━┃┗┓━━━━┃┗━┛┃┃┗┛┃┃┃┃┃━┃┗┓┃┃━┃┗┛┗┓┃┗━┓━┃┗┓
    // ┗━━━┛━┗━┛┗┛┗┛┗━━━┛┗┛┗━━━┛━━━━┗━━━┛┗━━┛┃┏━┛┗━━┛┗━━┛┗┛━┗━┛━━━━┗━━━┛┗━━┛┗┛┗┛━┗━┛┗┛━┗━━━┛┗━━┛━┗━┛
    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┃┃━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    // ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┗┛━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
    // SPDX-License-Identifier: CC0-1.0
    pragma solidity >=0.5.0;
    // This interface is designed to be compatible with the Vyper version.
    /// @notice This is the Ethereum 2.0 deposit contract interface.
    /// For more information see the Phase 0 specification under https://github.com/ethereum/eth2.0-specs
    interface IETHPOSDeposit {
        /// @notice A processed deposit event.
        event DepositEvent(bytes pubkey, bytes withdrawal_credentials, bytes amount, bytes signature, bytes index);
        /// @notice Submit a Phase 0 DepositData object.
        /// @param pubkey A BLS12-381 public key.
        /// @param withdrawal_credentials Commitment to a public key for withdrawals.
        /// @param signature A BLS12-381 signature.
        /// @param deposit_data_root The SHA-256 hash of the SSZ-encoded DepositData object.
        /// Used as a protection against malformed input.
        function deposit(
            bytes calldata pubkey,
            bytes calldata withdrawal_credentials,
            bytes calldata signature,
            bytes32 deposit_data_root
        ) external payable;
        /// @notice Query the current deposit root hash.
        /// @return The deposit root hash.
        function get_deposit_root() external view returns (bytes32);
        /// @notice Query the current deposit count.
        /// @return The deposit count encoded as a little endian 64-bit number.
        function get_deposit_count() external view returns (bytes memory);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    import "./IStrategy.sol";
    import "./ISlasher.sol";
    import "./IDelegationManager.sol";
    import "./IEigenPodManager.sol";
    /**
     * @title Interface for the primary entrypoint for funds into EigenLayer.
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     * @notice See the `StrategyManager` contract itself for implementation details.
     */
    interface IStrategyManager {
        /**
         * @notice Emitted when a new deposit occurs on behalf of `staker`.
         * @param staker Is the staker who is depositing funds into EigenLayer.
         * @param strategy Is the strategy that `staker` has deposited into.
         * @param token Is the token that `staker` deposited.
         * @param shares Is the number of new shares `staker` has been granted in `strategy`.
         */
        event Deposit(address staker, IERC20 token, IStrategy strategy, uint256 shares);
        /// @notice Emitted when `thirdPartyTransfersForbidden` is updated for a strategy and value by the owner
        event UpdatedThirdPartyTransfersForbidden(IStrategy strategy, bool value);
        /// @notice Emitted when the `strategyWhitelister` is changed
        event StrategyWhitelisterChanged(address previousAddress, address newAddress);
        /// @notice Emitted when a strategy is added to the approved list of strategies for deposit
        event StrategyAddedToDepositWhitelist(IStrategy strategy);
        /// @notice Emitted when a strategy is removed from the approved list of strategies for deposit
        event StrategyRemovedFromDepositWhitelist(IStrategy strategy);
        /**
         * @notice Deposits `amount` of `token` into the specified `strategy`, with the resultant shares credited to `msg.sender`
         * @param strategy is the specified strategy where deposit is to be made,
         * @param token is the denomination in which the deposit is to be made,
         * @param amount is the amount of token to be deposited in the strategy by the staker
         * @return shares The amount of new shares in the `strategy` created as part of the action.
         * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf.
         * @dev Cannot be called by an address that is 'frozen' (this function will revert if the `msg.sender` is frozen).
         *
         * WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended.  This can lead to attack vectors
         *          where the token balance and corresponding strategy shares are not in sync upon reentrancy.
         */
        function depositIntoStrategy(IStrategy strategy, IERC20 token, uint256 amount) external returns (uint256 shares);
        /**
         * @notice Used for depositing an asset into the specified strategy with the resultant shares credited to `staker`,
         * who must sign off on the action.
         * Note that the assets are transferred out/from the `msg.sender`, not from the `staker`; this function is explicitly designed
         * purely to help one address deposit 'for' another.
         * @param strategy is the specified strategy where deposit is to be made,
         * @param token is the denomination in which the deposit is to be made,
         * @param amount is the amount of token to be deposited in the strategy by the staker
         * @param staker the staker that the deposited assets will be credited to
         * @param expiry the timestamp at which the signature expires
         * @param signature is a valid signature from the `staker`. either an ECDSA signature if the `staker` is an EOA, or data to forward
         * following EIP-1271 if the `staker` is a contract
         * @return shares The amount of new shares in the `strategy` created as part of the action.
         * @dev The `msg.sender` must have previously approved this contract to transfer at least `amount` of `token` on their behalf.
         * @dev A signature is required for this function to eliminate the possibility of griefing attacks, specifically those
         * targeting stakers who may be attempting to undelegate.
         * @dev Cannot be called if thirdPartyTransfersForbidden is set to true for this strategy
         *
         *  WARNING: Depositing tokens that allow reentrancy (eg. ERC-777) into a strategy is not recommended.  This can lead to attack vectors
         *          where the token balance and corresponding strategy shares are not in sync upon reentrancy
         */
        function depositIntoStrategyWithSignature(
            IStrategy strategy,
            IERC20 token,
            uint256 amount,
            address staker,
            uint256 expiry,
            bytes memory signature
        ) external returns (uint256 shares);
        /// @notice Used by the DelegationManager to remove a Staker's shares from a particular strategy when entering the withdrawal queue
        function removeShares(address staker, IStrategy strategy, uint256 shares) external;
        /// @notice Used by the DelegationManager to award a Staker some shares that have passed through the withdrawal queue
        function addShares(address staker, IERC20 token, IStrategy strategy, uint256 shares) external;
        
        /// @notice Used by the DelegationManager to convert withdrawn shares to tokens and send them to a recipient
        function withdrawSharesAsTokens(address recipient, IStrategy strategy, uint256 shares, IERC20 token) external;
        /// @notice Returns the current shares of `user` in `strategy`
        function stakerStrategyShares(address user, IStrategy strategy) external view returns (uint256 shares);
        /**
         * @notice Get all details on the staker's deposits and corresponding shares
         * @return (staker's strategies, shares in these strategies)
         */
        function getDeposits(address staker) external view returns (IStrategy[] memory, uint256[] memory);
        /// @notice Simple getter function that returns `stakerStrategyList[staker].length`.
        function stakerStrategyListLength(address staker) external view returns (uint256);
        /**
         * @notice Owner-only function that adds the provided Strategies to the 'whitelist' of strategies that stakers can deposit into
         * @param strategiesToWhitelist Strategies that will be added to the `strategyIsWhitelistedForDeposit` mapping (if they aren't in it already)
         * @param thirdPartyTransfersForbiddenValues bool values to set `thirdPartyTransfersForbidden` to for each strategy
         */
        function addStrategiesToDepositWhitelist(
            IStrategy[] calldata strategiesToWhitelist,
            bool[] calldata thirdPartyTransfersForbiddenValues
        ) external;
        /**
         * @notice Owner-only function that removes the provided Strategies from the 'whitelist' of strategies that stakers can deposit into
         * @param strategiesToRemoveFromWhitelist Strategies that will be removed to the `strategyIsWhitelistedForDeposit` mapping (if they are in it)
         */
        function removeStrategiesFromDepositWhitelist(IStrategy[] calldata strategiesToRemoveFromWhitelist) external;
        /// @notice Returns the single, central Delegation contract of EigenLayer
        function delegation() external view returns (IDelegationManager);
        /// @notice Returns the single, central Slasher contract of EigenLayer
        function slasher() external view returns (ISlasher);
        /// @notice Returns the EigenPodManager contract of EigenLayer
        function eigenPodManager() external view returns (IEigenPodManager);
        /// @notice Returns the address of the `strategyWhitelister`
        function strategyWhitelister() external view returns (address);
        /**
         * @notice Returns bool for whether or not `strategy` enables credit transfers. i.e enabling
         * depositIntoStrategyWithSignature calls or queueing withdrawals to a different address than the staker.
         */
        function thirdPartyTransfersForbidden(IStrategy strategy) external view returns (bool);
    // LIMITED BACKWARDS-COMPATIBILITY FOR DEPRECATED FUNCTIONALITY
        // packed struct for queued withdrawals; helps deal with stack-too-deep errors
        struct DeprecatedStruct_WithdrawerAndNonce {
            address withdrawer;
            uint96 nonce;
        }
        /**
         * Struct type used to specify an existing queued withdrawal. Rather than storing the entire struct, only a hash is stored.
         * In functions that operate on existing queued withdrawals -- e.g. `startQueuedWithdrawalWaitingPeriod` or `completeQueuedWithdrawal`,
         * the data is resubmitted and the hash of the submitted data is computed by `calculateWithdrawalRoot` and checked against the
         * stored hash in order to confirm the integrity of the submitted data.
