ETH Price: $3,278.14 (-0.77%)
Gas: 0.15 Gwei

Transaction Decoder

Block:
23981307 at Dec-10-2025 09:05:59 AM +UTC
Transaction Fee:
0.000053531956356186 ETH $0.18
Gas Used:
64,218 Gas / 0.833597377 Gwei

Account State Difference:

  Address   Before After State Difference Code
0x05CdB152...4Ea25eb3d
(VALR: Hot Wallet)
196.370089350499309276 Eth
Nonce: 303963
196.37003581854295309 Eth
Nonce: 303964
0.000053531956356186
0xdAC17F95...13D831ec7
(BuilderNet)
69.231651044600811294 Eth69.231677585947090434 Eth0.00002654134627914

Execution Trace

0xe49806cfcbc5f867320a479d031a3b6295d69b97.1be19560( )
  • 0x2d83077c57707d6333348be61be6505963c99b4d.STATICCALL( )
  • 0xd72ad420c40a93ce616d2c7ff08224bbff0df5a6.1be19560( )
    • TetherToken.balanceOf( who=0xe49806CFcbc5f867320A479d031a3b6295d69b97 ) => ( 4501504038200 )
    • ERC1967Proxy.5fb62f88( )
      • 0x7262d05a2fa48a9217b794600c356c7e6bb30c9a.5fb62f88( )
      • TetherToken.transfer( _to=0x05CdB1526F6e224e02919a4C018D9784Ea25eb3d, _value=4501504038200 )
        File 1 of 2: TetherToken
        pragma solidity ^0.4.17;
        
        /**
         * @title SafeMath
         * @dev Math operations with safety checks that throw on error
         */
        library SafeMath {
            function mul(uint256 a, uint256 b) internal pure returns (uint256) {
                if (a == 0) {
                    return 0;
                }
                uint256 c = a * b;
                assert(c / a == b);
                return c;
            }
        
            function div(uint256 a, uint256 b) internal pure returns (uint256) {
                // assert(b > 0); // Solidity automatically throws when dividing by 0
                uint256 c = a / b;
                // assert(a == b * c + a % b); // There is no case in which this doesn't hold
                return c;
            }
        
            function sub(uint256 a, uint256 b) internal pure returns (uint256) {
                assert(b <= a);
                return a - b;
            }
        
            function add(uint256 a, uint256 b) internal pure returns (uint256) {
                uint256 c = a + b;
                assert(c >= a);
                return c;
            }
        }
        
        /**
         * @title Ownable
         * @dev The Ownable contract has an owner address, and provides basic authorization control
         * functions, this simplifies the implementation of "user permissions".
         */
        contract Ownable {
            address public owner;
        
            /**
              * @dev The Ownable constructor sets the original `owner` of the contract to the sender
              * account.
              */
            function Ownable() public {
                owner = msg.sender;
            }
        
            /**
              * @dev Throws if called by any account other than the owner.
              */
            modifier onlyOwner() {
                require(msg.sender == owner);
                _;
            }
        
            /**
            * @dev Allows the current owner to transfer control of the contract to a newOwner.
            * @param newOwner The address to transfer ownership to.
            */
            function transferOwnership(address newOwner) public onlyOwner {
                if (newOwner != address(0)) {
                    owner = newOwner;
                }
            }
        
        }
        
        /**
         * @title ERC20Basic
         * @dev Simpler version of ERC20 interface
         * @dev see https://github.com/ethereum/EIPs/issues/20
         */
        contract ERC20Basic {
            uint public _totalSupply;
            function totalSupply() public constant returns (uint);
            function balanceOf(address who) public constant returns (uint);
            function transfer(address to, uint value) public;
            event Transfer(address indexed from, address indexed to, uint value);
        }
        
        /**
         * @title ERC20 interface
         * @dev see https://github.com/ethereum/EIPs/issues/20
         */
        contract ERC20 is ERC20Basic {
            function allowance(address owner, address spender) public constant returns (uint);
            function transferFrom(address from, address to, uint value) public;
            function approve(address spender, uint value) public;
            event Approval(address indexed owner, address indexed spender, uint value);
        }
        
        /**
         * @title Basic token
         * @dev Basic version of StandardToken, with no allowances.
         */
        contract BasicToken is Ownable, ERC20Basic {
            using SafeMath for uint;
        
            mapping(address => uint) public balances;
        
            // additional variables for use if transaction fees ever became necessary
            uint public basisPointsRate = 0;
            uint public maximumFee = 0;
        
            /**
            * @dev Fix for the ERC20 short address attack.
            */
            modifier onlyPayloadSize(uint size) {
                require(!(msg.data.length < size + 4));
                _;
            }
        
            /**
            * @dev transfer token for a specified address
            * @param _to The address to transfer to.
            * @param _value The amount to be transferred.
            */
            function transfer(address _to, uint _value) public onlyPayloadSize(2 * 32) {
                uint fee = (_value.mul(basisPointsRate)).div(10000);
                if (fee > maximumFee) {
                    fee = maximumFee;
                }
                uint sendAmount = _value.sub(fee);
                balances[msg.sender] = balances[msg.sender].sub(_value);
                balances[_to] = balances[_to].add(sendAmount);
                if (fee > 0) {
                    balances[owner] = balances[owner].add(fee);
                    Transfer(msg.sender, owner, fee);
                }
                Transfer(msg.sender, _to, sendAmount);
            }
        