         */
        struct DeprecatedStruct_QueuedWithdrawal {
            IStrategy[] strategies;
            uint256[] shares;
            address staker;
            DeprecatedStruct_WithdrawerAndNonce withdrawerAndNonce;
            uint32 withdrawalStartBlock;
            address delegatedAddress;
        }
        function migrateQueuedWithdrawal(DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal) external returns (bool, bytes32);
        function calculateWithdrawalRoot(DeprecatedStruct_QueuedWithdrawal memory queuedWithdrawal) external pure returns (bytes32);
        function withdrawalRootPending(bytes32 _withdrawalRoot) external view returns (bool);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    import "src/eigenlayer-libraries/LegacyBeaconChainProofs.sol";
    import "src/eigenlayer-libraries/BeaconChainProofs.sol";
    import "./IEigenPodManager.sol";
    import "./IBeaconChainOracle.sol";
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    /**
     * @title The implementation contract used for restaking beacon chain ETH on EigenLayer
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     * @notice The main functionalities are:
     * - creating new ETH validators with their withdrawal credentials pointed to this contract
     * - proving from beacon chain state roots that withdrawal credentials are pointed to this contract
     * - proving from beacon chain state roots the balances of ETH validators with their withdrawal credentials
     *   pointed to this contract
     * - updating aggregate balances in the EigenPodManager
     * - withdrawing eth when withdrawals are initiated
     * @dev Note that all beacon chain balances are stored as gwei within the beacon chain datastructures. We choose
     *   to account balances in terms of gwei in the EigenPod contract and convert to wei when making calls to other contracts
     */
    interface IEigenPod {
        enum VALIDATOR_STATUS {
            INACTIVE, // doesnt exist
            ACTIVE, // staked on ethpos and withdrawal credentials are pointed to the EigenPod
            WITHDRAWN // withdrawn from the Beacon Chain
        }
        struct ValidatorInfo {
            // index of the validator in the beacon chain
            uint64 validatorIndex;
            // amount of beacon chain ETH restaked on EigenLayer in gwei
            uint64 restakedBalanceGwei;
            //timestamp of the validator's most recent balance update
            uint64 mostRecentBalanceUpdateTimestamp;
            // status of the validator
            VALIDATOR_STATUS status;
        }
        /**
         * @notice struct used to store amounts related to proven withdrawals in memory. Used to help
         * manage stack depth and optimize the number of external calls, when batching withdrawal operations.
         */
        struct VerifiedWithdrawal {
            // amount to send to a podOwner from a proven withdrawal
            uint256 amountToSendGwei;
            // difference in shares to be recorded in the eigenPodManager, as a result of the withdrawal
            int256 sharesDeltaGwei;
        }
        enum PARTIAL_WITHDRAWAL_CLAIM_STATUS {
            REDEEMED,
            PENDING,
            FAILED
        }
        /// @notice Emitted when an ETH validator stakes via this eigenPod
        event EigenPodStaked(bytes pubkey);
        /// @notice Emitted when an ETH validator's withdrawal credentials are successfully verified to be pointed to this eigenPod
        event ValidatorRestaked(uint40 validatorIndex);
        /// @notice Emitted when an ETH validator's  balance is proven to be updated.  Here newValidatorBalanceGwei
        //  is the validator's balance that is credited on EigenLayer.
        event ValidatorBalanceUpdated(uint40 validatorIndex, uint64 balanceTimestamp, uint64 newValidatorBalanceGwei);
        /// @notice Emitted when an ETH validator is prove to have withdrawn from the beacon chain
        event FullWithdrawalRedeemed(
            uint40 validatorIndex,
            uint64 withdrawalTimestamp,
            address indexed recipient,
            uint64 withdrawalAmountGwei
        );
        /// @notice Emitted when a partial withdrawal claim is successfully redeemed
        event PartialWithdrawalRedeemed(
            uint40 validatorIndex,
            uint64 withdrawalTimestamp,
            address indexed recipient,
            uint64 partialWithdrawalAmountGwei
        );
        /// @notice Emitted when restaked beacon chain ETH is withdrawn from the eigenPod.
        event RestakedBeaconChainETHWithdrawn(address indexed recipient, uint256 amount);
        /// @notice Emitted when podOwner enables restaking
        event RestakingActivated(address indexed podOwner);
        /// @notice Emitted when ETH is received via the `receive` fallback
        event NonBeaconChainETHReceived(uint256 amountReceived);
        /// @notice Emitted when ETH that was previously received via the `receive` fallback is withdrawn
        event NonBeaconChainETHWithdrawn(address indexed recipient, uint256 amountWithdrawn);
        /// @notice The max amount of eth, in gwei, that can be restaked per validator
        function MAX_RESTAKED_BALANCE_GWEI_PER_VALIDATOR() external view returns (uint64);
        /// @notice the amount of execution layer ETH in this contract that is staked in EigenLayer (i.e. withdrawn from beaconchain but not EigenLayer),
        function withdrawableRestakedExecutionLayerGwei() external view returns (uint64);
        /// @notice any ETH deposited into the EigenPod contract via the `receive` fallback function
        function nonBeaconChainETHBalanceWei() external view returns (uint256);
        /// @notice Used to initialize the pointers to contracts crucial to the pod's functionality, in beacon proxy construction from EigenPodManager
        function initialize(address owner) external;
        /// @notice Called by EigenPodManager when the owner wants to create another ETH validator.
        function stake(bytes calldata pubkey, bytes calldata signature, bytes32 depositDataRoot) external payable;
        /**
         * @notice Transfers `amountWei` in ether from this contract to the specified `recipient` address
         * @notice Called by EigenPodManager to withdrawBeaconChainETH that has been added to the EigenPod's balance due to a withdrawal from the beacon chain.
         * @dev The podOwner must have already proved sufficient withdrawals, so that this pod's `withdrawableRestakedExecutionLayerGwei` exceeds the
         * `amountWei` input (when converted to GWEI).
         * @dev Reverts if `amountWei` is not a whole Gwei amount
         */
        function withdrawRestakedBeaconChainETH(address recipient, uint256 amount) external;
        /// @notice The single EigenPodManager for EigenLayer
        function eigenPodManager() external view returns (IEigenPodManager);
        /// @notice The owner of this EigenPod
        function podOwner() external view returns (address);
        /// @notice an indicator of whether or not the podOwner has ever "fully restaked" by successfully calling `verifyCorrectWithdrawalCredentials`.
        function hasRestaked() external view returns (bool);
        /**
         * @notice The latest timestamp at which the pod owner withdrew the balance of the pod, via calling `withdrawBeforeRestaking`.
         * @dev This variable is only updated when the `withdrawBeforeRestaking` function is called, which can only occur before `hasRestaked` is set to true for this pod.
         * Proofs for this pod are only valid against Beacon Chain state roots corresponding to timestamps after the stored `mostRecentWithdrawalTimestamp`.
         */
        function mostRecentWithdrawalTimestamp() external view returns (uint64);
        /// @notice Returns the validatorInfo struct for the provided pubkeyHash
        function validatorPubkeyHashToInfo(bytes32 validatorPubkeyHash) external view returns (ValidatorInfo memory);
        /// @notice Returns the validatorInfo struct for the provided pubkey
        function validatorPubkeyToInfo(bytes calldata validatorPubkey) external view returns (ValidatorInfo memory);
        ///@notice mapping that tracks proven withdrawals
        function provenWithdrawal(bytes32 validatorPubkeyHash, uint64 slot) external view returns (bool);
        /// @notice This returns the status of a given validator
        function validatorStatus(bytes32 pubkeyHash) external view returns (VALIDATOR_STATUS);
        /// @notice This returns the status of a given validator pubkey
        function validatorStatus(bytes calldata validatorPubkey) external view returns (VALIDATOR_STATUS);
        /**
         * @notice This function verifies that the withdrawal credentials of validator(s) owned by the podOwner are pointed to
         * this contract. It also verifies the effective balance  of the validator.  It verifies the provided proof of the ETH validator against the beacon chain state
         * root, marks the validator as 'active' in EigenLayer, and credits the restaked ETH in Eigenlayer.
         * @param oracleTimestamp is the Beacon Chain timestamp whose state root the `proof` will be proven against.
         * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs
         * @param withdrawalCredentialProofs is an array of proofs, where each proof proves each ETH validator's balance and withdrawal credentials
         * against a beacon chain state root
         * @param validatorFields are the fields of the "Validator Container", refer to consensus specs
         * for details: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator
         */
        function verifyWithdrawalCredentials(
            uint64 oracleTimestamp,
            LegacyBeaconChainProofs.StateRootProof calldata stateRootProof,
            uint40[] calldata validatorIndices,
            bytes[] calldata withdrawalCredentialProofs,
            bytes32[][] calldata validatorFields
        )
            external;
        /**
         * @notice This function records an update (either increase or decrease) in the pod's balance in the StrategyManager.  
                   It also verifies a merkle proof of the validator's current beacon chain balance.  
         * @param oracleTimestamp The oracleTimestamp whose state root the `proof` will be proven against.
         *        Must be within `VERIFY_BALANCE_UPDATE_WINDOW_SECONDS` of the current block.
         * @param validatorIndices is the list of indices of the validators being proven, refer to consensus specs 
         * @param validatorFieldsProofs proofs against the `beaconStateRoot` for each validator in `validatorFields`
         * @param validatorFields are the fields of the "Validator Container", refer to consensus specs
         * @dev For more details on the Beacon Chain spec, see: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator
         */
        function verifyBalanceUpdates(
            uint64 oracleTimestamp,
            uint40[] calldata validatorIndices,
            LegacyBeaconChainProofs.StateRootProof calldata stateRootProof,
            bytes[] calldata validatorFieldsProofs,
            bytes32[][] calldata validatorFields
        ) external;
        /**
         * @notice This function records full and partial withdrawals on behalf of one of the Ethereum validators for this EigenPod
         * @param oracleTimestamp is the timestamp of the oracle slot that the withdrawal is being proven against
         * @param withdrawalProofs is the information needed to check the veracity of the block numbers and withdrawals being proven
         * @param validatorFieldsProofs is the proof of the validator's fields' in the validator tree
         * @param withdrawalFields are the fields of the withdrawals being proven
         * @param validatorFields are the fields of the validators being proven
         */
        function verifyAndProcessWithdrawals(
            uint64 oracleTimestamp,
            LegacyBeaconChainProofs.StateRootProof calldata stateRootProof,
            LegacyBeaconChainProofs.WithdrawalProof[] calldata withdrawalProofs,
            bytes[] calldata validatorFieldsProofs,
            bytes32[][] calldata validatorFields,
            bytes32[][] calldata withdrawalFields
        ) external;
        /**
         * @notice Called by the pod owner to activate restaking by withdrawing
         * all existing ETH from the pod and preventing further withdrawals via
         * "withdrawBeforeRestaking()"
         */
        function activateRestaking() external;
        /// @notice Called by the pod owner to withdraw the balance of the pod when `hasRestaked` is set to false
        function withdrawBeforeRestaking() external;
        /// @notice Called by the pod owner to withdraw the nonBeaconChainETHBalanceWei
        function withdrawNonBeaconChainETHBalanceWei(address recipient, uint256 amountToWithdraw) external;
        /// @notice called by owner of a pod to remove any ERC20s deposited in the pod
        function recoverTokens(IERC20[] memory tokenList, uint256[] memory amountsToWithdraw, address recipient) external;
        //--------------------------------------------------------------------------------------
        //---------------------------------  PEPE UPDATES   ------------------------------------
        //--------------------------------------------------------------------------------------
        // TODO(Dave): Once we are no longer in between the 2 updates, we can fully replace this file with
        // the new version
        /// State-changing methods
        function startCheckpoint(bool revertIfNoBalance) external;
        function verifyCheckpointProofs(
            BeaconChainProofs.BalanceContainerProof calldata balanceContainerProof,
            BeaconChainProofs.BalanceProof[] calldata proofs
        ) external;
        function setProofSubmitter(address newProofSubmitter) external;
        /// Events
        /// @notice Emitted when a checkpoint is created
        event CheckpointCreated(uint64 indexed checkpointTimestamp, bytes32 indexed beaconBlockRoot);
        /// @notice Emitted when a checkpoint is finalized
        event CheckpointFinalized(uint64 indexed checkpointTimestamp, int256 totalShareDeltaWei);
        /// @notice Emitted when a validator is proven for a given checkpoint
        event ValidatorCheckpointed(uint64 indexed checkpointTimestamp, uint40 indexed validatorIndex);
        /// @notice Emitted when a validaor is proven to have 0 balance at a given checkpoint
        event ValidatorWithdrawn(uint64 indexed checkpointTimestamp, uint40 indexed validatorIndex);
        /// Structs
        struct Checkpoint {
          bytes32 beaconBlockRoot;
          uint24 proofsRemaining;
          uint64 podBalanceGwei;
          int128 balanceDeltasGwei;
        }
        /// View methods
        function activeValidatorCount() external view returns (uint256); // note - this variable already exists in M2; this change just makes it public!
        function lastCheckpointTimestamp() external view returns (uint64);
        function currentCheckpointTimestamp() external view returns (uint64);
        function currentCheckpoint() external view returns (Checkpoint memory);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    /**
     * @title Interface for the BeaconStateOracle contract.
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     */
    interface IBeaconChainOracle {
        /// @notice The block number to state root mapping.
        function timestampToBlockRoot(uint256 timestamp) external view returns (bytes32);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    import "src/eigenlayer-interfaces/IPauserRegistry.sol";
    /**
     * @title Adds pausability to a contract, with pausing & unpausing controlled by the `pauser` and `unpauser` of a PauserRegistry contract.
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     * @notice Contracts that inherit from this contract may define their own `pause` and `unpause` (and/or related) functions.
     * These functions should be permissioned as "onlyPauser" which defers to a `PauserRegistry` for determining access control.
     * @dev Pausability is implemented using a uint256, which allows up to 256 different single bit-flags; each bit can potentially pause different functionality.
     * Inspiration for this was taken from the NearBridge design here https://etherscan.io/address/0x3FEFc5A4B1c02f21cBc8D3613643ba0635b9a873#code.
     * For the `pause` and `unpause` functions we've implemented, if you pause, you can only flip (any number of) switches to on/1 (aka "paused"), and if you unpause,
     * you can only flip (any number of) switches to off/0 (aka "paused").
     * If you want a pauseXYZ function that just flips a single bit / "pausing flag", it will:
     * 1) 'bit-wise and' (aka `&`) a flag with the current paused state (as a uint256)
     * 2) update the paused state to this new value
     * @dev We note as well that we have chosen to identify flags by their *bit index* as opposed to their numerical value, so, e.g. defining `DEPOSITS_PAUSED = 3`
     * indicates specifically that if the *third bit* of `_paused` is flipped -- i.e. it is a '1' -- then deposits should be paused
     */
    interface IPausable {
        /// @notice Emitted when the `pauserRegistry` is set to `newPauserRegistry`.
        event PauserRegistrySet(IPauserRegistry pauserRegistry, IPauserRegistry newPauserRegistry);
        /// @notice Emitted when the pause is triggered by `account`, and changed to `newPausedStatus`.
        event Paused(address indexed account, uint256 newPausedStatus);
        /// @notice Emitted when the pause is lifted by `account`, and changed to `newPausedStatus`.
        event Unpaused(address indexed account, uint256 newPausedStatus);
        
        /// @notice Address of the `PauserRegistry` contract that this contract defers to for determining access control (for pausing).
        function pauserRegistry() external view returns (IPauserRegistry);
        /**
         * @notice This function is used to pause an EigenLayer contract's functionality.
         * It is permissioned to the `pauser` address, which is expected to be a low threshold multisig.
         * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once.
         * @dev This function can only pause functionality, and thus cannot 'unflip' any bit in `_paused` from 1 to 0.
         */
        function pause(uint256 newPausedStatus) external;
        /**
         * @notice Alias for `pause(type(uint256).max)`.
         */
        function pauseAll() external;
        /**
         * @notice This function is used to unpause an EigenLayer contract's functionality.
         * It is permissioned to the `unpauser` address, which is expected to be a high threshold multisig or governance contract.
         * @param newPausedStatus represents the new value for `_paused` to take, which means it may flip several bits at once.
         * @dev This function can only unpause functionality, and thus cannot 'flip' any bit in `_paused` from 0 to 1.
         */
        function unpause(uint256 newPausedStatus) external;
        /// @notice Returns the current paused status as a uint256.
        function paused() external view returns (uint256);
        /// @notice Returns 'true' if the `indexed`th bit of `_paused` is 1, and 'false' otherwise
        function paused(uint8 index) external view returns (bool);
        /// @notice Allows the unpauser to set a new pauser registry
        function setPauserRegistry(IPauserRegistry newPauserRegistry) external;
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    import "./IStrategyManager.sol";
    import "./IDelegationManager.sol";
    /**
     * @title Interface for the primary 'slashing' contract for EigenLayer.
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     * @notice See the `Slasher` contract itself for implementation details.
     */
    interface ISlasher {
        // struct used to store information about the current state of an operator's obligations to middlewares they are serving
        struct MiddlewareTimes {
            // The update block for the middleware whose most recent update was earliest, i.e. the 'stalest' update out of all middlewares the operator is serving
            uint32 stalestUpdateBlock;
            // The latest 'serveUntilBlock' from all of the middleware that the operator is serving
            uint32 latestServeUntilBlock;
        }
        // struct used to store details relevant to a single middleware that an operator has opted-in to serving
        struct MiddlewareDetails {
            // the block at which the contract begins being able to finalize the operator's registration with the service via calling `recordFirstStakeUpdate`
            uint32 registrationMayBeginAtBlock;
            // the block before which the contract is allowed to slash the user
            uint32 contractCanSlashOperatorUntilBlock;
            // the block at which the middleware's view of the operator's stake was most recently updated
            uint32 latestUpdateBlock;
        }
        /// @notice Emitted when a middleware times is added to `operator`'s array.
        event MiddlewareTimesAdded(
            address operator,
            uint256 index,
            uint32 stalestUpdateBlock,
            uint32 latestServeUntilBlock
        );
        /// @notice Emitted when `operator` begins to allow `contractAddress` to slash them.
        event OptedIntoSlashing(address indexed operator, address indexed contractAddress);
        /// @notice Emitted when `contractAddress` signals that it will no longer be able to slash `operator` after the `contractCanSlashOperatorUntilBlock`.
        event SlashingAbilityRevoked(
            address indexed operator,
            address indexed contractAddress,
            uint32 contractCanSlashOperatorUntilBlock
        );
        /**
         * @notice Emitted when `slashingContract` 'freezes' the `slashedOperator`.
         * @dev The `slashingContract` must have permission to slash the `slashedOperator`, i.e. `canSlash(slasherOperator, slashingContract)` must return 'true'.
         */
        event OperatorFrozen(address indexed slashedOperator, address indexed slashingContract);
        /// @notice Emitted when `previouslySlashedAddress` is 'unfrozen', allowing them to again move deposited funds within EigenLayer.
        event FrozenStatusReset(address indexed previouslySlashedAddress);
        /**
         * @notice Gives the `contractAddress` permission to slash the funds of the caller.
         * @dev Typically, this function must be called prior to registering for a middleware.
         */
        function optIntoSlashing(address contractAddress) external;
        /**
         * @notice Used for 'slashing' a certain operator.
         * @param toBeFrozen The operator to be frozen.
         * @dev Technically the operator is 'frozen' (hence the name of this function), and then subject to slashing pending a decision by a human-in-the-loop.
         * @dev The operator must have previously given the caller (which should be a contract) the ability to slash them, through a call to `optIntoSlashing`.
         */
        function freezeOperator(address toBeFrozen) external;
        /**
         * @notice Removes the 'frozen' status from each of the `frozenAddresses`
         * @dev Callable only by the contract owner (i.e. governance).
         */
        function resetFrozenStatus(address[] calldata frozenAddresses) external;
        /**
         * @notice this function is a called by middlewares during an operator's registration to make sure the operator's stake at registration
         *         is slashable until serveUntil
         * @param operator the operator whose stake update is being recorded
         * @param serveUntilBlock the block until which the operator's stake at the current block is slashable
         * @dev adds the middleware's slashing contract to the operator's linked list
         */
        function recordFirstStakeUpdate(address operator, uint32 serveUntilBlock) external;
        /**
         * @notice this function is a called by middlewares during a stake update for an operator (perhaps to free pending withdrawals)
         *         to make sure the operator's stake at updateBlock is slashable until serveUntil
         * @param operator the operator whose stake update is being recorded
         * @param updateBlock the block for which the stake update is being recorded
         * @param serveUntilBlock the block until which the operator's stake at updateBlock is slashable
         * @param insertAfter the element of the operators linked list that the currently updating middleware should be inserted after
         * @dev insertAfter should be calculated offchain before making the transaction that calls this. this is subject to race conditions,
         *      but it is anticipated to be rare and not detrimental.
         */
        function recordStakeUpdate(
            address operator,
            uint32 updateBlock,
            uint32 serveUntilBlock,
            uint256 insertAfter
        ) external;
        /**
         * @notice this function is a called by middlewares during an operator's deregistration to make sure the operator's stake at deregistration
         *         is slashable until serveUntil
         * @param operator the operator whose stake update is being recorded
         * @param serveUntilBlock the block until which the operator's stake at the current block is slashable
         * @dev removes the middleware's slashing contract to the operator's linked list and revokes the middleware's (i.e. caller's) ability to
         * slash `operator` once `serveUntil` is reached
         */
        function recordLastStakeUpdateAndRevokeSlashingAbility(address operator, uint32 serveUntilBlock) external;
        /// @notice The StrategyManager contract of EigenLayer
        function strategyManager() external view returns (IStrategyManager);
        /// @notice The DelegationManager contract of EigenLayer
        function delegation() external view returns (IDelegationManager);
        /**
         * @notice Used to determine whether `staker` is actively 'frozen'. If a staker is frozen, then they are potentially subject to
         * slashing of their funds, and cannot cannot deposit or withdraw from the strategyManager until the slashing process is completed
         * and the staker's status is reset (to 'unfrozen').