            /**
            * @dev Gets the balance of the specified address.
            * @param _owner The address to query the the balance of.
            * @return An uint representing the amount owned by the passed address.
            */
            function balanceOf(address _owner) public constant returns (uint balance) {
                return balances[_owner];
            }
        
        }
        
        /**
         * @title Standard ERC20 token
         *
         * @dev Implementation of the basic standard token.
         * @dev https://github.com/ethereum/EIPs/issues/20
         * @dev Based oncode by FirstBlood: https://github.com/Firstbloodio/token/blob/master/smart_contract/FirstBloodToken.sol
         */
        contract StandardToken is BasicToken, ERC20 {
        
            mapping (address => mapping (address => uint)) public allowed;
        
            uint public constant MAX_UINT = 2**256 - 1;
        
            /**
            * @dev Transfer tokens from one address to another
            * @param _from address The address which you want to send tokens from
            * @param _to address The address which you want to transfer to
            * @param _value uint the amount of tokens to be transferred
            */
            function transferFrom(address _from, address _to, uint _value) public onlyPayloadSize(3 * 32) {
                var _allowance = allowed[_from][msg.sender];
        
                // Check is not needed because sub(_allowance, _value) will already throw if this condition is not met
                // if (_value > _allowance) throw;
        
                uint fee = (_value.mul(basisPointsRate)).div(10000);
                if (fee > maximumFee) {
                    fee = maximumFee;
                }
                if (_allowance < MAX_UINT) {
                    allowed[_from][msg.sender] = _allowance.sub(_value);
                }
                uint sendAmount = _value.sub(fee);
                balances[_from] = balances[_from].sub(_value);
                balances[_to] = balances[_to].add(sendAmount);
                if (fee > 0) {
                    balances[owner] = balances[owner].add(fee);
                    Transfer(_from, owner, fee);
                }
                Transfer(_from, _to, sendAmount);
            }
        
            /**
            * @dev Approve the passed address to spend the specified amount of tokens on behalf of msg.sender.
            * @param _spender The address which will spend the funds.
            * @param _value The amount of tokens to be spent.
            */
            function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
        
                // To change the approve amount you first have to reduce the addresses`
                //  allowance to zero by calling `approve(_spender, 0)` if it is not
                //  already 0 to mitigate the race condition described here:
                //  https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
                require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));
        
                allowed[msg.sender][_spender] = _value;
                Approval(msg.sender, _spender, _value);
            }
        
            /**
            * @dev Function to check the amount of tokens than an owner allowed to a spender.
            * @param _owner address The address which owns the funds.
            * @param _spender address The address which will spend the funds.
            * @return A uint specifying the amount of tokens still available for the spender.
            */
            function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                return allowed[_owner][_spender];
            }
        
        }
        
        
        /**
         * @title Pausable
         * @dev Base contract which allows children to implement an emergency stop mechanism.
         */
        contract Pausable is Ownable {
          event Pause();
          event Unpause();
        
          bool public paused = false;
        
        
          /**
           * @dev Modifier to make a function callable only when the contract is not paused.
           */
          modifier whenNotPaused() {
            require(!paused);
            _;
          }
        
          /**
           * @dev Modifier to make a function callable only when the contract is paused.
           */
          modifier whenPaused() {
            require(paused);
            _;
          }
        
          /**
           * @dev called by the owner to pause, triggers stopped state
           */
          function pause() onlyOwner whenNotPaused public {
            paused = true;
            Pause();
          }
        
          /**
           * @dev called by the owner to unpause, returns to normal state
           */
          function unpause() onlyOwner whenPaused public {
            paused = false;
            Unpause();
          }
        }
        
        contract BlackList is Ownable, BasicToken {
        
            /////// Getters to allow the same blacklist to be used also by other contracts (including upgraded Tether) ///////
            function getBlackListStatus(address _maker) external constant returns (bool) {
                return isBlackListed[_maker];
            }
        
            function getOwner() external constant returns (address) {
                return owner;
            }
        
            mapping (address => bool) public isBlackListed;
            
            function addBlackList (address _evilUser) public onlyOwner {
                isBlackListed[_evilUser] = true;
                AddedBlackList(_evilUser);
            }
        
            function removeBlackList (address _clearedUser) public onlyOwner {
                isBlackListed[_clearedUser] = false;
                RemovedBlackList(_clearedUser);
            }
        
            function destroyBlackFunds (address _blackListedUser) public onlyOwner {
                require(isBlackListed[_blackListedUser]);
                uint dirtyFunds = balanceOf(_blackListedUser);
                balances[_blackListedUser] = 0;
                _totalSupply -= dirtyFunds;
                DestroyedBlackFunds(_blackListedUser, dirtyFunds);
            }
        
            event DestroyedBlackFunds(address _blackListedUser, uint _balance);
        
            event AddedBlackList(address _user);
        
            event RemovedBlackList(address _user);
        