         * @param staker The staker of interest.
         * @return Returns 'true' if `staker` themselves has their status set to frozen, OR if the staker is delegated
         * to an operator who has their status set to frozen. Otherwise returns 'false'.
         */
        function isFrozen(address staker) external view returns (bool);
        /// @notice Returns true if `slashingContract` is currently allowed to slash `toBeSlashed`.
        function canSlash(address toBeSlashed, address slashingContract) external view returns (bool);
        /// @notice Returns the block until which `serviceContract` is allowed to slash the `operator`.
        function contractCanSlashOperatorUntilBlock(
            address operator,
            address serviceContract
        ) external view returns (uint32);
        /// @notice Returns the block at which the `serviceContract` last updated its view of the `operator`'s stake
        function latestUpdateBlock(address operator, address serviceContract) external view returns (uint32);
        /// @notice A search routine for finding the correct input value of `insertAfter` to `recordStakeUpdate` / `_updateMiddlewareList`.
        function getCorrectValueForInsertAfter(address operator, uint32 updateBlock) external view returns (uint256);
        /**
         * @notice Returns 'true' if `operator` can currently complete a withdrawal started at the `withdrawalStartBlock`, with `middlewareTimesIndex` used
         * to specify the index of a `MiddlewareTimes` struct in the operator's list (i.e. an index in `operatorToMiddlewareTimes[operator]`). The specified
         * struct is consulted as proof of the `operator`'s ability (or lack thereof) to complete the withdrawal.
         * This function will return 'false' if the operator cannot currently complete a withdrawal started at the `withdrawalStartBlock`, *or* in the event
         * that an incorrect `middlewareTimesIndex` is supplied, even if one or more correct inputs exist.
         * @param operator Either the operator who queued the withdrawal themselves, or if the withdrawing party is a staker who delegated to an operator,
         * this address is the operator *who the staker was delegated to* at the time of the `withdrawalStartBlock`.
         * @param withdrawalStartBlock The block number at which the withdrawal was initiated.
         * @param middlewareTimesIndex Indicates an index in `operatorToMiddlewareTimes[operator]` to consult as proof of the `operator`'s ability to withdraw
         * @dev The correct `middlewareTimesIndex` input should be computable off-chain.
         */
        function canWithdraw(
            address operator,
            uint32 withdrawalStartBlock,
            uint256 middlewareTimesIndex
        ) external returns (bool);
        /**
         * operator =>
         *  [
         *      (
         *          the least recent update block of all of the middlewares it's serving/served,
         *          latest time that the stake bonded at that update needed to serve until
         *      )
         *  ]
         */
        function operatorToMiddlewareTimes(
            address operator,
            uint256 arrayIndex
        ) external view returns (MiddlewareTimes memory);
        /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator].length`
        function middlewareTimesLength(address operator) external view returns (uint256);
        /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].stalestUpdateBlock`.
        function getMiddlewareTimesIndexStalestUpdateBlock(address operator, uint32 index) external view returns (uint32);
        /// @notice Getter function for fetching `operatorToMiddlewareTimes[operator][index].latestServeUntil`.
        function getMiddlewareTimesIndexServeUntilBlock(address operator, uint32 index) external view returns (uint32);
        /// @notice Getter function for fetching `_operatorToWhitelistedContractsByUpdate[operator].size`.
        function operatorWhitelistedContractsLinkedListSize(address operator) external view returns (uint256);
        /// @notice Getter function for fetching a single node in the operator's linked list (`_operatorToWhitelistedContractsByUpdate[operator]`).
        function operatorWhitelistedContractsLinkedListEntry(
            address operator,
            address node
        ) external view returns (bool, uint256, uint256);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
    /**
     * @title Minimal interface for an `Strategy` contract.
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     * @notice Custom `Strategy` implementations may expand extensively on this interface.
     */
    interface IStrategy {
        /**
         * @notice Used to deposit tokens into this Strategy
         * @param token is the ERC20 token being deposited
         * @param amount is the amount of token being deposited
         * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's
         * `depositIntoStrategy` function, and individual share balances are recorded in the strategyManager as well.
         * @return newShares is the number of new shares issued at the current exchange ratio.
         */
        function deposit(IERC20 token, uint256 amount) external returns (uint256);
        /**
         * @notice Used to withdraw tokens from this Strategy, to the `recipient`'s address
         * @param recipient is the address to receive the withdrawn funds
         * @param token is the ERC20 token being transferred out
         * @param amountShares is the amount of shares being withdrawn
         * @dev This function is only callable by the strategyManager contract. It is invoked inside of the strategyManager's
         * other functions, and individual share balances are recorded in the strategyManager as well.
         */
        function withdraw(address recipient, IERC20 token, uint256 amountShares) external;
        /**
         * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy.
         * @notice In contrast to `sharesToUnderlyingView`, this function **may** make state modifications
         * @param amountShares is the amount of shares to calculate its conversion into the underlying token
         * @return The amount of underlying tokens corresponding to the input `amountShares`
         * @dev Implementation for these functions in particular may vary significantly for different strategies
         */
        function sharesToUnderlying(uint256 amountShares) external returns (uint256);
        /**
         * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy.
         * @notice In contrast to `underlyingToSharesView`, this function **may** make state modifications
         * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares
         * @return The amount of underlying tokens corresponding to the input `amountShares`
         * @dev Implementation for these functions in particular may vary significantly for different strategies
         */
        function underlyingToShares(uint256 amountUnderlying) external returns (uint256);
        /**
         * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in
         * this strategy. In contrast to `userUnderlyingView`, this function **may** make state modifications
         */
        function userUnderlying(address user) external returns (uint256);
        /**
         * @notice convenience function for fetching the current total shares of `user` in this strategy, by
         * querying the `strategyManager` contract
         */
        function shares(address user) external view returns (uint256);
        /**
         * @notice Used to convert a number of shares to the equivalent amount of underlying tokens for this strategy.
         * @notice In contrast to `sharesToUnderlying`, this function guarantees no state modifications
         * @param amountShares is the amount of shares to calculate its conversion into the underlying token
         * @return The amount of shares corresponding to the input `amountUnderlying`
         * @dev Implementation for these functions in particular may vary significantly for different strategies
         */
        function sharesToUnderlyingView(uint256 amountShares) external view returns (uint256);
        /**
         * @notice Used to convert an amount of underlying tokens to the equivalent amount of shares in this strategy.
         * @notice In contrast to `underlyingToShares`, this function guarantees no state modifications
         * @param amountUnderlying is the amount of `underlyingToken` to calculate its conversion into strategy shares
         * @return The amount of shares corresponding to the input `amountUnderlying`
         * @dev Implementation for these functions in particular may vary significantly for different strategies
         */
        function underlyingToSharesView(uint256 amountUnderlying) external view returns (uint256);
        /**
         * @notice convenience function for fetching the current underlying value of all of the `user`'s shares in
         * this strategy. In contrast to `userUnderlying`, this function guarantees no state modifications
         */
        function userUnderlyingView(address user) external view returns (uint256);
        /// @notice The underlying token for shares in this Strategy
        function underlyingToken() external view returns (IERC20);
        /// @notice The total number of extant shares in this Strategy
        function totalShares() external view returns (uint256);
        /// @notice Returns either a brief string explaining the strategy's goal & purpose, or a link to metadata that explains in more detail.
        function explanation() external view returns (string memory);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    /**
     * @title The interface for common signature utilities.
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     */
    interface ISignatureUtils {
        // @notice Struct that bundles together a signature and an expiration time for the signature. Used primarily for stack management.
        struct SignatureWithExpiry {
            // the signature itself, formatted as a single bytes object
            bytes signature;
            // the expiration timestamp (UTC) of the signature
            uint256 expiry;
        }
        // @notice Struct that bundles together a signature, a salt for uniqueness, and an expiration time for the signature. Used primarily for stack management.