        }
        
        contract UpgradedStandardToken is StandardToken{
            // those methods are called by the legacy contract
            // and they must ensure msg.sender to be the contract address
            function transferByLegacy(address from, address to, uint value) public;
            function transferFromByLegacy(address sender, address from, address spender, uint value) public;
            function approveByLegacy(address from, address spender, uint value) public;
        }
        
        contract TetherToken is Pausable, StandardToken, BlackList {
        
            string public name;
            string public symbol;
            uint public decimals;
            address public upgradedAddress;
            bool public deprecated;
        
            //  The contract can be initialized with a number of tokens
            //  All the tokens are deposited to the owner address
            //
            // @param _balance Initial supply of the contract
            // @param _name Token Name
            // @param _symbol Token symbol
            // @param _decimals Token decimals
            function TetherToken(uint _initialSupply, string _name, string _symbol, uint _decimals) public {
                _totalSupply = _initialSupply;
                name = _name;
                symbol = _symbol;
                decimals = _decimals;
                balances[owner] = _initialSupply;
                deprecated = false;
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function transfer(address _to, uint _value) public whenNotPaused {
                require(!isBlackListed[msg.sender]);
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).transferByLegacy(msg.sender, _to, _value);
                } else {
                    return super.transfer(_to, _value);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function transferFrom(address _from, address _to, uint _value) public whenNotPaused {
                require(!isBlackListed[_from]);
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).transferFromByLegacy(msg.sender, _from, _to, _value);
                } else {
                    return super.transferFrom(_from, _to, _value);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function balanceOf(address who) public constant returns (uint) {
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).balanceOf(who);
                } else {
                    return super.balanceOf(who);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function approve(address _spender, uint _value) public onlyPayloadSize(2 * 32) {
                if (deprecated) {
                    return UpgradedStandardToken(upgradedAddress).approveByLegacy(msg.sender, _spender, _value);
                } else {
                    return super.approve(_spender, _value);
                }
            }
        
            // Forward ERC20 methods to upgraded contract if this one is deprecated
            function allowance(address _owner, address _spender) public constant returns (uint remaining) {
                if (deprecated) {
                    return StandardToken(upgradedAddress).allowance(_owner, _spender);
                } else {
                    return super.allowance(_owner, _spender);
                }
            }
        
            // deprecate current contract in favour of a new one
            function deprecate(address _upgradedAddress) public onlyOwner {
                deprecated = true;
                upgradedAddress = _upgradedAddress;
                Deprecate(_upgradedAddress);
            }
        
            // deprecate current contract if favour of a new one
            function totalSupply() public constant returns (uint) {
                if (deprecated) {
                    return StandardToken(upgradedAddress).totalSupply();
                } else {
                    return _totalSupply;
                }
            }
        
            // Issue a new amount of tokens
            // these tokens are deposited into the owner address
            //
            // @param _amount Number of tokens to be issued
            function issue(uint amount) public onlyOwner {
                require(_totalSupply + amount > _totalSupply);
                require(balances[owner] + amount > balances[owner]);
        
                balances[owner] += amount;
                _totalSupply += amount;
                Issue(amount);
            }
        
            // Redeem tokens.
            // These tokens are withdrawn from the owner address
            // if the balance must be enough to cover the redeem
            // or the call will fail.
            // @param _amount Number of tokens to be issued
            function redeem(uint amount) public onlyOwner {
                require(_totalSupply >= amount);
                require(balances[owner] >= amount);
        
                _totalSupply -= amount;
                balances[owner] -= amount;
                Redeem(amount);
            }
        
            function setParams(uint newBasisPoints, uint newMaxFee) public onlyOwner {
                // Ensure transparency by hardcoding limit beyond which fees can never be added
                require(newBasisPoints < 20);
                require(newMaxFee < 50);
        
                basisPointsRate = newBasisPoints;
                maximumFee = newMaxFee.mul(10**decimals);
        
                Params(basisPointsRate, maximumFee);
            }
        
            // Called when new token are issued
            event Issue(uint amount);
        
            // Called when tokens are redeemed
            event Redeem(uint amount);
        
            // Called when contract is deprecated
            event Deprecate(address newAddress);
        
            // Called if contract ever adds fees
            event Params(uint feeBasisPoints, uint maxFee);
        }

        File 2 of 2: ERC1967Proxy
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (access/Ownable.sol)
        pragma solidity ^0.8.20;
        import {Context} from "../utils/Context.sol";
        /**
         * @dev Contract module which provides a basic access control mechanism, where
         * there is an account (an owner) that can be granted exclusive access to
         * specific functions.
         *
         * The initial owner is set to the address provided by the deployer. This can
         * later be changed with {transferOwnership}.
         *
         * This module is used through inheritance. It will make available the modifier
         * `onlyOwner`, which can be applied to your functions to restrict their use to
         * the owner.
         */
        abstract contract Ownable is Context {
            address private _owner;
            /**
             * @dev The caller account is not authorized to perform an operation.
             */
            error OwnableUnauthorizedAccount(address account);
            /**
             * @dev The owner is not a valid owner account. (eg. `address(0)`)
             */
            error OwnableInvalidOwner(address owner);
            event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
            /**
             * @dev Initializes the contract setting the address provided by the deployer as the initial owner.
             */
            constructor(address initialOwner) {
                if (initialOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(initialOwner);
            }
            /**
             * @dev Throws if called by any account other than the owner.
             */
            modifier onlyOwner() {
                _checkOwner();
                _;
            }
            /**
             * @dev Returns the address of the current owner.
             */
            function owner() public view virtual returns (address) {
                return _owner;
            }
            /**
             * @dev Throws if the sender is not the owner.
             */
            function _checkOwner() internal view virtual {
                if (owner() != _msgSender()) {
                    revert OwnableUnauthorizedAccount(_msgSender());
                }
            }
            /**
             * @dev Leaves the contract without owner. It will not be possible to call
             * `onlyOwner` functions. Can only be called by the current owner.
             *
             * NOTE: Renouncing ownership will leave the contract without an owner,
             * thereby disabling any functionality that is only available to the owner.
             */
            function renounceOwnership() public virtual onlyOwner {
                _transferOwnership(address(0));
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Can only be called by the current owner.
             */
            function transferOwnership(address newOwner) public virtual onlyOwner {
                if (newOwner == address(0)) {
                    revert OwnableInvalidOwner(address(0));
                }
                _transferOwnership(newOwner);
            }
            /**
             * @dev Transfers ownership of the contract to a new account (`newOwner`).
             * Internal function without access restriction.
             */
            function _transferOwnership(address newOwner) internal virtual {
                address oldOwner = _owner;
                _owner = newOwner;
                emit OwnershipTransferred(oldOwner, newOwner);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC1967.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev ERC-1967: Proxy Storage Slots. This interface contains the events defined in the ERC.
         */
        interface IERC1967 {
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/BeaconProxy.sol)
        pragma solidity ^0.8.20;
        import {IBeacon} from "./IBeacon.sol";
        import {Proxy} from "../Proxy.sol";
        import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
        /**
         * @dev This contract implements a proxy that gets the implementation address for each call from an {UpgradeableBeacon}.
         *
         * The beacon address can only be set once during construction, and cannot be changed afterwards. It is stored in an
         * immutable variable to avoid unnecessary storage reads, and also in the beacon storage slot specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] so that it can be accessed externally.
         *
         * CAUTION: Since the beacon address can never be changed, you must ensure that you either control the beacon, or trust
         * the beacon to not upgrade the implementation maliciously.
         *
         * IMPORTANT: Do not use the implementation logic to modify the beacon storage slot. Doing so would leave the proxy in
         * an inconsistent state where the beacon storage slot does not match the beacon address.
         */
        contract BeaconProxy is Proxy {
            // An immutable address for the beacon to avoid unnecessary SLOADs before each delegate call.
            address private immutable _beacon;
            /**
             * @dev Initializes the proxy with `beacon`.
             *
             * If `data` is nonempty, it's used as data in a delegate call to the implementation returned by the beacon. This
             * will typically be an encoded function call, and allows initializing the storage of the proxy like a Solidity
             * constructor.
             *
             * Requirements:
             *
             * - `beacon` must be a contract with the interface {IBeacon}.
             * - If `data` is empty, `msg.value` must be zero.
             */
            constructor(address beacon, bytes memory data) payable {
                ERC1967Utils.upgradeBeaconToAndCall(beacon, data);
                _beacon = beacon;
            }
            /**
             * @dev Returns the current implementation address of the associated beacon.
             */
            function _implementation() internal view virtual override returns (address) {
                return IBeacon(_getBeacon()).implementation();
            }
            /**
             * @dev Returns the beacon.
             */
            function _getBeacon() internal view virtual returns (address) {
                return _beacon;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev This is the interface that {BeaconProxy} expects of its beacon.
         */
        interface IBeacon {
            /**
             * @dev Must return an address that can be used as a delegate call target.
             *
             * {UpgradeableBeacon} will check that this address is a contract.
             */
            function implementation() external view returns (address);
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/UpgradeableBeacon.sol)
        pragma solidity ^0.8.20;
        import {IBeacon} from "./IBeacon.sol";
        import {Ownable} from "../../access/Ownable.sol";
        /**
         * @dev This contract is used in conjunction with one or more instances of {BeaconProxy} to determine their
         * implementation contract, which is where they will delegate all function calls.
         *
         * An owner is able to change the implementation the beacon points to, thus upgrading the proxies that use this beacon.
         */
        contract UpgradeableBeacon is IBeacon, Ownable {
            address private _implementation;
            /**
             * @dev The `implementation` of the beacon is invalid.
             */
            error BeaconInvalidImplementation(address implementation);
            /**
             * @dev Emitted when the implementation returned by the beacon is changed.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Sets the address of the initial implementation, and the initial owner who can upgrade the beacon.
             */
            constructor(address implementation_, address initialOwner) Ownable(initialOwner) {