        struct SignatureWithSaltAndExpiry {
            // the signature itself, formatted as a single bytes object
            bytes signature;
            // the salt used to generate the signature
            bytes32 salt;
            // the expiration timestamp (UTC) of the signature
            uint256 expiry;
        }
    }// SPDX-License-Identifier: BUSL-1.1
    pragma solidity ^0.8.0;
    import "./EigenlayerMerkle.sol";
    import "./Endian.sol";
    //Utility library for parsing and PHASE0 beacon chain block headers
    //SSZ Spec: https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization
    //BeaconBlockHeader Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader
    //BeaconState Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate
    library LegacyBeaconChainProofs {
        // constants are the number of fields and the heights of the different merkle trees used in merkleizing beacon chain containers
        uint256 internal constant NUM_BEACON_BLOCK_HEADER_FIELDS = 5;
        uint256 internal constant BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT = 3;
        uint256 internal constant NUM_BEACON_BLOCK_BODY_FIELDS = 11;
        uint256 internal constant BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT = 4;
        uint256 internal constant NUM_BEACON_STATE_FIELDS = 21;
        uint256 internal constant BEACON_STATE_FIELD_TREE_HEIGHT = 5;
        uint256 internal constant NUM_ETH1_DATA_FIELDS = 3;
        uint256 internal constant ETH1_DATA_FIELD_TREE_HEIGHT = 2;
        uint256 internal constant NUM_VALIDATOR_FIELDS = 8;
        uint256 internal constant VALIDATOR_FIELD_TREE_HEIGHT = 3;
        uint256 internal constant NUM_EXECUTION_PAYLOAD_HEADER_FIELDS = 15;
        uint256 internal constant EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT = 4;
        uint256 internal constant NUM_EXECUTION_PAYLOAD_FIELDS = 15;
        uint256 internal constant EXECUTION_PAYLOAD_FIELD_TREE_HEIGHT = 4;
        // HISTORICAL_ROOTS_LIMIT\t = 2**24, so tree height is 24
        uint256 internal constant HISTORICAL_ROOTS_TREE_HEIGHT = 24;
        // HISTORICAL_BATCH is root of state_roots and block_root, so number of leaves =  2^1
        uint256 internal constant HISTORICAL_BATCH_TREE_HEIGHT = 1;
        // SLOTS_PER_HISTORICAL_ROOT = 2**13, so tree height is 13
        uint256 internal constant STATE_ROOTS_TREE_HEIGHT = 13;
        uint256 internal constant BLOCK_ROOTS_TREE_HEIGHT = 13;
        //HISTORICAL_ROOTS_LIMIT = 2**24, so tree height is 24
        uint256 internal constant HISTORICAL_SUMMARIES_TREE_HEIGHT = 24;
        //Index of block_summary_root in historical_summary container
        uint256 internal constant BLOCK_SUMMARY_ROOT_INDEX = 0;
        uint256 internal constant NUM_WITHDRAWAL_FIELDS = 4;
        // tree height for hash tree of an individual withdrawal container
        uint256 internal constant WITHDRAWAL_FIELD_TREE_HEIGHT = 2;
        uint256 internal constant VALIDATOR_TREE_HEIGHT = 40;
        // MAX_WITHDRAWALS_PER_PAYLOAD = 2**4, making tree height = 4
        uint256 internal constant WITHDRAWALS_TREE_HEIGHT = 4;
        //in beacon block body https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconblockbody
        uint256 internal constant EXECUTION_PAYLOAD_INDEX = 9;
        // in beacon block header https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader
        uint256 internal constant SLOT_INDEX = 0;
        uint256 internal constant PROPOSER_INDEX_INDEX = 1;
        uint256 internal constant STATE_ROOT_INDEX = 3;
        uint256 internal constant BODY_ROOT_INDEX = 4;
        // in beacon state https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconstate
        uint256 internal constant HISTORICAL_BATCH_STATE_ROOT_INDEX = 1;
        uint256 internal constant BEACON_STATE_SLOT_INDEX = 2;
        uint256 internal constant LATEST_BLOCK_HEADER_ROOT_INDEX = 4;
        uint256 internal constant BLOCK_ROOTS_INDEX = 5;
        uint256 internal constant STATE_ROOTS_INDEX = 6;
        uint256 internal constant HISTORICAL_ROOTS_INDEX = 7;
        uint256 internal constant ETH_1_ROOT_INDEX = 8;
        uint256 internal constant VALIDATOR_TREE_ROOT_INDEX = 11;
        uint256 internal constant EXECUTION_PAYLOAD_HEADER_INDEX = 24;
        uint256 internal constant HISTORICAL_SUMMARIES_INDEX = 27;
        // in validator https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator
        uint256 internal constant VALIDATOR_PUBKEY_INDEX = 0;
        uint256 internal constant VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX = 1;
        uint256 internal constant VALIDATOR_BALANCE_INDEX = 2;
        uint256 internal constant VALIDATOR_SLASHED_INDEX = 3;
        uint256 internal constant VALIDATOR_WITHDRAWABLE_EPOCH_INDEX = 7;
        // in execution payload header
        uint256 internal constant TIMESTAMP_INDEX = 9;
        uint256 internal constant WITHDRAWALS_ROOT_INDEX = 14;
        //in execution payload
        uint256 internal constant WITHDRAWALS_INDEX = 14;
        // in withdrawal
        uint256 internal constant WITHDRAWAL_VALIDATOR_INDEX_INDEX = 1;
        uint256 internal constant WITHDRAWAL_VALIDATOR_AMOUNT_INDEX = 3;
        //In historicalBatch
        uint256 internal constant HISTORICALBATCH_STATEROOTS_INDEX = 1;
        //Misc Constants
        /// @notice The number of slots each epoch in the beacon chain
        uint64 internal constant SLOTS_PER_EPOCH = 32;
        /// @notice The number of seconds in a slot in the beacon chain
        uint64 internal constant SECONDS_PER_SLOT = 12;
        /// @notice Number of seconds per epoch: 384 == 32 slots/epoch * 12 seconds/slot 
        uint64 internal constant SECONDS_PER_EPOCH = SLOTS_PER_EPOCH * SECONDS_PER_SLOT;
        bytes8 internal constant UINT64_MASK = 0xffffffffffffffff;
        /// @notice This struct contains the merkle proofs and leaves needed to verify a partial/full withdrawal
        struct WithdrawalProof {
            bytes withdrawalProof;
            bytes slotProof;
            bytes executionPayloadProof;
            bytes timestampProof;
            bytes historicalSummaryBlockRootProof;
            uint64 blockRootIndex;
            uint64 historicalSummaryIndex;
            uint64 withdrawalIndex;
            bytes32 blockRoot;
            bytes32 slotRoot;
            bytes32 timestampRoot;
            bytes32 executionPayloadRoot;
        }
        /// @notice This struct contains the root and proof for verifying the state root against the oracle block root
        struct StateRootProof {
            bytes32 beaconStateRoot;
            bytes proof;
        }
        /**
         * @notice This function verifies merkle proofs of the fields of a certain validator against a beacon chain state root
         * @param validatorIndex the index of the proven validator
         * @param beaconStateRoot is the beacon chain state root to be proven against.
         * @param validatorFieldsProof is the data used in proving the validator's fields
         * @param validatorFields the claimed fields of the validator
         */
        function verifyValidatorFields(
            bytes32 beaconStateRoot,
            bytes32[] calldata validatorFields,
            bytes calldata validatorFieldsProof,
            uint40 validatorIndex
        ) internal view {
            require(
                validatorFields.length == 2 ** VALIDATOR_FIELD_TREE_HEIGHT,
                "BeaconChainProofs.verifyValidatorFields: Validator fields has incorrect length"
            );
            /**
             * Note: the length of the validator merkle proof is BeaconChainProofs.VALIDATOR_TREE_HEIGHT + 1.
             * There is an additional layer added by hashing the root with the length of the validator list
             */
            require(
                validatorFieldsProof.length == 32 * ((VALIDATOR_TREE_HEIGHT + 1) + BEACON_STATE_FIELD_TREE_HEIGHT),
                "BeaconChainProofs.verifyValidatorFields: Proof has incorrect length"
            );
            uint256 index = (VALIDATOR_TREE_ROOT_INDEX << (VALIDATOR_TREE_HEIGHT + 1)) | uint256(validatorIndex);
            // merkleize the validatorFields to get the leaf to prove
            bytes32 validatorRoot = EigenlayerMerkle.merkleizeSha256(validatorFields);
            // verify the proof of the validatorRoot against the beaconStateRoot
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: validatorFieldsProof,
                    root: beaconStateRoot,
                    leaf: validatorRoot,
                    index: index
                }),
                "BeaconChainProofs.verifyValidatorFields: Invalid merkle proof"
            );
        }
        /**
         * @notice This function verifies the latestBlockHeader against the state root. the latestBlockHeader is
         * a tracked in the beacon state.
         * @param beaconStateRoot is the beacon chain state root to be proven against.
         * @param stateRootProof is the provided merkle proof
         * @param latestBlockRoot is hashtree root of the latest block header in the beacon state
         */
        function verifyStateRootAgainstLatestBlockRoot(
            bytes32 latestBlockRoot,
            bytes32 beaconStateRoot,
            bytes calldata stateRootProof
        ) internal view {
            require(
                stateRootProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT),
                "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Proof has incorrect length"
            );
            //Next we verify the slot against the blockRoot
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: stateRootProof,
                    root: latestBlockRoot,
                    leaf: beaconStateRoot,
                    index: STATE_ROOT_INDEX
                }),
                "BeaconChainProofs.verifyStateRootAgainstLatestBlockRoot: Invalid latest block header root merkle proof"
            );
        }
        /**
         * @notice This function verifies the slot and the withdrawal fields for a given withdrawal
         * @param withdrawalProof is the provided set of merkle proofs
         * @param withdrawalFields is the serialized withdrawal container to be proven
         */
        function verifyWithdrawal(
            bytes32 beaconStateRoot,
            bytes32[] calldata withdrawalFields,
            WithdrawalProof calldata withdrawalProof
        ) internal view {
            require(
                withdrawalFields.length == 2 ** WITHDRAWAL_FIELD_TREE_HEIGHT,
                "BeaconChainProofs.verifyWithdrawal: withdrawalFields has incorrect length"
            );
            require(
                withdrawalProof.blockRootIndex < 2 ** BLOCK_ROOTS_TREE_HEIGHT,
                "BeaconChainProofs.verifyWithdrawal: blockRootIndex is too large"
            );
            require(
                withdrawalProof.withdrawalIndex < 2 ** WITHDRAWALS_TREE_HEIGHT,
                "BeaconChainProofs.verifyWithdrawal: withdrawalIndex is too large"
            );
            require(
                withdrawalProof.historicalSummaryIndex < 2 ** HISTORICAL_SUMMARIES_TREE_HEIGHT,
                "BeaconChainProofs.verifyWithdrawal: historicalSummaryIndex is too large"
            );
            require(
                withdrawalProof.withdrawalProof.length ==
                    32 * (EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT + WITHDRAWALS_TREE_HEIGHT + 1),
                "BeaconChainProofs.verifyWithdrawal: withdrawalProof has incorrect length"
            );
            require(
                withdrawalProof.executionPayloadProof.length ==
                    32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT + BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT),
                "BeaconChainProofs.verifyWithdrawal: executionPayloadProof has incorrect length"
            );
            require(
                withdrawalProof.slotProof.length == 32 * (BEACON_BLOCK_HEADER_FIELD_TREE_HEIGHT),
                "BeaconChainProofs.verifyWithdrawal: slotProof has incorrect length"
            );
            require(
                withdrawalProof.timestampProof.length == 32 * (EXECUTION_PAYLOAD_HEADER_FIELD_TREE_HEIGHT),
                "BeaconChainProofs.verifyWithdrawal: timestampProof has incorrect length"
            );
            require(
                withdrawalProof.historicalSummaryBlockRootProof.length ==
                    32 *
                        (BEACON_STATE_FIELD_TREE_HEIGHT +
                            (HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) +
                            1 +
                            (BLOCK_ROOTS_TREE_HEIGHT)),
                "BeaconChainProofs.verifyWithdrawal: historicalSummaryBlockRootProof has incorrect length"
            );
            /**
             * Note: Here, the "1" in "1 + (BLOCK_ROOTS_TREE_HEIGHT)" signifies that extra step of choosing the "block_root_summary" within the individual
             * "historical_summary". Everywhere else it signifies merkelize_with_mixin, where the length of an array is hashed with the root of the array,
             * but not here.
             */
            uint256 historicalBlockHeaderIndex = (HISTORICAL_SUMMARIES_INDEX <<
                ((HISTORICAL_SUMMARIES_TREE_HEIGHT + 1) + 1 + (BLOCK_ROOTS_TREE_HEIGHT))) |
                (uint256(withdrawalProof.historicalSummaryIndex) << (1 + (BLOCK_ROOTS_TREE_HEIGHT))) |
                (BLOCK_SUMMARY_ROOT_INDEX << (BLOCK_ROOTS_TREE_HEIGHT)) |
                uint256(withdrawalProof.blockRootIndex);
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: withdrawalProof.historicalSummaryBlockRootProof,
                    root: beaconStateRoot,
                    leaf: withdrawalProof.blockRoot,
                    index: historicalBlockHeaderIndex
                }),
                "BeaconChainProofs.verifyWithdrawal: Invalid historicalsummary merkle proof"
            );
            //Next we verify the slot against the blockRoot
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: withdrawalProof.slotProof,
                    root: withdrawalProof.blockRoot,
                    leaf: withdrawalProof.slotRoot,
                    index: SLOT_INDEX
                }),
                "BeaconChainProofs.verifyWithdrawal: Invalid slot merkle proof"
            );
            {
                // Next we verify the executionPayloadRoot against the blockRoot
                uint256 executionPayloadIndex = (BODY_ROOT_INDEX << (BEACON_BLOCK_BODY_FIELD_TREE_HEIGHT)) |
                    EXECUTION_PAYLOAD_INDEX;
                require(
                    EigenlayerMerkle.verifyInclusionSha256({
                        proof: withdrawalProof.executionPayloadProof,
                        root: withdrawalProof.blockRoot,
                        leaf: withdrawalProof.executionPayloadRoot,
                        index: executionPayloadIndex
                    }),
                    "BeaconChainProofs.verifyWithdrawal: Invalid executionPayload merkle proof"
                );
            }
            // Next we verify the timestampRoot against the executionPayload root
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: withdrawalProof.timestampProof,
                    root: withdrawalProof.executionPayloadRoot,
                    leaf: withdrawalProof.timestampRoot,
                    index: TIMESTAMP_INDEX
                }),
                "BeaconChainProofs.verifyWithdrawal: Invalid blockNumber merkle proof"
            );
            {
                /**
                 * Next we verify the withdrawal fields against the blockRoot:
                 * First we compute the withdrawal_index relative to the blockRoot by concatenating the indexes of all the
                 * intermediate root indexes from the bottom of the sub trees (the withdrawal container) to the top, the blockRoot.
                 * Then we calculate merkleize the withdrawalFields container to calculate the the withdrawalRoot.
                 * Finally we verify the withdrawalRoot against the executionPayloadRoot.
                 *
                 *
                 * Note: EigenlayerMerkleization of the withdrawals root tree uses EigenlayerMerkleizeWithMixin, i.e., the length of the array is hashed with the root of
                 * the array.  Thus we shift the WITHDRAWALS_INDEX over by WITHDRAWALS_TREE_HEIGHT + 1 and not just WITHDRAWALS_TREE_HEIGHT.
                 */
                uint256 withdrawalIndex = (WITHDRAWALS_INDEX << (WITHDRAWALS_TREE_HEIGHT + 1)) |
                    uint256(withdrawalProof.withdrawalIndex);
                bytes32 withdrawalRoot = EigenlayerMerkle.merkleizeSha256(withdrawalFields);
                require(
                    EigenlayerMerkle.verifyInclusionSha256({
                        proof: withdrawalProof.withdrawalProof,
                        root: withdrawalProof.executionPayloadRoot,
                        leaf: withdrawalRoot,
                        index: withdrawalIndex
                    }),
                    "BeaconChainProofs.verifyWithdrawal: Invalid withdrawal merkle proof"
                );
            }
        }
        /**
         * @notice This function replicates the ssz hashing of a validator's pubkey, outlined below:
         *  hh := ssz.NewHasher()
         *  hh.PutBytes(validatorPubkey[:])
         *  validatorPubkeyHash := hh.Hash()
         *  hh.Reset()
         */
        function hashValidatorBLSPubkey(bytes memory validatorPubkey) internal pure returns (bytes32 pubkeyHash) {
            require(validatorPubkey.length == 48, "Input should be 48 bytes in length");
            return sha256(abi.encodePacked(validatorPubkey, bytes16(0)));
        }
        /**
         * @dev Retrieve the withdrawal timestamp
         */
        function getWithdrawalTimestamp(WithdrawalProof memory withdrawalProof) internal pure returns (uint64) {
            return
                Endian.fromLittleEndianUint64(withdrawalProof.timestampRoot);
        }
        /**
         * @dev Converts the withdrawal's slot to an epoch
         */
        function getWithdrawalEpoch(WithdrawalProof memory withdrawalProof) internal pure returns (uint64) {
            return
                Endian.fromLittleEndianUint64(withdrawalProof.slotRoot) / SLOTS_PER_EPOCH;
        }
        /**
         * Indices for validator fields (refer to consensus specs):
         * 0: pubkey
         * 1: withdrawal credentials
         * 2: effective balance
         * 3: slashed?
         * 4: activation elligibility epoch
         * 5: activation epoch
         * 6: exit epoch
         * 7: withdrawable epoch
         */
        /**
         * @dev Retrieves a validator's pubkey hash
         */
        function getPubkeyHash(bytes32[] memory validatorFields) internal pure returns (bytes32) {
            return 
                validatorFields[VALIDATOR_PUBKEY_INDEX];
        }
        function getWithdrawalCredentials(bytes32[] memory validatorFields) internal pure returns (bytes32) {
            return
                validatorFields[VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX];
        }
        /**
         * @dev Retrieves a validator's effective balance (in gwei)
         */
        function getEffectiveBalanceGwei(bytes32[] memory validatorFields) internal pure returns (uint64) {
            return 
                Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_BALANCE_INDEX]);
        }
        /**
         * @dev Retrieves a validator's withdrawable epoch
         */
        function getWithdrawableEpoch(bytes32[] memory validatorFields) internal pure returns (uint64) {
            return 
                Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_WITHDRAWABLE_EPOCH_INDEX]);
        }
        /**
         * Indices for withdrawal fields (refer to consensus specs):
         * 0: withdrawal index
         * 1: validator index
         * 2: execution address
         * 3: withdrawal amount
         */
        /**
         * @dev Retrieves a withdrawal's validator index
         */
        function getValidatorIndex(bytes32[] memory withdrawalFields) internal pure returns (uint40) {
            return 
                uint40(Endian.fromLittleEndianUint64(withdrawalFields[WITHDRAWAL_VALIDATOR_INDEX_INDEX]));
        }
        /**
         * @dev Retrieves a withdrawal's withdrawal amount (in gwei)
         */
        function getWithdrawalAmountGwei(bytes32[] memory withdrawalFields) internal pure returns (uint64) {
            return
                Endian.fromLittleEndianUint64(withdrawalFields[WITHDRAWAL_VALIDATOR_AMOUNT_INDEX]);
        }
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity ^0.8.0;
    import "./EigenlayerMerkle.sol";
    import "./Endian.sol";
    //Utility library for parsing and PHASE0 beacon chain block headers
    //SSZ Spec: https://github.com/ethereum/consensus-specs/blob/dev/ssz/simple-serialize.md#merkleization
    //BeaconBlockHeader Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader
    //BeaconState Spec: https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconstate
    library BeaconChainProofs {
        /// @notice Heights of various merkle trees in the beacon chain
        /// - beaconBlockRoot
        /// |                                             HEIGHT: BEACON_BLOCK_HEADER_TREE_HEIGHT
        /// -- beaconStateRoot
        /// |                                             HEIGHT: BEACON_STATE_TREE_HEIGHT
        /// validatorContainerRoot, balanceContainerRoot
        /// |                       |                     HEIGHT: BALANCE_TREE_HEIGHT
        /// |                       individual balances
        /// |                                             HEIGHT: VALIDATOR_TREE_HEIGHT
        /// individual validators
        uint256 internal constant BEACON_BLOCK_HEADER_TREE_HEIGHT = 3;
        uint256 internal constant BEACON_STATE_TREE_HEIGHT = 5;
        uint256 internal constant BALANCE_TREE_HEIGHT = 38;
        uint256 internal constant VALIDATOR_TREE_HEIGHT = 40;
        
        /// @notice Index of the beaconStateRoot in the `BeaconBlockHeader` container
        ///
        /// BeaconBlockHeader = [..., state_root, ...]
        ///                      0...      3
        ///
        /// (See https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#beaconblockheader)
        uint256 internal constant STATE_ROOT_INDEX = 3;
        /// @notice Indices for fields in the `BeaconState` container
        ///
        /// BeaconState = [..., validators, balances, ...]