                _setImplementation(implementation_);
            }
            /**
             * @dev Returns the current implementation address.
             */
            function implementation() public view virtual returns (address) {
                return _implementation;
            }
            /**
             * @dev Upgrades the beacon to a new implementation.
             *
             * Emits an {Upgraded} event.
             *
             * Requirements:
             *
             * - msg.sender must be the owner of the contract.
             * - `newImplementation` must be a contract.
             */
            function upgradeTo(address newImplementation) public virtual onlyOwner {
                _setImplementation(newImplementation);
            }
            /**
             * @dev Sets the implementation contract address for this beacon
             *
             * Requirements:
             *
             * - `newImplementation` must be a contract.
             */
            function _setImplementation(address newImplementation) private {
                if (newImplementation.code.length == 0) {
                    revert BeaconInvalidImplementation(newImplementation);
                }
                _implementation = newImplementation;
                emit Upgraded(newImplementation);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol)
        pragma solidity ^0.8.20;
        import {Proxy} from "../Proxy.sol";
        import {ERC1967Utils} from "./ERC1967Utils.sol";
        /**
         * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an
         * implementation address that can be changed. This address is stored in storage in the location specified by
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the
         * implementation behind the proxy.
         */
        contract ERC1967Proxy is Proxy {
            /**
             * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`.
             *
             * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an
             * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor.
             *
             * Requirements:
             *
             * - If `data` is empty, `msg.value` must be zero.
             */
            constructor(address implementation, bytes memory _data) payable {
                ERC1967Utils.upgradeToAndCall(implementation, _data);
            }
            /**
             * @dev Returns the current implementation address.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
             * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc`
             */
            function _implementation() internal view virtual override returns (address) {
                return ERC1967Utils.getImplementation();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol)
        pragma solidity ^0.8.20;
        import {IBeacon} from "../beacon/IBeacon.sol";
        import {Address} from "../../utils/Address.sol";
        import {StorageSlot} from "../../utils/StorageSlot.sol";
        /**
         * @dev This abstract contract provides getters and event emitting update functions for
         * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots.
         */
        library ERC1967Utils {
            // We re-declare ERC-1967 events here because they can't be used directly from IERC1967.
            // This will be fixed in Solidity 0.8.21. At that point we should remove these events.
            /**
             * @dev Emitted when the implementation is upgraded.
             */
            event Upgraded(address indexed implementation);
            /**
             * @dev Emitted when the admin account has changed.
             */
            event AdminChanged(address previousAdmin, address newAdmin);
            /**
             * @dev Emitted when the beacon is changed.
             */
            event BeaconUpgraded(address indexed beacon);
            /**
             * @dev Storage slot with the address of the current implementation.
             * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1.
             */
            // solhint-disable-next-line private-vars-leading-underscore
            bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
            /**
             * @dev The `implementation` of the proxy is invalid.
             */
            error ERC1967InvalidImplementation(address implementation);
            /**
             * @dev The `admin` of the proxy is invalid.
             */
            error ERC1967InvalidAdmin(address admin);
            /**
             * @dev The `beacon` of the proxy is invalid.
             */
            error ERC1967InvalidBeacon(address beacon);
            /**
             * @dev An upgrade function sees `msg.value > 0` that may be lost.
             */
            error ERC1967NonPayable();
            /**
             * @dev Returns the current implementation address.
             */
            function getImplementation() internal view returns (address) {
                return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 implementation slot.
             */
            function _setImplementation(address newImplementation) private {
                if (newImplementation.code.length == 0) {
                    revert ERC1967InvalidImplementation(newImplementation);
                }
                StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation;
            }
            /**
             * @dev Performs implementation upgrade with additional setup call if data is nonempty.
             * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
             * to avoid stuck value in the contract.
             *
             * Emits an {IERC1967-Upgraded} event.
             */
            function upgradeToAndCall(address newImplementation, bytes memory data) internal {
                _setImplementation(newImplementation);
                emit Upgraded(newImplementation);
                if (data.length > 0) {
                    Address.functionDelegateCall(newImplementation, data);
                } else {
                    _checkNonPayable();
                }
            }
            /**
             * @dev Storage slot with the admin of the contract.
             * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1.
             */
            // solhint-disable-next-line private-vars-leading-underscore
            bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
            /**
             * @dev Returns the current admin.
             *
             * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using
             * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call.
             * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103`
             */
            function getAdmin() internal view returns (address) {
                return StorageSlot.getAddressSlot(ADMIN_SLOT).value;
            }
            /**
             * @dev Stores a new address in the EIP1967 admin slot.
             */
            function _setAdmin(address newAdmin) private {
                if (newAdmin == address(0)) {
                    revert ERC1967InvalidAdmin(address(0));
                }
                StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin;
            }
            /**
             * @dev Changes the admin of the proxy.
             *
             * Emits an {IERC1967-AdminChanged} event.
             */
            function changeAdmin(address newAdmin) internal {
                emit AdminChanged(getAdmin(), newAdmin);
                _setAdmin(newAdmin);
            }
            /**
             * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy.
             * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1.
             */
            // solhint-disable-next-line private-vars-leading-underscore
            bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50;
            /**
             * @dev Returns the current beacon.
             */
            function getBeacon() internal view returns (address) {