        ///                0...     11         12
        ///
        /// (See https://github.com/ethereum/consensus-specs/blob/dev/specs/capella/beacon-chain.md#beaconstate)
        uint256 internal constant VALIDATOR_CONTAINER_INDEX = 11;
        uint256 internal constant BALANCE_CONTAINER_INDEX = 12;
        /// @notice Number of fields in the `Validator` container
        /// (See https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator)
        uint256 internal constant VALIDATOR_FIELDS_LENGTH = 8;
        /// @notice Indices for fields in the `Validator` container
        uint256 internal constant VALIDATOR_PUBKEY_INDEX = 0;
        uint256 internal constant VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX = 1;
        uint256 internal constant VALIDATOR_BALANCE_INDEX = 2;
        uint256 internal constant VALIDATOR_SLASHED_INDEX = 3;
        uint256 internal constant VALIDATOR_EXIT_EPOCH_INDEX = 6;
        /// @notice Slot/Epoch timings
        uint64 internal constant SECONDS_PER_SLOT = 12;
        uint64 internal constant SLOTS_PER_EPOCH = 32;
        uint64 internal constant SECONDS_PER_EPOCH = SLOTS_PER_EPOCH * SECONDS_PER_SLOT;
        /// @notice `FAR_FUTURE_EPOCH` is used as the default value for certain `Validator`
        /// fields when a `Validator` is first created on the beacon chain
        uint64 internal constant FAR_FUTURE_EPOCH = type(uint64).max;
        bytes8 internal constant UINT64_MASK = 0xffffffffffffffff;
        /// @notice Contains a beacon state root and a merkle proof verifying its inclusion under a beacon block root
        struct StateRootProof {
            bytes32 beaconStateRoot;
            bytes proof;
        }
        /// @notice Contains a validator's fields and a merkle proof of their inclusion under a beacon state root
        struct ValidatorProof {
            bytes32[] validatorFields;
            bytes proof;
        }
        /// @notice Contains a beacon balance container root and a proof of this root under a beacon block root
        struct BalanceContainerProof {
            bytes32 balanceContainerRoot;
            bytes proof;
        }
        /// @notice Contains a validator balance root and a proof of its inclusion under a balance container root
        struct BalanceProof {
            bytes32 pubkeyHash;
            bytes32 balanceRoot;
            bytes proof;
        }
        /*******************************************************************************
                     VALIDATOR FIELDS -> BEACON STATE ROOT -> BEACON BLOCK ROOT
        *******************************************************************************/
        /// @notice Verify a merkle proof of the beacon state root against a beacon block root
        /// @param beaconBlockRoot merkle root of the beacon block
        /// @param proof the beacon state root and merkle proof of its inclusion under `beaconBlockRoot`
        function verifyStateRoot(
            bytes32 beaconBlockRoot,
            StateRootProof calldata proof
        ) internal view {
            require(
                proof.proof.length == 32 * (BEACON_BLOCK_HEADER_TREE_HEIGHT),
                "BeaconChainProofs.verifyStateRoot: Proof has incorrect length"
            );
            /// This merkle proof verifies the `beaconStateRoot` under the `beaconBlockRoot`
            /// - beaconBlockRoot
            /// |                            HEIGHT: BEACON_BLOCK_HEADER_TREE_HEIGHT
            /// -- beaconStateRoot
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: proof.proof,
                    root: beaconBlockRoot,
                    leaf: proof.beaconStateRoot,
                    index: STATE_ROOT_INDEX
                }),
                "BeaconChainProofs.verifyStateRoot: Invalid state root merkle proof"
            );
        }
        /// @notice Verify a merkle proof of a validator container against a `beaconStateRoot`
        /// @dev This proof starts at a validator's container root, proves through the validator container root,
        /// and continues proving to the root of the `BeaconState`
        /// @dev See https://eth2book.info/capella/part3/containers/dependencies/#validator for info on `Validator` containers
        /// @dev See https://eth2book.info/capella/part3/containers/state/#beaconstate for info on `BeaconState` containers
        /// @param beaconStateRoot merkle root of the `BeaconState` container
        /// @param validatorFields an individual validator's fields. These are merklized to form a `validatorRoot`,
        /// which is used as the leaf to prove against `beaconStateRoot`
        /// @param validatorFieldsProof a merkle proof of inclusion of `validatorFields` under `beaconStateRoot`
        /// @param validatorIndex the validator's unique index
        function verifyValidatorFields(
            bytes32 beaconStateRoot,
            bytes32[] calldata validatorFields,
            bytes calldata validatorFieldsProof,
            uint40 validatorIndex
        ) internal view {
            require(
                validatorFields.length == VALIDATOR_FIELDS_LENGTH,
                "BeaconChainProofs.verifyValidatorFields: Validator fields has incorrect length"
            );
            /// Note: the reason we use `VALIDATOR_TREE_HEIGHT + 1` here is because the merklization process for
            /// this container includes hashing the root of the validator tree with the length of the validator list
            require(
                validatorFieldsProof.length == 32 * ((VALIDATOR_TREE_HEIGHT + 1) + BEACON_STATE_TREE_HEIGHT),
                "BeaconChainProofs.verifyValidatorFields: Proof has incorrect length"
            );
            // Merkleize `validatorFields` to get the leaf to prove
            bytes32 validatorRoot = EigenlayerMerkle.merkleizeSha256(validatorFields);
            /// This proof combines two proofs, so its index accounts for the relative position of leaves in two trees:
            /// - beaconStateRoot
            /// |                            HEIGHT: BEACON_STATE_TREE_HEIGHT
            /// -- validatorContainerRoot
            /// |                            HEIGHT: VALIDATOR_TREE_HEIGHT + 1
            /// ---- validatorRoot
            uint256 index = (VALIDATOR_CONTAINER_INDEX << (VALIDATOR_TREE_HEIGHT + 1)) | uint256(validatorIndex);
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: validatorFieldsProof,
                    root: beaconStateRoot,
                    leaf: validatorRoot,
                    index: index
                }),
                "BeaconChainProofs.verifyValidatorFields: Invalid merkle proof"
            );
        }
        /*******************************************************************************
                 VALIDATOR BALANCE -> BALANCE CONTAINER ROOT -> BEACON BLOCK ROOT
        *******************************************************************************/
        /// @notice Verify a merkle proof of the beacon state's balances container against the beacon block root
        /// @dev This proof starts at the balance container root, proves through the beacon state root, and
        /// continues proving through the beacon block root. As a result, this proof will contain elements
        /// of a `StateRootProof` under the same block root, with the addition of proving the balances field
        /// within the beacon state.
        /// @dev This is used to make checkpoint proofs more efficient, as a checkpoint will verify multiple balances
        /// against the same balance container root.
        /// @param beaconBlockRoot merkle root of the beacon block
        /// @param proof a beacon balance container root and merkle proof of its inclusion under `beaconBlockRoot`
        function verifyBalanceContainer(
            bytes32 beaconBlockRoot,
            BalanceContainerProof calldata proof
        ) internal view {
            require(
                proof.proof.length == 32 * (BEACON_BLOCK_HEADER_TREE_HEIGHT + BEACON_STATE_TREE_HEIGHT),
                "BeaconChainProofs.verifyBalanceContainer: Proof has incorrect length"
            );
            /// This proof combines two proofs, so its index accounts for the relative position of leaves in two trees:
            /// - beaconBlockRoot
            /// |                            HEIGHT: BEACON_BLOCK_HEADER_TREE_HEIGHT
            /// -- beaconStateRoot
            /// |                            HEIGHT: BEACON_STATE_TREE_HEIGHT
            /// ---- balancesContainerRoot
            uint256 index = (STATE_ROOT_INDEX << (BEACON_STATE_TREE_HEIGHT)) | BALANCE_CONTAINER_INDEX;
            
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: proof.proof,
                    root: beaconBlockRoot,
                    leaf: proof.balanceContainerRoot,
                    index: index
                }),
                "BeaconChainProofs.verifyBalanceContainer: invalid balance container proof"
            );
        }
        /// @notice Verify a merkle proof of a validator's balance against the beacon state's `balanceContainerRoot`
        /// @param balanceContainerRoot the merkle root of all validators' current balances
        /// @param validatorIndex the index of the validator whose balance we are proving
        /// @param proof the validator's associated balance root and a merkle proof of inclusion under `balanceContainerRoot`
        /// @return validatorBalanceGwei the validator's current balance (in gwei)
        function verifyValidatorBalance(
            bytes32 balanceContainerRoot,
            uint40 validatorIndex,
            BalanceProof calldata proof
        ) internal view returns (uint64 validatorBalanceGwei) {
            /// Note: the reason we use `BALANCE_TREE_HEIGHT + 1` here is because the merklization process for
            /// this container includes hashing the root of the balances tree with the length of the balances list
            require(
                proof.proof.length == 32 * (BALANCE_TREE_HEIGHT + 1),
                "BeaconChainProofs.verifyValidatorBalance: Proof has incorrect length"
            );
            /// When merkleized, beacon chain balances are combined into groups of 4 called a `balanceRoot`. The merkle
            /// proof here verifies that this validator's `balanceRoot` is included in the `balanceContainerRoot`
            /// - balanceContainerRoot
            /// |                            HEIGHT: BALANCE_TREE_HEIGHT
            /// -- balanceRoot
            uint256 balanceIndex = uint256(validatorIndex / 4);
     
            require(
                EigenlayerMerkle.verifyInclusionSha256({
                    proof: proof.proof,
                    root: balanceContainerRoot,
                    leaf: proof.balanceRoot,
                    index: balanceIndex
                }),
                "BeaconChainProofs.verifyValidatorBalance: Invalid merkle proof"
            );
            /// Extract the individual validator's balance from the `balanceRoot`
            return getBalanceAtIndex(proof.balanceRoot, validatorIndex);
        }
        /**
         * @notice Parses a balanceRoot to get the uint64 balance of a validator.  
         * @dev During merkleization of the beacon state balance tree, four uint64 values are treated as a single 
         * leaf in the merkle tree. We use validatorIndex % 4 to determine which of the four uint64 values to 
         * extract from the balanceRoot.
         * @param balanceRoot is the combination of 4 validator balances being proven for
         * @param validatorIndex is the index of the validator being proven for
         * @return The validator's balance, in Gwei
         */
        function getBalanceAtIndex(bytes32 balanceRoot, uint40 validatorIndex) internal pure returns (uint64) {
            uint256 bitShiftAmount = (validatorIndex % 4) * 64;
            return 
                Endian.fromLittleEndianUint64(bytes32((uint256(balanceRoot) << bitShiftAmount)));
        }
        /// @notice Indices for fields in the `Validator` container:
        /// 0: pubkey
        /// 1: withdrawal credentials
        /// 2: effective balance
        /// 3: slashed?