                return StorageSlot.getAddressSlot(BEACON_SLOT).value;
            }
            /**
             * @dev Stores a new beacon in the EIP1967 beacon slot.
             */
            function _setBeacon(address newBeacon) private {
                if (newBeacon.code.length == 0) {
                    revert ERC1967InvalidBeacon(newBeacon);
                }
                StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon;
                address beaconImplementation = IBeacon(newBeacon).implementation();
                if (beaconImplementation.code.length == 0) {
                    revert ERC1967InvalidImplementation(beaconImplementation);
                }
            }
            /**
             * @dev Change the beacon and trigger a setup call if data is nonempty.
             * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected
             * to avoid stuck value in the contract.
             *
             * Emits an {IERC1967-BeaconUpgraded} event.
             *
             * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since
             * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for
             * efficiency.
             */
            function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal {
                _setBeacon(newBeacon);
                emit BeaconUpgraded(newBeacon);
                if (data.length > 0) {
                    Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data);
                } else {
                    _checkNonPayable();
                }
            }
            /**
             * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract
             * if an upgrade doesn't perform an initialization call.
             */
            function _checkNonPayable() private {
                if (msg.value > 0) {
                    revert ERC1967NonPayable();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM
         * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to
         * be specified by overriding the virtual {_implementation} function.
         *
         * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a
         * different contract through the {_delegate} function.
         *
         * The success and return data of the delegated call will be returned back to the caller of the proxy.
         */
        abstract contract Proxy {
            /**
             * @dev Delegates the current call to `implementation`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _delegate(address implementation) internal virtual {
                assembly {
                    // Copy msg.data. We take full control of memory in this inline assembly
                    // block because it will not return to Solidity code. We overwrite the
                    // Solidity scratch pad at memory position 0.
                    calldatacopy(0, 0, calldatasize())
                    // Call the implementation.
                    // out and outsize are 0 because we don't know the size yet.
                    let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0)
                    // Copy the returned data.
                    returndatacopy(0, 0, returndatasize())
                    switch result
                    // delegatecall returns 0 on error.
                    case 0 {
                        revert(0, returndatasize())
                    }
                    default {
                        return(0, returndatasize())
                    }
                }
            }
            /**
             * @dev This is a virtual function that should be overridden so it returns the address to which the fallback
             * function and {_fallback} should delegate.
             */
            function _implementation() internal view virtual returns (address);
            /**
             * @dev Delegates the current call to the address returned by `_implementation()`.
             *
             * This function does not return to its internal call site, it will return directly to the external caller.
             */
            function _fallback() internal virtual {
                _delegate(_implementation());
            }
            /**
             * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other
             * function in the contract matches the call data.
             */
            fallback() external payable virtual {
                _fallback();
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/ProxyAdmin.sol)
        pragma solidity ^0.8.20;
        import {ITransparentUpgradeableProxy} from "./TransparentUpgradeableProxy.sol";
        import {Ownable} from "../../access/Ownable.sol";
        /**
         * @dev This is an auxiliary contract meant to be assigned as the admin of a {TransparentUpgradeableProxy}. For an
         * explanation of why you would want to use this see the documentation for {TransparentUpgradeableProxy}.
         */
        contract ProxyAdmin is Ownable {
            /**
             * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgrade(address)`
             * and `upgradeAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called,
             * while `upgradeAndCall` will invoke the `receive` function if the second argument is the empty byte string.
             * If the getter returns `"5.0.0"`, only `upgradeAndCall(address,bytes)` is present, and the second argument must
             * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function
             * during an upgrade.
             */
            string public constant UPGRADE_INTERFACE_VERSION = "5.0.0";
            /**
             * @dev Sets the initial owner who can perform upgrades.
             */
            constructor(address initialOwner) Ownable(initialOwner) {}
            /**
             * @dev Upgrades `proxy` to `implementation` and calls a function on the new implementation.
             * See {TransparentUpgradeableProxy-_dispatchUpgradeToAndCall}.
             *
             * Requirements:
             *
             * - This contract must be the admin of `proxy`.
             * - If `data` is empty, `msg.value` must be zero.
             */
            function upgradeAndCall(
                ITransparentUpgradeableProxy proxy,
                address implementation,
                bytes memory data
            ) public payable virtual onlyOwner {
                proxy.upgradeToAndCall{value: msg.value}(implementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (proxy/transparent/TransparentUpgradeableProxy.sol)
        pragma solidity ^0.8.20;
        import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol";
        import {ERC1967Proxy} from "../ERC1967/ERC1967Proxy.sol";
        import {IERC1967} from "../../interfaces/IERC1967.sol";
        import {ProxyAdmin} from "./ProxyAdmin.sol";
        /**
         * @dev Interface for {TransparentUpgradeableProxy}. In order to implement transparency, {TransparentUpgradeableProxy}
         * does not implement this interface directly, and its upgradeability mechanism is implemented by an internal dispatch
         * mechanism. The compiler is unaware that these functions are implemented by {TransparentUpgradeableProxy} and will not
         * include them in the ABI so this interface must be used to interact with it.
         */
        interface ITransparentUpgradeableProxy is IERC1967 {
            function upgradeToAndCall(address, bytes calldata) external payable;
        }
        /**
         * @dev This contract implements a proxy that is upgradeable through an associated {ProxyAdmin} instance.
         *
         * To avoid https://medium.com/nomic-labs-blog/malicious-backdoors-in-ethereum-proxies-62629adf3357[proxy selector
         * clashing], which can potentially be used in an attack, this contract uses the
         * https://blog.openzeppelin.com/the-transparent-proxy-pattern/[transparent proxy pattern]. This pattern implies two
         * things that go hand in hand:
         *
         * 1. If any account other than the admin calls the proxy, the call will be forwarded to the implementation, even if
         * that call matches the {ITransparentUpgradeableProxy-upgradeToAndCall} function exposed by the proxy itself.
         * 2. If the admin calls the proxy, it can call the `upgradeToAndCall` function but any other call won't be forwarded to
         * the implementation. If the admin tries to call a function on the implementation it will fail with an error indicating
         * the proxy admin cannot fallback to the target implementation.
         *
         * These properties mean that the admin account can only be used for upgrading the proxy, so it's best if it's a
         * dedicated account that is not used for anything else. This will avoid headaches due to sudden errors when trying to
         * call a function from the proxy implementation. For this reason, the proxy deploys an instance of {ProxyAdmin} and
         * allows upgrades only if they come through it. You should think of the `ProxyAdmin` instance as the administrative
         * interface of the proxy, including the ability to change who can trigger upgrades by transferring ownership.
         *
         * NOTE: The real interface of this proxy is that defined in `ITransparentUpgradeableProxy`. This contract does not
         * inherit from that interface, and instead `upgradeToAndCall` is implicitly implemented using a custom dispatch
         * mechanism in `_fallback`. Consequently, the compiler will not produce an ABI for this contract. This is necessary to
         * fully implement transparency without decoding reverts caused by selector clashes between the proxy and the
         * implementation.
         *
         * NOTE: This proxy does not inherit from {Context} deliberately. The {ProxyAdmin} of this contract won't send a
         * meta-transaction in any way, and any other meta-transaction setup should be made in the implementation contract.
         *
         * IMPORTANT: This contract avoids unnecessary storage reads by setting the admin only during construction as an
         * immutable variable, preventing any changes thereafter. However, the admin slot defined in ERC-1967 can still be
         * overwritten by the implementation logic pointed to by this proxy. In such cases, the contract may end up in an
         * undesirable state where the admin slot is different from the actual admin.
         *
         * WARNING: It is not recommended to extend this contract to add additional external functions. If you do so, the
         * compiler will not check that there are no selector conflicts, due to the note above. A selector clash between any new
         * function and the functions declared in {ITransparentUpgradeableProxy} will be resolved in favor of the new one. This
         * could render the `upgradeToAndCall` function inaccessible, preventing upgradeability and compromising transparency.
         */
        contract TransparentUpgradeableProxy is ERC1967Proxy {
            // An immutable address for the admin to avoid unnecessary SLOADs before each call
            // at the expense of removing the ability to change the admin once it's set.
            // This is acceptable if the admin is always a ProxyAdmin instance or similar contract
            // with its own ability to transfer the permissions to another account.
            address private immutable _admin;
            /**
             * @dev The proxy caller is the current admin, and can't fallback to the proxy target.
             */
            error ProxyDeniedAdminAccess();
            /**
             * @dev Initializes an upgradeable proxy managed by an instance of a {ProxyAdmin} with an `initialOwner`,
             * backed by the implementation at `_logic`, and optionally initialized with `_data` as explained in
             * {ERC1967Proxy-constructor}.
             */
            constructor(address _logic, address initialOwner, bytes memory _data) payable ERC1967Proxy(_logic, _data) {
                _admin = address(new ProxyAdmin(initialOwner));
                // Set the storage value and emit an event for ERC-1967 compatibility
                ERC1967Utils.changeAdmin(_proxyAdmin());
            }
            /**
             * @dev Returns the admin of this proxy.
             */
            function _proxyAdmin() internal virtual returns (address) {
                return _admin;
            }
            /**
             * @dev If caller is the admin process the call internally, otherwise transparently fallback to the proxy behavior.
             */
            function _fallback() internal virtual override {
                if (msg.sender == _proxyAdmin()) {
                    if (msg.sig != ITransparentUpgradeableProxy.upgradeToAndCall.selector) {
                        revert ProxyDeniedAdminAccess();
                    } else {
                        _dispatchUpgradeToAndCall();
                    }
                } else {
                    super._fallback();
                }
            }
            /**
             * @dev Upgrade the implementation of the proxy. See {ERC1967Utils-upgradeToAndCall}.
             *
             * Requirements:
             *
             * - If `data` is empty, `msg.value` must be zero.
             */
            function _dispatchUpgradeToAndCall() private {
                (address newImplementation, bytes memory data) = abi.decode(msg.data[4:], (address, bytes));
                ERC1967Utils.upgradeToAndCall(newImplementation, data);
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Collection of functions related to the address type
         */
        library Address {
            /**
             * @dev The ETH balance of the account is not enough to perform the operation.
             */
            error AddressInsufficientBalance(address account);
            /**
             * @dev There's no code at `target` (it is not a contract).
             */
            error AddressEmptyCode(address target);
            /**
             * @dev A call to an address target failed. The target may have reverted.
             */
            error FailedInnerCall();
            /**
             * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
             * `recipient`, forwarding all available gas and reverting on errors.
             *
             * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
             * of certain opcodes, possibly making contracts go over the 2300 gas limit
             * imposed by `transfer`, making them unable to receive funds via
             * `transfer`. {sendValue} removes this limitation.
             *
             * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more].
             *
             * IMPORTANT: because control is transferred to `recipient`, care must be
             * taken to not create reentrancy vulnerabilities. Consider using
             * {ReentrancyGuard} or the
             * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
             */
            function sendValue(address payable recipient, uint256 amount) internal {
                if (address(this).balance < amount) {
                    revert AddressInsufficientBalance(address(this));
                }
                (bool success, ) = recipient.call{value: amount}("");
                if (!success) {
                    revert FailedInnerCall();
                }
            }
            /**
             * @dev Performs a Solidity function call using a low level `call`. A
             * plain `call` is an unsafe replacement for a function call: use this
             * function instead.
             *
             * If `target` reverts with a revert reason or custom error, it is bubbled
             * up by this function (like regular Solidity function calls). However, if
             * the call reverted with no returned reason, this function reverts with a
             * {FailedInnerCall} error.
             *
             * Returns the raw returned data. To convert to the expected return value,
             * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
             *
             * Requirements:
             *
             * - `target` must be a contract.
             * - calling `target` with `data` must not revert.
             */
            function functionCall(address target, bytes memory data) internal returns (bytes memory) {
                return functionCallWithValue(target, data, 0);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but also transferring `value` wei to `target`.
             *
             * Requirements:
             *
             * - the calling contract must have an ETH balance of at least `value`.
             * - the called Solidity function must be `payable`.
             */
            function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
                if (address(this).balance < value) {
                    revert AddressInsufficientBalance(address(this));
                }
                (bool success, bytes memory returndata) = target.call{value: value}(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a static call.
             */
            function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
                (bool success, bytes memory returndata) = target.staticcall(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
             * but performing a delegate call.
             */
            function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
                (bool success, bytes memory returndata) = target.delegatecall(data);
                return verifyCallResultFromTarget(target, success, returndata);
            }
            /**
             * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target
             * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an
             * unsuccessful call.
             */
            function verifyCallResultFromTarget(
                address target,
                bool success,
                bytes memory returndata
            ) internal view returns (bytes memory) {
                if (!success) {
                    _revert(returndata);
                } else {
                    // only check if target is a contract if the call was successful and the return data is empty
                    // otherwise we already know that it was a contract
                    if (returndata.length == 0 && target.code.length == 0) {
                        revert AddressEmptyCode(target);
                    }
                    return returndata;
                }
            }
            /**
             * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the
             * revert reason or with a default {FailedInnerCall} error.
             */
            function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) {
                if (!success) {
                    _revert(returndata);
                } else {
                    return returndata;
                }
            }
            /**
             * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}.
             */
            function _revert(bytes memory returndata) private pure {
                // Look for revert reason and bubble it up if present
                if (returndata.length > 0) {
                    // The easiest way to bubble the revert reason is using memory via assembly
                    /// @solidity memory-safe-assembly
                    assembly {
                        let returndata_size := mload(returndata)
                        revert(add(32, returndata), returndata_size)
                    }
                } else {
                    revert FailedInnerCall();
                }
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol)
        pragma solidity ^0.8.20;
        /**
         * @dev Provides information about the current execution context, including the
         * sender of the transaction and its data. While these are generally available
         * via msg.sender and msg.data, they should not be accessed in such a direct
         * manner, since when dealing with meta-transactions the account sending and
         * paying for execution may not be the actual sender (as far as an application
         * is concerned).
         *
         * This contract is only required for intermediate, library-like contracts.
         */
        abstract contract Context {
            function _msgSender() internal view virtual returns (address) {
                return msg.sender;
            }
            function _msgData() internal view virtual returns (bytes calldata) {
                return msg.data;
            }
            function _contextSuffixLength() internal view virtual returns (uint256) {
                return 0;
            }
        }
        // SPDX-License-Identifier: MIT
        // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol)
        // This file was procedurally generated from scripts/generate/templates/StorageSlot.js.
        pragma solidity ^0.8.20;
        /**
         * @dev Library for reading and writing primitive types to specific storage slots.
         *
         * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts.
         * This library helps with reading and writing to such slots without the need for inline assembly.
         *
         * The functions in this library return Slot structs that contain a `value` member that can be used to read or write.
         *
         * Example usage to set ERC1967 implementation slot:
         * ```solidity
         * contract ERC1967 {
         *     bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
         *
         *     function _getImplementation() internal view returns (address) {
         *         return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value;
         *     }
         *
         *     function _setImplementation(address newImplementation) internal {
         *         require(newImplementation.code.length > 0);
         *         StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation;
         *     }
         * }
         * ```
         */
        library StorageSlot {
            struct AddressSlot {
                address value;
            }
            struct BooleanSlot {
                bool value;
            }
            struct Bytes32Slot {
                bytes32 value;
            }
            struct Uint256Slot {
                uint256 value;
            }
            struct StringSlot {
                string value;
            }
            struct BytesSlot {
                bytes value;
            }
            /**
             * @dev Returns an `AddressSlot` with member `value` located at `slot`.
             */
            function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BooleanSlot` with member `value` located at `slot`.
             */
            function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Bytes32Slot` with member `value` located at `slot`.
             */
            function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `Uint256Slot` with member `value` located at `slot`.
             */
            function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` with member `value` located at `slot`.
             */
            function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `StringSlot` representation of the string storage pointer `store`.
             */
            function getStringSlot(string storage store) internal pure returns (StringSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` with member `value` located at `slot`.
             */
            function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := slot
                }
            }
            /**
             * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`.
             */
            function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) {
                /// @solidity memory-safe-assembly
                assembly {
                    r.slot := store.slot
                }
            }
        }