        /// 4: activation elligibility epoch
        /// 5: activation epoch
        /// 6: exit epoch
        /// 7: withdrawable epoch
        ///
        /// (See https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/beacon-chain.md#validator)
        /// @dev Retrieves a validator's pubkey hash
        function getPubkeyHash(bytes32[] memory validatorFields) internal pure returns (bytes32) {
            return 
                validatorFields[VALIDATOR_PUBKEY_INDEX];
        }
        /// @dev Retrieves a validator's withdrawal credentials
        function getWithdrawalCredentials(bytes32[] memory validatorFields) internal pure returns (bytes32) {
            return
                validatorFields[VALIDATOR_WITHDRAWAL_CREDENTIALS_INDEX];
        }
        /// @dev Retrieves a validator's effective balance (in gwei)
        function getEffectiveBalanceGwei(bytes32[] memory validatorFields) internal pure returns (uint64) {
            return 
                Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_BALANCE_INDEX]);
        }
        /// @dev Retrieves true IFF a validator is marked slashed
        function isValidatorSlashed(bytes32[] memory validatorFields) internal pure returns (bool) {
            return validatorFields[VALIDATOR_SLASHED_INDEX] != 0;
        }
        /// @dev Retrieves a validator's exit epoch
        function getExitEpoch(bytes32[] memory validatorFields) internal pure returns (uint64) {
            return 
                Endian.fromLittleEndianUint64(validatorFields[VALIDATOR_EXIT_EPOCH_INDEX]);
        }
    }
    // SPDX-License-Identifier: MIT
    // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev Interface of the ERC20 standard as defined in the EIP.
     */
    interface IERC20 {
        /**
         * @dev Emitted when `value` tokens are moved from one account (`from`) to
         * another (`to`).
         *
         * Note that `value` may be zero.
         */
        event Transfer(address indexed from, address indexed to, uint256 value);
        /**
         * @dev Emitted when the allowance of a `spender` for an `owner` is set by
         * a call to {approve}. `value` is the new allowance.
         */
        event Approval(address indexed owner, address indexed spender, uint256 value);
        /**
         * @dev Returns the amount of tokens in existence.
         */
        function totalSupply() external view returns (uint256);
        /**
         * @dev Returns the amount of tokens owned by `account`.
         */
        function balanceOf(address account) external view returns (uint256);
        /**
         * @dev Moves `amount` tokens from the caller's account to `to`.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transfer(address to, uint256 amount) external returns (bool);
        /**
         * @dev Returns the remaining number of tokens that `spender` will be
         * allowed to spend on behalf of `owner` through {transferFrom}. This is
         * zero by default.
         *
         * This value changes when {approve} or {transferFrom} are called.
         */
        function allowance(address owner, address spender) external view returns (uint256);
        /**
         * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * IMPORTANT: Beware that changing an allowance with this method brings the risk
         * that someone may use both the old and the new allowance by unfortunate
         * transaction ordering. One possible solution to mitigate this race
         * condition is to first reduce the spender's allowance to 0 and set the
         * desired value afterwards:
         * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
         *
         * Emits an {Approval} event.
         */
        function approve(address spender, uint256 amount) external returns (bool);
        /**
         * @dev Moves `amount` tokens from `from` to `to` using the
         * allowance mechanism. `amount` is then deducted from the caller's
         * allowance.
         *
         * Returns a boolean value indicating whether the operation succeeded.
         *
         * Emits a {Transfer} event.
         */
        function transferFrom(
            address from,
            address to,
            uint256 amount
        ) external returns (bool);
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity >=0.5.0;
    /**
     * @title Interface for the `PauserRegistry` contract.
     * @author Layr Labs, Inc.
     * @notice Terms of Service: https://docs.eigenlayer.xyz/overview/terms-of-service
     */
    interface IPauserRegistry {
        event PauserStatusChanged(address pauser, bool canPause);
        event UnpauserChanged(address previousUnpauser, address newUnpauser);
        
        /// @notice Mapping of addresses to whether they hold the pauser role.
        function isPauser(address pauser) external view returns (bool);
        /// @notice Unique address that holds the unpauser role. Capable of changing *both* the pauser and unpauser addresses.
        function unpauser() external view returns (address);
    }
    // SPDX-License-Identifier: BUSL-1.1
    // Adapted from OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
    pragma solidity ^0.8.0;
    /**
     * @dev These functions deal with verification of Merkle Tree proofs.
     *
     * The tree and the proofs can be generated using our
     * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
     * You will find a quickstart guide in the readme.
     *
     * WARNING: You should avoid using leaf values that are 64 bytes long prior to
     * hashing, or use a hash function other than keccak256 for hashing leaves.
     * This is because the concatenation of a sorted pair of internal nodes in
     * the merkle tree could be reinterpreted as a leaf value.
     * OpenZeppelin's JavaScript library generates merkle trees that are safe
     * against this attack out of the box.
     */
    library EigenlayerMerkle {
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. The tree is built assuming `leaf` is
         * the 0 indexed `index`'th leaf from the bottom left of the tree.
         *
         * Note this is for a Merkle tree using the keccak/sha3 hash function
         */
        function verifyInclusionKeccak(
            bytes memory proof,
            bytes32 root,
            bytes32 leaf,
            uint256 index
        ) internal pure returns (bool) {
            return processInclusionProofKeccak(proof, leaf, index) == root;
        }
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. The tree is built assuming `leaf` is
         * the 0 indexed `index`'th leaf from the bottom left of the tree.
         *
         * _Available since v4.4._
         *
         * Note this is for a Merkle tree using the keccak/sha3 hash function
         */
        function processInclusionProofKeccak(
            bytes memory proof,
            bytes32 leaf,
            uint256 index
        ) internal pure returns (bytes32) {
            require(
                proof.length != 0 && proof.length % 32 == 0,
                "Merkle.processInclusionProofKeccak: proof length should be a non-zero multiple of 32"
            );
            bytes32 computedHash = leaf;
            for (uint256 i = 32; i <= proof.length; i += 32) {
                if (index % 2 == 0) {
                    // if ith bit of index is 0, then computedHash is a left sibling
                    assembly {
                        mstore(0x00, computedHash)
                        mstore(0x20, mload(add(proof, i)))
                        computedHash := keccak256(0x00, 0x40)
                        index := div(index, 2)
                    }
                } else {
                    // if ith bit of index is 1, then computedHash is a right sibling
                    assembly {
                        mstore(0x00, mload(add(proof, i)))
                        mstore(0x20, computedHash)
                        computedHash := keccak256(0x00, 0x40)
                        index := div(index, 2)
                    }
                }
            }
            return computedHash;
        }
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. The tree is built assuming `leaf` is
         * the 0 indexed `index`'th leaf from the bottom left of the tree.
         *
         * Note this is for a Merkle tree using the sha256 hash function
         */
        function verifyInclusionSha256(
            bytes memory proof,
            bytes32 root,
            bytes32 leaf,
            uint256 index
        ) internal view returns (bool) {
            return processInclusionProofSha256(proof, leaf, index) == root;
        }
        /**
         * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
         * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
         * hash matches the root of the tree. The tree is built assuming `leaf` is
         * the 0 indexed `index`'th leaf from the bottom left of the tree.
         *
         * _Available since v4.4._
         *
         * Note this is for a Merkle tree using the sha256 hash function
         */
        function processInclusionProofSha256(
            bytes memory proof,
            bytes32 leaf,
            uint256 index
        ) internal view returns (bytes32) {
            require(
                proof.length != 0 && proof.length % 32 == 0,
                "Merkle.processInclusionProofSha256: proof length should be a non-zero multiple of 32"
            );
            bytes32[1] memory computedHash = [leaf];
            for (uint256 i = 32; i <= proof.length; i += 32) {
                if (index % 2 == 0) {
                    // if ith bit of index is 0, then computedHash is a left sibling
                    assembly {
                        mstore(0x00, mload(computedHash))
                        mstore(0x20, mload(add(proof, i)))
                        if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) {
                            revert(0, 0)
                        }
                        index := div(index, 2)
                    }
                } else {
                    // if ith bit of index is 1, then computedHash is a right sibling
                    assembly {
                        mstore(0x00, mload(add(proof, i)))
                        mstore(0x20, mload(computedHash))
                        if iszero(staticcall(sub(gas(), 2000), 2, 0x00, 0x40, computedHash, 0x20)) {
                            revert(0, 0)
                        }
                        index := div(index, 2)
                    }
                }
            }
            return computedHash[0];
        }
        /**
         @notice this function returns the merkle root of a tree created from a set of leaves using sha256 as its hash function
         @param leaves the leaves of the merkle tree
         @return The computed Merkle root of the tree.
         @dev A pre-condition to this function is that leaves.length is a power of two.  If not, the function will merkleize the inputs incorrectly.
         */
        function merkleizeSha256(bytes32[] memory leaves) internal pure returns (bytes32) {
            //there are half as many nodes in the layer above the leaves
            uint256 numNodesInLayer = leaves.length / 2;
            //create a layer to store the internal nodes
            bytes32[] memory layer = new bytes32[](numNodesInLayer);
            //fill the layer with the pairwise hashes of the leaves
            for (uint256 i = 0; i < numNodesInLayer; i++) {
                layer[i] = sha256(abi.encodePacked(leaves[2 * i], leaves[2 * i + 1]));
            }
            //the next layer above has half as many nodes
            numNodesInLayer /= 2;
            //while we haven't computed the root
            while (numNodesInLayer != 0) {
                //overwrite the first numNodesInLayer nodes in layer with the pairwise hashes of their children
                for (uint256 i = 0; i < numNodesInLayer; i++) {
                    layer[i] = sha256(abi.encodePacked(layer[2 * i], layer[2 * i + 1]));
                }
                //the next layer above has half as many nodes
                numNodesInLayer /= 2;
            }
            //the first node in the layer is the root
            return layer[0];
        }
    }
    // SPDX-License-Identifier: BUSL-1.1
    pragma solidity ^0.8.0;
    library Endian {
        /**
         * @notice Converts a little endian-formatted uint64 to a big endian-formatted uint64
         * @param lenum little endian-formatted uint64 input, provided as 'bytes32' type
         * @return n The big endian-formatted uint64
         * @dev Note that the input is formatted as a 'bytes32' type (i.e. 256 bits), but it is immediately truncated to a uint64 (i.e. 64 bits)
         * through a right-shift/shr operation.
         */
        function fromLittleEndianUint64(bytes32 lenum) internal pure returns (uint64 n) {
            // the number needs to be stored in little-endian encoding (ie in bytes 0-8)
            n = uint64(uint256(lenum >> 192));
            return
                (n >> 56) |
                ((0x00FF000000000000 & n) >> 40) |
                ((0x0000FF0000000000 & n) >> 24) |
                ((0x000000FF00000000 & n) >> 8) |
                ((0x00000000FF000000 & n) << 8) |
                ((0x0000000000FF0000 & n) << 24) |
                ((0x000000000000FF00 & n) << 40) |
                ((0x00000000000000FF & n) << 56);
        }
    }